Sample records for monomer dimer trimer

  1. Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris

    PubMed Central

    Hermanrud, Christina E.; Lucas, Carrie L.; Sykes, Megan; Huang, Christene A.; Wang, Zhirui

    2010-01-01

    The anti-murine CD40L monoclonal antibody MR1 has been widely used in immunology research to block the CD40-CD40L interaction for induction of transplantation tolerance and to abrogate autoimmune diseases. The availability of recombinant CD40L with high binding capacity for MR1 would provide a valuable immunological research tool. In this study, we constructed the single chain murine soluble CD40L monomer, dimer, trimer and successfully expressed them in yeast Pichia pastoris under the control of the alcohol oxidase promoter. The secreted single chain murine soluble CD40L monomers, dimers, and trimers were initially enriched through histidine tag capture by Ni-Sepharose 6 fast flow resin and further purified on a cation exchange resin. Purity reached more than 95% for the monomer and dimer forms and more than 90% for the trimer. Protein yield following purification was 16 mg/L for the monomer and dimer, and 8 mg/L for the trimer. ELISA analysis demonstrated that the CD40L dimers and trimers correctly folded in conformations exposing the MR1 antigenic determinant. PMID:21074618

  2. A general correction to initial rates determined for nonprocessive exo-depolymerases acting on both substrate and product

    USDA-ARS?s Scientific Manuscript database

    We recently reported on the kinetics of the polygalacturonase TtGH28 acting on trimer and dimer substrates. When the starting substrate for hydrolysis is the trimer, the product dimer is also subject to hydrolysis, resulting in discrepancies when either the concentration of dimer or monomer product ...

  3. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Buttrill, S. E., Jr.; Mayo, F. R.; Lan, B.; St.john, G. A.; Dulin, D.

    1982-01-01

    A practical fuel, home heating oil no. 2 (Fuel C), and the pure hydrocarbon, n-dodecane, were subjected to mild oxidation at 130 C and the resulting oxygenated reaction products, deposit precursors, were analyzed using field ionization mass spectrometry. Results for fuel C indicated that, as oxidation was initially extended, certain oxygenated reaction products of increasing molecular weights in the form of monomers, dimers and some trimers were produced. Further oxidation time increase resulted in further increase in monomers but a marked decrease in dimers and trimers. This suggests that these larger molecular weight products have proceeded to form deposit and separated from the fuel mixture. Results for a dodecane indicated that yields for dimers and trimers were very low. Dimers were produced as a result of interaction between oxygenated products with each other rather than with another fuel molecule. This occurred even though fuel molecule concentration was 50 times, or more greater than that for these oxygenated reaction products.

  4. Lithiated imines: solvent-dependent aggregate structures and mechanisms of alkylation.

    PubMed

    Zuend, Stephan J; Ramirez, Antonio; Lobkovsky, Emil; Collum, David B

    2006-05-03

    We describe efforts to understand the structure and reactivity of lithiated cyclohexanone N-cyclohexylimine. The lithioimine affords complex solvent-dependent distributions of monomers, dimers, and trimers in a number of ethereal solvents. Careful selection of solvent provides exclusively monosolvated dimers. Rate studies on the C-alkylations reveal chronic mixtures of monomer- and dimer-based pathways. We explore the factors influencing reactants and alkylation transition structures and the marked differences between lithioimines and isostructural lithium dialkylamides with the aid of density functional theory calculations.

  5. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    PubMed Central

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E.; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I.; Quigley, James P.; Moestrup, Søren K.; Rudd, Pauline M.; Sagi, Irit; Opdenakker, Ghislain

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers, and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical, and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast to a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM), we generated a 3Dstructure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers versus monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1. PMID:25360794

  6. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers.

    PubMed

    Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav

    2017-02-08

    We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).

  7. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells.

    PubMed

    Nam, Woong; Tak, Jungae; Ryu, Ju-Kyoung; Jung, Mankil; Yook, Jong-In; Kim, Hyung-Jun; Cha, In-Ho

    2007-04-01

    Artemisinin is of special biological interest because of its outstanding antimalarial activity. Recently, it was reported that artemisinin has antitumor activity. Its derivatives, artesunate, arteether, and artemeter, also have antitumor activity against melanoma, breast, ovarian, prostate, CNS, and renal cancer cell lines. Recently, monomer, dimer, and trimer derivatives were synthesized from deoxoartemisinin, and the dimers and the trimers were found to have much more potent antitumor activity than the monomers. We evaluated the antitumor activity of artemisinin and its various derivatives (dihydroartemisinin, dihydroartemisinin 12-benzoate, 12-(2'-hydroxyethyl) deoxoartemisinin, 12-(2'-ethylthio) deoxoartemisinin dimer, deoxoartemisinin trimer) in comparison with paclitaxel (Taxol), 5-fluorouracil (5-FU), cisplatin in vitro. In this study, the deoxoartemisinin trimer had the most potent antitumor effect (IC(50) = 6.0 microM), even better than paclitaxel (IC(50) = 13.1 microM), on oral cancer cell line (YD-10B). In addition, it induced apoptosis through a caspase-3-dependent mechanism. The deoxoartemisinin trimer was found to have greater antitumor effect on tumor cells than other commonly used chemotherapeutic drugs, such as 5-FU, cisplatin, and paclitaxel. Furthermore, the ability of artemisinin and its derivatives to induce apoptosis highlights their potential as chemotherapeutic agents, for many anticancer drugs achieve their antitumor effects by inducing apoptosis in tumor cells. (c) 2006 Wiley Periodicals, Inc.

  8. First Observation and Analysis of OCS-C_4H_2 Dimer and (OCS)_2-C_4H_2 Trimer

    NASA Astrophysics Data System (ADS)

    Sheybani-Deloui, S.; Yousefi, Mahdi; Norooz Oliaee, Jalal; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2014-06-01

    Infrared spectrum of a slipped near parallel isomer of OCS-C_4H_2 was observed in the region of νb{1} fundamental band of OCS monomer (˜2062 wn) using a diode laser to probe the supersonic slit jet expansion. The ab initio calculations at MP2 level indicate that the observed structure is the lowest energy isomer. The OCS-C_4H_2 band is composed of hybrid a/b-type transitions and was simulated by a conventional asymmetric top Hamiltonian with rotational constants of A=2892.15(10) MHz, B=1244.178(84) MHz, and C=868.692(52) MHz. The spectrum shows a relatively large red-shift of ˜6 wn with respect to the OCS monomer band origin. Also, one band for (OCS)_2-C_4H_2 trimer is observed around 2065 wn. This band is blue-shifted by 3 wn relative to the νb{1} fundamental band of OCS monomer. Our analysis shows that this trimer has C2 symmetry with rotational constants of A= 855.854(61) MHz, B=733.15(11) MHz, and C=610.10(38) MHz and c-type transitions. This structure is comparable with that of (OCS)_2-C_2H_2 where the OCS dimer unit within the trimer is non-polar. In addition to the normal isotoplogues, OCS-C_4D_2 and (OCS)_2-C_4D_2 were observed. In this talk, we discuss our observations and analysis on OCS-C_4H_2 dimer and (OCS)_2-C_4H_2 trimer. Mojtaba Rezaei, A. R. W. McKellar, and N. Moazzen-Ahmadi, J. Phys. Chem. A, 115, 10416 (2011).

  9. Hydrolyzable tannins of tamaricaceous plants. V. Structures of monomeric-trimeric tannins and cytotoxicity of macrocyclic-type tannins isolated from Tamarix nilotica (1).

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Sakagami, Hiroshi; Yoshimura, Morio; Yoshida, Takashi; Hatano, Tsutomu

    2013-05-24

    Three new ellagitannin monomers, nilotinins M5-M7 (1-3), a dimer, nilotinin D10 (4), and a trimer, nilotinin T1 (5), together with three known dimers, hirtellin D (7) and tamarixinins B (8) and C (9), and a trimer, hirtellin T2 (6), were isolated from Tamarix nilotica dried leaves. The structures of the tannins were elucidated by intensive spectroscopic methods and chemical conversions into known tannins. The new trimer (5) is a unique macrocyclic type whose monomeric units are linked together by an isodehydrodigalloyl and two dehydrodigalloyl moieties. Additionally, dimeric and trimeric macrocyclic-type tannins isolated from T. nilotica in this study were assessed for possible cytotoxic activity against four human tumor cell lines. Tumor-selective cytotoxicities of the tested compounds were higher than those of synthetic and natural potent cytotoxic compounds, including polyphenols, and comparable with those of 5-fluorouracil and melphalan.

  10. Liquid chromatography/mass spectrometry investigation of the impact of thermal processing and storage on peach procyanidins.

    PubMed

    Hong, Yun-Jeong; Barrett, Diane M; Mitchell, Alyson E

    2004-04-21

    Normal-phase liquid chromatography/mass spectrometry (LC/MS) was used to determine the levels and fate of procyanidins in frozen and canned Ross clingstone peaches as well as in the syrup used in the canning over a 3 month period. Procyanidin oligomers, monomers through undecamers, were identified in Ross clingstone peaches. Optimized methods allowed for the quantitation of oligomers through octamers. The profile of procyanidins in peaches is similar to profiles found in grapes, chocolate, and beverages linked to health benefits such as tea and wine. The monomer content in frozen peeled peaches was found to be 19.59 mg/kg. Dimers (39.59 mg/kg) and trimers (38.81 mg/kg) constituted the largest percent composition of oligomers in the peaches. Tetramers through octamers were present in levels of 17.81, 12.43, 10.62, 3.94 and 1.75 mg/kg, respectively. Thermal processing resulted in an 11% reduction in monomers, a 9% reduction in dimers, a 12% reduction in trimers, a 6% reduction in tetramers, and a 5% reduction in pentamers. Hexamers and heptamers demonstrated an approximate 30% loss, and octamers were no longer detected. Analysis of the syrup after thermal processing indicates that there is a migration of procyanidin monomers through hexamers into the syrup that can account for the losses observed during the canning process. Storage of canned peaches for 3 months demonstrated a time-related loss in higher oligomers and that by 3 months oligomers larger than tetramers are not observed. At 3 months postcanning, levels of monomers had decreased by 10%, dimers by 16%, trimers by 45%, and tetramers by 80%. A similar trend was observed in the canning syrup.

  11. Can H-aggregates serve as light-harvesting antennae? Triplet-triplet energy transfer between excited aggregates and monomer thionine in aerosol-OT solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Kamat, P.V.

    1999-01-07

    The cationic dye thionine undergoes slow dissolution in aerosol-OT (AOT) containing solutions of heptane and toluene. By controlling the ratio of [dye]/[AOT], it is possible to obtain varying amounts of monomer, dimer, and higher order aggregates (trimer) in dilute dye solutions. The thionine aggregates exhibit characteristic absorption maxima at 565 and 530 nm for the dimer and trimer forms, respectively. The singlet excited states of these dye aggregates are short-lived ({tau} = 40--63 ps) as they undergo efficient intersystem crossing to generate the triplet excited states. Triplet energy transfer from the excited dye aggregates to monomeric thionine molecules was observedmore » upon excitation with a 532 nm laser pulse. Pulse radiolysis experiments, in which the excited triplet states were generated indirectly, also confirm the finding that the triplet energy cascades down from excited trimer to dimer to monomeric dye. These studies demonstrate the possibility of using H-type dye aggregates as antenna molecules to harvest light energy whereby the aggregate molecules absorb light in different spectral regions and subsequently transfer energy to the monomeric dye.« less

  12. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  13. Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides, and antioxidants in Ficus deltoidea , a malaysian herbal tea.

    PubMed

    Omar, Maizatul Hasyima; Mullen, William; Crozier, Alan

    2011-02-23

    Phenolic compounds in an aqueous infusion of leaves of Ficus deltoidea (Moraceae), a well-known herbal tea in Malaysia, were analyzed by HPLC coupled to photodiode array and fluorescence detectors and an electrospray ionization tandem mass spectrometer. Following chromatography of extracts on a reversed phase C(12) column, 25 flavonoids were characterized and/or tentatively identified with the main constituents being flavan-3-ol monomers, proanthocyanidins, and C-linked flavone glycosides. The proanthocyanidins were dimers and trimers comprising (epi)catechin and (epi)afzelechin units. No higher molecular weight proanthocyanidin polymers were detected. The antioxidant activity of F. deltoidea extract was analyzed using HPLC with online antioxidant detection. This revealed that 85% of the total antioxidant activity of the aqueous F. deltoidea infusion was attributable to the flavan-3-ol monomers and the proanthocyanidins.

  14. An ionic force-field study of monomers, dimers and higher polymers in pentafluoride vapors

    NASA Astrophysics Data System (ADS)

    Çiçek Önem, Z.; Akdeniz, Z.; Tosi, M. P.

    2008-08-01

    Pentafluoride compounds such as NbF 5 and TaF 5 have been reported in the literature to admit various states of polymerization coexisting with monomers in their vapor phase, in relative concentrations that vary with temperature and pressure. We construct a microscopic interionic force-field model for the molecular monomer of these compounds (including VF 5, SbF 5 and MoF 5 in addition to NbF 5 and TaF 5), the stable form of the monomer being in the shape of a D 3h trigonal bipyramid in all cases. The model emulates chemical bonds by allowing for electrical and short-range overlap polarizabilities of the fluorines, and is used to evaluate the structure and the stability of (MF 5) n molecules with n running from 2 to 6. The dimer is formed by two distorted edge-sharing octahedral, while the trimer and the higher polymers can form rings of distorted corner-sharing octahedra. A chain-like configuration is also found for the trimer of NbF 5, which consists of a seven-fold coordinated Nb bonded to two distorted octahedra via edge sharing. Comparison of calculated vibrational frequencies and bond lengths with experimental data is made whenever possible. We find that there is a small net gain of energy in the formation of a dimer, while otherwise the static energy of the n-mer is very close to that of n separated monomers. High sensitivity of the state of molecular aggregation to the thermodynamic conditions of the vapor is clearly indicated by our calculations.

  15. Stability of proton-bound clusters of alkyl alcohols, aldehydes and ketones in Ion Mobility Spectrometry.

    PubMed

    Jurado-Campos, Natividad; Garrido-Delgado, Rocío; Martínez-Haya, Bruno; Eiceman, Gary A; Arce, Lourdes

    2018-08-01

    Significant substances in emerging applications of ion mobility spectrometry such as breath analysis for clinical diagnostics and headspace analysis for food purity include low molar mass alcohols, ketones, aldehydes and esters which produce mobility spectra containing protonated monomers and proton-bound dimers. Spectra for all n- alcohols, aldehydes and ketones from carbon number three to eight exhibited protonated monomers and proton-bound dimers with ion drift times of 6.5-13.3 ms at ambient pressure and from 35° to 80 °C in nitrogen. Only n-alcohols from 1-pentanol to 1-octanol produced proton-bound trimers which were sufficiently stable to be observed at these temperatures and drift times of 12.8-16.3 ms. Polar functional groups were protected in compact structures in ab initio models for proton-bound dimers of alcohols, ketones and aldehydes. Only alcohols formed a V-shaped arrangement for proton-bound trimers strengthening ion stability and lifetime. In contrast, models for proton-bound trimers of aldehydes and ketones showed association of the third neutral through weak, non-specific, long-range interactions consistent with ion dissociation in the ion mobility drift tube before arriving at the detector. Collision cross sections derived from reduced mobility coefficients in nitrogen gas atmosphere support the predicted ion structures and approximate degrees of hydration. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. TASEP of interacting particles of arbitrary size

    NASA Astrophysics Data System (ADS)

    Narasimhan, S. L.; Baumgaertner, A.

    2017-10-01

    A mean-field description of the stationary state behaviour of interacting k-mers performing totally asymmetric exclusion processes (TASEP) on an open lattice segment is presented employing the discrete Takahashi formalism. It is shown how the maximal current and the phase diagram, including triple-points, depend on the strength of repulsive and attractive interactions. We compare the mean-field results with Monte Carlo simulation of three types interacting k-mers: monomers, dimers and trimers. (a) We find that the Takahashi estimates of the maximal current agree quantitatively with those of the Monte Carlo simulation in the absence of interaction as well as in both the the attractive and the strongly repulsive regimes. However, theory and Monte Carlo results disagree in the range of weak repulsion, where the Takahashi estimates of the maximal current show a monotonic behaviour, whereas the Monte Carlo data show a peaking behaviour. It is argued that the peaking of the maximal current is due to a correlated motion of the particles. In the limit of very strong repulsion the theory predicts a universal behavior: th maximal currents of k-mers correspond to that of non-interacting (k+1) -mers; (b) Monte Carlo estimates of the triple-points for monomers, dimers and trimers show an interesting general behaviour : (i) the phase boundaries α * and β* for entry and exit current, respectively, as function of interaction strengths show maxima for α* whereas β * exhibit minima at the same strength; (ii) in the attractive regime, however, the trend is reversed (β * > α * ). The Takahashi estimates of the triple-point for monomers show a similar trend as the Monte Carlo data except for the peaking of α * ; for dimers and trimers, however, the Takahashi estimates show an opposite trend as compared to the Monte Carlo data.

  17. Quantifying Dimer and Trimer Formation by Tri- n -butyl Phosphates in n -Dodecane: Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vo, Quynh N.; Dang, Liem X.; Nilsson, Mikael

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous ligands, is an important extractant used in solvent extraction process for the recovery of uranium and plutonium from spent nuclear fuel. Microscopic pictures of TBP isomerism and its behavior in n-dodecane diluent were investigated utilizing MD simulations with previously optimized force field parameters for TBP and n-dodecane. Potential Mean Force (PMF) calculations on a single TBP molecule show seven probable TBP isomers. Radial Distribution Functions (RDF) of TBP suggests the existence of TBP trimers at high TBP concentrations in addition to dimers. 2D PMF calculations were performed to determine the angle andmore » distance criteria for TBP trimers. The dimerization and trimerization constants of TBP in n-dodecane were obtained and match our own experimental values using FTIR technique. The new insights into the conformational behaviors of TBP molecule as a monomer and as part of an aggregate could greatly aid the understanding of the complexation between TBP and metal ions in solvent extraction system. The U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences funded the work performed by LXD.« less

  18. Highly efficient antibody immobilization with multimeric protein Gs coupled magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choi, H. K.; Chang, J. H.

    2011-10-01

    This work reports the immobilization of monomeric, dimeric and trimer protein Gs onto silica magnetic nanoparticles for self-oriented antibody immobilization. To achieve this, we initially prepared the silica-coated magnetic nanoparticle having about 170 nm diameters. The surface of the silica coated magnetic nanoparticles was modified with 3- aminopropyl-trimethoxysilane (APTMS) to chemically link to multimeric protein Gs. The conjugation of amino groups on the SiO2-MNPs to cysteine tagged in multimeric protein Gs was performed using a sulfo-SMCC coupling procedure. The binding efficiencies of monomer, dimer and trimer were 77 %, 67 % and 55 % respectively. However, the efficiencies of antibody immobilization were 70 %, 83 % and 95 % for monomeric, dimeric and trimeric protein G, respectively. To prove the enhancement of accessibility by using multimeric protein G, FITC labeled goat-anti-mouse IgG was treated to mouse IgG immobilized magnetic silica nanoparticles through multimeric protein G. FITC labeled goat anti-mouse IgGs were more easily bound to mouse IgG immobilized by trimeric protein G than others. Finally protein G bound silica magnetic nanoparticles were utilized to develop highly sensitive immunoassay to detect hepatitis B antigen.

  19. Evaporation of Lennard-Jones fluids.

    PubMed

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  20. Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin.

    PubMed

    Zhou, Yongjun; Murphy, Annabel C; Samborskyy, Markiyan; Prediger, Patricia; Dias, Luiz Carlos; Leadlay, Peter F

    2015-06-18

    Conglobatin is an unusual C2-symmetrical macrodiolide from the bacterium Streptomyces conglobatus with promising antitumor activity. Insights into the genes and enzymes that govern both the assembly-line production of the conglobatin polyketide and its dimerization are essential to allow rational alterations to be made to the conglobatin structure. We have used a rapid, direct in vitro cloning method to obtain the entire cluster on a 41-kbp fragment, encoding a modular polyketide synthase assembly line. The cloned cluster directs conglobatin biosynthesis in a heterologous host strain. Using a model substrate to mimic the conglobatin monomer, we also show that the conglobatin cyclase/thioesterase acts iteratively, ligating two monomers head-to-tail then re-binding the dimer product and cyclizing it. Incubation of two different monomers with the cyclase produces hybrid dimers and trimers, providing the first evidence that conglobatin analogs may in future become accessible through engineering of the polyketide synthase. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Detection of p75NTR Trimers: Implications for Receptor Stoichiometry and Activation

    PubMed Central

    Barker, Phillip A.; Chao, Moses V.

    2015-01-01

    The p75 neurotrophin receptor (p75NTR) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75NTR interacts with dimeric ligands (i.e., proneurotrophins or mature neurotrophins), but several of the intracellular adaptors that mediate p75NTR signaling are trimeric (i.e., TNFR-associated factor 6 or TRAF6). Consequently, the active receptor signaling unit remains uncertain. To identify the functional receptor complex, we evaluated its oligomerization in vitro and in mice brain tissues using a combination of biochemical techniques. We found that the most abundant homotypic arrangement for p75NTR is a trimer and that monomers and trimers coexist at the cell surface. Interestingly, trimers are not required for ligand-independent or ligand-dependent p75NTR activation in a growth cone retraction functional assay. However, monomers are capable of inducing acute morphological effects in neurons. We propose that p75NTR activation is regulated by its oligomerization status and its levels of expression. These results indicate that the oligomeric state of p75NTR confers differential responses and offers an explanation for the diverse and contradictory actions of this receptor in the nervous system. SIGNIFICANCE STATEMENT The p75 neurotrophin receptor (p75NTR) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75NTR predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75NTR activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75NTR begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity. PMID:26311773

  2. Detection of p75NTR Trimers: Implications for Receptor Stoichiometry and Activation.

    PubMed

    Anastasia, Agustin; Barker, Phillip A; Chao, Moses V; Hempstead, Barbara L

    2015-08-26

    The p75 neurotrophin receptor (p75(NTR)) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75(NTR) interacts with dimeric ligands (i.e., proneurotrophins or mature neurotrophins), but several of the intracellular adaptors that mediate p75(NTR) signaling are trimeric (i.e., TNFR-associated factor 6 or TRAF6). Consequently, the active receptor signaling unit remains uncertain. To identify the functional receptor complex, we evaluated its oligomerization in vitro and in mice brain tissues using a combination of biochemical techniques. We found that the most abundant homotypic arrangement for p75(NTR) is a trimer and that monomers and trimers coexist at the cell surface. Interestingly, trimers are not required for ligand-independent or ligand-dependent p75(NTR) activation in a growth cone retraction functional assay. However, monomers are capable of inducing acute morphological effects in neurons. We propose that p75(NTR) activation is regulated by its oligomerization status and its levels of expression. These results indicate that the oligomeric state of p75(NTR) confers differential responses and offers an explanation for the diverse and contradictory actions of this receptor in the nervous system. The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75(NTR) predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75(NTR) activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75(NTR) begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity. Copyright © 2015 the authors 0270-6474/15/3511911-10$15.00/0.

  3. Aperiodic Photonic-Plasmonic Structures with Broadband Field Enhancement

    DTIC Science & Technology

    2012-10-15

    monomer, (d and g) dimer, (e and i ) trimer...components of the radial distribution function. (a-d) numerator, (e-h) denominator, ( i -l) entire radial distribution function...in the Y direction is 400 nm. Fig 7 d- i shows the scattering efficiency and maximum field enhancement of each array compared with that of the

  4. Hydrolyzable Tannins of Tamaricaceous Plants. 7.1 Structures and Cytotoxic Properties of Oligomeric Ellagitannins from Leaves of Tamarix nilotica and Cultured Tissues of Tamarix tetrandra.

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Sakagami, Hiroshi; Yoshimura, Morio; Amakura, Yoshiaki; Hatano, Tsutomu

    2016-04-22

    Partially unacylated new oligomeric hydrolyzable tannins, nilotinin T2 (1, trimer) and nilotinin Q1 (2, tetramer), together with four known trimers, nilotinin T1 (3) and hirtellins T1-T3 (4-6), and a dimer, tamarixinin B (7), were isolated from the aqueous acetone extracts of leaves of Tamarix nilotica. Among them, the new trimer 1 and the known trimers 4 and 6, in addition to the partially unacylated new trimer nilotinin T3 (8), the known dimers nilotinin D3 (9) and tamarixinin C (10), and the monomer tellimagrandin I (11), were isolated from the cultured shoots of Tamarix tetrandra. The structures of the new hydrolyzable tannins were established by chromatographic analyses and extensive 1D and 2D NMR, HRESI-TOFMS, and ECD spectroscopic experiments. Among the new oligomeric tannins, the particular unacylated position of a glucose core is attributed to a possible biosynthetic route. Isolation of the same oligomeric tannins from cultured shoots of T. tetrandra emphasizes the unique biogenetic ability of the obtained cultures on production of the structurally and biologically characteristic tamaricaceous tannins commonly produced by the intact Tamarix plants. Additionally, tannins obtained in the present study together with gemin D (12) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (13), from our previous investigation of the leaves of T. nilotica, exhibited variable tumor-specific cytotoxic effects. The ellagitannin trimers 4, 6, and 8 and the dimer 9 exerted predominant tumor-selective cytotoxic effects with high specificity toward human promyelocytic leukemia cells.

  5. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case ofmore » positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less

  6. DockTrina: docking triangular protein trimers.

    PubMed

    Popov, Petr; Ritchie, David W; Grudinin, Sergei

    2014-01-01

    In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein-protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three-dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair-wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair-wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano-d.inrialpes.fr/software/docktrina. Copyright © 2013 Wiley Periodicals, Inc.

  7. Design of multivalent complexes using the barnase*barstar module.

    PubMed

    Deyev, Sergey M; Waibel, Robert; Lebedenko, Ekaterina N; Schubiger, August P; Plückthun, Andreas

    2003-12-01

    The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185(HER2-ECD) 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers.

  8. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    PubMed

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  9. The crystal structure of the calcium-bound con-G[Q6A] peptide reveals a novel metal-dependent helical trimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cnudde, Sara E.; Prorok, Mary; Jia, Xaofei

    2012-02-15

    The ability to form and control both secondary structure and oligomerization in short peptides has proven to be challenging owing to the structural instability of such peptides. The conantokin peptides are a family of {gamma}-carboxyglutamic acid containing peptides produced in the venoms of predatory sea snails of the Conus family. They are examples of short peptides that form stable helical structures, especially in the presence of divalent cations. Both monomeric and dimeric conantokin peptides have been identified and represent a new mechanism of helix association, 'the metallozipper motif' that is devoid of a hydrophobic interface between monomers. In the presentmore » study, a parallel/antiparallel three-helix bundle was identified and its crystal structure determined at high resolution. The three helices are almost perfectly parallel and represent a novel helix-helix association. The trimer interface is dominated by metal chelation between the three helices, and contains no interfacial hydrophobic interactions. It is now possible to produce stable monomeric, dimeric, or trimeric metallozippers depending on the peptide sequence and metal ion. Such structures have important applications in protein design.« less

  10. A human antibody against Zika virus crosslinks the E protein to prevent infection

    PubMed Central

    Hasan, S. Saif; Miller, Andrew; Sapparapu, Gopal; Fernandez, Estefania; Klose, Thomas; Long, Feng; Fokine, Andrei; Porta, Jason C.; Jiang, Wen; Diamond, Michael S.; Crowe Jr., James E.; Kuhn, Richard J.; Rossmann, Michael G.

    2017-01-01

    The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-Barré syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2 Å resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes. PMID:28300075

  11. A human antibody against Zika virus crosslinks the E protein to prevent infection.

    PubMed

    Hasan, S Saif; Miller, Andrew; Sapparapu, Gopal; Fernandez, Estefania; Klose, Thomas; Long, Feng; Fokine, Andrei; Porta, Jason C; Jiang, Wen; Diamond, Michael S; Crowe, James E; Kuhn, Richard J; Rossmann, Michael G

    2017-03-16

    The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-Barré syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2 Å resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes.

  12. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation.

    PubMed

    Harbertson, James F; Kilmister, Rachel L; Kelm, Mark A; Downey, Mark O

    2014-10-01

    Condensed tannins composed of epicatechin from monomer to octamer were isolated from cacao (Theobroma cacao, L.) seeds and added to bovine serum albumin (BSA) individually and combined as mixtures. When added to excess BSA the amount of tannin precipitated increased with tannin size. The amount of tannin required to precipitate BSA varied among the polymers with the trimer requiring the most to precipitate BSA (1000 μg) and octamer the least (50 μg). The efficacy of condensed tannins for protein precipitation increased with increased degree of polymerisation (or size) from trimers to octamers (monomers and dimers did not precipitate BSA), while mixtures of two sizes primarily had an additive effect. This study demonstrates that astringent perception is likely to increase with increasing polymer size. Further research to expand our understanding of astringent perception and its correlation with protein precipitation would benefit from sensory analysis of condensed tannins across a range of polymer sizes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy.

    PubMed

    Shiga, Naoki; Takayanagi, Shihori; Muramoto, Risa; Murakami, Tasuku; Qin, Rui; Suzuki, Yuta; Shinohara, Ken-Ichi; Kaneda, Atsushi; Nemoto, Tetsuhiro

    2017-05-15

    Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata.

    PubMed

    Liu, Jia-Bao; Ding, Ya-Si; Zhang, Ying; Chen, Jia-Bao; Cui, Bao-Song; Bai, Jin-Ye; Lin, Ming-Bao; Hou, Qi; Zhang, Pei-Cheng; Li, Shuai

    2015-05-22

    Twelve hydrolyzable tannins were obtained from the twigs of Myricaria bracteata, including two new hellinoyl-type dimers, bracteatinins D1 (1) and D2 (2); a new hellinoyl-type trimer, bracteatinin T1 (3); two known monomers, nilotinin M4 (4) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (5); six known dimers, tamarixinin A (6), nilotinin D8 (7), hirtellins A (10), B (9), and E (8), and isohirtellin C (11); and a known trimer, hirtellin T3 (12). The structures of the tannins were elucidated by spectroscopic data analysis and comparisons to known tannins. All compounds were evaluated as free radical scavengers using 1,1-diphenyl-2-picrylhydrazyl and hydroxy radicals and compared to the activity of BHT and Trolox. Compound 6 showed a significant anti-inflammatory effect on croton oil-induced ear edema in mice (200 mg/kg, inhibition rate 69.8%) and on collagen-induced arthritis in DBA/1 mice (20 mg/kg, inhibition rate 46.0% at day 57).

  15. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers.

    PubMed

    Sum, Tze Han; Sum, Tze Jing; Galloway, Warren R J D; Collins, Súil; Twigg, David G; Hollfelder, Florian; Spring, David R

    2016-09-16

    Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.

  17. Use of the fluorescence quantum yield for the determination of the number-average molecular weight of polymers of epicatechin with 4β→8 interflavin bonds

    Treesearch

    D. Cho; W.L. Mattice; L.J. Porter; Richard W. Hemingway

    1989-01-01

    Excitation at 280 nm produces a structureless emission band with a maximum at 321-324 nm for dilute solutions of catechin, epicatechin, and their oligomers in l,4-dioxane or water. The fluorescence quantum yield, Q, has been measured in these two solvents for five dimers, a trimer, a tetramer, a pentamer, a hexamer, and a polymer in which the monomer...

  18. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    PubMed

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Montmorillonite Clay-Catalyzed Synthesis of RNA Oligomers

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Miyakawa, S.; Huang, W.; Joshi, P.

    2005-12-01

    It is proposed that catalysis had a central role in the origins of life. This will be illustrated using the montmorillonite clay-catalyzed synthesis of oligomers of RNA from activated monomers, (Ferris and Ertem, 1993) a possible step in the origin of the RNA world (Ferris, 2005). Structural analysis of oligomers formed in the reaction of the activated monomer of 5'-AMP with that of 5'-CMP demonstrated that the oligomers formed were not produced by random synthesis but rather the sequences observed were directed by the montmorillonite catalyst (Miyakawa and Ferris, 2003). RNA oligomers containing up to 40 mers have been synthesized in reactions performed in water at 25 oC in the presence of montmorillonite (Huang and Ferris, 2003). Analysis of the structure elements in these oligomers from the 7 to 39 mers showed that they did not vary. Reaction of D, L-mixtures of the activated monomers of A and U resulted in the formation of greater amounts of the homochiral amounts of dimers and trimers of A than would be expected if there was no selectivity in the reaction. A limited number of the dimers and trimers of U were also formed but here the selectivity was for the formation of an excess of heterochiral products (Joshi et al., 2000). A postulate that explains why homochiral trimers of U are not formed and the significance of catalysis in prebiotic synthesis will be discussed. Ferris, J.P. (2005) Origins of life, molecular basis of. In R.A. Meyers, Ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 10. Wiley-VCH Verlag, Weinheim, Germany. Ferris, J.P., and Ertem, G. (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270-12275. Huang, W., and Ferris, J.P. (2003) Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 1458-1459. Joshi, P.C., Pitsch, S., and Ferris, J.P. (2000) Homochiral selection in the montmorillonite-catalyzed and uncatalyzed prebiotic synthesis of RNA. Chem. Commun., 2497-2498. Miyakawa, S., and Ferris, J.P. (2003) Sequence- and Regioselectivity in the montmorillonite-catalyzed synthesis of RNA. J. Am. Chem. Soc., 125, 8202-8208.

  20. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil, E-mail: Anil.Shukla@pnnl.gov; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations ofmore » singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less

  1. Proline 235 plays a key role in the regulation of the oligomeric states of Thermotoga maritima Arginine Binding Protein.

    PubMed

    Smaldone, Giovanni; Vigorita, Marilisa; Ruggiero, Alessia; Balasco, Nicole; Dattelbaum, Jonathan D; D'Auria, Sabato; Del Vecchio, Pompea; Graziano, Giuseppe; Vitagliano, Luigi

    2016-07-01

    The Arginine Binding Protein isolated from Thermotoga maritima (TmArgBP) is a protein endowed with several peculiar properties. We have previously shown that TmArgBP dimerization is a consequence of the swapping of the C-terminal helix. Here we explored the structural determinants of TmArgBP domain swapping and oligomerization. In particular, we report a mutational analysis of the residue Pro235, which is located in the hinge region of the swapping dimer. This residue was either replaced with a Gly-Lys dipeptide (TmArgBP(P235GK)) or a Gly residue (TmArgBP(P235G)). Different forms of these mutants were generated and extensively characterized using biophysical techniques. For both TmArgBP(P235GK) and TmArgBP(P235G) mutants, the occurrence of multiple oligomerization states (monomers, dimers and trimers) was detected. The formation of well-folded monomeric forms for these mutants indicates that the dimerization through C-terminal domain swapping observed in wild-type TmArgBP is driven by conformational restraints imposed by the presence of Pro235 in the hinge region. Molecular dynamics studies corroborate this observation by showing that Gly235 assumes conformational states forbidden for Pro residues in the TmArgBP(P235G) monomer. Unexpectedly, the trimeric forms present: (a) peculiar circular dichroism spectra, (b) a great susceptibility to heating, and (c) the ability to bind the Thioflavin T dye. The present findings clearly demonstrate that single-point mutations have an important impact on the TmArgBP oligomerization process. In a wider context, they also indicate that proteins endowed with an intrinsic propensity to swap have an easy access to states with altered structural and, possibly, functional properties. Copyright © 2016. Published by Elsevier B.V.

  2. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle

    PubMed Central

    Conn, Brian E.; Atnagulov, Aydar; Yoon, Bokwon; Barnett, Robert N.; Landman, Uzi; Bigioni, Terry P.

    2016-01-01

    Fathoming the principles underpinning the structures of monolayer-coated molecular metal nanoparticles remains an enduring challenge. Notwithstanding recent x-ray determinations, coveted veritable de novo structural predictions are scarce. Building on recent syntheses and de novo structure predictions of M3AuxAg17−x(TBBT)12, where M is a countercation, x = 0 or 1, and TBBT is 4-tert-butylbenzenethiol, we report an x-ray–determined structure that authenticates an a priori prediction and, in conjunction with first-principles theoretical analysis, lends force to the underlying forecasting methodology. The predicted and verified Ag(SR)3 monomer, together with the recently discovered Ag2(SR)5 dimer and Ag3(SR)6 trimer, establishes a family of unique mount motifs for silver thiolate nanoparticles, expanding knowledge beyond the earlier-known Au-S staples in thiol-capped gold nanoclusters. These findings demonstrate key principles underlying ligand-shell anchoring to the metal core, as well as unique T-like benzene dimer and cyclic benzene trimer ligand bundling configurations, opening vistas for rational design of metal and alloy nanoparticles. PMID:28138537

  3. Coriariin M, a trimeric hydrolysable tannin with dehydrodigalloyl and valoneoyl groups as linking units, and accompanying dimeric hydrolysable tannins from Coriaria japonica.

    PubMed

    Shimozu, Yuuki; Hirai, Takayasu; Hatano, Tsutomu

    2018-07-01

    Three oligomeric hydrolysable tannins, coriariins K, L, and M, which were previously undescribed, together with five known hydrolysable tannins were isolated from dried leaves of Coriaria japonica. Their structures were determined based on 1D and 2D NMR spectroscopy, HR-ESI-MS, and ECD spectroscopy experiments. Among the isolated compounds, coriariin M has a unique trimer structure where both dehydrodigalloyl and valoneoyl group linkages were found between the hydrolysable tannin monomers. Dimeric hydrolysable tannins coriariins K and L, having a dehydrodigalloyl group as the linking unit, were structurally related to coriariin A, the main hydrolysable tannin of this plant species. Additionally, the complexation of the eight hydrolysable tannins isolated in this study with bovine serum albumin (BSA) to form water-soluble macromolecules was analyzed using native polyacrylamide gel electrophoresis (PAGE). A comparison of the behaviors of the oligomeric hydrolysable tannins suggested the participation of the hexahydroxydiphenoyl group and the importance of the molecular sizes of the hydrolysable tannins in the formation of macromolecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Enhanced adsorption of Co atoms on grain boundary of boron nitride

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Chen, Guibin; Zhu, Liyan

    2017-11-01

    Structural, energetic, electronic, and magnetic properties of Co monomer, dimer, and trimer adsorbed on a single-layer boron nitride (BN) with a grain boundary (GB) consisting of tetragons and octagons ( 4|8) are theoretically explored via density functional calculations. Due to the presence of 4|8 GB, the adsorption energies (EAs) of small Co clusters are generally enhanced by 10% as compared with those adsorbed on pristine BN, e.g., the EA of Co monomer, and dimer increase by 0.1 eV on a global amount of 0.87 eV, and 0.2 eV for the case of Co trimer. Most interestingly, the increase in adsorption energy exhibits a strong correlation to the number of atoms directly bonded to the substrate. The enhanced binding of Co adatom on the BN with 4|8 GBs ( BN 48 ) is due to the strong hybridization of d orbitals of Co adatom and the localized defect states at the 4|8 GBs. However, the GBs have negligible influence on the electronic and magnetic properties of adsorbates. Hence, the two-dimensional (2D) nanosheets with linear GBs might be a better candidate for anchoring the transition metal atoms than pristine BN. Such a strategy may also be applied to other 2D materials, e.g., MoS2 and phosphorene, to enhance the binding of adatom on them, or to utilize them as 1D templates to assemble transition metal atoms into nanowires.

  5. Gas-phase spectra of MgO molecules: a possible connection from gas-phase molecules to planet formation

    NASA Astrophysics Data System (ADS)

    Kloska, Katherine A.; Fortenberry, Ryan C.

    2018-02-01

    A more fine-tuned method for probing planet-forming regions, such as protoplanetary discs, could be rovibrational molecular spectroscopy observation of particular premineral molecules instead of more common but ultimately less related volatile organic compounds. Planets are created when grains aggregate, but how molecules form grains is an ongoing topic of discussion in astrophysics and planetary science. Using the spectroscopic data of molecules specifically involved in mineral formation could help to map regions where planet formation is believed to be occurring in order to examine the interplay between gas and dust. Four atoms are frequently associated with planetary formation: Fe, Si, Mg and O. Magnesium, in particular, has been shown to be in higher relative abundance in planet-hosting stars. Magnesium oxide crystals comprise the mineral periclase making it the chemically simplest magnesium-bearing mineral and a natural choice for analysis. The monomer, dimer and trimer forms of (MgO)n with n = 1-3 are analysed in this work using high-level quantum chemical computations known to produce accurate results. Strong vibrational transitions at 12.5, 15.0 and 16.5 μm are indicative of magnesium oxide monomer, dimer and trimer making these wavelengths of particular interest for the observation of protoplanetary discs and even potentially planet-forming regions around stars. If such transitions are observed in emission from the accretion discs or absorptions from stellar spectra, the beginning stages of mineral and, subsequently, rocky body formation could be indicated.

  6. Research Results Ultra-fast Energy Transfer from Monomer to Dimer within a Trimeric Molecule New Progress in Heterogeneous Catalysis Research Key Progress in Research on Terrestrial Carbon Cycle in China A New Progress in Research on the Mechanism of Bio-Invasion New Findings in Anti-viral infection and Control of Inflammation Major Headway in Avian Origin Research New Progress in Gold-Nanoparticle-Based Biochips Topological Insulator Research Made Important Progress Major Progress in Biodiversity Achieved New Developments of Direct Methods in Protein Crystallography Major Progress in China-UK Collaboration on the Causal Relationship between Volcanic Activity and Biological Distinction News in Brief: NSFC set up "Research Fund for Young Foreign Scholars" How Often Does Human DNA Mutate? Research Progress on Colossal Anisotropic Magneto Resistive Effect

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Ultra-fast Energy Transfer from Monomer to Dimer within a Trimeric Molecule New Progress in Heterogeneous Catalysis Research Key Progress in Research on Terrestrial Carbon Cycle in China A New Progress in Research on the Mechanism of Bio-Invasion New Findings in Anti-viral infection and Control of Inflammation Major Headway in Avian Origin Research New Progress in Gold-Nanoparticle-Based Biochips Topological Insulator Research Made Important Progress Major Progress in Biodiversity Achieved New Developments of Direct Methods in Protein Crystallography Major Progress in China-UK Collaboration on the Causal Relationship between Volcanic Activity and Biological Distinction News in Brief: NSFC set up "Research Fund for Young Foreign Scholars" How Often Does Human DNA Mutate? Research Progress on Colossal Anisotropic Magneto Resistive Effect

  7. Infrared spectra of C2H4 dimer and trimer

    NASA Astrophysics Data System (ADS)

    Barclay, A. J.; Esteki, K.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2018-05-01

    Spectra of ethylene dimers and trimers are studied in the ν11 and (for the dimer) ν9 fundamental band regions of C2H4 (≈2990 and 3100 cm-1) using a tunable optical parametric oscillator source to probe a pulsed supersonic slit jet expansion. The deuterated trimer has been observed previously, but this represents the first rotationally resolved spectrum of (C2H4)3. The results support the previously determined cross-shaped (D2d) dimer and barrel-shaped (C3h or C3) trimer structures. However, the dimer spectrum in the ν9 fundamental region of C2H4 is apparently very perturbed and a previous rotational analysis is not well verified.

  8. Thermostability of photosystem I trimers and monomers from the cyanobacterium Thermosynechococcus elongatus

    NASA Astrophysics Data System (ADS)

    Shubin, Vladimir V.; Terekhova, Irina V.; Bolychevtseva, Yulia V.; El-Mohsnawy, Eithar; Rögner, Matthias; Mäntele, Werner; Kopczak, Marta J.; Džafić, Enela

    2017-05-01

    The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al. (2013) . To assess the thermostability of PSI complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus heating induced perturbations on the level of secondary structure of the proteins were studied. Changes were monitored by Fourier transform infrared (FT-IR) spectra in the mid-IR region upon slow heating (1 °C per minute) of samples in D2O phosphate buffer (pD 7.4) from 20 °C to 100 °C. These spectra showed distinct changes in the Amide I region of PSI complexes as a function of the rising temperature. Absorbance at the Amide I maximum of PSI monomers (centered around 1653 cm- 1), gradually dropped in two temperature intervals, i.e. 60-75 and 80-90 °C. In contrast, absorbance at the Amide I maximum of PSI trimers (around 1656 cm- 1) dropped only in one temperature interval 80-95 °C. The thermal profile of the spectral shift of α-helices bands in the region 1656-1642 cm- 1 confirms the same two temperature intervals for PSI monomers and only one interval for trimers. Apparently, the observed absorbance changes at the Amide I maximum during heating of PSI monomers and trimers are caused by deformation and unfolding of α-helices. The absence of absorbance changes in the interval of 20-65 °C in PSI trimers is probably caused by a greater stability of protein secondary structure as compared to that in monomers. Upon heating above 80 °C a large part of α-helices both in trimers and monomers converts to unordered and aggregated structures. Spectral changes of PSI trimers and monomers heated up to 100 °C are irreversible due to protein denaturation and non-specific aggregation of complexes leading to new absorption bands at 1618-1620 cm- 1. We propose that monomers shield the denaturation sensitive sides at the monomer/monomer interface within a trimer, making the oligomeric structure more stable against thermal stress.

  9. Cooperativity and specificity of association of a designed transmembrane peptide.

    PubMed Central

    Gratkowski, Holly; Dai, Qing-Hong; Wand, A Joshua; DeGrado, William F; Lear, James D

    2002-01-01

    Thermodynamics studies aimed at quantitatively characterizing free energy effects of amino acid substitutions are not restricted to two state systems, but do require knowing the number of states involved in the equilibrium under consideration. Using analytical ultracentrifugation and NMR methods, we show here that a membrane-soluble peptide, MS1, designed by modifying the sequence of the water-soluble coiled-coil GCN4-P1, exhibits a reversible monomer-dimer-trimer association in detergent micelles with a greater degree of cooperativity in C14-betaine than in dodecyl phosphocholine detergents. PMID:12202385

  10. Crosslinking Evidence for Motional Constraints within Chemoreceptor Trimers of Dimers

    PubMed Central

    Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2011-01-01

    Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In E. coli, chemoreceptors show higher order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer of dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo crosslinking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed crosslinks, whereas reporters lying at different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernable effect on the crosslinking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced crosslinking at most of the reporter sites, indicating that individual dimers may move closer together under this condition. PMID:21174433

  11. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    NASA Astrophysics Data System (ADS)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-07-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH⋯N and NH⋯O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  12. Monomeric Nucleoprotein of Influenza A Virus

    PubMed Central

    Chenavas, Sylvie; Estrozi, Leandro F.; Slama-Schwok, Anny; Delmas, Bernard; Di Primo, Carmelo; Baudin, Florence; Li, Xinping; Crépin, Thibaut; Ruigrok, Rob W. H.

    2013-01-01

    Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection. PMID:23555270

  13. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    NASA Astrophysics Data System (ADS)

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-03-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.

  14. Fourier transform infrared spectroscopy of 2'-deoxycytidine aggregates in CDCl3 solutions

    NASA Astrophysics Data System (ADS)

    Biemann, Lars; Häber, Thomas; Maydt, Daniela; Schaper, Klaus; Kleinermanns, Karl

    2011-03-01

    We investigated the self-aggregation of 2'-deoxy-3',5'-bis(tert-butyldimethylsilyl)-cytidine dC(TBDMS)2 in CDCl3 solutions by Fourier transform infrared (FT-IR) spectroscopy and report the formation of larger aggregates than dimers in this solvent for the first time. The hydrogen bonding patterns in these complexes, which occur with increasing concentration may serve as a model for DNA super-structures such as triplexes. From the IR spectra, wavelength dependent absolute extinction coefficients of the monomer, dimer as well as a contribution from larger clusters which are supposedly trimers are deduced on the basis of a simple deconvolution method. Our results are supported by RI-B3LYP/TZVP calculations within the conductorlike screening model framework, to account for solvent effects in the ab initio calculations.

  15. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound.

    PubMed

    Ahmed, Suzanne; Gentekos, Dillon T; Fink, Craig A; Mallouk, Thomas E

    2014-11-25

    Segmented gold-ruthenium nanorods (300 ± 30 nm in diameter and 2.0 ± 0.2 μm in length) with thin Ni segments at one end assemble into few-particle, geometrically regular dimers, trimers, and higher multimers while levitated in water by ∼4 MHz ultrasound at the midpoint of a cylindrical acoustic cell. The assembly of the nanorods into multimers is controlled by interactions between the ferromagnetic Ni segments. These assemblies are propelled autonomously in fluids by excitation with ∼4 MHz ultrasound and exhibit several distinct modes of motion. Multimer assembly and disassembly are dynamic in the ultrasonic field. The relative numbers of monomers, dimers, trimers, and higher multimers are dependent upon the number density of particles in the fluid and their speed, which is in turn determined by the ultrasonic power applied. The magnetic binding energy of the multimers estimated from their speed-dependent equilibria is in agreement with the calculated strength of the magnetic dipole interactions. These autonomously propelled multimers can also be steered with an external magnetic field and remain intact after removal from the acoustic chamber for SEM imaging.

  16. Isolation and identification of oligomers from partial degradation of lime fruit cutin.

    PubMed

    Tian, Shiying; Fang, Xiuhua; Wang, Weimin; Yu, Bingwu; Cheng, Xiaofang; Qiu, Feng; Mort, Andrew J; Stark, Ruth E

    2008-11-12

    Complementary degradative treatments with low-temperature hydrofluoric acid and methanolic potassium hydroxide have been used to investigate the protective biopolymer cutin from Citrus aurantifolia (lime) fruits, augmenting prior enzymatic and chemical strategies to yield a more comprehensive view of its molecular architecture. Analysis of the resulting soluble oligomeric fragments with one- and two-dimensional NMR and MS methods identified a new dimer and three trimeric esters of primary alcohols based on 10,16-dihydroxyhexadecanoic acid and 10-oxo-16-hydroxyhexadecanoic acid units. Whereas only 10-oxo-16-hydroxyhexadecanoic acid units were found in the oligomers from hydrofluoric acid treatments, the dimer and trimer products isolated to date using diverse degradative methods included six of the seven possible stoichiometric ratios of monomer units. A novel glucoside-linked hydroxyfatty acid tetramer was also identified provisionally, suggesting that the cutin biopolymer can be bound covalently to the plant cell wall. Although the current findings suggest that the predominant molecular architecture of this protective polymer in lime fruits involves esters of primary and secondary alcohols based on long-chain hydroxyfatty acids, the possibility of additional cross-linking to enhance structural integrity is underscored by these and related findings of nonstandard cutin molecular architectures.

  17. Molecular dynamics study of the vaporization of an ionic drop.

    PubMed

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  18. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization.

    PubMed

    Donderis, Jorge; Bowring, Janine; Maiques, Elisa; Ciges-Tomas, J Rafael; Alite, Christian; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R; Marina, Alberto

    2017-09-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.

  19. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization

    PubMed Central

    Ciges-Tomas, J. Rafael; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R.

    2017-01-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules. PMID:28892519

  20. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.

    PubMed Central

    Wright, J K; Tschopp, J; Jaton, J C; Engel, J

    1980-01-01

    The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362

  1. Gating of the designed trimeric/tetrameric voltage-gated H+ channel

    PubMed Central

    Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Nakagawa, Atsushi; Larsson, H Peter; Okamura, Yasushi

    2013-01-01

    The voltage-gated H+ channel functions as a dimer, a configuration that is different from standard tetrameric voltage-gated channels. Each channel protomer has its own permeation pathway. The C-terminal coiled-coil domain has been shown to be necessary for both dimerization and cooperative gating in the two channel protomers. Here we report the gating cooperativity in trimeric and tetrameric Hv channels engineered by altering the hydrophobic core sequence of the coiled-coil assembly domain. Trimeric and tetrameric channels exhibited more rapid and less sigmoidal kinetics of activation of H+ permeation than dimeric channels, suggesting that some channel protomers in trimers and tetramers failed to produce gating cooperativity observed in wild-type dimers. Multimerization of trimer and tetramer channels were confirmed by the biochemical analysis of proteins, including crystallography. These findings indicate that the voltage-gated H+ channel is optimally designed as a dimeric channel on a solid foundation of the sequence pattern of the coiled-coil core, with efficient cooperative gating that ensures sustained and steep voltage-dependent H+ conductance in blood cells. PMID:23165764

  2. Solution-Phase Processes of Macromolecular Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Minamitani, Elizabeth Forsythe

    2004-01-01

    We have proposed, for the tetragonal form of chicken egg lysozyme, that solution phase assembly processes are needed to form the growth units for crystal nucleation and growth. The starting point for the self-association process is the monomeric protein, and the final crystallographic symmetry is defined by the initial dimerization interactions of the monomers and subsequent n-mers formed, which in turn are a function of the crystallization conditions. It has been suggested that multimeric proteins generally incorporate the underlying multimers symmetry into the final crystallographic symmetry. We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The insoluble protein can be readily dissolved by weakly basic solution, which results in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part of the crystal nucleation and growth path. Results are presented for crystallization experiments of CCAN over the pH 6.8 to 9.6 range.

  3. The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy.

    PubMed

    Seifert, Nathan A; Steber, Amanda L; Neill, Justin L; Pérez, Cristóbal; Zaleski, Daniel P; Pate, Brooks H; Lesarri, Alberto

    2013-07-21

    The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure was determined by proper constraint of the M06-2X/6-311++g(d,p) ab initio structure. The structure of phenol dimer features a water dimer-like hydrogen bond, as well as a cooperative contribution from inter-ring dispersion. Comparisons between the experimental structure and previously determined experimental structures, as well as ab initio structures from various levels of theory, are discussed. For phenol trimer, a C3 symmetric barrel-like structure is found, and an experimental substitution structure was determined via measurement of the six unique (13)C isotopologues. The least-squares fit rm((1)) structure reveals a similar interplay between hydrogen bonding and dispersion in the trimer, with water trimer-like hydrogen bonding and C-H···π interactions.

  4. Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization.

    PubMed

    Correia, J J; Chacko, B M; Lam, S S; Lin, K

    2001-02-06

    SMAD proteins are known to oligomerize and hetero-associate during their activation and translocation to the nucleus for transcriptional control. Analytical ultracentrifuge studies on Smad3 and Smad4 protein constructs are presented to clarify the model of homo- and hetero-oligomerization and the role of phosphorylation in the activation process. These constructs all exhibit a tendency to form disulfide cross-linked aggregates, primarily dimers, and a strong reducing agent, TCEP, was found to be required to determine the best estimates for reversible association models and equilibrium constants. A Smad4 construct, S4AF, consisting of the middle linker (L) domain and the C-terminal (C) domain, is shown to be a monomer, while a Smad3 construct, S3LC, consisting of the LC domains, is shown to form a trimer with an affinity K(3) = (1.2-3.1) x 10(9) M(-2). A Smad3 construct that mimics phosphorylation at the C-terminal target sequence, S3LC(3E), has 17--35-fold enhanced ability to form trimer over that of the wild-type construct, S3LC. S4AF associates with either S3LC or S3LC(3E) to form a hetero-trimer. In each case, the hetero-trimer is favored over the formation of the homo-trimer. Despite high sequence homology between Smad3 and Smad4, a chimeric Smad4 construct with an engineered Smad3 C-terminal pseudo-phosphorylation sequence, S4AF(3E), shows no tendency to form trimer. This suggests a Smad4-specific sequence insert inhibits homo-trimer formation, or other domains or sequences in S3LC are required in addition to the target sequence to mediate the formation of trimer. These results represent a direct molecular measure of the importance of hetero-trimerization and phosphorylation in the TGF-beta-activated Smad protein signal transduction process.

  5. Kinetic dissection of individual steps in the poly(C)-directed oligoguanylate synthesis from guanosine 5'-monophosphate 2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Bernasconi, C. F.; Alberas, D. J.; Baird, E. E.

    1993-01-01

    A kinetic study of oligoguanylate synthesis on a polycytidylate template, poly(C), as a function of the concentration of the activated monomer, guanosine 5'-monophosphate 2-methylimidazolide, 2-MeImpG, is reported. Reactions were run with 0.005-0.045 M 2-MeImpG in the presence of 0.05 M poly(C) at 23 degrees C. The kinetic results are consistent with a reaction scheme (eq 1) that consists of a series of consecutive steps, each step representing the addition of one molecule of 2-MeImpG to the growing oligomer. This scheme allows the calculation of second-order rate constants for every step by analyzing the time-dependent growth of each oligomer. Computer simulations of the course of reaction based on the determined rate constants and eq 1 are in excellent agreement with the product distributions seen in the HPLC profiles. In accord with an earlier study (Fakhrai, H.; Inoue, T.; Orgel, L. E. Tetrahedron 1984, 40, 39), rate constants, ki, for the formation of the tetramer and longer oligomers up to the 16-mer were found to be independent of length and somewhat higher than k3 (formation of trimer), which in turn is much higher than k2 (formation of dimer). The ki (i > or = 4), k3, and k2 values are not true second-order rate constants but vary with monomer concentration. Mechanistic models for the dimerization (Scheme I) and elongation reactions (Scheme II) are proposed that are consistent with our results. These models take into account that the monomer associates with the template in a cooperative manner. Our kinetic analysis allowed the determination of rate constants for the elementary processes of covalent bond formation between two monomers (dimerization) and between an oligomer and a monomer (elongation) on the template. A major conclusion from our study is that bond formation between two monomer units or between a primer and a monomer is assisted by the presence of additional next-neighbor monomer units. This is consistent with recent findings with hairpin oligonucleotides (Wu, T.; Orgel, L. E. J. Am. Chem. Soc. 1992, 114, 317). Our study is the first of its kind that shows the feasibility of a thorough kinetic analysis of a template-directed oligomerization and provides a detailed mechanistic model of these reactions.

  6. Singlet fission in linear chains of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, Francesco, E-mail: F.Ambrosio@warwick.ac.uk, E-mail: A.Troisi@warwick.ac.uk; Troisi, Alessandro, E-mail: F.Ambrosio@warwick.ac.uk, E-mail: A.Troisi@warwick.ac.uk

    2014-11-28

    We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely smallmore » leading to bandwidths in the order of ∼10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers.« less

  7. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.

    PubMed

    Haglin, Elizabeth R; Yang, Wen; Briegel, Ariane; Thompson, Lynmarie K

    2017-11-07

    Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.

  8. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers.

    PubMed

    Kandeel, Mahmoud; Al-Taher, Abdulla; Li, Huifang; Schwingenschlogl, Udo; Al-Nazawi, Mohamed

    2018-08-01

    Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Molecular reorientation in assembled CO structures and contrast inversion in STM

    NASA Astrophysics Data System (ADS)

    Niemi, Eeva; Nieminen, Jouko

    2004-10-01

    Recent scanning tunneling microscopy experiments [S. Zöphel, J. Repp, G. Meyer, K.-H. Rieder, Chem. Phys. Lett. 310 (1999) 145; A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Science 298 (2002) 1381] for CO on Cu(1 1 1) and Cu(2 1 1) surfaces show CO monomers as dark depressions, whereas dimers and trimers appear as bright patterns. The dark image of a monomer has been shown to result from a destructive interference between two tunneling paths [J. Nieminen, E. Niemi, K.-H. Rieder, Surf. Sci. 552 (2004) L47]. In this Letter, we show how switching between tunneling channels within the through molecule path can be induced by reorientation of a molecule. Hence, a destructive interference between through vacuum and through molecule paths can be reversed into constructive interference by manipulating the adsorbate geometry.

  10. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa.

    PubMed

    Verstraeten, Sandra V; Hammerstone, John F; Keen, Carl L; Fraga, César G; Oteiza, Patricia I

    2005-06-15

    The antioxidant and membrane effects of dimer (Dim) and trimer (Trim) procyanidins isolated from cocoa (Theobroma cacao) (B- and C-bonded) and peanut (Arachis hypogea L.) skin (A-bonded) were evaluated in phosphatidyl choline liposomes. When liposomes were oxidized with a steady source of oxidants, the above dimers and trimers inhibited to a similar extent lipid oxidation in a concentration (0.33-5 microM)-dependent manner. With respect to membrane effects, Dim A1, Dim B, Trim A, and Trim C increased (Dim A1 = Dim B and Trim A = Trim C), while Dim A2 decreased, membrane surface potential. All of the procyanidins tested decreased membrane fluidity as determined by fluorescent probes at the water-lipid interface, an effect that extended into the hydrophobic region of the bilayer. Both dimers and trimers protected the lipid bilayer from disruption by Triton X-100. The magnitude of the protection was Dim A1 > Dim A2 > Dim B and Trim C > Trim A. Thus, dimers and trimers can interact with membrane phospholipids, presumably with their polar headgroup. As a consequence of this interaction, they can provide protection against the attack of oxidants and other molecules that challenge the integrity of the bilayer.

  11. Sub-nanometer pore formation in single-molecule-thick polyurea molecular-sieving membrane: a computational study.

    PubMed

    Park, Seongjin; Lansac, Yves; Jang, Yun Hee

    2018-06-07

    A polymeric network of 1-(4-tritylphenyl)urea (TPU) built via layer-by-layer cross-linking polymerization has been proposed to be an excellent mesh equipped with single-molecule-thick pores (i.e., cyclic poly-TPU rings), which can sieve glucose (∼0.7 nm) out of its mixture with urea for hemodialysis applications. Monte Carlo search for the lowest-energy conformation of various sizes of poly-TPU rings unravels the origin of narrow pore size distribution, which is around the sizes of dimer and trimer rings (0.3-0.8 nm). Flexible rings larger than the dimer and trimer rings, in particular tetramer rings, prefer a twisted conformation in the shape of the infinity symbol (∞, which looks like two dimer rings joined together) locked by a hydrogen bond between diphenylurea linker groups facing each other. Translocation energy profiles across these TPU rings reveal their urea-versus-glucose sieving mechanism: glucose is either too large (to enter dimers and twisted tetramers) or too perfectly fit (to exit trimers), leaving only a dimer-sized free space in the ring, whereas smaller-sized urea and water pass through these effective dimer-sized rings (bare dimers, twisted tetramers, and glucose-filled trimers) without encountering a substantial energy barrier or trap.

  12. The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation.

    PubMed

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel

    2008-03-14

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.

  13. Control of the reversibility during boronic ester formation: application to the construction of ferrocene dimers and trimers.

    PubMed

    Ono, Kosuke; Tohyama, Yohei; Uchikura, Tatsuhiro; Kikuchi, Yuji; Fujii, Kotaro; Uekusa, Hidehiro; Iwasawa, Nobuharu

    2017-02-14

    Control of the reversibility during boronic ester formation from boronic acids and diols was found to be possible by choosing an appropriate solvent. As an example, ferrocene dimers and trimers were constructed by using tetrol 1 with an indacene framework, 1,1'-ferrocenediboronic acid 2, and ferrocenemonoboronic acid 4. When equimolar amounts of 1 and 2 were mixed in methanol under equilibrating conditions, two kinds of stacked ferrocene dimers homo- and hetero-3 were selectively obtained depending on the reaction time and both structures were determined by X-ray crystallographic analysis. On the other hand, the ferrocene trimer 7 was successfully constructed by stepwise assembly in the presence of anhydrous magnesium sulfate in acetone where the equilibration of boronic esters was suppressed, while no formation of ferrocene trimer 7 was detected when all components 1, 2 and 4 (2 : 1 : 2 ratio) for trimer 7 were mixed at a time in methanol under equilibrating conditions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bréchignac, Philippe, E-mail: philippe.brechignac@u-psud.fr; Falvo, Cyril; Parneix, Pascal

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail.more » Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.« less

  15. Theoretical insight into Cobalt subnano-clusters adsorption on α-Al{sub 2}O{sub 3} (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fen-e; Ren, Jun, E-mail: jun.ren@nuc.edu.cn; Wang, Qiang

    The investigation on the structural stability, nucleation, growth and interaction of cobalt cluster Con(n=2–7) on the α-Al{sub 2}O{sub 3}(0001) surface by using density functional theory methods has been reported. Energetically, the most favorable adsorption sites were identified and the strongest adsorption energy cluster is the tetrahedral Co{sub 4} cluster. On the other hand, the nucleation of Con(n=2–7) clusters on the surface is exothermic and thermodynamically favorable. Moreover, even-odd alternation was found with respect to clusters nucleation as a function of the number of cobalt atoms (for n=1–7). Meanwhile, the Co{sub n} clusters can be adsorbed on the surface stably owingmore » to the charge transfer from Co atoms to Al and O atoms of the Al{sub 2}O{sub 3} substrate. In addition, we establish the crucial importance of monomer, dimer and trimer diffusion on the surface. The diffusion of the monomer cobalt from Al{sup (3)} to O{sup (5)} or O{sup (5)} to Al{sup (4)} site is quite easy on the Al{sub 2}O{sub 3}(0001) surface, whereas the diffusion of the Co{sub 2} dimer is thermodynamically unfavorable by compared with that of the Co adatom and Co{sub 3} trimer. - Graphical abstract: Diffusion process of Co adatom on the α-Al{sub 2}O{sub 3} (0001) surface, Al{sup (3)} site→O{sup (5)} site→Al{sup (4)} site. Potential energy surface for diffusion of a single Co atom from Al{sup (3)} to O{sup (5)} site, and from O{sup (5)} to Al{sup (4)} site on the surface. The activation energy of the two migration processes from Al{sup (3)} to O{sup (5)} and O{sup (5)} to Al{sup (4)} are 0.06 and 0.09 eV, respectively. This implies the monomer is quite mobile on the surface under typical growth conditions.« less

  16. Introduction of potential helix-capping residues into an engineered helical protein.

    PubMed

    Parker, M H; Hefford, M A

    1998-08-01

    MB-1 is an engineered protein that was designed to incorporate high percentages of four amino acid residues and to fold into a four-alpha-helix bundle motif. Mutations were made in the putative loop I and III regions of this protein with the aim of increasing the stability of the helix ends. Four variants, MB-3, MB-5, MB-11 and MB-13, have replacements intended to promote formation of an 'N-capping box'. The loop I and III sequences of MB-3 (both GDLST) and MB-11 (GGDST) were designed to cause alphaL C-terminal 'capping' motifs to form in helices I and III. MB-5 has a sequence, GPDST, that places proline in a favourable position for forming beta-turns, whereas MB-13 (GLDST) has the potential to form Schellman C-capping motifs. Size-exclusion chromatography suggested that MB-1, MB-3, MB-5, MB-11 and MB-13 all form dimers, or possibly trimers. Free energies for the unfolding of each of these variants were determined by urea denaturation, with the loss of secondary structure followed by CD spectroscopy. Assuming an equilibrium between folded dimer and unfolded monomer, MB-13 had the highest apparent stability (40.5 kJ/mol, with +/-2.5 kJ/mol 95% confidence limits), followed by MB-11 (39.3+/-5.9 kJ/mol), MB-3 (36.4+/-1.7 kJ/mol), MB-5 (34.7+/-2.1 kJ/mol) and MB-1 (29.3+/-1.3 kJ/mol); the same relative stabilities of the variants were found when a folded trimer to unfolded monomer model was used to calculate stabilities. All of the variants were relatively unstable for dimeric proteins, but were significantly more stable than MB-1. These findings suggest that it might be possible to increase the stability of a protein for which the three-dimensional structure is unknown by placing amino acid residues in positions that have the potential to form helix- and turn-stabilizing motifs.

  17. Infrared spectroscopy and structure of (NO) n clusters

    DOE PAGES

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; ...

    2016-01-12

    Nitrogen oxide clusters (NO) n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν 1 and ν 5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm –1, respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm –1 close to the band origin of single molecules was assigned tomore » van der Waals bound dimers of (NO) 2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. As a result, experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers.« less

  18. Theory vs. experiment for molecular clusters: Spectra of OCS trimers and tetramers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelisti, Luca; Dipartimento di Chimica “G. Ciamician,” University of Bologna, Via Selmi 2, Bologna 40126; Perez, Cristobal

    All singly substituted {sup 13}C, {sup 18}O, and {sup 34}S isotopomers of the previously known OCS trimer are observed in natural abundance in a broad-band spectrum measured with a chirped-pulse Fourier transform microwave spectrometer. The complete substitution structure thus obtained critically tests (and confirms) the common assumption that monomers tend to retain their free structure in a weakly bound cluster. A new OCS trimer isomer is also observed, and its structure is determined to be barrel-shaped but with the monomers all approximately aligned, in contrast to the original trimer which is barrel-shaped with two monomers aligned and one anti-aligned. Anmore » OCS tetramer spectrum is assigned for the first time, and the tetramer structure resembles an original trimer with an OCS monomer added at the end with two sulfur atoms. Infrared spectra observed in the region of the OCS ν{sub 1} fundamental (≈2060 cm{sup −1}) are assigned to the same OCS tetramer, and another infrared band is tentatively assigned to a different tetramer isomer. The experimental results are compared and contrasted with theoretical predictions from the literature and from new cluster calculations which use an accurate OCS pair potential and assume pairwise additivity.« less

  19. Dark field microscopic analysis of discrete Au nanostructures: Understanding the correlation of scattering with stoichiometry

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo

    2017-09-01

    Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.

  20. Water trimer torsional spectrum from accurate ab initio and semiempirical potentials

    NASA Astrophysics Data System (ADS)

    van der Avoird, Ad; Szalewicz, Krzysztof

    2008-01-01

    The torsional levels of (H2O)3 and (D2O)3 were calculated in a restricted dimensionality (three-dimensional) model with several recently proposed water potentials. Comparison with the experimental data provides a critical test, not only of the pair interactions that have already been probed on the water dimer spectra, but also of the nonadditive three-body contributions to the potential. The purely ab initio CC-pol and HBB potentials that were previously shown to yield very accurate water dimer levels, also reproduce the trimer levels well when supplemented with an appropriate three-body interaction potential. The TTM2.1 potential gives considerably less good agreement with experiment. Also the semiempirical VRT(ASP-W)III potential, fitted to the water dimer vibration-rotation-tunneling levels, gives substantial disagreement with the measured water trimer levels, which shows that the latter probe the potential for geometries other than those probed by the dimer spectrum. Although the three-body nonadditive interactions significantly increase the stability of the water trimer, their effect on the torsional energy barriers and vibration-tunneling frequencies is less significant.

  1. Interplay between tetrel and triel bonds in RC6H4CN⋯MF3CN⋯BX3 complexes: A combined symmetry-adapted perturbation theory, Møller-Plesset, and quantum theory of atoms-in-molecules study.

    PubMed

    Yourdkhani, Sirous; Korona, Tatiana; Hadipour, Nasser L

    2015-12-15

    Intermolecular ternary complexes composed of: (1) the centrally placed trifluoroacetonitrile or its higher analogs with central carbon exchanged by silicon or germanium (M = C, Si, Ge), (2) the benzonitrile molecule or its para derivatives on one side, and (3) the boron trifluoride of trichloride molecule (X = F, Cl) on the opposite side as well as the corresponding intermolecular tetrel- and triel-bonded binary complexes, were investigated by symmetry-adapted perturbation theory (SAPT) and the supermolecular Møller-Plesset method (MP2) at the complete basis set limit for optimized geometries. A character of interactions was studied by quantum theory of atoms-in-molecules (QTAIM). A comparison of interaction energies and QTAIM bond descriptors for dimers and trimers reveals that tetrel and triel bonds increase in their strength if present together in the trimer. For the triel-bonded complex, this growth leads to a change of the bond character from closed-shell to partly covalent for Si or Ge tetrel atoms, so the resulting bonding scheme corresponds to a preliminary stage of the SN2 reaction. Limitations of the Lewis theory of acids and bases were shown by its failure in predicting the stability order of the triel complexes. The necessity of including interaction energy terms beyond the electrostatic component for an elucidation of the nature of σ- and π-holes was presented by a SAPT energy decomposition and by a study of differences in monomer electrostatic potentials obtained either from isolated monomer densities, or from densities resulting from a perturbation with the effective field of another monomer. © 2015 Wiley Periodicals, Inc.

  2. Oligomerization in As (III) sulfide solutions: Theoretical constraints and spectroscopic evidence

    NASA Astrophysics Data System (ADS)

    Helz, George R.; Tossell, John A.; Charnock, John M.; Pattrick, Richard A. D.; Vaughan, David J.; David Garner, C.

    1995-11-01

    Bond distances, vibrational frequencies, gas-phase energetics, and proton affinities for various thioarsenite molecules and ions are predicted from molecular orbital theory and used to interpret EXAFS and Raman spectra of dissolved thioarsenites in undersaturated, alkaline 1 M NaHS solutions. From MO predictions, Raman peaks at 325 and 412 cm - are assigned to AsS(SH) 2- and a peak at 382 cm - to AsS 2(SH) 2- At alkaline pH, As-S distances in dissolved thioarsenites are 2.21-2.23 Å and no statistically significant As-As interactions are recorded, consistent with predominance of the monomers, AsS(SH) 2- and AsS 2(SH ) 2-. Estimated proton affinities suggest that thioarsenites with a negative charge greater than 2 are unstable in water. In seeming contradiction to this spectroscopic evidence, a new analysis of published solubility studies reinforces previous inferences that the trimer, As 3S 4(SH) 2-, is the predominant thioarsenite in systems saturated with As 2S 3. Previously proposed dimeric species of the form, H xAs2S 4x- , are rejected based on predicted thermodynamic properties. Dimer plus tetramer combinations also are rejected. Estimated free energies for AsS (OH)(SH) - and AsS(SH) 2- are presented. We reconcile the spectroscopic and solubility evidence by showing that in undersaturated solutions monomers can become thermodynamically favored over oligomers. This pattern should be looked for in other sulfide systems as well. Sulfidic natural waters are in many cases undersaturated with respect to AS 2S 3 phases, so monomeric thioarsenites could be more important in nature than the trimers that have been characterized in saturated solutions. EXAFS spectra show that amorphous AS 2S 3 resembles orpiment in the first shell around As, but that higher shells are disordered. Disorder may be caused by occasional realgar-like, As-As bonds, consistent with the observation that amorphous AS 2S 3 is slightly S deficient.

  3. Structure and Thermodynamic Stability of Islet Amyloid Polypeptide Monomers and Small Aggregates

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-Cheng; Singh, Sadanand; de Pablo, Juan

    2013-03-01

    Human islet amyloid polypeptide (hIAPP, also known as human amylin) is associated with the development of type II diabetes. It is known to form amyloid fibrils that are found in pancreatic islets. Pramlintide, a synthetic analog of hIAPP with three proline substitutions, is not amyloidogenic and has been applied in amylin replacement treatments. In this work, we use molecular simulations with advanced sampling techniques to examine the effect of these proline substitutions on hIAPP monomer conformations. We find that all three proline substitutions are required to attenuate the formation of β-sheets encountered in amylin. Furthermore, we investigate the formation of hIAPP dimers and trimers, and investigate how that process is affected by the presence of various additives. Our simulations show that hIAPP can form a β-sheet at the N-terminus and the C-terminus independently, in agreement with experimental observations. Our results provide valuable insights into the mechanism of hIAPP early aggregation and the design of fibril formation inhibitors.

  4. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC.

    PubMed

    Natsume, M; Osakabe, N; Yamagishi, M; Takizawa, T; Nakamura, T; Miyatake, H; Hatano, T; Yoshida, T

    2000-12-01

    The antioxidant polyphenols in cacao liquor, a major ingredient of chocolate and cocoa, have been characterized as flavan-3-ols and proanthocyanidin oligomers. In this study, various cacao products were analyzed by normal-phase HPLC, and the profiles and quantities of the polyphenols present, grouped by molecular size (monomers to approximately oligomers), were compared. Individual cacao polyphenols, flavan-3-ols (catechin and epicatechin), and dimeric (procyanidin B2), trimeric (procyanidin C1), and tetrameric (cinnamtannin A2) proanthocyanidins, and galactopyranosyl-ent-(-)-epicatechin (2alpha-->7, 4alpha-->8)-(-)-epicatechin (Gal-EC-EC), were analyzed by reversed-phase HPLC and/or HPLC/MS. The profile of monomers (catechins) and proanthocyanidin in dark chocolate was similar to that of cacao liquor, while the ratio of flavan-3-ols to the total amount of monomeric and oligomeric polyphenols in the case of pure cocoa powder was higher than that in the case of cacao liquor or chocolate.

  5. Substitution pattern elucidation of hydroxypropyl Pinus pinaster (Ait.) bark polyflavonoid derivatives by ESI(-)-MS/MS.

    PubMed

    García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G

    2014-10-01

    The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Brightening and locking a weak and floppy N-H chromophore: the case of pyrrolidine.

    PubMed

    Hesse, Susanne; Wassermann, Tobias N; Suhm, Martin A

    2010-10-07

    The N-H stretching signature of the puckering equilibrium between equatorial and axial pyrrolidine is analyzed via FTIR and Raman spectroscopy in supersonic jets as a function of aggregation. Vibrational temperatures along the expansion axis can be extracted from the Raman spectra and allow for a localization of the compression shock waves. While the equatorial conformation is more stable in the ground state monomer, this preference is probably switched in the excited state with one N-H stretching quantum. Furthermore, the dominant dimer involves an axial donor and the trimer and tetramer structures seem to prefer uniform axial conformations. The IR intensity is boosted by up to 3 orders of magnitude upon aggregation, whereas the Raman scattering intensity shows only moderate hydrogen bond effects. B3LYP and MP2 calculations provide a reasonable description of the N-H vibrational dynamics under the influence of self-aggregation. In mixed dimers with pyrrole, pyrrolidine assumes the role of a hydrogen bond acceptor.

  7. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Daniel M.

    2017-05-01

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.

  8. Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats.

    PubMed

    Kosmala, Monika; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Jurgoński, Adam; Karlińska, Elżbieta; Macierzyński, Jakub; Jańczak, Rafał; Rój, Edward

    2015-03-25

    Strawberry and raspberry seeds were chemically analyzed and added as dietary ingredients to investigate the physiological response of rats. In both cases the main component was dietary fiber and the main polyphenols were ellagitannins (ET). The strawberry ET were mainly constituted by monomers and a dimer, agrimoniin, whereas raspberry ET were mainly constituted by a dimer, sanguiin-H-6, and a trimer, lambertianin-C. The lower content and the less polymerized structure of strawberry ET resulted in a higher cecal metabolites concentration (mainly nasutin and urolithin-A) in comparison to rats fed diet containing raspberry seeds. Dietary raspberry seeds, a source of dietary fiber, despite being richer in polyphenol compounds, were better utilized in fermentation processes, resulting in enhanced production of short-chain fatty acids. As opposed to strawberry seeds, the treatment with raspberry seeds beneficially improved the atherogenic index of a diet, mainly due to reduced triacylglycerol concentration in the serum.

  9. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water

    DOE PAGES

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; ...

    2017-05-17

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381°C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as themore » water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. As a result, using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.« less

  10. The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS

    PubMed Central

    Zhang, Liang; Tai, Yuling; Wang, Yijun; Meng, Qilu; Yang, Yunqiu; Zhang, Shihua; Yang, Hua; Zhang, Zhengzhu; Li, Daxiang; Wan, Xiaochun

    2017-01-01

    The genus Camellia (C.) contains many species, including C. sinensis, C. assamica, and C. taliensis, C. gymnogyna and C. tachangensis. The polyphenols of C. sinensis and C. assamica are flavan-3-ols monomers and their dimers and trimmers. However, the biosynthesis of procyanidins in Camellia genus remains unclear. In the present study, a comparative chemical analysis of flavan-3-ols, flavan-3-ols glycoside and procyanidins was conducted by high performance liquid chromatography (HPLC) and liquid chromatography diode array detection coupled with triple-quadrupole mass-spectrometry (LC-DAD-QQQ-MS). The results showed that C. tachangensis had a significant higher contents of (-)-epicatechin (EC) and (-)-epigallocatechin (EGC) compared with C. sinensis (p < 0.001). By contrast, higher levels of galloylated catechins were detected in C. sinensis. LC-DAD-MS/MS indicated that the main secondary metabolites of C. tachangensis were non-galloylated catechins, procyanidin dimers and trimers. Furthermore, (-)-epicatechin glucose (EC-glucose) and (-)-epigallocatechin glucose (EGC-glucose) were also abundant in C. tachangensis. A correlation analysis of EC-glucose and procyanidins dimers was conducted in five Camellia species. The levels of EC-glucose were closely related to the procyanidin dimers content. Thus, it was suggested that EC-glucose might be an important substrate for the biosynthesis of procyanidins. PMID:28383067

  11. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  12. The Crystal Structure of N-Acetyl-L-glutamate Synthase from Neisseria gonorrhoeae Provides Insights into Mechanisms of Catalysis and Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin

    2010-01-07

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomersmore » across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.« less

  13. Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.

    PubMed Central

    Prasad, G. S.; Stura, E. A.; McRee, D. E.; Laco, G. S.; Hasselkus-Light, C.; Elder, J. H.; Stout, C. D.

    1996-01-01

    We have determined the crystal structure of dUTP pyrophosphatase (dUTPase) from feline immunodeficiency virus (FIV) at 1.9 A resolution. The structure has been solved by the multiple isomorphous replacement (MIR) method using a P6(3) crystal form. The results show that the enzyme is a trimer of 14.3 kDa subunits with marked structural similarity to E. coli dUTPase. In both enzymes the C-terminal strand of an anti-parallel beta-barrel participates in the beta-sheet of an adjacent subunit to form an interdigitated, biologically functional trimer. In the P6(3) crystal form one trimer packs on the 6(3) screw-axis and another on the threefold axis so that there are two independent monomers per asymmetric unit. A Mg2+ ion is coordinated by three asparate residues on the threefold axis of each trimer. Alignment of 17 viral, prokaryotic, and eukaryotic dUTPase sequences reveals five conserved motifs. Four of these map onto the interface between pairs of subunits, defining a putative active site region; the fifth resides in the C-terminal 16 residues, which is disordered in the crystals. Conserved motifs from all three subunits are required to create a given active site. With respect to viral protein expression, it is particularly interesting that the gene for dUTPase (DU) resides in the middle of the Pol gene, the enzyme cassette of the retroviral genome. Other enzymes encoded in the Pol polyprotein, including protease (PR), reverse transcriptase (RT), and most likely integrase (IN), are dimeric enzymes, which implies that the stoichiometry of expression of active trimeric dUTPase is distinct from the other Pol-encoded enzymes. Additionally, due to structural constraints, it is unlikely that dUTPase can attain an active form prior to cleavage from the polyprotein. PMID:8976551

  14. Polyphenolic compounds in date fruit seed (Phoenix dactylifera): characterisation and quantification by using UPLC-DAD-ESI-MS.

    PubMed

    Habib, Hosam M; Platat, Carine; Meudec, Emmanuelle; Cheynier, Veronique; Ibrahim, Wissam H

    2014-04-01

    Date fruit seeds have been demonstrated to possess high antioxidant activities due to their high content of flavonoids and phenolic compounds. The objective of this work was to identify and quantify the phenolic composition of date seeds. Two UPLC-DAD-ESI-MS analyses were performed on the seed of the Khalas variety as follows: (1) an analysis of simple phenolic compounds [phenolic acids, hydroxycinnamic acids, flavonols, flavones, flavan-3-ols (monomers, dimers and trimers)]; and (2) an analysis of all flavan-3-ols (monomers, and proanthocyanidin oligomers and polymers) after depolymerisation. The amount of total phenolic compounds before depolymerisation was found to be 2.194 ± 0.040 g kg(-1) date seed. The analysis of flavan-3-ol monomers and constitutive units of proanthocyanidins after depolymerisation revealed 50.180 ± 1.360 g kg(-1) flavan-3-ols with 46.800 ± 1.012 g kg(-1) epicatechin and 3.380 ± 0.349 g kg(-1) catechin. The results indicate that date seeds are a very rich source of bioactive compounds, thus constituting strong candidates for functional food additives and nutraceuticals. © 2013 Society of Chemical Industry.

  15. Cyclic trimer of human cystatin C, an amyloidogenic protein - molecular dynamics and experimental studies

    NASA Astrophysics Data System (ADS)

    Chrabåszczewska, Magdalena; Maszota-Zieleniak, Martyna; Pietralik, Zuzanna; Taube, Michał; Rodziewicz-Motowidło, Sylwia; Szymańska, Aneta; Szutkowski, Kosma; Clemens, Daniel; Grubb, Anders; Kozak, Maciej

    2018-05-01

    Human cystatin C (HCC) is a cysteine protease inhibitor that takes a series of oligomeric forms in solution (e.g., dimers, trimers, tetramers, decamers, dodecamers, and other higher oligomers). The best-known form of cystatin C is the dimer, which arises as a result of a domain swapping mechanism. The formation of the HCC oligomeric forms, which is most likely due to this domain swapping mechanism, is associated with the aggregation of HCC into amyloid fibrils and deposits. To investigate the structure of a specific HCC oligomer, we developed a covalently stabilized trimer of HCC. An atomic model of this HCC trimer was proposed on the basis of molecular docking and molecular dynamics simulations. The most stable model of the HCC trimer obtained from the molecular dynamics simulations is characterized by a well-preserved secondary structure. The molecular size and structural parameters of the HCC trimer in solution were also confirmed by Small Angle Neutron Scattering and Nuclear Magnetic Resonance Diffusometry.

  16. Proline Substitution of Dimer Interface β-strand Residues as a Strategy for the Design of Functional Monomeric Proteins

    PubMed Central

    Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna

    2013-01-01

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001

  17. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  18. Multiple sites of retardation of electron transfer in Photosystem II after hydrolysis of phosphatidylglycerol.

    PubMed

    Kim, Eun-Ha; Razeghifard, Reza; Anderson, Jan M; Chow, Wah Soon

    2007-01-01

    Phosphatidylglycerol (PG), containing the unique fatty acid Delta3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A(2) to decrease the PG content. Phospholipase A(2) treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor Q(A) to the secondary quinone acceptor Q(B), (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A(2) treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A(2) brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the Q(B)-binding site.

  19. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins.

    PubMed

    Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna

    2013-09-17

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Li, Sazi; Li, Wei; Chen, Ziyu

    2014-11-01

    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v ) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ , we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v -T and μ -T . Moreover, for the noninteracting monomer-dimer model (setting μ =ν =0 ), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h2) as f =-0.662 798 972 833 746 with the dimer density n =0.638 123 109 228 547 , both of 15 correct digits.

  1. A peptide co-solvent under scrutiny: self-aggregation of 2,2,2-trifluoroethanol.

    PubMed

    Scharge, Tina; Cézard, Christine; Zielke, Philipp; Schütz, Anne; Emmeluth, Corinna; Suhm, Martin A

    2007-08-28

    Trifluoroethanol (TFE) and its aggregates are studied via supersonic jet FTIR and Raman spectroscopy as well as by quantum chemistry and simple force field approaches. A multi-slit nozzle is introduced to study collisionally excited clusters. Efforts are made to extract harmonic frequencies from experiment for better comparison to theory. Based on deuteration, the OH stretching anharmonicity changes weakly upon dimerization, but increases for trimers. Among the possible dimer conformations, only an all-gauche, homoconfigurational, compact, OH-F connected structure is observed in an extreme case of chiral discrimination. Quantum tunneling assisted pathways for this surprising helicity synchronization are postulated. The oscillator coupling in hydrogen-bonded trimers is analyzed. Trans conformations of TFE start to become important for trimers and probably persist in the liquid state. Simple force fields can be refined to capture some molecular recognition features of TFE dimer, but their limitations are emphasized.

  2. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations.

    PubMed

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  3. Conformational suppression of inter-receptor signaling defects

    PubMed Central

    Ames, Peter; Parkinson, John S.

    2006-01-01

    Motile bacteria follow gradients of attractant and repellent chemicals with high sensitivity. Their chemoreceptors are physically clustered, which may enable them to function as a cooperative array. Although native chemoreceptor molecules are typically transmembrane homodimers, they appear to associate through their cytoplasmic tips to form trimers of dimers, which may be an important architectural element in the assembly and operation of receptor clusters. The five receptors of Escherichia coli that mediate most of its chemotactic and aerotactic behaviors have identical trimer contact residues and have been shown by in vivo crosslinking methods to form mixed trimers of dimers. Mutations at the trimer contact sites of Tsr, the serine chemoreceptor, invariably abrogate Tsr function, but some of those lesions (designated Tsr*) are epistatic and block the function of heterologous chemoreceptors. We isolated and characterized mutations (designated Tar⋀) in the aspartate chemoreceptor that restored function to Tsr* receptors. The suppressors arose at or near the Tar trimer contact sites and acted in an allele-specific fashion on Tsr* partners. Alone, many Tar⋀ receptors were unable to mediate chemotactic responses to aspartate, but all formed clusters with varying efficiencies. Most of those Tar⋀ receptors were epistatic to WT Tsr, but some regained Tar function in combination with a suppressible Tsr* partner. Tar⋀–Tsr* suppression most likely occurs through compensatory changes in the conformation or dynamics of a mixed receptor signaling complex, presumably based on trimer-of-dimer interactions. These collaborative teams may be responsible for the high-gain signaling properties of bacterial chemoreceptors. PMID:16751275

  4. Characterization of the Agrobacterium vitis pehA gene and comparison of the encoded polygalacturonase with the homologous enzymes from Erwinia carotovora and Ralstonia solanacearum.

    PubMed Central

    Herlache, T C; Hotchkiss, A T; Burr, T J; Collmer, A

    1997-01-01

    DNA sequencing of the Agrobacterium vitis pehA gene revealed a predicted protein with an M(r) of 58,000 and significant similarity to the polygalacturonases of two other plant pathogens, Erwinia carotovora and Ralstonia (= Pseudomonas or Burkholderia) solanacearum. Sequencing of the N terminus of the PehA protein demonstrated cleavage of a 34-amino-acid signal peptide from pre-PehA. Mature PehA accumulated primarily in the periplasm of A. vitis and pehA+ Escherichia coli cells during exponential growth. A. vitis PehA released dimers, trimers, and monomers from polygalacturonic acid and caused less electrolyte leakage from potato tuber tissue than did the E. carotovora and R. solanacearum polygalacturonases. PMID:8979363

  5. Characterization of Phosphate Species on Hydrated Anatase TiO2 Surfaces.

    PubMed

    Tielens, Frederik; Gervais, Christel; Deroy, Geraldine; Jaber, Maguy; Stievano, Lorenzo; Coelho Diogo, Cristina; Lambert, Jean-François

    2016-02-02

    The adsorption/interaction of KH2PO4 with solvated (100) and (101) TiO2 anatase surfaces is investigated using periodic DFT calculations in combination with GIPAW NMR calculations and experimental IR and solid state (17)O, and (31)P NMR spectroscopies. A complete and realistic model has been used to simulate the solvent by individual water molecules. The most stable adsorption configurations are characterized theoretically at the atomic scale, and experimentally supported by NMR and IR spectroscopies. It is shown that H2PO4(-) chemisorbs on the (100) and (101) anatase surfaces, preferentially via a bidentate geometry. Dimer (H3P2O7(-)) and trimer (H4P3O10(-)) adsorption models are confronted with monomer adsorption models, in order to rationalize their occurrence.

  6. Anisotropic particles strengthen granular pillars under compression

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Durian, Douglas J.

    2018-01-01

    We probe the effects of particle shape on the global and local behavior of a two-dimensional granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct measurement of global material response, as well as tracking of all individual particle trajectories. In general, drawing connections between local structure and local dynamics can be challenging in amorphous materials due to lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight connections between local deformation rates and local structure.

  7. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities.

    PubMed

    Reiter, Christoph; Fröhlich, Tony; Gruber, Lisa; Hutterer, Corina; Marschall, Manfred; Voigtländer, Cornelia; Friedrich, Oliver; Kappes, Barbara; Efferth, Thomas; Tsogoeva, Svetlana B

    2015-09-01

    New pharmaceutically active compounds can be obtained by modification of existing drugs to access more effective agents in the wake of drug resistance amongst others. To achieve this goal the concept of hybridization was established during the last decade. We employed this concept by coupling two artemisinin-derived precursors to obtain dimers or trimers with increased in vitro activity against Plasmodiumfalciparum 3D7 strain, leukemia cells (CCRF-CEM and multidrug-resistant subline CEM/ADR5000) and human cytomegalovirus (HCMV). Dimer 4 (IC50 of 2.6 nM) possess superior antimalarial activity compared with its parent compound artesunic acid(3) (IC50 of 9.0 nM). Dimer5 and trimers6 and 7 display superior potency against both leukemia cell lines (IC50 up to 0.002 μM for CCRF-CEM and IC50 up to 0.20 μM for CEM/ADR5000) and are even more active than clinically used doxorubicin (IC50 1.61 μM for CEM/ADR5000). With respect to anti-HCMV activity, trimer6 is the most efficient hybrid (IC50 0.04 μM) outperforming ganciclovir (IC50 2.6 μM), dihydroartemisinin(IC50 >10 μM) and artesunic acid (IC50 3.8 μM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An ion mobility-mass spectrometry investigation of monocyte chemoattractant protein-1

    NASA Astrophysics Data System (ADS)

    Schenauer, Matthew R.; Leary, Julie A.

    2009-10-01

    In the present article we describe the gas-phase dissociation behavior of the dimeric form of monocyte chemoattractant protein-1 (MCP-1) using quadrupole-traveling wave ion mobility spectrometry-time of flight mass spectrometry (q-TWIMS-TOF MS) (Waters Synapt(TM)). Through investigation of the 9+ charge state of the dimer, we were able to monitor dissociation product ion (monomer) formation as a function of activation energy. Using ion mobility, we were able to observe precursor ion structural changes occurring throughout the activation process. Arrival time distributions (ATDs) for the 5+ monomeric MCP-1 product ions, derived from the gas-phase dissociation of the 9+ dimer, were then compared with ATDs obtained for the 5+ MCP-1 monomer isolated directly from solution. The results show that the dissociated monomer is as compact as the monomer arising from solution, regardless of the trap collision energy (CE) used in the dissociation. The solution-derived monomer, when collisionally activated, also resists significant unfolding within measure. Finally, we compared the collisional activation data for the MCP-1 dimer with an MCP-1 dimer non-covalently bound to a single molecule of the semi-synthetic glycosaminoglycan (GAG) analog Arixtra(TM); the latter a therapeutic anti-thrombin III-activating pentasaccharide. We observed that while dimeric MCP-1 dissociated at relatively low trap CEs, the Arixtra-bound dimer required much higher energies, which also induced covalent bond cleavage in the bound Arixtra molecule. Both the free and Arixtra-bound dimers became less compact and exhibited longer arrival times with increasing trap CEs, albeit the Arixtra-bound complex at slightly higher energies. That both dimers shifted to longer arrival times with increasing activation energy, while the dissociated MCP-1 monomers remained compact, suggests that the longer arrival times of the Arixtra-free and Arixtra-bound dimers may represent a partial breach of non-covalent interactions between the associated MCP-1 monomers, rather than extensive unfolding of individual subunits. The fact that Arixtra preferentially binds MCP-1 dimers and prevents dimer dissociation at comparable activation energies to the Arixtra-free dimer, may suggest that the drug interacts across the two monomers, thereby inhibiting their dissociation.

  9. Sequence-controlled RNA self-processing: computational design, biochemical analysis, and visualization by AFM

    PubMed Central

    Petkovic, Sonja; Badelt, Stefan; Flamm, Christoph; Delcea, Mihaela

    2015-01-01

    Reversible chemistry allowing for assembly and disassembly of molecular entities is important for biological self-organization. Thus, ribozymes that support both cleavage and formation of phosphodiester bonds may have contributed to the emergence of functional diversity and increasing complexity of regulatory RNAs in early life. We have previously engineered a variant of the hairpin ribozyme that shows how ribozymes may have circularized or extended their own length by forming concatemers. Using the Vienna RNA package, we now optimized this hairpin ribozyme variant and selected four different RNA sequences that were expected to circularize more efficiently or form longer concatemers upon transcription. (Two-dimensional) PAGE analysis confirms that (i) all four selected ribozymes are catalytically active and (ii) high yields of cyclic species are obtained. AFM imaging in combination with RNA structure prediction enabled us to calculate the distributions of monomers and self-concatenated dimers and trimers. Our results show that computationally optimized molecules do form reasonable amounts of trimers, which has not been observed for the original system so far, and we demonstrate that the combination of theoretical prediction, biochemical and physical analysis is a promising approach toward accurate prediction of ribozyme behavior and design of ribozymes with predefined functions. PMID:25999318

  10. Synthesis of Artemisinin-Derived Dimers, Trimers and Dendrimers: Investigation of Their Antimalarial and Antiviral Activities Including Putative Mechanisms of Action.

    PubMed

    Fröhlich, Tony; Hahn, Friedrich; Belmudes, Lucid; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Couté, Yohann; Marschall, Manfred; Tsogoeva, Svetlana B

    2018-06-07

    Generation of dimers, trimers and dendrimers of bioactive compounds is an approach that has recently been developed for the discovery of new potent drug candidates. Herein, we present the synthesis of new artemisinin-derived dimers and dendrimers and investigate their action against malaria parasite Plasmodium falciparum 3D7 strain and human cytomegalovirus (HCMV). Dimer 7 was the most active compound (EC 50 1.4 nm) in terms of antimalarial efficacy and was even more effective than the standard drugs dihydroartemisinin (EC 50 2.4 nm), artesunic acid (EC 50 8.9 nm) and chloroquine (EC 50 9.8 nm). Trimer 4 stood out as the most active agent against HCMV in vitro replication and exerted an EC 50 value of 0.026 μm, representing an even higher activity than the two reference drugs ganciclovir (EC 50 2.60 μm) and artesunic acid (EC 50 5.41 μm). In addition, artemisinin-derived dimer 13 and trimer 15 were for the first time both immobilized on TOYOPEARL AF-Amino-650M beads and used for mass spectrometry-based target identification experiments using total lysates of HCMV-infected primary human fibroblasts. Two major groups of novel target candidates, namely cytoskeletal and mitochondrial proteins were obtained. Two putatively compound-binding viral proteins, namely major capsid protein (MCP) and envelope glycoprotein pUL132, which are both essential for HCMV replication, were identified. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography-electrospray ionisation mass spectrometry.

    PubMed

    Liu, Pengzhan; Kallio, Heikki; Lü, Deguo; Zhou, Chuansheng; Yang, Baoru

    2011-08-01

    Eleven major phenolic compounds (hyperoside, isoquercitrin, chlorogenic acid, ideain, epicatechin, two procyanidin (PA) dimers, three PA trimers and a PA dimer-hexoside) were quantified in the fruits of 22 cultivars/origins of three species of the Chinese hawthorn (Crataegus spp.) by HPLC-ESI-MS-SIR. Hyperoside (0.1-0.8mg/g dry mass [DM]), isoquercitrin (0.1-0.3mg/g DM), chlorogenic acid (0.2-1.6mg/g DM), epicatechin (0.9-11.7mg/g DM), PA B2 (0.7-12.4mg/g DM), PA dimer II (0.1-1.5mg/g DM), PA trimer I (0.1-2.7mg/g DM), PA trimer II (0.7-6.9mg/g DM), PA trimer III (0.01-1.2mg/g DM) and a PA dimer-hexoside (trace-1.1mg/g DM) were detected in all the samples. Ideain (0.0-0.7mg/g DM) was found in all the samples except Crataegus scabrifolia. Significant correlations between the contents of individual PA aglycons were observed (r>0.9, P<0.01). A strong correlation between flavonols was also shown (r=0.71, P<0.01). Fruits of Crataegus pinnatifida var. major had higher contents of PAs but lower contents of flavonols compared with Crataegus brettschneideri. The fruits of C. scabrifolia contained the highest level of PA dimer-hexoside, which was present in trace amounts in the fruits of C. pinnatifida. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.

    PubMed Central

    Betts, S. D.; King, J.

    1998-01-01

    Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly. PMID:9684883

  13. Unified approach to catechin hetero-oligomers: first total synthesis of trimer EZ-EG-CA isolated from Ziziphus jujuba.

    PubMed

    Yano, Takahisa; Ohmori, Ken; Takahashi, Haruko; Kusumi, Takenori; Suzuki, Keisuke

    2012-10-14

    A catechin hetero-trimer isolated from Ziziphus jujuba has been synthesized. Among three constituent monomers, (-)-epiafzelechin and (-)-epigallocatechin were prepared by de novo synthesis. Trimer formation relied on the unified approach to oligomers based on the bromo-capping and the orthogonal activation, reaching the reported structure of the natural product.

  14. Stabilization, Characterization, and Selective Removal of Cystatin C Amyloid Oligomers*

    PubMed Central

    Östner, Gustav; Lindström, Veronica; Hjort Christensen, Per; Kozak, Maciej; Abrahamson, Magnus; Grubb, Anders

    2013-01-01

    The pathophysiological process in amyloid disorders usually involves the transformation of a functional monomeric protein via potentially toxic oligomers into amyloid fibrils. The structure and properties of the intermediary oligomers have been difficult to study due to their instability and dynamic equilibrium with smaller and larger species. In hereditary cystatin C amyloid angiopathy, a cystatin C variant is deposited in arterial walls and cause brain hemorrhage in young adults. In the present investigation, we use redox experiments of monomeric cystatin C, stabilized against domain swapping by an intramolecular disulfide bond, to generate stable oligomers (dimers, trimers, tetramers, decamers, and high molecular weight oligomers). These oligomers were characterized concerning size by gel filtration, polyacrylamide gel electrophoresis, and mass spectrometry, shape by electron and atomic force microscopy, and, function by assays of their capacity to inhibit proteases. The results showed the oligomers to be highly ordered, domain-swapped assemblies of cystatin C and that the oligomers could not build larger oligomers, or fibrils, without domain swapping. The stabilized oligomers were used to induce antibody formation in rabbits. After immunosorption, using immobilized monomeric cystatin C, and elution from columns with immobilized cystatin C oligomers, oligomer-specific antibodies were obtained. These could be used to selectively remove cystatin C dimers from biological fluids containing both dimers and monomers. PMID:23629649

  15. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  16. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions

    PubMed Central

    Joseph, Prem Raj B.; Mosier, Philip D.; Desai, Umesh R.; Rajarathnam, Krishna

    2015-01-01

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function. PMID:26371375

  17. Studies on the Dissociation and Urea-Induced Unfolding of FtsZ Support the Dimer Nucleus Polymerization Mechanism

    PubMed Central

    Montecinos-Franjola, Felipe; Ross, Justin A.; Sánchez, Susana A.; Brunet, Juan E.; Lagos, Rosalba; Jameson, David M.; Monasterio, Octavio

    2012-01-01

    FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (Kd = 9 μM) indicates a significant fraction (∼10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization. PMID:22824282

  18. Trimeric, Coiled-coil Extension on Peptide Fusion Inhibitor of HIV-1 Influences Selection of Resistance Pathways*

    PubMed Central

    Zhuang, Min; Wang, Wei; De Feo, Christopher J.; Vassell, Russell; Weiss, Carol D.

    2012-01-01

    Peptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of viral fusion proteins can block infection of viruses in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that drives fusion between viral and host cell membranes. The 6HB of the HIV gp41 (endogenous bundle) consists of an HR1 coiled-coil trimer with grooves lined by antiparallel HR2 helices. HR1 peptides form coiled-coil oligomers that may bind to gp41 HR2 as trimers to form a heterologous 6HB (inhibitor bundle) or to gp41 HR1 as monomers or dimers to form a heterologous coiled coil. To gain insights into mechanisms of Env entry and inhibition by HR1 peptides, we compared resistance to a peptide corresponding to 36 residues in gp41 HR1 (N36) and the same peptide with a coiled-coil trimerization domain fused to its N terminus (IZN36) that stabilizes the trimer and increases inhibitor potency (Eckert, D. M., and Kim, P. S. (2001) Proc. Nat. Acad. Sci. U.S.A. 98, 11187–11192). Whereas N36 selected two genetic pathways with equal probability, each defined by an early mutation in either HR1 or HR2, IZN36 preferentially selected the HR1 pathway. Both pathways conferred cross-resistance to both peptides. Each HR mutation enhanced the thermostability of the endogenous 6HB, potentially allowing the virus to simultaneously escape inhibitors targeting either gp41 HR1 or HR2. These findings inform inhibitor design and identify regions of plasticity in the highly conserved gp41 that modulate virus entry and escape from HR1 peptide inhibitors. PMID:22235115

  19. Proanthocyanidin screening by LC-ESI-MS of Portuguese red wines made with teinturier grapes.

    PubMed

    Teixeira, Natércia; Azevedo, Joana; Mateus, Nuno; de Freitas, Victor

    2016-01-01

    Proanthocyanidins (PAs) are one of the most important polyphenolic compounds in wine. Among PAs, prodelphinidin (PD) dimers and trimers have not been widely detected in wines due to the lack of available commercial standards and the difficulty to detect and isolate them from natural sources. LC-ESI-MS (liquid chromatography-electrospray ionization-mass spectrometry) with the right chromatographic conditions has proven to be a powerful tool for PAs detection and identification in complex samples. This technique has been applied to an exhaustive study of PA composition of two Portuguese red wines made with teinturier grapes, especially for the identification of PD dimers and trimers. Tandem mass spectrometry (MS/MS) with ion trap provided additional information about the structures of these compounds through the fragmentation patterns of the pseudomolecular ions. A LC-ESI-MS method was optimized and 41 different compounds were found. Among them are included 8 PD dimers and 13 PD trimers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR*

    PubMed Central

    Fehr, Niklas; Dietz, Carsten; Polyhach, Yevhen; von Hagens, Tona; Jeschke, Gunnar; Paulsen, Harald

    2015-01-01

    The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the “Velcro” hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919–928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound. PMID:26316535

  1. Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.

    PubMed

    Tauer, Tony P; Sherrill, C David

    2005-11-24

    The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.

  2. Origins and modeling of many-body exchange effects in van der Waals clusters

    NASA Astrophysics Data System (ADS)

    Chałasiński, Grzegorz; Rak, Janusz; Szcześniak, Małgorzata M.; Cybulski, sławomir M.

    1997-02-01

    We analyze the many-body exchange interactions in atomic and molecular clusters as they arise in the supermolecular SCF and MP2 approaches. A rigorous formal setting is provided by the symmetry-adapted perturbation theory. Particular emphasis is put on the decomposition into the single exchange (SE) and triple exchange (TE) terms, at the SCF and correlated levels. We also propose a novel approach, whereby selected SE nonadditive exchange terms are evaluated indirectly, as differences of the two-body SAPT corrections arising between the components of the trimer treated as a complex of a dimer and a monomer (pseudodimer approach). This provides additional insights into the nature of various nonadditive effects, an interpretation of supermolecular interaction energies, and may serve as a viable alternative for the calculation of some SE terms.

  3. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  4. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  5. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed Central

    Hoggett, J G; Kellett, G L

    1992-01-01

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. Images Fig. 1. PMID:1445216

  6. Polyphenolic Composition and Antioxidant Activity of Aqueous and Ethanolic Extracts from Uncaria tomentosa Bark and Leaves.

    PubMed

    Navarro-Hoyos, Mirtha; Alvarado-Corella, Diego; Moreira-Gonzalez, Ileana; Arnaez-Serrano, Elizabeth; Monagas-Juan, Maria

    2018-05-11

    Uncaria tomentosa constitutes an important source of secondary metabolites with diverse biological activities mainly attributed until recently to alkaloids and triterpenes. We have previously reported for the first-time the polyphenolic profile of extracts from U. tomentosa , using a multi-step process involving organic solvents, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted the present study using food grade solvents suitable for the elaboration of commercial extracts. We report a detailed study on the polyphenolic composition of aqueous and ethanolic extracts of U. tomentosa bark and leaves ( n = 16), using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-DAD/TQ-ESI-MS). A total of 32 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols monomers, procyanidin dimers and trimers, flavalignans⁻cinchonains and propelargonidin dimers. Our findings showed that the leaves were the richest source of total phenolics and proanthocyanidins, in particular propelargonidin dimers. Two-way Analysis of Variance (ANOVA) indicated that the contents of procyanidin and propelargonidin dimers were significantly different ( p < 0.05) in function of the plant part, and leaves extracts showed higher contents. Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhidrazyl (DPPH) values indicated higher antioxidant capacity for the leaves ( p < 0.05). Further, correlation between both methods and procyanidin dimers was found, particularly between ORAC and propelargonidin dimers. Finally, Principal Component Analysis (PCA) analysis results clearly indicated that the leaves are the richest plant part in proanthocyanidins and a very homogenous material, regardless of their origin. Therefore, our findings revealed that both ethanol and water extraction processes are adequate for the elaboration of potential commercial extracts from U. tomentosa leaves rich in proanthocyanidins and exhibiting high antioxidant activity.

  7. Polyphenolic Composition and Antioxidant Activity of Aqueous and Ethanolic Extracts from Uncaria tomentosa Bark and Leaves

    PubMed Central

    Alvarado-Corella, Diego; Moreira-Gonzalez, Ileana; Arnaez-Serrano, Elizabeth; Monagas-Juan, Maria

    2018-01-01

    Uncaria tomentosa constitutes an important source of secondary metabolites with diverse biological activities mainly attributed until recently to alkaloids and triterpenes. We have previously reported for the first-time the polyphenolic profile of extracts from U. tomentosa, using a multi-step process involving organic solvents, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted the present study using food grade solvents suitable for the elaboration of commercial extracts. We report a detailed study on the polyphenolic composition of aqueous and ethanolic extracts of U. tomentosa bark and leaves (n = 16), using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-DAD/TQ-ESI-MS). A total of 32 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols monomers, procyanidin dimers and trimers, flavalignans–cinchonains and propelargonidin dimers. Our findings showed that the leaves were the richest source of total phenolics and proanthocyanidins, in particular propelargonidin dimers. Two-way Analysis of Variance (ANOVA) indicated that the contents of procyanidin and propelargonidin dimers were significantly different (p < 0.05) in function of the plant part, and leaves extracts showed higher contents. Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhidrazyl (DPPH) values indicated higher antioxidant capacity for the leaves (p < 0.05). Further, correlation between both methods and procyanidin dimers was found, particularly between ORAC and propelargonidin dimers. Finally, Principal Component Analysis (PCA) analysis results clearly indicated that the leaves are the richest plant part in proanthocyanidins and a very homogenous material, regardless of their origin. Therefore, our findings revealed that both ethanol and water extraction processes are adequate for the elaboration of potential commercial extracts from U. tomentosa leaves rich in proanthocyanidins and exhibiting high antioxidant activity. PMID:29751684

  8. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers.

    PubMed

    Vandavasi, Venu Gopal; Putnam, Daniel K; Zhang, Qiu; Petridis, Loukas; Heller, William T; Nixon, B Tracy; Haigler, Candace H; Kalluri, Udaya; Coates, Leighton; Langan, Paul; Smith, Jeremy C; Meiler, Jens; O'Neill, Hugh

    2016-01-01

    A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

    DOE PAGES

    Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu; ...

    2015-11-10

    In a cellulose synthesis complex a "rosette" shape is responsible for the synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. Our work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer inmore » solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. Moreover, the conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. Finally, this study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.« less

  10. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  11. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits

    PubMed Central

    2014-01-01

    Background The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically. Results We used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus. Conclusions The antigenicity and structural integrity of cleaved BG505 SOSIP.664 trimers render these proteins good mimics of functional Env spikes on virions. In contrast, uncleaved gp140s antigenically resemble individual gp120-gp41ECTO protomers and gp120 monomers, but not native trimers. Although NAb binding to functional trimers may thus be both necessary and sufficient for neutralization, the kinetics and stoichiometry of the interaction influence the neutralizing efficacy of individual NAbs. PMID:24884783

  12. The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer.

    PubMed

    O'Malley, Tiernan T; Witbold, William M; Linse, Sara; Walsh, Dominic M

    2016-11-08

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.

  13. The aggregation paths and products of Aβ42 dimers are distinct from Aβ42 monomer

    PubMed Central

    O'Malley, Tiernan T.; Witbold, William M.; Linse, Sara; Walsh, Dominic M.

    2017-01-01

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be SDS-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated from Aβ monomer, consist primarily of Aβ42 and resist denaturation by powerful chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in only one of two different ways - either by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then applied a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by Aβ monomer. These results suggest that Aβ dimers allow the formation of soluble aggregates akin to those in aqueous extracts of AD brain. Thus it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates. PMID:27750419

  14. Quantum and Classical Plasmonic Phenomena in Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander; Besteiro, Lucas; Khosravi Khorashad, Larousse; Kong, Xiang-Tian; Roller, Eva-Maria; Liedl, Tim

    Using both classical and quantum approaches, we model plasmonic phenomena in nanoparticle (NP) dimers and trimers. Using a model of three nanoparticles, we propose a mechanism of non-dissipative and ultrafast plasmon passage assisted by hot spots. For this, the NP trimer should include two Au-NPs and one Ag-NP. In the Au-Ag-Au trimer, the two Au-plasmons become coupled via the virtual plasmon of the Ag-NP. The efficient and ultra-fast passage of the Au-plasmons assisted by the virtual Ag-plasmon only becomes possible when the inter-NP gaps in the trimer are small. In this coupling regime, the inter-NP gap regions become plasmonic hot spots that greatly enhance the plasmonic passage effect. At this moment, the plasmonic passage phenomenon was already observed experimentally using optical spectroscopy and the DNA-origami NP complexes. Other systems of our interest were a NP dimer and a nanostar with plasmonic hot spots. For those systems, we predict strong enhancement of the generation of energetic (hot) carriers.

  15. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers1

    PubMed Central

    Zhang, Qiu; Petridis, Loukas; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Smith, Jeremy C.; Meiler, Jens

    2016-01-01

    A cellulose synthesis complex with a “rosette” shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the “hexamer of trimers” model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. PMID:26556795

  16. Helium cluster isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Higgins, John Paul

    Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.

  17. Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification.

    PubMed

    Lan, Wu; Morreel, Kris; Lu, Fachuang; Rencoret, Jorge; Carlos Del Río, José; Voorend, Wannes; Vermerris, Wilfred; Boerjan, Wout; Ralph, John

    2016-06-01

    Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed 'candidate substrate product pair' algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Chemical vapor deposition of gallium nitride from the GaCl(3)+NH(3) system. Theoretical study of the structure and thermodynamics of potential intermediates formed in the gaseous phase.

    PubMed

    Kovács, Attila

    2002-06-17

    Quantum chemical calculations at the B3P86/6-311G(d,p) level have been performed on potential intermediate molecules in the chemical vapor deposition (CVD) of GaN from the GaCl(3) + NH(3) system. The investigated molecules included the monomer (Cl(x)GaNH(x), x = 1-3) and oligomer species (Cl(2)GaNH(2))(n) with n = 1-3 and (ClGaNH)(n) with n = 1-4 as well as the respective chain dimers and trimers. The calculations revealed the importance of intramolecular Cl...H hydrogen bonding and dipole-dipole interactions in determining the conformational properties of the larger species. Except for the ClGaNH monomer, the Ga[bond]N bonding has a single bond character with a strong ionic contribution. Our thermodynamic study of the composition of the gaseous phase supported the predominance of the Cl(3)GaNH(3) complex under equilibrium conditions. Additionally, the calculated Gibbs free energies of various GaCl(3) + NH(3) reactions imply the favored formation of "saturated" chain and cyclic oligomers below 1000 K.

  19. Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification1[OPEN

    PubMed Central

    Lu, Fachuang

    2016-01-01

    Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed ‘candidate substrate product pair’ algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots. PMID:27208246

  20. Maize Tricin-Oligolignol Metabolites and their Implications for Monocot Lignification

    DOE PAGES

    Lan, Wu; Morreel, Kris; Lu, Fachuang; ...

    2016-06-01

    Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed ‘candidate substrate product pair’ algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates,more » were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricincontaining products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots.« less

  1. Concentrations of proanthocyanidins in common foods and estimations of normal consumption.

    PubMed

    Gu, Liwei; Kelm, Mark A; Hammerstone, John F; Beecher, Gary; Holden, Joanne; Haytowitz, David; Gebhardt, Susan; Prior, Ronald L

    2004-03-01

    Proanthocyanidins (PAs) have been shown to have potential health benefits. However, no data exist concerning their dietary intake. Therefore, PAs in common and infant foods from the U.S. were analyzed. On the bases of our data and those from the USDA's Continuing Survey of Food Intakes by Individuals (CSFII) of 1994-1996, the mean daily intake of PAs in the U.S. population (>2 y old) was estimated to be 57.7 mg/person. Monomers, dimers, trimers, and those above trimers contribute 7.1, 11.2, 7.8, and 73.9% of total PAs, respectively. The major sources of PAs in the American diet are apples (32.0%), followed by chocolate (17.9%) and grapes (17.8%). The 2- to 5-y-old age group (68.2 mg/person) and men >60 y old (70.8 mg/person) consume more PAs daily than other groups because they consume more fruit. The daily intake of PAs for 4- to 6-mo-old and 6- to 10-mo-old infants was estimated to be 1.3 mg and 26.9 mg, respectively, based on the recommendations of the American Academy of Pediatrics. This study supports the concept that PAs account for a major fraction of the total flavonoids ingested in Western diets.

  2. Metal cluster chemistry: Structure and stereochemistry in the polynuclear rhodium hydrides HnRhn[P(OR)3]2n

    PubMed Central

    Brown, R. K.; Williams, J. M.; Fredrich, M. F.; Day, V. W.; Sivak, A. J.; Muetterties, E. L.

    1979-01-01

    Crystallographic analyses of x-ray and neutron diffraction data have provided a definitive structural representation of {HRh[P(O-i-C3H7)3]2}2 and {HRh[P(OCH3)3]2}3. These polynuclear hydrides are generated from square planar H2Rh[P(OR)3]2 units by edge (hydrogen atom) sharing and by vertex (hydrogen atom) sharing to form the dimeric and trimeric structures, respectively. The square-planar units are held together through four-center and three-center two-electron Rh—H—Rh bonds in the dimer and trimer, respectively. The dimer and trimer molecules each add one molecule of hydrogen to form H[(i-C3H7O)3P]2RhH3Rh [P(O-i-C3H7)3]2 and H5Rh3[P(OCH3)3]6, respectively. NMR spectral information has served to define the stereochemical features of these polyhydrides. The significance of this chemistry in the metal cluster-metal surface analogy is described. PMID:16592645

  3. Kinetics of new thermal donors (NTDs) in CZ-silicon based on FTIR analysis

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Singh, Shyam; Yadav, Bal Chandra

    2018-05-01

    Oxygen is quite friendly to silicon and is interstitially positioned well guarded by neighbouring silicon atoms on regular sites, provides mechanical strength to the silicon wafers and helps in internal gettering. Oxygen dimers are a fast diffusing species. Presence of trimers provides a wider platform for interconversion of dimer-trimer and V-O interaction. Oxygen atoms in isomeric positions really play a trick in the formation of TDD0 - TDD16. Other members of the donor species are likely due to the addition of dimers/trimers. FTIR analysis of boron-doped CZ-silicon annealed at 495 °C revealed a unique feature that the nature of 999 cm-1 absorption peak corresponding to TDD3 is contrary to 1107 cm-1 absorption peak corresponding to interstitial oxygen in silicon. Isothermal annealing at different temperatures also indicates slow disappearance of one donor species and emergence of other donor species. Thermal acceptors and recombination centers intrinsically present in the as grown silicon crystal and/or generated as a result of annealing do contribute to lower the donor concentration.

  4. Ordered phases of ethylene adsorbed on charged fullerenes and their aggregates☆

    PubMed Central

    Zöttl, Samuel; Kaiser, Alexander; Daxner, Matthias; Goulart, Marcelo; Mauracher, Andreas; Probst, Michael; Hagelberg, Frank; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-01-01

    In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of (C60)m(C2H4)n+ measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature. PMID:25843960

  5. Evidence for a remodelling of DNA-PK upon autophosphorylation from electron microscopy studies

    PubMed Central

    Morris, Edward P.; Rivera-Calzada, Angel; da Fonseca, Paula C. A.; Llorca, Oscar; Pearl, Laurence H.; Spagnolo, Laura

    2011-01-01

    The multi-subunit DNA-dependent protein kinase (DNA-PK), a crucial player in DNA repair by non-homologous end-joining in higher eukaryotes, consists of a catalytic subunit (DNA-PKcs) and the Ku heterodimer. Ku recruits DNA-PKcs to double-strand breaks, where DNA-PK assembles prior to DNA repair. The interaction of DNA-PK with DNA is regulated via autophosphorylation. Recent SAXS data addressed the conformational changes occurring in the purified catalytic subunit upon autophosphorylation. Here, we present the first structural analysis of the effects of autophosphorylation on the trimeric DNA-PK enzyme, performed by electron microscopy and single particle analysis. We observe a considerable degree of heterogeneity in the autophosphorylated material, which we resolved into subpopulations of intact complex, and separate DNA-PKcs and Ku, by using multivariate statistical analysis and multi-reference alignment on a partitioned particle image data set. The proportion of dimeric oligomers was reduced compared to non-phosphorylated complex, and those dimers remaining showed a substantial variation in mutual monomer orientation. Together, our data indicate a substantial remodelling of DNA-PK holo-enzyme upon autophosphorylation, which is crucial to the release of protein factors from a repaired DNA double-strand break. PMID:21450809

  6. Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation.

    PubMed

    Valle, Aisel; Pérez-Socas, Luis Benito; Canet, Liem; Hervis, Yadira de la Patria; de Armas-Guitart, German; Martins-de-Sa, Diogo; Lima, Jônatas Cunha Barbosa; Souza, Adolfo Carlos Barros; Barbosa, João Alexandre Ribeiro Gonçalves; de Freitas, Sonia Maria; Pazos, Isabel Fabiola

    2018-04-26

    The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.

  7. Slow aging in Secondary Organic Aerosol observed by Liquid Chromatography coupled with High-Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bones, D. L.; Bateman, A. P.; Nguyen, T. B.; Laskin, J.; Laskin, A.; Nizkorodov, S.

    2009-12-01

    This study investigated long term changes in the chemical composition of model biogenic secondary organic aerosol (SOA) prepared via ozonolysis of the terpene limonene. This SOA has been observed to turn brown when exposed to NH4+. Our hypothesis is that the chromophoric compounds responsible for this color change are suspected to be imidazole-like or pyridinium-like compounds. These compounds are only present in small relative amounts, hence standard mass spectrometry is insufficient to unambiguously detect these compounds. However, a combination of HPLC and high resolution electrospray ionization mass spectrometry allows assignments of chemical formulae to individual peaks. These and other experiments confirm the presence of N-containing compounds in treated SOA. We are in the process of determining the exact identity of these species by MS/MS methods. LC-MS can also provide information about the polarity of the compounds in SOA. Most compounds in limonene-O3 SOA are polar and are detected at short retention times; peaks suggesting trimeric species appear at longer retention times in the case of fresh SOA, but at shorter times with the bulk of the components for aged SOA. Limonene SOA has been shown to be composed of monomers, dimers, trimers and larger oligomers. The appearance of trimers in specific regions of the chromatogram suggests these species are genuine SOA components and not an artifact of electrospray ionization. Changes in biogenic SOA over time are important because of the propensity of SOA to affect direct and indirect radiative forcing.

  8. Determination of structure and properties of molecular crystals from first principles.

    PubMed

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.

  9. The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

    PubMed Central

    Davletshin, Yevgeniy R

    2016-01-01

    Summary This paper presents a theoretical study of the interaction of a 6 ps laser pulse with uncoupled and plasmon-coupled gold nanoparticles. We show how the one-dimensional assembly of particles affects the optical breakdown threshold of its surroundings. For this purpose we used a fully coupled electromagnetic, thermodynamic and plasma dynamics model for a laser pulse interaction with gold nanospheres, nanorods and assemblies, which was solved using the finite element method. The thresholds of optical breakdown for off- and on-resonance irradiated gold nanosphere monomers were compared against nanosphere dimers, trimers, and gold nanorods with the same overall size and aspect ratio. The optical breakdown thresholds had a stronger dependence on the optical near-field enhancement than on the mass or absorption cross-section of the nanostructure. These findings can be used to advance the nanoparticle-based nanoscale manipulation of matter. PMID:27547604

  10. Computational study of the structure-free radical scavenging relationship of procyanidins.

    PubMed

    Mendoza-Wilson, Ana María; Castro-Arredondo, Sergio Ivan; Balandrán-Quintana, René Renato

    2014-10-15

    Procyanidins (PCs) are effective free radical scavengers, however, their antioxidant ability is variable because they have different degrees of polymerisation, are composed by distinct types of subunits and are very susceptible to changes in conformation. In this work the structure-free radical scavenging relationship of monomers, dimers and trimers of PCs was studied through the hydrogen atom transfer (HAT), sequential proton-loss electron-transfer (SPLET) and single electron transfer followed by proton transfer (SET-PT) mechanisms in aqueous phase, employing the Density Functional Theory (DFT) computational method. The structure-free radical scavenging relationship of PCs showed a very similar behaviour in HAT and SET-PT mechanisms, but very different in the SPLET mechanism. The structural factor that showed more effects on the ability of PCs to scavenge free radicals in aqueous phase was the conformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Accurate computational design of multipass transmembrane proteins.

    PubMed

    Lu, Peilong; Min, Duyoung; DiMaio, Frank; Wei, Kathy Y; Vahey, Michael D; Boyken, Scott E; Chen, Zibo; Fallas, Jorge A; Ueda, George; Sheffler, William; Mulligan, Vikram Khipple; Xu, Wenqing; Bowie, James U; Baker, David

    2018-03-02

    The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Novel alkyd-type coating resins produced using cationic polymerization

    DOE PAGES

    Chisholm, Bret J.; Kalita, Harjyoti; Alam, Samim; ...

    2015-05-06

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(v9nyl ether)s provide several advantages. These advantages include milder, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimers, etc. The results of the studied showedmore » that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerably as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.« less

  13. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes.

    PubMed

    Li, Qian; Chen, Jun; Li, Ti; Liu, Chengmei; Zhai, Yuxin; McClements, David Julian; Liu, Jiyan

    2015-12-01

    Bioactive proanthocyanidins were isolated from the peel of Choerospondias axillaris fruit, which is a waste product of the food processing industry. Compositional analysis indicated that the proanthocyanidins had extension units mainly consisting of epicatechin gallate or epicatechin, and terminal units mainly consisting of catechin. Numerous polymeric forms of the molecules were detected, including monomers, dimers, and trimers. Certain fractions exhibited strong α-amylase or α-glucosidase inhibition in a dose-dependent manner. Furthermore, their inhibitory activities depended on their degree of polymerization and galloylation. For example, the most bioactive fraction had α-amylase and α-glucosidase inhibitory activities (IC50 values) of 541 and 3.1 μg mL(-1), respectively. This study demonstrates that proanthocyanidins from C. axillaris peels can inhibit carbohydrate digestive enzymes in vitro and may therefore serve as antidiabetic ingredients in functional or medical foods.

  14. Proanthocyanidin trimer gallate modulates lipid deposition and fatty acid desaturation in Caenorhabditis elegans.

    PubMed

    Nie, Yu; Littleton, Brad; Kavanagh, Thomas; Abbate, Vincenzo; Bansal, Sukhvinder S; Richards, David; Hylands, Peter; Stürzenbaum, Stephen R

    2017-11-01

    The incidence of obesity is rising at an alarming rate. Despite its recognition as an urgent healthcare concern, obesity remains largely an unsolved medical problem. A comprehensive screen for functional dietary phytochemicals identified proanthocyanidins as putative targets to ameliorate obesity. A full-scale purification of oligomeric proanthocyanidins (OPCs) derived from grape seed extract yielded pure OPC dimer, trimer, tetramer, and their gallates (pOPCs). Forward chemical screening conducted in Caenorhabditis elegans suggested that pOPCs reduced the activity of lipase in vitro and triglyceride storage capacity in vivo Proanthocyanidin trimer gallate in particular modified lipid desaturation in C. elegans , revealed by hyperspectral coherent anti-Stokes Raman scattering microscopy. Exposure to trimer gallate resulted in the transcriptional down-regulation of nhr-49 (an ortholog of the human peroxisome proliferator-activated receptor-α), and a key regulator of fat metabolism, and 2 downstream genes: fat-5 and acs-2 A combination exposure of 2 or 3 pOPCs (dimer gallate, trimer and/or trimer gallate) suggested the absence of synergistic potential. By using the whole-organism C. elegans coupled with versatile biochemical, biophysical, and genetic tools, we provide an account of the composition and bioactivity of individual OPCs and more generally highlight the potential of traditional Chinese medicine-derived drug leads.-Nie, Y., Littleton, B., Kavanagh, T., Abbate, V., Bansal, S. S., Richards, D., Hylands, P., Sturzenbaum, S. R. Proanthocyanidin trimer gallate modulates lipid deposition and fatty acid desaturation in Caenorhabditis elegans . © FASEB.

  15. Initial Stage of Aerosol Formation from Oversaturated Vapors

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Zagainov, V. A.; Lyubovtseva, Yu. S.

    2018-03-01

    The formation of aerosol particles from oversaturated vapor was considered assuming that the stable nuclei of the new phase contain two (dimers) or three (trimers) condensing vapor molecules. Exact expressions were derived and analyzed for the partition functions of the dimer and trimer suspended in a carrier gas for the rectangular well and repulsive core intermolecular potentials. The equilibrium properties of these clusters and the nucleation rate of aerosol particles were discussed. The bound states of clusters were introduced using a limitation on their total energy: molecular clusters with a negative total energy were considered to exclude configurations with noninteracting fragments.

  16. A HeI photoelectron spectrum of the [Al(CH 3) 3] 2 dimer

    NASA Astrophysics Data System (ADS)

    Wang, Dianxun; Qian, Ximei; Zheng, Shijun; Shi, Yizhong

    1997-10-01

    The HeI photoelectron spectrum (PES) of the [Al(CH 3) 3] 2 dimer is recorded for the first time. To assign the PES bands, an ab initio SCF MO calculation for the dimer has also been performed. The four splitting peaks of the first PE band are respectively designated to electron ionization of the four frontier 8b u, 13a g, 7b g, and 7b u orbitals of the dimer. They originate from the recombination of the two HOMO (5e') of the two monomers in the forming of the dimer. That is to say, during the formation of the dimer from the two monomers, the reduction of molecular symmetry (from the C 3h symmetry of the monomer to the C 2h symmetry of the dimer) leads to the undegeneration of the degenerate orbitals.

  17. On the kinetics of body versus end evaporation and addition of supramolecular polymers.

    PubMed

    Tiwari, Nitin S; van der Schoot, Paul

    2017-06-01

    The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules, including sulfur, linear micelles, living polymers and protein fibrils. Recent observations hint at the importance of a hitherto ignored molecular aggregation pathway that we refer to as "body evaporation and addition". In this pathway, monomers can enter at or dissociate from any point along the backbone of the polymer. In this paper, we compare predictions for the well-established end evaporation and addition pathway with those that we obtained for the newly proposed body evaporation and addition model. We quantify the lag time, characteristic of nucleated reversible polymerisation, in terms of the time it takes to obtain half of the steady-state polymerised fraction and the apparent growth rate at that point, and obtain power laws for both as a function of the total monomer concentration. We find, perhaps not entirely unexpectedly, that the body evaporation and addition pathway speeds up the relaxation of the polymerised monomeric mass relative to that of the end evaporation and addition. However, the presence of the body evaporation and addition pathway does not affect the dependence of the lag time on the total monomer concentration and it remains the same as that for the case of end evaporation and addition. The scaling of the lag time with the forward rate is different for the two models, suggesting that they may be distinguished experimentally.

  18. High-speed atomic force microscopy reveals structural dynamics of α -synuclein monomers and dimers

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Hashemi, Mohtadin; Lv, Zhengjian; Williams, Benfeard; Popov, Konstantin I.; Dokholyan, Nikolay V.; Lyubchenko, Yuri L.

    2018-03-01

    α-Synuclein (α-syn) is the major component of the intraneuronal inclusions called Lewy bodies, which are the pathological hallmark of Parkinson's disease. α-Syn is capable of self-assembly into many different species, such as soluble oligomers and fibrils. Even though attempts to resolve the structures of the protein have been made, detailed understanding about the structures and their relationship with the different aggregation steps is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. Here we report the structural flexibility of α-syn monomers and dimers in an aqueous solution environment as probed by single-molecule time-lapse high-speed AFM. In addition, we present the molecular basis for the structural transitions using discrete molecular dynamics (DMD) simulations. α-Syn monomers assume a globular conformation, which is capable of forming tail-like protrusions over dozens of seconds. Importantly, a globular monomer can adopt fully extended conformations. Dimers, on the other hand, are less dynamic and show a dumbbell conformation that experiences morphological changes over time. DMD simulations revealed that the α-syn monomer consists of several tightly packed small helices. The tail-like protrusions are also helical with a small β-sheet, acting as a "hinge". Monomers within dimers have a large interfacial interaction area and are stabilized by interactions in the non-amyloid central (NAC) regions. Furthermore, the dimer NAC-region of each α-syn monomer forms a β-rich segment. Moreover, NAC-regions are located in the hydrophobic core of the dimer.

  19. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics.

    PubMed

    Denison, Fiona C; Gökirmak, Tufan; Ferl, Robert J

    2014-01-01

    14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Picosecond spectroscopic study of chlorophyll-based models for the primary photochemistry of photosynthesis. [Dimers and trimers of chlorophyllide derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucks, R.R.; Netzel, T.L.; Fujita, I.

    1982-05-27

    A series of covalently linked dimers and trimers of chlorophyllide derivatives was investigated by time-resolved absorption and fluorescence spectroscopy (3 to 10/sup 4/ ps). For these compounds, the free energy difference between the singlet excited state of the electron donor and the anticipated cation-anion photoproduct (..delta..G/sub ET/) is estimated to range from +200 to -400 MeV. For the dimers studied, the singlet-excited-state lifetimes range from 1 to 7 ns and depend inversely on the solvent's static dielectric constant. Since no decrease in lifetime or fluorescence quantum yield was found as ..delta..G/sub ET/ became more negative, this effect is unlikely tomore » be due to slow electron transfer. It may be a result of fluctuating intramolecular association of the nonpolar macrocycles in solvents with a high dielectric constant. We also studied two trimers, each having the same chlorophyllide a dimer as the electron donor, but with pyropheophorbide a or pheophorbide a as the electron acceptor (the latter is 90 MeV easier to reduce than the former). For the trimer with pheophorbide a as the acceptor, there is evidence for a new path of radiationless decay which may involve an electron-transfer product. However, the rate of formation of this product is slow (less than or equal to 10/sup 10/ s/sup -1/), and its yield is low (less than or equal to 50%). Taken together, these results suggest that chlorophyll-based, donor-acceptor pairs connected by flexible chains longer than five atoms are not likely to duplicate the highly efficient excited-singlet-state electron-transfer reactions characteristic of the primary photochemistry of photosynthetic organisms.« less

  1. An ab initio study of intermolecular interactions of nitromethane dimer and nitromethane trimer.

    PubMed

    Li, Jinshan; Zhao, Feng; Jing, Fuqian

    2003-02-01

    Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of C--H...O--N H-bond ranges from -9.0 to -12.4 kJ mol(-1) at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated DeltaE(C) is within 2.5 kJ mol(-1) of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom-atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 A. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 345-352, 2003

  2. A monomer-trimer model supports intermittent glucagon fibril growth

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Cordsen, Pia; Kyrsting, Anders; Otzen, Daniel E.; Oddershede, Lene B.; Jensen, Mogens H.

    2015-03-01

    We investigate in vitro fibrillation kinetics of the hormone peptide glucagon at various concentrations using confocal microscopy and determine the glucagon fibril persistence length 60μm. At all concentrations we observe that periods of individual fibril growth are interrupted by periods of stasis. The growth probability is large at high and low concentrations and is reduced for intermediate glucagon concentrations. To explain this behavior we propose a simple model, where fibrils come in two forms, one built entirely from glucagon monomers and one entirely from glucagon trimers. The opposite building blocks act as fibril growth blockers, and this generic model reproduces experimental behavior well.

  3. Detection of Intermediates And Kinetic Control During Assembly of Bacteriophage P22 Procapsid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuma, R.; Tsuruta, H.; French, K.H.

    2009-05-26

    Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter {approx} 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibriummore » (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.« less

  4. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach.

    PubMed

    Wassenaar, Tsjerk A; Pluhackova, Kristyna; Moussatova, Anastassiia; Sengupta, Durba; Marrink, Siewert J; Tieleman, D Peter; Böckmann, Rainer A

    2015-05-12

    Interactions between membrane proteins are of great biological significance and are consequently an important target for pharmacological intervention. Unfortunately, it is still difficult to obtain detailed views on such interactions, both experimentally, where the environment hampers atomic resolution investigation, and computationally, where the time and length scales are problematic. Coarse grain simulations have alleviated the later issue, but the slow movement through the bilayer, coupled to the long life times of nonoptimal dimers, still stands in the way of characterizing binding distributions. In this work, we present DAFT, a Docking Assay For Transmembrane components, developed to identify preferred binding orientations. The method builds on a program developed recently for generating custom membranes, called insane (INSert membrANE). The key feature of DAFT is the setup of starting structures, for which optimal periodic boundary conditions are devised. The purpose of DAFT is to perform a large number of simulations with different components, starting from unbiased noninteracting initial states, such that the simulations evolve collectively, in a manner reflecting the underlying energy landscape of interaction. The implementation and characteristic features of DAFT are explained, and the efficacy and relaxation properties of the method are explored for oligomerization of glycophorin A dimers, polyleucine dimers and trimers, MS1 trimers, and rhodopsin dimers. The results suggest that, for simple helices, such as GpA and polyleucine, in POPC/DOPC membranes series of 500 simulations of 500 ns each allow characterization of the helix dimer orientations and allow comparing associating and nonassociating components. However, the results also demonstrate that short simulations may suffer significantly from nonconvergence of the ensemble and that using too few simulations may obscure or distort features of the interaction distribution. For trimers, simulation times exceeding several microseconds appear needed, due to the increased complexity. Similarly, characterization of larger proteins, such as rhodopsin, takes longer time scales due to the slower diffusion and the increased complexity of binding interfaces. DAFT and its auxiliary programs have been made available from http://cgmartini.nl/ , together with a working example.

  5. Fibulin 5 Forms a Compact Dimer in Physiological Solutions*

    PubMed Central

    Jones, Richard P. O.; Wang, Ming-Chuan; Jowitt, Thomas A.; Ridley, Caroline; Mellody, Kieran T.; Howard, Marjorie; Wang, Tao; Bishop, Paul N.; Lotery, Andrew J.; Kielty, Cay M.; Baldock, Clair; Trump, Dorothy

    2009-01-01

    Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin. PMID:19617354

  6. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit swapping interactions that will need to be taken into account in experimental applications of single-chain chemoreceptors. PMID:26709829

  8. Two Populations Mean-Field Monomer-Dimer Model

    NASA Astrophysics Data System (ADS)

    Alberici, Diego; Mingione, Emanuele

    2018-04-01

    A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

  9. Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Nelson, Bryan; Blanchette, Robert A.; Hedges, John I.

    1993-08-01

    The elemental compositions and yields of CuO-derived phenol dimers and monomers from woods degraded by different fungi under laboratory and natural conditions were compared to those from undegraded controls. In laboratory experiments, white-rot fungi caused pronounced mass losses, lowered the organic carbon content of the remnant woods, and decreased the absolute carbon-normalized yields of the major classes of lignin phenol dimers and monomers. White-rot decay induced large losses of some CuO reaction products, such as (β,1-diketone and α,l-monoketone dimers and syringyl monomers, and increased the absolute yields of individual acidic reaction products, such as dehydrodivanillic acid, vanillic acid, and 2-syringylsyringic acid. In contrast, the brown-rot fungus, Fomitopsis pinicola, was less efficient in decaying lignin, inducing lower absolute lignin phenol losses and, in some cases, increasing the organic carbon content of remnant woods. Several lignin constituents, mainly carboxyvanillyl monomers and α,2-methyl and α,5-monoketone dimers, were produced during brown-rot degradation. Similar diagenetic trends were also apparent in the five woods collected from the field, suggesting the differences between white- and brown-rot decay are still apparent after more extensive degradation in natural environments. The lignin compositions from a selected set of previously analyzed sedimentary mixtures were generally consistent with the diagenetic trends observed in both laboratory and field samples. In some cases, however, geochemical parameters such as elevated dimer/monomer and carboxyvanillyl/ vanillyl monomer ratios clearly distinguished certain sedimentary lignins. In these samples, other processes, such as extensive fungal decay, bacterial degradation, or a nonwoody vascular plant origin, could be important factors affecting lignin compositions.

  10. Antioxidant potential of curcumin-related compounds studied by chemiluminescence kinetics, chain-breaking efficiencies, scavenging activity (ORAC) and DFT calculations.

    PubMed

    Slavova-Kazakova, Adriana K; Angelova, Silvia E; Veprintsev, Timur L; Denev, Petko; Fabbri, Davide; Dettori, Maria Antonietta; Kratchanova, Maria; Naumov, Vladimir V; Trofimov, Aleksei V; Vasil'ev, Rostislav F; Delogu, Giovanna; Kancheva, Vessela D

    2015-01-01

    This study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C 2-symmetric dimers 6-9. Four models were applied: model 1 - chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k A) of the reactions of the antioxidants with peroxyl radicals; model 2 - lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 - oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 - density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure-activity relationship. Dimers showed 2-2.5-fold higher values of k A than their monomers. Model 2 gives information about the effects of the side chains and revealed much higher antioxidant activity for monomers and dimers with α,β-unsaturated side chains. Curcumin and 6 in fact are dimers of the same monomer 2. We conclude that the type of linkage between the two "halves" by which the molecule is made up does not exert influence on the antioxidant efficiency and reactivity of these two dimers. The dimers and the monomers demonstrated higher activity than Trolox (10) in aqueous medium (model 3). A comparison of the studied compounds with DL-α-tocopherol (11), Trolox and curcumin is made. All dimers are characterized through lower bond dissociation enthalpies (BDEs) than their monomers (model 4), which qualitatively supports the experimental results.

  11. Rapid Reversion from Monomer to Dimer Regenerates the Ultraviolet-B Photoreceptor UV RESISTANCE LOCUS8 in Intact Arabidopsis Plants1[W][OA

    PubMed Central

    Heilmann, Monika; Jenkins, Gareth I.

    2013-01-01

    Arabidopsis (Arabidopsis thaliana) UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor that specifically mediates photomorphogenic responses to ultraviolet (UV)-B in plants. UV-B photoreception induces the conversion of the UVR8 dimer into a monomer that interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) protein to regulate gene expression. However, it is not known how the dimeric photoreceptor is regenerated in plants. Here, we show, by using inhibitors of protein synthesis and degradation via the proteasome, that the UVR8 dimer is not regenerated by rapid de novo synthesis following destruction of the monomer. Rather, regeneration occurs by reversion from the monomer to the dimer. However, regeneration of dimeric UVR8 in darkness following UV-B exposure occurs much more rapidly in vivo than in vitro with illuminated plant extracts or purified UVR8, indicating that rapid regeneration requires intact cells. Rapid dimer regeneration in vivo requires protein synthesis, the presence of a carboxyl-terminal 27-amino acid region of UVR8, and the presence of COP1, which is known to interact with the carboxyl-terminal region. However, none of these factors can account fully for the difference in regeneration kinetics in vivo and in vitro, indicating that additional proteins or processes are involved in UVR8 dimer regeneration in vivo. PMID:23129206

  12. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging

    PubMed Central

    2012-01-01

    Background Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Methods Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. Results NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Conclusion Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding. PMID:22333272

  13. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging.

    PubMed

    Fournier, Patrick; Dumulon-Perreault, Véronique; Ait-Mohand, Samia; Langlois, Réjean; Bénard, François; Lecomte, Roger; Guérin, Brigitte

    2012-02-14

    Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding.

  14. Interactions and aggregation of apoferritin molecules in solution: effects of added electrolytes.

    PubMed Central

    Petsev, D N; Thomas, B R; Yau, S; Vekilov, P G

    2000-01-01

    We have studied the structure of the protein species and the protein-protein interactions in solutions containing two apoferritin molecular forms, monomers and dimers, in the presence of Na(+) and Cd(2+) ions. We used chromatographic, and static and dynamic light scattering techniques, and atomic force microscopy (AFM). Size-exclusion chromatography was used to isolate these two protein fractions. The sizes and shapes of the monomers and dimers were determined by dynamic light scattering and AFM. Although the monomer is an apparent sphere with a diameter corresponding to previous x-ray crystallography determinations, the dimer shape corresponds to two, bound monomer spheres. Static light scattering was applied to characterize the interactions between solute molecules of monomers and dimers in terms of the second osmotic virial coefficients. The results for the monomers indicate that Na(+) ions cause strong intermolecular repulsion even at concentrations higher than 0.15 M, contrary to the predictions of the commonly applied Derjaguin-Landau-Verwey-Overbeek theory. We argue that the reason for such behavior is hydration force due to the formation of a water shell around the protein molecules with the help of the sodium ions. The addition of even small amounts of Cd(2+) changes the repulsive interactions to attractive but does not lead to oligomer formation, at least at the protein concentrations used. Thus, the two ions provide examples of strong specificity of their interactions with the protein molecules. In solutions of the apoferritin dimer, the molecules attract even in the presence of Na(+) only, indicating a change in the surface of the apoferritin molecule. In view of the strong repulsion between the monomers, this indicates that the dimers and higher oligomers form only after partial denaturation of some of the apoferritin monomers. These observations suggest that aggregation and self-assembly of protein molecules or molecular subunits may be driven by forces other than those responsible for crystallization and other phase transitions in the protein solution. PMID:10733984

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  17. Engineering Human Immunodeficiency Virus 1 Protease Heterodimers as Macromolecular Inhibitors of Viral Maturation

    NASA Astrophysics Data System (ADS)

    McPhee, Fiona; Good, Andrew C.; Kuntz, Irwin D.; Craik, Charles S.

    1996-10-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection.

  18. Hydrolyzable tannins of tamaricaceous plants. IV: Micropropagation and ellagitannin production in shoot cultures of Tamarix tetrandra.

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Terabayashi, Susumu; Hatano, Tsutomu

    2011-11-01

    Shoot cultures of Tamarix tetrandra on Linsmaier-Skoog (LS) agar medium with 30 g l(-1) sucrose, 2.13 mg l(-1) indoleacetic acid and 2.25 mg l(-1) benzyl adenine produced ellagitannins found in intact plants of the Tamaricaceae. This was demonstrated by the isolation of 14 monomeric-tetrameric ellagitannins from the aq. Me2CO extract of the cultured tissues. This is the first report on the production of ellagitannin tetramers by plant tissue culture. The effects of light and certain medium constituents on tissue growth and ellagitannin production were examined. The contents of representative tannins of different types [i.e., tellimagrandin II (monomer), hirtellin A (linear GOG-type dimer), hirtellin B (hellinoyl-type dimer), hirtellin C (macrocyclic-type dimer), and hirtellin T1 (linear GOG-type trimer)] in the resultant tissues in response to these factors were estimated by HPLC, and the optimal condition for production of these tannins were established. Shoots cultured on LS hormone-free medium promoted root development, and regenerated plants could adapt to ordinary soil and climate. Acclimatized and intact T. tetrandra plants that were collected in November and May, respectively, demonstrated seasonal differences in individual ellagitannin contents. HPLC comparison of individual ellagitannin contents in different plant materials (i.e., leaves, stems, and roots) of intact T. tetrandra plants is also reported. The results are discussed with respect to cellular deposition and biosynthetic relationship of tannins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Stabilization of EphA2 dimers as a novel anti-cancer strategy

    NASA Astrophysics Data System (ADS)

    Singh, Deo; Ahmed, Fozia; Salloto, Matt; Hristova, Kalina

    We have recently shown that EphA2 receptors exist in a monomer-dimer equilibrium in the absence of ligand. The monomers promote tumorigenic activity and thus a therapeutic strategy that minimizes the monomer population may be beneficial in the clinic. The YSA peptide is an EphA2-targeting peptide that effectively delivers anticancer agents to cancer tumors. The quantitative measurements of the dimerization of EphA2 receptors in the presence of these peptides using quantitative spectral Forster resonance transfer (QS-FRET) methodology in conjunction with two-photon microscopy that has been developed recently in our lab suggests that this peptide stabilizes the EphA2 dimers. Thus, such peptides that stabilize the EphA2 dimers may be used for the treatment of some cancers that overexpress EphA2.

  20. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution.

    PubMed Central

    Chang, B S; Beauvais, R M; Arakawa, T; Narhi, L O; Dong, A; Aparisio, D I; Carpenter, J F

    1996-01-01

    The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the protein surface. PMID:8968609

  1. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi

    2014-12-29

    The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Long-lived trimers in a quasi-two-dimensional Fermi system

    NASA Astrophysics Data System (ADS)

    Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper

    2018-04-01

    We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.

  3. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri.

    PubMed

    Zhao, Deng-Gao; Zhou, Ai-Yu; Du, Zhiyun; Zhang, Yu; Zhang, Kun; Ma, Yan-Yan

    2015-12-01

    The flower of Edgeworthia gardneri is consumed in beverages in Tibet and has potential health benefits for diabetes. As a part of our continuous studies on dietary supplements for diabetes, two monomers, five dimers and one trimer of coumarins were isolated from the flowers of E. gardneri. One dimer was a new compound (1) and its structure was determined by spectroscopic methods, including multiple NMR techniques and mass spectrometry. The inhibitory activities of all coumarins against α-amylase and α-glucosidase were evaluated. Compound 4 displayed potent inhibitory effect on both α-amylase and α-glucosidase, with an IC50 of 90 and 86μg/mL, respectively. The IC50 of compound 3 against α-glucosidase was 18.7μg/mL, and its inhibition mode was noncompetitive. Based on the fluorescence analysis, the binding constant and the number of binding sites of compound 3 were calculated as 2.05×10(5) and 1.24, respectively. Furthermore, the interaction between compound 3 and α-glucosidase was a spontaneous process that was driven mainly by hydrophobic force. This study could facilitate the utilization of E gardneri as functional food ingredient. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography. PLOS« less

  5. Disruption of Chemoreceptor Signaling Arrays by High Levels of CheW, the Receptor-Kinase Coupling Protein

    PubMed Central

    Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2017-01-01

    Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303

  6. Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation.

    PubMed Central

    McPhee, F; Good, A C; Kuntz, I D; Craik, C S

    1996-01-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876160

  7. Competition between inter- and intra-molecular hydrogen bonding: An infrared spectroscopic study of jet-cooled amino-ethanol and its dimer

    NASA Astrophysics Data System (ADS)

    Asselin, Pierre; Madebène, Bruno; Soulard, Pascale; Georges, Robert; Goubet, Manuel; Huet, Thérèse R.; Pirali, Olivier; Zehnacker-Rentien, Anne

    2016-12-01

    The Fourier transform IR vibrational spectra of amino-ethanol (AE) and its dimer have been recorded at room temperature and under jet-cooled conditions over the far and mid infrared ranges (50-4000 cm-1) using the White-type cell and the supersonic jet of the Jet-AILES apparatus at the synchrotron facility SOLEIL. Assignment of the monomer experimental frequencies has been derived from anharmonic frequencies calculated at a hybrid CCSD(T)-F12/MP2 level. Various thermodynamical effects in the supersonic expansion conditions including molar dilution of AE and nature of carrier gas have been used to promote or not the formation of dimers. Four vibrational modes of the observed dimer have been unambiguously assigned using mode-specific scaling factors deduced from the ratio between experimental and computed frequencies for the monomer. The most stable g'Gg' monomer undergoes strong deformation upon dimerization, leading to a homochiral head to head dimer involving two strong hydrogen bonds.

  8. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  9. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    NASA Astrophysics Data System (ADS)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  10. Honokiol trimers and dimers via biotransformation catalyzed by Momordica charantia peroxidase: novel and potent α-glucosidase inhibitors.

    PubMed

    He, Ye; Wang, Xiao-Bing; Fan, Bo-Yi; Kong, Ling-Yi

    2014-01-15

    Ten honokiol oligomers (1-10), including four novel trimers (1-4) and four novel dimers (5-8), were obtained by means of biotransformation of honokiol catalyzed by Momordica charantia peroxidase (MCP) for the first time. Their structures were established on the basis of spectroscopic methods. The biological results demonstrated that most of the oligomers were capable of inhibiting α-glucosidase with significant abilities, which were one to two orders of magnitude more potent than the substrate, honokiol. In particular, compound 2, the honokiol trimer, displayed the greatest inhibitory activity against α-glucosidase with an IC50 value of 1.38μM. Kinetic and CD studies indicated that 2 inhibited α-glucosidase in a reversible, mixed-type manner and caused conformational changes in the secondary structure of the enzyme protein. These findings suggested that 2 might be exploited as a promising drug candidate for the treatment of diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labeled activatable probes

    NASA Astrophysics Data System (ADS)

    Morgounova, Ekaterina; Shao, Qi; Hackel, Benjamin J.; Thomas, David D.; Ashkenazi, Shai

    2013-05-01

    Activatable photoacoustic probes efficiently combine the high spatial resolution and penetration depth of ultrasound with the high optical contrast and versatility of molecular imaging agents. Our approach is based on photoacoustic probing of the excited-state lifetime of methylene blue (MB), a fluorophore widely used in clinical therapeutic and diagnostic applications. Upon aggregation, static quenching between the bound molecules dramatically shortens their lifetime by three orders of magnitude. We present preliminary results demonstrating the ability of photoacoustic imaging to probe the lifetime contrast between monomers and dimers with high sensitivity in cylindrical phantoms. Gradual dimerization enhancement, driven by the addition of increasing concentrations of sodium sulfate to a MB solution, showed that lifetime-based photoacoustic probing decreases linearly with monomer concentration. Similarly, the addition of 4 mM sodium dodecyl sulfate, a concentration that amplifies MB aggregation and reduces the monomer concentration by more than 20-fold, led to a signal decrease of more than 20 dB compared to a solution free of surfactant. These results suggest that photoacoustic imaging can be used to selectively detect the presence of monomers. We conclude by discussing the implementation of the monomer-dimer contrast mechanism for the development of an enzyme-specific activatable probe.

  12. NMR comparison of the native energy landscapes of DLC8 dimer and monomer.

    PubMed

    Krishna Mohan, P M; Barve, Maneesha; Chatterjee, Amarnath; Ghosh-Roy, Anindya; Hosur, Ramakrishna V

    2008-04-01

    Characterization of the low energy excited states on the energy landscape of a protein is one of the exciting and challenging problems in structural biology today. In this context, we present here residue level NMR description of the low energy excited states representing locally different alternative conformations in the dynein light chain protein, in its dimeric as well as monomeric forms. Important differences have been observed between the two cases and these are not necessarily restricted to the dimer interface. Simulations indicate that the low energy excited states are within a free energy of 2-3 kcal/mol above the native state. In both the monomer and the dimer the energy landscape is very sensitive to small pH perturbations. Nearly 25% of the residues (total of residues at pH 3.0 and 3.5 for the monomer, and at pH 7.0 and 6.0 for the dimer) access alternative conformations. The observations have been rationalized on the basis of protonation-deprotonation equilibria in the side chains; histidines in the case of the dimer and aspartates/glutamates in the case of the monomer. The possible relationship of the observed ruggedness of the native energy landscape with the protein structure, and its implications to protein adaptability and unfolding have been discussed.

  13. Photodissociable dimer reduction products of 2-thiopyrimidine derivatives.

    PubMed Central

    Wrona, M; Giziewicz, J; Shugar, D

    1975-01-01

    Both 4,6-dimethyl-2-thipyrimidine and its 1-methyl derivative undergo polarographic reduction in aqueous medium, via a 1e/1H+ reduction to a free radical which rapidly dimerizes to products isolates and identified as 4,4'-bis-(4,6-dimethyl-3,4-dihydropyrimidin-2-thione) and the corresponding 1-methyl dimer. The dimers may be oxidized electrolytically to regenerate the parent monomers. Both dimers also undergo photodissociation to quantitatively regenerate the parent monomers, in high quantum yield, 0.23 and 0.35 M/Einstein. The correlation between electrochemical and photochemical reductions of 2-thiopyrimidines are discussed, as well as the significance of the dimer photodissociation reactions in relation to nucleic acid photochemistry. PMID:28516

  14. Antioxidant potential of curcumin-related compounds studied by chemiluminescence kinetics, chain-breaking efficiencies, scavenging activity (ORAC) and DFT calculations

    PubMed Central

    Slavova-Kazakova, Adriana K; Angelova, Silvia E; Veprintsev, Timur L; Denev, Petko; Fabbri, Davide; Dettori, Maria Antonietta; Kratchanova, Maria; Naumov, Vladimir V; Trofimov, Aleksei V; Vasil’ev, Rostislav F

    2015-01-01

    Summary This study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C 2-symmetric dimers 6–9. Four models were applied: model 1 – chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k A) of the reactions of the antioxidants with peroxyl radicals; model 2 – lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 – oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 – density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure–activity relationship. Dimers showed 2–2.5-fold higher values of k A than their monomers. Model 2 gives information about the effects of the side chains and revealed much higher antioxidant activity for monomers and dimers with α,β-unsaturated side chains. Curcumin and 6 in fact are dimers of the same monomer 2. We conclude that the type of linkage between the two “halves” by which the molecule is made up does not exert influence on the antioxidant efficiency and reactivity of these two dimers. The dimers and the monomers demonstrated higher activity than Trolox (10) in aqueous medium (model 3). A comparison of the studied compounds with DL-α-tocopherol (11), Trolox and curcumin is made. All dimers are characterized through lower bond dissociation enthalpies (BDEs) than their monomers (model 4), which qualitatively supports the experimental results. PMID:26425195

  15. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  16. Turnerbactin, a Novel Triscatecholate Siderophore from the Shipworm Endosymbiont Teredinibacter turnerae T7901

    PubMed Central

    Han, Andrew W.; Sandy, Moriah; Fishman, Brian; Trindade-Silva, Amaro E.; Soares, Carlos A. G.; Distel, Daniel L.; Butler, Alison; Haygood, Margo G.

    2013-01-01

    Shipworms are marine bivalve mollusks (Family Teredinidae) that use wood for shelter and food. They harbor a group of closely related, yet phylogenetically distinct, bacterial endosymbionts in bacteriocytes located in the gills. This endosymbiotic community is believed to support the host's nutrition in multiple ways, through the production of cellulolytic enzymes and the fixation of nitrogen. The genome of the shipworm endosymbiont Teredinibacter turnerae T7901 was recently sequenced and in addition to the potential for cellulolytic enzymes and diazotrophy, the genome also revealed a rich potential for secondary metabolites. With nine distinct biosynthetic gene clusters, nearly 7% of the genome is dedicated to secondary metabolites. Bioinformatic analyses predict that one of the gene clusters is responsible for the production of a catecholate siderophore. Here we describe this gene cluster in detail and present the siderophore product from this cluster. Genes similar to the entCEBA genes of enterobactin biosynthesis involved in the production and activation of dihydroxybenzoic acid (DHB) are present in this cluster, as well as a two-module non-ribosomal peptide synthetase (NRPS). A novel triscatecholate siderophore, turnerbactin, was isolated from the supernatant of iron-limited T. turnerae T7901 cultures. Turnerbactin is a trimer of N-(2,3-DHB)-L-Orn-L-Ser with the three monomeric units linked by Ser ester linkages. A monomer, dimer, dehydrated dimer, and dehydrated trimer of 2,3-DHB-L-Orn-L-Ser were also found in the supernatant. A link between the gene cluster and siderophore product was made by constructing a NRPS mutant, TtAH03. Siderophores could not be detected in cultures of TtAH03 by HPLC analysis and Fe-binding activity of culture supernatant was significantly reduced. Regulation of the pathway by iron is supported by identification of putative Fur box sequences and observation of increased Fe-binding activity under iron restriction. Evidence of a turnerbactin fragment was found in shipworm extracts, suggesting the production of turnerbactin in the symbiosis. PMID:24146831

  17. Phase ordering dynamics of reconstituting particles

    NASA Astrophysics Data System (ADS)

    Albarracín, F. A. Gómez; Rosales, H. D.; Grynberg, M. D.

    2017-06-01

    We consider the large-time dynamics of one-dimensional processes involving adsorption and desorption of extended hard-core particles (dimers, trimers, ..., k -mers), while interacting through their constituent monomers. Desorption can occur whether or not these latter adsorbed together, which leads to reconstitution of k -mers and the appearance of sectors of motion with nonlocal conservation laws for k ≥3 . Dynamic exponents of the sector including the empty chain are evaluated by finite-size scaling analyses of the relaxation times embodied in the spectral gaps of evolution operators. For attractive interactions it is found that in the low-temperature limit such time scales converge to those of the Glauber dynamics, thus suggesting a diffusive universality class for k ≥2 . This is also tested by simulated quenches down to T =0 , where a common scaling function emerges. By contrast, under repulsive interactions the low-temperature dynamics is characterized by metastable states which decay subdiffusively to a highly degenerate and partially jammed phase.

  18. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review

    PubMed Central

    Zhang, Hongxia

    2017-01-01

    Grapes are one of the most widely grown fruits and have been used for winemaking since the ancient Greek and Roman civilizations. Grape seeds are rich in proanthocyanidins which have been shown to possess potent free radical scavenging activity. Grape seeds are a complex matrix containing 40% fiber, 16% oil, 11% proteins, and 7% complex phenols such as tannins. Grape seeds are rich sources of flavonoids and contain monomers, dimers, trimers, oligomers, and polymers. The monomeric compounds includes (+)-catechins, (−)-epicatechin, and (−)-epicatechin-3-O-gallate. Studies have reported that grape seeds exhibit a broad spectrum of pharmacological properties against oxidative stress. Their potential health benefits include protection against oxidative damage, and anti-diabetic, anti-cholesterol, and anti-platelet functions. Recognition of such health benefits of proanthocyanidins has led to the use of grape seeds as a dietary supplement by the consumers. This paper summarizes the studies of the phytochemical compounds, pharmacological properties, and industrial applications of grape seeds. PMID:28914789

  19. Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon-Ho; Erdene, Norov; Lee, Seung-Ki; Jeong, Dae-Hong; Park, Jae-Hyoung

    2011-12-01

    A fiber-optic localized surface plasmon (FO LSPR) sensor was fabricated by gold nanoparticles (Au NPs) immobilized on the end-face of an optical fiber. When Au NPs were formed on the end-face of an optical fiber by chemical reaction, Au NPs aggregation occurred and the Au NPs were immobilized in various forms such as monomers, dimers, trimers, etc. The component ratio of the Au NPs on the end-face of the fabricated FO LSPR sensor was slightly changed whenever the sensors were fabricated in the same condition. Including this phenomenon, the FO LSPR sensor was fabricated with high sensitivity by controlling the density of Au NPs. Also, the fabricated sensors were measured for the resonance intensity for the different optical systems and analyzed for the effect on sensitivity. Finally, for application as a biosensor, the sensor was used for detecting the antibody-antigen reaction of interferon-gamma.

  20. A Hamiltonian replica exchange method for building protein-protein interfaces applied to a leucine zipper

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2011-01-01

    Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] Hamiltonian temperature replica exchange method (HTREM), which scales the Hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the Hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer does not with HTREM_MS, giving confidence in the method. The interface formation time scale is sufficiently short that using HTREM_MS as a screening tool to validate leucine zipper design methods may be feasible.

  1. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers

    DOE PAGES

    Olek, Anna T.; Rayon, Catherine; Makowski, Lee; ...

    2014-07-10

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice ( Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain,more » elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less

  2. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.

    PubMed

    Olek, Anna T; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; Himmel, Michael E; Bolin, Jeffrey T; Carpita, Nicholas C

    2014-07-01

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. © 2014 American Society of Plant Biologists. All rights reserved.

  3. 1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy

    NASA Astrophysics Data System (ADS)

    Pernici, Mario

    2017-08-01

    Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2 n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2 n vertices and the average extensive entropy of r-regular graphs with 2 n vertices, in the limit n → ∞. We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density p < 1 and, for G bipartite, it diverges as |ln(1-p)| for p → 1. In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.

  4. Changes in Quaternary Structure in the Signaling Mechanisms of PAS Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Rebecca A.; Moffat, Keith

    2008-12-15

    FixL from Bradyrhizobium japonicum is a PAS sensor protein in which two PAS domains covalently linked to a histidine kinase domain are responsible for regulating nitrogen fixation in an oxygen-dependent manner. The more C-terminal PAS domain, denoted bjFixLH, contains a heme cofactor that binds diatomic molecules such as carbon monoxide and oxygen and regulates the activity of the FixL histidine kinase as part of a two-component signaling system. We present the structures of ferric, deoxy, and carbon monoxide-bound bjFixLH in a new space group (P1) and at resolutions (1.5--1.8 {angstrom}) higher than the resolutions of those previously obtained. Interestingly, bjFixLHmore » can form two different dimers (in P1 and R32 crystal forms) in the same crystallization solution, where the monomers in one dimer are rotated {approx}175 deg. relative to the second. This suggests that PAS monomers are plastic and that two quite distinct quaternary structures are closely similar in free energy. We use screw rotation analysis to carry out a quantitative pairwise comparison of PAS quaternary structures, which identifies five different relative orientations adopted by isolated PAS monomers. We conclude that PAS monomer arrangement is context-dependent and could differ depending on whether the PAS domains are isolated or are part of a full-length protein. Structurally homologous residues comprise a conserved dimer interface. Using network analysis, we find that the architecture of the PAS dimer interface is continuous rather than modular; the network of residues comprising the interface is strongly connected. A continuous dimer interface is consistent with the low dimer-monomer dissociation equilibrium constant. Finally, we quantitate quaternary structural changes induced by carbon monoxide binding to a bjFixLH dimer, in which monomers rotate by up to 2 deg. relative to each other. We relate these changes to those in other dimeric PAS domains and discuss the role of quaternary structural changes in the signaling mechanisms of PAS sensor proteins.« less

  5. A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp

    DOE PAGES

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; ...

    2016-05-03

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  6. Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*

    PubMed Central

    Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh

    2013-01-01

    Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643

  7. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation

    PubMed Central

    Ringe, Rajesh P.; Sanders, Rogier W.; Yasmeen, Anila; Kim, Helen J.; Lee, Jeong Hyun; Cupo, Albert; Korzun, Jacob; Derking, Ronald; van Montfort, Thijs; Julien, Jean-Philippe; Wilson, Ian A.; Klasse, Per Johan; Ward, Andrew B.; Moore, John P.

    2013-01-01

    We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120–gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120–gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated. PMID:24145402

  8. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less

  9. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.

    PubMed

    Yang, Teng-Chieh; Langford, Alex Jacob; Kumar, Sandeep; Ruesch, John Carl; Wang, Wei

    2016-08-01

    Opalescence, sometimes observed in antibody solutions, is thought to be mediated by light scattering of soluble oligomers or insoluble particulates. However, mechanistic features, such as stoichiometry and self-association affinity of oligomeric species related to opalescence, are poorly understood. Here, opalescence behavior of a monoclonal antibody (mAb-1) solution was studied over a wide range of solution conditions including different protein concentrations, pH, and in the presence or absence of salt. Hydrodynamic and thermodynamic properties of mAb-1 solutions were studied by analytical ultracentrifugation and dynamic light scattering. Opalescence in mAb-1 solutions is pH and concentration dependent. The degree of opalescence correlates with reversible monomer-trimer equilibrium detected by analytical ultracentrifugation. Increased trimer formation corresponds to increased opalescence in mAb-1 solutions at higher pH and protein concentrations. Addition of NaCl shifts this equilibrium toward monomer and reduces solution opalescence. This study demonstrates that opalescence in mAb-1 solutions does not arise from the light scattering of monomer or random molecular self-associations but is strongly correlated with a specific self-association stoichiometry and affinity. Importantly, at pH 5.5 (far below isoelectric point of mAb-1), the solution is not opalescent and with nonideal behavior. This study also dissects several parameters to describe the hydrodynamic and thermodynamic nonideality. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru

    2016-08-07

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

  11. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn; Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polarmore » 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.« less

  12. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls

    NASA Astrophysics Data System (ADS)

    Ho, Steven Sai Hang; Ho, K. F.; Liu, W. D.; Lee, S. C.; Dai, W. T.; Cao, J. J.; Ip, H. S. S.

    2011-01-01

    Measurements of aldehydes and ketones are typically conducted by derivatization using sorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH). The collected samples are eluted with acetonitrile and analyzed by high-pressure liquid chromatography coupled with an ultra-violet detector (HPLC/UV). This paper intends to examine artifacts about its suitability in identification of unsaturated carbonyls. Kinetic tests for acrolein, crotonaldehyde, methacrolein and methyl vinyl ketone (MVK) showed formations of carbonyl-DNP-hydrazone during sampling, which could further react with DNPH, resulting in undesired UV absorption products [e.g., carbonyl-DNP-hydrazone-DNPH (dimer) and 2(carbonyl-DNP-hydrazone)-DNPH (trimer)]. The dimerization and trimerization occurred for acrolein and MVK whereas only dimerization for crotonaldehyde and methacrolein. The polymerization products undoubtedly affect the integrity of the chromatogram, leading to misidentification and inaccurate quantification. Whether precautions taken during sampling and/or sample treatment could avoid or minimize this artifact has not been thoughtfully investigated. More often, such artifacts are usually overlooked by scientists when the data are reported.

  13. Synthesis and Molecular Structure of a Novel Compound Containing a Carbonate-Bridged Hexacalcium Cluster Cation Assembled on a Trimeric Trititanium(IV)-Substituted Wells-Dawson Polyoxometalate.

    PubMed

    Hoshino, Takahiro; Isobe, Rina; Kaneko, Takuya; Matsuki, Yusuke; Nomiya, Kenji

    2017-08-21

    A novel compound containing a hexacalcium cluster cation, one carbonate anion, and one calcium cation assembled on a trimeric trititanium(IV)-substituted Wells-Dawson polyoxometalate (POM), [{Ca 6 (CO 3 )(μ 3 -OH)(OH 2 ) 18 }(P 2 W 15 Ti 3 O 61 ) 3 Ca(OH 2 ) 3 ] 19- (Ca 7 Ti 9 Trimer), was obtained as the Na 7 Ca 6 salt (NaCa-Ca 7 Ti 9 Trimer) by the reaction of calcium chloride with the monomeric trititanium(IV)-substituted Wells-Dawson POM species "[P 2 W 15 Ti 3 O 59 (OH) 3 ] 9- " (Ti 3 Monomer). Ti 3 Monomer was generated in situ under basic conditions from the separately prepared tetrameric species with bridging Ti(OH 2 ) 3 groups and an encapsulated Cl - ion, [{P 2 W 15 Ti 3 O 59 (OH) 3 } 4 {μ 3 -Ti(H 2 O) 3 } 4 Cl] 21- (Ti 16 Tetramer). The Na 7 Ca 6 salt of Ca 7 Ti 9 Trimer was characterized by complete elemental analysis, thermogravimetric (TG) and differential thermal analyses (DTA), FTIR, single-crystal X-ray structure analysis, and solution 183 W and 31 P NMR spectroscopy. X-ray crystallography revealed that the [Ca 6 (CO 3 )(μ 3 -OH)(OH 2 ) 18 ] 9+ cluster cation was composed of six calcium cations linked by one μ 6 -carbonato anion and one μ 3 -OH - anion. The cluster cation was assembled, together with one calcium ion, on a trimeric species composed of three tri-Ti(IV)-substituted Wells-Dawson subunits linked by Ti-O-Ti bonds. Ca 7 Ti 9 Trimer is an unprecedented POM species containing an alkaline-earth-metal cluster cation and is the first example of alkaline-earth-metal ions clustered around a titanium(IV)-substituted POM.

  14. Bichromatic random laser from a powder of rhodamine-doped sub-micrometer silica particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa-Silva, Renato; Silva, Andrea F.; Brito-Silva, Antonio M.

    2014-01-28

    We studied the random laser (RL) bichromatic emission (BCE) from a powder consisting of silica particles infiltrated with Rhodamine 640 (Rh640) molecules. The BCE is attributed to Rh640 monomers and dimers. Because of the efficient monomer-dimer energy transfer, we observed RL wavelength switching from ≈ 620 nm to ≈650 nm and the control of the emitted wavelength was made by changing only the excitation laser intensity. None of external parameters such as excitation laser spot size or radiation detector position was changed as in previous experiments. Two laser thresholds associated either to monomers or dimers were clearly observed. Moreover, an effect analogmore » to frequency-pulling among two coupled oscillators was identified measuring the RL spectra as a function of the excitation laser intensity. A wavelength shift, Δλ, was measured between the monomer and dimer resonance wavelengths, changing only the excitation laser intensity. The maximum value of Δλ ≈ 16 cm{sup −1} was obtained for laser pulses of 7 ns with 30 μJ.« less

  15. Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.

    PubMed

    Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N

    2011-12-06

    A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society

  16. Topology-driven phase transitions in the classical monomer-dimer-loop model.

    PubMed

    Li, Sazi; Li, Wei; Chen, Ziyu

    2015-06-01

    In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice, whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing (nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and can serve as the order parameter for detecting the phase transitions.

  17. GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers?

    PubMed

    Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Pérez-Capote, Kamil; Ferré, Sergi; Lluis, Carmen; Franco, Rafael; Canela, Enric I

    2009-11-01

    G protein-coupled receptors (GPCR) are targeted by many therapeutic drugs marketed to fight against a variety of diseases. Selection of novel lead compounds are based on pharmacological parameters obtained assuming that GPCR are monomers. However, many GPCR are expressed as dimers/oligomers. Therefore, drug development may consider GPCR as homo- and hetero-oligomers. A two-state dimer receptor model is now available to understand GPCR operation and to interpret data obtained from drugs interacting with dimers, and even from mixtures of monomers and dimers. Heteromers are distinct entities and therefore a given drug is expected to have different affinities and different efficacies depending on the heteromer. All these concepts would lead to broaden the therapeutic potential of drugs targeting GPCRs, including receptor heteromer-selective drugs with a lower incidence of side effects, or to identify novel pharmacological profiles using cell models expressing receptor heteromers.

  18. Human monoclonal antibody homodimers. Effect of valency on in vitro and in vivo antibacterial activity.

    PubMed

    Wolff, E A; Esselstyn, J; Maloney, G; Raff, H V

    1992-04-15

    Human IgG1 mAb dimers specific for either group B streptococci or Escherichia coli K1 bacteria were formed using chemical cross-linkers. The effect of antibody valency on biologic efficacy was investigated by comparing the IgG dimers against the corresponding IgG monomers. Binding activity and relative avidity were assessed using Ag binding and competition ELISA, and functional activity was analyzed using opsonophagocytic assays. These in vitro assays revealed that the dimers were greater than or equal to 50-fold more active than the monomers. A neonatal rat infection model showed the in vivo protective efficacy of the dimers was greater than or equal to 20-fold greater than that of the monomers. Enhancing the activity of mAb by chemical cross-linking may be a useful strategy for salvaging low affinity IgG mAb that possess poor functional properties.

  19. Each Monomer of the Dimeric Accessory Protein for Human Mitochondrial DNA Polymerase Has a Distinct Role in Conferring Processivity*

    PubMed Central

    Lee, Young-Sam; Lee, Sujin; Demeler, Borries; Molineux, Ian J.; Johnson, Kenneth A.; Yin, Y. Whitney

    2010-01-01

    The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase. PMID:19858216

  20. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    PubMed Central

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  1. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  2. Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3

    NASA Astrophysics Data System (ADS)

    Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.

    2015-06-01

    We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.

  3. A multimode vibronic treatment of absorption, resonance Raman, and hyper-Rayleigh scattering of excitonically coupled molecular dimers

    NASA Astrophysics Data System (ADS)

    Myers Kelley, Anne

    2003-08-01

    The linear absorption spectra, resonance Raman excitation profiles and depolarization dispersion curves, and hyper-Rayleigh scattering profiles are calculated for excitonically coupled homodimers of a model electron donor-acceptor "push-pull" conjugated chromophore as a function of dimer geometry. The vibronic eigenstates of the dimer are calculated by diagonalizing the matrix of transition dipole couplings among the vibronic transitions of the constituent monomers. The absorption spectra show the usual red- or blueshifted transitions for J-type or H-type dimers, respectively. When the electronic coupling is large compared with the vibronic width of the monomer spectrum, the dimer absorption spectra exhibit simple Franck-Condon progressions having reduced vibronic intensities compared with the monomer, and the resonance Raman excitation profiles are shifted but otherwise only weakly perturbed. When the coupling is comparable to the vibronic width, the H-dimer absorption spectra exhibit irregular vibronic frequency spacings and intensity patterns and the effects on the Raman excitation profiles are larger. There is strong dispersion in the Raman depolarization ratios for dimer geometries in which both transitions carry oscillator strength. The first hyperpolarizabilities are somewhat enhanced in J-dimers and considerably reduced in H-dimers. These effects on the molecular β will amplify the effects of dimerization on the ground-state dipole moment in electro-optic materials formed from chromophore-doped polymers that must be electric field poled to obtain the net alignment needed for a macroscopic χ(2).

  4. A Link between Dimerization and Autophosphorylation of the Response Regulator PhoB*

    PubMed Central

    Creager-Allen, Rachel L.; Silversmith, Ruth E.; Bourret, Robert B.

    2013-01-01

    Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3−. Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ∼10-fold higher than for the monomer. In a test of the model, disruption of the known PhoBN dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation. PMID:23760278

  5. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. © 2016 Wiley Periodicals, Inc.

  6. Atom loss resonances in a Bose-Einstein condensate.

    PubMed

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2013-07-12

    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  7. Biophysical Characterization of the Dimer and Tetramer Interface Interactions of the Human Cytosolic Malic Enzyme

    PubMed Central

    Murugan, Sujithkumar; Hung, Hui-Chih

    2012-01-01

    The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers. PMID:23284632

  8. Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths.

    PubMed

    Mohapatra, Swagat K; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared H; Timofeeva, Tatiana V; Brédas, Jean-Luc; Marder, Seth R; Barlow, Stephen

    2014-11-17

    The dimers of some Group 8 metal cyclopentadienyl/arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the X-ray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central CC σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these CC bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2 ]2 , rather similar (-1.97 to -2.15 V vs. FeCp2 (+/0) in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dehaloperoxidase-Hemoglobin from Amphitrite ornata Is Primarily a Monomer in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Thompson; S Franzen; M Davis

    2011-12-31

    The crystal structures of the dehaloperoxidase-hemoglobin from A. ornata (DHP A) each report a crystallographic dimer in the unit cell. Yet, the largest dimer interface observed is 450 {angstrom}{sup 2}, an area significantly smaller than the typical value of 1200-2000 {angstrom}{sup 2} and in contrast to the extensive interface region of other known dimeric hemoglobins. To examine the oligomerization state of DHP A in solution, we used gel permeation by fast protein liquid chromatography and small-angle X-ray scattering (SAXS). Gel permeation experiments demonstrate that DHP A elutes as a monomer (15.5 kDa) and can be separated from green fluorescent protein,more » which has a molar mass of 27 kDa, near the 31 kDa expected for the DHP A dimer. By SAXS, we found that DHP A is primarily monomeric in solution, but with a detectable level of dimer (10%), under all conditions studied up to a protein concentration of 3.0 mM. These concentrations are likely 10-100-fold lower than the K{sub d} for dimer formation. Additionally, there was no significant effect either on the overall conformation of DHP A or its monomer-dimer equilibrium upon addition of the DHP A inhibitor, 4-iodophenol.« less

  10. Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions

    NASA Astrophysics Data System (ADS)

    Chibisov, Alexander K.; Görner, Helmut

    2002-05-01

    The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).

  11. An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1.

    PubMed

    Andera, L; Schneider, G J; Geiduschek, E P

    1994-01-01

    TF1 is the Bacillus subtilis bacteriophage-encoded dimeric type II DNA-binding protein. This relative of the eubacterial HU proteins and of the Escherichia coli integration host factor binds preferentially to 5-(hydroxymethyluracil)-containing DNA. We have examined the dynamics of exchange of monomer subunits between molecules of dimeric TF1. The analysis takes advantage of the fact that replacement of phenylalanine with arginine at amino acid 61 in the beta-loop 'arm' of TF1 alters DNA-bending and -binding properties, generating DNA complexes with distinctively different mobilities in gel electrophoresis. New species of DNA-protein complexes were formed by mixtures of wild type and mutant TF1, reflecting the formation of heterodimeric TF1, and making the dynamics of monomer exchange between TF1 dimers accessible to a simple gel retardation analysis. Exchange was rapid at high protein concentrations, even at 0 degrees C, and is proposed to be capable of proceeding through an interaction of molecules of TF1 dimer rather than exclusively through dissociation into monomer subunits. Evidence suggesting that DNA-bound TF1 dimers do not exchange subunits readily is also presented.

  12. Relative stabilities and the spectral signatures of stacked and hydrogen-bonded dimers of serotonin

    NASA Astrophysics Data System (ADS)

    Dev, S.; Giri, K.; Majumder, M.; Sathyamurthy, N.

    2015-10-01

    The O-HṡṡṡN hydrogen-bonded dimer of serotonin is shown to be more stable than the stacked dimer in its ground electronic state, by using the Møller-Plesset second-order perturbation theory (MP2) and the 6-31g** basis set. The vertical excitation energy for the lowest π → π* transition for the monomer as well as the dimer is predicted by time-dependent density functional theory. The experimentally observed red shift of excitation wavelength on oligomerisation is explained in terms of the change in the HOMO-LUMO energy gap due to complex formation. The impact of dimer formation on the proton magnetic resonance spectrum of serotonin monomer is also examined.

  13. NUCLEAR-MAGNETIC-RESONANCE STUDIES OF HYDROGEN BONDING (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.C. Jr.

    1959-10-26

    The nuclear-magnetic-resonance spectra of hydrogen bonding systems in noninteracting solvents were studied at several concentrations at 20 to 100 deg C. Chemical shifts mic, acetic, and benzoic acids in benzene. The shifts characteristic of the monomer and dimer species were calculated. Shieldings of the monomer species were calculated to be of the same order as those of alcohol monomers. The dimer shieldings were found to be in the range of 300 to 400 cps below the benzene reference. The dimer shieldings increase with the strength of the hydrogen bond. Chemical shifts were also measured for methanol, etanol, isopropanol, and tertiarymore » butanol in carbon tetrschloride and for ethanol in benzene. The enthalpies of dimerization were estimated from the change in the limiting slopes of shift vs. concentration curves with temperature and found to be --9.3 plus or minus 2.5, --7.4 plus or minus 2.0, --6.5 plus or minus 1.5, --5.4 plus or minus 1.8, and--5.6 plu11.6 kcal per mole of dimer, respectively. At 22 deg C, the dimerization constant for ethanol in carbon tetrachloride is 11.0 for a cyclic dimer and twice this for a linear dimer. Probable higher polymers were estimated for the ethanol system, and the experimental data were fitted by adjusting polymer shieldings and equilibrium constants. (auth)« less

  14. The Role of Water in the Stability of Wild Type and Mutant Insulin Dimers.

    PubMed

    Raghunathan, Shampa; El Hage, Krystel; Desmond, Jasmine; Zhang, Lixian; Meuwly, Markus

    2018-06-19

    Insulin dimerization and aggregation play important roles in the endogenous delivery of the hormone. One of the important residues at the insulin dimer interface is Phe B24 which is an invariant aromatic anchor that packs towards its own monomer inside a hydrophobic cavity formed by Val B12 , Leu B15 , Tyr B16 , Cys B19 and Tyr B26 . Using molecular dynamics and free energy simulations in explicit solvent, the structural and dynamical consequences of mutations of Phe at position B24 to Gly, Ala, and d-Ala and the des-PheB25 variant are quantified. Consistent with experiments it is found that the Gly and Ala modifications lead to insulin dimers with reduced stability by 4 and 5 kcal/mol from thermodynamic integration and 4 and 8 kcal/mol from results using MM-GBSA, respectively. Given the experimental difficulties to quantify the thermodynamic stability of modified insulin dimers, such computations provide a valuable complement. Interestingly, the Gly-mutant exists as a strongly and a weakly interacting dimer. Analysis of the molecular dynamics simulations shows that this can be explained by water molecules that replace direct monomer-monomer H-bonding contacts at the dimerization interface involving residues B24 to B26. It is concluded that such solvent molecules play an essential role and must be included in future insulin dimerization studies.

  15. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  16. Crystallographic analysis of CD40 recognition and signaling by human TRAF2

    PubMed Central

    McWhirter, Sarah M.; Pullen, Steven S.; Holton, James M.; Crute, James J.; Kehry, Marilyn R.; Alber, Tom

    1999-01-01

    Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-Å crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique β-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer. PMID:10411888

  17. Phytochemicals in fruits of Hawaiian wild cranberry relatives.

    PubMed

    Hummer, Kim; Durst, Robert; Zee, Francis; Atnip, Allison; Giusti, M Monica

    2014-06-01

    Cranberries (Vaccinium macrocarpon Ait.) contain high levels of phytochemicals such as proanthocyanidins (PACs). These polymeric condensations of flavan-3-ol monomers are associated with health benefits. Our objective was to evaluate phytochemicals in fruit from Hawaiian cranberry relatives, V. reticulatum Sm. and V. calycinum Sm. Normal-phase HPLC coupled with fluorescence and ESI-MS detected PACs; the colorimetric 4-dimethylaminocinnamaldehyde (DMAC) assay was used to determine total PACs. Spectrophotometric tests and reverse-phase HPLC coupled to photodiode array and refractive index detectors evaluated phenolics, sugars, and organic acids. Antioxidant capacity was determined by the ORAC and FRAP assays. Antioxidant capacities of Hawaiian berries were high. The FRAP measurement for V. calycinum was 454.7 ± 90.2 µmol L(-1) Trolox equivalents kg(-1) for pressed fruit. Hawaiian berries had lower peonidin, quinic and citric acids amounts and invert (∼1) glucose/fructose ratio compared with cranberry. Both Hawaiian Vaccinium species were good sources of PACs; they contained phenolics and PAC monomers, A and B-type trimers, tetramers and larger polymers. Vaccinium reticulatum and V. calycinum showed comparable or higher PAC levels than in cranberry. Cranberries had higher percentage of A-type dimers than did V. reticulatum. A and B-type dimers were not differentiated in V. calycinum. The total PACs (as measured by DMAC) for V. calycinum (24.3 ± 0.10 mg catechin equivalents kg(-1) ) were about twice that in cranberry. Berries of V. reticulatum and V. calycinum could serve as a rich dietary source of PACs, comparable to or greater than cranberries. These finding suggest that Hawaiian Vaccinium berries could be a functional food. Additional examination of the phytochemicals in other wild Vaccinium species is warranted. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  19. Advantages of a validated UPLC-MS/MS standard addition method for the quantification of A-type dimeric and trimeric proanthocyanidins in cranberry extracts in comparison with well-known quantification methods.

    PubMed

    van Dooren, Ines; Foubert, Kenn; Theunis, Mart; Naessens, Tania; Pieters, Luc; Apers, Sandra

    2018-01-30

    The berries of Vaccinium macrocarpon, cranberry, are widely used for the prevention of urinary tract infections. This species contains A-type proanthocyanidins (PACs), which intervene in the initial phase of the development of urinary tract infections by preventing the adherence of Escherichia coli by their P-type fimbriae to uroepithelial cells. Unfortunately, the existing clinical studies used different cranberry preparations, which were poorly standardized. Because of this, the results were hard to compare, which led sometimes to conflicting results. Currently, PACs are quantified using the rather non-specific spectrophotometric 4-dimethylaminocinnamaldehyde (DMAC) method. In addition, a normal phase HPTLC-densitometric method, a HPLC-UV method and three LC-MS/MS methods for quantification of procyanidin A2 were recently published. All these methods contain some shortcomings and errors. Hence, the development and validation of a fast and sensitive standard addition LC-MS/MS method for the simultaneous quantification of A-type dimers and trimers in a cranberry dry extract was carried out. A linear calibration model could be adopted for dimers and, after logaritmic transformation, for trimers. The maximal interday and interconcentration precision was found to be 4.86% and 4.28% for procyanidin A2, and 5.61% and 7.65% for trimeric PACs, which are all acceptable values for an analytical method using LC-MS/MS. In addition, twelve different cranberry extracts were analyzed by means of the newly validated method and other widely used methods. There appeared to be an enormous variation in dimeric and trimeric PAC content. Comparison of these results with LC-MS/MS analysis without standard addition showed the presence of matrix effects for some of the extracts and proved the necessity of standard addition. A comparison of the well-known and widely used DMAC method, the butanol-HCl assay and this newly developed LC-MS/MS method clearly indicated the need for a reliable method able to quantify A-type PACs, which are considered to be the pharmacologically active constituents of cranberry, since neither the DMAC or butanol-HCl assays are capable of distinguishing between A and B-type PACs and therefore cannot detect adulterations with, for example, extracts with a high B-type PAC content. Hence, the combination of the DMAC method or butanol-HCl assay with this more specific LC-MS/MS assay could overcome these shortcomings. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Lignin dimers: Structures, distribution, and potential geochemical applications

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1992-11-01

    An extensive suite of thirty lignin-derived phenolic dimers and fourteen additional monomers has been identified among the CuO reaction products of twenty-four different vascular plant tissues. The various lignin dimers are characterized by five different types of linkages between phenolic units, including direct 5,5'-ring-ring bonding, as well as β,1-diketone, α,1-monoketone, α,5-monoketone, and α,2-methyl sidechain-ring couplings. The new lignin-derived monomeric CuO reaction products include vanillyl and syringyl glyoxalic acids and vanillyl phenols with formyl and carboxyl functional groups attached at various ring positions. The distribution of all these novel compounds in twenty-four different vascular plant tissues indicates important differences in the structure and chemical composition of the lignin macromolecule among these sources. The abundances of these compounds in a selected set of sedimentary samples suggest that the lignin dimers and novel lignin monomers can characterize the ultrastructure, sources, and diagenetic state of sedimentary lignin in ways not possible from the routinely utilized lignin monomers alone.

  1. Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat

    2017-06-01

    The optical absorption and steady-state fluorescence spectra of 4-heptyloxybenzoic acid (4hoba), 4-octyloxybenzoic acid (4ooba) and 4-nonyloxybenzoic acid (4noba) liquid crystals have been measured in a series of different polarity organic solvents. The ground state (μg) and excited state (μe) dipole moments of the monomeric and dimeric 4-alkyloxybenzoic acid liquid crystals have been obtained by means of different solvatochromic shift methods. HOMO-LUMO gaps (HLG) and dipole moments have been tuned by applying external electric (EF) field on monomer, dimer and Au substituted monomer and dimer liquid crystal structures. By applying external electric field, Au substituted monomer liquid crystals display semiconductor character, while Au substituted dimer liquid crystals gain metallic character under E = 0.04 V/Å. Eventuated specific and non-specific interactions between solvent and solute in solvent medium have been expounded by using LSER (Linear Solvation Energy Relationships).

  2. Reversible dimer formation and stability of the anti-tumour single-chain Fv antibody MFE-23 by neutron scattering, analytical ultracentrifugation, and NMR and FT-IR spectroscopy.

    PubMed

    Lee, Yie Chia; Boehm, Mark K; Chester, Kerry A; Begent, Richard H J; Perkins, Stephen J

    2002-06-28

    MFE-23 is a single chain Fv (scFv) antibody molecule used to target colorectal cancer through its high affinity for the tumour marker carcinoembryonic antigen (CEA). ScFv molecules are formed from peptide-linked antibody V(H) and V(L) domains, and many of these form dimers. Our recent crystal structure for MFE-23 showed that this formed an unusual symmetric back-to-back association of two monomers that is consistent with a domain-swapped diabody structure. Neutron scattering and modelling fits showed that MFE-23 existed as compact V(H)-V(L)-linked monomers at therapeutically relevant concentrations below 1 mg/ml. Size-exclusion gel chromatography showed that the monomeric and dimeric forms of MFE-23 could be separated, and that the proportions of these two forms depended on the starting MFE-23 concentration. Sedimentation equilibrium experiments by analytical ultracentrifugation at nine concentrations of MFE-23 indicated a reversible monomer-dimer self-association equilibrium with an association constant of 1.9x10(3)-2.2x10(3) M(-1). Sedimentation velocity experiments using the time derivative g(s(*)) method showed that MFE-23-His has a concentration-dependent weight average sedimentation coefficient that increased from 1.8 S for the monomer to about 3-6 S for the dimer. Both values agreed with those calculated from the MFE-23 crystal structure. In relation to the thermal stability of MFE-23, denaturation experiments by (1)H NMR and FT-IR spectroscopy showed that the molecule is stable up to 47 degrees C, after which denaturation was irreversible. MFE-23 dimerisation is discussed in terms of a new model for diabody structures, in which the V(H) and V(L) domains in the monomer are able to dissociate and reassociate to form a dimer, or diabody, but in which symmetric back-to-back contacts between the two monomers are formed. This dimerisation in solution is attributed to the complementary nature of the C-terminal surface of the MFE-23 monomer. Crystal structures for seven other scFv molecules have shown that, while the contact residues for symmetric back-to-back dimer formation in MFE-23 are not fully conserved, in principle, back-to-back contacts can be formed in these too. This offers possibilities for the creation of other forms of scFv molecules. (c) 2002 Elsevier Science Ltd.

  3. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  4. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography. PLOS« less

  5. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R

    2009-04-02

    In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).

  6. Coherent stimulated light emission (lasing) in covalently linked chlorophyll dimers

    PubMed Central

    Hindman, James C.; Kugel, Roger; Wasielewski, Michael R.; Katz, Joseph J.

    1978-01-01

    The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules. Images PMID:16592524

  7. An Alternative Mechanism for the Dimerization of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Nicole R.; Tschumper, Gregory; Yan, Ge

    Gas-phase formic acid exists primarily as a cyclic dimer. The mechanism of dimerization has been traditionally considered to be a synchronous process; however, recent experimental findings suggest a possible alternative mechanism by which two formic acid monomers proceed through an acyclic dimer to the cyclic dimer in a stepwise process. To investigate this newly proposed process of dimerization in formic acid, density functional theory and second-order Moeller-Plesset perturbation theory (MP2) have been used to optimize cis and trans monomers of formic acid, the acyclic and cyclic dimers, and the acyclic and cyclic transition states between minima. Single-point energies of themore » trans monomer, dimer minima, and transition states at the MP2/TZ2P+diff optimized geometries were computed at the coupled-cluster level of theory including singles and doubles with perturbatively applied triple excitations [CCSD(T)] with an aug-cc-pVTZ basis set to obtain an accurate determination of energy barriers and dissociation energies. A counterpoise correction was performed to determine an estimate of the basis set superposition error in computing relative energies. The explicitly correlated MP2 method of Kutzelnigg and Klopper (MP2-R12) was used to provide an independent means for obtaining the MP2 one-particle limit. The cyclic minimum is predicted to be 6.3 kcal/mol more stable than the acyclic minimum, and the barrier to double proton transfer is 7.1 kcal/mol.« less

  8. Microtubules as mechanical force sensors.

    PubMed

    Karafyllidis, Ioannis G; Lagoudas, Dimitris C

    2007-03-01

    Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.

  9. Theoretical study on the dimerization of Si(OH) 4 in aqueous solution and its dependence on temperature and dielectric constant

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2005-01-01

    Energetics for the condensation dimerization reaction of monosilicic acid: 2Si(⇒SiOH+HO have been calculated quantum mechanically, in gas-phase and aqueous solution, over a range of temperatures and dielectric constants. The calculated gas phase energy, E g, for this reaction is -6.6 kcal/mol at the very accurate composite G2 level, but the vibrational, rotational and translational contributions to the free energy in the gas-phase, ΔG VRT, sum to + 2.5 kcal/mol and the hydration free energy contribution calculated with a polarizable continuum model, ΔΔG COSMO, for a dielectric constant of 78.5, is about + 6.2 kcal/mol. Thus, the free energy change for the reaction in aqueous solution at ambient conditions is about + 2.1 kcal/mol and the equilibrium constant is ˜10 -1.5, in reasonable agreement with experiment. As T increases, ΔG VRT increases slowly. As the dielectric constant decreases (for example, under high T and P conditions in the supercritical region), ΔΔG COSMO decreases substantially. Thus, at elevated T and P, if the effective dielectric constant of the aqueous fluid is 10 or less, the reaction becomes much more favorable, consistent with recent experimental observations. The PΔV contribution to the enthalpy is also considered, but cannot be accurately determined. We have also calculated 29Si-NMR shieldings and Raman frequencies for Si(OH) 4, Si 2O 7H 6 and some other oligomeric silicates. We correctly reproduce the separation of monomer and dimer peaks observed in the 29Si-NMR spectrra at ambient T and P. The Raman spectral data are somewhat ambiguous, and the new peaks seen at high T and P could arise either from the dimer or from a 3-ring trimer, which is calculated to be highly stabilized entropically at high T.

  10. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins.

    PubMed

    Rinaldi, A; Jourdes, M; Teissedre, P L; Moio, L

    2014-12-01

    The flavan-3-ol and proanthocyanidin composition of Aglianico seeds and skins were for the first time determined by HPLC-MS in comparison with the international grapes Merlot and Cabernet Sauvignon. Monomers [(+)-catechin C, (-)-epicatechin EC, (-)-epicatechin-3-O-gallate, ECG] and oligomers [B1, B2, B3, B4 dimers and trimer C1] were identified and quantified in grape extracts. In order to evaluate the reactivity towards salivary proteins of model wine solutions of seeds and skins monomeric/oligomeric and polymeric fractions, the Saliva Precipitation Index (SPI) was carried out. Fractions were also analyzed for their mean degree of polymerization (mDP), percentage of galloylation (%G) and of prodelphinidin (%P) by phloroglucinolysis. Aglianico was the most effective in precipitating proteins than Merlot and Cabernet Sauvignon, mainly for the high percentage of galloylation of grape fractions. The mDP and the percentage of ECG in terminal units resulted to significantly contribute to the precipitation of salivary proteins by grape proanthocyanidins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comprehensive thin-layer chromatography mass spectrometry of flavanols from Juniperus communis L. and Punica granatum L.

    PubMed

    Smrke, Samo; Vovk, Irena

    2013-05-10

    The coupling of thin-layer chromatography with mass spectrometry (TLC-MS) for the analysis of monomeric flavanols and proanthocyanidins in samples presented as complex matrices has been studied. The elution conditions for TLC-MS were optimised and full scans were compared with selected reaction monitoring for the MS detection of compounds. The performance of silica gel and cellulose plates with different developing solvents in TLC-MS was assessed. Cellulose plates provided superior sensitivity while ionisation suppression was encountered with silica plates. The use of a HILIC guard column beyond the elution head was found to facilitate detection of monomer compounds on silica plates. A new comprehensive TLC×MS procedure for screening flavanols in the entire chromatogram was developed as an alternative to the use of 4-dimethylaminocinnamaldehyde to determine the locations of compounds on the plate. This new procedure was applied to detect flavanols in the peel of Punica granatum L. fruits and in seeds of Juniperus communis L., in which flavanols and proanthocyanidin dimers and trimers were detected for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.

    PubMed

    Di Lecce, Giuseppe; Arranz, Sara; Jáuregui, Olga; Tresserra-Rimbau, Anna; Quifer-Rada, Paola; Lamuela-Raventós, Rosa M

    2014-02-15

    This paper describes for the first time a complete characterisation of the phenolic compounds in different anatomical parts of the Albariño grape. The application of high-performance liquid chromatography coupled with two complementary techniques, hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry, allowed the phenolic composition of the Albariño grape to be unambiguously identified and quantified. A more complete phenolic profile was obtained by product ion and precursor ion scans, while a neutral loss scan at 152 u enabled a fast screening of procyanidin dimers, trimers and their galloylated derivatives. The compounds were confirmed by accurate mass measurements in QqToF-MS and QqToF-MS/MS modes at high resolution, and good fits were obtained for all investigated ions, with errors ranging from 0.2 to 4.5 mDa. To the best of our knowledge, two flavanol monomer hexosides were detected in the grape berry for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc{sub 1} function in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin

    2014-08-22

    Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the lattermore » remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.« less

  14. The human dopamine transporter forms a tetramer in the plasma membrane: cross-linking of a cysteine in the fourth transmembrane segment is sensitive to cocaine analogs.

    PubMed

    Hastrup, Hanne; Sen, Namita; Javitch, Jonathan A

    2003-11-14

    Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.

  15. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

  16. Image storage in coumarin-based copolymer thin films by photoinduced dimerization.

    PubMed

    Gindre, Denis; Iliopoulos, Konstantinos; Krupka, Oksana; Champigny, Emilie; Morille, Yohann; Sallé, Marc

    2013-11-15

    We report a technique to encode grayscale digital images in thin films composed of copolymers containing coumarins. A nonlinear microscopy setup was implemented and two nonlinear optical processes were used to store and read information. A third-order process (two-photon absorption) was used to photoinduce a controlled dimer-to-monomer ratio within a defined tiny volume in the material, which corresponds to each recorded bit of data. Moreover, a second-order process (second-harmonic generation) was used to read the stored information, which has been found to be highly dependent upon the monomer-to-dimer ratio.

  17. Modulation of dimerization by residues distant from the interface in bovine neurophysin-II.

    PubMed

    Zheng, C; Peyton, D; Breslow, E

    1997-09-01

    The crystal structure of bovine neurophysin-II in its liganded state (Chen et al. [1991] Proc. Natl. Acad. Sci. USA 88, 4240-4244) indicates that the 1-6 sequence has a disordered conformation, lacks noncovalent contacts to other regions of the protein and is distant from the monomer-monomer interface. Cleavage of the 1-6 sequence by Staphylococcus protease V8 yielded a protein that, for the first time, crystallized in both liganded and unliganded states. Insights into the role of the 1-6 sequence in the unliganded state were obtained by NMR and related biophysical comparisons of the native and des-1-6 proteins. NMR spectra demonstrated that the environment and/or conformation of residues in the 1-6 sequence differed in liganded and unliganded states. Additionally, the unliganded des-1-6 protein exhibited a dimerization constant four to five times that of the native protein, potentially accounting for the observation that its peptide affinity was also increased. NMR studies further indicated that the increased dimerization constant of the des-1-6 protein correlated with the presence in the native protein of two isoenergetic forms of the monomer, in contrast to only a single form in the des-1-6 protein, as evidenced by signals from an internal dimerization-sensitive alpha-proton. Thus, the 1-6 sequence reduces the dimerization constant by stabilization of an alternative monomer conformation. A second product of Staphylococcus protease V8 digestion of the native protein was identified as the des-1-6 protein with an internal clip after binding site residue Glu-47, the clip presumably breaking the short 3,10 helix that most directly connects the interface to the interface to the binding site. This product, although unable to bind peptide, retained the dimerization constant of the des-1-6 protein, suggesting a lack of importance of the helix in dimerization and contrasting with the effects of the 1-6 sequence. A model is proposed in which the 1-6 sequence stabilizes the second conformation of the unliganded monomer via interactions affecting the loop region that separates the two neurophysin domains and which has been shown to influence neurophysin self-association.

  18. Crystal Structure of Prunin-1, a Major Component of the Almond (Prunus dulcis) Allergen Amandin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tengchuan; Albillos, Silvia M.; Guo, Feng

    Seed storage proteins are accumulated during seed development and act as a reserve of nutrition for seed germination and young sprout growth. Plant seeds play an important role in human nutrition by providing a relatively inexpensive source of protein. However, many plant foods contain allergenic proteins, and the number of people suffering from food allergies has increased rapidly in recent years. The 11S globulins are the most widespread seed storage proteins, present in monocotyledonous and dicotyledonous seeds as well as in gymnosperms (conifers) and other spermatophytes. This family of proteins accounts for a number of known major food allergens. Theymore » are of interest to both the public and industry due to food safety concerns. Because of the interests in the structural basis of the allergenicity of food allergens, we sought to determine the crystal structure of Pru1, the major component of the 11 S storage protein from almonds. The structure was refined to 2.4 {angstrom}, and the R/Rfree for the final refined structure is 17.2/22.9. Pru1 is a hexamer made of two trimers. Most of the back-to-back trimer-trimer association was contributed by monomer-monomer interactions. An {alpha} helix (helix 6) at the C-terminal end of the acidic domain of one of the interacting monomers lies at the cleft of the two protomers. The residues in this helix correspond to a flexible region in the peanut allergen Ara h 3 that encompasses a previously defined linear IgE epitope.« less

  19. Crystal structure of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin.

    PubMed

    Jin, Tengchuan; Albillos, Silvia M; Guo, Feng; Howard, Andrew; Fu, Tong-Jen; Kothary, Mahendra H; Zhang, Yu-Zhu

    2009-09-23

    Seed storage proteins are accumulated during seed development and act as a reserve of nutrition for seed germination and young sprout growth. Plant seeds play an important role in human nutrition by providing a relatively inexpensive source of protein. However, many plant foods contain allergenic proteins, and the number of people suffering from food allergies has increased rapidly in recent years. The 11S globulins are the most widespread seed storage proteins, present in monocotyledonous and dicotyledonous seeds as well as in gymnosperms (conifers) and other spermatophytes. This family of proteins accounts for a number of known major food allergens. They are of interest to both the public and industry due to food safety concerns. Because of the interests in the structural basis of the allergenicity of food allergens, we sought to determine the crystal structure of Pru1, the major component of the 11 S storage protein from almonds. The structure was refined to 2.4 A, and the R/Rfree for the final refined structure is 17.2/22.9. Pru1 is a hexamer made of two trimers. Most of the back-to-back trimer-trimer association was contributed by monomer-monomer interactions. An alpha helix (helix 6) at the C-terminal end of the acidic domain of one of the interacting monomers lies at the cleft of the two protomers. The residues in this helix correspond to a flexible region in the peanut allergen Ara h 3 that encompasses a previously defined linear IgE epitope.

  20. Energy landscapes of the monomer and dimer of the Alzheimer's peptide A β (1 -28 )

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2008-03-01

    The cytoxicity of Alzheimer's disease has been linked to the self-assembly of the 40 /42 amino acid of the amyloid-β (A β ) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of A β (1 -28 ) is α -helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of A β (1 -28 ) . In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible β -strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little β -strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.

  1. Engineering a lifetime-based activatable probe for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Morgounova, Ekaterina; Shao, Qi; Hackel, Benjamin; Ashkenazi, Shai

    2013-02-01

    High-resolution, high-penetration depth activatable probes are needed for in-vivo imaging of enzyme activity. In this paper, we will describe the contrast mechanism of a new photoacoustic activatable probe that changes its excitation lifetime upon activation. The excitation decay of methylene blue (MB), a chromophore commonly used in therapeutic and diagnostic applications, is probed by photoacoustic lifetime contrast imaging (PLCI). The monomer of the dye presents a high-quantum yield of intersystem-crossing and long lifetime (70 μs) whereas the dimer is statically quenched with a short lifetime (a few ns). This forms the basis of a highly sensitive contrast mechanism between monomers and dimers. Two dimerization models - one using sodium sulfate, the other using sodium dodecyl sulfate - were applied to control the monomer-to-dimer ratio in MB solutions. Preliminary results show that the photoacoustic signal of a dimer solution is efficiently suppressed (< 20 dB) due to their short lifetime compared to the monomer sample. Flash-photolysis of the same solutions reveals a 99% decrease in transient absorption confirming PLCI results. This contrast mechanism can be applied to design a MB dual-labeled activatable probe bound by an enzyme-specific cleavable peptide linker. When the probe is cleaved by its target, MB molecules will separate by molecular diffusion and recover their long excitation lifetime enabling their detection by PLCI. Our long-term goal is to investigate enzyme-specific imaging in small animals and establish pre-clinical data for translational research and implementation of the technology in clinical applications.

  2. Difference in dimer conformation between amyloid-β(1-42) and (1-43) proteins: Replica exchange molecular dynamics simulations in water

    NASA Astrophysics Data System (ADS)

    Yano, Atsushi; Okamoto, Akisumi; Nomura, Kazuya; Higai, Shin'ichi; Kurita, Noriyuki

    2014-03-01

    We searched stable conformations of amyloid-β (Aβ) dimers composed of Aβ(1-42) or Aβ(1-43) protein in water by replica-exchange molecular dynamics simulations and found that Thr43 of the C-terminal of Aβ(1-43) is hydrogen bonded to Arg5 of the same monomer in the Aβ(1-43) dimer, resulting in its ring-shaped conformation, while Aβ(1-42) has no such hydrogen-bond. This conformation is expected to aggregate more easily into a compact conformation of Aβ fibrils. We also investigated the binding affinity and the specific interactions between Aβ monomers by ab initio fragment molecular orbital calculations to elucidate which Aβ residues contribute to the dimerization.

  3. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    NASA Astrophysics Data System (ADS)

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-09-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.

  4. Unexpected Trimerization of Pyrazine in the Coordination Sphere of Low-Valent Titanocene Fragments.

    PubMed

    Jung, Thomas; Beckhaus, Rüdiger; Klüner, Thorsten; Höfener, Sebastian; Klopper, Wim

    2009-08-11

    The titanium mediated trimerization of pyrazine leads to the formation of a tris-chelate complex employing a 4a,4b,8a,8b,12a,12b-hexahydrodiyprazino[2,3-f:2',3'-h]quinoxaline ligand (HATH6, 3). The driving force in the formation of the (Cp*2Ti)3(HATH6) complex 2 is attributed to the formation of six Ti-N bonds. We show that density functional theory (DFT) fails to predict quantitatively correct results. Therefore, post-Hartree-Fock methods, such as second-order Møller-Plesset perturbation theory (MP2), in combination with coupled-cluster (CC) methods must be used. Both MP2 and CCSD(T) levels of theory provide endothermic trimerization energies, showing that the plain pyrazine trimer is not stable with respect to decomposition into its monomers. Complete basis set (CBS) results for the MP2 level of theory were computed using explicitly correlated wave functions. With these, we estimate the CCSD(T) CBS limit of the hypothetical trimerization energy to be +0.78 eV. Thus, the trimerization is facilitated by the formation of six Ti-N bonds with a calculated formation energy of -1.32 eV per bond.

  5. Enantioselective syntheses of lignin models: an efficient synthesis of B-O-4 dimers and trimers by using the Evans chiral auxiliary

    Treesearch

    Costyl N. Njiojob; Joseph J. Bozell; Brian K. Long; Thomas Elder; Rebecca E. Key; William T. Hartwig

    2016-01-01

    We describe an efficient five-step, enantioselective synthesis of (R,R)- and (S,S)-lignin dimer models possessing a B-O-4 linkage, by using the Evans chiral aldol reaction as a key step. Mitsunobu inversion of the (R,R)- or (S,S)-isomers generates the corresponding (R,S)- and (S,R)-diastereomers. We further extend this approach to the...

  6. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chao; Long, Hai; Jin, Yinghua

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  7. Two zeolite-type frameworks in one metal-organic framework with Zn24 @Zn104 cube-in-sodalite architecture.

    PubMed

    Bu, Fei; Lin, Qipu; Zhai, Quanguo; Wang, Le; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui; Feng, Pingyun

    2012-08-20

    Two in one: A metal-organic framework obtained from three different inorganic building blocks (tetrameric Zn(4) O, trimeric Zn(3) OH, and monomeric Zn) posseses a nested cage-in-cage and framework-in-framework architecture. 24 Zn(4) O tetramers and eight Zn monomers form a sodalite cage into which a cubic cage made from eight Zn(3) (OH) trimers is nestled. Eight monomeric Zn(2+) centers interconnect these two cages. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.

    PubMed

    Plecitá-Hlavatá, Lydie; Engstová, Hana; Alán, Lukáš; Špaček, Tomáš; Dlasková, Andrea; Smolková, Katarína; Špačková, Jitka; Tauber, Jan; Strádalová, Vendula; Malínský, Jan; Lessard, Mark; Bewersdorf, Joerg; Ježek, Petr

    2016-05-01

    The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Ježek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering. © FASEB.

  9. Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil

    NASA Astrophysics Data System (ADS)

    Georges, Robert

    2015-06-01

    The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M. Vervloet, Phys. Chem. Chem. Phys. 15, 10141-10150 (2013) The cyclic ground state structure of the HF trimer revealed by far-infrared jet-cooled Fourier transform spectroscopy. P. Asselin, P. Soulard, B. Madebène, M. Goubet, T. R. Huet, R. Georges, O. Pirali and P. Roy, Phys. Chem. Chem. Phys. 16(10), 4797-806 (2014) Standard free energy of the equilibrium between the trans-monomer and the cyclic-dimer of acetic acid in the gas phase from infrared spectroscopy. M. Goubet, P. Soulard, O. Pirali, P. Asselin, F. Réal, S. Gruet, T. R. Huet, P. Roy and R. Georges, Phys. Chem. Chem. Phys. DOI: 10.1039/c4cp05684a

  10. Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

    PubMed

    Wu, Cheng Guo; Cheng, Shu Chun; Chen, Shiang Chuan; Li, Juo Yan; Fang, Yi Hsuan; Chen, Yau Hung; Chou, Chi Yuan

    2013-05-01

    The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of M(pro) is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on M(pro); nevertheless, the mechanism by which monomeric M(pro) is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of M(pro) shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.

  11. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravind, G.; Klaerke, B.; Rajput, J.

    2012-01-07

    Photodissociation lifetimes and fragment channels of gas-phase, protonated YA{sub n} (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of {approx}200 ns while the protonated dimers show an additional slow dissociation component with a lifetime of {approx}2 {mu}s. Laser power dependence measurements enabled us to ascribe the fast channel in the monomer and the slow channel in the dimer to a one-photon process, whereas the fast dimer channel is from a two-photon process. The slow (1 photon) dissociation channel in themore » dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both found in space.« less

  12. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-04

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation.

  13. Tea Catechin Auto-oxidation Dimers are Accumulated and Retained by Caco-2 Human Intestinal Cells

    PubMed Central

    Neilson, Andrew P.; Song, Brian J.; Sapper, Teryn N.; Bomser, Joshua A.; Ferruzzi, Mario G.

    2010-01-01

    Despite the presence of bioactive catechin B-ring auto-oxidation dimers in tea, little is known regarding their absorption in humans. Our hypothesis for this research is that catechin auto-oxidation dimers are present in teas and are absorbable by human intestinal epithelial cells. Dimers [theasinensins (THSNs) and P-2 analogs) were quantified in commercial teas by HPLC-MS. (−)-Epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) homodimers were present at 10–43 and 0–62 µmol/g leaf, respectively. EGC-EGCG heterodimers were present at 0–79 µmol/g. The potential intestinal absorption of these dimers was assessed using Caco-2 intestinal cells. Catechin monomers and dimers were detected in cells exposed to media containing monomers and preformed dimers. Accumulation of dimers was significantly greater than monomers from test media. Three h accumulation of EGC and EGCG was 0.19– 0.55% and 1.24–1.35% respectively. Comparatively, 3h accumulation of the EGC P-2 analog, and THSNs C/E was 0.89 ± 0.28% and 1.53 ± 0.36%. Accumulation of P-2, and THSNs A/D was 6.93 ± 2.1%, and 10.1 ± 3.6%. EGCG-EGC heterodimer P-2 analog, and THSN B 3h accumulation was 4.87 ± 2.2%, and 4.65 ± 2.8% respectively. One h retention of P-2, and THSNs A/D was 171 ± 22%, and 29.6 ± 9.3% of accumulated amount suggesting intracellular oxidative conversion of THSNs to P-2. These data suggest that catechin dimers present in the gut lumen may be readily absorbed by intestinal epithelium. PMID:20579525

  14. Formation of trans-2-[4-(Dimethylamino)Styryl]-3-Ethyl-1,3-Benzothiazolium Perchlorate Dimers in the Presence of Sodium Polystyrene Sulfonate

    NASA Astrophysics Data System (ADS)

    Lavysh, A. V.; Maskevich, A. A.; Lugovskii, A. A.; Voropai, E. S.; Sulatskaya, A. I.; Kuznetsova, I. M.; Turoverov, K. K.

    2017-01-01

    The spectral properties of a novel thioflavin T derivative, trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate (DMASEBT), were studied in aqueous solutions in the presence of sodium polystyrene sulfonate (SPS). It was shown that SPS either could interact with dye monomers or initiate the formation of non-fluorescent dye dimers depending on the concentration ratio of dye and polyelectrolyte. DMASEBT dimer formation in the presence of SPS produced a hypsochromic shift by 40 nm in the absorption spectrum and quenched fluorescence. A bathochromic shift of the absorption spectrum and an increase of the fluorescence intensity by an order of magnitude were observed if DMASEBT monomers interacted with SPS. Quantum-chemical analysis found that sandwich dimers (H-aggregates) were most stable. A comparison of DMASEBT spectra in the presence of SPS and amyloid fibrils showed that DMASEBT molecules were incorporated into amyloid fibrils as monomers. The spectral changes associated with this incorporation could not be explained by the formation of dye aggregates.

  15. DFT approach to (benzylthio)acetic acid: Conformational search, molecular (monomer and dimer) structure, vibrational spectroscopy and some electronic properties

    NASA Astrophysics Data System (ADS)

    Sienkiewicz-Gromiuk, Justyna

    2018-01-01

    The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.

  16. The mechanism by which P250L mutation impairs flavivirus-NS1 dimerization: an investigation based on molecular dynamics simulations.

    PubMed

    Oliveira, Edson R A; de Alencastro, Ricardo B; Horta, Bruno A C

    2016-09-01

    The flavivirus non-structural protein 1 (NS1) is a conserved glycoprotein with as yet undefined biological function. This protein dimerizes when inside infected cells or associated to cell membranes but also forms lipid-associated hexamers when secreted to the extracellular space. A single amino acid substitution (P250L) is capable of preventing the dimerization of NS1 resulting in lower virulence and slower virus replication. In this work, based on molecular dynamics simulations of the dengue-2 virus NS1 [Formula: see text]-ladder monomer as a core model, we found that this mutation can induce several conformational changes that importantly affect critical monomer-monomer interactions. Based on additional simulations, we suggest a mechanism by which a highly orchestrated sequence of events propagate the local perturbations around the mutation site towards the dimer interface. The elucidation of such a mechanism could potentially support new strategies for rational production of live-attenuated vaccines and highlights a step forward in the development of novel anti-flavivirus measures.

  17. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: polyampholyte and polyelectrolyte solutions.

    PubMed

    Jiang, Hao; Adidharma, Hertanto

    2014-11-07

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.

  18. Improvement of Aptamer Affinity by Dimerization

    PubMed Central

    Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori

    2008-01-01

    To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754

  19. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity.

    PubMed

    Torres, Eduardo; Aburto, Jorge

    2005-05-15

    A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.

  20. Concerted hydrogen atom exchange between three HF molecules

    NASA Technical Reports Server (NTRS)

    Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.

    1992-01-01

    We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.

  1. Unique and Highly Selective Anticytomegalovirus Activities of Artemisinin-Derived Dimer Diphenyl Phosphate Stem from Combination of Dimer Unit and a Diphenyl Phosphate Moiety

    PubMed Central

    He, Ran; Forman, Michael; Mott, Bryan T.; Venkatadri, Rajkumar; Posner, Gary H.

    2013-01-01

    We report that the artemisinin-derived dimer diphenyl phosphate (DPP; dimer 838) is the most selective inhibitor of human cytomegalovirus (CMV) replication among a series of artemisinin-derived monomers and dimers. Dimer 838 was also unique in being an irreversible CMV inhibitor. The peroxide unit within artemisinins' chemical structures is critical to their activities, and its absence results in loss of anti-CMV activities. Surprisingly, the deoxy dimer of 838 retained modest anti-CMV activity, suggesting that the DPP moiety of dimer 838 contributes to its anti-CMV activities. DPP alone did not inhibit CMV replication, but triphenyl phosphate (TPP) had modest CMV inhibition, although its selectivity index was low. Artemisinin DPP derivatives dimer 838 and monomer diphenyl phosphate (compound 558) showed stronger CMV inhibition and a higher selectivity index than their analogs lacking the DPP unit. An add-on and removal assay revealed that removing DPP derivatives (compounds 558 and 838) but not the non-DPP backbones (artesunate and compound 606) at 24 h postinfection (hpi) already resulted in dominant CMV inhibition. CMV inhibition was fully irreversible with 838 and partially irreversible with 558, while non-DPP artemisinins were reversible inhibitors. While all artemisinin derivatives and TPP reduced the expression of the CMV immediate early 2 (IE2), UL44, and pp65 proteins at or after 48 hpi, only TPP inhibited the expression of both IE1 and IE2. Combination of a non-DPP dimer (compound 606) with TPP was synergistic in CMV inhibition, while ganciclovir and TPP were additive. Although TPP shared structural similarity with monomer DPP (compound 558) and dimer DPP (compound 838), its pattern of CMV inhibition was significantly different from the patterns of the artemisinins. These findings demonstrate that the DPP group contributes to the unique activities of compound 838. PMID:23774439

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  3. A test of the significance of intermolecular vibrational coupling in isotopic fractionation

    DOE PAGES

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.; ...

    2017-07-15

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  4. The dimerization equilibrium of a ClC Cl−/H+ antiporter in lipid bilayers

    PubMed Central

    Chadda, Rahul; Krishnamani, Venkatramanan; Mersch, Kacey; Wong, Jason; Brimberry, Marley; Chadda, Ankita; Kolmakova-Partensky, Ludmila; Friedman, Larry J; Gelles, Jeff; Robertson, Janice L

    2016-01-01

    Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers a new approach to the problem, as individual subunits adopt a stable and functionally verifiable fold that constrains the system to two states – monomer or dimer. Here, we use single-molecule photobleaching analysis to measure the probability of ClC-ec1 subunit capture into liposomes during extrusion of large, multilamellar membranes. The capture statistics describe a monomer to dimer transition that is dependent on the subunit/lipid mole fraction density and follows an equilibrium dimerization isotherm. This allows for the measurement of the free energy of ClC-ec1 dimerization in lipid bilayers, revealing that it is one of the strongest membrane protein complexes measured so far, and introduces it as new type of dimerization model to investigate the physical forces that drive membrane protein association in membranes. DOI: http://dx.doi.org/10.7554/eLife.17438.001 PMID:27484630

  5. Radiation-induced polymerization of cyclophosphazene trimers. Final report, 1 September 1985-30 September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stannett, V.T.

    1989-01-04

    Hexachlorophosphazene was irradiated in bulk and in solution after various methods of purification. When rigorously dried and purified, good yields of polymer were obtained. Poor reproducibility was found in the bulk but reasonably good results were obtained in decalin solution. The best yields and highest molecular weights were obtained after the addition of small amounts of the bulky electron acceptor pyromellitic dianhydride. Hexachlorocyclotriphosphazene was purified by recrystallization for various times from dried heptane. The trimer was then further purified by repeated sublimation steps under high vacuum. Finally the trimer was dried in the melt over rigorously baked out barium oxide.more » The monomer was then transferred to ampules or the NMR tubes for radiation and subsequent determination of the polymer content.« less

  6. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols

    PubMed Central

    Marin, Daniela Eliza; Pelmus, Rodica Stefania; Habeanu, Mihaela; Rotar, Mircea Catalin; Gras, Mihail Alexandru; Pistol, Gina Cecilia; Taranu, Ionelia

    2018-01-01

    The absorption and antioxidant activity of polyphenols from grape pomace (GP) are important aspects of its valorization as a feed additive in the diet of weaned piglets. This study aimed to evaluate the presence of polyphenols from GP both in vitro in IPEC cells and in vivo in the duodenum and colon of piglets fed with diets containing or not 5% GP and also to compare and correlate the aspects of their in vitro and in vivo absorption. Total polyphenolic content (TPC) and antioxidant status (TAS, CAT, SOD and GPx enzyme activity, and lipid peroxidation-TBARS level) were assessed in duodenum and colon of piglets fed or not a diet with 5% GP. The results of UV-Vis spectroscopy demonstrated that in cellular and extracellular medium the GP polyphenols were oxidized (between λmax = 276 nm and λmax = 627.0 nm) with the formation of o-quinones and dimers. LC-MS analysis indicated a procyanidin trimer possibly C2, and a procyanidin dimer as the major polyphenols identified in GP, 12.8% of the procyanidin trimer and 23% of the procyanidin dimer respectively being also found in the compound feed. Procyanidin trimer C2 is the compound accumulated in duodenum, 73% of it being found in the colon of control piglets, and 62.5% in the colon of GP piglets. Correlations exist between the in vitro and in vivo investigations regarding the qualitative evaluation of GP polyphenols in the cells (λmax at 287.1 nm) and in the gut (λmax at 287.5 nm), as oxidated metabolic products. Beside the presence of polyphenols metabolites this study shows also the presence of the unmetabolized procyanidin trimers in duodenum and colon tissue, an important point in evaluating the benefic actions of these molecules at intestinal level. Moreover the in vivo study shows that a 5% GP in piglet’s diet increased the total antioxidant status (TAS) and decreased lipid peroxidantion (TBARS) in both duodenum and colon, and increased SOD activity in duodenum and CAT and GPx activity in colon. These parameters are modulated by the different polyphenols absorbed, mainly by the procyanidin trimers and catechin on one side and the polyphenols metabolites on the other side. PMID:29747456

  7. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.

    PubMed

    Baciocchi, Enrico; Fabbri, Claudia; Lanzalunga, Osvaldo

    2003-11-14

    The H(2)O(2)-promoted oxidations of the two nonphenolic beta-O-aryl lignin model trimers 1 and 2, catalyzed by lignin peroxidase (LiP) at pH = 3.5, have been studied. The results have been compared with those obtained in the oxidation of 1 and 2 with the genuine one-electron oxidant potassium 12-tungstocobalt(III)ate. These models present a different substitution pattern of the three aromatic rings, and by one-electron oxidation, they form radical cations with the positive charge, which is localized in the dialkoxylated ring as also evidenced by a pulse radiolysis study. Both the oxidations with the enzymatic and with the chemical systems lead to the formation of products deriving from the cleavage of C-C and C-H bonds in a beta position with respect to the radical cation with the charge residing in the dialkoxylated ring (3,4-dimethoxybenzaldehyde (5) and a trimeric ketone 6 in the oxidation of 1 and a dimeric aldehyde 8 and a trimeric ketone 9 in the oxidation of 2). These products are accompanied by a dimeric aldehyde 7 in the oxidation of 1 and 4-methoxybenzaldehyde (10) in the oxidation of 2. The unexpected formation of these two products has been explained by suggesting that 1.+ and 2.+ can also undergo an intramolecular electron transfer leading to the radical cations 1a.+ and 2a.+ with the charge residing in a monoalkoxylated ring. The fast cleavage of a C-C bond beta to this ring, leading to 7 from 1.+ and to 10 from 2.+, is the driving force of the endoergonic electron transfer. A kinetic steady-state investigation of the LiP-catalyzed oxidation of the trimer 2, the dimeric model 1-(3,4-dimethoxyphenyl)-2-phenoxy-1-ethanol (4), and 3,4-dimethoxybenzyl alcohol (3) has indicated that the turnover number (k(cat)) and the affinity for the enzyme decrease significantly by increasing the size of the model compound. In contrast, the three substrates exhibited a very similar reactivity toward a chemical oxidant [Co(III)W]. This suggests a size-dependent interaction of the enzyme with the substrate which may influence the efficiency of the electron transfer.

  8. Early-Stage Aggregation of Human Islet Amyloid Polypeptide

    NASA Astrophysics Data System (ADS)

    Guo, Ashley; de Pablo, Juan

    Human islet amyloid polypeptide (hIAPP, or human amylin) is implicated in the development of type II diabetes. hIAPP is known to aggregate into amyloid fibrils; however, it is prefibrillar oligomeric species, rather than mature fibrils, that are proposed to be cytotoxic. In order to better understand the role of hIAPP aggregation in the onset of disease, as well as to design effective diagnostics and therapeutics, it is crucial to understand the mechanism of early-stage hIAPP aggregation. In this work, we use atomistic molecular dynamics simulations combined with multiple advanced sampling techniques to examine the formation of the hIAPP dimer and trimer. Metadynamics calculations reveal a free energy landscape for the hIAPP dimer, which suggest multiple possible transition pathways. We employ finite temperature string method calculations to identify favorable pathways for dimer and trimer formation, along with relevant free energy barriers and intermediate structures. Results provide valuable insights into the mechanisms and energetics of hIAPP aggregation. In addition, this work demonstrates that the finite temperature string method is an effective tool in the study of protein aggregation. Funded by National Institute of Standards and Technology.

  9. Direct Visualization of an Impurity Depletion Zone

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Garcia-Ruiz, Juan Ma; Thomas, Bill R.

    2000-01-01

    When a crystal incorporates more impurity per unit of its volume than the impurity concentration in solution, the solution in vicinity of the growing crystal is depleted with respect to the impurity I,2. With a stagnant solution, e. g. in microgravity or gels, an impurity depletion zone expands as the crystal grows and results in greater purity in most of the outer portion of the crystal than in the core. Crystallization in gel provides an opportunity to mimic microgravity conditions and visualize the impurity depletion zone. Colorless, transparent apoferritin (M congruent to 450 KDa) crystals were grown in the presence of red holoferritin dimer as a microheterogeneous impurity (M congruent to 900 KDa) within agarose gel by counterdiffusion with Cd(2+) precipitant. Preferential trapping of dimers, (distribution coefficient K = 4 (exp 1,2)) results in weaker red color around the crystals grown in the left tube in the figure as compared to the control middle tube without crystals. The left and the middle tubes contain colored ferritin dimers, the right tube contains colored trimers. The meniscus in the left tube separate gel (below) and liquid solution containing Cd(2+) (above). Similar solutions, though without precipitants, were present on top of the middle and right tube allowing diffusion of dimers and trimers. The area of weaker color intensity around crystals directly demonstrates overlapped impurity depletion zones.

  10. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  11. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity

    PubMed Central

    Dey, Sanjay

    2017-01-01

    Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31. PMID:28235098

  12. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  13. Potential energy surfaces of the low-lying electronic states of the Li + LiCs system

    NASA Astrophysics Data System (ADS)

    Jasik, P.; Kilich, T.; Kozicki, J.; Sienkiewicz, J. E.

    2018-03-01

    Ab initio quantum chemistry calculations are performed for the mixed alkali triatomic system. Global minima of the ground and first excited doublet states of the trimer are found and Born-Oppenheimer potential energy surfaces of the Li atom interacting with the LiCs molecule were calculated for these states. The lithium atom is placed at various distances and bond angles from the lithium-caesium dimer. Three-body nonadditive forces of the Li2Cs molecule in the global minimum are investigated. Dimer-atom interactions are found to be strongly attractive and may be important in the experiments, particularly involving cold alkali polar dimers.

  14. Synthesis, X-ray structure, and hydrolytic chemistry of the high potent antiviral polyniobotungstate A-[alpha]-[Si2Nb6W18O77]8–

    Treesearch

    Gyu-Shik Kim; Huadong Zeng; Jeffrey T. Rhule; Ira A. Weinstock; Craig L. Hill

    1999-01-01

    Potently antiviral polyniobotungstates have been structurally characterized; the dimer A-[alpha]-[Si2Nb6W18O77]8– cleaves cleanly to the monomer A-[alpha]-[SiNb3W9O40]7– within 1 min in aqueous solution buffered at physiological (neutral) pH establishing that the monomer and not the dimer is pharmacologically relevant.

  15. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification.

    PubMed

    Osipov, Alexey V; Kasheverov, Igor E; Makarova, Yana V; Starkov, Vladislav G; Vorontsova, Olga V; Ziganshin, Rustam Kh; Andreeva, Tatyana V; Serebryakova, Marina V; Benoit, Audrey; Hogg, Ronald C; Bertrand, Daniel; Tsetlin, Victor I; Utkin, Yuri N

    2008-05-23

    Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.

  16. Floral structure and ontogeny of Syndiclis (Lauraceae)

    PubMed Central

    Zeng, Gang; Liu, Bing; Ferguson, David K.; Rohwer, Jens G.

    2017-01-01

    Generic delimitation in the Beilschmiedia group of the Lauraceae remains ambiguous because flowering specimens of a few genera with confined distribution are poorly represented in herbaria, and a few floral characters important for taxonomy are still poorly known. Syndiclis is sporadically distributed in southwestern China, and is represented in the herbaria by only a few flowering specimens. We conducted field investigations to collect floral materials of four species and observed structures and ontogeny of the tiny flowers using both light microscopy (LM) and scanning electron microscopy (SEM). The results show that the genus Syndiclis possesses flowers with huge variation in both merosity and organ number. Flowers of the genus are dimerous, trimerous, or tetramerous, or have mixed merosity with monomerous and dimerous, or dimerous and trimerous, or trimerous and tetramerous whorls. The number of staminodes ranges from two to eight, depending on floral merosity, and on how many stamens of the third androecial whorl are reduced to staminodes. The staminodes of the fourth androecial whorl are comparable to the staminodes in Potameia, but the staminodes of the third androecial whorl of Syndiclis are relatively larger than the staminodes in Potameia. They are erect or curved inwards, covering the ovary. The anthers are usually two-locular, but rarely one-locular or three-locular. Each stamen of the third androecial whorl bears two conspicuous and enlarged glands at the base. The lability of floral merosity and organ number of Syndiclis may have been caused by changes of pollination system and loss of special selective pressures that are present in most Lauraceous plants with fixed floral organ number. This study furthers our understanding of variation and evolution of a few important characters of the Beilschmiedia group and provides essential data for a revised generic classification of the group. PMID:29028818

  17. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    PubMed

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  18. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    PubMed Central

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-01-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060

  19. Enhanced Si-O Bond Breaking in Silica Glass by Water Dimer: A Hybrid Quantum-Classical Simulation Study

    NASA Astrophysics Data System (ADS)

    Kouno, Takahisa; Ogata, Shuji; Shimada, Takaaki; Tamura, Tomoyuki; Kobayashi, Ryo

    2016-05-01

    A hybrid quantum-classical simulation of a 4,608-atom silica glass is performed at a temperature of 400 K with either a water monomer or dimer inserted in a void. The quantum region that includes the water and the surrounding atoms is treated by the density-functional theory (DFT). During a simulation, the silica glass is gradually compressed or expanded. No Si-O bond breaking occurs with a water monomer until the silica glass collapses. With a water dimer, we find that Si-O bond breaking occurs through three steps in 3 out of 24 compression cases: (i) H-transfer as 2H2O → OH- + H3O+ accompanied by the adsorption of OH- at a strained Si to make it five-coordinated, (ii) breaking of a Si-O bond that originates from the five-coordinated Si, and (iii) H-transfer from H3O+ to the O of the broken Si-O bond. A separate DFT calculation confirms that the barrier energy of the bond breaking with a water dimer under compression is smaller than that with a water monomer and that the barrier energy decreases significantly when the silica glass is compressed further.

  20. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Adidharma, Hertanto, E-mail: adidharm@uwyo.edu

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must thereforemore » be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.« less

  1. Short-time dynamics of monomers and dimers in quasi-two-dimensional colloidal mixtures.

    PubMed

    Sarmiento-Gómez, Erick; Villanueva-Valencia, José Ramón; Herrera-Velarde, Salvador; Ruiz-Santoyo, José Arturo; Santana-Solano, Jesús; Arauz-Lara, José Luis; Castañeda-Priego, Ramón

    2016-07-01

    We report on the short-time dynamics in colloidal mixtures made up of monomers and dimers highly confined between two glass plates. At low concentrations, the experimental measurements of colloidal motion agree well with the solution of the Navier-Stokes equation at low Reynolds numbers; the latter takes into account the increase in the drag force on a colloidal particle due to wall-particle hydrodynamic forces. More importantly, we find that the ratio of the short-time diffusion coefficient of the monomer and that of the center of mass of the dimmer is almost independent of both the dimer molar fraction, x_{d}, and the total packing fraction, ϕ, up to ϕ≈0.5. At higher concentrations, this ratio displays a small but systematic increase. A similar physical scenario is observed for the ratio between the parallel and the perpendicular components of the short-time diffusion coefficients of the dimer. This dynamical behavior is corroborated by means of molecular dynamics computer simulations that include explicitly the particle-particle hydrodynamic forces induced by the solvent. Our results suggest that the effects of colloid-colloid hydrodynamic interactions on the short-time diffusion coefficients are almost identical and factorable in both species.

  2. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices

    NASA Astrophysics Data System (ADS)

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.

  3. Dissecting the dynamic conformations of the metamorphic protein lymphotactin.

    PubMed

    Harvey, Sophie R; Porrini, Massimiliano; Konijnenberg, Albert; Clarke, David J; Tyler, Robert C; Langridge-Smith, Patrick R R; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E

    2014-10-30

    A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H](9+)) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.

  4. Geometry of AN Isolated Dimer of Imidazole Characterised by Rotational Spectroscopy and AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    Mullaney, John C.; Zaleski, Daniel P.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2016-06-01

    An isolated, gas-phase dimer of imidazole is generated through laser vaporisation of a solid rod containing a 1:1 mixture of imidazole and copper in the presence of an argon buffer gas undergoing supersonic expansion. The complex is characterised through broadband rotational spectroscopy and is shown to have a twisted, hydrogen-bonded geometry. Calculations at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory confirm this to be the lowest-energy conformer of the imidazole dimer. The distance between the respective centres of mass of the imidazole monomer subunits is determined to be 5.2751(1) Å, and the twist angle γ describing rotation of one monomer with respect to the other about a line connecting the centres of mass of the monomers is determined to be 87.9(4)o. Four out of six intermolecular parameters in the model geometry are precisely determined from the experimental rotational constants and are consistent with results calculated ab initio.

  5. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi,J.; Sivaraman, J.; Song, J.

    Unlike 3C protease, the severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CLpro) is only enzymatically active as a homodimer and its catalysis is under extensive regulation by the unique extra domain. Despite intense studies, two puzzles still remain: (i) how the dimer-monomer switch is controlled and (ii) why dimerization is absolutely required for catalysis. Here we report the monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 Angstroms . Detailed analysis reveals that Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimermore » to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 310-helix from an active-site loop. Remarkably, dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis.« less

  7. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase.

    PubMed

    Varejão, Nathalia; De-Andrade, Rafael A; Almeida, Rodrigo V; Anobom, Cristiane D; Foguel, Debora; Reverter, David

    2018-02-06

    Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evolution of magnetism of Cr nanoclusters on a Au(111) surface

    NASA Astrophysics Data System (ADS)

    Gotsis, Harry; Kioussis, Nicholas; Papaconstantopoulos, Dimitri

    2004-03-01

    Advances in low-temperature scanning tunneling microscopy under ultrahigh vacuum have provided new opportunities for investigating the magnetic structures of nanoclusters adsorbed on surfaces. Recent STM studies of Cr trimers on the Au(111) surface suggest a switching between two distinct electronic states. We have carried out ab initio electronic structure calculations to investigate the structural, electronic and magnetic properties of isolated Cr atoms, Cr dimers and trimers in different geometry. We will present results for the evolution of magnetic behavior including noncollinear magnetism and provide insight in the connection between magnetism and geometry.

  9. MspA Nanopores from Subunit Dimers

    PubMed Central

    Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID:22719928

  10. Origins of chemoreceptor curvature sorting in Escherichia coli

    PubMed Central

    Draper, Will; Liphardt, Jan

    2017-01-01

    Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems. PMID:28322223

  11. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant Efficacy.

    PubMed

    Abeywickrama, Gihan; Debnath, Samir C; Ambigaipalan, Priyatharini; Shahidi, Fereidoon

    2016-12-14

    Free, esterified, and bound phenolic fractions of berries from five different cranberry genotypes and two market samples were evaluated for their total phenolic, flavonoid, and monomeric anthocyanin contents as well as their antioxidant efficacy using TEAC, ORAC, DPPH radical, reducing power, and ferrous ion chelation capacity assays. HPLC-MS/MS analysis was performed for two of the rich sources (Pilgrim and wild clone NL2) of phenolics and high antioxidant activity. Among the genotypes, Pilgrim showed the highest phenolic and flavonoid contents and wild clones NL3 and NL2 showed the highest monomeric anthocyanin and proanthocyanidin content, respectively. Protocatechuic and syringic acids were detected only in Pilgrim, whereas luteolin 7-O-glucoside, quercetin 3-O-rhamnoside, quercetin 3-O-galactoside, proanthocyanidin B-type, and myricetin 3-O-galactoside were found in wild clone NL3 genotype. Moreover, proanthocyanin trimer A-type and dimer B-type predominated in the wild clone NL2, whereas proanthocyanidin dimer B and trimer A were predominant in Pilgrim.

  12. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.

    PubMed

    Mansø, Mads; Petersen, Anne Ugleholdt; Wang, Zhihang; Erhart, Paul; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2018-05-16

    Molecular photoswitches can be used for solar thermal energy storage by photoisomerization into high-energy, meta-stable isomers; we present a molecular design strategy leading to photoswitches with high energy densities and long storage times. High measured energy densities of up to 559 kJ kg -1 (155 Wh kg -1 ), long storage lifetimes up to 48.5 days, and high quantum yields of conversion of up to 94% per subunit are demonstrated in norbornadiene/quadricyclane (NBD/QC) photo-/thermoswitch couples incorporated into dimeric and trimeric structures. By changing the linker unit between the NBD units, we can at the same time fine-tune light-harvesting and energy densities of the dimers and trimers so that they exceed those of their monomeric analogs. These new oligomers thereby meet several of the criteria to be met for an optimum molecule to ultimately enter actual devices being able to undergo closed cycles of solar light-harvesting, energy storage, and heat release.

  13. Structural Insight into the Core of CAD, the Multifunctional Protein Leading De Novo Pyrimidine Biosynthesis.

    PubMed

    Moreno-Morcillo, María; Grande-García, Araceli; Ruiz-Ramos, Alba; Del Caño-Ochoa, Francisco; Boskovic, Jasminka; Ramón-Maiques, Santiago

    2017-06-06

    CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Photoexcited energy transfer in a weakly coupled dimer

    DOE PAGES

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; ...

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  15. Photoexcited Energy Transfer in a Weakly Coupled Dimer.

    PubMed

    Alfonso Hernandez, Laura; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-06-18

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. Our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  16. Regulation of Oligomeric Organization of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Observed by Spatial Intensity Distribution Analysis*

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme

    2015-01-01

    The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490

  17. Crystal structure of a dodecameric FMN-dependent UbiX-like decarboxylase (Pad1) from Escherichia coli O157: H7

    PubMed Central

    Rangarajan, Erumbi S.; Li, Yunge; Iannuzzi, Pietro; Tocilj, Ante; Hung, Li-Wei; Matte, Allan; Cygler, Miroslaw

    2004-01-01

    The crystal structure of the flavoprotein Pad1 from Escherichia coli O157:H7 complexed with the cofactor FMN has been determined by the multiple anomalous diffraction method and refined at 2.0 Å resolution. This protein is a paralog of UbiX (3-octaprenyl-4-hydroxybenzoate carboxylyase, 51% sequence identity) that catalyzes the third step in ubiquinone biosynthesis and to Saccharomyces cerevisiae Pad1 (54% identity), an enzyme that confers resistance to the antimicrobial compounds phenylacrylic acids through decarbox-ylation of these compounds. Each Pad1 monomer consists of a typical Rossmann fold containing a non–covalently bound molecule of FMN. The fold of Pad1 is similar to MrsD, an enzyme associated with lantibiotic synthesis; EpiD, a peptidyl-cysteine decarboxylase; and AtHAL3a, the enzyme, which decarboxylates 4′-phosphopantothenoylcysteine to 4′-phosphopantetheine during coenzyme A biosynthesis, all with a similar location of the FMN binding site at the interface between two monomers, yet each having little sequence similarity to one another. All of these proteins associate into oligomers, with a trimer forming the common structural unit in each case. In MrsD and EpiD, which belong to the homo-dodecameric flavin-containing cysteine decarboxylase (HFCD) family, these trimers associate further into dodecamers. Pad1 also forms dodecamers, although the association of the trimers is completely different, resulting in exposure of a different side of the trimer unit to the solvent. This exposure affects the location of the substrate binding site and, specifically, its access to the FMN cofactor. Therefore, Pad1 forms a separate family, distinguishable from the HFCD family. PMID:15459342

  18. Structural characterization of astaxanthin aggregates as revealed by analysis and simulation of optical spectra

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Hu, Taoping; Xu, Zhigang

    2017-10-01

    Carotenoids can self-assemble in hydrated polar solvents to form J- or H-type aggregates, inducing dramatic changes in photophysical properties. Here, we measured absorption and emission spectra of astaxanthin in ethanol-water solution using ultraviolet-visible and fluorescence spectrometers. Two types of aggregates were distinguished in mixed solution at different water contents by absorption spectra. After addition of water, all probed samples immediately formed H-aggregates with maximum blue shift of 31 nm. In addition, J-aggregate was formed in 1:3 ethanol-water solution measured after an hour. Based on Frenkel exciton model, we calculated linear absorption and emission spectra of these aggregates to describe aggregate structures in solution. For astaxanthin, experimental results agreed well with the fitted spectra of H-aggregate models, which consisted of tightly packed stacks of individual molecules, including hexamers, trimers, and dimers. Transition moment of single astaxanthin in ethanol was obtained by Gaussian 09 program package to estimate the distance between molecules in aggregates. Intermolecular distance of astaxanthin aggregates ranges from 0.45 nm to 0.9 nm. Fluorescence analysis showed that between subbands, strong exciton coupling induced rapid relaxation of H-aggregates. This coupling generated larger Stokes shift than monomers and J-aggregates.

  19. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Yeast hexokinase: substrate-induced association--dissociation reactions in the binding of glucose to hexokinase P-II.

    PubMed

    Hoggett, J G; Kellett, G L

    1976-06-15

    A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.

  1. Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient.

    PubMed

    Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco

    2013-12-10

    The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.

  2. Regulation of vascular endothelial function by procyanidin-rich foods and beverages.

    PubMed

    Caton, Paul W; Pothecary, Mark R; Lees, Delphine M; Khan, Noorafza Q; Wood, Elizabeth G; Shoji, Toshihiko; Kanda, Tomomasa; Rull, Gurvinder; Corder, Roger

    2010-04-14

    Flavonoid-rich diets are associated with a lower mortality from cardiovascular disease. This has been linked to improvements in endothelial function. However, the specific flavonoids, or biologically active metabolites, conferring these beneficial effects have yet to be fully defined. In this experimental study of the effect of flavonoids on endothelial function cultured endothelial cells have been used as a bioassay with endothelin-1 (ET-1) synthesis being measured an index of the response. Evaluation of the relative effects of extracts of cranberry juice compared to apple, cocoa, red wine, and green tea showed inhibition of ET-1 synthesis was dependent primarily on their oligomeric procyanidin content. Procyanidin-rich extracts of cranberry juice triggered morphological changes in endothelial cells with reorganization of the actin cytoskeleton and increased immunostaining for phosphotyrosine residues. These actions were independent of antioxidant activity. Comparison of the effects of apple procyanidin monomers through heptamer showed a clear structure-activity relationship. Although monomer, dimer, and trimer had little effect on ET-1 synthesis, procyanidin tetramer, pentamer, hexamer, and heptamer produced concentration-dependent decreases with IC(50) values of 5.4, 1.6, 0.9, and 0.7 microM, respectively. Levels of ET-1 mRNA showed a similar pattern of decreases, which were inversely correlated with increased expression of Kruppel-like factor 2 (KLF2), a key endothelial transcription factor with a broad range of antiatherosclerotic actions including suppression of ET-1 synthesis. Future investigations of procyanidin-rich products should assess the role KLF2 induction plays in the beneficial vascular effects of high flavonoid consumption.

  3. Tricin, a Flavonoid Monomer in Monocot Lignification1[OPEN

    PubMed Central

    Lan, Wu; Lu, Fachuang; Regner, Matthew; Zhu, Yimin; Rencoret, Jorge; Ralph, Sally A.; Zakai, Uzma I.; Morreel, Kris; Boerjan, Wout; Ralph, John

    2015-01-01

    Tricin was recently discovered in lignin preparations from wheat (Triticum aestivum) straw and subsequently in all monocot samples examined. To provide proof that tricin is involved in lignification and establish the mechanism by which it incorporates into the lignin polymer, the 4′-O-β-coupling products of tricin with the monolignols (p-coumaryl, coniferyl, and sinapyl alcohols) were synthesized along with the trimer that would result from its 4′-O-β-coupling with sinapyl alcohol and then coniferyl alcohol. Tricin was also found to cross couple with monolignols to form tricin-(4′-O-β)-linked dimers in biomimetic oxidations using peroxidase/hydrogen peroxide or silver (I) oxide. Nuclear magnetic resonance characterization of gel permeation chromatography-fractionated acetylated maize (Zea mays) lignin revealed that the tricin moieties are found in even the highest molecular weight fractions, ether linked to lignin units, demonstrating that tricin is indeed incorporated into the lignin polymer. These findings suggest that tricin is fully compatible with lignification reactions, is an authentic lignin monomer, and, because it can only start a lignin chain, functions as a nucleation site for lignification in monocots. This initiation role helps resolve a long-standing dilemma that monocot lignin chains do not appear to be initiated by monolignol homodehydrodimerization as they are in dicots that have similar syringyl-guaiacyl compositions. The term flavonolignin is recommended for the racemic oligomers and polymers of monolignols that start from tricin (or incorporate other flavonoids) in the cell wall, in analogy with the existing term flavonolignan that is used for the low-molecular mass compounds composed of flavonoid and lignan moieties. PMID:25667313

  4. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.

    PubMed

    Masso, Majid; Vaisman, Iosif I

    2003-05-30

    A computational geometry technique based on Delaunay tessellation of protein structure, represented by C(alpha) atoms, is used to study effects of single residue mutations on sequence-structure compatibility in HIV-1 protease. Profiles of residue scores derived from the four-body statistical potential are constructed for all 1881 mutants of the HIV-1 protease monomer and compared with the profile of the wild-type protein. The profiles for an isolated monomer of HIV-1 protease and the identical monomer in a dimeric state with an inhibitor are analyzed to elucidate changes to structural stability. Protease residues shown to undergo the greatest impact are those forming the dimer interface and flap region, as well as those known to be involved in inhibitor binding.

  5. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem.

    PubMed

    Damiani, Isabelle; Morreel, Kris; Danoun, Saïda; Goeminne, Geert; Yahiaoui, Nabila; Marque, Christiane; Kopka, Joachim; Messens, Eric; Goffner, Deborah; Boerjan, Wout; Boudet, Alain-Michel; Rochange, Soizic

    2005-11-01

    In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes.

  6. Monomeric and dimeric hydrolysable tannins of Tamarix nilotica.

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Hatano, Tsutomu

    2009-07-01

    An ellagitannin monomer, nilotinin M1 (1), and three dimers, nilotinins D1 (2), D2 (3), and D3 (4), were isolated from leaves of Tamarix nilotica (Ehrenb.) Bunge. Structures were elucidated based on analysis of spectroscopic data and chemical correlations with known compounds. In addition, six known tannins, hirtellin A (5) (dimer), remurin A (6), remurin B (7), 1,3-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucose (8), gemin D (9), and hippomanin A (10) (monomers), were isolated for the first time from this plant species. The reported (13)C NMR assignments of the dehydrodigalloyl moiety and glucose cores of 5 are revised, and the (13)C NMR spectroscopic data for 6 and 7 are also reported for the first time.

  7. Method for determining the composition and orientation of III-V {001} semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sung, M. M.; Kim, C.; Rabalais, J. W.

    1996-09-01

    A method for determining the composition and orientation of III-V {001} semiconductor surfaces is presented and applications are described. The information is obtained from the techniques of time-of-flight scattering and recoiling spectrometry (TOF-SARS), using the composition from azimuth-specific elemental accessibilities (CASEA) method, and low energy electron diffraction (LEED). The azimuth-specific elemental accessibilities (ASEA) are measured experimentally and calculated from the number of accessible atoms in the unit cell and from three-dimensional trajectory simulations using the SARIC program. The in situ analyses identify the 1st-layer elemental species and determine the orientation of the reconstructed surface symmetry elements with respect to the bulk crystallographic directions. This is demonstrated for the III-V {001} compound semiconductor surfaces of GaAs and InAs in the (4 × 2) and (4 × 2) phases and InP in the (4 × 2) phase. The analyses confirm the missing-row-dimer (MRD) structure for GaAs and InAs in which the missing row direction is parallel to the direction of the 1st-layer multimers (dimers) and the missing-row-trimer-dimer (MRTD) structure for InP in which the missing row direction is perpendicular to the direction of the 1st-layer multimers (trimers).

  8. The accuracy of quantum chemical methods for large noncovalent complexes

    PubMed Central

    Pitoňák, Michal; Řezáč, Jan; Pulay, Peter

    2013-01-01

    We evaluate the performance of the most widely used wavefunction, density functional theory, and semiempirical methods for the description of noncovalent interactions in a set of larger, mostly dispersion-stabilized noncovalent complexes (the L7 data set). The methods tested include MP2, MP3, SCS-MP2, SCS(MI)-MP2, MP2.5, MP2.X, MP2C, DFT-D, DFT-D3 (B3-LYP-D3, B-LYP-D3, TPSS-D3, PW6B95-D3, M06-2X-D3) and M06-2X, and semiempirical methods augmented with dispersion and hydrogen bonding corrections: SCC-DFTB-D, PM6-D, PM6-DH2 and PM6-D3H4. The test complexes are the octadecane dimer, the guanine trimer, the circumcoronene…adenine dimer, the coronene dimer, the guanine-cytosine dimer, the circumcoronene…guanine-cytosine dimer, and an amyloid fragment trimer containing phenylalanine residues. The best performing method is MP2.5 with relative root mean square deviation (rRMSD) of 4 %. It can thus be recommended as an alternative to the CCSD(T)/CBS (alternatively QCISD(T)/CBS) benchmark for molecular systems which exceed current computational capacity. The second best non-DFT method is MP2C with rRMSD of 8 %. A method with the most favorable “accuracy/cost” ratio belongs to the DFT family: BLYP-D3, with an rRMSD of 8 %. Semiempirical methods deliver less accurate results (the rRMSD exceeds 25 %). Nevertheless, their absolute errors are close to some much more expensive methods such as M06-2X, MP2 or SCS(MI)-MP2, and thus their price/performance ratio is excellent. PMID:24098094

  9. NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer

    PubMed Central

    Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A.

    2012-01-01

    Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP+ with a 1∶1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells. PMID:23189196

  10. Molecular weight-dependent degradation of D-lactate-containing polyesters by polyhydroxyalkanoate depolymerases from Variovorax sp. C34 and Alcaligenes faecalis T1.

    PubMed

    Sun, Jian; Matsumoto, Ken'ichiro; Tabata, Yuta; Kadoya, Ryosuke; Ooi, Toshihiko; Abe, Hideki; Taguchi, Seiichi

    2015-11-01

    Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme.

  11. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab ismore » sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.« less

  12. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Yuan, H; Kong, Y

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) andmore » two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved. Given that CXCL12 is in the CXC family, the CXC dimer is considered the physiologic dimer in all previous studies based on crystallographic evidence. NMR and mutational studies agree with the CXC dimer form in solution. The CXC form of the dimer is seen in recent structures of CXCL12 bound to a heparin disaccharide and several CXCR4 peptides. In one case, crystals of the CXC-type dimer were soaked in a heparin disaccharide solution to determine the interactions between this dimer and bound disaccharide. In another case, in order to overcome NMR chemical shift line broadening when CXCR4 peptides are added, a 'locked' dimer was constructed by introducing a cysteine mutant that linked subunits as a CXC dimer through an inter-subunit disulfide bond. The solution structures of the locked CXC dimer with CXCR4 peptides were determined. The locked CXC dimer retained Ca{sup 2+} mobilization yet lost chemotaxis activity, presumably because the monomer is the active form. In addition to existing as a monomer and CXC dimer, CXCL12 is now demonstrated to have the capacity to form CC type dimers in the presence of a CXCR4 peptide.« less

  13. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  14. Effect of dimer dissociation on activity and thermostability of the alpha-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases.

    PubMed

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-10-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. alpha-Glucuronidases are family 67 glycosidases that cleave the alpha-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of alpha-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the alpha-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial alpha-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in alpha-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35 degrees C, compared to 65 degrees C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9 degrees C, was almost identical to that of the wild-type, 73.4 degrees C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region and reduce the activity. Structural and mechanistic explanations for these effects are discussed.

  15. Effect of Dimer Dissociation on Activity and Thermostability of the α-Glucuronidase from Geobacillus stearothermophilus: Dissecting the Different Oligomeric Forms of Family 67 Glycoside Hydrolases

    PubMed Central

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-01-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. α-Glucuronidases are family 67 glycosidases that cleave the α-1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of α-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the α-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial α-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in α-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35°C, compared to 65°C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9°C, was almost identical to that of the wild-type, 73.4°C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region and reduce the activity. Structural and mechanistic explanations for these effects are discussed. PMID:15466046

  16. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET

    PubMed Central

    Meng, Fanjie; Kim, Jae-Yeol; McHale, Kevin; Gopich, Irina V.; Louis, John M.

    2017-01-01

    We describe a method that combines two- and three-color single-molecule FRET spectroscopy with 2D FRET efficiency–lifetime analysis to probe the oligomerization process of intrinsically disordered proteins. This method is applied to the oligomerization of the tetramerization domain (TD) of the tumor suppressor protein p53. TD exists as a monomer at subnanomolar concentrations and forms a dimer and a tetramer at higher concentrations. Because the dissociation constants of the dimer and tetramer are very close, as we determine in this paper, it is not possible to characterize different oligomeric species by ensemble methods, especially the dimer that cannot be readily separated. However, by using single-molecule FRET spectroscopy that includes measurements of fluorescence lifetime and two- and three-color FRET efficiencies with corrections for submillisecond acceptor blinking, we show that it is possible to obtain structural information for individual oligomers at equilibrium and to determine the dimerization kinetics. From these analyses, we show that the monomer is intrinsically disordered and that the dimer conformation is very similar to that of the tetramer but the C terminus of the dimer is more flexible. PMID:28760960

  17. Conformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein.

    PubMed

    Zhang, J Z; Ng, M H; Xia, N S; Lau, S H; Che, X Y; Chau, T N; Lai, S T; Im, S W

    2001-06-01

    A 23 kDa peptide locating to amino acid residues 394 to 604 of the major Hepatitis E Virus (HEV) structural protein was expressed in E. coli. This peptide was found to interact naturally with one another to form homodimers and it was recognized strongly and commonly in its dimeric form by HEV reactive human sera. The antigenic activity associated with the dimeric form was abrogated when the dimer was dissociated into monomer and the activity was reconstituted after the monomer was re-associated into dimer again. The dimeric form of the peptide elicited a vigorous antibody response in experimental animals and the resulting antisera were found to cross-react against HEV, effecting an efficient immune capture of the virus. These results attributed the antigenic activity associated with the dimeric form of the peptide to conformational antigenic determinants generated as a result of interaction between the peptide molecules. It is suggested that some of these antigenic determinants may be expressed by the HEV capsid and raised the possibility of this bacterially expressed peptide as an HEV vaccine candidate. Copyright 2001 Wiley-Liss, Inc.

  18. Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates*

    PubMed Central

    Bojja, Ravi Shankar; Andrake, Mark D.; Merkel, George; Weigand, Steven; Dunbrack, Roland L.; Skalka, Anna Marie

    2013-01-01

    We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition. PMID:23322775

  19. HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons.

    PubMed

    Shen, Qing-Tao; Ren, Xuefeng; Zhang, Rui; Lee, Il-Hyung; Hurley, James H

    2015-10-23

    The lentiviruses HIV and simian immunodeficiency virus (SIV) subvert intracellular membrane traffic as part of their replication cycle. The lentiviral Nef protein helps viruses evade innate and adaptive immune defenses by hijacking the adaptor protein 1 (AP-1) and AP-2 clathrin adaptors. We found that HIV-1 Nef and the guanosine triphosphatase Arf1 induced trimerization and activation of AP-1. Here we report the cryo-electron microscopy structures of the Nef- and Arf1-bound AP-1 trimer in the active and inactive states. A central nucleus of three Arf1 molecules organizes the trimers. We combined the open trimer with a known dimer structure and thus predicted a hexagonal assembly with inner and outer faces that bind the membranes and clathrin, respectively. Hexagons were directly visualized and the model validated by reconstituting clathrin cage assembly. Arf1 and Nef thus play interconnected roles in allosteric activation, cargo recruitment, and coat assembly, revealing an unexpectedly intricate organization of the inner AP-1 layer of the clathrin coat. Copyright © 2015, American Association for the Advancement of Science.

  20. Comparing procyanidins in selected Vaccinium species by UHPLC-MS(2) with regard to authenticity and health effects.

    PubMed

    Jungfer, Elvira; Zimmermann, Benno F; Ruttkat, Axel; Galensa, Rudolf

    2012-09-26

    Cranberry procyanidins have been associated with an effect against urinary tract infections (UTI) for decades, and European health claims are requested. This study compares the procyanidin profiles and concentrations of American cranberry ( Vaccinium macrocarpon Ait.), European cranberry ( Vaccinium oxycoccus L.), and lingonberry ( Vaccinium vitis-idaea L.) analyzed using ultrahigh-performance liquid chromatoraphy coupled to a triple-quadrupole mass spectrometer with electrospray interface (UHPLC-MS(2)). Concentrations of A-type trimers, procyanidin A2, catechin, epicatechin, and B-type dimers and trimers have been evaluated and compared for the first time in the three berries. The data clearly show remarkable differences in the procyanidin profiles and concentrations, especially the lack of A-type trimers in V. oxycoccus; thus, the effectiveness against UTI may vary among the Vaccinium species. These differences can be used to prove authenticity.

  1. Doubly charged coronene clusters—Much smaller than previously observed

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Raggl, Stefan; Renzler, Michael; Goulart, Marcelo; Huber, Stefan E.; Mauracher, Andreas; Scheier, Paul; Echt, Olof

    2018-05-01

    The smallest doubly charged coronene cluster ions reported so far, Cor152+, were produced by charge exchange between bare coronene clusters and He2+ [H. A. B. Johansson et al., Phys. Rev. A 84, 043201 (2011)]. These dications are at least five times larger than the estimated Rayleigh limit, i.e., the size at which the activation barrier for charge separation vanishes. Such a large discrepancy is unheard of for doubly charged atomic or molecular clusters. Here we report the mass spectrometric observation of doubly charged coronene trimers, produced by electron ionization of helium nanodroplets doped with coronene. The observation implies that Cor32+ features a non-zero fission barrier too large to overcome under the present experimental conditions. The height of the barriers for the dimer and trimer has been estimated by means of density functional theory calculations. A sizeable barrier for the trimer has been revealed in agreement with the experimental findings.

  2. Polyphenolic Characterization and Antioxidant Activity of Malus domestica and Prunus domestica Cultivars from Costa Rica

    PubMed Central

    Moreira, Ileana; Arnaez, Elizabeth; Azofeifa, Gabriela; Vargas, Felipe; Alvarado, Diego; Chen, Pei

    2018-01-01

    The phenolic composition of skin and flesh from Malus domestica apples (Anna cultivar) and Prunus domestica plums (satsuma cultivar) commercial cultivars in Costa Rica, was studied using Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (UPLC-DAD-ESI-MS) on enriched-phenolic extracts, with particular emphasis in proanthocyanidin and flavonoids characterization. A total of 52 compounds were identified, including 21 proanthocyanidins ([(+)-catechin and (−)-epicatechin]) flavan-3-ols monomers, five procyanidin B-type dimers and two procyanidin A-type dimers, five procyanidin B-type trimers and two procyanidin A-type trimers, as well as one procyanidin B-type tetramer, two procyanidin B-type pentamers, and two flavan-3-ol gallates); 15 flavonoids (kaempferol, quercetin and naringenin derivatives); nine phenolic acids (protochatechuic, caffeoylquinic, and hydroxycinnamic acid derivatives); five hydroxychalcones (phloretin and 3-hydroxyphloretin derivatives); and two isoprenoid glycosides (vomifoliol derivatives). These findings constitute the first report of such a high number and diversity of compounds in skins of one single plum cultivar and of the presence of proanthocyanidin pentamers in apple skins. Also, it is the first time that such a large number of glycosylated flavonoids and proanthocyanidins are reported in skins and flesh of a single plum cultivar. In addition, total phenolic content (TPC) was measured with high values observed for all samples, especially for fruits skins with a TPC of 619.6 and 640.3 mg gallic acid equivalents/g extract respectively for apple and plum. Antioxidant potential using 2,2-diphenyl-1-picrylhidrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods were evaluated, with results showing also high values for all samples, especially again for fruit skins with IC50 of 4.54 and 5.19 µg/mL (DPPH) and 16.8 and 14.6 mmol TE/g (ORAC) respectively for apple and plum, indicating the potential value of these extracts. Significant negative correlation was found for both apple and plum samples between TPC and DPPH antioxidant values, especially for plum fruits (R = −0.981, p < 0.05) as well as significant positive correlation between TPC and ORAC, also especially for plum fruits (R = 0.993, p < 0.05) and between both, DPPH and ORAC antioxidant methods (R = 0.994, p < 0.05). PMID:29385709

  3. Polyphenolic Characterization and Antioxidant Activity of Malus domestica and Prunus domestica Cultivars from Costa Rica.

    PubMed

    Navarro, Mirtha; Moreira, Ileana; Arnaez, Elizabeth; Quesada, Silvia; Azofeifa, Gabriela; Vargas, Felipe; Alvarado, Diego; Chen, Pei

    2018-01-30

    The phenolic composition of skin and flesh from Malus domestica apples (Anna cultivar) and Prunus domestica plums (satsuma cultivar) commercial cultivars in Costa Rica, was studied using Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (UPLC-DAD-ESI-MS) on enriched-phenolic extracts, with particular emphasis in proanthocyanidin and flavonoids characterization. A total of 52 compounds were identified, including 21 proanthocyanidins ([(+)-catechin and (-)-epicatechin]) flavan-3-ols monomers, five procyanidin B-type dimers and two procyanidin A-type dimers, five procyanidin B-type trimers and two procyanidin A-type trimers, as well as one procyanidin B-type tetramer, two procyanidin B-type pentamers, and two flavan-3-ol gallates); 15 flavonoids (kaempferol, quercetin and naringenin derivatives); nine phenolic acids (protochatechuic, caffeoylquinic, and hydroxycinnamic acid derivatives); five hydroxychalcones (phloretin and 3-hydroxyphloretin derivatives); and two isoprenoid glycosides (vomifoliol derivatives). These findings constitute the first report of such a high number and diversity of compounds in skins of one single plum cultivar and of the presence of proanthocyanidin pentamers in apple skins. Also, it is the first time that such a large number of glycosylated flavonoids and proanthocyanidins are reported in skins and flesh of a single plum cultivar. In addition, total phenolic content (TPC) was measured with high values observed for all samples, especially for fruits skins with a TPC of 619.6 and 640.3 mg gallic acid equivalents/g extract respectively for apple and plum. Antioxidant potential using 2,2-diphenyl-1-picrylhidrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods were evaluated, with results showing also high values for all samples, especially again for fruit skins with IC 50 of 4.54 and 5.19 µg/mL (DPPH) and 16.8 and 14.6 mmol TE/g (ORAC) respectively for apple and plum, indicating the potential value of these extracts. Significant negative correlation was found for both apple and plum samples between TPC and DPPH antioxidant values, especially for plum fruits ( R = -0.981, p < 0.05) as well as significant positive correlation between TPC and ORAC, also especially for plum fruits ( R = 0.993, p < 0.05) and between both, DPPH and ORAC antioxidant methods ( R = 0.994, p < 0.05).

  4. Mutational analysis of cysteine 328 and cysteine 368 at the interface of Plasmodium falciparum adenylosuccinate synthetase.

    PubMed

    Mehrotra, Sonali; B Ningappa, Mylarappa; Raman, Jayalakshmi; Anand, Ranjith P; Balaram, Hemalatha

    2012-04-01

    Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Vibrational study and Natural Bond Orbital analysis of serotonin in monomer and dimer states by density functional theory

    NASA Astrophysics Data System (ADS)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2018-06-01

    The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.

  6. Osmotic mechanism of the loop extrusion process

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  7. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads.

    PubMed

    Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio

    2018-05-29

    A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.

  8. Structural Analysis of Succinoglycan Oligosaccharides from Sinorhizobium meliloti Strains with Different Host Compatibility Phenotypes

    PubMed Central

    Wood, Karl; Reuhs, Bradley L.

    2013-01-01

    Sinorhizobium meliloti NRG247 has a Fix+ phenotype on Medicago truncatula A20 and is Fix− on M. truncatula A17, and the phenotype is reversed with S. meliloti NRG185. As the succinoglycan was shown to impact host specificity, an analysis of the succinoglycan oligosaccharides produced by each strain was conducted. The symbiotically active succinoglycan trimeric oligosaccharides (STOs) from the two S. meliloti strains were compared by chromatography and mass spectrometry, and the analysis of the S. meliloti NRG247 oligosaccharides showed that this strain produces an abundance of STO trimer 1 (T1), containing no succinate (i.e., three nonsuccinylated repeats), yet the low-molecular-weight pool contained no nonsuccinylated monomers (potential repeats). This showed that STO T1 is likely to be the active signal on M. truncatula A20 and that the biosynthesis of the STOs is not a random polymerization of the monomer population. The results also suggest that the fully succinylated STO T7 is required for the infection of M. truncatula A17. PMID:23457246

  9. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    NASA Astrophysics Data System (ADS)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  10. Complex Structure and Biochemical Characterization of the Staphylococcus aureus Cyclic Diadenylate Monophosphate (c-di-AMP)-binding Protein PstA, the Founding Member of a New Signal Transduction Protein Family*

    PubMed Central

    Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G.; Freemont, Paul S.; Gründling, Angelika

    2015-01-01

    Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein. PMID:25505271

  11. Nucleotide-dependent conformational states of actin

    PubMed Central

    Pfaendtner, Jim; Branduardi, Davide; Parrinello, Michele; Pollard, Thomas D.; Voth, Gregory A.

    2009-01-01

    The influence of the state of the bound nucleotide (ATP, ADP-Pi, or ADP) on the conformational free-energy landscape of actin is investigated. Nucleotide-dependent folding of the DNase-I binding (DB) loop in monomeric actin and the actin trimer is carried out using all-atom molecular dynamics (MD) calculations accelerated with a multiscale implementation of the metadynamics algorithm. Additionally, an investigation of the opening and closing of the actin nucleotide binding cleft is performed. Nucleotide-dependent free-energy profiles for all of these conformational changes are calculated within the framework of metadynamics. We find that in ADP-bound monomer, the folded and unfolded states of the DB loop have similar relative free-energy. This result helps explain the experimental difficulty in obtaining an ordered crystal structure for this region of monomeric actin. However, we find that in the ADP-bound actin trimer, the folded DB loop is stable and in a free-energy minimum. It is also demonstrated that the nucleotide binding cleft favors a closed conformation for the bound nucleotide in the ATP and ADP-Pi states, whereas the ADP state favors an open confirmation, both in the monomer and trimer. These results suggest a mechanism of allosteric interactions between the nucleotide binding cleft and the DB loop. This behavior is confirmed by an additional simulation that shows the folding free-energy as a function of the nucleotide cleft width, which demonstrates that the barrier for folding changes significantly depending on the value of the cleft width. PMID:19620726

  12. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM

    PubMed Central

    Gupta, Gagan Deep; Madamwar, Datta

    2015-01-01

    Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein. PMID:25923120

  13. Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering.

    PubMed

    Hartl, Caroline; Frank, Kilian; Amenitsch, Heinz; Fischer, Stefan; Liedl, Tim; Nickel, Bert

    2018-04-11

    DNA origami objects allow for accurate positioning of guest molecules in three dimensions. Validation and understanding of design strategies for particle attachment as well as analysis of specific particle arrangements are desirable. Small-angle X-ray scattering (SAXS) is suited to probe distances of nano-objects with subnanometer resolution at physiologically relevant conditions including pH and salt and at varying temperatures. Here, we show that the pair density distribution function (PDDF) obtained from an indirect Fourier transform of SAXS intensities in a model-free way allows to investigate prototypical DNA origami-mediated gold nanoparticle (AuNP) assemblies. We analyze the structure of three AuNP-dimers on a DNA origami block, an AuNP trimer constituted by those dimers, and a helical arrangement of nine AuNPs on a DNA origami cylinder. For the dimers, we compare the model-free PDDF and explicit modeling of the SAXS intensity data by superposition of scattering intensities of the scattering objects. The PDDF of the trimer is verified to be a superposition of its dimeric contributions, that is, here AuNP-DNA origami assemblies were used as test boards underlining the validity of the PDDF analysis beyond pairs of AuNPs. We obtain information about AuNP distances with an uncertainty margin of 1.2 nm. This readout accuracy in turn can be used for high precision placement of AuNP by careful design of the AuNP attachment sites on the DNA-structure and by fine-tuning of the connector types.

  14. Effect of the coordination of the superficial site in the monomer dimer reaction on a disordered substrate

    NASA Astrophysics Data System (ADS)

    Valencia, Eliana; Cortés, Joaquín.; Puschmann, Heinrich

    2000-12-01

    Using Monte Carlo simulation experiments, a study is made of the effect of the superficial coordination number in a square lattice of sites for the monomer-dimer surface reaction (Ziff, Gulari and Barshad model) in the case of disordered substrates showing geometric heterogeneity of the sites, such as the percolation clusters. An analysis is made of the change in character of the phase transitions and in the size of the reactive window in the phase diagram, and the results were also compared with mean field theoretical calculations for disordered systems.

  15. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.

    PubMed

    Khanal, R C; Howard, L R; Prior, R L

    2009-08-01

    Grape juice processing by-products, grape seed and pomace are a rich source of procyanidins, compounds that may afford protection against chronic disease. This study was undertaken to identify optimal extrusion conditions to enhance the contents of monomers and dimers at the expense of large molecular weight procyanidin oligomers and polymers in grape seed and pomace. Extrusion variables, temperature (160, 170, and 180 degrees C in grape seed, and 160, 170, 180, and 190 degrees C in pomace) and screw speed (100, 150, and 200 rpm in both) were tested using mixtures of grape seed as well as pomace with decorticated white sorghum flour at a ratio of 30 : 70 and moisture content of 45%. Samples of grape seed and pomace were analyzed for procyanidin composition before and after extrusion, and total anthocyanins were determined in pomace. Additionally, chromatograms from diol and normal phase high-performance liquid chromatography were compared for the separation of procyanidins. Extrusion of both grape by-products increased the biologically important monomer and dimers considerably across all temperature and screw speeds. Highest monomer content resulted when extruded at a temperature of 170 degrees C and screw speed of 200 rpm, which were 120% and 80% higher than the unextruded grape seed and pomace, respectively. Increases in monomer and dimer contents were apparently the result of reduced polymer contents, which declined by 27% to 54%, or enhanced extraction facilitated by disruption of the food matrix during extrusion. Extrusion processing reduced total anthocyanins in pomace by 18% to 53%. Extrusion processing can be used to increase procyanidin monomer and dimer contents in grape seed and pomace. Procyanidins in grape by-products have many health benefits, but most are present as large molecular weight compounds, which are poorly absorbed. Extrusion processing appears to be a promising technology to increase levels of the bioactive low molecular weight procyanidins.

  16. Fluorescence of acridinic dyes in anionic surfactant solution

    NASA Astrophysics Data System (ADS)

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer ( τ1 = 16.4 ns), dimer ( τ2 = 7.1 ns), and a faster component ( τ3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  17. Fluorescence of acridinic dyes in anionic surfactant solution.

    PubMed

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer (tau1 = 16.4 ns), dimer (tau2 = 7.1 ns), and a faster component (tau3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  18. Proanthocyanidins in wild sea buckthorn (Hippophaë rhamnoides) berries analyzed by reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography with UV and MS detection.

    PubMed

    Kallio, Heikki; Yang, Wei; Liu, Pengzhan; Yang, Baoru

    2014-08-06

    A rapid and sensitive method for profiling of proanthocyanidins (PAs) of sea buckthorn (Hippophaë rhamnoides) berries was established based on aqueous, acidified acetone extraction. The extract was purified by Sephadex column chromatography and analyzed using reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography (HILIC). Negative ion electrospray ionization mass spectrometry (ESI-MS) in single ion recording (SIR) and full scan modes combined with UV detection were used to define the combinations and ratios of PA oligomer classes. PAs with degree of polymerization from 2 to 11 were detected by HILIC-ESI-MS. Quantification of dimeric, trimeric, and tetrameric PAs was carried out with ESI-MS-SIR, and their molar proportions were 40, 40, and 20%, respectively. Only B-type PAs were found, and (epi)gallocatechins were the main monomeric units. More than 60 combinations of (epi)catechins and (epi)gallocatechins of proanthocyanidin dimers and trimers were found. A majority of the PAs were shown to be higher polymers based on the HILIC-UV analysis.

  19. Novel Isochroman Dimers from Stachybotrys sp. PH30583: Fermentation, Isolation, Structural Elucidation and Biological Activities.

    PubMed

    Li, Wei; Yang, Ya-Bin; Yang, Xue-Qiong; Xie, Hui-Ding; Shao, Zhi-Hui; Zhou, Hao; Miao, Cui-Ping; Zhao, Li-Xing; Ding, Zhong-Tao

    2017-05-01

    The rare anishidiol and five new isochromans, including three novel dimers with unprecedented skeletons, were isolated from Stachybotrys sp. PH30583. Their structures were determined by spectral analyses. The bioactivities of these compounds were also investigated. The dimers ( 6 - 10 ) inhibited acetylcholinesterase at 50 µM, but the monomers did not. To investigate the biogenesis of the novel dimers, a time-course investigation of metabolite production was undertaken. Georg Thieme Verlag KG Stuttgart · New York.

  20. The PH Domain of PDK1 Exhibits a Novel, Phospho-Regulated Monomer-Dimer Equilibrium With Important Implications for Kinase Domain Activation: Single Molecule and Ensemble Studies†

    PubMed Central

    Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.

    2013-01-01

    Phosphoinositide-Dependent Kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4-5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric state(s) of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. The present study investigates the binding of purified WT and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single molecule and ensemble measurements. Single molecule analysis of the brightness of fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric, while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single molecule analysis of 2-D diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little protein penetration into the bilayer as observed for other PH domains. The 2-D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that enables greater protein insertion into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveals that dimeric WT PH domain possesses a one-order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically-enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each a full order of magnitude lower than dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion. PMID:23745598

  1. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies.

    PubMed

    Ziemba, Brian P; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J

    2013-07-16

    Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows deeper insertion of the protein into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveal that the dimeric WT PH domain possesses a one order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each 1 order of magnitude lower than those of the dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to the cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malashkevich, Vladimir N.; Higgins, Chelsea D.; Almo, Steven C.

    The coiled-coil is one of the most ubiquitous and well studied protein structural motifs. Significant effort has been devoted to dissecting subtle variations of the typical heptad repeat sequence pattern that can designate larger topological features such as relative α-helical orientation and oligomer size. Here in this paper we report the X-ray structure of a model coiled-coil peptide, HA2-Del-L2seM, which forms an unanticipated core antiparallel dimer with potential sites for discrete higher-order multimerization (trimer or tetramer). In the X-ray structure, a third, partially-ordered α-helix is weakly associated with the antiparallel dimer and analytical ultracentrifugation experiments indicate the peptide forms amore » well-defined tetramer in solution. The HA2-Del-L2seM sequence is closely related to a parent model peptide, HA2-Del, which we previously reported adopts a parallel trimer; HA2-Del-L2seM differs by only hydrophobic leucine to selenomethione mutations and thus this subtle difference is sufficient to switch both relative α-helical topology and number of α-helices participating in the coiled-coil. Comparison of the X-ray structures of HA2-Del-L2seM (reported here) with the HA2-Del parent (reported previously) reveals novel interactions involving the selenomethionine residues that promote antiparallel coiled-coil configuration and preclude parallel trimer formation. Finally, these novel atomic insights are instructive for understanding subtle features that can affect coiled-coil topology and provide additional information for design of antiparallel coiled-coils.« less

  3. What Is the Structure of the Naphthalene-Benzene Heterodimer Radical Cation? Binding Energy, Charge Delocalization, and Unexpected Charge-Transfer Interaction in Stacked Dimer and Trimer Radical Cations.

    PubMed

    Attah, Isaac K; Platt, Sean P; Meot-Ner Mautner, Michael; El-Shall, M Samy; Peverati, Roberto; Head-Gordon, Martin

    2015-04-02

    The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique. A second benzene molecule binds to the C10H8(+•)(C6D6) dimer with essentially the same energy (8.4 ± 1 kcal/mol), suggesting that the two benzene molecules are stacked on opposite sides of the naphthalene cation in the (C6D6)C10H8(+•)(C6D6) heterotrimer. The lowest-energy isomers of the C10H8(+•)(C6D6) and (C6D6)C10H8(+•)(C6D6) dimer and trimer calculated using the M11/cc-pVTZ method have parallel stacked structures with enthalpies of binding (-ΔH°) of 8.4 and 9.0 kcal/mol, respectively, in excellent agreement with the experimental values. The stacked face-to-face class of isomers is calculated to have substantial charge-transfer stabilization of about 45% of the total interaction energy despite the large difference between the ionization energies of benzene and naphthalene. Similarly, significant delocalization of the positive charge is found among all three fragments of the (C6D6)C10H8(+•)(C6D6) heterotrimer, thus leaving only 46% of the total charge on the central naphthalene moiety. This unexpectedly high charge-transfer component results in activating two benzene molecules in the naphthalene(+•)(benzene)2 heterotrimer cation to associate with a third benzene molecule at 219 K to form a benzene trimer cation and a neutral naphthalene molecule. The global minimum of the C10H8(+•)(C6H6)2 heterotrimer is found to be the one where the naphthalene cation is sandwiched between two benzene molecules. It is remarkable, and rather unusual, that the binding energy of the second benzene molecule is essentially the same as that of the first. This is attributed to the enhanced charge-transfer interaction in the stacked trimer radical cation.

  4. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  5. The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1.

    PubMed

    Conte, Annalea; Papa, Benedetta; Ferramosca, Alessandra; Zara, Vincenzo

    2015-05-01

    In Saccharomyces cerevisiae the mature cytochrome bc1 complex exists as an obligate homo-dimer in which each monomer consists of ten distinct protein subunits inserted into or bound to the inner mitochondrial membrane. Among them, the Rieske iron-sulfur protein (Rip1), besides its catalytic role in electron transfer, may be implicated in the bc1 complex dimerization. Indeed, Rip1 has the globular domain containing the catalytic center in one monomer while the transmembrane helix interacts with the adjacent monomer. In addition, the lack of Rip1 leads to the accumulation of an immature bc1 intermediate, only loosely associated with cytochrome c oxidase. In this study we have investigated the biogenesis of the yeast cytochrome bc1 complex using epitope tagged proteins to purify native assembly intermediates. We showed that the dimerization process is an early event during bc1 complex biogenesis and that the presence of Rip1, differently from previous proposals, is not essential for this process. We also investigated the multi-step model of bc1 assembly thereby lending further support to the existence of bona fide subcomplexes during bc1 maturation in the inner mitochondrial membrane. Finally, a new model of cytochrome bc1 complex assembly, in which distinct intermediates sequentially interact during bc1 maturation, has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    NASA Astrophysics Data System (ADS)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  7. Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin*

    PubMed Central

    Isogai, Shin; Morimoto, Daichi; Arita, Kyohei; Unzai, Satoru; Tenno, Takeshi; Hasegawa, Jun; Sou, Yu-shin; Komatsu, Masaaki; Tanaka, Keiji; Shirakawa, Masahiro; Tochio, Hidehito

    2011-01-01

    p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62. PMID:21715324

  8. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    ERIC Educational Resources Information Center

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  9. Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Moon; Kim, Su Hwan; Kwak, Sang Kyu; Kwon, Young-Nam

    2018-06-01

    This work was systematically investigated the effects of acidic aqueous solution (15 wt% sulfuric acid as model wastewater from smelting process) on the physical and chemical properties of commercially available nanofiltration (NF) polyamide membranes, using piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine (MPD)-based NE90 membrane. Surface properties of the membranes were studied before and after exposure to strong acid using various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, and electrophoretic light scattering spectrophotometer. The characterization and permeation results showed piperazine-based NE40/70 membranes have relatively lower acid-resistance than MPD-based NE90 membrane. Furthermore, density functional theory (DFT) calculation was also conducted to reveal the different acid-tolerances between the piperazine-based and MPD-based polyamide membranes. The easiest protonation was found to be the protonation of oxygen in piperazine-based monomer, and the N-protonation of the monomer had the lowest energy barrier in the rate determining step (RDS). The calculations were well compatible with the surface characterization results. In addition, the energy barrier in RDS is highly correlated with the twist angle (τD), which determines the delocalization of electrons between the carbonyl πCO bond and nitrogen lone pair, and the tendency of the twist angle was also maintained in longer molecules (dimer and trimer). This study clearly explained why the semi-aromatic membrane (NE40/70) is chemically less stable than the aromatic membrane (NE90) given the surface characterizations and DFT calculation results.

  10. The speciation of antimony in sulfidic solutions: A theoretical study

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1994-12-01

    To assist in identifying the Sb sulfide species present in alkaline sulfide solutions, we have used ab initio quantum mechanical methods to calculate the structures, stabilities and vibrational spectra of a number of monomeric and oligomeric Sb(III) sulfides. In agreement with the interpretation of WOOD (1989), we assign a prominent feature observed at 369 cm -1 in the Raman spectrum of sulfidic Sb solutions to Sb-S stretching vibrations in a monomeric complex, although our calculations are most consistent with its assignment to the SbS 2(SH) -2 complex, rather than the fully deprotonated complex SbS 3-3. A shoulder observed at 380 cm -1 is best assigned to SbS(SH) 2-. Raman features observed at 314 and 350 cm 3-1 are assigned to Sb-S(H) symmetric stretching vibrations of the dimeric species Sb 2S 2(SH) 2, which is calculated to be thermodynamically stable, with respect to both the monomer Sb(SH) 3 and the trimer Sb 3S 3(SH) 3. The mixed-ligand complex Sb 2S 2(OH) 2 is calculated to become stable compared to Sb 2S 2(SH) 2 at high temperatures, in agreement with experimental solubility data. The Sb sulfide monomers are found to H-bond to water through their -SH or -S groups, but with only small changes in the Sb-S distances and Sb-S stretching frequencies. Accurate gas-phase proton affinities and estimated solution proton affinities are presented for the anionic species in solution and the estimated energetics are consistent with the presence of SbS 2(SH) -2, SbS(SH) 2-1 and Sb 2S 2(SH) 2 suggested by the Raman data.

  11. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission

    PubMed Central

    Lees, Jonathan P. B.; Manlandro, Cara Marie; Picton, Lora K.; Ebie Tan, Alexandra Z.; Casares, Salvador; Flanagan, John M.; Fleming, Karen G.; Hill, R. Blake

    2012-01-01

    Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide-like repeat (TPR) protein whose role in assembly of the fission machinery remains obscure. Two non-functional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild type Fis1. A72P also disrupts dimerization of non-functional variants indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is non-functional in fission consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR containing proteins may reversibly self-associate. PMID:22789569

  12. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hideki; Maruta, Shinsaku, E-mail: maruta@soka.ac.jp

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesinmore » monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.« less

  13. Synthesis of Novel Basic Skeletons Derived from Naltrexone

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    We will describe eight interesting reactions using naltrexone derivatives. Almost all these reactions are characteristic of naltrexone derivatives, and can lead to the synthesis of many novel skeletons that provide new interesting pharmacological data. Some of the new reactions that were found with naltrexone derivatives were expanded into general reactions. For example, the reaction of 6α-hydroxyaldehyde derived from naltrexone led to the oxazoline dimer and the 1,3,5-trioxazatriquinane skeleton (triplet drug); this reaction was applied to general ketones which were converted to α-hydroxyaldehydes, followed by conversion to dimers and trimers, as described in Sect. 7.

  14. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    NASA Astrophysics Data System (ADS)

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-09-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct.

  15. Mutational Analysis of the Stability of the H2A and H2B Histone Monomers

    PubMed Central

    Stump, Matthew R.; Gloss, Lisa M.

    2008-01-01

    The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol−1, respectively; at 10 μM, the sum of the stability of the monomers is ~60% of the stability of the native dimer. The helical content, stability and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly-collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive inter-monomer contacts, is structured in H2B but only partially folded in H2A. PMID:18976667

  16. Oligomerization of deoxynucleoside-biphosphate dimers - Template and linkage specificity

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Van Der Woerd, R.; Bakker, C. G.; Schwartz, Alan W.

    1989-01-01

    The oligomerization of the activated 3-prime-5-prime pyrophosphate-linked dimer, pdAppdAp, is presently noted to be selectively favored by a poly(U) template over the 3-prime-3-prime and 5-prime-5-prime linked dimers. Both overall yields and the production of the longest oligomers were markedly stimulated by poly(U)'s presence; in its absence, the 5-prime-5-prime linked dimer became the most reactive, yielding chains of the order of 60 monomer-unit lengths. Remarkable self-organization properties are noted for the 5-prime-5-prime dimer of pdAp.

  17. Characterization of low-abundance species in the active pharmaceutical ingredient of CIGB-300: A clinical-grade anticancer synthetic peptide.

    PubMed

    Garay, Hilda; Espinosa, Luis Ariel; Perera, Yasser; Sánchez, Aniel; Diago, David; Perea, Silvio E; Besada, Vladimir; Reyes, Osvaldo; González, Luis Javier

    2018-04-20

    CIGB-300 is a first-in-class synthetic peptide-based drug of 25 amino acids currently undergoing clinical trials in cancer patients. It contains an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide through a beta-alanine spacer. CIGB-300 inhibits the CK2-mediated phosphorylation leading to apoptosis of tumor cells in vitro, and in vivo in cancer patients. Despite the clinical development of CIGB-300, the characterization of peptide-related impurities present in the active pharmaceutical ingredient has not been reported earlier. In the decision tree of ICHQ3A(R2) guidelines, the daily doses intake, the abundance, and the identity of the peptide-related species are pivotal nodes that define actions to be taken (reporting, identification, and qualification). For this, purity was first assessed by reverse-phase chromatography (>97%) and low-abundance impurities (≤0.27%) were collected and identified by mass spectrometry. Most of the impurities were generated during peptide synthesis, the spontaneous air oxidation of the reduced peptide, and the lyophilization step. The most abundant impurity, with no biological activity, was the full-length peptide containing Met 17 transformed into a sulfoxide residue. Interestingly, parallel and antiparallel dimers of CIGB-300 linked by 2 intermolecular disulfide bonds exhibited a higher antiproliferative activity than the CIGB-300 monomer. Likewise, very low abundance trimers and tetramers of CIGB-300 linked by disulfide bonds (≤0.01%) were also detected. Here we describe for the first time the presence of active dimeric species whose feasibility as novel CIGB-300 derived entities merits further investigation. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.

  18. The Crystallization of Canavalin as a Function of pH and NaCl Concentration

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Gorti, Sridhar; Pusey, Marc L.

    2004-01-01

    We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The crystalline protein can be readily dissolved by weakly basic solution, which has been proposed to result in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part of the crystal nucleation and growth path. Results are presented for crystallization experiments of CCAN over the pH 6.4 to 9.6 range. Fluorescence anisotropy, light scattering, and gel filtration experiments show that the solutions are primarily trimers, with association to form larger species occurring as a function of protein concentration.

  19. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  20. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization.

    PubMed

    Hameed, Uzma; Price, Ian; Ikram-Ul-Haq; Ke, Ailong; Wilson, David B; Mirza, Osman

    2017-10-01

    Thermostable α-amylases have many industrial applications and are therefore continuously explored from novel sources. We present the characterization of a novel putative α-amylase gene product (Tp-AmyS) cloned from Thermotoga petrophila. The purified recombinant enzyme is highly thermostable and able to hydrolyze starch into dextrin between 90 and 100°C, with optimum activity at 98°C and pH8.5. The activity increased in the presence of Rb 1+ , K 1+ and Ca 2+ ions, whereas other ions inhibited activity. The crystal structure of Tp-AmyS at 1.7Å resolution showed common features of the GH-13 family, however was apparently found to be a dimer. Several residues from one monomer interacted with a docked acarbose, an inhibitor of Tp-AmyS, in the other monomer, suggesting catalytic cooperativity within the dimer. The most striking feature of the dimer was that it resembled the dimerization of salivary amylase from a previous crystal structure, and thus could be a functional feature of some amylases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase.

    PubMed

    Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2017-11-01

    The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Different Epidermal Growth Factor (EGF) Receptor Ligands Show Distinct Kinetics and Biased or Partial Agonism for Homodimer and Heterodimer Formation*

    PubMed Central

    Macdonald-Obermann, Jennifer L.; Pike, Linda J.

    2014-01-01

    The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers. PMID:25086039

  3. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    PubMed

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability.

    PubMed

    Cox, Julia M; Davis, Caroline A; Chan, Chikio; Jourden, Michael J; Jorjorian, Andrea D; Brym, Melissa J; Snider, Mark J; Borders, Charles L; Edmiston, Paul L

    2003-02-25

    Cytosolic creatine kinase exists in native form as a dimer; however, the reasons for this quaternary structure are unclear, given that there is no evidence of active site communication and more primitive guanidino kinases are monomers. Three fully conserved residues found in one-half of the dimer interface of the rabbit muscle creatine kinase (rmCK) were selectively changed to alanine by site-directed mutagenesis. Four mutants were prepared, overexpressed, and purified: R147A, R151A, D209A, and R147A/R151A. Both the R147A and R147A/R151A were confirmed by size-exclusion chromatography and analytical ultracentrifugation to be monomers, whereas R151A was dimeric and D209A appeared to be an equilibrium mixture of dimers and monomers. Kinetic analysis showed that the monomeric mutants, R147A and R147A/R151A, showed substantial enzymatic activity. Substrate binding affinity by R147A/R151A was reduced approximately 10-fold, although k(cat) was 60% of the wild-type enzyme. Unlike the R147A/R151A, the kinetic data for the R147A mutant could not be fit to a random-order rapid-equilibrium mechanism characteristic of the wild-type, but could only be fit to an ordered mechanism with creatine binding first. Substrate binding affinities were also significantly lower for the R147A mutant, but k(cat) was 11% that of the native enzyme. Fluorescence measurements using 1-anilinonaphthalene-8-sufonate showed that increased amounts of hydrophobic surface area are exposed in all of the mutants, with the monomeric mutants having the greatest amounts of unfolding. Thermal inactivation profiles demonstrated that protein stability is significantly decreased in the monomeric mutants compared to wild-type. Denaturation experiments measuring lambda(max) of the intrinsic fluorescence as a function of guanidine hydrochloride concentration helped confirm the quaternary structures and indicated that the general unfolding pathway of all the mutants are similar to that of the wild-type. Collectively, the data show that dimerization is not a prerequisite for activity, but there is loss of structure and stability upon formation of a CK monomer.

  5. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites

    DOE PAGES

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; ...

    2014-11-19

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcoholmore » radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (₋)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. We find DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.« less

  6. Spectroscopic and structural investigation of 2,5-dicarboxy-1-methylpyridinium inner salt

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Komasa, A.; Katrusiak, A.; Dega-Szafran, Z.; Nowaczyk, Ł.; Ratajczak-Sitarz, M.; Szafran, M.

    2014-03-01

    The structure of 2,5-dicarboxy-1-methylpyridinium inner salt (1), has been studied by X-ray diffraction, B3LYP/6-311G(d,p) calculations, FTIR, Raman and NMR spectroscopy. The molecules are linked by short intermolecular and asymmetric Osbnd H⋯O hydrogen bonds of 2.486(2) Å between carboxyl and carboxylate groups of neighboring molecules into infinite chains. The hydrogen bonds in the molecules optimized by the B3LYP/6-311G(d,p) approach in trimer (2) and dimer (3) are slightly longer than in the crystal. The FTIR spectrum of the investigated inner salt is dominated by a broad and intense absorption in the 1500-800 cm-1 region attributed to the νas(OHO) and γ(OHO) vibrations of the strong hydrogen bond. In the Raman spectrum the broad absorption is absent. Linear correlations, δexp = a + b σcalc between the experimental 1H and 13C NMR chemical shifts (δexp) of the investigated inner salt in D2O and the calculated magnetic isotropic shielding constants (σcalc) for the optimized monomer (4a) solvated in water are reported. The pKa value for 1 of 2.31 ± 0.02 was determined by the potentiometric titration.

  7. Synthesis, characterization, crystal structure and theoretical studies of 4-[(E)-(3-chloro-4-hydroxyphenyl) diazenyl]-1, 5-dimethyl-2-phenyl-1, 2-dihydro-3H-pyrazol-3-one

    NASA Astrophysics Data System (ADS)

    Athira, L. S.; Lakshmi, C. S. Nair; Balachandran, S.; Arul Dhas, D.; Hubert Joe, I.

    2017-11-01

    Crystals of new heterocyclic azo compound of 4-aminoantipyrine, 4-[(E)-(3-chloro-4-hydroxyphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one have been grown by slow evaporation method at room temperature and its structural characterization was performed by X- ray diffraction method. The spectroscopic characterization was also performed by FT-IR, UV-Vis, 13C and 1H NMR techniques. The compound crystallizes in the monoclinic CC space group with cell dimensions a = 12.4842 (13), b = 16.4492 (16), c = 8.3389 (8) and β = 102.698 (3)°. The phenyl ring attached to the pyrazolone moiety is disordered over two positions with an occupancy ratio 52:48. The components of the disorder were refined. DFT calculations have been performed by using B3LYP/6-311G (d,p) level basis set. The calculated vibrational frequency showed a red shift for Cdbnd O and OH stretching. The natural bond orbital analysis of monomer, dimer and trimer structures reveals the absence of intramolecular hydrogen bonding; however intermolecular hydrogen bonding is observed. The cationic and anionic reactive sites of compound have been visualized on MEP surface.

  8. Optimized coordinates in vibrational coupled cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomsen, Bo; Christiansen, Ove; Yagi, Kiyoshi

    The use of variationally optimized coordinates, which minimize the vibrational self-consistent field (VSCF) ground state energy with respect to orthogonal transformations of the coordinates, has recently been shown to improve the convergence of vibrational configuration interaction (VCI) towards the exact full VCI [K. Yagi, M. Keçeli, and S. Hirata, J. Chem. Phys. 137, 204118 (2012)]. The present paper proposes an incorporation of optimized coordinates into the vibrational coupled cluster (VCC), which has in the past been shown to outperform VCI in approximate calculations where similar restricted state spaces are employed in VCI and VCC. An embarrassingly parallel algorithm for variationalmore » optimization of coordinates for VSCF is implemented and the resulting coordinates and potentials are introduced into a VCC program. The performance of VCC in optimized coordinates (denoted oc-VCC) is examined through pilot applications to water, formaldehyde, and a series of water clusters (dimer, trimer, and hexamer) by comparing the calculated vibrational energy levels with those of the conventional VCC in normal coordinates and VCI in optimized coordinates. For water clusters, in particular, oc-VCC is found to gain orders of magnitude improvement in the accuracy, exemplifying that the combination of optimized coordinates localized to each monomer with the size-extensive VCC wave function provides a supreme description of systems consisting of weakly interacting sub-systems.« less

  9. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™

    PubMed Central

    Dykstra, Andrew B.; Sweeney, Matt D.; Leary, Julie A.

    2013-01-01

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. PMID:24970196

  10. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™.

    PubMed

    Dykstra, Andrew B; Sweeney, Matt D; Leary, Julie A

    2013-11-06

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions.

  11. Downhole Transformation of the Hydraulic Fracturing Fluid Biocide Glutaraldehyde: Implications for Flowback and Produced Water Quality.

    PubMed

    Kahrilas, Genevieve A; Blotevogel, Jens; Corrin, Edward R; Borch, Thomas

    2016-10-18

    Hydraulic fracturing fluid (HFF) additives are used to enhance oil and gas extraction from unconventional shale formations. Several kilometers downhole, these organic chemicals are exposed to temperatures up to 200 °C, pressures above 10 MPa, high salinities, and a pH range from 5-8. Despite this, very little is known about the fate of HFF additives under these extreme conditions. Here, stainless steel reactors are used to simulate the downhole chemistry of the commonly used HFF biocide glutaraldehyde (GA). The results show that GA rapidly (t 1/2 < 1 h) autopolymerizes, forming water-soluble dimers and trimers, and eventually precipitates out at high temperatures (∼140 °C) and/or alkaline pH. Interestingly, salinity was found to significantly inhibit GA transformation. Pressure and shale did not affect GA transformation and/or removal from the bulk fluid. On the basis of experimental pseudo-second-order rate constants, a kinetic model for GA downhole half-life predictions for any combination of these conditions within the limits tested was developed. These findings illustrate that the biocidal GA monomer has limited time to control microbial activity in hot and/or alkaline shales, and may return along with its aqueous transformation products to the surface via flowback and produced water in cooler, more acidic, and saline shales.

  12. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures

    NASA Astrophysics Data System (ADS)

    Wojtkiewicz, Jacek; Iwan, Agnieszka; Pilch, Marek; Boharewicz, Bartosz; Wójcik, Kamil; Tazbir, Igor; Kaminska, Maria

    2017-06-01

    Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed.

  13. Monomer/Dimer Transition of the Caspase-Recruitment Domain of Human Nod1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srimathi,T.; Robbins, S.; Dubas, R.

    2008-01-01

    Nod1 is an essential cytoplasmic sensor for bacterial peptidoglycans in the innate immune system. The caspase-recruitment domain of Nod1 (Nod1{_}CARD) is indispensable for recruiting a downstream kinase, receptor-interacting protein 2 (RIP2), that activates nuclear factor-?B (NF-?B). The crystal structure of human Nod1{_}CARD at 1.9 Angstroms resolution reveals a novel homodimeric conformation. Our structural and biochemical analysis shows that the homodimerization of Nod1{_}CARD is achieved by swapping the H6 helices at the carboxy termini and stabilized by forming an interchain disulfide bond between the Cys39 residues of the two monomers in solution and in the crystal. In addition, we present experimentalmore » evidence for a pH-sensitive conformational change of Nod1{_}CARD. Our results suggest that the pH-sensitive monomer/dimer transition is a unique molecular property of Nod1{_}CARD.« less

  14. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.

    PubMed

    Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree

    2015-10-22

    Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.

  15. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  16. Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins.

    PubMed

    Mondal, Samiran; Begum, Nasim A; Hu, Wenjun; Honjo, Tasuku

    2016-03-15

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.

  17. Functional requirements of AID’s higher order structures and their interaction with RNA-binding proteins

    PubMed Central

    Mondal, Samiran; Begum, Nasim A.; Hu, Wenjun; Honjo, Tasuku

    2016-01-01

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID’s structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions. PMID:26929374

  18. Accelerating MP2C dispersion corrections for dimers and molecular crystals

    NASA Astrophysics Data System (ADS)

    Huang, Yuanhang; Shao, Yihan; Beran, Gregory J. O.

    2013-06-01

    The MP2C dispersion correction of Pitonak and Hesselmann [J. Chem. Theory Comput. 6, 168 (2010)], 10.1021/ct9005882 substantially improves the performance of second-order Møller-Plesset perturbation theory for non-covalent interactions, albeit with non-trivial computational cost. Here, the MP2C correction is computed in a monomer-centered basis instead of a dimer-centered one. When applied to a single dimer MP2 calculation, this change accelerates the MP2C dispersion correction several-fold while introducing only trivial new errors. More significantly, in the context of fragment-based molecular crystal studies, combination of the new monomer basis algorithm and the periodic symmetry of the crystal reduces the cost of computing the dispersion correction by two orders of magnitude. This speed-up reduces the MP2C dispersion correction calculation from a significant computational expense to a negligible one in crystals like aspirin or oxalyl dihydrazide, without compromising accuracy.

  19. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.

    PubMed

    Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-06-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.

  20. Coordinating Subdomains of Ferritin Protein Cages with Catalysis and Biomineralization viewed from the C4 Cage Axes

    PubMed Central

    Theil, Elizabeth C.; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-01-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3•H2O minerals from Fe2+, for metabolic iron concentrates and oxidant protection; biomineral order varies in different ferritin proteins. The conserved 4, 3, 2 geometric symmetry of ferritin protein cages, parallels subunit dimer, trimer and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self- assembling ferritin nanocages have functional relationships to cage symmetry such as Fe2+ transport though ion channels (3-fold symmetry), biomineral nucleation/order (4-fold symmetry) and mineral dissolution (3-fold symmetry) studied in ferritin variants. Cage subunit dimers (2-fold symmetry) influence iron oxidation and mineral dissolution, based on effects of natural or synthetic subunit dimer crosslinks. 2Fe2+/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n=3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of 3 subunits. Here, we study 2Fe2+ + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3•H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein 2-fold and 3-fold cage axes to show function at ferritin 4-fold cage axes. Here, conserved amino acids facilitate dissolution of ferritin protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage 4-fold symmetry and solid state mineral properties remain largely unexplored. PMID:24504941

  1. Ultrafast photodimerization dynamics in α-cyano-4-hydroxycinnamic and sinapinic acid crystals

    NASA Astrophysics Data System (ADS)

    Hoyer, Theo; Tuszynski, Wilfried; Lienau, Christoph

    2007-07-01

    We report a sub-picosecond time-resolved fluorescence spectroscopic study of different cinnamic acid crystals, model systems for solid-state photodimerization reactions. For α-cyano-4-hydroxycinnamic acid (α-CHC), we identify the emission spectra of both monomers and dimers, allowing us to directly probe the photoinduced dynamics of both species. The dimerization occurs on a timescale of 10 ps and results in a long-lived dimer product, stable for hours. For sinapinic acid, we find an extremely fast, sub-picosecond dimerization reaction and a short-lived dimer. This first sub-picosecond time-resolved dimerization study in cinnamic acid crystals provides a new basis for relating their structural properties and microscopic reaction dynamics.

  2. Selected HIV-1 Env trimeric formulations act as potent immunogens in a rabbit vaccination model.

    PubMed

    Heyndrickx, Leo; Stewart-Jones, Guillaume; Jansson, Marianne; Schuitemaker, Hanneke; Bowles, Emma; Buonaguro, Luigi; Grevstad, Berit; Vinner, Lasse; Vereecken, Katleen; Parker, Joe; Ramaswamy, Meghna; Biswas, Priscilla; Vanham, Guido; Scarlatti, Gabriella; Fomsgaard, Anders

    2013-01-01

    Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs) during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs) from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an adjuvant. Based on in vitro neutralizing activity in serum, patients with bNAbs were selected for cloning of their HIV-1 Env. Seven stable soluble trimeric gp140 proteins were generated from sequences derived from four adults and two children infected with either clade A or B HIV-1. From one of the clade A Envs both the monomeric and trimeric Env were produced for comparison. Rabbits were immunized with soluble gp120 or trimeric gp140 proteins in combination with the adjuvant dimethyl dioctadecyl ammonium/trehalose dibehenate (CAF01). Env binding in rabbit immune serum was determined using ELISAs based on gp120-IIIB protein. Neutralizing activity of IgG purified from rabbit immune sera was measured with the pseudovirus-TZMbl assay and a PBMC-based neutralization assay for selected experiments. It was initially established that gp140 trimers induce better antibody responses over gp120 monomers and that the adjuvant CAF01 was necessary for such strong responses. Gp140 trimers, based on HIV-1 variants from patients with bNAbs, were able to elicit both gp120IIIB specific IgG and NAbs to Tier 1 viruses of different subtypes. Potency of NAbs closely correlated with titers, and an gp120-binding IgG titer above a threshold of 100,000 was predictive of neutralization capability. Finally, peptide inhibition experiments showed that a large fraction of the neutralizing IgG was directed against the gp120 V3 region. Our results indicate that the strategy of reverse immunology based on selected Env sequences is promising when immunogens are delivered as stabilized trimers in CAF01 adjuvant and that the rabbit is a valuable model for HIV vaccine studies.

  3. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins

    PubMed Central

    de Val, Natalia; Montefiori, David; Tomaras, Georgia D.; Shen, Xiaoying; Kalyuzhniy, Oleksandr; Sanders, Rogier W.; McCoy, Laura E.; Moore, John P.; Ward, Andrew B.

    2018-01-01

    Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine. PMID:29746590

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa

    The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals.more » It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric 'lids' that cap the central cavity of the toroid on either side and provide only small openings to allow regulated entry of small molecules into the occluded chamber. The presence of the electron density of the bound ligand may provide important clues on the likely function of NIF3-like proteins.« less

  5. The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae.

    PubMed

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-01-29

    The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.

  6. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    PubMed

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  7. Spectroscopic determination of the water pair potential

    NASA Astrophysics Data System (ADS)

    Fellers, Raymond Scott, II

    This thesis details the first experimental determination of a water pair potential via nonlinear least squares fit of high precision microwave and far-IR vibration- rotation-tunneling (VRT) data. Provided is a review of the theory of intermolecular forces, methods of determining these forces by ab initio theory, and a survey of analytical forms that are parameterized to model such forces. Also reviewed are important features of water dimer VRT spectra, in particular the characteristic tunneling splittings due to hydrogen bond rearrangements, and how these features are related to the anisotropy of the water dimer potential energy surface (PES). Comparisons are made between high level ab initio calculations of the water dimer PES and a number of well known water pair potentials. The importance of the intramolecular degrees of freedom in the parameterization of a new PES is studied through a systematic series of ab initio calculations. These results suggest that a reasonably accurate pair potential can be constructed with the constraint of rigid monomers. ÅThe computation of the VRT states of the water dimer in a fully-coupled six-dimensional Hamiltonian by the split Wigner pseudospectral (SWPS) method is presented. Discussed in detail is the performance of the code and recent improvements of the algorithm which significantly decrease the execution time over an earlier implementation. The VRT states of several potentials are calculated and compared to experiment. It is shown that none of these potentials can reproduce the water dimer tunneling splittings with quantitative accuracy. The SWPS code is embedded in a non-linear least squares fitting routine and is used to fit a potential to 22 microwave and far-IR transitions. The resulting PES, VRT- 1(R,P), is derived from the ab initio/semiempirical ASPW (Anisotropic Site Potential for Water) potential which includes multipole expansions for the electrostatic, dispersion, exchange- repulsion, and induction terms. Induction is iterated to first-order. VRT-1(R,P) reproduces VRT spectra and temperature dependent second virial coefficients to high accuracy. The dimer equilibrium and zero-point binding energies (De and D0) are 4.91 kcal mol and 3.46 kcal/mol, respectively, which are in agreement with the best theoretical estimates. The dimer equilibrium structure [ROO = 2.924 Å, θ a = 48.5°, and θd = 50.2°] agrees with large basis set MP2 calculations. Additionally, the trimer equilibrium structure [ROO = 2.756 Å and D e=15.6 kcal/mol] and tetramer equilibrium structure [R OO = 2.783 Å and De = 25.9 kcal/mol] are also very close to second-order Möller-Plesset (MP2) calculations. The hydrogen bond rearrangement pathways of the dimer PES are determined by the eigenvector following method. The two lowest energy rearrangement barriers, corresponding to the acceptor switching and interchange motions, are 157 cm-1 and 207 cm-1, respectively, which is in excellent agreement with ab initio predictions of 158 cm -1 and 199 cm-1, respectively

  8. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have amore » degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.« less

  9. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    PubMed

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Attenuation of Recombinant Yellow Fever 17D Viruses Expressing Foreign Protein Epitopes at the Surface

    PubMed Central

    Bonaldo, Myrna C.; Garratt, Richard C.; Marchevsky, Renato S.; Coutinho, Evandro S. F.; Jabor, Alfredo V.; Almeida, Luís F. C.; Yamamura, Anna M. Y.; Duarte, Adriana S.; Oliveira, Prisciliana J.; Lizeu, Jackeline O. P.; Camacho, Luiz A. B.; Freire, Marcos S.; Galler, Ricardo

    2005-01-01

    The yellow fever (YF) 17D vaccine is a live attenuated virus. Three-dimensional (3D) homology modeling of the E protein structure from YF 17D virus and its comparison with that from tick-borne encephalitis virus revealed that it is possible to accommodate inserts of different sizes and amino acid compositions in the flavivirus E protein fg loop. This is consistent with the 3D structures of both the dimeric and trimeric forms in which the fg loop lies exposed to solvents. We demonstrate here that YF 17D viruses bearing foreign humoral (17D/8) and T-cell (17D/13) epitopes, which vary in sequence and length, displayed growth restriction. It is hypothesized that interference with the dimer-trimer transition and with the formation of a ring of such trimers in order to allow fusion compromises the capability of the E protein to induce fusion of viral and endosomal membranes, and a slower rate of fusion may delay the extent of virus production. This would account for the lower levels of replication in cultured cells and of viremia in monkeys, as well as for the more attenuated phenotype of the recombinant viruses in monkeys. Testing of both recombinant viruses (17D/8 and 17D/13) for monkey neurovirulence also suggests that insertion at the 17D E protein fg loop does not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines. PMID:15956601

  11. Intricate Crystal Structure of Dihydrolipoamide Dehydrogenase (E3) with its Binding Protein: Multiple Copies, Dynamic and Static Disorders

    NASA Technical Reports Server (NTRS)

    Makal, A.; Hong, Y. S.; Potter, R.; Vettaikkorumakankauv, A. K.; Korotchkina, L. G.; Patel, M. S.; Ciszak, E.

    2004-01-01

    Human E3 and binding protein E3BP are two components of the pyruvate dehydrogenase complex. Crystallization of E3 with 221-amino acid fragment of E3BP (E3BPdd) led to crystals that diffracted to a resolution of 2.6 Angstroms. Structure determination involved molecular replacement using a dimer of E3 homolog as a search model and de novo building of the E3BPdd peptide. Solution was achieved by inclusion of one E3 dimer at a time, followed by refinement until five E3 dimers were located. This complete content of E3 provided electron density maps suitable for tracing nine peptide chains of E3BPdd, eight of them being identified with partial occupancies. Final content of the asymmetric unit consists of five E3 dimers, each binding one E3BPdd molecule. In four of these molecular complexes, E3BPdd is in static disorder resulting in E3BPdd binding to either one or the other monomer of the E3 dimer. However, E3BPdd of the fifth E3 dimer forms specific contacts that lock it at one monomer. In addition to this static disorder, E3BPdd reveals high mobility in the limited space of the crystal lattice. Support from NIH and NASA.

  12. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction.

    PubMed

    Chang, Chih-Kang; Teng, Kuo-Hsun; Lin, Sheng-Wei; Chang, Tao-Hsin; Liang, Po-Huang

    2013-04-23

    Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.

  13. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  14. Linkage isomerism in trimeric and polymeric 2,3-cis-procyanindins

    Treesearch

    Richard W. Hemingway; Lai Yeap Foo; Lawrence J. Porter

    1982-01-01

    Procyanindins polymers consist of chains of 5,7,3',4'-tetrahydroxyflavan-3-ol units linked by C(4)-C(6) or C(4)-C(8) bonds.1 Whereas the procyanidin-B group of dimers are known to exist as pairs of isomers with common flavan-3-ol units, but different interflavanoid linkages,2,3 the extent of such isomerism in...

  15. Structure, energetics and vibrational spectra of dimers, trimers, and tetramers of HX (X = Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Latajka, Zdzislaw; Scheiner, Steve

    1997-03-01

    The title complexes are studied by correlated ab initio methods using a pseudopotential double-ζ basis set, augmented by diffuse sp and two sets of polarization functions. The binding energies of the complexes decrease in the order HCl > HBr > HI. In the mixed HX…HX' dimers, the nature of the proton-donor molecule is more important than is the proton-acceptor with respect to the strength of the interaction. Only one minimum is found on the potential energy surface of the trimers and tetramers, which corresponds to the C nh cyclic structure. Enlargement of the complex leads to progressively greater individual H-bond energy and HX bond stretch, coupled with reduced intermolecular separation and smaller nonlinearity of each H-bond. Electron correlation makes a larger contribution as the atomic number of X increases. The highest degree of cooperativity is noted for oligomers of HCl and HBr, as compared to HI. The nonadditivity is dominated by terms present at the SCF level. The vibrational frequencies exhibit trends that generally parallel the energetics and geometry patterns, particularly the red shifts of the HX stretches and the intermolecular modes.

  16. Prodomain–growth factor swapping in the structure of pro-TGF-β1

    PubMed Central

    Xu, Shutong; Dong, Xianchi; Lu, Chafen; Springer, Timothy A.

    2018-01-01

    TGF-β is synthesized as a proprotein that dimerizes in the endoplasmic reticulum. After processing in the Golgi to cleave the N-terminal prodomain from the C-terminal growth factor (GF) domain in each monomer, pro-TGF-β is secreted and stored in latent complexes. It is unclear which prodomain and GF monomer are linked before proprotein convertase cleavage and how much conformational change occurs following cleavage. We have determined a structure of pro-TGF-β1 with the proprotein convertase cleavage site mutated to mimic the structure of the TGF-β1 proprotein. Structure, mutation, and model building demonstrate that the prodomain arm domain in one monomer is linked to the GF that interacts with the arm domain in the other monomer in the dimeric structure (i.e. the prodomain arm domain and GF domain in each monomer are swapped). Swapping has important implications for the mechanism of biosynthesis in the TGF-β family and is relevant to the mechanism for preferential formation of heterodimers over homodimers for some members of the TGF-β family. Our structure, together with two previous ones, also provides insights into which regions of the prodomain–GF complex are highly structurally conserved and which are perturbed by crystal lattice contacts. PMID:29109152

  17. Carbodiimide EDC induces cross-links that stabilize RNase A C-dimer against dissociation: EDC adducts can affect protein net charge, conformation, and activity.

    PubMed

    López-Alonso, Jorge P; Diez-García, Fernando; Font, Josep; Ribó, Marc; Vilanova, Maria; Scholtz, J Martin; González, Carlos; Vottariello, Francesca; Gotte, Giovanni; Libonati, Massimo; Laurents, Douglas V

    2009-08-19

    RNase A self-associates under certain conditions to form a series of domain-swapped oligomers. These oligomers show high catalytic activity against double-stranded RNA and striking antitumor actions that are lacking in the monomer. However, the dissociation of these metastable oligomers limits their therapeutic potential. Here, a widely used conjugating agent, 1-ethyl-3-(3-dimethylaminoisopropyl) carbodiimide (EDC), has been used to induce the formation of amide bonds between carboxylate and amine groups of different subunits of the RNase A C-dimer. A cross-linked C-dimer which does not dissociate was isolated and was found have augmented enzymatic activity toward double-stranded RNA relative to the unmodified C-dimer. Characterization using chromatography, electrophoresis, mass spectrometry, and NMR spectroscopy revealed that the EDC-treated C-dimer retains its structure and contains one to three novel amide bonds. Moreover, both the EDC-treated C-dimer and EDC-treated RNase A monomer were found to carry an increased number of positive charges (about 6 ± 2 charges per subunit). These additional positive charges are presumably due to adduct formation with EDC, which neutralizes a negatively charged carboxylate group and couples it to a positively charged tertiary amine. The increased net positive charge endowed by EDC adducts likely contributes to the heightened cleavage of double-stranded RNA of the EDC-treated monomer and EDC-treated C-dimer. Further evidence for EDC adduct formation is provided by the reaction of EDC with a dipeptide Ac-Asp-Ala-NH(2) monitored by NMR spectroscopy and mass spectrometry. To determine if EDC adduct formation with proteins is common and how this affects protein net charge, conformation, and activity, four well-characterized proteins, ribonuclease Sa, hen lysozyme, carbonic anhydrase, and hemoglobin, were incubated with EDC and the products were characterized. EDC formed adducts with all these proteins, as judged by mass spectrometry and electrophoresis. Moreover, all suffered conformational changes ranging from slight structural modifications in the case of lysozyme, to denaturation for hemoglobin as measured by NMR spectroscopy and enzyme assays. We conclude that EDC adduct formation with proteins can affect their net charge, conformation, and enzymatic activity.

  18. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants

    PubMed Central

    2012-01-01

    Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances. PMID:22839202

  19. Molecular characterization of myelin protein zero in Xenopus laevis peripheral nerve

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Luo, Xiaoyang; Zhao, Cheng; Priest, Christina Marie; Chan, Shiu-Yung; O'Connor, Peter B.; Kirschner, Daniel A.; Costello, Catherine E.

    2007-12-01

    Myelin protein zero (P0), a glycosylated single-pass transmembrane protein, is essential in the formation and maintenance of peripheral nervous system (PNS) compact myelin. P0 in Xenopus (xP0) exists primarily as a dimeric form that remains stable after various physical and chemical treatments. In exploring the nature of the interactions underlying the dimer stability, we found that xP0 dimer dissociated into monomer during continuous elution gel electrophoresis and conventional SDS-PAGE, indicating that the dimer is stabilized by non-covalent interactions. Furthermore, as some of the gel-purified monomer re-associated into dimer on SDS-PAGE gels, there is likely a dynamic equilibrium between xP0 dimer and monomer in vivo. Because the carbohydrate and fatty acyl moieties may be crucial for the adhesion role of P0, we used sensitive mass spectrometry approaches to elucidate the detailed N-glycosylation and S-acylation profiles of xP0. Asn92 was determined to be the single, fully-occupied glycosylation site of xP0, and a total of 12 glycans was detected that exhibited new structural features compared with those observed from P0 in other species: (1) the neutral glycans were composed mainly of high mannose and hybrid types; (2) 5 of 12 were acidic glycans, among which three were sialylated and the other two were sulfated; (3) none of the glycans had core fucosylation; and (4) no glucuronic acid, hence no HNK-1 epitope, was detected. The drastically different carbohydrate structures observed here support the concept of the species-specific variation in N-glycosylation of P0. Cys152 was found to be acylated with stearoyl (C18:0), whereas palmitoyl (C16:0) is the corresponding predominant fatty acyl group on P0 from higher vertebrates. We propose that the unique glycosylation and acylation patterns of Xenopus P0 may underlie its unusual dimerization behavior. Our results should shed light on the understanding of the phylogenetic development of P0's adhesion role in PNS compact myelin.

  20. Structure-activity relationships in defensin dimers: a novel link between beta-defensin tertiary structure and antimicrobial activity.

    PubMed

    Campopiano, Dominic J; Clarke, David J; Polfer, Nick C; Barran, Perdita E; Langley, Ross J; Govan, John R W; Maxwell, Alison; Dorin, Julia R

    2004-11-19

    Defensins are cationic antimicrobial peptides that have a characteristic six-cysteine motif and are important components of the innate immune system. We recently described a beta-defensin-related peptide (Defr1) that had potent antimicrobial activity despite having only five cysteines. Here we report a relationship between the structure and activity of Defr1 through a comparative study with its six cysteine-containing analogue (Defr1 Y5C). Against a panel of pathogens, we found that oxidized Defr1 had significantly higher activity than its reduced form and the oxidized and reduced forms of Defr1 Y5C. Furthermore, Defr1 displayed activity against Pseudomonas aeruginosa in the presence of 150 mm NaCl, whereas Defr1 Y5C was inactive. By using nondenaturing gel electrophoresis and Fourier transform ion cyclotron resonance mass spectrometry, we observed Defr1 and Defr1 Y5C dimers. Two complementary fragmentation techniques (collision-induced dissociation and electron capture dissociation) revealed that Defr1 Y5C dimers form by noncovalent, weak association of monomers that contain three intramolecular disulfide bonds. In contrast, Defr1 dimers are resistant to collision-induced dissociation and are only dissociated into monomers by reduction using electron capture. This is indicative of Defr1 dimerization being mediated by an intermolecular disulfide bond. Proteolysis and peptide mass mapping revealed that Defr1 Y5C monomers have beta-defensin disulfide bond connectivity, whereas oxidized Defr1 is a complex mixture of dimeric isoforms with as yet unknown inter- and intramolecular connectivities. Each isoform contains one intermolecular and four intramolecular disulfide bonds, but because we were unable to resolve the isoforms by reverse phase chromatography, we could not assign each isoform with a specific antimicrobial activity. We conclude that the enhanced activity and stability of this mixture of Defr1 dimeric isoforms are due to the presence of an intermolecular disulfide bond. This first description of a covalently cross-linked member of the defensin family provides further evidence that the antimicrobial activity of a defensin is linked to its ability to form stable higher order structures.

  1. Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Mueller, G; Cuneo, M

    2010-01-01

    The dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-{sup 13}C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The {sup 1}H-{sup 13}C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a 'p66-like' conformation. SAXS data obtained for p51more » samples were used to determine the fractions of monomer and dimer in the sample and to evaluate the conformation of the fingers/thumb subdomain. All of the p51 monomer observed was found to adopt the compact, 'p51C' conformation observed for the p51 subunit in the RT heterodimer. The NMR and SAXS data indicate that the p51 homodimer adopts a structure that is similar to the p66/p51 heterodimer, with one p51C subunit and a second p51 subunit in an extended, 'p51E' conformation that resembles the p66 subunit of the heterodimer. The fractional dimer concentration and the fingers/thumb orientation are found to depend strongly on the experimental conditions and exhibit a qualitative dependence on nevirapine and ionic strength (KCl) that is similar to the behavior reported for the heterodimer and the p66 homodimer. The L289K mutation interferes with p51 homodimer formation as it does with formation of the heterodimer, despite its location far from the dimer interface. This effect is readily interpreted in terms of a conformational selection model, in which p51{sub L289K} has a much greater preference for the compact, p51C conformation. A reduced level of dimer formation then results from the reduced ratio of the p51E{sub L289K} to p51C{sub L289K} monomers.« less

  2. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, Christine; Phuong, Nguyen Minh; Adam, Günter; Van Sung, Tran

    2003-10-01

    From the leaves of Xylopia vielana (Annonaceae) two dimeric guaianes named vielanins D and E were isolated and structurally elucidated by mass and NMR spectroscopy. Vielanin D and E consist of bridged ring systems formally representing the Diels-Alder products from the hypothetical guaiane-type monomers. Due to a hemiketal function at C-8' both compounds occurred as epimeric mixtures.

  3. Density functional Gaussian-type-orbital approach to theoretical study of nitric oxide dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursic, B.S.; Zdravkovski, Z.

    Structure and total energies of the cis NO dimer, the trans NO dimer, and the NO monomer were calculated by ab initio methods (UHF, UMP2, and MP3) and density functional theory methods (LSDA and BLYP) with different basis sets [from 3-21G* to 6-311++(3df,3pd)]. The system is especially hard to model because two NO molecules are weakly associated in a dimer that has very long N-N bond. The results obtained by different methods are compared and the necessity of correlational methods for studying these systems is discussed.

  4. Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Rentao; Cantu Cantu, David; Glezakou, Vassiliki Alexandra

    2015-10-15

    Despite the importance of RuO2 in photocatalytic water splitting and catalysis in general, the interactions of water with even its most stable (110) surface are not well-understood. In this study we employ a combination of high-resolution scanning tunneling microscopy imaging with density functional theory based ab initio molecular dynamics, and we follow the formation and binding of linear water clusters on coordinatively unsaturated ruthenium rows. We find that clusters of all sizes (dimers, trimers, tetramers, extended chains) are stabilized by donating one proton per every two water molecules to the surface bridge bonded oxygen sites, in contrast with water monomersmore » that do not show a significant propensity for dissociation. The clusters with odd number of water molecules are less stable than the clusters with even number, and are generally not observed under thermal equilibrium. For all clusters with even numbers, the dissociated dimers represent the fundamental building blocks with strong intra-dimer hydrogen bonds and only very weak inter-dimer interactions resulting in segmented water chains.« less

  5. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less

  6. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex

    DOE PAGES

    Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; ...

    2016-06-27

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less

  7. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex

    PubMed Central

    Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K.; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O’Neill, Hugh; Roberts, Eric M.; Roberts, Alison W.; Yingling, Yaroslava G.; Haigler, Candace H.

    2016-01-01

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains. PMID:27345599

  8. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Osto, Luca; Cazzaniga, Stefano; Bressan, Mauro

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher inmore » trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.« less

  9. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.

    PubMed

    Russell, B A; Jachimska, B; Komorek, P; Mulheran, P A; Chen, Y

    2017-03-08

    The study of gold nanoclusters (AuNCs) has seen much interest in recent history due to their unique fluorescence properties and environmentally friendly synthesis method using proteins as a growth scaffold. The differences in the physicochemical properties of lysozyme encapsulated AuNCs in comparison to natural lysozyme are characterised in order to determine the effects AuNCs have on natural protein behaviour. The hydrodynamic radius (dynamic light scattering), light absorbance (UV-Vis), electrophoretic mobility, relative density, dynamic viscosity, adsorption (quartz crystal microbalance) and circular dichroism (CD) characteristics of the molecules were studied. It was found that lysozyme forms small dimer/trimer aggregates upon the synthesis of AuNCs within the protein. The diameter of Ly-AuNCs was found to be 8.0 nm across a pH range of 2-11 indicating dimer formation, but larger aggregates with diameters >20 nm were formed between pH 3 and 6. The formation of larger aggregates limits the use of Ly-AuNCs as a fluorescent probe in this pH range. A large shift in the protein's isoelectric point was also observed, shifting from 11.0 to 4.0 upon AuNC synthesis. This resulted in major changes to the adsorption characteristics of lysozyme, observed using a QCM. A monolayer of 8 nm was seen for Ly-AuNCs at pH 4, offering further evidence that the proteins form small aggregates, unlike the natural monomer form of lysozyme. The adsorption of Ly-AuNCs was seen to decrease as pH was increased; this is in major contrast to the lysozyme adsorption behaviour. A decrease in the α-helix content was observed from 25% in natural lysozyme to 1% in Ly-AuNCs. This coincided with an increase in the β-sheet content after AuNC synthesis indicating that the natural structure of lysozyme was lost. The formation of protein dimers, the change in the protein surface charge from positive to negative, and secondary structure alteration caused by the AuNC synthesis must be considered before attempting to utilise Ly-AuNCs as in vivo probes.

  10. Strategies to indium nitride and gallium nitride nanoparticles: Low-temperature, solution-phase and precursor routes

    NASA Astrophysics Data System (ADS)

    Dingman, Sean Douglas

    I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and LiNH2 in a molten alkali-halide eutectic, KBr: Liar (60:40), at 400°C. The molten salt acts as an appropriate recrystallization medium for InN. Large InN platelets up to 500 nm could be synthesized. This is a significant step in finding mild reaction conditions that yield large InN crystals.

  11. Unfolding study of a trimeric membrane protein AcrB.

    PubMed

    Ye, Cui; Wang, Zhaoshuai; Lu, Wei; Wei, Yinan

    2014-07-01

    The folding of a multi-domain trimeric α-helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two-state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter-subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate-limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop , from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re-association of the trimer might be the limiting factor to obtain folded wild-type AcrB. © 2014 The Protein Society.

  12. Electric-dipole-coupled H2O@C60 dimer: Translation-rotation eigenstates from twelve-dimensional quantum calculations.

    PubMed

    Felker, Peter M; Bačić, Zlatko

    2017-02-28

    We report on variational solutions to the twelve-dimensional (12D) Schrödinger equation appertaining to the translation-rotation (TR) eigenstates of H 2 O@C 60 dimer, associated with the quantized "rattling" motions of the two encapsulated H 2 O molecules. Both H 2 O and C 60 moieties are treated as rigid and the cage-cage geometry is taken to be fixed. We consider the TR eigenstates of H 2 O@C 60 monomers in the dimer to be coupled by the electric dipole-dipole interaction between water moieties and develop expressions for computing the matrix elements of that interaction in a dimer basis composed of products of monomer 6D TR eigenstates reported by us recently [P. M. Felker and Z. Bačić, J. Chem. Phys. 144, 201101 (2016)]. We use these expressions to compute TR Hamiltonian matrices of H 2 O@C 60 dimer for two values of the water dipole moment and for various dimer geometries. 12D TR eigenstates of the dimer are then obtained by filter diagonalization. The results reveal two classes of eigenstates, distinguished by the leading order (first or second) at which dipole-dipole coupling contributes to them. The two types of eigenstates differ in the general magnitude of their dipole-induced energy shifts and in the dependence of those shifts on the value of the water dipole moment and on the distance between the H 2 O@C 60 monomers. The dimer results are also found to be markedly insensitive to any change in the orientations of the C 60 cages. Finally, the results lend some support for the interpretation that electric dipole-dipole coupling is at least partially responsible for the apparent reduced-symmetry environment experienced by H 2 O in the powder samples of H 2 O@C 60 [K. S. K. Goh et al., Phys. Chem. Chem. Phys. 16, 21330 (2014)], but only if the water dipole is taken to have a magnitude close to that of free water. The methodology developed in the paper is transferable directly to the calculation of TR eigenstates of larger H 2 O@C 60 assemblies, that will be required for more extensive modeling of crystalline H 2 O@C 60 .

  13. Urea enhances the photodynamic efficiency of methylene blue.

    PubMed

    Nuñez, Silvia C; Yoshimura, Tania M; Ribeiro, Martha S; Junqueira, Helena C; Maciel, Cleiton; Coutinho-Neto, Maurício D; Baptista, Maurício S

    2015-09-01

    Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions. The antimicrobial efficiency of MB (30 μM) either in water or in 2M aqueous urea solution was tested against a fungus (Candida albicans). Samples were kept in the dark and irradiation was performed with a light emitting diode (λ = 645 nm). Without urea, 9 min of irradiation was needed to achieve complete microbial eradication. In urea solution, complete eradication was obtained with 6 min illumination (light energy of 14.4 J). The higher efficiency of MB/urea solution was correlated with a smaller concentration of dimers, even in the presence of the microorganisms. Monomer to dimer concentration ratios were extracted from the absorption spectra of MB solutions measured as a function of MB concentration at different temperatures and at different concentrations of sodium chloride and urea. Dimerization equilibrium decreased by 3 and 6 times in 1 and 2M urea, respectively, and increased by a factor of 6 in 1M sodium chloride. The destabilization of aggregates by urea seems to be applied to other photosensitizers, since urea also destabilized aggregation of Meso-tetra(4-n-methyl-pyridyl)porphyrin, which is a positively charged porphyrin. We showed that urea destabilizes MB aggregates mainly by causing a decrease in the enthalpic gain of dimerization, which was exactly the opposite of the effect of sodium chloride. In order to understand this phenomenon at the molecular level, we computed the free energy for the dimer association process (ΔG(dimer)) in aqueous solution as well as its enthalpic component in aqueous and in aqueous/urea solutions by molecular dynamics simulations. In 2M-urea solution the atomistic picture revealed a preferential solvation of MB by urea compared with MB dimers while changes in ΔH(dimer) values demonstrated a clear shift favoring MB monomers. Therefore, MB monomers are more stable in urea solutions, which have significantly better photophysics and higher antimicrobial activity. This information can be of use for dental and medical professionals that are using MB based APDT protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Linear σ-hole⋯CO⋯σ-hole intermolecular interactions between carbon monoxide and dihalogen molecules XY (X, Y=Cl, Br).

    PubMed

    Yang, Xing; Yang, Fan; Wu, Rui-Zhi; Yan, Chao-Xian; Zhou, Da-Gang; Zhou, Pan-Pan; Yao, Xiaojun

    2017-09-01

    Carbon monoxide can interact with two dihalogen molecules XY (X, Y=Cl, Br) in the form of X(Y)⋯COX(Y)⋯CO⋯X(Y)X(Y) trimeric complex, and their nature and characteristics were investigated at MP2/aug-cc-pVDZ level without and with counterpoise method, together with single point calculations at CCSD(T)/aug-cc-pVDZ level. The optimized geometries, stretching modes and interaction energies of a series of X(Y)⋯COX(Y)⋯CO⋯X(Y)X(Y) trimeric complexes were obtained and discussed. The cooperativity in these complexes was evaluated. EDA analyses reveal that the electrostatic interaction is the dominant net driving force in each trimer, but the contributions of other interactions like exchange, dispersion and polarization interactions are also important. QTAIM and NCI analyses confirm the existence of attractive halogen-bonding interactions. Additionally, EDDMF analysis was employed for the component dimers of these trimers, which indicates that the formation of halogen-bonding interactions is closely related to the charge shift and the rearrangement of electronic density in the formation of these complexes. The results would provide valuable insight into for these linear halogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors

    PubMed Central

    Maschauer, Simone; Einsiedel, Jürgen; Reich, Dominik; Hübner, Harald; Gmeiner, Peter; Wester, Hans-Jürgen; Prante, Olaf; Notni, Johannes

    2017-01-01

    Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial. PMID:28287433

  16. Association of a Model Transmembrane Peptide Containing Gly in a Heptad Sequence Motif

    PubMed Central

    Lear, James D.; Stouffer, Amanda L.; Gratkowski, Holly; Nanda, Vikas; DeGrado, William F.

    2004-01-01

    A peptide containing glycine at a and d positions of a heptad motif was synthesized to investigate the possibility that membrane-soluble peptides with a Gly-based, left-handed helical packing motif would associate. Based on analytical ultracentrifugation in C14-betaine detergent micelles, the peptide did associate in a monomer-dimer equilibrium, although the association constant was significantly less than that reported for the right-handed dimer of the glycophorin A transmembrane peptide in similar detergents. Fluorescence resonance energy transfer (FRET) experiments conducted on peptides labeled at their N-termini with either tetramethylrhodamine (TMR) or 7-nitrobenz-2-oxa-1,3-diazole (NBD) also indicated association. However, analysis of the FRET data using the usual assumption of complete quenching for NBD-TMR pairs in the dimer could not be quantitatively reconciled with the analytical ultracentrifugation-measured dimerization constant. This led us to develop a general treatment for the association of helices to either parallel or antiparallel structures of any aggregation state. Applying this treatment to the FRET data, constraining the dimerization constant to be within experimental uncertainty of that measured by analytical ultracentrifugation, we found the data could be well described by a monomer-dimer equilibrium with only partial quenching of the dimer, suggesting that the helices are most probably antiparallel. These results also suggest that a left-handed Gly heptad repeat motif can drive membrane helix association, but the affinity is likely to be less strong than the previously reported right-handed motif described for glycophorin A. PMID:15315956

  17. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface*

    PubMed Central

    Jastrzebska, Beata; Chen, Yuanyuan; Orban, Tivadar; Jin, Hui; Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Although homo- and heterodimerizations of G protein-coupled receptors (GPCRs) are well documented, GPCR monomers are able to assemble in different ways, thus causing variations in the interactive interface between receptor monomers among different GPCRs. Moreover, the functional consequences of this phenomenon, which remain to be clarified, could be specific for different GPCRs. Synthetic peptides derived from transmembrane (TM) domains can interact with a full-length GPCR, blocking dimer formation and affecting its function. Here we used peptides corresponding to TM helices of bovine rhodopsin (Rho) to investigate the Rho dimer interface and functional consequences of its disruption. Incubation of Rho with TM1, TM2, TM4, and TM5 peptides in rod outer segment (ROS) membranes shifted the resulting detergent-solubilized protein migration through a gel filtration column toward smaller molecular masses with a reduced propensity for dimer formation in a cross-linking reaction. Binding of these TM peptides to Rho was characterized by both mass spectrometry and a label-free assay from which dissociation constants were calculated. A BRET (bioluminescence resonance energy transfer) assay revealed that the physical interaction between Rho molecules expressed in membranes of living cells was blocked by the same four TM peptides identified in our in vitro experiments. Although disruption of the Rho dimer/oligomer had no effect on the rates of G protein activation, binding of Gt to the activated receptor stabilized the dimer. However, TM peptide-induced disruption of dimer/oligomer decreased receptor stability, suggesting that Rho supramolecular organization could be essential for ROS stabilization and receptor trafficking. PMID:26330551

  18. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-01

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  19. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-21

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  20. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions*

    PubMed Central

    2016-01-01

    Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function. PMID:27471273

  1. Opiate antagonist prevents μ- and δ-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth.

    PubMed

    Sarkar, Dipak K; Sengupta, Amitabha; Zhang, Changqing; Boyadjieva, Nadka; Murugan, Sengottuvelan

    2012-05-11

    In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.

  2. Refined structure of dimeric diphtheria toxin at 2.0 A resolution.

    PubMed Central

    Bennett, M. J.; Choe, S.; Eisenberg, D.

    1994-01-01

    The refined structure of dimeric diphtheria toxin (DT) at 2.0 A resolution, based on 37,727 unique reflections (F > 1 sigma (F)), yields a final R factor of 19.5% with a model obeying standard geometry. The refined model consists of 523 amino acid residues, 1 molecule of the bound dinucleotide inhibitor adenylyl 3'-5' uridine 3' monophosphate (ApUp), and 405 well-ordered water molecules. The 2.0-A refined model reveals that the binding motif for ApUp includes residues in the catalytic and receptor-binding domains and is different from the Rossmann dinucleotide-binding fold. ApUp is bound in part by a long loop (residues 34-52) that crosses the active site. Several residues in the active site were previously identified as NAD-binding residues. Glu 148, previously identified as playing a catalytic role in ADP-ribosylation of elongation factor 2 by DT, is about 5 A from uracil in ApUp. The trigger for insertion of the transmembrane domain of DT into the endosomal membrane at low pH may involve 3 intradomain and 4 interdomain salt bridges that will be weakened at low pH by protonation of their acidic residues. The refined model also reveals that each molecule in dimeric DT has an "open" structure unlike most globular proteins, which we call an open monomer. Two open monomers interact by "domain swapping" to form a compact, globular dimeric DT structure. The possibility that the open monomer resembles a membrane insertion intermediate is discussed. PMID:7833807

  3. Cleavage of Disulfide Bonds in Mouse Spermatogenic Cell-Specific Type 1 Hexokinase Isozyme Is Associated with Increased Hexokinase Activity and Initiation of Sperm Motility1

    PubMed Central

    Nakamura, Noriko; Miranda-Vizuete, Antonio; Miki, Kiyoshi; Mori, Chisato; Eddy, Edward M.

    2008-01-01

    During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm. Hexokinase activity was found to be lower in immotile sperm immediately after removal from the cauda epididymis (quiescent) than in sperm incubated in physiological medium for 5 min and showing rapid forward progressive motility (activated). However, incubating sperm in medium containing diamide, an inhibitor of disulfide bond reduction, resulted in lower motility and HK activity than in controls. HK1S was present in dimer and monomer forms in extracts of quiescent sperm but mainly as a monomer in motile sperm. A dimer-size band detected in quiescent sperm with phosphotyrosine antibody was not detected in activated sperm, and the monomer-size band was enhanced. In addition, the general protein oxido-reductase thioredoxin-1 was able to catalyze the in vitro conversion of HK1S dimers to the monomeric form. These results strongly suggest that cleavage of disulfide bonds in HK1S dimers contributes to the increases in HK activity and motility that occur when mouse sperm become activated. PMID:18509164

  4. A production parylene coating process for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Kale, V. S.; Riley, T. J.

    1977-01-01

    The real impetus for developing a production parylene coating process for internal hybrid passivation came as a result of the possibility of loose conductive particles in hybrid microelectronic circuits, causing intermittent and sometimes permanent failures. Because of the excellent mechanical properties of parylene, it is capable of securing the loose particles in place and prevent such failures. The process of coating described consists of (1) vaporizing the initial charge, which is in the form of a dimer; (2) conversion of the dimer into a reactive monomer; and (3) deposition and subsequent polymerization of the monomer in the deposition chamber which forms a uniform parylene film over all the cold surfaces in contact. Experimental results are discussed in terms of wire bond reliability, resistor drift, high-temperature storage characteristics of parylene, and coating acceptance standards. It is concluded that internal cavities of microelectronic circuits can be successfully coated with parylene provided appropriate tooling is used to protect external leads from the parylene monomer.

  5. The closo-Si{sub 12}C{sub 12} molecule from cluster to crystal: A theoretical prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiaofeng F., E-mail: xiaofeng.duan@wpafb.af.mil, E-mail: larry.burggraf@us.af.mil; Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433; Burggraf, Larry W., E-mail: xiaofeng.duan@wpafb.af.mil, E-mail: larry.burggraf@us.af.mil

    2016-03-21

    The structure of closo-Si{sub 12}C{sub 12} is unique among stable Si{sub n}C{sub m} isomers (n, m > 4) because of its high symmetry, π–π stacking of C{sub 6} rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si{sub 12}C{sub 12} molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si{sub 12}C{sub 12} molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortionmore » of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C{sub 6} rings in monomer moiety.« less

  6. Chemistry and Physics of Solid Surfaces 5

    DTIC Science & Technology

    1984-04-01

    associated with dimers and trimers, Type 2 particles form large clusters of 2000-5000 A size in aqueous solution. Luminescence studies carried out with...and rates of energy transfer, real time measurements using ultrashort laser pulses hold great promise. With the possible exception of the stimulated...the dynamic prop- erties of such clusters . The clusters are not stationary entities as origi- nally envisioned. Instead even fairly large aggregates

  7. Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites.

    PubMed

    Kim, Kye-Won; Smith, Clyde A; Daily, Michael D; Cort, John R; Davin, Laurence B; Lewis, Norman G

    2015-01-16

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (-)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A novel PKD2L1 C-terminal domain critical for trimerization and channel function.

    PubMed

    Zheng, Wang; Hussein, Shaimaa; Yang, JungWoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen

    2015-03-30

    As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.

  9. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, C; Phuong, N M; Van Sung, T; Adam, G

    2001-02-01

    From the leaves of Xylopia vielana (Annonaceae) the three dimeric guaianes vielanin A-C were isolated and structurally elucidated by mass and NMR spectroscopy as 1-3. The structure of 1 contains a bridged ring system formed probably via a Diels-Alder reaction of two different guaiane monomers. Compounds 2 and 3 represent symmetric cyclobutanes formally generated from two equal guaiane moieties by [2 + 2] cycloaddition.

  10. Changes in the quaternary structure of phosphoenolpyruvate carboxylase induced by ionic strength affect its catalytic activity.

    PubMed

    Wagner, R; Gonzalez, D H; Podesta, F E; Andreo, C S

    1987-05-04

    Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.

  11. Synthesis, structure, and reactivity of N-benzoyl iminophosphoranes ortho lithiated at the benzoyl group.

    PubMed

    Aguilar, David; Fernández, Ignacio; Cuesta, Luciano; Yañez-Rodríguez, Víctor; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P; López Ortiz, Fernando

    2010-10-01

    Ortho lithiation of N-benzamido-P,P,P-triaryliminophosphoranes through deprotonation with alkyllithium bases was achieved with ortho-C═O and ortho-P═N chemoselectivity. However, the synthetic scope of these processes was rather limited. Ortho-lithiated N-benzamido-P,P,P-triphenyliminophosphorane 8 was efficiently prepared via lithium/halogen exchange of the corresponding ortho-brominated precursor with s-BuLi in THF at -90 °C. The reaction of 8 with a variety of electrophiles provides an easy and mild method for the regioselective synthesis of ortho-modified iminophosphoranes via C-C (alkylation and hydroxyalkylation) and C-X (X = I, Si, P, Sn, and Hg) bond-forming reactions. NMR characterization of 8 in THF solution showed that 8 exists as an equilibrium mixture of one monomer and two dimers. The Li atoms of these species become members of five-membered rings through chelation by the ortho-metalated carbon and the carbonyl oxygen. The dimers differ in the relative orientation of the two chelates with respect to the plane defined by the C(2)Li(2) core. The equilibrium between all species is established by splitting the dimers into monomers and subsequent recombination with formation of a different dimer.

  12. Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations

    DOE PAGES

    Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...

    2016-08-18

    Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less

  13. Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und Rückfaltung aus Fragmenten

    NASA Astrophysics Data System (ADS)

    Küster, Frank

    2002-11-01

    Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quartärstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminosäuresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabhängige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschränkt und bilden eine gemeinsame strukturelle Domäne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der natürliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests für Erbsenlektin durchgeführt und seine Faltung, Stabilität und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung für Stabilität und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilität gegenüber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten können und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichtsübergang, und es ist nicht möglich, die thermodynamische Stabilität zu bestimmen. Die Stabilität und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind für beide Proteine gleich. Darüber hinaus konnte gezeigt werden, dass auch unter nicht-denaturierenden Bedingungen die Untereinheiten zwischen den Dimeren ausgetauscht werden. Die Renaturierung der unprozessierten Variante ist unter stark nativen Bedingungen zu 100 % möglich. Das prozessierte Protein dagegen renaturiert nur zu etwa 50 %, und durch die Prozessierung ist die Faltung stark verlangsamt, der Faltungsprozess ist erst nach mehreren Tagen abgeschlossen. Im Laufe der Renaturierung wird ein Intermediat populiert, in dem die längere der beiden Polypeptidketten ein Homodimer mit nativähnlicher Untereinheitenkontaktfläche bildet. Der geschwindigkeitsbestimmende Schritt der Renaturierung ist die Assoziation der entfalteten kürzeren Kette mit diesem Dimer. The lectin from Pisum sativum (garden pea) is a member of the family of legume lectins. These proteins share a high sequence homology, and the structure of their monomers, an all-ß-motif, is highly conserved. Their quaternary structures, however, show a great diversity which has been subject to cristallographic and theoretical studies. Pea lectin is a dimeric legume lectin with a special structural feature: After folding is completed in the cell, a short amino acid sequence is cut out of a loop, resulting in two independent polypeptide chains in each subunit. Both chains are closely intertwined and form one contiguous structural domain. Like all lectins, pea lectin binds to complex oligosaccharides, but its physiological role and its natural ligand are unknown. In this study, experiments to establish a functional assay for pea lectin have been conducted, and its folding, stability and monomer-dimer-equilibrium have been characterized. To investigate the specific role of the processing for stability and folding, an unprocessed construct was expressed in E. coli and compared to the processed form. Both proteins have the same kinetic stability against chemical denaturant. They denature extremely slowly, because only the isolated subunits can unfold, and the monomer-dimer-equilibrium favors the dimer at moderate concentrations of denaturant. Due to the slow unfolding, both proteins exhibit an apparent hysteresis in the denaturation transition. Therefore it has not been possible to determine their thermodynamic stability. For both proteins, the stability and the rates of association and dissociation into processed or unprocessed subunits, respectively, are equal. Furthermore it could be shown that even under non-denaturing conditions the subunits are exchanged between dimers. Renaturation of the unprocessed variants is possible under strongly native conditions with 100 % yield. The processed protein, however, can be renatured with yields of about 50 %, and its refolding is strongly decelerated. The folding process is finished only after several days. During renaturation, an intermediate is populated, in which the longer of the two polypeptide chains forms a homodimer with a native-like subunit interface. The rate limiting step of renaturation is the association of the unfolded short chain with this dimer.

  14. Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation

    PubMed Central

    Roy, Sujayita; He, Ran; Kapoor, Arun; Forman, Michael; Mazzone, Jennifer R.; Posner, Gary H.

    2015-01-01

    Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition. PMID:25870074

  15. Push-pull quinoidal porphyrins.

    PubMed

    Smith, Martin J; Blake, Iain M; Clegg, William; Anderson, Harry L

    2018-05-01

    A family of push-pull quinoidal porphyrin monomers has been prepared from a meso-formyl porphyrin by bromination, thioacetal formation, palladium-catalyzed coupling with malononitrile and oxidation with DDQ. Attempts at extending this synthesis to a push-pull quinoidal/cumulenic porphyrin dimer were not successful. The crystal structures of the quinoidal porphyrins indicate that there is no significant contribution from singlet biradical or zwitterionic resonance forms. The crystal structure of an ethyne-linked porphyrin dimer shows that the torsion angle between the porphyrin units is only about 3°, in keeping with crystallographic results on related compounds, but contrasting with the torsion angle of about 35° predicted by computational studies. The free-base quinoidal porphyrin monomers form tightly π-stacked layer structures, despite their curved geometries and bulky aryl substituents.

  16. Synthesis and Self-Assembly of the "Tennis Ball" Dimer and Subsequent Encapsulation of Methane. An Advanced Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Hof, Fraser; Palmer, Liam C.; Rebek, Julius, Jr.

    2001-11-01

    While important to the biological and materials sciences, noncovalent interactions, self-folding, and self-assembly often receive little discussion in the undergraduate chemistry curriculum. The synthesis and NMR characterization of a molecular "tennis ball" in an advanced undergraduate organic chemistry laboratory is a simple and effective way to introduce the relevance of these concepts. In appropriate solvents, the monomer dimerizes through a seam of eight hydrogen bonds with encapsulation of a guest molecule and symmetry reminiscent of a tennis ball. The entire experiment can be completed in three lab periods, however large-scale synthetic preparation of the starting monomer by a teaching assistant would reduce the laboratory to a single lab period for NMR studies.

  17. Ultrastructural and Functional Analyses of Recombinant Influenza Virus Ribonucleoproteins Suggest Dimerization of Nucleoprotein during Virus Amplification

    PubMed Central

    Ortega, Joaquín; Martín-Benito, Jaime; Zürcher, Thomas; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan

    2000-01-01

    Influenza virus ribonucleoproteins (RNPs) were reconstituted in vivo from cloned cDNAs expressing the three polymerase subunits, the nucleoprotein (NP), and short template RNAs. The structure of purified RNPs was studied by electron microscopy and image processing. Circular and elliptic structures were obtained in which the NP and the polymerase complex could be defined. Comparison of the structure of RNPs of various lengths indicated that each NP monomer interacts with approximately 24 nucleotides. The analysis of the amplification of RNPs with different lengths showed that those with the highest replication efficiency contained an even number of NP monomers, suggesting that the NP is incorporated as dimers into newly synthesized RNPs. PMID:10590102

  18. Lithium Diisopropylamide-Mediated Reactions of Imines, Unsaturated Esters, Epoxides, and Aryl Carbamates: Influence of Hexamethylphosphoramide and Ethereal Cosolvents on Reaction Mechanisms

    PubMed Central

    Ma, Yun

    2010-01-01

    Several reactions mediated by lithium diisopropylamide (LDA) with added hex-amethylphosphoramide (HMPA) are described. The N-isopropylimine of cyclohex-anone lithiates via an ensemble of monomer-based pathways. Conjugate addition of LDA/HMPA to an unsaturated ester proceeds via di- and tetra-HMPA-solvated dimers. Deprotonation of norbornene epoxide by LDA/HMPA proceeds via an intermediate metalated epoxide as a mixed dimer with LDA. Ortholithiation of an aryl carbamate proceeds via a mono-HMPA-solvated monomer-based pathway. Dependencies on THF and other ethereal cosolvents suggest that secondary-shell solvation effects are important in some instances. The origins of the inordinate mechanistic complexity are discussed. PMID:17985891

  19. Phenolic compounds of barley grain and their implication in food product discoloration.

    PubMed

    Quinde-Axtell, Zory; Baik, Byung-Kee

    2006-12-27

    Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.

  20. A switch from parallel to antiparallel strand orientation in a coiled-coil X-ray structure via two core hydrophobic mutations

    DOE PAGES

    Malashkevich, Vladimir N.; Higgins, Chelsea D.; Almo, Steven C.; ...

    2015-05-06

    The coiled-coil is one of the most ubiquitous and well studied protein structural motifs. Significant effort has been devoted to dissecting subtle variations of the typical heptad repeat sequence pattern that can designate larger topological features such as relative α-helical orientation and oligomer size. Here in this paper we report the X-ray structure of a model coiled-coil peptide, HA2-Del-L2seM, which forms an unanticipated core antiparallel dimer with potential sites for discrete higher-order multimerization (trimer or tetramer). In the X-ray structure, a third, partially-ordered α-helix is weakly associated with the antiparallel dimer and analytical ultracentrifugation experiments indicate the peptide forms amore » well-defined tetramer in solution. The HA2-Del-L2seM sequence is closely related to a parent model peptide, HA2-Del, which we previously reported adopts a parallel trimer; HA2-Del-L2seM differs by only hydrophobic leucine to selenomethione mutations and thus this subtle difference is sufficient to switch both relative α-helical topology and number of α-helices participating in the coiled-coil. Comparison of the X-ray structures of HA2-Del-L2seM (reported here) with the HA2-Del parent (reported previously) reveals novel interactions involving the selenomethionine residues that promote antiparallel coiled-coil configuration and preclude parallel trimer formation. Finally, these novel atomic insights are instructive for understanding subtle features that can affect coiled-coil topology and provide additional information for design of antiparallel coiled-coils.« less

  1. Abiotic formation of RNA-like oligomers by montmorillonite catalysis: part II

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Snellinger-O'Brien, Ann M.; Ertem, M. C.; Rogoff, D. A.; Dworkin, Jason P.; Johnston, Murray V.; Hazen, Robert M.

    2008-01-01

    This work is an extension of our previous studies carried out to investigate the possible catalytic role of minerals in the abiotic synthesis of biologically important molecules. In the presence of montmorillonite, a member of the phyllosilicate group minerals that are abundant on Earth and identified on Mars, activated RNA monomers, namely 5‧-phosphorimidazolides of nucleosides (ImpNs), undergo condensation reactions in aqueous electrolyte solution producing oligomers with similar structures to short RNA fragments. Analysis of the linear trimer isomers formed in the reaction of a mixture of activated adenosine and cytidine monomers (ImpA and ImpC, respectively) employing high-performance liquid chromatography, selective enzymatic hydrolysis and matrix-assisted laser desorption/ionization mass spectroscopy molecular weight measurements demonstrate that montmorillonite catalysis facilitates the formation of hetero-isomers containing 56% A- and 44% C-monomer incorporated in their structure. The results also show that 56% of the monomer units are linked together by RNA-like 3‧, 5‧-phosphodiester bonds. These results follow the same trend observed in our most recent work studying the reaction of activated adenosine and uridine monomers, and support Bernal's hypothesis proposing the possible catalytic role of minerals in the abiotic processes in the course of chemical evolution.

  2. The physical and functional thermal sensitivity of bacterial chemoreceptors.

    PubMed

    Frank, Vered; Koler, Moriah; Furst, Smadar; Vaknin, Ady

    2011-08-19

    The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Exact Solution of the Classical Dimer Model on a Triangular Lattice: Monomer-Monomer Correlations

    NASA Astrophysics Data System (ADS)

    Basor, Estelle; Bleher, Pavel

    2017-12-01

    We obtain an asymptotic formula, as {n\\to∞}, for the monomer-monomer correlation function {K_2(n)} in the classical dimer model on a triangular lattice, with the horizontal and vertical weights {w_h=w_v=1} and the diagonal weight {w_d=t > 0}, between two monomers at vertices q and r that are n spaces apart in adjacent rows. We find that {t_c=1/2} is a critical value of t. We prove that in the subcritical case, {0 < t < 1/2}, as {n\\to∞, K_2(n)=K_2(∞)[1-e^{-n/ξ}/n \\Big(C_1+C_2(-1)^n+ O(n^{-1})\\Big) ]}, with explicit formulae for {K_2(∞), ξ, C_1}, and {C_2}. In the supercritical case, {1/2 < t < 1}, we prove that as {n\\to∞, K_2(n)=K_2(∞)\\Bigg[1-e^{-n/ξ}/n \\Big(C_1 cos(ω n+φ_1)+C_2(-1)^n cos(ω n+φ_2)+ C_3+C_4(-1)^n + O(n^{-1})\\Big)\\Bigg]}, with explicit formulae for {K_2(∞), ξ,ω}, and {C_1, C_2, C_3, C_4, φ_1, φ_2}. The proof is based on an extension of the Borodin-Okounkov-Case-Geronimo formula to block Toeplitz determinants and on an asymptotic analysis of the Fredholm determinants in hand.

  4. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2012-12-01

    The complex of squaric acid (3,4-dihydroxy-3-cyclobuten-1,2-dion, H2SQ) with quinuclidine betaine (1-carboxymethyl-1-azabicyclo[2.2.2]octane inner salt, QNB), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies and by DFT calculations. In the crystal of 1, monoclinic space group P21/n, one proton from H2SQ is transferred to QNB. QNBH+ and HSQ- are linked together by a Osbnd H⋯O hydrogen bond of 2.553(2) Å. Two such QNBH+·HSQ- complexes form a centrosymmetric dimer bridged by two Osbnd H⋯O bonds of 2.536(2) Å. The FTIR spectrum is consistent with the X-ray results. The structures of monomer QNBH+·HSQ- (1a) and dimer [QNB·H2SQ]2 (2) have been optimized at the B3LYP/6-311++G(d,p) level of theory. Isolated dimer 2 optimized back to a molecular aggregate of H2SQ and QNB. The calculated frequencies for the optimized structure of dimer 2 have been used to explain the frequencies of the experimental FTIR spectrum. The interpretation of 1H and 13C NMR spectra has been based on the calculated GIAO/B3LYP/6-311++G(d,p) magnetic isotropic shielding constants for monomer 1a.

  5. Selected HIV-1 Env Trimeric Formulations Act as Potent Immunogens in a Rabbit Vaccination Model

    PubMed Central

    Heyndrickx, Leo; Stewart-Jones, Guillaume; Jansson, Marianne; Schuitemaker, Hanneke; Bowles, Emma; Buonaguro, Luigi; Grevstad, Berit; Vinner, Lasse; Vereecken, Katleen; Parker, Joe; Ramaswamy, Meghna; Biswas, Priscilla; Vanham, Guido; Scarlatti, Gabriella; Fomsgaard, Anders

    2013-01-01

    Background Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs) during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs) from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an adjuvant. Methods Based on in vitro neutralizing activity in serum, patients with bNAbs were selected for cloning of their HIV-1 Env. Seven stable soluble trimeric gp140 proteins were generated from sequences derived from four adults and two children infected with either clade A or B HIV-1. From one of the clade A Envs both the monomeric and trimeric Env were produced for comparison. Rabbits were immunized with soluble gp120 or trimeric gp140 proteins in combination with the adjuvant dimethyl dioctadecyl ammonium/trehalose dibehenate (CAF01). Env binding in rabbit immune serum was determined using ELISAs based on gp120-IIIB protein. Neutralizing activity of IgG purified from rabbit immune sera was measured with the pseudovirus-TZMbl assay and a PBMC-based neutralization assay for selected experiments. Results It was initially established that gp140 trimers induce better antibody responses over gp120 monomers and that the adjuvant CAF01 was necessary for such strong responses. Gp140 trimers, based on HIV-1 variants from patients with bNAbs, were able to elicit both gp120IIIB specific IgG and NAbs to Tier 1 viruses of different subtypes. Potency of NAbs closely correlated with titers, and an gp120-binding IgG titer above a threshold of 100,000 was predictive of neutralization capability. Finally, peptide inhibition experiments showed that a large fraction of the neutralizing IgG was directed against the gp120 V3 region. Conclusions Our results indicate that the strategy of reverse immunology based on selected Env sequences is promising when immunogens are delivered as stabilized trimers in CAF01 adjuvant and that the rabbit is a valuable model for HIV vaccine studies. PMID:24023951

  6. The biochemistry of the protein crystal toxin of Bacillus thuringiensis

    Treesearch

    Paul G. Fast

    1985-01-01

    The crystal consists of dimeric protein subunits. The monomer peptide chains are held together in the subunit and the subunit in the crystal by disulfide and non-covalent bonds. The monomer peptide has a molecular weight of about 130 kdaltons which, in the presence of proteases, is hydrolyzed to a protease-resistant-protein of 65 kda that is toxic both to larvae by...

  7. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    PubMed

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  8. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAKmore » domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.« less

  9. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation.

    PubMed

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2016-02-01

    Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS. © 2015 John Wiley & Sons Ltd.

  10. Modeling methylene blue aggregation in acidic solution to the limits of factor analysis.

    PubMed

    Golz, Emily K; Vander Griend, Douglas A

    2013-01-15

    Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.

  11. Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation.

    PubMed

    Lou, Zhichao; Wang, Bin; Guo, Cunlan; Wang, Kun; Zhang, Haiqian; Xu, Bingqian

    2015-11-01

    By in situ time-lapse AFM, we investigated early-stage aggregates of PrP formed at low concentration (100 ng/mL) on mica and Au(111) surfaces in acetate buffer (pH 4.5). Remarkably different PrP assemblies were observed. Oligomeric structures of PrP aggregates were observed on mica surface, which was in sharp contrast to the multi-layer PrP aggregates yielding parallel linear patterns observed Au(111) surface. Combining molecular dynamics and docking simulations, PrP monomers, dimers and trimers were revealed as the basic units of the observed aggregates. Besides, the mechanisms of the observed PrP aggregations and the corresponding molecular-substrate and intermolecular interactions were suggested. These interactions involved gold-sulfur interaction, electrostatic interaction, hydrophobic interaction, and hydrogen binding interaction. In contrast, the PrP aggregates observed in pH 7.2 PBS buffer demonstrated similar large ball-like structures on both mica and Au(111) surfaces. The results indicate that the pH of a solution and the surface of the system can have strong effects on supramolecular assemblies of prion proteins. This study provides in-depth understanding on the structural and mechanistic nature of PrP aggregation, and can be used to study the aggregation mechanisms of other proteins with similar misfolding properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  13. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures.

    PubMed

    Wojtkiewicz, Jacek; Iwan, Agnieszka; Pilch, Marek; Boharewicz, Bartosz; Wójcik, Kamil; Tazbir, Igor; Kaminska, Maria

    2017-06-15

    Theoretical studies of polyazomethines (PAZs) with various chemical structures designated for photovoltaic applications are presented. PAZ energy levels and optical properties were calculated within density-functional theory (DFT and TDDFT) framework for 28 oligomers (monomer, dimer and trimer) of PAZs. The correlations between chemical structure of PAZ and location of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were examined. It turned out that the presence of triaminophenylene, dimethoxydiphenylene and fluorine group raises the orbital energies. As a consequence, it is a factor which improves the photovoltaic efficiency of solar cell built on the base of the corresponding PAZ and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM). On the contrary, quinone, 1,3,5-triazine and perfluorophenylene groups lower orbital energies and have negative influence on the photovoltaic efficiency. Moreover, calculations for methyl, ethyl and butyl analogs of P3HT as well as polythiophenes were performed and compared with the results obtained for PAZs. In addition experimental data are presented, which cover optical, electrochemical and electrical transport properties of the studied PAZs, allowing to determine HOMO and LUMO energies of the polymers and their conductivity. Finally, comparison between calculated and experimental results were made and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Far infrared VRT spectroscopy of two water trimer isotopomers vibrationally averaged structures and rearrangement dynamics

    NASA Astrophysics Data System (ADS)

    Liu, K.; Brown, M. G.; Viant, M. R.; Cruzan, J. D.; Saykally, R. J.

    We report the measurement of far infrared vibration rotation tunnelling parallel bands of two partially deuterated water trimer isotopomers D O DOH and H O DOH at 97 2607 cm and 86 cm respectively The hydrogen bond rearrangement dynamics of the two mixed trimers can be described by the simplified molecular symmetry G which accounts for both the flipping and bifurcation tunnelling motions previously established for H O and D O The observed donor tunnelling quartet rather than triplet splitting indicates that the two homogeneous monomers D O or H O in each mixed trimer experience slightly different environments Vibrationally averaged structures of H O D O and D O DOH were examined in a Monte Carlo simulation of the out of plane flipping motions of the free atoms The simulation addresses both the symmetric top behaviour and the negative zero point inertial defect for H O and D O which were insufficiently counted in all previous structure models The average ground state O O separations which are correlated to other angular coordinates were determined to be 2 84 0 01 A for all three species The simulated difference in hydrogen bond nonlinearity also supports the inequivalency of the two homogeneous mono mers The structural simulation shows that the unique H in D O DOH is free while a torsional analysis suggests the unique D in H O DOH is bound within the cyclic ring Both bands can be assigned to the pseudorotational transitions which correlate to those found in the pure trimers

  15. Insight into the evolution of nidovirus endoribonuclease based on the finding that Nsp15 from porcine deltacoronavirus functions as a dimer.

    PubMed

    Zheng, Anjun; Shi, Yuejun; Shen, Zhou; Wang, Gang; Shi, Jiale; Xiong, Qiqi; Fang, Liurong; Xiao, Shaobo; Fu, Zhen F; Peng, Guiqing

    2018-06-10

    Nidovirus endoribonucleases (NendoUs) include Nsp15 from coronaviruses and Nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E and MHV Nsp15 indicate that it mainly forms a functional hexamer, whereas Nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine deltacoronavirus (PDCoV) Nsp15 primarily exists as dimers and monomers in vitro. Biological experiments reveal that a PDCoV Nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (NTD, Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV Nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV Nsp15. This result may explain why PDCoV Nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells and that NendoU from arterivirus gained ability to form dimers and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV Nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Photochemically Induced Transformations of Transition Complexes.

    DTIC Science & Technology

    1993-05-17

    simple Iron dinuclear species, the DPPM and DPPE phosphine bridged compounds undergo photolysis in CHCI3 to yield products containing formyl substitued...possible reaction pathway for the synthesis of these two monomers as byproducts In the ruthenium phosphine dimer preparation Is suggested. Full structural...DPPM dimer is also described. In contrast to the behavior of the simple iron dinuclear species, the DPPM and DPPE phosphine bridged compounds undergo

  17. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    PubMed

    Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie

    2013-01-01

    Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.

  18. ACTIVE ERK1 IS DIMERISED IN VIVO: BISPHOSPHODIMERS GENERATE PEAK KINASE ACTIVITY AND MONOPHOSPHODIMERS MAINTAIN BASAL ERK1 ACTIVITY

    PubMed Central

    Philipova, Rada; Whitaker, Michael

    2012-01-01

    SUMMARY ERK1 and ERK2 are widely involved in cell signalling. Using a recombinant approach, it has been shown that exogenous ERK2 is capable of dimerisation and that preventing dimerisation reduces its nuclear accumulation on stimulation. Dimerisation occurs on phosphorylation; the dimer partner of phosphorylated ERK2 may be either phosphorylated or unphosphorylated. It has been assumed that monophosphodimers are hemiactive. Here we show that ERK1 is capable of dimerisation both in vivo and in vitro. Dimerisation of human recombinant ERK1 in vitro requires both ERK1 phosphorylation and cellular cofactor(s); it leads to the formation of a high molecular weight complex that can be dissociated by treatment with β-mercaptoethanol. We demonstrate for the first time in both sea urchin embryos and human cells that native ERK forms dimers and that high ERK kinase activity is largely associated with bisphosphodimers, not with monophosphodimers or phosphorylated monomers: the activity of the bisphosphodimer is about 20-fold higher than that of the phosphorylated monomer in vitro and the bisphosphodimer shows 5 to 7-fold higher in vivo activity than the basal activity attributable to the monophosphodimer. Thus phosphorylation of both partners in the dimer is a hallmark of ERK activation. Judgments made about ERK kinase activity associated with phosphorylated monomers are at best a proxy for ERK activity. PMID:16317051

  19. Proton affinity determinations and proton-bound dimer structure indications in C2 to C15, (alpha),(omega)-alkyldiamines

    NASA Technical Reports Server (NTRS)

    Karpas, Z.; Harden, C. S.; Smith, P. B. W.

    1995-01-01

    The 'kinetic method' was used to determine the proton affinity (PA) of a,coalkyldiamines from collision induced dissociation (CID) studies of protonated heterodimers. These PA values were consistently lower than those reported in the proton affinity scale. The apparent discrepancy was rationalized in terms of differences in the conformation of the protonated diamine monomers. The minimum energy species, formed by equilibrium proton transfer processes, have a cyclic conformation and the ion charge is shared by both amino-groups which are bridged by the proton. On the other hand, the species formed through dissociation of protonated dimers have a linear structure and the charge is localized on one of the amino-groups. Thus, the difference in the PA values obtained by both methods is a measure of the additional stability acquired by the protonated diamines through cyclization and charge delocalization. The major collision dissociation pathway of the protonated diamine monomers involved elimination of an ammonia moiety. Other reactions observed included loss of the second amino-group and several other bond cleavages. CID of the protonated dimers involved primarily formation of a protonated monomer through cleavage of the weaker hydrogen bond and subsequently loss of ammonia at higher collision energies. As observed from the CID studies, doubly charged ions were also formed from the diamines under conditions of the electrospray ionization.

  20. Photophysics of Zinc Porphyrin Aggregates in Dilute Water-Ethanol Solutions.

    PubMed

    Stevens, Amy L; Joshi, Neeraj K; Paige, Matthew F; Steer, Ronald P

    2017-12-14

    Dimeric and multimeric aggregates of a model metalloporphyrin, zinc tetraphenylporphyrin (ZnTPP), have been produced in a controlled manner by incrementally increasing the water content of dilute aqueous ethanol solutions. Steady state absorption, fluorescence emission, and fluorescence excitation spectra have been measured to identify the aggregates present as a function of solvent composition. The dynamics of the excited states of the aggregates produced initially by excitation in the Soret region have been measured by ultrafast fluorescence upconversion techniques. Only the monomer produces measurable emission from S 2 with a picosecond lifetime; all Soret-excited aggregates, including the dimer, decay radiationlessly on a femtosecond time scale. The S 1 state is the only significant product of the radiationless decay of the S 2 state of the excited monomer, and the aggregates also produce substantial quantum yields of S 1 fluorescence when initially excited in the Soret region. The resulting fluorescent aggregates all decay on a subnanosecond time scale, likely by a mechanism that involves dissociation of the excited monomer from the excitonic multimer. The ZnTPP dimers excited at their ground state geometries in the Soret region exhibit a dynamic behavior that is quite different from those produced following noncoherent triplet-triplet annihilation under the same conditions. The important implications of these observations in determining the aggregation conditions promoting efficient photon upconversion by excitonic annihilation in a variety of media are thoroughly discussed.

  1. Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer

    PubMed Central

    Holthauzen, Luis Marcelo F.; Ruggli, Nicolas

    2016-01-01

    ABSTRACT Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein Npro that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant Npro and IRF3 proteins and show that Npro interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between Npro and IRF3 is not dependent on the activation state of IRF3, since Npro binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the Npro-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, Npro, is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the Npro interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that Npro targets for degradation, is largely unknown. We show that classical swine fever virus Npro and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with Npro. Additionally, Npro interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that Npro is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation. PMID:27334592

  2. Direct evidence for the gas phase thermal polymerization of styrene. Determination of the initiation mechanism and structures of the early oligomers by ion mobility.

    PubMed

    Alsharaeh, Edreese H; Ibrahim, Yehia M; El-Shall, M Samy

    2005-05-04

    We present here direct evidence for the thermal self-initiated polymerization of styrene in the gas phase and establish that the initiation process proceeds via essentially the same mechanism (the Mayo mechanism) as in condensed phase polymerization. Furthermore, we provide structural identifications of the dimers and trimers formed in the gas phase.

  3. Structure and dynamics of optically directed self-assembly of nanoparticles

    PubMed Central

    Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata

    2016-01-01

    Self-assembly of nanoparticles leading to the formation of colloidal clusters often serves as the representative analogue for understanding molecular assembly. Unravelling the in situ structure and dynamics of such clusters in liquid suspensions is highly challenging. Presently colloidal clusters are first isolated from their generating environment and then their structures are probed by light scattering methods. In order to measure the in situ structure and dynamics of colloidal clusters, we have generated them using the high-repetition-rate femtosecond laser pulse optical tweezer. Since the constituent of our dimer, trimer or tetramer clusters are 250 nm radius two-photon resonant fluorophore coated nanospheres under the optical trap, they inherently produce Two-Photon Fluorescence, which undergo intra-nanosphere Fluorescence Energy Transfer. This unique energy transfer signature, in turn, enables us to visualize structures and orientations of these colloidal clusters during the process of their formation and subsequent dynamics in a liquid suspension. We also show that due to shape-birefringence, orientation and structural control of these colloidal clusters are possible as the polarization of the trapping laser is changed from linear to circular. We thus report important progress in sampling the smallest possible aggregates of nanoparticles, dimers, trimers or tetramers, formed early in the self-assembly process. PMID:27006305

  4. Hydrolytic cleavage of both CS2 carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Xuan-Feng; Huang, Hui; Chai, Yun-Feng; Lohr, Tracy Lynn; Yu, Shu-Yan; Lai, Wenzhen; Pan, Yuan-Jiang; Delferro, Massimiliano; Marks, Tobin J.

    2017-02-01

    Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon-sulfur bonds at 25 °C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd-OH moiety on the carbon atom of coordinated µ-OCS2, which on deprotonation cleaves one C-S bond and simultaneously forms a C-O bond. Coupled C-S cleavage and CO2 release to yield [(bpy)3Pd3(µ3-S)2](NO3)2 (bpy, 2,2‧-bipyridine) provides the thermodynamic driving force for the reaction.

  5. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling.

    PubMed

    Frutos, Silvia; Rodriguez-Mias, Ricard A; Madurga, Sergio; Collinet, Bruno; Reboud-Ravaux, Michèle; Ludevid, Dolors; Giralt, Ernest

    2007-01-01

    HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.

  6. Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae.

    PubMed

    Romero, Patricia; López, Rubens; García, Ernesto

    2007-06-15

    LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues. The translation product of the lytA gene is the low-activity E-form of LytA (a monomer), which can be "converted" (activated) in vitro by choline into the fully active C-form at low temperature. The C-form is a homodimer with a boomerang-like shape. To study the structural requirements for the monomer-to-dimer modification and to clarify whether "conversion" is synonymous with dimerization, the biochemical consequences of replacing four key amino acid residues of ChBR6 and ChBR7 (the repeats involved in dimer formation) were determined. The results obtained with a collection of 21 mutated NAM-amidases indicate that Ile-315 is a key amino acid residue in both LytA activity and folding. Amino acids with a marginal position in the solenoid structure of the ChBM were of minor influence in dimer stability; neither the size, polarity, nor aromatic nature of the replacement amino acids affected LytA activity. In contrast, truncated proteins were drastically impaired in their activity and conversion capacity. The results indicate that dimerization and conversion are different processes, but they do not answer the questions of whether conversion can only be achieved after a dimer formation step.

  7. Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.

    PubMed Central

    Debyser, Z.; De Clercq, E.

    1996-01-01

    The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406

  8. Design and characterization of the anion-sensitive coiled-coil peptide.

    PubMed Central

    Hoshino, M.; Yumoto, N.; Yoshikawa, S.; Goto, Y.

    1997-01-01

    As a model for analyzing the role of charge repulsion in proteins and its shielding by the solvent, we designed a peptide of 27 amino acid residues that formed a homodimeric coiled-coil. The interface between the coils consisted of hydrophobic Leu and Val residues, and 10 Lys residues per monomer were incorporated into the positions exposed to solvent. During the preparation of a disulfide-linked dimer in which the two peptides were linked in parallel by the two disulfide bonds located at the N and C terminals, a cyclic monomer with an intramolecular disulfide bond was also obtained. On the basis of CD and 1H-NMR, the conformational stabilities of these isomers and several reference peptides were examined. Whereas all these peptides were unfolded in the absence of salt at pH 4.7 and 20 degrees C, the addition of NaClO4 cooperatively stabilized the alpha-helical conformation. The crosslinking of the peptides by disulfide bonds significantly decreased the midpoint salt concentration of the transition. The 1H-NMR spectra in the presence of NaClO4 suggested that, whereas the disulfide-bonded dimer assumed a native-like conformation, the cyclic monomer assumed a molten globule-like conformation with disordered side chains. However, the cyclic monomer exhibited cooperative transitions against temperature and Gdn-HCl that were only slightly less cooperative than those of the disulfide-bonded parallel dimer. These results indicate that the charge repulsion critically destabilizes the native-like state as well as the molten globule-like state, and that the solvent-dependent charge repulsion may be useful for controlling the conformation of designed peptides. PMID:9232640

  9. Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of Aβ40 and Aβ42

    PubMed Central

    2014-01-01

    The self-assembly of the amyloid beta (Aβ) peptides into senile plaques is the hallmark of Alzheimer’s disease. Recent experiments have shown that the English familial disease mutation (H6R) speeds up the fibril formation process of alloforms Aβ40 and Aβ42 peptides altering their toxicity to cells. We used all-atom molecular dynamics simulations at microsecond time scales with the OPLS-AA force field and TIP4P explicit water model to study the structural dynamics of the monomer and dimer of H6R sequences of both peptides. The reason behind the self-assembly acceleration is common that upon mutation the net charge is reduced leading to the weaker repulsive interaction between chains that facilitates the peptide association. In addition, our estimation of the solvation free energy shows that the mutation enhances the hydrophobicity of both peptides speeding up their aggregation. However, we can show that the acceleration mechanisms are different for different peptides: the rate of fibril formation of Aβ42 increases due to increased β-structure at the C-terminal in both monomer and dimer and enhanced stability of salt bridge Asp23-Lys28 in monomer, while the enhancement of turn at residues 25–29 and reduction of coil in regions 10–13, 26–19, and 30–34 would play the key role for Aβ40. Overall, our study provides a detailed atomistic picture of the H6R-mediated conformational changes that are consistent with the experimental findings and highlights the important role of the N-terminal in Aβ peptide aggregation. PMID:24949887

  10. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.

    PubMed

    Louis, John M; Tözsér, József; Roche, Julien; Matúz, Krisztina; Aniana, Annie; Sayer, Jane M

    2013-10-29

    During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.

  11. Improved di-p-xylylene polymer and apparatus and method for making the same

    DOEpatents

    Jahn, R.K.; Liepins, R.

    Solid di-para-xylyene dimer is sublimed in a sublimation furnace at approximately 100 to 200/sup 0/C and subsequently conducted to a pyrolysis furnace where it is pyrolyzed to the diradical p-xylylene monomer while in the vapor state at approximately 600 degrees C. The diradical monomer is then introduced into a deposition chamber for deposition onto a suitable substrate. The deposition chamber includes electrodes for producing a low pressure plasma through which the diradical monomer passes prior to deposition. The interaction of the diradical monomer with the low pressure plasma results in the formation of poly-p-xylyene film which is exceptionally hard and thermally stable.

  12. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    PubMed

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  13. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide.

    PubMed

    Bhate, Manjiri; Wang, Xin; Baum, Jean; Brodsky, Barbara

    2002-05-21

    The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.

  14. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Forouhar; S Lew; J Seetharaman

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. Themore » TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.« less

  15. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    PubMed

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  16. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  17. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane.

    PubMed

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-09-15

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.

  18. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-09-01

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.

  19. Synthesis and reactivity of dimeric Ar'TlTlAr' and trimeric (Ar"T1)3 (Ar', Ar" = bulky terphenyl group) thallium(I) derivatives: Tl(I)-Tl(I) bonding in species ligated by monodentate ligands.

    PubMed

    Wright, Robert J; Phillips, Andrew D; Hino, Shirley; Power, Philip P

    2005-04-06

    The synthesis and characterization of three new organothallium(I) compounds are reported. Reaction of (Ar'Li)(2) (Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) and Ar"Li (Ar" = C(6)H(3)-2,6-(C(6)H(3)-2,6-Me(2))(2)) with TlCl in Et(2)O afforded (Ar'Tl)(2) (1) and (Ar' 'Tl)(3) (2). The "dithallene" 1 is the heaviest group 13 dimetallene and features a planar, trans-bent structure with Ar'Tl-Tl = 119.74(14) degrees and Tl-Tl = 3.0936(8) A. Compound 2 is the first structurally characterized neutral, three-membered ring species of formula c-(MR)(3) (M = Al-Tl; R = organo group). The Tl(3) ring has Tl-Tl distances in the range ca. 3.21-3.37 A as well as pyramidal Tl geometries. The Tl-Tl bonds in 1 and 2 are outside the range (2.88-2.97 A) of Tl-Tl single bonds in R(2)TlTlR(2) compounds. The weak Tl-Tl bonding in 1 and 2 leads to their dissociation into Ar'Tl and Ar' 'Tl monomers in hexane. The Ar'Tl monomer behaves as a Lewis base and readily forms a 1:1 donor-acceptor complex with B(C(6)F(5))(3) to give Ar'TlB(C(6)F(5))(3), 3. Adduct 3 features an almost linear thallium C(ipso)-Tl-B angle of 174.358(7) degrees and a Tl-B distance of 2.311(2) A, which indicates strong association. Treatment of 1 with a variety of reagents resulted in no reactions. The lower reactivity of 1 is in accord with the reluctance of Tl(I) to undergo oxidation to Tl(III) due to the unreactive character of the 6s(2) electrons.

  20. Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis.

    PubMed

    Feng, Lipeng; Chen, Zhenkang; Wang, Zhongwei; Hu, Yangbo; Chen, Shiyun

    2016-05-01

    Gene transcription catalysed by RNA polymerase is regulated by transcriptional regulators, which play central roles in the control of gene transcription in both eukaryotes and prokaryotes. In regulating gene transcription, many regulators form dimers that bind to DNA with repeated motifs. However, some regulators function as monomers, but their mechanisms of gene expression control are largely uncharacterized. Here we systematically characterized monomeric versus dimeric regulators in the tuberculosis causative agent Mycobacterium tuberculosis. Of the >160 transcriptional regulators annotated in M. tuberculosis, 154 transcriptional regulators were tested, 22 % probably act as monomers and most are annotated as hypothetical regulators. Notably, all members of the WhiB-like protein family are classified as monomers. To further investigate mechanisms of monomeric regulators, we analysed the actions of these WhiB proteins and found that the majority interact with the principal sigma factor σA, which is also a monomeric protein within the RNA polymerase holoenzyme. Taken together, our study for the first time globally classified monomeric regulators in M. tuberculosis and suggested a mechanism for monomeric regulators in controlling gene transcription through interacting with monomeric sigma factors.

Top