Random heteropolymers preserve protein function in foreign environments
NASA Astrophysics Data System (ADS)
Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting
2018-03-01
The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.
Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides
NASA Astrophysics Data System (ADS)
Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan
2014-03-01
The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.
Liu, Xiaoxuan; Zhang, Yongtao; Cui, Yanyan; Dong, Zhixian
2012-05-01
4-Methacryloyl-2,2,6,6-tetramethyl-piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo-induced copolymerization of methyl methacrylate (MMA, M(1)) with MTMP (M(2)) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using (1)H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r(1)= 0.37 and r(2)= 1.14 from extended Kelen-Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using (1)H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr', and lr' in the syndiotactic configuration are found. The sequence-length distribution in the MMA/MTMP copolymers is also obtained. For f(1)= 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f(1)= 0.6, the alternating tendency prevails and a large number of mono-sequences are formed; further up to f(1)= 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.
Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence
2016-04-05
Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.
Stability of Tandem Repeats in the Drosophila Melanogaster HSR-Omega Nuclear RNA
Hogan, N. C.; Slot, F.; Traverse, K. L.; Garbe, J. C.; Bendena, W. G.; Pardue, M. L.
1995-01-01
The Drosophila melanogaster Hsr-omega locus produces a nuclear RNA containing >5 kb of tandem repeat sequences. These repeats are unique to Hsr-omega and show concerted evolution similar to that seen with classical satellite DNAs. In D. melanogaster the monomer is ~280 bp. Sequences of 191/2 monomers differ by 8 +/- 5% (mean +/- SD), when all pairwise comparisons are considered. Differences are single nucleotide substitutions and 1-3 nucleotide deletions/insertions. Changes appear to be randomly distributed over the repeat unit. Outer repeats do not show the decrease in monomer homogeneity that might be expected if homogeneity is maintained by recombination. However, just outside the last complete repeat at each end, there are a few fragments of sequence similar to the monomer. The sequences in these flanking regions are not those predicted for sequences decaying in the absence of recombination. Instead, the fragmentation of the sequence homology suggests that flanking regions have undergone more severe disruptions, possibly during an insertion or amplification event. Hsr-omega alleles differing in the number of repeats are detected and appear to be stable over a few thousand generations; however, both increases and decreases in repeat numbers have been observed. The new alleles appear to be as stable as their predecessors. No alleles of less than ~5 kb nor more than ~16 kb of repeats were seen in any stocks examined. The evidence that there is a limit on the minimum number of repeats is consistent with the suggestion that these repeats are important in the function of the unusual Hsr-omega nuclear RNA. PMID:7540581
Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana
2017-02-07
Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.
Molecular simulations of assembly of functionalized spherical nanoparticles
NASA Astrophysics Data System (ADS)
Seifpour, Arezou
Precise assembly of nanoparticles is crucial for creating spatially engineered materials that can be used for photonics, photovoltaic, and metamaterials applications. One way to control nanoparticle assembly is by functionalizing the nanoparticle with ligands, such as polymers, DNA, and proteins, that can manipulate the interactions between the nanoparticles in the medium the particles are placed in. This thesis research aims to design ligands to provide a new route to the programmable assembly of nanoparticles. We first investigate using Monte Carlo simulation the effect of copolymer ligands on nanoparticle assembly. We first study a single nanoparticle grafted with many copolymer chains to understand how monomer sequence (e.g. alternating ABAB, or diblock AxBx) and chemistry of the copolymers affect the grafted chain conformation at various particle diameters, grafting densities, copolymer chain lengths, and monomer-monomer interactions in an implicit small molecule solvent. We find that the size of the grafted chain varies non-monotonically with increasing blockiness of the monomer sequence for a small particle diameter. From this first study, we selected the two sequences with the most different chain conformations---alternating and diblock---and studied the effect of the sequence and a range of monomer chemistries of the copolymer on the characteristics of assembly of multiple copolymer-functionalized nanoparticles. We find that the alternating sequence produces nanoclusters that are relatively isotropic, whereas diblock sequence tends to form anisotropic structures that are smaller and more compact when the block closer to the surface is attractive and larger loosely held together clusters when the outer block is attractive. Next, we conduct molecular dynamics simulations to study the effect of DNA ligands on nanoparticle assembly. Specifically we investigate the effect of grafted DNA strand composition (e.g. G/C content, placement and sequence) and bidispersity in DNA strand lengths on the thermodynamics and structure of assembly of functionalized nanoparticles. We find that higher G/C content increases cluster dissociation temperature for smaller particles. Placement of G/C block inward along the strand decreases number of neighbors within the assembled cluster. Finally, increased bidispersity in DNA strand lengths leads a distribution of inter-particle distances in the assembled cluster.
Co-operation between Polymerases and Nucleotide Synthetases in the RNA World.
Kim, Ye Eun; Higgs, Paul G
2016-11-01
It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve.
Cacheux, Lauriane; Ponger, Loïc; Gerbault-Seureau, Michèle; Loll, François; Gey, Delphine; Richard, Florence Anne; Escudé, Christophe
2018-06-01
Alpha satellite is the major repeated DNA element of primate centromeres. Specific evolutionary mechanisms have led to a great diversity of sequence families with peculiar genomic organization and distribution, which have till now been studied mostly in great apes. Using high throughput sequencing of alpha satellite monomers obtained by enzymatic digestion followed by computational and cytogenetic analysis, we compare here the diversity and genomic distribution of alpha satellite DNA in two related Old World monkey species, Cercopithecus pogonias and Cercopithecus solatus, which are known to have diverged about seven million years ago. Two main families of monomers, called C1 and C2, are found in both species. A detailed analysis of our datasets revealed the existence of numerous subfamilies within the centromeric C1 family. Although the most abundant subfamily is conserved between both species, our FISH experiments clearly show that some subfamilies are specific for each species and that their distribution is restricted to a subset of chromosomes, thereby pointing to the existence of recurrent amplification/homogenization events. The pericentromeric C2 family is very abundant on the short arm of all acrocentric chromosomes in both species, pointing to specific mechanisms that lead to this distribution. Results obtained using two different restriction enzymes are fully consistent with a predominant monomeric organization of alpha satellite DNA which coexists with higher order organization patterns in the Cercopithecus pogonias genome. Our study suggests a high dynamics of alpha satellite DNA in Cercopithecini, with recurrent apparition of new sequence variants and interchromosomal sequence transfer.
Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function.
Mehrotra, Shweta; Goyal, Vinod
2014-08-01
Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Design, Synthesis, and Self-Assembly of Polymers with Tailored Graft Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Alice B.; Lin, Tzu-Pin; Thompson, Niklas B.
Grafting density and graft distribution impact the chain dimensions and physical properties of polymers. However, achieving precise control over these structural parameters presents long-standing synthetic challenges. In this report, we introduce a versatile strategy to synthesize polymers with tailored architectures via grafting-through ring-opening metathesis polymerization (ROMP). One-pot copolymerization of an ω-norbornenyl macromonomer and a discrete norbornenyl co-monomer (diluent) provides opportunities to control the backbone sequence and therefore the side chain distribution. Toward sequence control, the homopolymerization kinetics of 23 diluents were studied, representing diverse variations in the stereochemistry, anchor groups, and substituents. These modifications tuned the homopolymerization rate constants overmore » two orders of magnitude (0.36 M -1 s -1 < k homo < 82 M -1 s -1). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly (D,L-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by non-linear least squares fitting of the instantaneous co-monomer concentrations according to the Mayo-Lewis terminal model. Indepth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 < r 1/r 2 < 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular “shapes.” Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.« less
Walker, Sara Imari; Grover, Martha A.; Hud, Nicholas V.
2012-01-01
Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities. PMID:22493682
Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.
Davis, C A; Wyatt, G R
1989-01-01
The mealworm beetle, Tenebrio molitor, contains an unusually abundant and homogeneous satellite DNA which constitutes up to 60% of its genome. The satellite DNA is shown to be present in all of the chromosomes by in situ hybridization. 18 dimers of the repeat unit were cloned and sequenced. The consensus sequence is 142 nt long and lacks any internal repeat structure. Monomers of the sequence are very similar, showing on average a 2% divergence from the calculated consensus. Variant nucleotides are scattered randomly throughout the sequence although some variants are more common than others. Neighboring repeat units are no more alike than randomly chosen ones. The results suggest that some mechanism, perhaps gene conversion, is acting to maintain the homogeneity of the satellite DNA despite its abundance and distribution on all of the chromosomes. Images PMID:2762148
1980-02-01
average sequence length Butyl acrylate Methyl methacrylate PIBM Carbon-13 Monomer distribution PMMA (Continued on reverse side) 120. ASTACT (VC•T e m...TACTEC Attic SARPH.FTA 1 505 KIng Avenue Ihlle ithlt, AR 71611 Columbus, OH 43201 US ARMY TRAINING & DOCTRINE COMMAND Director or Toxicology
Dutta, Annwesha; Chowdhury, Debashish
2017-05-01
The sequence of amino acid monomers in the primary structure of a protein is decided by the corresponding sequence of codons (triplets of nucleic acid monomers) on the template messenger RNA (mRNA). The polymerization of a protein, by incorporation of the successive amino acid monomers, is carried out by a molecular machine called ribosome. We develop a stochastic kinetic model that captures the possibilities of mis-reading of mRNA codon and prior mis-charging of a tRNA. By a combination of analytical and numerical methods, we obtain the distribution of the times taken for incorporation of the successive amino acids in the growing protein in this mathematical model. The corresponding exact analytical expression for the average rate of elongation of a nascent protein is a 'biologically motivated' generalization of the Michaelis-Menten formula for the average rate of enzymatic reactions. This generalized Michaelis-Menten-like formula (and the exact analytical expressions for a few other quantities) that we report here display the interplay of four different branched pathways corresponding to selection of four different types of tRNA.
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less
``Sequence space soup'' of proteins and copolymers
NASA Astrophysics Data System (ADS)
Chan, Hue Sun; Dill, Ken A.
1991-09-01
To study the protein folding problem, we use exhaustive computer enumeration to explore ``sequence space soup,'' an imaginary solution containing the ``native'' conformations (i.e., of lowest free energy) under folding conditions, of every possible copolymer sequence. The model is of short self-avoiding chains of hydrophobic (H) and polar (P) monomers configured on the two-dimensional square lattice. By exhaustive enumeration, we identify all native structures for every possible sequence. We find that random sequences of H/P copolymers will bear striking resemblance to known proteins: Most sequences under folding conditions will be approximately as compact as known proteins, will have considerable amounts of secondary structure, and it is most probable that an arbitrary sequence will fold to a number of lowest free energy conformations that is of order one. In these respects, this simple model shows that proteinlike behavior should arise simply in copolymers in which one monomer type is highly solvent averse. It suggests that the structures and uniquenesses of native proteins are not consequences of having 20 different monomer types, or of unique properties of amino acid monomers with regard to special packing or interactions, and thus that simple copolymers might be designable to collapse to proteinlike structures and properties. A good strategy for designing a sequence to have a minimum possible number of native states is to strategically insert many P monomers. Thus known proteins may be marginally stable due to a balance: More H residues stabilize the desired native state, but more P residues prevent simultaneous stabilization of undesired native states.
Yang, Teng-Chieh; Maluf, Nasib Karl
2012-02-21
Human adenovirus (Ad) is an icosahedral, double-stranded DNA virus. Viral DNA packaging refers to the process whereby the viral genome becomes encapsulated by the viral particle. In Ad, activation of the DNA packaging reaction requires at least three viral components: the IVa2 and L4-22K proteins and a section of DNA within the viral genome, called the packaging sequence. Previous studies have shown that the IVa2 and L4-22K proteins specifically bind to conserved elements within the packaging sequence and that these interactions are absolutely required for the observation of DNA packaging. However, the equilibrium mechanism for assembly of IVa2 and L4-22K onto the packaging sequence has not been determined. Here we characterize the assembly of the IVa2 and L4-22K proteins onto truncated packaging sequence DNA by analytical sedimentation velocity and equilibrium methods. At limiting concentrations of L4-22K, we observe a species with two IVa2 monomers and one L4-22K monomer bound to the DNA. In this species, the L4-22K monomer is promoting positive cooperative interactions between the two bound IVa2 monomers. As L4-22K levels are increased, we observe a species with one IVa2 monomer and three L4-22K monomers bound to the DNA. To explain this result, we propose a model in which L4-22K self-assembly on the DNA competes with IVa2 for positive heterocooperative interactions, destabilizing binding of the second IVa2 monomer. Thus, we propose that L4-22K levels control the extent of cooperativity observed between adjacently bound IVa2 monomers. We have also determined the hydrodynamic properties of all observed stoichiometric species; we observe that species with three L4-22K monomers bound have more extended conformations than species with a single L4-22K bound. We suggest this might reflect a molecular switch that controls insertion of the viral DNA into the capsid.
Nanostructure Control of Biologically Inspired Polymers
NASA Astrophysics Data System (ADS)
Rosales, Adrianne Marie
Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly. A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is small compared to other folded helices, indicating the conformational flexibility of polypeptoid chains. With a firmer understanding of how monomer sequence and composition influence polypeptoid bulk properties, we designed block copolymer systems for self-assembly. Because the governing parameters of block copolymer self-assembly are well understood, this architecture provides a convenient starting point for probing the effect of changing polymer sequence. We found that polystyrene-polypeptoid block copolymers readily self-assemble into hexagonally-packed and lamellar morphologies with long range order, and furthermore, sequence control of the polypeptoid block enables us to tune the strength of segregation (and therefore the order-disorder transition) of the block copolymer. Polypeptoid chain shape also affects self-assembly. In classical synthetic block copolymers, it has typically been difficult to change chain shape without also changing polymer chemistry and therefore other factors affecting self-assembly. The advantage of the polypeptoid system is that it is modular, as the side chain chemistry (and therefore polymer properties) can easily be changed without changing the backbone chemistry. Thus, we have decoupled conformational effects from chemical composition by comparing the self-assembly of block copolymers containing either a helical peptoid block or its racemic, non-helical analog. The increase in the persistence length of the peptoid block due to helicity translates to an increase in the morphological domain spacing. In this work, we further the understanding of the effect of monomer sequence on bulk polypeptoid properties and self-assembly. Our findings pave the way for the rational design of structured synthetic polymers with tunable, sequence-specific properties.
Alignment of RNA molecules: Binding energy and statistical properties of random sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com
2012-02-15
A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H.; Liskovykh, Mikhail; Earnshaw, William C.; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I.; Larionov, Vladimir
2014-01-01
In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. PMID:25228468
Waye, J S; Willard, H F
1986-09-01
The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.
Sawle, Lucas; Ghosh, Kingshuk
2015-08-28
A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R(2) = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found-with high statistical significance-to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.
Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja
2009-01-01
The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.
NASA Astrophysics Data System (ADS)
Han, Junwon
The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a gravity column. The second part of this thesis is focused on the liquid chromatography analysis and fractionation of RAFT-polymerized PS-b -PMMA diblock copolymers and AFM studies. In this study, PS- b-PMMA block copolymers were synthesized by a RAFT free radical polymerization process---the PMMA block with a phenyldithiobenzoate end group was synthesized first. The contents of unreacted PS and PMMA homopolymers in as-synthesized PS-b-PMMA block copolymers were quantitatively analyzed by solvent gradient interaction chromatography (SGIC) technique employing bare silica and C18-bonded silica columns, respectively. In addition, by 2-dimensional large-scale IC fractionation method, atomic force microscopy (AFM) study of these fractionated samples revealed various morphologies with respect to the chemical composition of each fraction. The third part of this thesis is to analyze random copolymers with tunable monomer sequence distributions using interaction chromatography. Here, IC was used for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrS copolymers were synthesized by the bromination of monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution were adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns were used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution. The fourth part of this thesis is to analyze and fractionate highly branched polymers such as dendronized polymers and star-shaped homo and copolymers. I have developed an interaction chromatography technique to separate polymers with nonlinear chain architecture. Specifically, the IC technique has been used to separate dendronized polymers and PS-based highly branched copolymers and to ultimately obtain well-defined dendronized or branched copolymers with a low polydispersity. The effects of excess arm-polymers on (1) the micellar self-assembly of dendronized polymers and (2) the regularity of the pore morphology in the low-k applications by the sol-gel process have been studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew; Dergunov, Sergey; Ganus, Bill
2011-01-01
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill
2011-03-10
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
Anomalous diffusion in neutral evolution of model proteins.
Nelson, Erik D; Grishin, Nick V
2015-06-01
Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n. We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail.
Anomalous diffusion in neutral evolution of model proteins
NASA Astrophysics Data System (ADS)
Nelson, Erik D.; Grishin, Nick V.
2015-06-01
Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n . We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail.
Modulation of dimerization by residues distant from the interface in bovine neurophysin-II.
Zheng, C; Peyton, D; Breslow, E
1997-09-01
The crystal structure of bovine neurophysin-II in its liganded state (Chen et al. [1991] Proc. Natl. Acad. Sci. USA 88, 4240-4244) indicates that the 1-6 sequence has a disordered conformation, lacks noncovalent contacts to other regions of the protein and is distant from the monomer-monomer interface. Cleavage of the 1-6 sequence by Staphylococcus protease V8 yielded a protein that, for the first time, crystallized in both liganded and unliganded states. Insights into the role of the 1-6 sequence in the unliganded state were obtained by NMR and related biophysical comparisons of the native and des-1-6 proteins. NMR spectra demonstrated that the environment and/or conformation of residues in the 1-6 sequence differed in liganded and unliganded states. Additionally, the unliganded des-1-6 protein exhibited a dimerization constant four to five times that of the native protein, potentially accounting for the observation that its peptide affinity was also increased. NMR studies further indicated that the increased dimerization constant of the des-1-6 protein correlated with the presence in the native protein of two isoenergetic forms of the monomer, in contrast to only a single form in the des-1-6 protein, as evidenced by signals from an internal dimerization-sensitive alpha-proton. Thus, the 1-6 sequence reduces the dimerization constant by stabilization of an alternative monomer conformation. A second product of Staphylococcus protease V8 digestion of the native protein was identified as the des-1-6 protein with an internal clip after binding site residue Glu-47, the clip presumably breaking the short 3,10 helix that most directly connects the interface to the interface to the binding site. This product, although unable to bind peptide, retained the dimerization constant of the des-1-6 protein, suggesting a lack of importance of the helix in dimerization and contrasting with the effects of the 1-6 sequence. A model is proposed in which the 1-6 sequence stabilizes the second conformation of the unliganded monomer via interactions affecting the loop region that separates the two neurophysin domains and which has been shown to influence neurophysin self-association.
Principles of protein folding--a perspective from simple exact models.
Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.
1995-01-01
General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459
Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.
Benslimane, A A; Dron, M; Hartmann, C; Rode, A
1986-01-01
Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553
Heimsath, Ernest G.; Higgs, Henry N.
2012-01-01
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin. PMID:22094460
13C NMR spectroscopic analysis of poly(electrolyte) cement liquids.
Watts, D C
1979-05-01
13C NMR spectroscopy has been applied to the analysis of carboxylic poly-acid cement liquids. Monomer incorporation, composition ratio, sequence statistics, and stereochemical configuration have been considered theoretically, and determined experimentally, from the spectra. Conventionally polymerized poly(acrylic acid) has an approximately random configuration, but other varieties may be synthesized. Two commercial glass-ionomer cement liquids both contain tartaric acid as a chelating additive but the composition of their poly-acids are different. Itaconic acid units, distributed randomly, constitute 21% of the repeating units in one of these polyelectrolytes.
NASA Astrophysics Data System (ADS)
Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun
2017-11-01
In this paper, diffusion limited aggregation (DLA) algorithm is improved to generate the alumina particle cluster with different radius of monomers in the plume. Scattering properties of these alumina clusters are solved by the multiple sphere T matrix method (MSTM). The effect of the number and radius of monomers on the scattering properties of clusters of alumina particles is discussed. The scattering properties of two types of alumina particle clusters are compared, one has different radius of monomers that follows lognormal probability distribution, another has the same radius of monomers that equals the mean of lognormal probability distribution. The result show that the scattering phase functions and linear polarization degrees of these two types of alumina particle clusters are of great differences. For the alumina clusters with different radius of monomers, the forward scatterings are bigger and the linear polarization degree has multiple peaks. Moreover, the vary of their scattering properties do not have strong correlative with the change of number of monomers. For larger booster motors, 25-38% of the plume being condensed alumina. The alumina can scatter radiation from other sources present in the plume and effect on radiation transfer characteristics of plume. In addition, the shape, size distribution and refractive index of the particles in the plume are estimated by linear polarization degree. Therefore, accurate scattering properties calculation is very important to decrease the deviation in the related research.
Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition.
Dai, Yu; Lambert, Lynette; Yuan, Zhiguo; Keller, Jurg
2008-03-20
Polyhydroxyalkanoate (PHA) copolymers comprising the four monomers 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylvalerate (3HMV) and 3-hydroxy-2-methylbutyrate (3HMB) were generated using the recently discovered Defluviicoccus vanus-related glycogen accumulating organisms (DvGAOs) under anaerobic conditions without applying any nutrient limitations. The composition could be manipulated in a defined range by modifying the ratio of propionate and acetate provided in the feed stream. The PHAs produced were characterised as random copolymers (from propionate alone) or a mixture of random copolymers (from mixture of propionate and acetate) through microstructure analysis using 13C NMR spectroscopy. The sequence distribution of all eight comonomer pairs in the carbonyl region of 3HB and 3HV was identified and assigned with confidence utilising two-dimensional heteronuclear multiple bond coherence (HMBC) spectroscopy. Weight average molecular weights were in the range 390-560 kg/mol. Differential scanning calorimetry (DSC) traces showed that the melting temperature (Tm) varied between 70 and 161 degrees C and glass transition temperature (Tg) ranged from -8 to 0 degrees C. The incorporation of considerable amounts of 3HMV and 3HMB monomer units introduced additional "defects" into the PHBV copolymer structure and hence greatly lowered the crystallinity. The data indicate the potential of these four-monomer PHAs to be employed for practical applications, considering their favourable properties and the cost-effective production process using a mixed culture and simple carbon sources.
Synthetic polymers and methods of making and using the same
Daily, Michael D.; Grate, Jay W.; Mo, Kai-For
2016-06-14
Monomer embodiments that can be used to make polymers, such as homopolymers, heteropolymers, and that can be used in particular embodiments to make sequence-defined polymers are described. Also described are methods of making polymers using such monomer embodiments. Methods of using the polymers also are described.
Synthetic polymers and methods of making and using the same
Grate, Jay W.; Mo, Kai-For; Daily, Michael D.
2017-02-07
Monomer embodiments that can be used to make polymers, such as homopolymers, heteropolymers, and that can be used in particular embodiments to make sequence-defined polymers are described. Also described are methods of making polymers using such monomer embodiments. Methods of using the polymers also are described.
Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong
2017-06-01
Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Structure and Sequence in Complex Coacervates
NASA Astrophysics Data System (ADS)
Sing, Charles; Lytle, Tyler; Madinya, Jason; Radhakrishna, Mithun
Oppositely-charged polyelectrolytes in aqueous solution can undergo associative phase separation, in a process known as complex coacervation. This results in a polyelectrolyte-dense phase (coacervate) and polyelectrolyte-dilute phase (supernatant). There remain challenges in understanding this process, despite a long history in polymer physics. We use Monte Carlo simulation to demonstrate that molecular features (charge spacing, size) play a crucial role in governing the equilibrium in coacervates. We show how these molecular features give rise to strong monomer sequence effects, due to a combination of counterion condensation and correlation effects. We distinguish between structural and sequence-based correlations, which can be designed to tune the phase diagram of coacervation. Sequence effects further inform the physical understanding of coacervation, and provide the basis for new coacervation models that take monomer-level features into account.
High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes
NASA Astrophysics Data System (ADS)
Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew
Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.
Role of Monomer Sequence, Hydrogen Bonding and Mesoscale Architecture in Marine Antifouling Coatings
NASA Astrophysics Data System (ADS)
Segalman, Rachel
Polypeptoids are non-natural, sequence specific polymers that offer the opportunity to probe the effect of monomer sequence, chirality, and chain shape on self-assembly and surface properties. Additionally, polypeptoid synthesis is more scaleable than traditional polypeptides suggesting their utility in large area applications. We have designed efficient marine anti-fouling coatings by using triblock copolymer scaffolds to which polypeptoids are tethered in order to tune both the modulus and surface energies with great precision. Surprisingly, when short sequences are tethered to a polymer backbone, polypeptoids consistently outperform analogous polypeptides in antifouling properties. We hypothesize that the hydrogen bonding inherent to the polypeptide backbone drives the observed differences in performance. We also find that the polymer scaffold housing the polypeptoids also plays a crucial role in directing surface presentation and therefore the overall coating properties.
Yan, H. H.; Liu, G. Q.; Cheng, Z. K.; Li, X. B.; Liu, G. Z.; Min, S. K.; Zhu, L.H.
2002-02-01
In the course of transferring the brown planthopper resistance from a diploid, CC-genome wild rice species, Oryza eichingeri (IRGC acc. 105159 and 105163), to the cultivated rice variety 02428, we have isolated many alien addition and introgression lines. The O. eichingeri chromatin in some of these lines has previously been identified using genomic in situ hybridization and molecular-marker analysis. Here we cloned a tandemly repetitive DNA sequence from O. eichingeri IRGC acc105163, and detected it in 25 introgression lines. This repetitive DNA sequence showed high specificity to the rice CC genome, but was absent from all the four tetraploid species with BBCC or CCDD genomes. The monomer in this repetitive DNA sequence is 325-366-bp long, with a copy number of about 5,000 per 1 C of the O. eichingerigenome, showing 88% homology to a repetitive DNA sequence isolated from Oryza officinalis(2n=2 x=24, CC). Fluorescent in situ hybridization revealed 11 signals distributed over eight O. eichingeri chromosomes, mostly in terminal or subterminal regions.
Visualization of information with an established order
Wong, Pak Chung [Richland, WA; Foote, Harlan P [Richmond, WA; Thomas, James J [Richland, WA; Wong, Kwong-Kwok [Sugar Land, TX
2007-02-13
Among the embodiments of the present invention is a system including one or more processors operable to access data representative of a biopolymer sequence of monomer units. The one or more processors are further operable to establish a pattern corresponding to at least one fractal curve and generate one or more output signals corresponding to a number of image elements each representative of one of the monomer units. Also included is a display device responsive to the one or more output signals to visualize the biopolymer sequence by displaying the image elements in accordance with the pattern.
Role of the tail in the regulated state of myosin 2
Jung, HyunSuk; Billington, Neil; Thirumurugan, Kavitha; Salzameda, Bridget; Cremo, Christine R.; Chalovich, Joseph M.; Chantler, Peter D.; Knight, Peter J.
2013-01-01
Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together and the long tail is folded into three closely-packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained. Using electron microscopy, we show that compact monomers of smooth muscle myosin 2 have the same structure in both the native state and following specific, intramolecular photo-cross-linking between Cys109 of the regulatory light chain (RLC) and segment 3 of the tail. Non-specific cross-linking between lysine residues of the folded monomer by glutaraldehyde also does not perturb the compact conformation, and stabilises it against unfolding at high ionic strength. Sequence comparisons across phyla and myosin 2 isoforms suggest that folding of the tail is stabilised by ionic interactions between the positively-charged N-terminal sequence of the RLC and a negatively-charged region near the start of tail segment 3, and that phosphorylation of the RLC could perturb these interactions. Our results support the view that interactions between the heads and the distal tail perform a critical role in regulating activity of myosin 2 molecules through stabilising the compact monomer conformation. PMID:21419133
The domain structure and distribution of Alu elements in long noncoding RNAs and mRNAs
Kim, Eugene Z.; Wespiser, Adam R.; Caffrey, Daniel R.
2016-01-01
Approximately 75% of the human genome is transcribed and many of these spliced transcripts contain primate-specific Alu elements, the most abundant mobile element in the human genome. The majority of exonized Alu elements are located in long noncoding RNAs (lncRNAs) and the untranslated regions of mRNA, with some performing molecular functions. To further assess the potential for Alu elements to be repurposed as functional RNA domains, we investigated the distribution and evolution of Alu elements in spliced transcripts. Our analysis revealed that Alu elements are underrepresented in mRNAs and lncRNAs, suggesting that most exonized Alu elements arising in the population are rare or deleterious to RNA function. When mRNAs and lncRNAs retain exonized Alu elements, they have a clear preference for Alu dimers, left monomers, and right monomers. mRNAs often acquire Alu elements when their genes are duplicated within Alu-rich regions. In lncRNAs, reverse-oriented Alu elements are significantly enriched and are not restricted to the 3′ and 5′ ends. Both lncRNAs and mRNAs primarily contain the Alu J and S subfamilies that were amplified relatively early in primate evolution. Alu J subfamilies are typically overrepresented in lncRNAs, whereas the Alu S dimer is overrepresented in mRNAs. The sequences of Alu dimers tend to be constrained in both lncRNAs and mRNAs, whereas the left and right monomers are constrained within particular Alu subfamilies and classes of RNA. Collectively, these findings suggest that Alu-containing RNAs are capable of forming stable structures and that some of these Alu domains might have novel biological functions. PMID:26654912
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-01-01
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. PMID:27901024
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-11-30
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.
Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.
Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W
2016-02-02
The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lou, Chenguang; Samuelsen, Simone V; Christensen, Niels Johan; Vester, Birte; Wengel, Jesper
2017-04-19
Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.
Spontaneous emergence of autocatalytic information-coding polymers
Tkachenko, Alexei V.; Maslov, Sergei
2015-07-28
Self-replicating systems based on information-coding polymers are of crucial importance in biology. They also recently emerged as a paradigm in material design on nano- and micro-scales. We present a general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment. Our central result is the existence of the first order transition between the regime dominated by free monomers and that with a self-sustaining population of sufficiently long chains. We provide a simple, mathematically tractable model supported by numerical simulations, which predicts the distribution of chainmore » lengths and the onset of autocatalysis in terms of the overall monomer concentration and two fundamental rate constants. Another key result of our study is the emergence of the kinetically limited optimal overlap length between a template and each of its two substrates. The template-assisted ligation allows for heritable transmission of the information encoded in chain sequences thus opening up the possibility of long-term memory and evolvability in such systems.« less
Spontaneous emergence of autocatalytic information-coding polymers
NASA Astrophysics Data System (ADS)
Tkachenko, Alexei V.; Maslov, Sergei
2015-07-01
Self-replicating systems based on information-coding polymers are of crucial importance in biology. They also recently emerged as a paradigm in material design on nano- and micro-scales. We present a general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment. Our central result is the existence of the first order transition between the regime dominated by free monomers and that with a self-sustaining population of sufficiently long chains. We provide a simple, mathematically tractable model supported by numerical simulations, which predicts the distribution of chain lengths and the onset of autocatalysis in terms of the overall monomer concentration and two fundamental rate constants. Another key result of our study is the emergence of the kinetically limited optimal overlap length between a template and each of its two substrates. The template-assisted ligation allows for heritable transmission of the information encoded in chain sequences thus opening up the possibility of long-term memory and evolvability in such systems.
Sulfur-doped Graphene Nanoribbons with a Sequence of Distinct Band Gaps
NASA Astrophysics Data System (ADS)
Du, Shi-Xuan; Zhang, Yan-Fang; Zhang, Yi; Berger, Reinhard; Feng, Xinliang; Mullen, Klaus; Lin, Xiao; Zhang, Yu-Yang; Pantelides, Sokrates T.; Gao, Hong-Jun
Unlike free-standing graphene, graphene nanoribbons (GNRs) can possess semiconducting band gap. However, achieving such control has been a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently achieved by surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. By mixing two different monomers, GNR heterojunctions can in principle be fabricated. Here we report fabrication and characterization of chevron-type GNRs by using sulfur-substituted oligophenylene monomers to achieve GNRs and related heterostructures for the first time. Importantly, our first-principles calculations show that the band gaps of GNRs can be tailored by different S configurations in cyclodehydrogenated isomers through debromination and intramolecular cyclodehydrogenation. This feature should open up new avenues to create multiple GNR heterojunctions by engineering the sulfur configurations. These predictions have been confirmed by Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). The unusual sequence of intraribbon heterojunctions may be useful for nanoscale optoelectronic applications based on quantum dots
Structures of Bacterial Biosynthetic Arginine Decarboxylases
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Forouhar; S Lew; J Seetharaman
2011-12-31
Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. Themore » TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.« less
Chernysh, Irina N.; Nagaswami, Chandrasekaran
2011-01-01
We determined the sequence of events and identified and quantitatively characterized the mobility of moving structures present during the early stages of fibrin-clot formation from the beginning of polymerization to the gel point. Three complementary techniques were used in parallel: spinning-disk confocal microscopy, transmission electron microscopy, and turbidity measurements. At the beginning of polymerization the major structures were monomers, whereas at the middle of the lag period there were monomers, oligomers, protofibrils (defined as structures that consisted of more than 8 monomers), and fibers. At the end of the lag period, there were primarily monomers and fibers, giving way to mainly fibers at the gel point. Diffusion rates were calculated from 2 different results, one based on sizes and another on the velocity of the observed structures, with similar results in the range of 3.8-0.1 μm2/s. At the gel point, the diffusion coefficients corresponded to very large, slow-moving structures and individual protofibrils. The smallest moving structures visible by confocal microscopy during fibrin polymerization were identified as protofibrils with a length of approximately 0.5 μm. The sequence of early events of clotting and the structures present are important for understanding hemostasis and thrombosis. PMID:21248064
Design and synthesis of digitally encoded polymers that can be decoded and erased
NASA Astrophysics Data System (ADS)
Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François
2015-05-01
Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.
Design and synthesis of digitally encoded polymers that can be decoded and erased.
Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François
2015-05-26
Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.
Computational study on UV curing characteristics in nanoimprint lithography: Stochastic simulation
NASA Astrophysics Data System (ADS)
Koyama, Masanori; Shirai, Masamitsu; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki
2017-06-01
A computational simulation model of UV curing in nanoimprint lithography based on a simplified stochastic approach is proposed. The activated unit reacts with a randomly selected monomer within a critical reaction radius. Cluster units are chained to each other. Then, another monomer is activated and the next chain reaction occurs. This process is repeated until a virgin monomer disappears within the reaction radius or until the activated monomers react with each other. The simulation model well describes the basic UV curing characteristics, such as the molecular weight distributions of the reacted monomers and the effect of the initiator concentration on the conversion ratio. The effects of film thickness on UV curing characteristics are also studied by the simulation.
MspA Nanopores from Subunit Dimers
Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael
2012-01-01
Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID:22719928
Designing heteropolymers to fold into unique structures via water-mediated interactions.
Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar
2010-10-28
Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.
Randall, Thomas A.; Perera, Lalith; London, Robert E.; Mueller, Geoffrey A.
2013-01-01
The major allergen domain (MA) is widely distributed in insects. The crystal structure of a single Bla g 1 MA revealed a novel protein fold in which the fundamental structure was a duplex of two subsequences (monomers), which had diverged over time. This suggested that the evolutionary origin of the MA structure may have been a homodimer of this smaller subsequence. Using publicly available genomic data, the distribution of the basic unit of this class of proteins was determined to better understand its evolutionary history. The duplication and divergence is examined at three distinct levels of resolution: 1) within the orders Diptera and Hymenoptera, 2) within one genus Drosophila, and 3) within one species Aedes aegypti. Within the family Culicidae, we have found two separate occurrences of monomers as independent genes. The organization of the gene family in A. aegypti shows a common evolutionary origin for its monomer and several closely related MAs. Molecular modeling of the A. aegypti monomer with the unique Bla g 1 fold confirms the distant evolutionary relationship and supports the feasibility of homodimer formation from a single monomer. RNAseq data for A. aegypti confirms that the monomer is expressed in the mosquito similar to other A. aegypti MAs after a blood meal. Together, these data support the contention that the detected monomer shares similar functional characteristics to related MAs in other insects. An extensive search for this domain outside of Insecta confirms that the MAs are restricted to insects. PMID:24253356
Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Matsuda, Yoichi
2004-03-01
We isolated a new family of satellite DNA sequences from HaeIII- and EcoRI-digested genomic DNA of the Blakiston's fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.
Barrère, Caroline; Rejaibi, Majed; Curat, Aurélien; Hubert-Roux, Marie; Lavanant, Hélène; Afonso, Carlos; Kebir, Nasreddine; Desilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne
2014-08-15
Polyamides (PA) are among the most used classes of polymers because of their attractive properties. Depending on the nature and proportion of the co-monomers used for their synthesis, they can exhibit a very large range of melting temperatures (Tm ). This study aims at the correlation of data from mass spectrometry (MS) with differential scanning calorimetry (DSC) and X-ray diffraction analyses to relate molecular structure to physical properties such as melting temperature, enthalpy change and crystallinity rate. Six different PA copolymers with molecular weights around 3500 g mol(-1) were synthesized with varying proportions of different co-monomers (amino-acid AB/di-amine AA/di-acid BB). Their melting temperature, enthalpy change and crystallinity rate were measured by DSC and X-ray diffraction. Their structural characterization was carried out by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Because of the poor solubility of PA, a solvent-free sample preparation strategy was used with 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix and sodium iodide as the cationizing agent. The different proportions of the repeating unit types led to the formation of PA with melting temperatures ranging from 115°C to 185°C. The structural characterization of these samples by MALDI-TOF-MS revealed a collection of different ion distributions with different sequences of repeating units (AA, BB; AB/AA, BB and AB) in different proportions according to the mixture of monomers used in the synthesis. The relative intensities of these ion distributions were related to sample complexity and structure. They were correlated to DSC and X-ray results, to explain the observed physical properties. The structural information obtained by MALDI-TOF-MS provided a better understanding of the variation of the PA melting temperature and established a structure-properties relationship. This work will allow future PA designs to be monitored. Copyright © 2014 John Wiley & Sons, Ltd.
Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.
Elder, J F; Turner, B J
1994-01-01
The canonical monomers (approximately 170 bp) of an abundant (1.9 x 10(6) copies per diploid genome) satellite DNA sequence family in the genome of Cyprinodon variegatus, a "pupfish" that ranges along the Atlantic coast from Cape Cod to central Mexico, are divergent in base sequence in 10 of 12 samples collected from natural populations. The divergence involves substitutions, deletions, and insertions, is marked in scope (mean pairwise sequence similarity = 61.6%; range = 35-95.9%), is largely confined to the 3' half of the monomer, and is not correlated with the distance among collecting sites. Repetitive cloning and direct genomic sequencing experiments failed to detect intrapopulation and intraindividual variation, suggesting high levels of sequence homogeneity within populations. The satellite sequence has therefore undergone "concerted evolution," at the level of the local population. Concerted evolution has previously almost always been discussed in terms of the divergence of species or higher taxa; its intraspecific occurrence apparently has not been reported previously. The generality of the observation is difficult to evaluate, for although satellite DNAs from a large number of organisms have been studied in detail, there appear to be little or no other data on their sequence variation in natural populations. The relationship (if any) between concerted, population level, satellite DNA divergence and the extent of gene flow/genetic isolation among conspecific natural populations remains to be established. Images PMID:8302879
Misra, Arvind; Mishra, Satyendra; Misra, Krishna
2004-01-01
Synthesis of modified oligonucleotides in which the specific cytidine nucleoside analogues linked at 2'-OH position via a carbamate bond with an amino ethyl derivative of dansyl fluorophore is reported. For the multiple labeling of oligonucleotides, a strategy involving prelabeling at the monomeric level followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled probes has been described. The labeled monomer was phosphitylated using 2-cyanoethyl-N,N,N',N'-tetraisopropyl-phosphoramidite (Bis-reagent) and pyridiniumtrifluoro acetate (Py.TFA) as an activator. To ascertain the minimal number of labeled monomers required for a specific length of oligonucleotide for detection and also to assess the effect of carbamate linkage on hybridization, hexamer and 20-mer sequences were selected. Both were labeled with 1, 2, and 3 monomers at the 5'-end and hybridized with normal (unmodified) complementary sequences. As compared to midsequence or 3'-terminal labeling reported earlier, the 5'-terminal labeling has been found to have minimal contact-mediated quenching on duplex formation. This may be due to complementary deoxyguanosine (dG) rich oligonucleotide sequences or CG base pairs at a terminus that is known to yield stronger binding. This is one reason for selecting cytidine for labeling. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids.
Quinn, J S; Guglich, E; Seutin, G; Lau, R; Marsolais, J; Parna, L; Boag, P T; White, B N
1992-02-01
The first tandemly repeated sequence examined in a passerine bird, a 431-bp PstI fragment named pMAT1, has been cloned from the genome of the brown-headed cowbird (Molothrus ater). The sequence represents about 5-10% of the genome (about 4 x 10(5) copies) and yields prominent ethidium bromide stained bands when genomic DNA cut with a variety of restriction enzymes is electrophoresed in agarose gels. A particularly striking ladder of fragments is apparent when the DNA is cut with HinfI, indicative of a tandem arrangement of the monomer. The cloned PstI monomer has been sequenced, revealing no internal repeated structure. There are sequences that hybridize with pMAT1 found in related nine-primaried oscines but not in more distantly related oscines, suboscines, or nonpasserine species. Little sequence similarity to tandemly repeated PstI cut sequences from the merlin (Falco columbarius), saurus crane (Grus antigone), or Puerto Rican parrot (Amazona vittata) or to HinfI digested sequence from the Toulouse goose (Anser anser) was detected. The isolated sequence was used as a probe to examine DNA samples of eight members of the tribe Icterini. This examination revealed phylogenetically informative characters. The repeat contains cutting sites from a number of restriction enzymes, which, if sufficiently polymorphic, would provide new phylogenetic characters. Sequences like these, conserved within a species, but variable between closely related species, may be very useful for phylogenetic studies of closely related taxa.
Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.
Masso, Majid; Vaisman, Iosif I
2003-05-30
A computational geometry technique based on Delaunay tessellation of protein structure, represented by C(alpha) atoms, is used to study effects of single residue mutations on sequence-structure compatibility in HIV-1 protease. Profiles of residue scores derived from the four-body statistical potential are constructed for all 1881 mutants of the HIV-1 protease monomer and compared with the profile of the wild-type protein. The profiles for an isolated monomer of HIV-1 protease and the identical monomer in a dimeric state with an inhibitor are analyzed to elucidate changes to structural stability. Protease residues shown to undergo the greatest impact are those forming the dimer interface and flap region, as well as those known to be involved in inhibitor binding.
Smal, Clara; Alonso, Leonardo G.; Wetzler, Diana E.; Heer, Angeles; de Prat Gay, Gonzalo
2012-01-01
Background Self-assembly is a common theme in proteins of unrelated sequences or functions. The human papillomavirus E7 oncoprotein is an extended dimer with an intrinsically disordered domain, that can form large spherical oligomers. These are the major species in the cytosol of HPV transformed and cancerous cells. E7 binds to a large number of targets, some of which lead to cell transformation. Thus, the assembly process not only is of biological relevance, but represents a model system to investigate a widely distributed mechanism. Methodology/Principal Findings Using various techniques, we monitored changes in secondary, tertiary and quaternary structure in a time course manner. By applying a robust kinetic model developed by Zlotnik, we determined the slow formation of a monomeric “Z-nucleus” after zinc removal, followed by an elongation phase consisting of sequential second-order events whereby one monomer is added at a time. This elongation process takes place at a strikingly slow overall average rate of one monomer added every 28 seconds at 20 µM protein concentration, strongly suggesting either a rearrangement of the growing complex after binding of each monomer or the existence of a “conformation editing” mechanism through which the monomer binds and releases until the appropriate conformation is adopted. The oligomerization determinant lies within its small 5 kDa C-terminal globular domain and, remarkably, the E7 N-terminal intrinsically disordered domain stabilizes the oligomer, preventing an insoluble amyloid route. Conclusion We described a controlled ordered mechanism with features in common with soluble amyloid precursors, chaperones, and other spherical oligomers, thus sharing determining factors for symmetry, size and shape. In addition, such a controlled and discrete polymerization reaction provides a valuable tool for nanotechnological applications. Finally, its increased immunogenicity related to its supramolecular structure is the basis for the development of a promising therapeutic vaccine candidate for treating HPV cancerous lesions. PMID:22590549
Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.
Li, Bing; Sun, Zhao-Yan; An, Li-Jia
2015-07-14
We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rongle Zhang; Jie Chang; Yuanyuan Xu
A new kinetic model of the Fischer-Tropsch synthesis (FTS) is proposed to describe the non-Anderson-Schulz-Flory (ASF) product distribution. The model is based on the double-polymerization monomers hypothesis, in which the surface C{sub 2}{asterisk} species acts as a chain-growth monomer in the light-product range, while C{sub 1}{asterisk} species acts as a chain-growth monomer in the heavy-product range. The detailed kinetic model in the Langmuir-Hinshelwood-Hougen-Watson type based on the elementary reactions is derived for FTS and the water-gas-shift reaction. Kinetic model candidates are evaluated by minimization of multiresponse objective functions with a genetic algorithm approach. The model of hydrocarbon product distribution ismore » consistent with experimental data (
Engineering nanometre-scale coherence in soft matter
NASA Astrophysics Data System (ADS)
Liu, Chaoren; Xiang, Limin; Zhang, Yuqi; Zhang, Peng; Beratan, David N.; Li, Yueqi; Tao, Nongjian
2016-10-01
Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.
A generic rate equation for catalysed, template-directed polymerisation.
Hofmeyr, Jan-Hendrik S; Gqwaka, Olona P C; Rohwer, Johann M
2013-09-02
Biosynthetic networks link to growth and reproduction processes through template-directed synthesis of macromolecules such as polynucleotides and polypeptides. No rate equation exists that captures this link in a way that it can effectively be incorporated into a single computational model of the overall process. This paper describes the derivation of such a generic steady-state rate equation for catalysed, template-directed polymerisation reactions with varying monomer stoichiometry and varying chain length. The derivation is based on a classical Michaelis-Menten mechanism with template binding and an arbitrary number of chain elongation steps that produce a polymer composed of an arbitrary number of monomer types. The rate equation only requires the identity of the first dimer in the polymer sequence; for the remainder only the monomer composition needs be known. Further simplification of a term in the denominator yielded an equation requiring no positional information at all, only the monomer composition of the polymer; this equation still gave an excellent estimate of the reaction rate provided that either the monomer concentrations are at least half-saturating, or the polymer is very long. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo
2015-02-06
Over the past decade, major progress in supramolecular polymerization has had a substantial effect on the design of functional soft materials. However, despite recent advances, most studies are still based on a preconceived notion that supramolecular polymerization follows a step-growth mechanism, which precludes control over chain length, sequence, and stereochemical structure. Here we report the realization of chain-growth polymerization by designing metastable monomers with a shape-promoted intramolecular hydrogen-bonding network. The monomers are conformationally restricted from spontaneous polymerization at ambient temperatures but begin to polymerize with characteristics typical of a living mechanism upon mixing with tailored initiators. The chain growth occurs stereoselectively and therefore enables optical resolution of a racemic monomer. Copyright © 2015, American Association for the Advancement of Science.
A quasi-physical algorithm for the structure optimization in an off-lattice protein model.
Liu, Jing-Fa; Huang, Wen-Qi
2006-02-01
In this paper, we study an off-lattice protein AB model with two species of monomers, hydrophobic and hydrophilic, and present a heuristic quasi-physical algorithm. First, by elaborately simulating the movement of the smooth solids in the physical world, we find low-energy conformations for a given monomer chain. A subsequent off-trap strategy is then proposed to trigger a jump for a stuck situation in order to get out of the local minima. The algorithm has been tested in the three-dimensional AB model for all sequences with lengths of 13-55 monomers. In several cases, we renew the putative ground state energy values. The numerical results show that the proposed methods are very promising for finding the ground states of proteins.
Chobanu, D; Rudykh, I A; Riabinina, N L; Grechko, V V; Kramerov, D A; Darevskiĭ, I S
2002-01-01
The genetic relatedness of several bisexual and of four unisexual "Lacerta saxicola complex" lizards was studied, using monomer sequences of the complex-specific CLsat tandem repeats and anonymous RAPD markers. Genomes of parthenospecies were shown to include different satellite monomers. The structure of each such monomer is specific for a certain pair of bisexual species. This fact might be interpreted in favor of co-dominant inheritance of these markers in bisexual species hybridogenesis. This idea is supported by the results obtained with RAPD markers; i.e., unisexual species genomes include only the loci characteristic of certain bisexual species. At the same time, in neither case parthenospecies possess specific, autoapomorphic loci that were not present in this or that bisexual species.
Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L
2013-01-30
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
2013-01-01
Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705
Artificially Engineered Protein Polymers.
Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D
2017-06-07
Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.
Martins, C; Galetti, P M
2001-10-01
To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.
NASA Astrophysics Data System (ADS)
Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław
2018-07-01
Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.
NASA Astrophysics Data System (ADS)
Sas, E. B.; Cankaya, N.; Kurt, M.
2018-06-01
In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.
Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching
Teo, Yin Nah; Wilson, James N.
2010-01-01
We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115
Spontaneous emergence of autocatalytic information-coding polymers
NASA Astrophysics Data System (ADS)
Tkachenko, Alexei; Maslov, Sergei
2015-03-01
Self-replicating systems based on information-coding polymers are of crucial importance in biology. They also recently emerged as a paradigm in design on nano- and micro-scales. We present a general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment. Our central result is the existence of the first order transition between the regime dominated by free monomers and that with a self-sustaining population of sufficiently long oligomers. We provide a simple mathematically tractable model that predicts the parameters for the onset of autocatalysis and the distribution of chain lengths, in terms of monomer concentration, and two fundamental rate constants. Another key result is the emergence of the kinetically-limited optimal overlap length between a template and its two substrates. Template-assisted ligation allows for heritable transmission of information encoded in oligomer sequences thus opening up the possibility of long-term memory and evolvability of such systems. Research was carried out in part at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Work at Biosciences Department was supported by US Department of Energy Office of Biological Research Grant PM-031.
Pattern Recognition of Adsorbing HP Lattice Proteins
NASA Astrophysics Data System (ADS)
Wilson, Matthew S.; Shi, Guangjie; Wüst, Thomas; Landau, David P.; Schmid, Friederike
2015-03-01
Protein adsorption is relevant in fields ranging from medicine to industry, and the qualitative behavior exhibited by course-grained models could shed insight for further research in such fields. Our study on the selective adsorption of lattice proteins utilizes the Wang-Landau algorithm to simulate the Hydrophobic-Polar (H-P) model with an efficient set of Monte Carlo moves. Each substrate is modeled as a square pattern of 9 lattice sites which attract either H or P monomers, and are located on an otherwise neutral surface. The fully enumerated set of 102 unique surfaces is simulated with each protein sequence. A collection of 27-monomer sequences is used- each of which is non-degenerate and protein-like. Thermodynamic quantities such as the specific heat and free energy are calculated from the density of states, and are used to investigate the adsorption of lattice proteins on patterned substrates. Research supported by NSF.
Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek
2016-01-01
Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801
Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W
2015-07-01
Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.
Nemoto, Takayuki K.; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu
2016-01-01
Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser615 and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm−1 s−1, optimal pH was 7–8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met16–Glu101). Three-dimensional modeling revealed the three domain structures (residues Met16–Ala126, which has no similar homologue with known structure; residues Leu127–Met495 (β-propeller domain); and residues Ala496–Phe736 (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides. PMID:26733202
Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme
2015-01-01
The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490
Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela
2012-01-01
We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654
Kuhn, G C S; Teo, C H; Schwarzacher, T; Heslop-Harrison, J S
2009-05-01
Satellite DNA (satDNA) is a major component of genomes but relatively little is known about the fine-scale organization of unrelated satDNAs residing at the same chromosome location, and the sequence structure and dynamics of satDNA junctions. We studied the organization and sequence junctions of two nonhomologous satDNAs, pBuM and DBC-150, in three species from the neotropical Drosophila buzzatii cluster (repleta group). In situ hybridization to microchromosomes, interphase nuclei and extended DNA fibers showed frequent interspersion of the two satellites in D. gouveai, D. antonietae and, to a lesser extent, D. seriema. We isolated by PCR six pBuM x DBC-150 junctions: four are exclusive to D. gouveai and two are exclusive to D. antonietae. The six junction breakpoints occur at different positions within monomers, suggesting independent origin. Four junctions showed abrupt transitions between the two satellites, whereas two junctions showed a distinct 10 bp tandem duplication before the junction. Unlike pBuM, DBC-150 junction repeats are more variable than randomly cloned monomers and showed diagnostic features in common to a 3-monomer higher-order repeat seen in the sister species D. serido. The high levels of interspersion between pBuM and DBC-150 repeats suggest extensive rearrangements between the two satellites, maybe favored by specific features of the microchromosomes. Our interpretation is that the junctions evolved by multiples events of illegitimate recombination between nonhomologous satDNA repeats, with subsequent rounds of unequal crossing-over expanding the copy number of some of the junctions.
Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility
Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong
2014-01-01
Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260
Wong, Yoke-Ming; Brigham, Christopher J; Rha, ChoKyun; Sinskey, Anthony J; Sudesh, Kumar
2012-10-01
The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P
2003-12-30
Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.
Island size distribution with hindered aggregation
NASA Astrophysics Data System (ADS)
González, Diego Luis; Camargo, Manuel; Sánchez, Julián A.
2018-05-01
We study the effect of hindered aggregation on the island formation processes for a one-dimensional model of epitaxial growth with arbitrary nucleus size i . In the proposed model, the attachment of monomers to islands is hindered by an aggregation barrier, ɛa, which decreases the hopping rate of monomers to the islands. As ɛa increases, the system exhibits a crossover between two different regimes; namely, from diffusion-limited aggregation to attachment-limited aggregation. The island size distribution, P (s ) , is calculated for different values of ɛa by a self-consistent approach involving the nucleation and aggregation capture kernels. The results given by the analytical model are compared with those from kinetic Monte Carlo simulations, finding a close agreement between both sets of data for all considered values of i and ɛa. As the aggregation barrier increases, the spatial effect of fluctuations on the density of monomers can be neglected and P (s ) smoothly approximates to the limit distribution P (s ) =δs ,i +1 . In the crossover regime the system features a complex and rich behavior, which can be explained in terms of the characteristic timescales of different microscopic processes.
Tron, Adriana E; Comelli, Raúl N; Gonzalez, Daniel H
2005-12-27
Homeodomain-leucine zipper (HD-Zip) proteins, unlike most homeodomain proteins, bind a pseudopalindromic DNA sequence as dimers. We have investigated the structure of the DNA complexes formed by two HD-Zip proteins with different nucleotide preferences at the central position of the binding site using footprinting and interference methods. The results indicate that the respective complexes are not symmetric, with the strand bearing a central purine (top strand) showing higher protection around the central region and the bottom strand protected toward the 3' end. Binding to a sequence with a nonpreferred central base pair produces a decrease in protection in either the top or the bottom strand, depending upon the protein. Modeling studies derived from the complex formed by the monomeric Antennapedia homeodomain with DNA indicate that in the HD-Zip/DNA complex the recognition helix of one of the monomers is displaced within the major groove respective to the other one. This monomer seems to lose contacts with a part of the recognition sequence upon binding to the nonpreferred site. The results show that the structure of the complex formed by HD-Zip proteins with DNA is dependent upon both protein intrinsic characteristics and the nucleotides present at the central position of the recognition sequence.
Annealed scaling for a charged polymer in dimensions two and higher
NASA Astrophysics Data System (ADS)
Berger, Q.; den Hollander, F.; Poisat, J.
2018-02-01
This paper considers an undirected polymer chain on {Z}d , d ≥slant 2 , with i.i.d. random charges attached to its constituent monomers. Each self-intersection of the polymer chain contributes an energy to the interaction Hamiltonian that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The object of interest is the annealed free energy per monomer in the limit as the length n of the polymer chain tends to infinity. We show that there is a critical curve in the parameter plane spanned by the charge bias and the inverse temperature separating an extended phase from a collapsed phase. We derive the scaling of the critical curve for small and for large charge bias and the scaling of the annealed free energy for small inverse temperature. We argue that in the collapsed phase the polymer chain is subdiffusive, namely, on scale \
Lignin dimers: Structures, distribution, and potential geochemical applications
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; Hedges, John I.
1992-11-01
An extensive suite of thirty lignin-derived phenolic dimers and fourteen additional monomers has been identified among the CuO reaction products of twenty-four different vascular plant tissues. The various lignin dimers are characterized by five different types of linkages between phenolic units, including direct 5,5'-ring-ring bonding, as well as β,1-diketone, α,1-monoketone, α,5-monoketone, and α,2-methyl sidechain-ring couplings. The new lignin-derived monomeric CuO reaction products include vanillyl and syringyl glyoxalic acids and vanillyl phenols with formyl and carboxyl functional groups attached at various ring positions. The distribution of all these novel compounds in twenty-four different vascular plant tissues indicates important differences in the structure and chemical composition of the lignin macromolecule among these sources. The abundances of these compounds in a selected set of sedimentary samples suggest that the lignin dimers and novel lignin monomers can characterize the ultrastructure, sources, and diagenetic state of sedimentary lignin in ways not possible from the routinely utilized lignin monomers alone.
Design, Synthesis, and Self-Assembly of Polymers with Tailored Graft Distributions.
Chang, Alice B; Lin, Tzu-Pin; Thompson, Niklas B; Luo, Shao-Xiong; Liberman-Martin, Allegra L; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H
2017-12-06
Grafting density and graft distribution impact the chain dimensions and physical properties of polymers. However, achieving precise control over these structural parameters presents long-standing synthetic challenges. In this report, we introduce a versatile strategy to synthesize polymers with tailored architectures via grafting-through ring-opening metathesis polymerization (ROMP). One-pot copolymerization of an ω-norbornenyl macromonomer and a discrete norbornenyl comonomer (diluent) provides opportunities to control the backbone sequence and therefore the side chain distribution. Toward sequence control, the homopolymerization kinetics of 23 diluents were studied, representing diverse variations in the stereochemistry, anchor groups, and substituents. These modifications tuned the homopolymerization rate constants over 2 orders of magnitude (0.36 M -1 s -1 < k homo < 82 M -1 s -1 ). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly(d,l-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by nonlinear least-squares fitting of the instantaneous comonomer concentrations according to the Mayo-Lewis terminal model. In-depth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 < r 1 /r 2 < 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular "shapes." Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.
Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles
NASA Astrophysics Data System (ADS)
Borisov, O. V.; Zhulina, E. B.
1997-03-01
The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.
Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya
2014-01-01
Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. © 2013.
Microtubules as mechanical force sensors.
Karafyllidis, Ioannis G; Lagoudas, Dimitris C
2007-03-01
Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.
The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers
Olek, Anna T.; Rayon, Catherine; Makowski, Lee; ...
2014-07-10
Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice ( Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain,more » elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less
The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.
Olek, Anna T; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; Himmel, Michael E; Bolin, Jeffrey T; Carpita, Nicholas C
2014-07-01
Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. © 2014 American Society of Plant Biologists. All rights reserved.
Reductive Catalytic Fractionation of Corn Stover Lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Eric M.; Katahira, Rui; Reed, Michelle
Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residualmore » solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear trade-offs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover.« less
Grandits, Melanie; Oostenbrink, Chris
2014-10-01
Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor. © 2014 Wiley Periodicals, Inc.
K 3 Fe(CN) 6 under External Pressure: Dimerization of CN – Coupled with Electron Transfer to Fe(III)
Li, Kuo; Zheng, Haiyan; Wang, Lijuan; ...
2015-09-14
The addition polymerization of charged monomers like C≡C 2– and C≡N– is scarcely seen at ambient conditions but can progress under external pressure with their conductivity significantly enhanced, which expands the research field of polymer science to inorganic salts. Moreover, the reaction pressures of transition metal cyanides like Prussian blue and K 3Fe(CN) 6 are much lower than that of alkali cyanides. To figure out the effect of the transition metal on the reaction, the crystal structure and electronic structure of K 3Fe(CN) 6 under external pressure are investigated by in situ neutron diffraction, in situ X-ray absorption fine structuremore » (XAFS), and neutron pair distribution functions (PDF) up to ~15 GPa. The cyanide anions react following a sequence of approaching–bonding–stabilizing. The Fe(III) brings the cyanides closer which makes the bonding progress at a low pressure (2–4 GPa). At ~8 GPa, an electron transfers from the CN to Fe(III), reduces the charge density on cyanide ions, and stabilizes the reaction product of cyanide. Finally, from this study we can conclude that bringing the monomers closer and reducing their charge density are two effective routes to decrease the reaction pressure, which is important for designing novel pressure induced conductor and excellent electrode materials.« less
NASA Technical Reports Server (NTRS)
Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.
1998-01-01
The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.
NASA Astrophysics Data System (ADS)
Christie, Dane; Register, Richard; Priestley, Rodney
Block copolymers can self-assemble into periodic structures containing a high internal surface area, nanoscale domain periods, and periodically varying composition profiles. Depending on their components, block copolymers may also exhibit variations in their dynamic properties e.g., glass transition temperature (Tg) across the domain period. Measuring the variation of Tg across the domain period of block copolymers has remained a significant challenge due to the nanometer length scale of the domain period. Here we use fluorescence spectroscopy and the selective incorporation of a pyrene-containing methacrylate monomer at various positions along the chain to characterize the distribution of glass transition temperatures across the domain period of an amorphous block copolymer. The pyrene-containing monomer location is determined from the monomer segment distribution calculated using self-consistent field theory. Our model system is a lamella-forming diblock copolymer of poly(butyl methacrylate - b- methyl methacrylate). We show that Tg is asymmetrically distributed across the interface; as the interface is approached, larger gradients in Tg exist in the hard PMMA-rich domain than in the soft PBMA-rich domain. By characterizing Tg of PBMA or PMMA interfacial segments, we show that polymer dynamics at the interface are heterogeneous; there is a 15 K difference in Tg measured between PBMA interfacial segments and PMMA interfacial segments.
Catalysis in prebiotic chemistry RNA synthesis
NASA Astrophysics Data System (ADS)
Ferris, J.; Joshi, P.; Wang, K.; Huang, W.; Miyakawa, S.
It is proposed that catalysis by minerals and metal ions had a central role in the steps that led to the origins of life. In particular, the formation of biopolymers in the presence of water requires catalysis to compete with hydrolytic processes. Catalysis is required to limit the number of isomers generated so that the longer polymers necessary for the origins of life formed. Montmorillonite clay catalyzes the formation of 6 14 mers of RNA from activated monomers of A, G, U and C in- aqueous solution. Daily addition of activated monomers to a 10 mer primer results in the formation of 40-50 mers of adenylic acid and 30 mers of uridylic acid. The sequence selectivity and regioselectivity in phosphodiester bond formation results from the montmorillonite catalysis. Reaction of D, L-activated monomers of A and U leads to the preferential formation of homochiral dimers (eg. D, D and L, L-- pApA). These data and any more recent developments will be discussed.
Short interspersed elements (SINEs) of the Geomyoidea superfamily rodents.
Gogolevsky, Konstantin P; Kramerov, Dmitri A
2006-05-24
A new short interspersed element (SINE) was isolated from the genome of desert kangaroo rat (Dipodomys deserti) using single-primer PCR. This SINE consists of two monomers: the left monomer (IDL) resembles rodent ID element and other tRNAAla(CGC)-derived SINEs, whereas the right one (Geo) shows no similarity with known SINE sequences. PCR and hybridization analyses demonstrated that IDL-Geo SINE is restricted to the rodent superfamily Geomyoidea (families Geomyidea and Heteromyidea). Isolation and analysis of IDL-Geo from California pocket mouse (Chaetodipus californicus) and Botta's pocket gopher (Thomomys bottae) revealed some species-specific features of this SINE family. The structure and evolution of known dimeric SINEs are discussed.
Template-based structure modeling of protein-protein interactions
Szilagyi, Andras; Zhang, Yang
2014-01-01
The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449
Process for impregnating a concrete or cement body with a polymeric material
Mattus, A.J.; Spence, R.D.
1988-05-04
A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.
Process for impregnating a concrete or cement body with a polymeric material
Mattus, Alfred J.; Spence, Roger D.
1989-01-01
A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.
Lithiated imines: solvent-dependent aggregate structures and mechanisms of alkylation.
Zuend, Stephan J; Ramirez, Antonio; Lobkovsky, Emil; Collum, David B
2006-05-03
We describe efforts to understand the structure and reactivity of lithiated cyclohexanone N-cyclohexylimine. The lithioimine affords complex solvent-dependent distributions of monomers, dimers, and trimers in a number of ethereal solvents. Careful selection of solvent provides exclusively monosolvated dimers. Rate studies on the C-alkylations reveal chronic mixtures of monomer- and dimer-based pathways. We explore the factors influencing reactants and alkylation transition structures and the marked differences between lithioimines and isostructural lithium dialkylamides with the aid of density functional theory calculations.
Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.
Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F
1994-10-01
The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.
Peptoid architectures: elaboration, actuation, and application.
Yoo, Barney; Kirshenbaum, Kent
2008-12-01
Peptoids are peptidomimetic oligomers composed of N-substituted glycine units. Their convenient synthesis enables strict control over the sequence of highly diverse monomers and is capable of generating extensive compound libraries. Recent studies are beginning to explore the relationship between peptoid sequence, structure and function. We describe new approaches to direct the conformation of the peptoid backbone, leading to secondary structures such as helices, loops, and turns. These advances are enabling the discovery of bioactive peptoids and will establish modules for the design and assembly of protein mimetics.
Prediction of phenotypes of missense mutations in human proteins from biological assemblies.
Wei, Qiong; Xu, Qifang; Dunbrack, Roland L
2013-02-01
Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.
Gasser, Gilles; Brosch, Oliver; Ewers, Alexandra; Weyhermüller, Thomas; Metzler-Nolte, Nils
2009-06-14
The rational, sequential synthesis of two hetero-bimetallic derivatives of the amino acid phenylalanine and one thymine (T) peptide nucleic acid (PNA) monomer is reported. Ferrocene carboxylic acid and (eta-ethene)bis(triphenylphosphine)platinum(0) were successfully reacted with propargylamide amino acid (1a and 1b) or a T PNA monomer derivative (6) to give the expected three bimetallic compounds 4a, 4b and 9 in good yield. An enzymatic route using cross-linked enzyme crystals (CLEC) of subtilopeptidase A in organic solvents gave the ferrocene carboxylate phenylalanine propargylamide precursor (Fc-CO-Phe-NH-CH(2)-CCH, 3a) in comparable yield and purity to the traditional deprotection-peptide coupling sequence. (31)P NMR spectra of these bioorganometallics showed two doublets with (195)Pt satellites corresponding to two chemically different (31)P atoms. Interestingly, in the case of the T PNA monomer derivative 9, these signals were also doubled in a 60 : 40 ratio as a consequence of the existence of two slowly interconverting isomers in solution. Furthermore, the single-crystal X-ray structures of 3a and the hetero-bimetallic phenylalanine derivative 4b were determined, showing the presence of the two organometallics moieties separated by ca. 8.5 A in 4b as well as illustrating the stability of such compounds.
Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota
2014-01-01
Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (Cα r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations. PMID:24598750
Wang, Xin; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong
2013-05-07
We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.
Petkovic, Sonja; Badelt, Stefan; Flamm, Christoph; Delcea, Mihaela
2015-01-01
Reversible chemistry allowing for assembly and disassembly of molecular entities is important for biological self-organization. Thus, ribozymes that support both cleavage and formation of phosphodiester bonds may have contributed to the emergence of functional diversity and increasing complexity of regulatory RNAs in early life. We have previously engineered a variant of the hairpin ribozyme that shows how ribozymes may have circularized or extended their own length by forming concatemers. Using the Vienna RNA package, we now optimized this hairpin ribozyme variant and selected four different RNA sequences that were expected to circularize more efficiently or form longer concatemers upon transcription. (Two-dimensional) PAGE analysis confirms that (i) all four selected ribozymes are catalytically active and (ii) high yields of cyclic species are obtained. AFM imaging in combination with RNA structure prediction enabled us to calculate the distributions of monomers and self-concatenated dimers and trimers. Our results show that computationally optimized molecules do form reasonable amounts of trimers, which has not been observed for the original system so far, and we demonstrate that the combination of theoretical prediction, biochemical and physical analysis is a promising approach toward accurate prediction of ribozyme behavior and design of ribozymes with predefined functions. PMID:25999318
Polymer collapse, protein folding, and the percolation threshold.
Meirovitch, Hagai
2002-01-15
We study the transition of polymers in the dilute regime from a swollen shape at high temperatures to their low-temperature structures. The polymers are modeled by a single self-avoiding walk (SAW) on a lattice for which l of the monomers (the H monomers) are self-attracting, i.e., if two nonbonded H monomers become nearest neighbors on the lattice they gain energy of interaction (epsilon = -/epsilon/); the second type of monomers, denoted P, are neutral. This HP model was suggested by Lau and Dill (Macromolecules 1989, 22, 3986-3997) to study protein folding, where H and P are the hydrophobic and polar amino acid residues, respectively. The model is simulated on the square and simple cubic (SC) lattices using the scanning method. We show that the ground state and the sharpness of the transition depend on the lattice, the fraction g of the H monomers, as well as on their arrangement along the chain. In particular, if the H monomers are distributed at random and g is larger than the site percolation threshold of the lattice, a collapsed transition is very likely to occur. This conclusion, drawn for the lattice models, is also applicable to proteins where an effective lattice with coordination number between that of the SC lattice and the body centered cubic lattice is defined. Thus, the average fraction of hydrophobic amino acid residues in globular proteins is found to be close to the percolation threshold of the effective lattice.
Sequence Determines Degree of Knottedness in a Coarse-Grained Protein Model
NASA Astrophysics Data System (ADS)
Wüst, Thomas; Reith, Daniel; Virnau, Peter
2015-01-01
Knots are abundant in globular homopolymers but rare in globular proteins. To shed new light on this long-standing conundrum, we study the influence of sequence on the formation of knots in proteins under native conditions within the framework of the hydrophobic-polar lattice protein model. By employing large-scale Wang-Landau simulations combined with suitable Monte Carlo trial moves we show that even though knots are still abundant on average, sequence introduces large variability in the degree of self-entanglements. Moreover, we are able to design sequences which are either almost always or almost never knotted. Our findings serve as proof of concept that the introduction of just one additional degree of freedom per monomer (in our case sequence) facilitates evolution towards a protein universe in which knots are rare.
Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei
2012-10-01
A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2018-06-01
The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.
Architecture of polyglutamine-containing fibrils from time-resolved fluorescence decay.
Röthlein, Christoph; Miettinen, Markus S; Borwankar, Tejas; Bürger, Jörg; Mielke, Thorsten; Kumke, Michael U; Ignatova, Zoya
2014-09-26
The disease risk and age of onset of Huntington disease (HD) and nine other repeat disorders strongly depend on the expansion of CAG repeats encoding consecutive polyglutamines (polyQ) in the corresponding disease protein. PolyQ length-dependent misfolding and aggregation are the hallmarks of CAG pathologies. Despite intense effort, the overall structure of these aggregates remains poorly understood. Here, we used sensitive time-dependent fluorescent decay measurements to assess the architecture of mature fibrils of huntingtin (Htt) exon 1 implicated in HD pathology. Varying the position of the fluorescent labels in the Htt monomer with expanded 51Q (Htt51Q) and using structural models of putative fibril structures, we generated distance distributions between donors and acceptors covering all possible distances between the monomers or monomer dimensions within the polyQ amyloid fibril. Using Monte Carlo simulations, we systematically scanned all possible monomer conformations that fit the experimentally measured decay times. Monomers with four-stranded 51Q stretches organized into five-layered β-sheets with alternating N termini of the monomers perpendicular to the fibril axis gave the best fit to our data. Alternatively, the core structure of the polyQ fibrils might also be a zipper layer with antiparallel four-stranded stretches as this structure showed the next best fit. All other remaining arrangements are clearly excluded by the data. Furthermore, the assessed dimensions of the polyQ stretch of each monomer provide structural evidence for the observed polyQ length threshold in HD pathology. Our approach can be used to validate the effect of pharmacological substances that inhibit or alter amyloid growth and structure. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Hu, Lu; Zhao, Wuchao; He, Jianghua; Zhang, Yuetao
2018-03-15
This work reveals the silyl ketene acetal (SKA)/B(C₆F₅)₃ Lewis pair-catalyzed room-temperature group transfer polymerization (GTP) of polar acrylic monomers, including methyl linear methacrylate (MMA), and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL) and α-methylene-γ-butyrolactone (MBL) as well. The in situ NMR monitored reaction of SKA with B(C₆F₅)₃ indicated the formation of Frustrated Lewis Pairs (FLPs), although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C₆F₅)₃-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C₆F₅)₃-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C₆F₅)₃ is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). Moreover, using this method, we have successfully synthesized well-defined PMMBL- b -PMBL, PMMBL- b -PMBL- b -PMMBL and random copolymers with the predicated molecular weights ( M n ) and narrow molecular weight distribution (MWD).
Ramírez-Aportela, Erney; López-Blanco, José Ramón; Andreu, José Manuel; Chacón, Pablo
2014-11-04
Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg(2+) ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.
Initial condition of stochastic self-assembly
NASA Astrophysics Data System (ADS)
Davis, Jason K.; Sindi, Suzanne S.
2016-02-01
The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.
NASA Astrophysics Data System (ADS)
Anand, Siddeswaran; Muthusamy, Athianna
2017-11-01
Three benzimidazole monomers synthesized by condensing various substituted phenolic aldehydes with 4-methylphenylenediamine were converted in to polymers by oxidative polycondensation. The structure of the monomers and polymers were confirmed by various spectroscopic techniques. Electronic distribution of molecular frontier orbitals and optimized geometries of monomers were calculated by Gaussian 09 package. The spectral results showed that the repeating units are connected through both Csbnd C and Csbnd Osbnd C linkages. Both polymers and monomers are showing good fluorescence emission in blue region. The electrical conductivity of I2 doped PBIs was measured using two point probe technique. The conductivities of PBIs were compared on the basis of the charge densities obtained from Huckel method on imidazole nitrogen which is involved in iodine coordination. The conductivity of polymers increases with increase in iodine vapour contact time. The dielectric properties of the synthesized polymers have been investigated at different temperature and frequency. Among the PBIs, PBIOP is having greater thermal stability and is shown by high carbines residues of around 50% at 500 °C in thermogravimetric analysis.
NASA Astrophysics Data System (ADS)
Solana, J. R.; Akhouri, B. P.
2018-07-01
A perturbation theory for square-well chain fluids is developed within the scheme of the (generalised) Wertheim thermodynamic perturbation theory. The theory is based on the Pavlyukhin parametrisations [Y. T. Pavlyukhin, J. Struct. Chem. 53, 476 (2012)] of their simulation data for the first four perturbation terms in the high temperature expansion of the Helmholtz free energy of square-well monomer fluids combined with a second-order perturbation theory for the contact value of the radial distribution function of the square-well monomer fluid that enters into bonding contribution. To obtain the latter perturbation terms, we have performed computer simulations in the hard-sphere reference system. The importance of the perturbation terms beyond the second-order one for the monomer fluid and of the approximations of different orders in the bonding contribution for the chain fluids in the predicted equation of state, excess energy and liquid-vapour coexistence densities is analysed.
Sun, Jian; Matsumoto, Ken'ichiro; Tabata, Yuta; Kadoya, Ryosuke; Ooi, Toshihiko; Abe, Hideki; Taguchi, Seiichi
2015-11-01
Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme.
NASA Astrophysics Data System (ADS)
Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.
2018-04-01
Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.
Oliveira, Edson R A; de Alencastro, Ricardo B; Horta, Bruno A C
2016-09-01
The flavivirus non-structural protein 1 (NS1) is a conserved glycoprotein with as yet undefined biological function. This protein dimerizes when inside infected cells or associated to cell membranes but also forms lipid-associated hexamers when secreted to the extracellular space. A single amino acid substitution (P250L) is capable of preventing the dimerization of NS1 resulting in lower virulence and slower virus replication. In this work, based on molecular dynamics simulations of the dengue-2 virus NS1 [Formula: see text]-ladder monomer as a core model, we found that this mutation can induce several conformational changes that importantly affect critical monomer-monomer interactions. Based on additional simulations, we suggest a mechanism by which a highly orchestrated sequence of events propagate the local perturbations around the mutation site towards the dimer interface. The elucidation of such a mechanism could potentially support new strategies for rational production of live-attenuated vaccines and highlights a step forward in the development of novel anti-flavivirus measures.
Aperiodic Photonic-Plasmonic Structures with Broadband Field Enhancement
2012-10-15
monomer, (d and g) dimer, (e and i ) trimer...components of the radial distribution function. (a-d) numerator, (e-h) denominator, ( i -l) entire radial distribution function...in the Y direction is 400 nm. Fig 7 d- i shows the scattering efficiency and maximum field enhancement of each array compared with that of the
Makiguchi, Wataru; Tanabe, Junki; Yamada, Hidekazu; Iida, Hiroki; Taura, Daisuke; Ousaka, Naoki; Yashima, Eiji
2015-01-01
Self-recognition and self-discrimination within complex mixtures are of fundamental importance in biological systems, which entirely rely on the preprogrammed monomer sequences and homochirality of biological macromolecules. Here we report artificial chirality- and sequence-selective successive self-sorting of chiral dimeric strands bearing carboxylic acid or amidine groups joined by chiral amide linkers with different sequences through homo- and complementary-duplex formations. A mixture of carboxylic acid dimers linked by racemic-1,2-cyclohexane bis-amides with different amide sequences (NHCO or CONH) self-associate to form homoduplexes in a completely sequence-selective way, the structures of which are different from each other depending on the linker amide sequences. The further addition of an enantiopure amide-linked amidine dimer to a mixture of the racemic carboxylic acid dimers resulted in the formation of a single optically pure complementary duplex with a 100% diastereoselectivity and complete sequence specificity stabilized by the amidinium–carboxylate salt bridges, leading to the perfect chirality- and sequence-selective duplex formation. PMID:26051291
NASA Astrophysics Data System (ADS)
Charles, Laurence; Cavallo, Gianni; Monnier, Valérie; Oswald, Laurence; Szweda, Roza; Lutz, Jean-François
2017-06-01
In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. [Figure not available: see fulltext.
Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S
2013-09-23
A wide variety of cyclic molecular architectures are built of modular subunits and can be formed combinatorially. The mathematics for enumeration of such objects is well-developed yet lacks key features of importance in chemistry, such as specifying (i) the structures of individual members among a set of isomers, (ii) the distribution (i.e., relative amounts) of products, and (iii) the effect of nonequal ratios of reacting monomers on the product distribution. Here, a software program (Cyclaplex) has been developed to determine the number, identity (including isomers), and relative amounts of linear and cyclic architectures from a given number and ratio of reacting monomers. The program includes both mathematical formulas and generative algorithms for enumeration; the latter go beyond the former to provide desired molecular-relevant information and data-mining features. The program is equipped to enumerate four types of architectures: (i) linear architectures with directionality (macroscopic equivalent = electrical extension cords), (ii) linear architectures without directionality (batons), (iii) cyclic architectures with directionality (necklaces), and (iv) cyclic architectures without directionality (bracelets). The program can be applied to cyclic peptides, cycloveratrylenes, cyclens, calixarenes, cyclodextrins, crown ethers, cucurbiturils, annulenes, expanded meso-substituted porphyrin(ogen)s, and diverse supramolecular (e.g., protein) assemblies. The size of accessible architectures encompasses up to 12 modular subunits derived from 12 reacting monomers or larger architectures (e.g. 13-17 subunits) from fewer types of monomers (e.g. 2-4). A particular application concerns understanding the possible heterogeneity of (natural or biohybrid) photosynthetic light-harvesting oligomers (cyclic, linear) formed from distinct peptide subunits.
Altuntaş, Esra; Schubert, Ulrich S
2014-01-15
Mass spectrometry (MS) is the most versatile and comprehensive method in "OMICS" sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MS(n)) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In "OMICS" sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus.
Rajagopal, J; Das, S; Khurana, D K; Srivastava, P S; Lakshmikumaran, M
1999-10-01
This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.
ERIC Educational Resources Information Center
Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong
2008-01-01
We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…
Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers.
Wang, Qiuming; Zhao, Jun; Yu, Xiang; Zhao, Chao; Li, Lingyan; Zheng, Jie
2010-08-03
Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.
Proline-poor hydrophobic domains modulate the assembly and material properties of polymeric elastin.
Muiznieks, Lisa D; Reichheld, Sean E; Sitarz, Eva E; Miao, Ming; Keeley, Fred W
2015-10-01
Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline-poor and, as an isolated polypeptide, is susceptible to formation of amyloid-like structures comprised of stacked β-sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin-like polypeptides designed with different numbers of proline-poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline-poor hydrophobic sequences to self-assembly through characterization of phase separation, and to the tensile properties of cross-linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β-structure, both affecting polypeptide chain flexibility and cross-link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence-structure-function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties. © 2015 Wiley Periodicals, Inc.
Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.
Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree
2015-10-22
Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.
Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer
NASA Astrophysics Data System (ADS)
Diesendruck, Charles E.; Peterson, Gregory I.; Kulik, Heather J.; Kaitz, Joshua A.; Mar, Brendan D.; May, Preston A.; White, Scott R.; Martínez, Todd J.; Boydston, Andrew J.; Moore, Jeffrey S.
2014-07-01
Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization-repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended lifetimes. Here, we show that a metastable polymer, end-capped poly(o-phthalaldehyde), undergoes mechanically initiated depolymerization to revert the material to monomers. Trapping experiments and steered molecular dynamics simulations are consistent with a heterolytic scission mechanism. The obtained monomer was repolymerized by a chemical initiator, effectively completing a depolymerization-repolymerization cycle. By emulating remodelling of biomaterials, this model system suggests the possibility of smart materials where aging or mechanical damage triggers depolymerization, and orthogonal conditions regenerate the polymer when and where necessary.
Jang, Eun Sil; John, Jeremy M.; Schrock, Richard R.
2016-09-06
Cis,syndiotactic A-alt-B copolymers, where A and B are two enantiomerically pure trans-2,3-disubstituted-5,6-norbornenes with “opposite” chiralities, can be prepared with stereogenic-at-metal initiators of the type M(NR)(CHR')(OR”)(pyrrolide). Formation of a high percentage of alternating AB copolymer linkages relies on an inversion of chirality at the metal with each propagating step and a relatively fast formation of an AB sequence as a consequence of a preferred diastereomeric relationship between the chirality at the metal and the chirality of the monomer. Finally, this approach to formation of an alternating AB copolymer contrasts dramatically with the principle of forming AB copolymers from achiral monomers andmore » catalysts.« less
Peixoto, Paul; Liu, Yang; Depauw, Sabine; Hildebrand, Marie-Paule; Boykin, David W; Bailly, Christian; Wilson, W David; David-Cordonnier, Marie-Hélène
2008-06-01
The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.
Wi, Rinbok; Imran, Muhammad; Lee, Kyoung G; Yoon, Sun Hong; Cho, Bong Gyoo; Kim, Do Hyun
2011-07-01
Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2018-05-01
This paper work presents the results of Monte Carlo simulation performed for ultra thin short chained polymer films near melt, under strong confinement. Thin polymer films get ruptured when annealed above their glass transition temperatures. The pattern formations are generally explained on the basis of spinodal mechanism, if the thickness of the film is of the order of few tens of nanometers i.e. <100 nm. In this case, the film seems to tear apart in strips. The free end segments of the chains are more dynamic and coalescence into one another. This process seems to dominate over the spinodal waves resulting into a different type of dynamics. Polymer chains with 30 monomers are taken. 160, 200 and 240 chains are taken for three different cases of the studies. The three cases correspond to three different thickness of the films with 8, 10 and 12 layers of chains along direction perpendicular to the confining substrates. The bottom surface has affinity to monomers, whereas the upper surface has hard wall interaction with the monomers. Different time micrographs of the films are plotted along with density distributions of the monomers to explore the process.
Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui
2016-03-01
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
Synthesis and Structural Characterization of Reflectin Proteins
2012-02-29
constructs of interest included a reflectin 1a domain 3 (D3) monomer, a domain 3 dimer, subdomain peptides, recombinant reflectin 1b, an elastin -reflectin...diblock copolymer, and an elastin -reflectin-GFP fusion protein. After construction of the sequences of interest at the DNA level, protein expression...characterization was performed. The unique spectral properties associated with recombinant reflectin protein materials make elastin -reflectin
An ion mobility-mass spectrometry investigation of monocyte chemoattractant protein-1
NASA Astrophysics Data System (ADS)
Schenauer, Matthew R.; Leary, Julie A.
2009-10-01
In the present article we describe the gas-phase dissociation behavior of the dimeric form of monocyte chemoattractant protein-1 (MCP-1) using quadrupole-traveling wave ion mobility spectrometry-time of flight mass spectrometry (q-TWIMS-TOF MS) (Waters Synapt(TM)). Through investigation of the 9+ charge state of the dimer, we were able to monitor dissociation product ion (monomer) formation as a function of activation energy. Using ion mobility, we were able to observe precursor ion structural changes occurring throughout the activation process. Arrival time distributions (ATDs) for the 5+ monomeric MCP-1 product ions, derived from the gas-phase dissociation of the 9+ dimer, were then compared with ATDs obtained for the 5+ MCP-1 monomer isolated directly from solution. The results show that the dissociated monomer is as compact as the monomer arising from solution, regardless of the trap collision energy (CE) used in the dissociation. The solution-derived monomer, when collisionally activated, also resists significant unfolding within measure. Finally, we compared the collisional activation data for the MCP-1 dimer with an MCP-1 dimer non-covalently bound to a single molecule of the semi-synthetic glycosaminoglycan (GAG) analog Arixtra(TM); the latter a therapeutic anti-thrombin III-activating pentasaccharide. We observed that while dimeric MCP-1 dissociated at relatively low trap CEs, the Arixtra-bound dimer required much higher energies, which also induced covalent bond cleavage in the bound Arixtra molecule. Both the free and Arixtra-bound dimers became less compact and exhibited longer arrival times with increasing trap CEs, albeit the Arixtra-bound complex at slightly higher energies. That both dimers shifted to longer arrival times with increasing activation energy, while the dissociated MCP-1 monomers remained compact, suggests that the longer arrival times of the Arixtra-free and Arixtra-bound dimers may represent a partial breach of non-covalent interactions between the associated MCP-1 monomers, rather than extensive unfolding of individual subunits. The fact that Arixtra preferentially binds MCP-1 dimers and prevents dimer dissociation at comparable activation energies to the Arixtra-free dimer, may suggest that the drug interacts across the two monomers, thereby inhibiting their dissociation.
Enhancing Human Spermine Synthase Activity by Engineered Mutations
Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil
2013-01-01
Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611
Fibronectin tetrapeptide is target for syphilis spirochete cytadherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.D.; Baseman, J.B.; Alderete, J.F.
1985-11-01
The syphilis bacterium, Treponema pallidum, parasitizes host cells through recognition of fibronectin (Fn) on cell surfaces. The active site of the Fn molecule has been identified as a four-amino acid sequence, arg-gly-asp-ser (RGDS), located on each monomer of the cell-binding domain. The synthetic heptapeptide gly-arg-gly-asp-ser-pro-cys (GRGDSPC), with the active site sequence RGDS, specifically competed with SVI-labeled cell-binding domain acquisition by T. pallidum. Additionally, the same heptapeptide with the RGDS sequence diminished treponemal attachment to HEp-2 and HT1080 cell monolayers. Related heptapeptides altered in one key amino acid within the RGDS sequence failed to inhibit Fn cell-binding domain acquisition or parasitismmore » of host cells by T. pallidum. The data support the view that T. pallidum cytadherence of host cells is through recognition of the RGDS sequence also important for eukaryotic cell-Fn binding.« less
Manipulation of lignin composition in plants using a tissue-specific promoter
Chapple, Clinton C. S.
2003-08-26
The present invention relates to methods and materials in the field of molecular biology, the manipulation of the phenylpropanoid pathway and the regulation of proteins synthesis through plant genetic engineering. More particularly, the invention relates to the introduction of a foreign nucleotide sequence into a plant genome, wherein the introduction of the nucleotide sequence effects an increase in the syringyl content of the plant's lignin. In one specific aspect, the invention relates to methods for modifying the plant lignin composition in a plant cell by the introduction there into of a foreign nucleotide sequence comprising at issue specific plant promoter sequence and a sequence encoding an active ferulate-5-hydroxylase (F5H) enzyme. Plant transformants harboring an inventive promoter-F5H construct demonstrate increased levels of syringyl monomer residues in their lignin, rendering the polymer more readily delignified and, thereby, rendering the plant more readily pulped or digested.
Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG
Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.
2015-01-01
We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573
PALS Free Volume Measurements of Fractionated Hydrido- Silsesquioxane Resin.
NASA Astrophysics Data System (ADS)
Madani, Mahmoud M.; Granata, Richard D.; Pernisz, Udo C.
1997-03-01
Hydrido-Silsesquioxane (HSQ) is a resinous polymer with monomer unit formula (HSiO_3/2)_n. For n=8...16, it forms cages which in turn cross-link to yield a resin with a broad molecular weight distribution. It is soluble and forms thin films that may be converted to low-density silica with excellent dielectric properties. These, and the HSQ solubility, depend on molecular structure and size distribution of the cages. Samples of different molecular weight fractions were prepared from HSQ by SCF and the free volume of several cuts was measured by PALS in a conventional fast-fast system. POSITRONFIT and CONTIN programs were used to analyze the spectra. Three separate lifetime regions were identified with free volume regimes that correlate strongly with the molecular weight. The lowest is identified with the monomer cage unit, the larger values with intramolecular separation.
Omer-Mizrahi, Melany; Margel, Shlomo
2009-01-15
Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.
NASA Astrophysics Data System (ADS)
Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson
2004-05-01
Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.
Bhate, Manjiri; Wang, Xin; Baum, Jean; Brodsky, Barbara
2002-05-21
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.
Dynamic switching mechanisms of a CC chemokine, CCL5 (RANTES). A simulation study
NASA Astrophysics Data System (ADS)
Peter, Emanuel; Pivkin, Igor
CCL5 (RANTES) belongs to the class of pro-inflammatory chemokines which are part of the human immune-response. It is known to activate leukocytes through its associated chemokine receptor 5 (CCR5) and plays a key role in several malignancies, including HIV-1 infections and cancer. In this talk, we present our results from enhanced sampling simulations of the CCL5 (RANTES) monomer. We find that this protein can adopt 2 different conformations : a globular form, with an orthogonal alignment of the N-terminal part, and a 'cis' form, in which the N-terminus is aligned parallel to the β-strand interface. A detailed analysis of the structure reveals that each of these states is stabilized by salt-bridges along the sequence, and corresponds to a defined dihedral-geometry of the 2 disulfide bridges Cys10-34 and Cys11-50. We derive a uniform distribution of transitions from the globular form of CCL5 (RANTES), and find that each of the main conformers adopts different electrostatic patterns.
Hinsen, Konrad; Vaitinadapoule, Aurore; Ostuni, Mariano A; Etchebest, Catherine; Lacapere, Jean-Jacques
2015-02-01
The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications. Copyright © 2014 Elsevier B.V. All rights reserved.
Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie
2013-03-01
This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.
NASA Astrophysics Data System (ADS)
Tavenor, Nathan Albert
Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta-turns) of a small protein with a tertiary fold. Although the tertiary fold of the native sequence was mimicked by the resulting artificial protein, the thermodynamic stability was greatly compromised. Most of this energetic penalty derived from the modifications present in the alpha-helix. The contribution within this thesis was direct comparison of several alpha-helical design strategies and establishment of the thermodynamic consequences of each.
Boehm; Gibson; Lubzens
2000-01-01
This study was initiated to search for species-specific and strain-specific satellite DNA sequences for which oligonucleotide primers could be designed to differentiate between various commercially important strains of the marine monogonont rotifers Brachionus rotundiformis and Brachionus plicatilis. Two unrelated, highly reiterated satellite sequences were cloned and characterized. The eight sequenced monomers from B. rotundiformis and six from B. plicatilis had low intrarepeat variability and were similar in their overall lengths, A + T compositions, and high degrees of repeated motif substructure. However, hybridizations to 19 representative strains, sequence characterizations, and GenBank searches indicated that these two satellites are morphotype-specific and population-specific, respectively, and share little homology to each other or to other characterized sequences in the database. Primer pairs designed for the B. rotundiformis satellite confirmed hybridization specificities on polymerase chain reaction and could serve as a useful molecular diagnostic tool to identify strains belonging to the SS morphotype, which are gaining widespread usage as first feeds for marine fish in commercial production.
Zou, J; Saven, J G
2000-02-11
A self-consistent theory is presented that can be used to estimate the number and composition of sequences satisfying a predetermined set of constraints. The theory is formulated so as to examine the features of sequences having a particular value of Delta=E(f)-
Cheng, Weiren; Wu, Decheng; Liu, Ye
2016-10-10
Michael addition polymerizations of amines and acrylic monomers are versatile approaches to biomaterials for various applications. A combinatorial library of poly(β-amino ester)s and diverse poly(amido amine)s from diamines and diacrylates or bis(acrylamide)s have been reported, respectively. Furthermore, novel linear and hyperbranched polymers from Michael addition polymerizations of trifunctional amines and acrylic monomers significantly enrich this category of biomaterials. In this Review, we focus on the biomaterials from Michael addition polymerizations of trifunctional amines and acrylic monomers. First we discuss how the polymerization mechanisms, which are determined by the reactivity sequence of the three types of amines of trifunctional amines, i.e., secondary (2°) amines (original), primary (1°) amines, and 2° amines (formed), are affected by the chemistry of monomers, reaction temperature, and solvent. Then we update how to design and synthesize linear and hyperbranched polymers based on the understanding of polymerization mechanisms. Linear polymers containing 2° amines in the backbones can be obtained from polymerizations of diacrylates or bis(acrylamide)s with equimolar trifunctional amine, and several approaches, e.g., 2A 2 +BB'B″, A 3 +2BB'B', A 2 +BB'B″, to hyperbranched polymers are developed. Further through molecular design of monomers, conjugation of functional species to 2° amines in the backbones of linear polymers and the abundant terminal groups of hyperbranched polymers, the amphiphilicity of polymers can be adjusted, and additional stimuli, e.g., thermal, redox, reactive oxidation species (ROS), and light, responses can be integrated with the intrinsic pH response. Finally we discuss the applications of the polymers for gene/drug delivery and bioimaging through exploring their self-assemblies in various motifs, e.g., micelles, polyplexes particles/nanorings and hydrogels. Redox-responsive hyperbranched polymers can display 300 times higher in vitro gene transfection efficiency and provide a higher in vivo siRNA efficacy than PEI. Also redox-responsive micelle carriers can improve the efficacy of anticancer drug and the bioimaging contrast. Further molecular design and optimization of this category of polymers together with in vivo studies should provide safe and efficient biomaterials for clinical applications.
NASA Astrophysics Data System (ADS)
Lenz, Annika; Ojamäe, Lars
2009-10-01
The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (Cp, ΔH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.
Lenz, Annika; Ojamäe, Lars
2009-10-07
The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.
Tomita, Toshio; Mizumachi, Yoshihiro; Chong, Kang; Ogawa, Kanako; Konishi, Norihide; Sugawara-Tomita, Noriko; Dohmae, Naoshi; Hashimoto, Yohichi; Takio, Koji
2004-12-24
Flammutoxin (FTX), a 31-kDa pore-forming cytolysin from Flammulina velutipes, is specifically expressed during the fruiting body formation. We cloned and expressed the cDNA encoding a 272-residue protein with an identical N-terminal sequence with that of FTX but failed to obtain hemolytically active protein. This, together with the presence of multiple FTX family proteins in the mushroom, prompted us to determine the complete primary structure of FTX by protein sequence analysis. The N-terminal 72 and C-terminal 107 residues were sequenced by Edman degradation of the fragments generated from the alkylated FTX by enzymatic digestions with Achromobacter protease I or Staphylococcus aureus V8 protease and by chemical cleavages with CNBr, hydroxylamine, or 1% formic acid. The central part of FTX was sequenced with a surface-adhesive 7-kDa fragment, which was generated by a tryptic digestion of FTX and recovered by rinsing the wall of a test tube with 6 M guanidine HCl. The 7-kDa peptide was cleaved with 12 M HCl, thermolysin, or S. aureus V8 protease to produce smaller peptides for sequence analysis. As a result, FTX consisted of 251 residues, and protein and nucleotide sequences were in accord except for the lack of the initial Met and the C-terminal 20 residues in protein. Recombinant FTX (rFTX) with or without the C-terminal 20 residues (rFTX271 or rFTX251, respectively) was prepared to study the maturation process of FTX. Like natural FTX, rFTX251 existed as a monomer in solution and assembled into an SDS-stable, ring-shaped pore complex on human erythrocytes, causing hemolysis. In contrast, rFTX271, existing as a dimer in solution, bound to the cells but failed to form pore complex. The dimeric rFTX271 was converted to hemolytically active monomers upon the cleavage between Lys(251) and Met(252) by trypsin.
NASA Astrophysics Data System (ADS)
Khandadash, Raz; Machtey, Victoria; Shainer, Inbal; Gottlieb, Hugo E.; Gothilf, Yoav; Ebenstein, Yuval; Weiss, Aryeh; Byk, Gerardo
2014-12-01
Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.
Monomer volume fraction profiles in pH responsive planar polyelectrolyte brushes
Mahalik, Jyoti P.; Yang, Yubo; Deodhar, Chaitra V.; ...
2016-03-06
Spatial dependencies of monomer volume fraction profiles of pH responsive polyelectrolyte brushes were investigated using field theories and neutron reflectivity experiments. In particular, planar polyelectrolyte brushes in good solvent were studied and direct comparisons between predictions of the theories and experimental measurements are presented. The comparisons between the theories and the experimental data reveal that solvent entropy and ion-pairs resulting from adsorption of counterions from the added salt play key roles in affecting the monomer distribution and must be taken into account in modeling polyelectrolyte brushes. Furthermore, the utility of this physics-based approach based on these theories for the predictionmore » and interpretation of neutron reflectivity profiles in the context of pH responsive planar polyelectrolyte brushes such as polybasic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and polyacidic poly(methacrylic acid) (PMAA) brushes is demonstrated. The approach provides a quantitative way of estimating molecular weights of the polymers polymerized using surface-initiated atom transfer radical polymerization.« less
Peck, K; Stryer, L; Glazer, A N; Mathies, R A
1989-01-01
A theory for single-molecule fluorescence detection is developed and then used to analyze data from subpicomolar solutions of B-phycoerythrin (PE). The distribution of detected counts is the convolution of a Poissonian continuous background with bursts arising from the passage of individual fluorophores through the focused laser beam. The autocorrelation function reveals single-molecule events and provides a criterion for optimizing experimental parameters. The transit time of fluorescent molecules through the 120-fl imaged volume was 800 microseconds. The optimal laser power (32 mW at 514.5 nm) gave an incident intensity of 1.8 x 10(23) photons.cm-2.s-1, corresponding to a mean time of 1.1 ns between absorptions. The mean incremental count rate was 1.5 per 100 microseconds for PE monomers and 3.0 for PE dimers above a background count rate of 1.0. The distribution of counts and the autocorrelation function for 200 fM monomer and 100 fM dimer demonstrate that single-molecule detection was achieved. At this concentration, the mean occupancy was 0.014 monomer molecules in the probed volume. A hard-wired version of this detection system was used to measure the concentration of PE down to 1 fM. This single-molecule counter is 3 orders of magnitude more sensitive than conventional fluorescence detection systems. PMID:2726766
High-functionality star-branched macromolecules: polymer size and virial coefficients.
Randisi, Ferdinando; Pelissetto, Andrea
2013-10-21
We perform high-statistics Monte Carlo simulations of a lattice model to compute the radius of gyration Rg, the center-to-end distance, the monomer distribution, and the second and third virial coefficients of star polymers for a wide range of functionalities f, 6 ≤ f ≤ 120. We consider systems with a large number L of monomers per arm (100 is approximately < L is approximately < 1000 for f ≤ 40 and 100 is approximately < L is approximately < 400 for f = 80, 120), which allows us to determine accurately all quantities in the scaling regime. Results are extrapolated to determine the behavior of the different quantities in the limit f → ∞. Structural results are finally compared with the predictions of the Daoud-Cotton model. It turns out that the blob picture of a star polymer is essentially correct up to the corona radius Rc, which depends on f and which varies from 0.7Rg for f = 6 to 1.0Rg for f = 40. The outer region (r > Rc), in which the monomer distribution decays exponentially, shrinks as f increases, but it does not disappear in the scaling regime even in the limit f → ∞. We also consider the Daoud-Cotton scaling relation Rg (2)~f(1-ν)L(2ν), which is found to hold only for f > 100.
Rathgeber, Silke; Pakula, Tadeusz; Urban, Volker
2004-08-22
We investigated the generation dependent shape and internal structure of star-burst dendrimers under good solvent conditions using small angle x-ray scattering and molecular modeling. Measurements have been performed on poly(amidoamine) dendrimers with generations ranging from g=0 up to g=8 at low concentrations in methanol. We described the static form factor P(q) by a model taking into account the compact, globular shape as well as the loose, polymeric character of dendrimers. Monomer distributions within dendrimers are of special interest for potential applications and have been characterized by the pair correlation function gamma(r), as well as by the monomer and end-group density profile, rho(r) and rho(e)(r), respectively. Monomer density profiles and gamma(r) can be derived from P(q) by modeling and via a model independent approach using the inverse Fourier transformation algorithm first introduced by Glatter. Experimental results are compared with computer simulations performed for single dendrimers of various generations using the cooperative motion algorithm. The simulation gives direct access to gamma(r) and rho(r), allows an independent determination of P(q), and yields in addition to the scattering experiment information about the distribution of the end groups. Excellent qualitative agreement between experiment and simulation has been found. (c) 2004 American Institute of Physics
Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...
2015-12-15
Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less
Hoffenberg, Simon; Powell, Rebecca; Carpov, Alexei; Wagner, Denise; Wilson, Aaron; Kosakovsky Pond, Sergei; Lindsay, Ross; Arendt, Heather; DeStefano, Joanne; Phogat, Sanjay; Poignard, Pascal; Fling, Steven P.; Simek, Melissa; LaBranche, Celia; Montefiori, David; Wrin, Terri; Phung, Pham; Burton, Dennis; Koff, Wayne; King, C. Richter; Parks, Christopher L.
2013-01-01
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector. PMID:23468492
Translocation of a heterogeneous polymer
Mirigian, Stephen; Wang, Yanbo; Muthukumar, Murugappan
2012-01-01
We present results on the sequence dependence of translocation kinetics for a partially charged heteropolymer moving through a very thin pore using theoretical tools and Langevin dynamics simulational techniques. The chain is composed of two types of monomers of differing frictional interaction with the pore and charge. We present exact analytical expressions for passage probability, mean first passage time, and mean successful passage times for both reflecting/absorbing and absorbing/absorbing boundary conditions, showing rich and unexpected dependence of translocation behavior on charge fraction, distribution along the chain, and electric field configuration. We find excellent qualitative and good quantitative agreement between theoretical and simulation results. Surprisingly, there emerges a threshold charge fraction of a diblock copolymer beyond which the success rate of translocation is independent of charge fraction. Also, the mean successful translocation time of a diblock copolymer displays non-monotonic behavior with increasing length of the charged block; there is an optimum length of the charged block where the mean translocation rate is the slowest; and there can be a substantial range of higher charge fractions which make the translocation slower than even a minimally charged chain. Additionally, we find for a fixed total charge on the chain, finer distribution along the backbone significantly decreases mean translocation time. PMID:22897308
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Bernasconi, C. F.; Alberas, D. J.; Baird, E. E.
1993-01-01
A kinetic study of oligoguanylate synthesis on a polycytidylate template, poly(C), as a function of the concentration of the activated monomer, guanosine 5'-monophosphate 2-methylimidazolide, 2-MeImpG, is reported. Reactions were run with 0.005-0.045 M 2-MeImpG in the presence of 0.05 M poly(C) at 23 degrees C. The kinetic results are consistent with a reaction scheme (eq 1) that consists of a series of consecutive steps, each step representing the addition of one molecule of 2-MeImpG to the growing oligomer. This scheme allows the calculation of second-order rate constants for every step by analyzing the time-dependent growth of each oligomer. Computer simulations of the course of reaction based on the determined rate constants and eq 1 are in excellent agreement with the product distributions seen in the HPLC profiles. In accord with an earlier study (Fakhrai, H.; Inoue, T.; Orgel, L. E. Tetrahedron 1984, 40, 39), rate constants, ki, for the formation of the tetramer and longer oligomers up to the 16-mer were found to be independent of length and somewhat higher than k3 (formation of trimer), which in turn is much higher than k2 (formation of dimer). The ki (i > or = 4), k3, and k2 values are not true second-order rate constants but vary with monomer concentration. Mechanistic models for the dimerization (Scheme I) and elongation reactions (Scheme II) are proposed that are consistent with our results. These models take into account that the monomer associates with the template in a cooperative manner. Our kinetic analysis allowed the determination of rate constants for the elementary processes of covalent bond formation between two monomers (dimerization) and between an oligomer and a monomer (elongation) on the template. A major conclusion from our study is that bond formation between two monomer units or between a primer and a monomer is assisted by the presence of additional next-neighbor monomer units. This is consistent with recent findings with hairpin oligonucleotides (Wu, T.; Orgel, L. E. J. Am. Chem. Soc. 1992, 114, 317). Our study is the first of its kind that shows the feasibility of a thorough kinetic analysis of a template-directed oligomerization and provides a detailed mechanistic model of these reactions.
Thiol X Click Foldamers for Polymer Affinity
2016-06-24
polymers e. Invention of a novel, robust, and ambient polymerization ...efficiently polymerized to moderate sized polymers capable of forming >>1012 sequence distinct polymers ... polymerization of nucleobase appended thiol-‐ene monomers. Naturally, the average composition of the
Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.
Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei
2015-08-01
This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.
Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok
2017-03-01
Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safo,M.; Ko, T.; Musayev, F.
The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtualmore » DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less
Monnard, Pierre-Alain
2016-01-01
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. PMID:27827919
Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok
2017-07-03
Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nonlinear geometries in liquid crystals and liquid crystalline polymers
NASA Astrophysics Data System (ADS)
Dingemans, Theo Jacobus
The thermodynamic properties of thermotropic liquid crystals (LCs), and polymeric LCs are strongly dependent on mesogenic shape and in order to explore the relationships between shape and physical properties new, nonlinear geometries were examined. Symmetric oxadiazole based model compounds were synthesized and despite an internal exocyclic bond angle of 134sp° the model compounds exhibit a variety of mesophases. Conoscopic studies on bis(p-hexyloxyphenyl) 4,4sp'- (1,3,4-oxadiazole-2,5-diyl) dicarboxylate in its phase Ssb{A} phase are not consistent with the uniaxial Ssb{A} phase, but rather a biaxial Ssb{CM} phase. Uniaxial and biaxial mesogenic monomers were incorporated in main-chain polyesters. Transition temperatures of the interfacially prepared polymers were higher than materials that were melt polymerized. sp{13}C NMR showed that all polymers prepared by melt condensation have random monomer sequence distributions at the diad level. Thiophene and 1,3-phenylene modified p-quinquephenyls were synthesized in order to investigate the effects of mesogen nonlinearity and dipole direction on the LC thermodynamic properties. Results indicate that shape asymmetry favors mesophase formation and stability; the thiophene dipole moment appears to have no effect. The 120sp° exocyclic bond angle disrupts liquid crystallinity in 1,3-phenylene derivatives. Additionally the placement of 2,5-thiophene in "p-quinquephenyls" affects a red shift in its UV absorption. This was exploited in single layer light emitting diodes (LEDs) to tune the electroluminescence emission. In double layer LEDs these compounds function as efficient hole transport materials with high light outputs. Ferroelectric LCs derived from isoleucine were synthesized and shown to have spontaneous polarizations that are a strong function of halogen size (F > Cl > Br).
NASA Astrophysics Data System (ADS)
Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team
Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.
Analysis of emulsion stability in acrylic dispersions
NASA Astrophysics Data System (ADS)
Ahuja, Suresh
2012-02-01
Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.
Montmorillonite Clay-Catalyzed Synthesis of RNA Oligomers
NASA Astrophysics Data System (ADS)
Ferris, J. P.; Miyakawa, S.; Huang, W.; Joshi, P.
2005-12-01
It is proposed that catalysis had a central role in the origins of life. This will be illustrated using the montmorillonite clay-catalyzed synthesis of oligomers of RNA from activated monomers, (Ferris and Ertem, 1993) a possible step in the origin of the RNA world (Ferris, 2005). Structural analysis of oligomers formed in the reaction of the activated monomer of 5'-AMP with that of 5'-CMP demonstrated that the oligomers formed were not produced by random synthesis but rather the sequences observed were directed by the montmorillonite catalyst (Miyakawa and Ferris, 2003). RNA oligomers containing up to 40 mers have been synthesized in reactions performed in water at 25 oC in the presence of montmorillonite (Huang and Ferris, 2003). Analysis of the structure elements in these oligomers from the 7 to 39 mers showed that they did not vary. Reaction of D, L-mixtures of the activated monomers of A and U resulted in the formation of greater amounts of the homochiral amounts of dimers and trimers of A than would be expected if there was no selectivity in the reaction. A limited number of the dimers and trimers of U were also formed but here the selectivity was for the formation of an excess of heterochiral products (Joshi et al., 2000). A postulate that explains why homochiral trimers of U are not formed and the significance of catalysis in prebiotic synthesis will be discussed. Ferris, J.P. (2005) Origins of life, molecular basis of. In R.A. Meyers, Ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 10. Wiley-VCH Verlag, Weinheim, Germany. Ferris, J.P., and Ertem, G. (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270-12275. Huang, W., and Ferris, J.P. (2003) Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 1458-1459. Joshi, P.C., Pitsch, S., and Ferris, J.P. (2000) Homochiral selection in the montmorillonite-catalyzed and uncatalyzed prebiotic synthesis of RNA. Chem. Commun., 2497-2498. Miyakawa, S., and Ferris, J.P. (2003) Sequence- and Regioselectivity in the montmorillonite-catalyzed synthesis of RNA. J. Am. Chem. Soc., 125, 8202-8208.
The statistical average of optical properties for alumina particle cluster in aircraft plume
NASA Astrophysics Data System (ADS)
Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin
2018-04-01
We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.
21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Methyl Acrylate and Vinylidene Chloride Monomers in Saran MA/VDC Resins and Pellets by Headspace Gas... copolymer is not less than 50,000 when determined by gel permeation chromatography using tetrahydrofuran as... Weight Averages and Molecular Weight Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel...
Hu, Dingkun; Zhao, Wei; Zhu, Yong; Ai, Hongqi; Kang, Baotao
2017-11-16
A growing body of evidence shows that soluble β-amyloid (Aβ) aggregates, oligomers, and even protofibrils, may be more neurotoxic than fibrils. Here, we employ a coarse grain model to investigate the aggregation of 75mer Aβ 42 oligomers and the salt effect, the cornerstone of fibril evolution. We find that the oligomer morphologies generated by seventy-five monomers or mixed by both fifty monomers and five preset pentameric nuclei are different (spherical vs. bar-/disk-shaped) and are characterize by a full of coil content (former) and >70 % β-turn content (latter), indicating a novel role of the nuclei played in the early aggregation stage. The aggregation for the former oligomer adopts a master-nucleus mechanism, whereas for the latter combination of monomers and pentamers a multi-nuclei one is found. The random salt ions will distribute around the aggregates to form several ion shells as the aggregation develops. A unique two-fold gap between the shells is observed in the system containing 100 mm NaCl, endowing the physiological salt concentration with special implications. Meanwhile, an accurate ion-solute cutoff distance (0.66 nm) is predicted, and recommended to apply to many other aggregated biomolecular systems. The present distribution scenario of ions can be generalized to other aggregated systems, although it is strictly dependent on the identity of a specific aggregate, such as its charge and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Competition of the connectivity with the local and the global order in polymer melts and crystals
NASA Astrophysics Data System (ADS)
Bernini, S.; Puosi, F.; Barucco, M.; Leporini, D.
2013-11-01
The competition between the connectivity and the local or global order in model fully flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower than in atomic systems in both melt and crystal. The role played by the bonds linking the tagged monomer to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell bonds) is investigated. The detailed analysis in terms of Steinhardt's orientation order parameters Ql (l = 2 - 10) reveals that increasing the number of shell bonds decreases the FCS order in both melt and crystal. Differently, the FCS arrangements organize the radial bonds. Even if the molecular chains are fully flexible, the distribution of the angle formed by adjacent radial bonds exhibits sharp contributions at the characteristic angles θ ≈ 70°, 122°, 180°. The fractions of adjacent radial bonds with θ ≈ 122°, 180° are enhanced by the global order of the crystal, whereas the fraction with 70° ≲ θ ≲ 110° is nearly unaffected by the crystallization. Kink defects, i.e., large lateral displacements of the chains, are evidenced in the crystalline state.
Competition between B-Z and B-L transitions in a single DNA molecule: Computational studies
NASA Astrophysics Data System (ADS)
Kwon, Ah-Young; Nam, Gi-Moon; Johner, Albert; Kim, Seyong; Hong, Seok-Cheol; Lee, Nam-Kyung
2016-02-01
Under negative torsion, DNA adopts left-handed helical forms, such as Z-DNA and L-DNA. Using the random copolymer model developed for a wormlike chain, we represent a single DNA molecule with structural heterogeneity as a helical chain consisting of monomers which can be characterized by different helical senses and pitches. By Monte Carlo simulation, where we take into account bending and twist fluctuations explicitly, we study sequence dependence of B-Z transitions under torsional stress and tension focusing on the interaction with B-L transitions. We consider core sequences, (GC) n repeats or (TG) n repeats, which can interconvert between the right-handed B form and the left-handed Z form, imbedded in a random sequence, which can convert to left-handed L form with different (tension dependent) helical pitch. We show that Z-DNA formation from the (GC) n sequence is always supported by unwinding torsional stress but Z-DNA formation from the (TG) n sequence, which are more costly to convert but numerous, can be strongly influenced by the quenched disorder in the surrounding random sequence.
Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei
2013-01-01
Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687
Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2016-08-01
Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (ATRP) of hydrophilic monomers in heptane/ethanol latent-biphasic system for copper catalyst separation and recycling have been realized for the first time at room temperature with different wavelengths of visible light LED (green, blue, purple, and white LED) as external stimulus, using 2-bromophenylacetate as the ATRP initiator and camphorquinone/triethylamine as the photoinitiator. In this system, hybrid catalyst complex (HCc) is synthesized as a novel nonpolar catalyst, which is preferentially dissolved in heptane. The hydrophilic polymers obtained catalyzed by HCc in heptane/ethanol mixture solvent show typical "living" features, for example, the values of Mn,GPC increase linearly with monomer conversion up to quantitative level (>96%) and the molecular weight distributions were kept narrow (Mw /Mn < 1.20) throughout the polymerization process. It should be noted that the excellent controllability of this novel polymerization system can be achieved even after 5 catalyst recycling experiments under LED irradiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The crystal structure of Toxoplasma gondii pyruvate kinase 1.
Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C
2010-09-14
Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.
The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakszt, R.; Wernimont, A; Allali-Hassani, A
Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain inmore » the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.« less
Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of Aβ40 and Aβ42
2014-01-01
The self-assembly of the amyloid beta (Aβ) peptides into senile plaques is the hallmark of Alzheimer’s disease. Recent experiments have shown that the English familial disease mutation (H6R) speeds up the fibril formation process of alloforms Aβ40 and Aβ42 peptides altering their toxicity to cells. We used all-atom molecular dynamics simulations at microsecond time scales with the OPLS-AA force field and TIP4P explicit water model to study the structural dynamics of the monomer and dimer of H6R sequences of both peptides. The reason behind the self-assembly acceleration is common that upon mutation the net charge is reduced leading to the weaker repulsive interaction between chains that facilitates the peptide association. In addition, our estimation of the solvation free energy shows that the mutation enhances the hydrophobicity of both peptides speeding up their aggregation. However, we can show that the acceleration mechanisms are different for different peptides: the rate of fibril formation of Aβ42 increases due to increased β-structure at the C-terminal in both monomer and dimer and enhanced stability of salt bridge Asp23-Lys28 in monomer, while the enhancement of turn at residues 25–29 and reduction of coil in regions 10–13, 26–19, and 30–34 would play the key role for Aβ40. Overall, our study provides a detailed atomistic picture of the H6R-mediated conformational changes that are consistent with the experimental findings and highlights the important role of the N-terminal in Aβ peptide aggregation. PMID:24949887
Aspects of droplet and particle size control in miniemulsions
NASA Astrophysics Data System (ADS)
Saygi-Arslan, Oznur
Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a potential application of the method. Molecular weight control was found to be achieved via diffusion of the CFRP agents through the aqueous phase owing to limited water solubilities. The effects of adsorption rate and energy on the droplet size and size distribution of miniemulsions using different surfactants (sodium lauryl sulfate (SLS), sodium dodecylbenzene sulfonate (SDBS), Dowfax 2A1, Aerosol OT-75PG, sodium n-octyl sulfate (SOS), and sodium n-hexadecyl sulfate (SHS)) were analyzed. For this purpose, first, the dynamics of surfactant adsorption at an oil/water interface were examined over a range of surfactant concentrations by the drop volume method and then adsorption rates of the different surfactants were determined for the early stages of adsorption. The results do not show a direct relationship between adsorption rate and miniemulsion droplet size and size distribution. Adsorption energies of these surfactants were also calculated by the Langmuir adsorption isotherm equation and no correlation between adsorption energy and miniemulsion droplet size was found. In order to understand the mechanism of miniemulsification process, the effects of breakage and coalescence processes on droplet size distributions were observed at different surfactant concentrations, monomer ratios, and homogenization conditions. A coalescence and breakup mechanism for miniemulsification is proposed to explain the size distribution of droplets. The multimodal droplet size distribution of ODMA miniemulsions was controlled by the breakage mechanism. The results also showed that, at a surfactant concentration when 100% surface coverage was obtained, the droplet size distribution became unimodal.
Zheng, Anjun; Shi, Yuejun; Shen, Zhou; Wang, Gang; Shi, Jiale; Xiong, Qiqi; Fang, Liurong; Xiao, Shaobo; Fu, Zhen F; Peng, Guiqing
2018-06-10
Nidovirus endoribonucleases (NendoUs) include Nsp15 from coronaviruses and Nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E and MHV Nsp15 indicate that it mainly forms a functional hexamer, whereas Nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine deltacoronavirus (PDCoV) Nsp15 primarily exists as dimers and monomers in vitro. Biological experiments reveal that a PDCoV Nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (NTD, Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV Nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV Nsp15. This result may explain why PDCoV Nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells and that NendoU from arterivirus gained ability to form dimers and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV Nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Biopolymers Containing Unnatural Amino Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter
Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less
Biopolymers Containing Unnatural Building Blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter G.
2013-06-30
Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less
Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization
O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA
2012-01-24
A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.
Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization
O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA
2010-07-13
A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.
Quantifying short-lived events in multistate ionic current measurements.
Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute
2014-02-25
We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.
NASA Technical Reports Server (NTRS)
Ryan, Margaret A. (Inventor); Jewell, April D. (Inventor); Taylor, Charles (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor); Homer, Margie L. (Inventor); Shevade, Abhijit V. (Inventor)
2012-01-01
Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
NASA Technical Reports Server (NTRS)
Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)
2010-01-01
Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro
2014-03-01
In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). Inmore » order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations.« less
Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, JaeSeon; Nam, PilWon; Lee, YongChan
2009-04-24
Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fabmore » fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safo, Martin K., E-mail: msafo@vcu.edu; Ko, Tzu-Ping; Musayev, Faik N.
The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA,more » and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less
Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario
2011-01-01
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Molecular Modeling of the Axial and Circumferential Elastic Moduli of Tubulin
Zeiger, A. S.; Layton, B. E.
2008-01-01
Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for α- and β-bovine tubulin monomers. In the circumferential direction, these moduli were 378 MPa for α- and 460 MPa for β-structures. Using bovine tubulin as a template, 269 homologous tubulin structures were also subjected to simulated tensile loads yielding an average axial elastic modulus of 1.10 ± 0.14 GPa for α-tubulin structures and 1.39 ± 0.68 GPa for β-tubulin. Circumferentially the α- and β-moduli were 936 ± 216 MPa and 658 ± 134 MPa, respectively. Our primary finding is that that the axial elastic modulus of tubulin diminishes as the length of the monomer increases. However, in the circumferential direction, no correlation exists. These predicted anisotropies and scale dependencies may assist in interpreting the macroscale behavior of microtubules during mitosis or cell growth. Additionally, an intergenomic approach to investigating the mechanical properties of proteins may provide a way to elucidate the evolutionary mechanical constraints imposed by nature upon individual subcellular components. PMID:18621829
Monomer-dimer control of the ColE1 P(cer) promoter.
Chatwin, H M; Summers, D K
2001-11-01
XerCD-mediated recombination at cer converts multimers of plasmid ColE1 to monomers, maximizing the number of independently segregating molecules and minimizing the frequency of plasmid loss. In addition to XerCD, recombination requires the accessory factors ArgR and PepA. The promoter P(cer), located centrally within cer, is also required for stable plasmid maintenance. P(cer) is active in plasmid multimers and directs transcription of a short RNA, Rcd, which appears to inhibit cell division. It has been proposed that Rcd is part of a checkpoint which ensures that multimer resolution is complete before the cell divides. This study has shown that ArgR does not act as a transcriptional repressor of P(cer) in plasmid monomers. P(cer) is unusual in that the -35 and -10 hexamers are separated by only 15 bp and this study has demonstrated that increasing this to a more conventional spacing results in elevated activity. An increase to 17 bp resulted in a 10- to 20-fold increase in activity, while smaller effects were seen when the spacer was increased to 16 bp or 18 bp. These observations are consistent with the hypothesis that P(cer) activation involves realignment of the -35 and -10 sequences within a recombinational synaptic complex. This predicts that a 17 bp spacer promoter derivative should be down-regulated by plasmid multimerization, and this is confirmed experimentally.
Severson, Eric; Arnett, Kelly L.; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S.; Liu, X. Shirley; Blacklow, Stephen C.; Aster, Jon C.
2018-01-01
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and are linked to the Notch-responsiveness of a few genes, but their overall contribution to Notch-dependent gene regulation is unknown. To address this issue, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay, and applied insights from these in vitro studies to Notch-“addicted” leukemia cells. We find that SPSs contribute to the regulation of approximately a third of direct Notch target genes. While originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5. Our work provides a general method for identifying sequence-paired sites in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. PMID:28465412
Design and preparation of beta-sheet forming repetitive and block-copolymerized polypeptides.
Higashiya, Seiichiro; Topilina, Natalya I; Ngo, Silvana C; Zagorevskii, Dmitri; Welch, John T
2007-05-01
The design and rapid construction of libraries of genes coding beta-sheet forming repetitive and block-copolymerized polypeptides bearing various C- and N-terminal sequences are described. The design was based on the assembly of DNA cassettes coding for the (GA)3GX amino acid sequence where the (GAGAGA) sequences would constitute the beta-strand units of a larger beta-sheet assembly. The edges of this beta-sheet would be functionalized by the turn-inducing amino acids (GX). The polypeptides were expressed in Escherichia coli using conventional vectors and were purified by Ni-nitriloacetic acid (NTA) chromatography. The correlation of polymer structure with molecular weight was investigated by gel electrophoresis and mass spectrometry. The monomer sequences and post-translational chemical modifications were found to influence the mobility of the polypeptides over the full range of polypeptide molecular weights while the electrophoretic mobility of lower molecular weight polypeptides was more susceptible to C- and N-termini polypeptide modifications.
Ning, Lulu; Wang, Qianqian; Zheng, Yang; Liu, Huanxiang; Yao, Xiaojun
2015-02-01
The palindromic region AGAAAAGA (PrP113-120) in prion is highly amyloidogenic and very critical in the structural conversion of cellular prion protein to its pathogenetic form. In this region, there is an important point mutation A117V, which is closely related to the occurrence of Gerstmann-Straussler-Scheinker Syndrome. However, the detailed knowledge about the effects of the A117V mutation on the folding and aggregation of the palindromic sequences is still lacking. To investigate the impacts of A117V mutation on the earliest steps along the PrP113-120 aggregation pathway, replica exchange molecular dynamics simulations of the monomer, 2- and 4-peptide systems of PrP113-120 and its A117V mutant were carried out. The simulations of monomers indicate that both WT and the A117V mutated PrP113-120 are mostly random coils with helical structures transiently populated. Differently, the A117V mutation enhances the intrinsic disorder of PrP113-120. The simulations of 2- and 4-peptide systems of the two species show that the A117V mutation increases the sheet contents and the populations of oligomers, which may be attributed to the enhancement of inter-peptide backbone hydrogen bonding interactions and side chain hydrophobic interactions. Overall, the study provides structural insights into the impacts of the A117V mutation on the folding and assembly of the palindromic sequences, which might be helpful to elucidate the mechanism underlying prion disease and the origin of the Gerstmann-Straussler-Scheinker Syndrome.
Morphological transformations of diblock copolymers in binary solvents: A simulation study
NASA Astrophysics Data System (ADS)
Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui
2017-12-01
Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.
Initial assembly steps of a translocase for folded proteins
Blümmel, Anne-Sophie; Haag, Laura A.; Eimer, Ekaterina; Müller, Matthias; Fröbel, Julia
2015-01-01
The so-called Tat (twin-arginine translocation) system transports completely folded proteins across cellular membranes of archaea, prokaryotes and plant chloroplasts. Tat-directed proteins are distinguished by a conserved twin-arginine (RR-) motif in their signal sequences. Many Tat systems are based on the membrane proteins TatA, TatB and TatC, of which TatB and TatC are known to cooperate in binding RR-signal peptides and to form higher-order oligomeric structures. We have now elucidated the fine architecture of TatBC oligomers assembled to form closed intramembrane substrate-binding cavities. The identification of distinct homonymous and heteronymous contacts between TatB and TatC suggest that TatB monomers coalesce into dome-like TatB structures that are surrounded by outer rings of TatC monomers. We also show that these TatBC complexes are approached by TatA protomers through their N-termini, which thereby establish contacts with TatB and membrane-inserted RR-precursors. PMID:26068441
Zhang, Jianzhi; Kopparapu, Narasimha Kumar; Yan, Qiaojuan; Yang, Shaoqing; Jiang, Zhengqiang
2013-06-01
A novel chitinase from the persimmon fruit was isolated, purified and characterised in this report. The Diospyros kaki chitinase (DKC) was found to be a monomer with a molecular mass of 29 kDa. It exhibited optimal activity at pH 4.5 with broad pH stability from pH 4.0-9.0. It has an optimal temperature of 60°C and thermostable up to 60°C when incubated for 30 min. The internal peptide sequences of DKC showed similarity with other reported plant chitinases. It has the ability to hydrolyse colloidal chitin into chito-oligomers such as chitotriose, chitobiose and into its monomer N-acetylglucosamine. It can be used to degrade chitin waste into useful products such as chito-oligosacchaarides. DKC exhibited antifungal activity towards pathogenic fungus Trichoderma viride. Chitinases with antifungal property can be used as biocontrol agents replacing chemical fungicides. Copyright © 2012 Elsevier Ltd. All rights reserved.
Copper redox chemistry of plant frataxins.
Sánchez, Manu; Palacios, Òscar; Buchensky, Celeste; Sabio, Laura; Gomez-Casati, Diego Fabian; Pagani, Maria Ayelen; Capdevila, Mercè; Atrian, Silvia; Dominguez-Vera, Jose M
2018-03-01
The presence of a conserved cysteine residue in the C-terminal amino acid sequences of plant frataxins differentiates these frataxins from those of other kingdoms and may be key in frataxin assembly and function. We report a full study on the ability of Arabidopsis (AtFH) and Zea mays (ZmFH-1 and ZmFH-2) frataxins to assemble into disulfide-bridged dimers by copper-driven oxidation and to revert to monomers by chemical reduction. We monitored the redox assembly-disassembly process by electrospray ionization mass spectrometry, electrophoresis, UV-Vis spectroscopy, and fluorescence measurements. We conclude that plant frataxins AtFH, ZmFH-1 and ZmFH-2 are oxidized by Cu 2+ and exhibit redox cysteine monomer - cystine dimer interexchange. Interestingly, the tendency to interconvert is not the same for each protein. Through yeast phenotypic rescue experiments, we show that plant frataxins are important for plant survival under conditions of excess copper, indicating that these proteins might be involved in copper metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa.
Osipiuk, Jerzy; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Edwards, Aled; Joachimiak, Andrzej
2011-03-01
The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.
A first line of stress defense: small heat shock proteins and their function in protein homeostasis.
Haslbeck, Martin; Vierling, Elizabeth
2015-04-10
Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hai-Feng; Lin, Zhen-Quan; Gao, Yan; Xu, Chao
2009-08-01
We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coagulate themselves and a DNA aggregate of any size can yield a new monomer or double itself with the help of RNA aggregates. By employing the mean-field rate equation approach we analytically investigate the evolution behaviour of the system. For the system with catalysis-driven monomer duplications, the aggregate size distribution of DNA polymers ak(t) always follows a power law in size in the long-time limit, and it decreases with time or approaches a time-independent steady-state form in the case of the duplication rate independent of the size of the mother aggregates, while it increases with time increasing in the case of the duplication rate proportional to the size of the mother aggregates. For the system with complete catalysis-driven duplications, the aggregate size distribution ak(t) approaches a generalized or modified scaling form.
NASA Astrophysics Data System (ADS)
Yılmaz Baran, Nuray; Saçak, Mehmet
2018-07-01
A novel thermally stable polyazomethine with phenol group, Poly(4-[[4-(dimethylamino)benzylidene]amino]phenol) P(4-DBAP), was synthesized from 4-[[4-(dimethylamino)benzylidene]amino]phenol) (4-DBAP) in aqueous alkaline medium via oxidative polycondensation with NaOCl, H2O2, and O2 oxidants. The change of the yield and molecular weight distribution of P(4-DBAP) with oxidant type and concentration, monomer concentration, and polymerization temperature and time were analyzed. The structures of the monomer and polymer were confirmed by UV-Vis, FTIR, 1H-NMR, 13C-NMR and TGA techniques. The conductivity value of the polymer which was doped with iodine vapor for 24 h was reached 3.2 × 10-5 S/cm and 1.1 × 10-4 S/cm values by increasing 107 and 108 folds compared to the initial conductivity value at 20 °C and 60 °C, respectively. This conductivity value which was measured at 20 °C is the highest value reported in the literature for polyazomethines having phenol group in such a short time and at low temperature. Moreover, antimicrobial activity test was performed for 4-DBAP and P(4-DBAP) against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans and Saccharomyces cerevisiae fungi. Although both monomer and polymer showed antibacterial activity, the polymer was more efficient compared to the monomer.
Collapse transition in polymer models with multiple monomers per site and multiple bonds per edge
NASA Astrophysics Data System (ADS)
Rodrigues, Nathann T.; Oliveira, Tiago J.
2017-12-01
We present results from extensive Monte Carlo simulations of polymer models where each lattice site can be visited by up to K monomers and no restriction is imposed on the number of bonds on each lattice edge. These multiple monomer per site (MMS) models are investigated on the square and cubic lattices, for K =2 and 3, by associating Boltzmann weights ω0=1 , ω1=eβ1 , and ω2=eβ2 to sites visited by 1, 2, and 3 monomers, respectively. Two versions of the MMS models are considered for which immediate reversals of the walks are allowed (RA) or forbidden (RF). In contrast to previous simulations of these models, we find the same thermodynamic behavior for both RA and RF versions. In three dimensions, the phase diagrams, in space β2×β1 , are featured by coil and globule phases separated by a line of Θ points, as thoroughly demonstrated by the metric νt, crossover ϕt, and entropic γt exponents. The existence of the Θ lines is also confirmed by the second virial coefficient. This shows that no discontinuous collapse transition exists in these models, in contrast to previous claims based on a weak bimodality observed in some distributions, which indeed exists in a narrow region very close to the Θ line when β1<0 . Interestingly, in two dimensions, only a crossover is found between the coil and globule phases.
A Coarse Grained Model for Methylcellulose: Spontaneous Ring Formation at Elevated Temperature
NASA Astrophysics Data System (ADS)
Huang, Wenjun; Larson, Ronald
Methylcellulose (MC) is widely used as food additives and pharma applications, where its thermo-reversible gelation behavior plays an important role. To date the gelation mechanism is not well understood, and therefore attracts great research interest. In this study, we adopted coarse-grained (CG) molecular dynamics simulations to model the MC chains, including the homopolymers and random copolymers that models commercial METHOCEL A, in an implicit water environment, where each MC monomer modeled with a single bead. The simulations are carried using a LAMMPS program. We parameterized our CG model using the radial distribution functions from atomistic simulations of short MC oligomers, extrapolating the results to long chains. We used dissociation free energy to validate our CG model against the atomistic model. The CG model captured the effects of monomer substitution type and temperature from the atomistic simulations. We applied this CG model to simulate single chains up to 1000 monomers long and obtained persistence lengths that are close to those determined from experiment. We observed the chain collapse transition for random copolymer at 600 monomers long at 50C. The chain collapsed into a stable ring structure with outer diameter around 14nm, which appears to be a precursor to the fibril structure observed in the methylcellulose gel observed by Lodge et al. in the recent studies. Our CG model can be extended to other MC derivatives for studying the interaction between these polymers and small molecules, such as hydrophobic drugs.
Diffusion of residual monomer in polymer resins.
Piver, W T
1976-01-01
A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410
Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model
NASA Astrophysics Data System (ADS)
Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen
2017-12-01
Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations in the transient dynamics that are amplified by autocatalysis and eventually propagate to the population level. The impact of these observations on related prebiotic mathematical models is discussed.
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy.
Mankos, Marian; Persson, Henrik H J; N'Diaye, Alpha T; Shadman, Khashayar; Schmid, Andreas K; Davis, Ronald W
2016-01-01
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.
Barcode extension for analysis and reconstruction of structures
NASA Astrophysics Data System (ADS)
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng
2017-03-01
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.
Barcode extension for analysis and reconstruction of structures.
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng
2017-03-13
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.
Barcode extension for analysis and reconstruction of structures
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng
2017-01-01
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117
Grudinin, Sergei; Büldt, Georg; Gordeliy, Valentin; Baumgaertner, Artur
2005-01-01
Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is ∼95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. PMID:15731388
Kinetics of interior loop formation in semiflexible chains.
Hyeon, Changbong; Thirumalai, D
2006-03-14
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.
The study on mechanism of holographic recording in photopolymer with dual monomer
NASA Astrophysics Data System (ADS)
Zhai, Qianli; Tao, Shiquan; Wang, Dayong
2010-06-01
In this paper we study the dynamics of refractive index modulation in a dual-monomer photopolymer through grating growth under different experiment stages. By using different sets of parameters for vinyl monomers (NVC) and acrylate monomers (POEA) respectively, a composite dual-monomer model, extended from the uniform post-exposure (UPE) model for single monomer photopolymer, is proposed and fitted with the experiment data very well. Further discussions indicate that the dominant contribution to the total index modulation is made by NVC monomers, and a brief explanation of the function of POEA monomers is given.
On the properties of a bundle of flexible actin filaments in an optical trap.
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-28
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs (H)=NfkBTln(ρ1/ρ1c)/d, independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝〈L〉(O.T.) (2) and the single filament buckling force ∝〈L〉(O.T.) (-2).
Polymers containing borane or carborane cage compounds and related applications
Bowen, III, Daniel E; Eastwood, Eric A
2013-04-23
Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.
Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun
2013-08-01
A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.
Synthesis and Characterization of Novel Fluorine-Containing Water-Based Antirust Coating
NASA Astrophysics Data System (ADS)
Wang, Huiru; Wang, Xin; Zhao, Xiongyan
2018-01-01
A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which styrene(St) and butyl acrylate (BA) were used as main monomers and dodecafluoroheptyl methacrylate(DFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry (DSC). The FTIR results showed that DFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a narrow particle size distribution. From the results salt spray test presented, it seems when the content of DFMA was 5wt% anti-rust performance of emulsion is relatively better. DSC and TGA also showed that their film exhibited higher thermal stability than that of fluorine-free emulsion.
Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo
2015-08-01
The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.
Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
NASA Astrophysics Data System (ADS)
Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie
2018-05-01
Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.
Calcium-binding protein from mouse Ehrlich ascites-tumour cells is homologous to human calcyclin.
Kuźnicki, J; Filipek, A; Hunziker, P E; Huber, S; Heizmann, C W
1989-01-01
A Ca2+-binding protein was purified from mouse Ehrlich ascites-tumour cells. The protein forms monomers and disulphide-linked dimers, which can be separated by reverse-phase h.p.l.c. A partial amino acid sequence analysis demonstrated that the protein has an EF-hand structure. A striking homology was found to rat and human calcyclin (a member of the S-100 protein family), which is possibly involved in cell-cycle regulation. Images Fig. 1. Fig. 2. PMID:2597136
McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX
2011-10-04
The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
Ahlgren, Eva-Christina; Fekry, Mostafa; Wiemann, Mathias; Söderberg, Christopher A.; Bernfur, Katja; Gakh, Olex; Rasmussen, Morten; Højrup, Peter; Emanuelsson, Cecilia; Isaya, Grazia
2017-01-01
Patients suffering from the progressive neurodegenerative disease Friedreich’s ataxia have reduced expression levels of the protein frataxin. Three major isoforms of human frataxin have been identified, FXN42-210, FXN56-210 and FXN81-210, of which FXN81-210 is considered to be the mature form. Both long forms, FXN42-210 and FXN56-210, have been shown to spontaneously form oligomeric particles stabilized by the extended N-terminal sequence. The short variant FXN81-210, on other hand, has only been observed in the monomeric state. However, a highly homologous E. coli frataxin CyaY, which also lacks an N-terminal extension, has been shown to oligomerize in the presence of iron. To explore the mechanisms of stabilization of short variant frataxin oligomers we compare here the effect of iron on the oligomerization of CyaY and FXN81-210. Using dynamic light scattering, small-angle X-ray scattering, electron microscopy (EM) and cross linking mass spectrometry (MS), we show that at aerobic conditions in the presence of iron both FXN81-210 and CyaY form oligomers. However, while CyaY oligomers are stable over time, FXN81-210 oligomers are unstable and dissociate into monomers after about 24 h. EM and MS studies suggest that within the oligomers FXN81-210 and CyaY monomers are packed in a head-to-tail fashion in ring-shaped structures with potential iron-binding sites located at the interface between monomers. The higher stability of CyaY oligomers can be explained by a higher number of acidic residues at the interface between monomers, which may result in a more stable iron binding. We also show that CyaY oligomers may be dissociated by ferric iron chelators deferiprone and DFO, as well as by the ferrous iron chelator BIPY. Surprisingly, deferiprone and DFO stimulate FXN81-210 oligomerization, while BIPY does not show any effect on oligomerization in this case. The results suggest that FXN81-210 oligomerization is primarily driven by ferric iron, while both ferric and ferrous iron participate in CyaY oligomer stabilization. Analysis of the amino acid sequences of bacterial and eukaryotic frataxins suggests that variations in the position of the acidic residues in helix 1, β-strand 1 and the loop between them may control the mode of frataxin oligomerization. PMID:29200434
Replication of a chronic hepatitis B virus genotype F1b construct.
Hernández, Sergio; Jiménez, Gustavo; Alarcón, Valentina; Prieto, Cristian; Muñoz, Francisca; Riquelme, Constanza; Venegas, Mauricio; Brahm, Javier; Loyola, Alejandra; Villanueva, Rodrigo A
2016-03-01
Genotype F is one of the less-studied genotypes of human hepatitis B virus, although it is widely distributed in regions of Central and South American. Our previous studies have shown that HBV genotype F is prevalent in Chile, and phylogenetic analysis of its full-length sequence amplified from the sera of chronically infected patients identified it as HBV subgenotype F1b. We have previously reported the full-length sequence of a HBV molecular clone obtained from a patient chronically infected with genotype F1b. In this report, we established a system to study HBV replication based on hepatoma cell lines transfected with full-length monomers of the HBV genome. Culture supernatants were analyzed after transfection and found to contain both HBsAg and HBeAg viral antigens. Consistently, fractionated cell extracts revealed the presence of viral replication, with both cytoplasmic and nuclear DNA intermediates. Analysis of HBV-transfected cells by indirect immunofluorescence or immunoelectron microscopy revealed the expression of viral antigens and cytoplasmic viral particles, respectively. To test the functionality of the ongoing viral replication further at the level of chromatinized cccDNA, transfected cells were treated with a histone deacetylase inhibitor, and this resulted in increased viral replication. This correlated with changes posttranslational modifications of histones at viral promoters. Thus, the development of this viral replication system for HBV genotype F will facilitate studies on the regulation of viral replication and the identification of new antiviral drugs.
Simula, Alexandre; Anastasaki, Athina; Haddleton, David M
2016-02-01
The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ziebell, Angela; Gracom, Kristen; Katahira, Rui; Chen, Fang; Pu, Yunqiao; Ragauskas, Art; Dixon, Richard A; Davis, Mark
2010-12-10
The lignin content of biomass can impact the ease and cost of biomass processing. Lignin reduction through breeding and genetic modification therefore has potential to reduce costs in biomass-processing industries (e.g. pulp and paper, forage, and lignocellulosic ethanol). We investigated compositional changes in two low-lignin alfalfa (Medicago sativa) lines with antisense down-regulation of p-coumarate 3-hydroxylase (C3H) or hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT). We investigated whether the difference in reactivity during lignification of 4-coumaryl alcohol (H) monomers versus the naturally dominant sinapyl alcohol and coniferyl alcohol lignin monomers alters the lignin structure. Sequential base extraction readily reduced the H monomer content of the transgenic lines, leaving a residual lignin greatly enriched in H subunits; the extraction profile highlighted the difference between the control and transgenic lines. Gel permeation chromatography of isolated ball-milled lignin indicated significant changes in the weight average molecular weight distribution of the control versus transgenic lines (CTR1a, 6000; C3H4a, 5500; C3H9a, 4000; and HCT30a, 4000).
Guizhen H. Xu; Jinping Dong; Steven J. Severtson; Carl J. Houtman; Larry E. Gwin
2009-01-01
Migration of surfactants in water-based, pressure-sensitive adhesive (PSA) films exposed to static and cyclic relative humidity conditions was investigated using confocal Raman microscopy (CRM) and atomic force microscopy (AFM). Studied PSA films contain monomers n-butyl acrylate, vinyl acetate, and methacrylic acid and an equal mass mixture of anionic and nonionic...
Effect of Silicon Substitution on the Crystal Properties of Cyanate Ester Monomers (Briefing Charts)
2015-08-17
unlimited. Outline • Background / Motivation – Cyanate esters – Reasons for incorporating silicon into thermosetting resins • Cyanate esters with...Approved for public release; distribution is unlimited. The Use of Si in Thermosetting Polymers • In addition to the expected increase in short
Synthesis and characterization of antibacterial dental monomers and composites
Xu, Xiaoming; Wang, Yapin; Liao, Sumei; Wen, Zezhang T.; Fan, Yuwei
2012-01-01
The objective of this study is to synthesize antibacterial methacrylate and methacrylamide monomers and formulate antibacterial fluoride-releasing dental composites. Three antibacterial methacrylate or methacrylamide monomers containing long-chain quaternary ammonium fluoride, 1,2-methacrylamido-N,N,N-trimethyldodecan-1-aminium fluoride (monomer I), N-benzyl-11-(methacryloyloxy)-N,N-dimethylundecan-1-aminium fluoride (monomer II), and methacryloxyldecylpyridinium fluoride (monomer III) have been synthesized and analyzed by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The cytotoxicity test and bactericidal test against Streptococcus mutans indicate that antibacterial monomer II is superior to monomers I and III. A series of dental composites containing 0–6% of antibacterial monomer II have been formulated and tested for degree of conversion (DC), flexure strength, water sorption, solubility, and inhibition of S. mutans biofilms. An antibacterial fluoride-releasing dental composite has also been formulated and tested for flexure strength and fluoride release. The dental composite containing 3% of monomer II has a significant effect against S. mutans biofilm formation without major adverse effects on its physical and mechanical properties. The new antibacterial monomers can be used together with the fluoride-releasing monomers containing a ternary zirconiun- fluoride chelate to formulate a new antibacterial fluoride- releasing dental composite. Such a new dental composite is expected to have higher anticaries efficacy and longer service life. PMID:22447582
Vidal, Fernando; Gowda, Ravikumar R; Chen, Eugene Y-X
2015-07-29
This contribution reports the first chemoselective, stereospecific, and living polymerization of polar divinyl monomers, enabled by chiral ansa-zirconocenium catalysts through an enantiomorphic-site controlled coordination-addition polymerization mechanism. Silyl-bridged-ansa-zirconocenium ester enolate 2 has been synthesized and structurally characterized, but it exhibits low to negligible activity and stereospecificity in the polymerization of polar divinyl monomers including vinyl methacrylate (VMA), allyl methacrylate (AMA), 4-vinylbenzyl methacrylate (VBMA), and N,N-diallyl acrylamide (DAA). In contrast, ethylene-bridged-ansa-zirconocenium ester enolate 1 is highly active and stereospecific in the polymerization of such monomers including AMA, VBMA, and DAA. The polymerization by 1 is perfectly chemoselective for all four polar divinyl monomers, proceeding exclusively through conjugate addition across the methacrylic C═C bond, while leaving the pendant C═C bonds intact. The polymerization of DAA is most stereospecific and controlled, producing essentially stereoperfect isotactic PDAA with [mmmm] > 99%, M(n) matching the theoretical value (thus a quantitative initiation efficiency), and a narrow molecular weight distribution (Đ = 1.06-1.16). The stereospecificity is slightly lower for the AMA polymerization but still leading to highly isotactic poly(allyl methacrylate) (PAMA) with 95-97% [mm]. The polymerization of VBMA is further less stereospecific, affording PVBMA with 90-94% [mm], while the polymerization VMA is least stereospecific. Several lines of evidence from both homo- and block copolymerization results have demonstrated living characteristics of the AMA polymerization by 1. Mechanistic studies of this polymerization have yielded a monometallic coordination-addition polymerization mechanism involving the eight-membered chelating intermediate. Post-functionalization of isotactic polymers bearing the pendant vinyl group on every repeating unit via the thiol-ene "click" reaction achieves a full conversion of all the pendant double bonds to the corresponding thioether bonds. Photocuring of such isotactic polymers is also successful, producing an elastic material readily characterizable by dynamic mechanical analysis.
Self-assembly of actin monomers into long filaments: Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard
2009-07-01
Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow attachment and detachment processes at the two ends of the filaments, we introduce a novel rescaling procedure by which we speed all dynamical processes related to actin polymerization and depolymerization up by the same factor. In general, the actin protomers within a filament can attain three different states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP/P), and ADP molecule. The simplest situation that has been studied experimentally is provided by the polymerization of ADP-actin, for which all protomers are identical. This case is used to unravel certain relations between the filament's physical properties and the model parameters such as the attachment rate constant and the size of the capture zone, the detachment rate and the probability of the detached event, as well as the growth rate and waiting times between two successive attachment/detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. The results also show that the waiting time is governed by exponential distributions and that the two ends of a filament undergo biased random walks. The filament length fluctuations are described by a length diffusion constant that is found to attain a constant value at low ADP-actin concentration and to increase linearly with this concentration. It is straightforward to apply our simulation code to more complex processes such as polymerization of ATP-actin coupled to ATP hydrolysis, force generation by filaments, formation of filament bundles, and filament-membrane interactions.
Darville, Lancia N F; Merchant, Mark E; Maccha, Venkata; Siddavarapu, Vivekananda Reddy; Hasan, Azeem; Murray, Kermit K
2012-02-01
Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35kDa protein was ~98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates. Copyright © 2011 Elsevier Inc. All rights reserved.
Pyrolysis of polyolefins for increasing the yield of monomers' recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaj, Pawel J., E-mail: pawel@mse.kth.se; Kaminsky, W.; Buzeto, F.
2012-05-15
Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objectivemore » of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.« less
Computational design of d-peptide inhibitors of hepatitis delta antigen dimerization
NASA Astrophysics Data System (ADS)
Elkin, Carl D.; Zuccola, Harmon J.; Hogle, James M.; Joseph-McCarthy, Diane
2000-11-01
Hepatitis delta virus (HDV) encodes a single polypeptide called hepatitis delta antigen (DAg). Dimerization of DAg is required for viral replication. The structure of the dimerization region, residues 12 to 60, consists of an anti-parallel coiled coil [Zuccola et al., Structure, 6 (1998) 821]. Multiple Copy Simultaneous Searches (MCSS) of the hydrophobic core region formed by the bend in the helix of one monomer of this structure were carried out for many diverse functional groups. Six critical interaction sites were identified. The Protein Data Bank was searched for backbone templates to use in the subsequent design process by matching to these sites. A 14 residue helix expected to bind to the d-isomer of the target structure was selected as the template. Over 200 000 mutant sequences of this peptide were generated based on the MCSS results. A secondary structure prediction algorithm was used to screen all sequences, and in general only those that were predicted to be highly helical were retained. Approximately 100 of these 14-mers were model built as d-peptides and docked with the l-isomer of the target monomer. Based on calculated interaction energies, predicted helicity, and intrahelical salt bridge patterns, a small number of peptides were selected as the most promising candidates. The ligand design approach presented here is the computational analogue of mirror image phage display. The results have been used to characterize the interactions responsible for formation of this model anti-parallel coiled coil and to suggest potential ligands to disrupt it.
Martínez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier; Hormigo, Daniel; Prieto, M Auxiliadora; Arroyo, Miguel; de la Mata, Isabel
2015-11-01
Cloning and biochemical characterization of a novel extracellular medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase from Streptomyces exfoliatus K10 DSMZ 41693 are described. The primary structure of the depolymerase (PhaZSex2) includes the lipase consensus sequence (serine-histidine-aspartic acid) which is known for serine hydrolases. Secondary structure analysis shows 7.9 % α-helix, 43.9 % β-sheet, 19.4 % β-turns, and 31.2 % random coil, suggesting that this enzyme belongs to the α/β hydrolase fold family, in agreement with other PHA depolymerases and lipases. The enzyme was efficiently produced as an extracellular active form in Rhodococcus and purified by two consecutive hydrophobic chromatographic steps. Matrix-assisted laser desorption-time-of-flight (MALDI-TOF) analysis of the purified enzyme revealed a monomer of 27.6 kDa with a midpoint transition temperature of 44.2 °C. Remarkably, the activity is significantly enhanced by low concentrations of nonionic and anionic detergents and thermal stability is improved by the presence of 10 % glycerol. PhaZSex2 is an endo-exohydrolase that cleaves both large and small PHA molecules, producing (R)-3-hydroxyoctanoic acid monomers as the main reaction product. Markedly, PhaZSex2 is able to degrade functionalized polymers containing thioester groups in the side chain (PHACOS), releasing functional thioester-based monomers and oligomers demonstrating the potentiality of this novel biocatalyst for the industrial production of enantiopure (R)-3-hydroxyalkanoic acids.
Escalation of polymerization in a thermal gradient
Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter
2013-01-01
For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280
Mutually catalyzed birth of population and assets in exchange-driven growth
NASA Astrophysics Data System (ADS)
Lin, Zhenquan; Ke, Jianhong; Ye, Gaoxiang
2006-10-01
We propose an exchange-driven aggregation growth model of population and assets with mutually catalyzed birth to study the interaction between the population and assets in their exchange-driven processes. In this model, monomer (or equivalently, individual) exchange occurs between any pair of aggregates of the same species (population or assets). The rate kernels of the exchanges of population and assets are K(k,l)=Kkl and L(k,l)=Lkl , respectively, at which one monomer migrates from an aggregate of size k to another of size l . Meanwhile, an aggregate of one species can yield a new monomer by the catalysis of an arbitrary aggregate of the other species. The rate kernel of asset-catalyzed population birth is I(k,l)=Iklμ [and that of population-catalyzed asset birth is J(k,l)=Jklν ], at which an aggregate of size k gains a monomer birth when it meets a catalyst aggregate of size l . The kinetic behaviors of the population and asset aggregates are solved based on the rate equations. The evolution of the aggregate size distributions of population and assets is found to fall into one of three categories for different parameters μ and ν : (i) population (asset) aggregates evolve according to the conventional scaling form in the case of μ⩽0 (ν⩽0) , (ii) population (asset) aggregates evolve according to a modified scaling form in the case of ν=0 and μ>0 ( μ=0 and ν>0 ), and (iii) both population and asset aggregates undergo gelation transitions at a finite time in the case of μ=ν>0 .
Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate.
Gumel, A M; Annuar, M S M; Chisti, Y; Heidelberg, T
2012-05-01
Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold. Copyright © 2011 Elsevier B.V. All rights reserved.
Qualitative Beam Profiling of Light Curing Units for Resin Based Composites.
Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Moeginger, Ing Bernhard
2016-12-01
This study investigates two technically simple methods to determine the irradiance distribution of light curing units that governs the performance of a visible-light curing resin-based composites. Insufficient light irradiation leads to under-cured composites with poor mechanical properties and elution of residual monomers. The unknown irradiance distribution and its effect on the final restoration are the main critical issues requiring highly sophisticated experimental equipment. The study shows that irradiance distributions of LCUs can easily be determined qualitatively with generally available equipment. This significantly helps dentists in practices to be informed about the homogeneity of the curing lights. Copyright© 2016 Dennis Barber Ltd.
Nanjunda, Rupesh; Wilson, W. David
2012-01-01
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, they have found extensive uses in biotechnology and they are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences. PMID:23255206
Herlache, T C; Hotchkiss, A T; Burr, T J; Collmer, A
1997-01-01
DNA sequencing of the Agrobacterium vitis pehA gene revealed a predicted protein with an M(r) of 58,000 and significant similarity to the polygalacturonases of two other plant pathogens, Erwinia carotovora and Ralstonia (= Pseudomonas or Burkholderia) solanacearum. Sequencing of the N terminus of the PehA protein demonstrated cleavage of a 34-amino-acid signal peptide from pre-PehA. Mature PehA accumulated primarily in the periplasm of A. vitis and pehA+ Escherichia coli cells during exponential growth. A. vitis PehA released dimers, trimers, and monomers from polygalacturonic acid and caused less electrolyte leakage from potato tuber tissue than did the E. carotovora and R. solanacearum polygalacturonases. PMID:8979363
Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.
Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang
2016-01-01
Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.
Actin-based motility propelled by molecular motors
NASA Astrophysics Data System (ADS)
Upadyayula, Sai Pramod; Rangarajan, Murali
2012-09-01
Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.
Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guseva, Elizaveta; Zuckermann, Ronald N.; Dill, Ken A.
It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ( H) and polar ( P) monomers in a computational model. We find that even short hydrophobic polar ( HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today’s protein catalysts, elongating othermore » such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.« less
Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers
Guseva, Elizaveta; Zuckermann, Ronald N.; Dill, Ken A.
2017-08-22
It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ( H) and polar ( P) monomers in a computational model. We find that even short hydrophobic polar ( HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today’s protein catalysts, elongating othermore » such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.« less
Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers
Guseva, Elizaveta; Zuckermann, Ronald N.; Dill, Ken A.
2017-01-01
It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic (H) and polar (P) monomers in a computational model. We find that even short hydrophobic polar (HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today’s protein catalysts, elongating other such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition. PMID:28831002
Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckel, E. R.; Berchtold, K. A.; Nie, J.
2002-01-01
Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less
Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J
2015-09-18
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...
2015-07-22
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less
NASA Astrophysics Data System (ADS)
Desai, Parth Rakesh; Sinha, Shayandev; Das, Siddhartha
2018-03-01
We employ molecular dynamics (MD) simulations and develop scaling theories to quantify the equilibrium behavior of polyelectrolyte (PE) brush bilayers (BBLs) in the weakly interpenetrated regime, which is characterized by d0
Interference of functional monomers with polymerization efficiency of adhesives.
Hanabusa, Masao; Yoshihara, Kumiko; Yoshida, Yasuhiro; Okihara, Takumi; Yamamoto, Takatsugu; Momoi, Yasuko; Van Meerbeek, Bart
2016-04-01
The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue. © 2016 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima
2014-02-01
One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.
Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.
2016-01-01
Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C
2016-08-02
The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tour, James M.; Schumm, Jeffrey S.; Pearson, Darren L.
1994-06-01
Described is the synthesis of oligo (2-ethylphenylene ethynylene)s and oligo (2-(3'ethylheptyl) phenylene ethynylene)s via an iterative divergent convergent approach. Synthesized were the monomer, dimer, tetramer, and octamer of the ethyl derivative and the monomer, dimer, tetramer, octamer, and 16-mer of the ethylheptyl derivative. The 16-mer is 128 A long. At each stage in the iteration, the length of the framework doubles. Only three sets of reaction conditions are needed for the entire iterative synthetic sequence; an iodination, a protodesilylation, and a Pd/Cu-catalyzed cross coupling. The oligomers were characterized spectroscopically and by mass spectrometry. The optical properties are presented which show the stage of optical absorbance saturation. The size exclusion chromatography values for the number average weights, relative to polystyrene, illustrate the tremendous differences in the hydrodynamic volume of these rigid rod oligomers verses the random coils of polystyrene. These differences become quite apparent at the octamer stage. These oligomers may act as molecular wires in molecular electronic devices and they also serve as useful models for understanding related bulk polymers.
Two forms of Vibrio cholerae O1 El Tor hemolysin derived from identical precursor protein.
Ikigai, H; Ono, T; Nakae, T; Otsuru, H; Shimamura, T
1999-01-08
Vibrio cholerae O1 grown in heart infusion broth produces two forms of El Tor hemolysin (ETH) monomers of 65 and 50 kDa. These monomers form several different sizes of mixed oligomers ranging from 180 to 280 kDa in the liposomal membranes. We found that the N-terminal amino acid sequences, NH2-Trp-Pro-Ala-Pro-Ala-Asn-Ser-Glu, of both the 65- and 50-kDa toxins were identical. We assumed, therefore, that the 65- and 50-kDa toxins were derivatives of the identical precursor protein and the 50-kDa protein was a truncated derivative of 65-kDa ETH. To substantiate this assumption, we treated the 260-kDa oligomer with trypsin and obtained a 190-kDa oligomer. This 190-kDa oligomer consisted of only the 50-kDa subunits. Both 260- and 190-kDa oligomers formed ion channels indistinguishable from each other in planar lipid bilayers. These results suggest that the essential part of the ETH in forming the membrane-damaging aggregate is a 50-kDa protein.
STIM1 dimers undergo unimolecular coupling to activate Orai1 channels
NASA Astrophysics Data System (ADS)
Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.
2015-09-01
The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.
Loukanov, Alexandre; Filipov, Chavdar; Lecheva, Marta; Emin, Saim
2015-11-01
The immobilization and stretching of randomly coiled DNA molecules on hydrophobic carbon film is a challenging microscopic technique, which possess various applications, especially for genome sequencing. In this report the pyrenyl nucleus is used as an anchor moiety to acquire higher affinity of double stranded DNA to the graphite surface. DNA and pyrene are joined through a linker composed of four aliphatic methylene groups. For the preparation of pyrene-terminated DNA a multifunctional phosphoramidite monomer compound was designed. It contains pyrenylbutoxy group as an anchor moiety for π-stacking attachment to the carbon film, 2-cyanoethyloxy, and diisopropylamino as coupling groups for conjugation to activated oligonucleotide chain or DNA molecule. This monomer derivative was suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The successful immobilization and stretching of pyrene-terminated DNA was demonstrated by conventional 100 kV transmission electron microscope. The microscopic analysis confirmed the stretched shape of the negatively charged nucleic acid pieces on the hydrophobic carbon film. © 2015 Wiley Periodicals, Inc.
''The control of lignin synthesis''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, John E.
2005-04-07
In this project we tested the hypothesis that regulation of the synthesis of lignin in secondary xylem cells in conifer trees involves the transport of glucosylated lignin monomers to the wall of xylem cells, followed by de-glucosylation in the cell wall by monolignol-specific glucosidase enzymes, which activates the monomers for lignin polymerization. The information we gathered is relevant to the fundamental understanding of how trees make wood, and to the applied goal of more environmentally friendly pulp and paper production. We characterized the complete genomic structure of the Coniferin-specific Beta-glucosidase (CBG) gene family in the conifers loblolly pine (Pinus taeda)more » and lodgepole pine (Pinus contorta), and partial genomic sequences were obtained in several other tree species. Both pine species contain multiple CBG genes which raises the possibility of differential regulation, perhaps related to the multiple roles of lignin in development and defense. Subsequent projects will need to include detailed gene expression studies of each gene family member during tree growth and development, and testing the role of each monolignol-specific glucosidase gene in controlling lignin content.« less
Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter W; Yesilkaya, Hasan
2017-12-22
We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The γ Class of Carbonic Anhydrases
Ferry, James G.
2009-01-01
Homologs of the γ class of carbonic anhydrases, one of five independently evolved classes, are found in the genomic sequences of diverse species from all three domains of life. The archetype (Cam) from the Archaea domain is a homotrimer of which the crystal structure reveals monomers with a distinctive left-handed parallel β-helix fold. Histidines from adjacent monomers ligate the three active site metals surrounded by residues in a hydrogen bond network essential for activity. Cam is most active with iron, the physiologically relevant metal. Although the active site residues bear little resemblance to the other classes, kinetic analyses indicate a two-step mechanism analogous to all carbonic anhydrases investigated. Phylogenetic analyses of Cam homologs derived from the databases show that Cam is representative of a minor subclass with the great majority belonging to a subclass (CamH) with significant differences in active site residues and apparent mechanism from Cam. A physiological function for any of the Cam and CamH homologs is unknown, although roles in transport of carbon dioxide and bicarbonate across membranes has been proposed. PMID:19747990
On the properties of a bundle of flexible actin filaments in an optical trap
NASA Astrophysics Data System (ADS)
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2016-06-01
We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs H = N f k B T ln ( ρ 1 / ρ 1 c) / d , independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp < ∞) instead, for values of the trap strength suitable to prevent their lateral escape, provide an average bundle force and an average trap length slightly larger than the corresponding rigid cases (few percents). Still the stalling force remains nearly independent on the average trap length, but results from the product of two strongly L-dependent contributions: the fraction of touching filaments ∝ (" separators=" < L >O . T .) 2 and the single filament buckling force ∝ (" separators=" < L >O . T .) - 2 .
2013-02-01
diene monomer ( EPDM ) rubber under high-rate uniaxial compression using an SHPB (5). Additionally, Song and Chen used a strain energy-based function to...describe a one-dimensional constitutive relation to describe the high strain rate behavior of the EPDM rubber , which agreed with the experimental...intermediate rate to about 6 MPa at 500 s -1 . This behavior and rate dependence was similar to the EPDM rubber studied by Chen and Zhang (2), which
Cooperativity and specificity of association of a designed transmembrane peptide.
Gratkowski, Holly; Dai, Qing-Hong; Wand, A Joshua; DeGrado, William F; Lear, James D
2002-01-01
Thermodynamics studies aimed at quantitatively characterizing free energy effects of amino acid substitutions are not restricted to two state systems, but do require knowing the number of states involved in the equilibrium under consideration. Using analytical ultracentrifugation and NMR methods, we show here that a membrane-soluble peptide, MS1, designed by modifying the sequence of the water-soluble coiled-coil GCN4-P1, exhibits a reversible monomer-dimer-trimer association in detergent micelles with a greater degree of cooperativity in C14-betaine than in dodecyl phosphocholine detergents. PMID:12202385
Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.
Dinjaski, Nina; Huang, Wenwen; Kaplan, David L
2018-01-01
Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.
Structure and function of the UV-B photoreceptor UVR8.
Jenkins, Gareth I
2014-12-01
UVR8 is a UV-B photoreceptor that employs specific tryptophans in its primary sequence as chromophores in photoreception. UV-B absorption causes dissociation of the dimeric photoreceptor by neutralizing interactions between monomers. The monomeric form initiates signalling through interaction with the COP1 protein, leading to transcriptional responses. This article discusses the structural basis of UVR8 function, highlighting recent research on the mechanism of photoreception and on interactions with other proteins involved in signalling and regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mutational Analysis of the Stability of the H2A and H2B Histone Monomers
Stump, Matthew R.; Gloss, Lisa M.
2008-01-01
The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol−1, respectively; at 10 μM, the sum of the stability of the monomers is ~60% of the stability of the native dimer. The helical content, stability and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly-collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive inter-monomer contacts, is structured in H2B but only partially folded in H2A. PMID:18976667
Iwasaki, H; Shiba, T; Makino, K; Nakata, A; Shinagawa, H
1989-01-01
The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP. Images PMID:2529252
Kiuchi, Tai; Ohashi, Kazumasa; Kurita, Souichi; Mizuno, Kensaku
2007-01-01
Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers. PMID:17470633
Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.
Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao
2017-01-01
Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N -isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.
Wu, Ruizhi; Al-Azemi, Talal F; Bisht, Kirpal S
2008-10-01
Enantiomerically pure functional polycarbonate was synthesized from a novel seven-membered cyclic carbonate monomer derived from naturally occurring L-tartaric acid. The monomer was synthesized in three steps and screened for polymerization with four commercially available lipases from different sources at 80 degrees C, in bulk. The ring-opening polymerization (ROP) was affected by the source of the enzyme; the highest number-average molecular weight, M(n) = 15500 g/mol (PDI = 1.7; [alpha]D(20) = +77.8, T(m) = 58.8 degrees C) optically active polycarbonate was obtained with lipase Novozyme-435. The relationship between monomer conversion, reaction time, molecular weight, and molecular weight distribution were investigated for Novozyme-435 catalyzed ROP. Deprotection of the ketal groups was achieved with minimal polymer chain cleavage (M(n) = 10000 g/mol, PDI = 2.0) and resulted in optically pure polycarbonate ([alpha]D(20) = +56) bearing hydroxy functional groups. Deprotected poly(ITC) shows T(m) of 60.2 degrees C and DeltaH(f) = 69.56 J/g and similar to that of the poly(ITC), a glass transition temperature was not found. The availability of the pendant hydroxyl group is expected to enhance the biodegradability of the polymer and serves in a variety of potential biomedical applications such as polymeric drug delivery systems.
Negi, Surendra S.; Carol, Andrew A.; Pandya, Shivangi; Braun, Werner; Anderson, Louise E.
2008-01-01
In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex. PMID:17945509
NASA Astrophysics Data System (ADS)
Yılmaz Baran, Nuray; Saçak, Mehmet
2017-10-01
A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.
Plasmid origin of replication of herpesvirus papio: DNA sequence and enhancer function.
Loeb, D D; Sung, N S; Pesano, R L; Sexton, C J; Hutchison, C; Pagano, J S
1990-01-01
Herpesvirus papio (HVP) is a lymphotropic virus of baboons which is related to Epstein-Barr virus (EBV) and produces latent infection. The nucleotide sequence of the 5,775-base-pair (bp) EcoRI K fragment of HVP, which has previously been shown to confer the ability to replicate autonomously, has been determined. Within this DNA fragment is a region which bears structural and sequence similarity to the ori-P region of EBV. The HVP ori-P region has a 10- by 26-bp tandem array which is related to the 20- by 30-bp tandem array from the EBV ori-P region. In HVP there is an intervening region of 764 bp followed by five partial copies of the 26-bp monomer. Both the EBV and HVP 3' regions have the potential to form dyad structures which, however, differ in arrangement. We also demonstrate that a transcriptional enhancer which requires transactivation by a virus-encoded factor is present in the HVP ori-P. Images PMID:2159548
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy
Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.; ...
2016-05-05
DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less
NASA Astrophysics Data System (ADS)
Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.
2014-01-01
We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
Fractional Brownian motion and the critical dynamics of zipping polymers.
Walter, J-C; Ferrantini, A; Carlon, E; Vanderzande, C
2012-03-01
We consider two complementary polymer strands of length L attached by a common-end monomer. The two strands bind through complementary monomers and at low temperatures form a double-stranded conformation (zipping), while at high temperature they dissociate (unzipping). This is a simple model of DNA (or RNA) hairpin formation. Here we investigate the dynamics of the strands at the equilibrium critical temperature T=T(c) using Monte Carlo Rouse dynamics. We find that the dynamics is anomalous, with a characteristic time scaling as τ∼L(2.26(2)), exceeding the Rouse time ∼L(2.18). We investigate the probability distribution function, velocity autocorrelation function, survival probability, and boundary behavior of the underlying stochastic process. These quantities scale as expected from a fractional Brownian motion with a Hurst exponent H=0.44(1). We discuss similarities to and differences from unbiased polymer translocation.
A simulation study on terahertz absorption of liquid crystal mixture E7
NASA Astrophysics Data System (ADS)
Dong, Jian-qi; Cheng, Wen-qi; Li, Meng-ge; Wang, Kai-li; Chen, Ze-zhang; Ma, Heng
2017-09-01
A simulation work on a broad THz absorption of liquid crystal mixture E7 consisting of 5CB, 7CB, 8OCB and 5CT is reported. Based on the density functional theory, the molecular structures of the monomers were optimized and calculated using the Gaussian package with base set B3LYP and 6-311g. The results indicate that the simulation of the characteristic absorption spectra is accurate compared to the experimental and literature report in the infrared band. By analyzing contribution of the benzene ring, C-O and alkyl bonds on THz absorption, it is found that there are no significant effects from the cyano group and the alkyl radical. The addition of a benzene ring leads to an increase in absorption intensity and redshift. By discussing the atomic mass distribution and the structural symmetry of the monomers, a reason for the strong THz absorption of 8OCB is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.
2016-01-15
The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.
Shirani Il Beigi, Hossein; Jameh-Bozorghi, Saeed
2011-03-14
In this paper, electrical and structural properties of mono-, di-, tri- and tetrachlorothiophenes and their radical cations have been studied using the density functional theory and B3LYP method with 6-311++G** basis set. The effects of the number and position of the substituent of chlorine atoms on the properties of the thiophene ring for all chlorothiophenes and their radical cations have been studied. Vibrational frequencies, nuclear chemical shielding constants, spin-density distribution, size and direction of dipole moment vector, ionization potential, electric polarizabilities and NICS values of these compounds have been calculated as well. The analysis of these data showed that double bonds in 3-chlorothiophene are more delocalized and it is the best possible candidate monomer among all chlorothiophenes for the synthesis of corresponding conducting polymers with modified characteristics.
2015-01-01
An immersion Raman probe was used in emulsion copolymerization reactions to measure monomer concentrations and particle sizes. Quantitative determination of monomer concentrations is feasible in two-monomer copolymerizations, but only the overall conversion could be measured by Raman spectroscopy in a four-monomer copolymerization. The feasibility of measuring monomer conversion and particle size was established using partial least-squares (PLS) calibration models. A simplified theoretical framework for the measurement of particle sizes based on photon scattering is presented, based on the elastic-sphere-vibration and surface-tension models. PMID:26900256
Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin
2015-02-27
Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers
2017-01-01
Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527
Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo
2018-02-01
Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Dan; Lin, Zhen-Quan; Sun, Yun-Fei; Ke, Jian-Hong
2009-12-01
We propose two irreversible aggregation growth models of aggregates of two distinct species (A and B) to study the interactions between virus aggregates and medicine efficacy aggregates in the virus-medicine cooperative evolution system. The A-species aggregates evolve driven by self monomer birth and B-species aggregate-catalyzed monomer death in model I and by self birth, catalyzed death, and self monomer exchange reactions in model II, while the catalyst B-species aggregates are assumed to be injected into the system sustainedly or at a periodic time-dependent rate. The kinetic behaviors of the A-species aggregates are investigated by the rate equation approach based on the mean-field theory with the self birth rate kernel IA(k) = Ik, catalyzed death rate kernel JAB(k) = Jk and self exchange rate kernel KA (k, l) = Kkl. The kinetic behaviors of the A-species aggregates are mainly dominated by the competition between the two effects of the self birth (with the effective rate I) and the catalyzed death (with the effective rate JB0), while the effects of the self exchanges of the A-species aggregates which appear in an effective rate KA0 play important roles in the cases of I > JB0 and I = JB0. The evolution behaviors of the total mass MA1(t) and the total aggregate number MA0 (t) are obtained, and the aggregate size distribution αk (t) of species A is found to approach a generalized scaling form in the case of I >= JB0 and a special modified scaling form in the case of I < JB0. The periodical evolution of the B-monomers concentration plays an exponential form of the periodic modulation.
Helfferich, J; Brisch, J; Meyer, H; Benzerara, O; Ziebert, F; Farago, J; Baschnagel, J
2018-06-01
From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature [Formula: see text] of mode-coupling theory: the mean-square displacement g 0 (t), the non-Gaussian parameter [Formula: see text] and the self-part of the van Hove function [Formula: see text] which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near [Formula: see text]. In the time window of the early [Formula: see text] relaxation [Formula: see text] is large and [Formula: see text] is broad, reflecting the coexistence of monomer displacements that are much smaller ("slow particles") and much larger ("fast particles") than the average at time t, i.e. than [Formula: see text]. For large r the tail of [Formula: see text] is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of [Formula: see text] at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early [Formula: see text] regime we also analyze the MD results for [Formula: see text] via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below [Formula: see text] , deviations occur for larger r comprising the tail of [Formula: see text]. The CTRW analysis suggests that single-particle "hops" are a contributing factor for these deviations.
Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution
NASA Astrophysics Data System (ADS)
Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-
2012-12-01
The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and belowground carbon input among the tree species and that (iii) forest conversion may substantially alter SOC stocks and spatial distribution. Suberin biomarkers can thus be used as indicators for the presence of root influence on SOM composition and for identifying root-affected soil compartments.
Functional characterization of the turkey macrophage migration inhibitory factor.
Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A
2016-08-01
Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gibson, Gregory Laird
One advantage of conjugated polymers as organic materials is that their properties may be readily tuned through covalent modifications. This thesis presents studies on the structure-property relationships resulting from single- and double-atom substitutions on an alternating donor-acceptor conjugated polymer. Specifically, single selenium and tellurium atoms have been incorporated into the acceptor monomer in place of sulfur; silicon and germanium atoms have been substituted in place of carbon at the donor monomer bridge position. The carbon-donor/ tellurium-acceptor polymer was synthesized by a post-polymerization reaction sequence and demonstrated the utility of heavy group 16 atoms to red shift a polymer absorption spectrum. Density functional theory calculations point to a new explanation for this result invoking the lower heavy atom ionization energy and reduced aromaticity of acceptor monomers containing selenium and tellurium compared to sulfur. Absorption and emission experiments demonstrate that both silicon and germanium substitutions in the donor slightly blue shift the polymer absorption spectrum. Polymers containing sulfur in the acceptor are the strongest light absorbers of all polymers studied here. Molecular weight and phenyl end capping studies show that molecular weight appears to affect polymer absorption to the greatest degree in a medium molecular weight regime and that these effects have a significant aggregation component. Solar cell devices containing either the silicon- or germanium-donor/selenium-acceptor polymer display improved red light harvesting or hole mobility relative to their structural analogues. Overall, these results clarify the effects of single atom substitution on donor-acceptor polymers and aid in the future design of polymers containing heavy atoms.
Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu
1998-01-01
The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894
Grausem, B; Widemann, E; Verdier, G; Nosbüsch, D; Aubert, Y; Beisson, F; Schreiber, L; Franke, R; Pinot, F
2014-09-01
Cutin and suberin represent lipophilic polymers forming plant/environment interfaces in leaves and roots. Despite recent progress in Arabidopsis, there is still a lack on information concerning cutin and suberin synthesis, especially in crops. Based on sequence homology, we isolated two cDNA clones of new cytochrome P450s, CYP77A19 and CYP77A20 from potato tubers (Solanum tuberosum). Both enzymes hydroxylated lauric acid (C12:0) on position ω-1 to ω-5. They oxidized fatty acids with chain length ranging from C12 to C18 and catalysed hydroxylation of 16-hydroxypalmitic acid leading to dihydroxypalmitic (DHP) acids, the major C16 cutin and suberin monomers. CYP77A19 also produced epoxides from linoleic acid (C18:2). Exploration of expression pattern in potato by RT-qPCR revealed the presence of transcripts in all tissues tested with the highest expression in the seed compared with leaves. Water stress enhanced their expression level in roots but not in leaves. Application of methyl jasmonate specifically induced CYP77A19 expression. Expression of either gene in the Arabidopsis null mutant cyp77a6-1 defective in flower cutin restored petal cuticular impermeability. Nanoridges were also observed in CYP77A20-expressing lines. However, only very low levels of the major flower cutin monomer 10,16-dihydroxypalmitate and no C18 epoxy monomers were found in the cutin of the complemented lines. © 2014 John Wiley & Sons Ltd.
Stokasimov, Ema; Rubenstein, Peter A.
2009-01-01
Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts. PMID:19605362
Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A
2014-07-09
Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class.
Nunn, D; Bergman, S; Lory, S
1990-01-01
The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed. Images PMID:1971619
Relationship between the dimerization of thyroglobulin and its ability to form triiodothyronine.
Citterio, Cintia E; Morishita, Yoshiaki; Dakka, Nada; Veluswamy, Balaji; Arvan, Peter
2018-03-30
Thyroglobulin (TG) is the most abundant thyroid gland protein, a dimeric iodoglycoprotein (660 kDa). TG serves as the protein precursor in the synthesis of thyroid hormones tetraiodothyronine (T 4 ) and triiodothyronine (T 3 ). The primary site for T 3 synthesis in TG involves an iodotyrosine acceptor at the antepenultimate Tyr residue (at the extreme carboxyl terminus of the protein). The carboxyl-terminal region of TG comprises a ch olin e sterase- l ike (ChEL) domain followed by a short unique tail sequence. Despite many studies, the monoiodotyrosine donor residue needed for the coupling reaction to create T 3 at this evolutionarily conserved site remains unidentified. In this report, we have utilized a novel, convenient immunoblotting assay to detect T 3 formation after protein iodination in vitro , enabling the study of T 3 formation in recombinant TG secreted from thyrocytes or heterologous cells. With this assay, we confirm the antepenultimate residue of TG as a major T 3 -forming site, but also demonstrate that the side chain of this residue intimately interacts with the same residue in the apposed monomer of the TG dimer. T 3 formation in TG, or the isolated carboxyl-terminal region, is inhibited by mutation of this antepenultimate residue, but we describe the first substitution mutation that actually increases T 3 hormonogenesis by engineering a novel cysteine, 10 residues upstream of the antepenultimate residue, allowing for covalent association of the unique tail sequences, and that helps to bring residues Tyr 2744 from apposed monomers into closer proximity. © 2018 Citterio et al.
NASA Astrophysics Data System (ADS)
Sun, Yun-Fei; Chen, Dan; Lin, Zhen-Quan; Ke, Jian-Hong
2009-06-01
We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K1(k, j) = K1kj and K2(k, j) = K2kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J1(k, j) = J1k and J2(k, j) = J2k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I1(k, i, j) = I1kiμjη, and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I2(k, i, j) = I2kivjη. The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J1e = J1/K1 and J2e = J2/K2, respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J1e < J2e, J1e = J2e, and J1e > J2e, respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized scaling forms; and (ii) When μ = ν = 1, η = 0, and μ = ν = η = 1, the population and asset aggregates experience gelation transitions at finite times and the scaling forms break down.
Human exposures to monomers resulting from consumer contact with polymers.
Leber, A P
2001-06-01
Many consumer products are composed completely, or in part, of polymeric materials. Direct or indirect human contact results in potential exposures to monomers as a result of migrations of trace amounts from the polymeric matrix into foods, into the skin or other bodily surfaces. Typically, residual monomer levels in these polymers are <100 p.p.m., and represent exposures well below those observable in traditional toxicity testing. These product applications thus require alternative methods for evaluating health risks relating to monomer exposures. A typical approach includes: (a) assessment of potential human contacts for specific polymer uses; (b) utilization of data from toxicity testing of pure monomers, e.g. cancer bioassay results; and (c) mathematical risk assessment methods. Exposure potentials are measured in one of two analytical procedures: (1) migration of monomer from polymer into a simulant solvent (e.g. alcohol, acidic water, vegetable oil) appropriate for the intended use of the product (e.g. beer cans, food jars, packaging adhesive, dairy hose); or (2) total monomer content of the polymer, providing worse-case values for migratable monomer. Application of toxicity data typically involves NOEL or benchmark values for non-cancer endpoints, or tumorigenicity potencies for monomers demonstrated to be carcinogens. Risk assessments provide exposure 'safety margin' ratios between levels that: (1) are projected to be safe according to toxicity information, and (2) are potential monomer exposures posed by the intended use of the consumer product. This paper includes an example of a health risk assessment for a chewing gum polymer for which exposures to trace levels of butadiene monomer occur.
40 CFR 721.10082 - Amine modified monomer acrylate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...
40 CFR 721.10082 - Amine modified monomer acrylate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...
Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry
2004-03-16
In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.
21 CFR 888.4220 - Cement monomer vapor evacuator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...
21 CFR 888.4220 - Cement monomer vapor evacuator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...
21 CFR 888.4220 - Cement monomer vapor evacuator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...
21 CFR 888.4220 - Cement monomer vapor evacuator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...
21 CFR 888.4220 - Cement monomer vapor evacuator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...
Tsai, Ching-Wei; Tsai, Chieh; Ruaan, Ruoh-Chyu; Hu, Chien-Chieh; Lee, Kueir-Rarn
2013-06-26
Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.
Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.; ...
2017-04-09
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musumeci, Matias A.; Lozada, Mariana; Rial, Daniela V.
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putativemore » monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. As a result, this work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.« less
Musumeci, Matías A; Lozada, Mariana; Rial, Daniela V; Mac Cormack, Walter P; Jansson, Janet K; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M
2017-04-09
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.
Musumeci, Matías A.; Lozada, Mariana; Rial, Daniela V.; Mac Cormack, Walter P.; Jansson, Janet K.; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M.
2017-01-01
The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer–Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments. PMID:28397770
Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources
2013-04-11
derived from lignin . These materials possess favorable thermal and water uptake properties with dry glass transition temperatures above 200°C and wet...distribution is unlimited. Creosol as a Monomer Source 7 • Input material cost is an important consideration for cyanate ester resins • Lignin is...from lignin • Oxidative and reductive coupling reactions lead to precursor phenols, which are then treated with cyanogen bromide to generate cyanate
Synthesis and Reactivity of 1-Methyl-e-Ethynylpyridinium Triflate
1992-05-15
Approved for public release, distribution unlimited 13. ABSTRACT (Maximum 200 words) 1- Methyl -4-ethynylpyridiniurn triflate has been prepared by treatment of... treatment of 4-ethynylpyrdine with methyl tinflase in methylene chloride. I his new native acetylenic monomer timerized to tris. 1.3.5-( I...described their conversion to polymers with regular structure.8.9 Using the analogy to vinylpyridine, we examined reactions of 1 with triflic acid and methyl
Detectability of Delaminations in Solid Rocket Motors with Embedded Stress Sensors
2011-10-14
composite grain of hydroxyl-terminated polybutadiene/ammonium perchlorate (HTPB/AP). The insulation layer is ethylene propylene diene monomer ( EPDM ...The temperature-dependent mechanical properties of HTPB/AP and EPDM were obtained from in-house testing at AFRL/RZSM (Edwards AFB). The motor case is...temperature (DBST) sensors and Greg Yandek of AFRL/RZSM for the data collection of EPDM insulation material. Distribution A: Approved for public
The Stochastic Dynamics of Filopodial Growth
NASA Astrophysics Data System (ADS)
Papoian, Garegin A.; Lan, Yueheng; Zhuravlev, Pavel
2008-03-01
A filopodium is a cytoplasmic projection, exquisitely built and regulated, which extends from the leading edge of the migrating cell, exploring the cell's neighborhood. Commonly, filopodia grow and retract after their initiation, exhibiting rich dynamical behaviors. We model the growth of a filopodium based on a stochastic description which incorporates mechanical, physical and biochemical components. Our model provides a full stochastic treatment of the actin monomer diffusion and polymerization of each individual actin filament under stress of the fluctuating membrane. We have investigated the length distribution of individual filaments in a growing filopodium and studied how it depends on various physical parameters. The distribution of filament lengths turned out to be narrow, which we explained by the negative feedback created by the membrane load and monomeric G-actin gradient. We also discovered that filopodial growth is strongly diminished upon increasing retrograde flow, suggesting that regulating the retrograde flow rate would be a highly efficient way to control filopodial extension dynamics. The filopodial length increases as the membrane fluctuations decrease, which we attributed to the unequal loading of the mem- brane force among individual filaments, which, in turn, results in larger average polymerization rates. We also observed significant diffusional noise of G-actin monomers, which leads to smaller G-actin flux along the filopodial tube compared with the prediction using the diffusion equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Yung-Ching; Tao, Jinhui; Saeki, Kuniko
In calcified tissues such as bones and teeth, mineralization is regulated by an extracellular matrix, which includes non-collagenous proteins (NCP). This natural process has been adapted or mimicked to restore tissues following physical damage or demineralization by using polyanionic acids in place of NCPs, but the remineralized tissues fail to fully recover their mechanical properties. Here we show that pre-treatment with certain amphiphilic peptoids, a class of peptide-like polymers consisting of N-substituted glycines that have defined monomer sequences, enhances ordering and mineralization of collagen and induces functional remineralization of dentin lesions in vitro. In the vicinity of dentin tubules, themore » newly formed apatite nano-crystals are co-aligned with the c-axis parallel to the tubular periphery and recovery of tissue ultrastructure is accompanied by development of high mechanical strength. The observed effects are highly sequence-dependent with alternating polar and non-polar groups leading to positive outcomes while diblock sequences have no effect. The observations suggest aromatic groups interact with the collagen while the hydrophilic side chains bind the mineralizing constituents and highlight the potential of synthetic sequence-defined biomimetic polymers to serve as NCP mimics in tissue remineralization.« less
Young, Lydia M.; Tu, Ling-Hsien; Raleigh, Daniel P.; Ashcroft, Alison E.
2017-01-01
Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form. PMID:28970890
Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae
Piazza, Aurèle; Cui, Xiaojie; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Phan, Anh-Tuan; Nicolas, Alain G
2017-01-01
G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids in vitro, but the sequence and structural features dictating their formation and function in vivo remains uncertain. Here we report a structure-function analysis of the complex hCEB1 G4-forming sequence. We isolated four G4 conformations in vitro, all of which bear unusual structural features: Form 1 bears a V-shaped loop and a snapback guanine; Form 2 contains a terminal G-triad; Form 3 bears a zero-nucleotide loop; and Form 4 is a zero-nucleotide loop monomer or an interlocked dimer. In vivo, Form 1 and Form 2 differently account for 2/3rd of the genomic instability of hCEB1 in two G4-stabilizing conditions. Form 3 and an unidentified form contribute to the remaining instability, while Form 4 has no detectable effect. This work underscores the structural polymorphisms originated from a single highly G-rich sequence and demonstrates the existence of non-canonical G4s in cells, thus broadening the definition of G4-forming sequences. DOI: http://dx.doi.org/10.7554/eLife.26884.001 PMID:28661396
CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins
Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu
2014-01-01
Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753
Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.
Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V
2008-03-01
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.
Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes
NASA Astrophysics Data System (ADS)
Wang, Hai-Feng; Lin, Zhen-Quan; Kong, Xiang-Mu
2006-12-01
Two catalyzed-birth models of n-species (n>=2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Amk and Amj of the same species with the rate kernels Km(k,j) = Kmkj (m = 1,2,...,n, n>=2), and aggregates of An species catalyze a monomer-birth of Al species (l = 1,2,...,n-1) with the catalysis rate kernel Jl(k,j) = Jlkjυ. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution alk(t) of Al species depends crucially on the value of the catalysis rate parameter υ: (i) alk(t) obeys the conventional scaling law in the case of υ<=0, (ii) alk(t) satisfies a modified scaling form in the case of υ>0. In the second model, the mechanism of monomer-birth of An-species catalyzed by Al species is added on the basis of the first model, that is, the aggregates of Al and An species catalyze each other to cause monomer-birth. The kinetic behaviors of Al and An species are found to fall into two categories for the different υ: (i) growth obeying conventional scaling form with υ<=0, (ii) gelling at finite time with υ>0.
Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis
Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.
2008-01-01
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters (~40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio β-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370
Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
Li, Wenchen; Liu, Qingsheng; Liu, Lingyun
2014-01-01
A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.
Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang
2017-01-25
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.
Hayashi, Shin-Ichiro
2017-01-01
With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.
Residual monomers and degree of conversion of partially bioresorbable fiber-reinforced composite.
Väkiparta, Marju; Puska, Mervi; Vallittu, Pekka K
2006-01-01
The aim of this study was to evaluate the total quantity of residual monomer (bis-phenyl glycidyl dimethacrylate, i.e. Bis-GMA, and triethylene glycol dimethacrylate, i.e. TEGDMA), residual monomer release into water and the degree of monomer conversion (DC%) of glass fiber-reinforced composites (FRC) with a partially bioresorbable polymer matrix. Another aim was to find out whether the curing mode affects the quantity of residual monomer and degree of conversion. Glass fibers were preimpregnated with a bioresorbable poly(hydroxyproline) amide and non-resorbable Bis-GMA-TEGDMA resin system. Specimens were immersed in water for 1, 3 or 7 days (37 degrees C) to determine the quantity of leached residual monomers, or in the solvent tetrahydrofuran for 3 days to determine the total quantity of residual monomers by high performance liquid chromatography. DC% was measured by Fourier transform infrared spectroscopy. The quantity of residual monomer of the specimens decreased when the specimens contained glass fibers, and/or poly(hydroxyproline) amide, and/or when it was post-cured. The majority of the residual monomers were leached out during the first 24 h of immersion in water. The DC% of the specimens increased when post-cured. Also glass fibers in the composite increased the DC% in contrast to Bis-GMA-TEGDMA resin only. In conclusion, use of poly(hydroxyproline) amide as a sizing of the glass fibers in FRC does not increase the quantity of residual monomers. These results suggest that this new kind of partially bioresorbable FRC has potential for biomedical applications.
Omrani, Ladan Ranjbar; Farjadfar, Shayan; Pedram, Parham; Sadray, Sima; Kamangar, Sedighe Sadat Hashemi; Chiniforoush, Nasim
2017-06-30
Bleaching might affect structural properties of composite materials, and lead to monomer release. This study aimed to evaluate the effect of Laser-assisted and conventional in-office bleaching on the release of BIS-GMA, TEGDMA, and UDMA monomers from a nanohybrid and a microhybrid BIS-GMA based composite. 32 samples of each composite, were divided into 4 subgroups; subgroup 1: Conventional in-office bleaching (CIB) with the Opalescence Boost PF 38% gel, subgroup 2: Laser-assisted bleaching (LBO) with the Opalescence Boost PF 38% gel, subgroup 3: Laser-assisted bleaching (LBH) with the JW Power bleaching gel, subgroup 4: (CO) control without bleaching. All the samples were immersed in tubes of 2cc Ethanol 75% medium. The released monomers were analyzed using the high performance liquid chromatography (HPLC) method 24 h, 7, and 28 days. Data's were analyzed by Univariate Analysis of Variance test followed by Tukeys HSD. The amount of TEGDMA monomer released was not significant. However, nanohybrid composites showed significantly more monomer release than microhybrid composites (P < 0.05). For UDMA the interaction was significant only after 1 week. In microhybrid composites, the CO subgroup showed more monomer release than LBH and LBO. In nanohybrid composites, LBH showed more monomer release than CIB and CO subgroups. For BIS-GMA monomers the interaction was significant at all time periods and the LBH subgroup of nanohybrid composite had significantly more BIS_GMA release in comparison to other subgroups. Bleaching by laser with JW Power Bleaching gel led to more monomer release in nanohybrid composite.
Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L
1998-12-15
Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.
Heat resistant polymers of oxidized styrylphosphine
NASA Technical Reports Server (NTRS)
Paciorek, K. J. L. (Inventor)
1978-01-01
Homopolymers, copolymers and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer or by polymerizing p-diphenylphosphinestyrene and then oxidizing the polymerized monomer with an organoazide. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer. Flame resistant vinyl based polymers whose degradation products are non toxic and non corrosive are obtained.
Modeling phase separation in mixtures of intrinsically-disordered proteins
NASA Astrophysics Data System (ADS)
Gu, Chad; Zilman, Anton
Phase separation in a pure or mixed solution of intrinsically-disordered proteins (IDPs) and its role in various biological processes has generated interest from the theoretical biophysics community. Phase separation of IDPs has been implicated in the formation of membrane-less organelles such as nucleoli, as well as in a mechanism of selectivity in transport through the nuclear pore complex. Based on a lattice model of polymers, we study the phase diagram of IDPs in a mixture and describe the selective exclusion of soluble proteins from the dense-phase IDP aggregates. The model captures the essential behaviour of phase separation by a minimal set of coarse-grained parameters, corresponding to the average monomer-monomer and monomer-protein attraction strength, as well as the protein-to-monomer size ratio. Contrary to the intuition that strong monomer-monomer interaction increases exclusion of soluble proteins from the dense IDP aggregates, our model predicts that the concentration of soluble proteins in the aggregate phase as a function of monomer-monomer attraction is non-monotonic. We corroborate the predictions of the lattice model using Langevin dynamics simulations of grafted polymers in planar and cylindrical geometries, mimicking various in-vivo and in-vitro conditions.
Gu, Lei; Ngo, Sam; Guo, Zhefeng
2012-01-01
Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14–18, 29–30, and 38–40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation. PMID:22277652
Gao, Wen-Hui; Liu, Bo; Li, Xing-Feng; Han, Jun-Hua; Jia, Ying-Min
2014-03-01
To prepare myclobutanil molecularly imprinted polymer, a method was established for the choice of the appropriate functional monomer and its dosage. UV spectra was applied to study the combination form, the effect intensity, the optimal concentration ratio and the numbers of binding sites between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The results showed that hydrogen-bonding interaction could be formed between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The pi electron of the triazole ring conjugated double bond in my clobutanil could transit to pi* conjugate antibonding orbital when it absorbed energy. The formation of hydrogen bond could make pi-->pi* absorption band transit. Maximum absorption wavelength produced red shift with the increase in the functional monomer concentration in the system. The research revealed that the optimal concentration ratios between myclobutanil and the two monomers were c(M):c(MAA) = 1:4, c(M):c(AM) = 1:2. Myclobutanil and the both the functional monomers had the bonding ability, and strong bonding force. The prepared molecularly imprinted polymer using AM as a functional monomer had better stability and specificity of recognition for myclobutanil.
Solomon, Hodaya V; Tabachnikov, Orly; Lansky, Shifra; Salama, Rachel; Feinberg, Hadar; Shoham, Yuval; Shoham, Gil
2015-12-01
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active sites of the trimer. They are located near the small opening of the cone tunnel, all facing the centre of the cavity. The biological relevance of this trimeric structure is supported by independent results obtained from gel-permeation chromatography. These data and their comparison to the structural data of related GH42 enzymes are used for a more general discussion concerning structure-activity aspects in this GH family.
Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2007-01-01
A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.
Monomer-dependent secondary nucleation in amyloid formation.
Linse, Sara
2017-08-01
Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.
Evolutionary insight into the functional amyloids of the pseudomonads.
Dueholm, Morten S; Otzen, Daniel; Nielsen, Per Halkjær
2013-01-01
Functional bacterial amyloids (FuBA) are important components in many environmental biofilms where they provide structural integrity to the biofilm, mediate bacterial aggregation and may function as virulence factor by binding specifically to host cell molecules. A novel FuBA system, the Fap system, was previously characterized in the genus Pseudomonas, however, very little is known about the phylogenetic diversity of bacteria with the genetic capacity to apply this system. Studies of genomes and public metagenomes from a diverse range of habitats showed that the Fap system is restricted to only three classes in the phylum Proteobacteria, the Beta-, Gamma- and Deltaproteobacteria. The structural organization of the fap genes into a single fapABCDEF operon is well conserved with minor variations such as a frequent deletion of fapA. A high degree of variation was seen within the primary structure of the major Fap fibril monomers, FapC, whereas the minor monomers, FapB, showed less sequence variation. Comparison of phylogenetic trees based on Fap proteins and the 16S rRNA gene of the corresponding bacteria showed remarkably similar overall topology. This indicates, that horizontal gene transfer is an infrequent event in the evolution of the Fap system.
Evolutionary Insight into the Functional Amyloids of the Pseudomonads
Dueholm, Morten S.; Otzen, Daniel; Nielsen, Per Halkjær
2013-01-01
Functional bacterial amyloids (FuBA) are important components in many environmental biofilms where they provide structural integrity to the biofilm, mediate bacterial aggregation and may function as virulence factor by binding specifically to host cell molecules. A novel FuBA system, the Fap system, was previously characterized in the genus Pseudomonas, however, very little is known about the phylogenetic diversity of bacteria with the genetic capacity to apply this system. Studies of genomes and public metagenomes from a diverse range of habitats showed that the Fap system is restricted to only three classes in the phylum Proteobacteria, the Beta-, Gamma- and Deltaproteobacteria. The structural organization of the fap genes into a single fapABCDEF operon is well conserved with minor variations such as a frequent deletion of fapA. A high degree of variation was seen within the primary structure of the major Fap fibril monomers, FapC, whereas the minor monomers, FapB, showed less sequence variation. Comparison of phylogenetic trees based on Fap proteins and the 16S rRNA gene of the corresponding bacteria showed remarkably similar overall topology. This indicates, that horizontal gene transfer is an infrequent event in the evolution of the Fap system. PMID:24116129
Hrdlicka, Patrick J; Karmakar, Saswata
2017-11-29
Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.
A minimalist model protein with multiple folding funnels
Locker, C. Rebecca; Hernandez, Rigoberto
2001-01-01
Kinetic and structural studies of wild-type proteins such as prions and amyloidogenic proteins provide suggestive evidence that proteins may adopt multiple long-lived states in addition to the native state. All of these states differ structurally because they lie far apart in configuration space, but their stability is not necessarily caused by cooperative (nucleation) effects. In this study, a minimalist model protein is designed to exhibit multiple long-lived states to explore the dynamics of the corresponding wild-type proteins. The minimalist protein is modeled as a 27-monomer sequence confined to a cubic lattice with three different monomer types. An order parameter—the winding index—is introduced to characterize the extent of folding. The winding index has several advantages over other commonly used order parameters like the number of native contacts. It can distinguish between enantiomers, its calculation requires less computational time than the number of native contacts, and reduced-dimensional landscapes can be developed when the native state structure is not known a priori. The results for the designed model protein prove by existence that the rugged energy landscape picture of protein folding can be generalized to include protein “misfolding” into long-lived states. PMID:11470921
Tran, Helen; Gael, Sarah L; Connolly, Michael D; Zuckermann, Ronald N
2011-11-02
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Largen, M.; Mills, S.E.; Rowe, J.
1978-01-25
Anthranilate-5-phosphoribosypyrophosphate phosphoribosyltransferase was purified from the bacterium Erwinia carotovora, a member of the Enterobacteriaceae. The enzyme was homogeneous according to the criteria of gel electrophoresis and NH/sub 2/-terminal amino acid sequence analysis. The molecular weight of the enzyme as determined on a calibrated Sephadex G-200 column was 67,000 +- 2,000. Sodium dodecyl sulfate-polyacrylamide gels gave a subunit molecular weight of 40,000 +- 1,000, suggesting that the enzyme was a dimer. A comparison of the NH/sub 2/-terminal sequence of the enzyme with the (previously determined) homologue from Serratia marcescens, a monomer with a molecular weight of 45,000, showed that the largermore » Serratia subunit came into register with amino acid 14 of the Erwinia subunit. The register for the length of the known overlap, 26 amino acids, was highly conserved.« less
Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G
1994-01-01
The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase.
Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G
1994-01-01
The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase. Images PMID:8117096
Nikovia, Christiana; Maroudas, Andreas-Philippos; Goulis, Panagiotis; Tzimis, Dionysios; Paraskevopoulou, Patrina; Pitsikalis, Marinos
2015-08-27
Statistical copolymers of norbornene (NBE) with cyclopentene (CP) were prepared by ring-opening metathesis polymerization, employing the 1st-generation Grubbs' catalyst, in the presence or absence of triphenylphosphine, PPh₃. The reactivity ratios were estimated using the Finemann-Ross, inverted Finemann-Ross, and Kelen-Tüdos graphical methods, along with the computer program COPOINT, which evaluates the parameters of binary copolymerizations from comonomer/copolymer composition data by integrating a given copolymerization equation in its differential form. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies. Finally, the effect of triphenylphosphine on the kinetics of copolymerization, the reactivity ratios, and the kinetics of thermal decomposition were examined.
Hom, Geoffrey K.; Lassila, J. Kyle; Thomas, Leonard M.; Mayo, Stephen L.
2005-01-01
Our goal was to compute a stable, full-sequence design of the Drosophila melanogaster engrailed homeodomain. Thermal and chemical denaturation data indicated the design was significantly more stable than was the wild-type protein. The data were also nearly identical to those for a similar, later full-sequence design, which was shown by NMR to adopt the homeodomain fold: a three-helix, globular monomer. However, a 1.65 Å crystal structure of the design described here turned out to be of a completely different fold: a four-helix, rodlike tetramer. The crystallization conditions included ~25% dioxane, and subsequent experiments by circular dichroism and sedimentation velocity analytical ultracentrifugation indicated that dioxane increases the helicity and oligomerization state of the designed protein. We attribute at least part of the discrepancy between the target fold and the crystal structure to the presence of a high concentration of dioxane. PMID:15741348
Xiao, Lifen; Zhu, Wen; Chen, Jiqiang; Zhang, Ke
2017-02-01
Cyclic multiblock polymers with high-order blocks are synthesized via the combination of single-electron transfer living radical polymerization (SET-LRP) and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The linear α,ω-telechelic multiblock copolymer is prepared via SET-LRP by sequential addition of different monomers. The SET-LRP approach allows well control of the block length and sequence as A-B-C-D-E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1 H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodríguez-Bolaños, Monica; Cabrera, Nallely
2016-01-01
The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei. Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins. PMID:27733588
Mallik, Saurav; Kundu, Sudip
2017-07-01
Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Pichavant, Loic; Guillermain, Céline; Coqueret, Xavier
2010-09-13
The reactivity of various vinyl ethers and vinyloxy derivatives of ribose in the presence of diethyl fumarate or diethyl maleate was investigated for evaluating the potential of donor-acceptor-type copolymerization applied to unsaturated monomers derived from renewable feedstock. The photochemically induced polymerization of model monomer blends in the bulk state was monitored by infrared spectroscopy. The method allowed us to examine the influence of monomer pair structure on the kinetic profiles. The simultaneous consumption of both monomers was observed, supporting an alternating copolymerization mechanism. A lower reactivity of the blends containing maleates compared with fumarates was confirmed. The obtained kinetic data revealed a general correlation between the initial polymerization rate and the Hansen parameter δ(H) associated with the H-bonding aptitude of the donor monomer.
Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.
Louis, John M; Tözsér, József; Roche, Julien; Matúz, Krisztina; Aniana, Annie; Sayer, Jane M
2013-10-29
During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.
Barros-Álvarez, Ximena; Kerchner, Keshia M; Koh, Cho Yeow; Turley, Stewart; Pardon, Els; Steyaert, Jan; Ranade, Ranae M; Gillespie, J Robert; Zhang, Zhongsheng; Verlinde, Christophe L M J; Fan, Erkang; Buckner, Frederick S; Hol, Wim G J
2017-07-01
The crystal structure of Leishmania donovani tyrosyl-tRNA synthetase (LdTyrRS) in complex with a nanobody and the tyrosyl adenylate analog TyrSA was determined at 2.75 Å resolution. Nanobodies are the variable domains of camelid heavy chain-only antibodies. The nanobody makes numerous crystal contacts and in addition reduces the flexibility of a loop of LdTyrRS. TyrSA is engaged in many interactions with active site residues occupying the tyrosine and adenine binding pockets. The LdTyrRS polypeptide chain consists of two pseudo-monomers, each consisting of two domains. Comparing the two independent chains in the asymmetric unit reveals that the two pseudo-monomers of LdTyrRS can bend with respect to each other essentially as rigid bodies. This flexibility might be useful in the positioning of tRNA for catalysis since both pseudo-monomers in the LdTyrRS chain are needed for charging tRNA Tyr . An "extra pocket" (EP) appears to be present near the adenine binding region of LdTyrRS. Since this pocket is absent in the two human homologous enzymes, the EP provides interesting opportunities for obtaining selective drugs for treating infections caused by L. donovani, a unicellular parasite causing visceral leishmaniasis, or kala azar, which claims 20,000 to 30,000 deaths per year. Sequence and structural comparisons indicate that the EP is a characteristic which also occurs in the active site of several other important pathogenic protozoa. Therefore, the structure of LdTyrRS could inspire the design of compounds useful for treating several different parasitic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka
2011-11-01
The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.
Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C
2017-05-02
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.
Engineered Biomimetic Polymers as Tunable Agents for Controlling CaCO₃ Mineralization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Long; Qi, Jiahui; Zuckermann, Ronald N.
2011-01-01
In nature, living organisms use peptides and proteins to precisely control the nucleation and growth of inorganic minerals and sequester CO₂ via mineralization of CaCO₃. Here we report the exploitation of a novel class of sequence-specific non-natural polymers called peptoids as tunable agents that dramatically control CaCO₃ mineralization. We show that amphiphilic peptoids composed of hydrophobic and anionic monomers exhibit both a high degree of control over calcite growth morphology and an unprecedented 23-fold acceleration of growth at a peptoid concentration of only 50 nM, while acidic peptides of similar molecular weight exhibited enhancement factors of only ~2 or less.more » We further show that both the morphology and rate controls depend on peptoid sequence, side-chain chemistry, chain length, and concentration. These findings provide guidelines for developing sequence-specific non-natural polymers that mimic the functions of natural peptides or proteins in their ability to direct mineralization of CaCO₃, with an eye toward their application to sequestration of CO₂ through mineral trapping.« less
NASA Astrophysics Data System (ADS)
Patterson, Anastasia; Wenning, Brandon; Rizis, Georgios; Calabrese, David; Finlay, John; Franco, Sofia; Clare, Anthony; Kramer, Edward; Ober, Christopher; Segalman, Rachel
The design rules elucidated in this work suggest that antifouling coatings bearing pendant peptoid side chains perform better overall in marine fouling tests than those with peptide side chains, with extremely low attachment of N. incerta and high removal of U. linza. This difference in performance is likely due to the lack of a hydrogen bond donor in the peptoid backbone. Furthermore, we show that the bulk polymer material of these hierarchical coatings (based on PEO or PDMS) plays a key role in determining both surface presentation and fouling release performance. We demonstrate these trends utilizing a modular coating based on a triblock copolymer consisting of polystyrene and a vinyl-containing midblock, to which sequence-defined pendant oligomers (peptides or peptoids with sequences of oligo-PEO and fluoroalkyl groups) are attached via thiol-ene ``click'' chemistry. Surface presentation was analyzed with X-ray photoelectron spectroscopy and captive bubble water contact angle, and antifouling performance was evaluated with attachment and removal bioassays of the marine macroalga U. linza and diatom N. incerta. NSF GRFP and ONR PECASE.
Causes and Control of Corrosion in Buried-Conduit Heat Distribution Systems
1991-07-01
rubber , and foamed plastics such as polyurethanic anld phenolic) nominally contain 10 to 500 ppmn soluble chloide.’ Further, insulation can also become...pressure ratings. A maximum P X T limitation exists for all gasket materials. For example, the maximum temperature and pressure ratings for an EPDM ...ethylene propylene diene monomer) rubber material are, respectively, 3() ’F and 150 psi. The material, however, cannot be expected to perform
Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures
2008-12-01
composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high...validation studies have been performed, showing that the fatty acid -based resins have sufficient, modulus, strength, glass transition temperature, and
Design for Corrosion Control of Aviation Fuel Storage and Distribution Systems
1975-06-01
may be painted, or oiled. The paint usually used is an asphalt varnish applied in one coat in accor- dance with Federal Specification TT-V-51A...Fluorocarbon plastics -- Plastics based on resins made by the polymeri- zation of monomers composed of fluorine and carbon only. Film thickness -- Depth...natural or synthetic, contained in varnishes , lacquers and paints; the film former. -- A solid, semisolid, or pseudosolid organic material which has an
Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni
2014-07-01
The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.
Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system.
Monsey, John; Shen, Wei; Schlesinger, Paul; Bose, Ron
2010-03-05
Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues (952)ENI(954) to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.
Rangarajan, Erumbi S.; Li, Yunge; Iannuzzi, Pietro; Tocilj, Ante; Hung, Li-Wei; Matte, Allan; Cygler, Miroslaw
2004-01-01
The crystal structure of the flavoprotein Pad1 from Escherichia coli O157:H7 complexed with the cofactor FMN has been determined by the multiple anomalous diffraction method and refined at 2.0 Å resolution. This protein is a paralog of UbiX (3-octaprenyl-4-hydroxybenzoate carboxylyase, 51% sequence identity) that catalyzes the third step in ubiquinone biosynthesis and to Saccharomyces cerevisiae Pad1 (54% identity), an enzyme that confers resistance to the antimicrobial compounds phenylacrylic acids through decarbox-ylation of these compounds. Each Pad1 monomer consists of a typical Rossmann fold containing a non–covalently bound molecule of FMN. The fold of Pad1 is similar to MrsD, an enzyme associated with lantibiotic synthesis; EpiD, a peptidyl-cysteine decarboxylase; and AtHAL3a, the enzyme, which decarboxylates 4′-phosphopantothenoylcysteine to 4′-phosphopantetheine during coenzyme A biosynthesis, all with a similar location of the FMN binding site at the interface between two monomers, yet each having little sequence similarity to one another. All of these proteins associate into oligomers, with a trimer forming the common structural unit in each case. In MrsD and EpiD, which belong to the homo-dodecameric flavin-containing cysteine decarboxylase (HFCD) family, these trimers associate further into dodecamers. Pad1 also forms dodecamers, although the association of the trimers is completely different, resulting in exposure of a different side of the trimer unit to the solvent. This exposure affects the location of the substrate binding site and, specifically, its access to the FMN cofactor. Therefore, Pad1 forms a separate family, distinguishable from the HFCD family. PMID:15459342
Jančaříková, Gita; Houser, Josef; Dobeš, Pavel; Demo, Gabriel; Hyršl, Pavel; Wimmerová, Michaela
2017-08-01
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.
Denis, Aline B; Diagone, Cristina A; Plepis, Ana M G; Viana, Rommel B
2015-12-05
A method for the extraction and quantification of two residual monomers, bisphenol glycidyl dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA), that were evaluated using high efficiency liquid chromatography with UV detection was developed and validated in this study. Three types of solvents were applied in the extraction of the monomers (methanol, ethanol and acetonitrile), where the highest extraction efficiency was obtained using acetonitrile. The different resins were prepared by photoactivation of Bis-GMA and TEGDMA monomers. Additionally, the effects of the addition of two photoinitiators (camphorquinone (CQ) and phenyl propanodione (PPD) and that of a co-initiator (N,N-dimethyl-p-toluidine) were also analyzed. When only the CQ photoinitiator was used, a smaller amount of residual monomers was obtained, whereas a larger amount was obtained with PPD. When the two photoinitiators were used in the same matrix, however, no significant changes were observed in relation to the amount of residual TEGDMA monomers. For the addition of the co-initiator, there were no large changes in the extraction of residual monomers. The effect of the two photoactivation sources (halogen lamp and LED) led to small differences in the elution of the two monomers, although all of the resins differed significantly when photoactivated with a LED. Quantum chemical calculations using Density Functional Theory were carried out to characterize several molecular properties of each monomer. Copyright © 2015 Elsevier B.V. All rights reserved.
Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.
Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng
2015-12-18
Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.
Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.
Woodward, Clifford E; Forsman, Jan
2008-08-07
We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.
Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin
2017-10-01
We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.
Effect of Oxygen Tension and Medium Components on Monomer Distribution of Alginate.
Kıvılcımdan Moral, Çiğdem; Doğan, Özdemir; Sanin, Faika Dilek
2015-06-01
Alginate is a natural biopolymer composed of mannuronic and guluronic acid monomers. It is produced by algae and some species of Azotobacter and Pseudomonas. This study aims to investigate the effect of dissolved oxygen tension (DOT) and growth medium substrate and calcium concentrations on the monomeric composition of alginate produced by Azotobacter vinelandii ATCC® 9046 in a fermenter. Results showed that alginate production increased with increasing DOT from 1 to 5 %. The highest alginate production was obtained as 4.51 g/L under 20 g/L of sucrose and 50 mg/L of calcium at 5 % DOT. At these conditions, alginate was rich in mannuronic acid (up to 61 %) and it was particularly high at low calcium concentration. On the other hand, at extreme conditions such as high DOT level (10 % DOT) and low sucrose concentration (10 g/L), guluronic acid was dominant (ranging between 65 and 100 %).
Montenegro, M F; Moral-Naranjo, M T; Páez de la Cadena, M; Campoy, F J; Muñoz-Delgado, E; Vidal, C J
2008-09-25
Butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) display both esterase and aryl acylamidase (AAA) activities. Their AAA activity can be measured using o-nitroacetanilide (ONA). In human samples depleted of acetylcholinesterase, we noticed that the ratio of amidase to esterase activities varied depending on the source, despite both activities being due to BuChE. Searching for an explanation, we compared the activities of BuChE molecular forms in samples of human colon, kidney and serum, and observed that BuChE monomers (G(1)) hydrolyzed o-nitroacetanilide much faster than tetramers (G(4)). This fact suggested that association might cause differences in the AAA site between single and polymerized subunits. This and other post-translational modifications in BuChE subunits probably determine their level of AAA activity. The higher amidase activity of monomers could justify the presence of single BuChE subunits in cells as a way to preserve the AAA activity of BuChE, which could be lost by oligomerization.
Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs.
Xu, Pengfei; Wu, Lei; Dong, Liqiu; Xu, Xin
2018-02-08
This work reports the chemoselective polymerization of polar divinyl monomers, including allyl methacrylate (AMA), vinyl methacrylate (VMA), and 4-vinylbenzyl methacrylate (VBMA), by using simple Lewis pairs comprised of homoleptic rare-earth (RE) aryloxide complexes RE(OAr)₃ (RE = Sc ( 1 ), Y ( 2 ), Sm ( 3 ), La ( 4 ), Ar = 2,6- t Bu₂C₆H₃) and phosphines PR₃ (R = Ph, Cy, Et, Me). Catalytic activities of polymerizations relied heavily upon the cooperation of Lewis acid and Lewis base components. The produced polymers were soluble in common organic solvents and often had a narrow molecular weight distribution. A highly syndiotactic poly(allyl methacrylate) (PAMA) with rr ~88% could be obtained by the scandium complex 1 /PEt₃ pair at -30 °C. In the case of poly(4-vinylbenzyl methacrylate) (PVBMA), it could be post-functionalized with PhCH₂SH. Mechanistic study, including the isolation of the zwitterionic active species and the end-group analysis, revealed that the frustrated Lewis pair (FLP)-type addition was the initiating step in the polymerization.
Cooperativity in self-limiting equilibrium self-associating systems
NASA Astrophysics Data System (ADS)
Freed, Karl F.
2012-11-01
A wide variety of highly cooperative self-assembly processes in biological and synthetic systems involve the assembly of a large number (m) of units into clusters, with m narrowly peaked about a large size m0 ≫ 1 and with a second peak centered about the m = 1 unassembled monomers. While very specific models have been proposed for the assembly of, for example, viral capsids and core-shell micelles of ß-casein, no available theory describes a thermodynamically general mechanism for this double peaked, highly cooperative equilibrium assembly process. This study provides a general mechanism for these cooperative processes by developing a minimal Flory-Huggins type theory. Beginning from the simplest non-cooperative, free association model in which the equilibrium constant for addition of a monomer to a cluster is independent of cluster size, the new model merely allows more favorable growth for clusters of intermediate sizes. The theory is illustrated by computing the phase diagram for cases of self-assembly on cooling or heating and for the mass distribution of the two phases.
Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin
2018-01-01
We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown. PMID:29503494
Centromere reference models for human chromosomes X and Y satellite arrays
Miga, Karen H.; Newton, Yulia; Jain, Miten; Altemose, Nicolas; Willard, Huntington F.; Kent, W. James
2014-01-01
The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes. PMID:24501022
Di(hydroxyphenyl)- benzimidazole monomers
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)
1993-01-01
Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.
Flash evaporation of liquid monomer particle mixture
Affinito, John D.; Darab, John G.; Gross, Mark E.
1999-01-01
The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.
Rational computational design for the development of andrographolide molecularly imprinted polymer
NASA Astrophysics Data System (ADS)
Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor
2017-10-01
Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.
Ikemura, Kunio; Kojima, Katsunori; Endo, Takeshi; Kadoma, Yoshinori
2011-01-01
This study investigated the effect of the combination of a dithiooctanoate monomer and an acidic adhesive monomer on adhesion to precious metals, precious and non-precious metal alloys. From a selection of four dithiooctanoate monomers and six acidic adhesive monomers, 14 experimental primers containing a combination of 5.0 wt% of a dithiooctanoate monomer and 1.0 wt% of an acidic adhesive monomer in acetone were prepared. Tensile bond strengths (TBSs) of MMA-PMMA/TBBO resin to nine kinds of precious metals, precious metal alloys, and non-precious metal alloys after 2,000 thermal cycles were measured. Results showed that there were no significant differences in TBS among the primers to all the precious and non-precious metal adherends tested (p>0.05). Highest TBS values (46.5-55.8 MPa) for bonding to Au alloy, Au-Ag-Pd alloy, Co-Cr alloy, and Ni-Cr alloy were achieved with the primer which contained 5.0 wt% 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) and 1.0 wt% 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA). Therefore, 5.0 wt% 10-MDDT and 1.0 wt% 6-MHPA was determined as the optimal combination for bonding to precious metals, precious and non-precious metal alloys.
Photoexcited energy transfer in a weakly coupled dimer
Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; ...
2015-01-08
Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less
Photoexcited Energy Transfer in a Weakly Coupled Dimer.
Alfonso Hernandez, Laura; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian
2015-06-18
Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. Our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.
Shear sensitive monomer-polymer laminate structure and method of using same
NASA Technical Reports Server (NTRS)
Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); Parmar, Devendra S. (Inventor)
1993-01-01
Monomer cholesteric liquid crystals have helical structures which result in a phenomenon known as selective reflection, wherein incident white light is reflected in such a way that its wavelength is governed by the instantaneous pitch of the helix structure. The pitch is dependent on temperature and external stress fields. It is possible to use such monomers in flow visualization and temperature measurement. However, the required thin layers of these monomers are quickly washed away by a flow, making their application time dependent for a given flow rate. The laminate structure according to the present invention comprises a liquid crystal polymer substrate attached to a test surface of an article. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface. Novel aspects of the invention include its firm bonding of a liquid crystal monomer to a model and its use of a coating to reduce interference from light unreflected by the monomer helical structure.
Cutin and suberin monomers are membrane perturbants.
Douliez, Jean-Paul
2004-03-15
The interaction between cutin and suberin monomers, i.e., omega -hydroxylpalmitic acid, alpha, omega -hexadecanedioic acid, alpha, omega --hexadecanediol, 12-hydroxylstearic acid, and phospholipid vesicles biomimicking the lipid structure of plant cell membranes has been studied by optical and transmission electron microscopy, quasielastic light scattering, differential scanning calorimetry, and (31)P solid-state NMR. Monomers were shown to penetrate model membranes until a molar ratio of 30%, modulating their gel to fluid-phase transition, after which monomer crystals also formed in solution. These monomers induced a decrease of the phospholipid vesicle size from several micrometers to about 300 nm. The biological implications of these findings are discussed.
Method for molding ceramic powders using a water-based gel casting
Janney, Mark A.; Omatete, Ogbemi O.
1991-07-02
A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product any be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.
Method for molding ceramic powders using a water-based gel casting process
Jenny, Mark A.; Omalete, Ogbemi O.
1992-09-08
A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.
On the Origin of Protein Superfamilies and Superfolds
NASA Astrophysics Data System (ADS)
Magner, Abram; Szpankowski, Wojciech; Kihara, Daisuke
2015-02-01
Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-structure relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute an information theoretic channel and computed the most efficient distribution of sequences that code all protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of folds. The current study provides a new information theoretic framework for proteins that could be widely applied for understanding protein sequences, structures, functions, and interactions.
Flash evaporation of liquid monomer particle mixture
Affinito, J.D.; Darab, J.G.; Gross, M.E.
1999-05-11
The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.
Qualitative and quantitative analysis of monomers in polyesters for food contact materials.
Brenz, Fabrian; Linke, Susanne; Simat, Thomas
2017-02-01
Polyesters (PESs) are gaining more importance on the food contact material (FCM) market and the variety of properties and applications is expected to be wide. In order to acquire the desired properties manufacturers can combine several FCM-approved polyvalent carboxylic acids (PCAs) and polyols as monomers. However, information about the qualitative and quantitative composition of FCM articles is often limited. The method presented here describes the analysis of PESs with the identification and quantification of 25 PES monomers (10 PCA, 15 polyols) by HPLC with diode array detection (HPLC-DAD) and GC-MS after alkaline hydrolysis. Accurate identification and quantification were demonstrated by the analysis of seven different FCM articles made of PESs. The results explained between 97.2% and 103.4% w/w of the polymer composition whilst showing equal molar amounts of PCA and polyols. Quantification proved to be precise and sensitive with coefficients of variation (CVs) below 6.0% for PES samples with monomer concentrations typically ranging from 0.02% to 75% w/w. The analysis of 15 PES samples for the FCM market revealed the presence of five different PCAs and 11 different polyols (main monomers, co-monomers, non-intentionally added substances (NIAS)) showing the wide variety of monomers in modern PESs. The presented method provides a useful tool for commercial, state and research laboratories as well as for producers and distributors facing the task of FCM risk assessment. It can be applied for the identification and quantification of migrating monomers and the prediction of oligomer compositions from the identified monomers, respectively.
Influence of excess diamine on properties of PMR polyimide resins and composites
NASA Technical Reports Server (NTRS)
Hurwitz, F. I.
1980-01-01
By varying the stoichiometry of the reactants in the preparation of PMR polyimide resin, changes occur in molecular weight distribution which influence the rheological properties and thus the processability of the resin, as well as the mechanical properties of the composite. The influence of 1-10 percent molar excess MDA on the molecular weight distribution and rheological properties of an imidized PMR system were exposed. Molecular weight distribution is characterized by gel permeation chromatography of the imidized molding compound; shear viscosity is related to changes in average molecular weight. The thermo-oxidative stability at 600 F, glass transition temperature, flexural and interlaminar shear properties of PMR polyimide/Celion 6000 graphite fiber composites are compared as a function of the percent excess MDA in the monomer reactant mixture.
NASA Astrophysics Data System (ADS)
Diddens, D.; Brodeck, M.; Heuer, A.
2011-09-01
Within polymer blends composed of two species with largely different glass transition temperatures like PEO/PMMA, the dynamics of the fast PEO component is severely affected by the rather immobile PMMA, reflected by a breakdown of the typical Rouse scaling. The phenomenological random Rouse model (RRM), in which each monomer has an individual mobility obeying a broad log-normal distribution, has been applied to these blends. Using a newly developed method, we extract the distribution of friction coefficients from MD simulations of a PEO/PMMA blend, thereby testing the RRM explicitly. In our simulations we observe that the distribution is much narrower than expected from the RRM. Here, rather, the presence of additional forward-backward correlations of intermolecular origin is responsible for the anomalous PEO behavior.
In situ polymerization of monomers for polyphenylquinoxaline-graphite fiber composites
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Vannucci, R. D.
1974-01-01
In situ polymerization of monomers was used to prepare graphite-fiber-reinforced polyphenylquinoxaline composites. Six different monomer combinations were investigated. Composite mechanical property retention characteristics were determined at 316 C (600 F) over an extended time period.
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
Davis, Lloyd L
2013-11-05
Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.
Davis, Lloyd L.
2015-07-28
Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.
NASA Astrophysics Data System (ADS)
Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru
2018-02-01
We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.
Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna
2013-01-01
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001
Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar
2017-02-15
Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.
Ultrafast Digital Printing toward 4D Shape Changing Materials.
Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao
2017-02-01
Ultrafast 4D printing (<30 s) of responsive polymers is reported. Visible-light-triggered polymerization of commercial monomers defines digitally stress distribution in a 2D polymer film. Releasing the stress after the printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Ultrasensitivity of Living Polymers
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Ben; Vavylonis, Dimitrios
2003-03-01
Synthetic and biological living polymers are self-assembling chains whose chain length distributions (CLDs) are dynamic. We show these dynamics are ultrasensitive: Even a small perturbation (e.g., temperature jump) nonlinearly distorts the CLD, eliminating or massively augmenting short chains. The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity relaxation predictions agree with experiments on the best-studied synthetic system, α-methylstyrene.
Evaporation of Lennard-Jones fluids.
Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S
2011-06-14
Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
Rodríguez-Dorado, Rosalía; Carro, Antonia M; Chianella, Iva; Karim, Kal; Concheiro, Angel; Lorenzo, Rosa A; Piletsky, Sergey; Alvarez-Lorenzo, Carmen
2016-09-01
Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200-1000 μm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12-18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30-110 mg L(-1)) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated. Graphical Abstract Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions.
Li, Chengliang; Zhang, Bin; Ertunc, Tanya; Schaeffer, Andreas; Ji, Rong
2012-08-21
The nature of the abiotic birnessite (δ-MnO(2))-catalyzed transformation products of phenolic compounds in the presence of soil organic matter is crucial for understanding the fate and stability of ubiquitous phenolic carbon in the environment. (14)C-radioactive and (13)C-stable-isotope tracers were used to study the mineralization and transformation by δ-MnO(2) of two typical humus and lignin phenolic monomers--catechol and p-coumaric acid--in the presence and absence of agricultural and forest soil humic acids (HAs) at pH 5-8. Mineralization decreased with increasing solution pH, and catechol was markedly more mineralized than p-coumaric acid. In the presence of HAs, the mineralization was strongly reduced, and considerable amounts of phenolic residues were bound to the HAs, independent of the solution pH. The HA-bound residues were homogeneously distributed within the humic molecules, and most still contained the unchanged aromatic ring as revealed by (13)C NMR analysis, indicating that the residues were probably bound via ester or ether bonds. The study provides important information on δ-MnO(2) stimulation of phenolic carbon binding to humic substances and the molecular distribution and chemical structure of the bound residues, which is essential for understanding the environmental fates of both naturally occurring and anthropogenic phenolic compounds.
NASA Astrophysics Data System (ADS)
Mariappan, G.; Sundaraganesan, N.
2014-04-01
Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.
The Morphology of Emulsion Polymerized Latex Particles
DOE R&D Accomplishments Database
Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.
1987-11-01
Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.
Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.
Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai
2018-04-01
Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photochemically Synthesized Polyimides
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Tyson, Daniel S.
2008-01-01
An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature. The main disadvantages of the conventional approach are the following: Elevated production temperatures can lead to high production costs and can impart thermal stresses to the final products. If the proportions of the multiple monomeric ingredients in a given batch are not exactly correct, the molecular weight and other physical properties of the final material could be reduced from their optimum or desired values. To be useful in the alternative approach, a monomer must have a molecular structure tailored to exploit Diels-Alder trapping of a photochemically generated ortho-quinodimethane. (In a Diels-Alder reaction, a diene combines with a dienophile to form molecules that contain six-membered rings.) In particular, a suitable monomer (see figure) contains ortho-methylbenzophenone connected to a dienophile (in this case, a maleimide) through a generic spacer group. Irradiation with ultraviolet light gives rise to a photochemical intermediate the aforementioned ortho-quinodimethane from the ortho-methylbenzophenone. This group may react with the dienophile on another such monomer molecule to produce an oligomer that, in turn may react in a stepgrowth manner to produce a polyimide. This approach offers several advantages in addition to those mentioned above: The monomer can be stored for a long time because it remains unreactive until exposed to light. Because the monomer is the only active starting ingredient, there is no need for mixing, no concern for ensuring correct proportions of monomers, and the purity of the final product material is inherently high. The use of solvents is optional: The synthesis can be performed using the neat monomer or the monomer mixed with one or more solvent(s) in dilute or concentrated solution. The solubility of the monomer and the physical and chemical properties of the final polymer can be tailored through selection of the spacer group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akileswaran, L.; Brock, B.J.; Cereghino, J.L.
1999-02-01
A cDNA clone encoding a quinone reductase (QR) from the white rot basidiomycete Phanerochaete chrysosporium was isolated and sequenced. The cDNA consisted of 1,007 nucleotides and a poly(A) tail and encoded a deduced protein containing 271 amino acids. The experimentally determined eight-amino-acid N-germinal sequence of the purified QR protein from P. chrysosporium matched amino acids 72 to 79 of the predicted translation product of the cDNA. The M{sub r} of the predicted translation product, beginning with Pro-72, was essentially identical to the experimentally determined M{sub r} of one monomer of the QR dimer, and this finding suggested that QR ismore » synthesized as a proenzyme. The results of in vitro transcription-translation experiments suggested that QR is synthesized as a proenzyme with a 71-amino-acid leader sequence. This leader sequence contains two potential KEX2 cleavage sites and numerous potential cleavage sites for dipeptidyl aminopeptidase. The QR activity in cultures of P. chrysosporium increased following the addition of 2-dimethoxybenzoquinone, vanillic acid, or several other aromatic compounds. An immunoblot analysis indicated that induction resulted in an increase in the amount of QR protein, and a Northern blot analysis indicated that this regulation occurs at the level of the qr mRNA.« less
Absorbing states in a catalysis model with anti-Arrhenius behavior.
de Andrade, M F; Figueiredo, W
2012-04-28
We study a model of heterogeneous catalysis with competitive reactions between two monomers A and B. We assume that reactions are dependent on temperature and follow an anti-Arrhenius mechanism. In this model, a monomer A can react with a nearest neighbor monomer A or B, however, reactions between monomers of type B are not allowed. We assume attractive interactions between nearest neighbor monomers as well as between monomers and the catalyst. Through mean-field calculations, at the level of site and pair approximations, and extensive Monte Carlo simulations, we determine the phase diagram of the model in the plane y(A) versus temperature, where y(A) is the probability that a monomer A reaches the catalyst. The model exhibits absorbing and active phases separated by lines of continuous phase transitions. We calculate the static, dynamic, and spreading exponents of the model, and despite the absorbing state be represented by many different microscopic configurations, the model belongs to the directed percolation universality class in two dimensions. Both reaction mechanisms, Arrhenius and anti-Arrhenius, give the same set of critical exponents and do not change the nature of the universality class of the catalytic models.
Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H.; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji
2016-01-01
Abstract Enzymatic catalysis is an ecofriendly strategy for the production of high‐value low‐molecular‐weight aromatic compounds from lignin. Although well‐definable aromatic monomers have been obtained from synthetic lignin‐model dimers, enzymatic‐selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β‐O‐4‐cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate‐binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio‐based industries, we chemically generate value‐added GHP derivatives for bio‐based polymers. Together with these chemical conversions for the valorization of lignin‐derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in “white biotechnology” for sustainable biorefineries. PMID:27878983
21 CFR 181.32 - Acrylonitrile copolymers and resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... acrylonitrile monomer extraction for finished food-contact articles, determined by using the method of analysis titled “Gas-Solid Chromatographic Procedure for Determining Acrylonitrile Monomer in Acrylonitrile... or fat. (c) Acrylonitrile monomer may present a hazard to health when ingested. Accordingly, any food...
Compounds containing meta-biphenylenedioxy moieties and polymers therefrom
NASA Technical Reports Server (NTRS)
St.clair, Terry L. (Inventor); Pratt, John Richard (Inventor)
1993-01-01
Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepare polyimide polymers. These polymers are used to make films, coatings, and selective membranes.
Process for Preparing Epoxy-Reinforced Silica Aerogels
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B (Inventor)
2016-01-01
One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.
Processes for microemulsion polymerization employing novel microemulsion systems
Beckman, Eric J.; Smith, Richard D.; Fulton, John L.
1990-06-12
This invention is directed to a microemulsion system comprising a first phase including a low-polarity fluid material which is a gas at standard temperature and pressure, and which has a cloud-point density. It also includes a second phase including a polar fluid, typically water, a monomer, preferably a monomer soluble in the polar fluid, and a microemulsion promoter for facilitating the formation of micelles including the monomer in the system. In the subject process, micelles including the monomer are formed in the first phase. A polymerization initiator is introduced into the micelles in the microemulsion system. The monomer is then polymerized in the micelles, preferably in the core of the micelle, to produce a polymeric material having a relatively high molecular weight.
Polyimides containing meta-biphenylenedioxy moieties and articles prepared therefrom
NASA Technical Reports Server (NTRS)
St.clair, Terry L. (Inventor); Pratt, Richard (Inventor)
1995-01-01
Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepared polyimide polymers. These polymers are used to make films, coatings, and selective membranes.
NASA Astrophysics Data System (ADS)
Komarov, P.; Markina, A.; Ivanov, V.
2016-06-01
The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.
Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan
2016-12-30
Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.
Ikigai, H; Nakae, T
1985-07-16
The membrane-damaging alpha-toxin aggregate of Staphylococcus aureus was characterized physicochemically. The aggregate weight of the toxin formed by various methods appeared to be 6 times higher than the molecular weight of the monomer as determined by the laser light scattering technique, suggesting the presence of a hexamer in the membrane. The aggregates fluoresced 20 to 50% more than the monomer at 336 nm. Circular dichroism measurements revealed that both the monomer and the oligomer showed essentially beta-sheet structure with the maximum ellipticity about -8,400 deg.cm2.dmol-1 at 215 nm. Circular dichroism spectrum of the oligomers showed ellipticity difference of -6,600, -44 and +84 deg.cm2.dmol-1, at 200, 250 and 280 nm, respectively, compared with the monomer. All these results suggest that the conformational change in the toxin molecule occurs concomitant with the transformation of the water-soluble monomer to the membrane-embedded hexamer.
Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna
2013-09-17
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides.
Breton, Florent; Rouillon, Regis; Piletska, Elena V; Karim, Kal; Guerreiro, Antonio; Chianella, Iva; Piletsky, Sergey A
2007-04-15
Molecular modelling and computational screening were used to identify functional monomers capable of interacting with several different photosynthesis-inhibiting herbicides. The process involved the design of a virtual library of molecular models of functional monomers containing polymerizable residues and residues able to interact with the template through electrostatic, hydrophobic, Van der Waals forces and dipole-dipole interactions. Each of the entries in the virtual library was probed for its possible interactions with molecular models of the template molecules. It was anticipated that the monomers giving the highest binding score would represent good candidates for the preparation of affinity polymers. Strong interactions were computationally determined between acidic functional monomers like methacrylic acid (MAA) or itaconic acid (IA) with triazines, and between vinylimidazole with bentazone and bromoxynil. Nevertheless, weaker interactions were seen with phenylureas. The corresponding blank polymers were prepared using the selected monomers and tested in the solid phase extraction (SPE) of herbicides from chloroform solutions. A good correlation was found between the binding score of the monomers and the affinities of the corresponding polymers. The use of computationally designed blanks can potentially eliminate the need for molecular imprinting, (adding a template to the monomer mixture to create specific binding sites). Data also showed that some monomers have a natural selectivity for some herbicides, which can be further enhanced by imprinting. Thus, in regard to retention on the blank polymer, we can estimate if the resulting imprinted polymer will be effective or not.
Monomers, polymers and articles containing the same from sugar derived compounds
Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.
2016-11-29
Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.
Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less
Adhesion promotion at a homopolymer-solid interface using random heteropolymers
NASA Astrophysics Data System (ADS)
Simmons, Edward Read; Chakraborty, Arup K.
1998-11-01
We investigate the potential uses for random heteropolymers (RHPs) as adhesion promoters between a homopolymer melt and a solid surface. We consider homopolymers of monomer (segment) type A which are naturally repelled from a solid surface. To this system we add RHPs with both A and B (attractive to the surface) type monomers to promote adhesion between the two incompatible substrates. We employ Monte Carlo simulations to investigate the effects of variations in the sequence statistics of the RHPs, amount of promoter added, and strength of the segment-segment and segment-surface interaction parameters. Clearly, the parameter space in such a system is quite large, but we are able to describe, in a qualitative manner, the optimal parameters for adhesion promotion. The optimal set of parameters yield interfacial conformational statistics for the RHPs which have a relatively high adsorbed fraction and also long loops extending away from the surface that promote entanglements with the bulk homopolymer melt. In addition, we present qualitative evidence that the concentration of RHP segments per surface site plays an important role in determining the mechanism of failure (cohesive versus adhesive) at such an interface. Our results also provide the necessary input for future simulations in which the system may be strained to the limit of fracture.
Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study
Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta
2015-01-01
The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689
Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi
2014-12-29
The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.
Najdegerami, Ebrahim H; Tran, Tiet Ngoc; Defoirdt, Tom; Marzorati, Massimo; Sorgeloos, Patrick; Boon, Nico; Bossier, Peter
2012-01-01
Poly-β-hydroxybutyrate (PHB) is a natural polymer that can be depolymerized into water-soluble short-chain fatty acid monomers. These monomers can act as microbial control agents. In this study, the effects of partially replacing the diet of Siberian sturgeon fingerlings with 2% and 5% PHB were investigated. Replacing 2% of the diet with PHB improved weight gain, specific growth rate (SGR) and survival in the sturgeon fingerlings during the 10-week experimental period. Community-level physiological profiling and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) were used to analyze the microbial community diversity and community organization in the sturgeon gastrointestinal tract. DGGE analysis revealed that PHB affected the intestinal microbial species richness and diversity. The highest species richness was observed with 2% PHB. DNA sequencing of the dominant bands in 2% and 5% PHB treatments revealed that PHB stimulated bacteria belonging to the genera Bacillus and Ruminococcaceae. Principal component analysis, Lorenz curves and the Shannon index of Biolog Ecoplate data revealed that aerobic metabolic potential of the bacterial community was different in the PHB-treated fishes as compared with the control situation. Overall, our results indicate that PHB act as microbial control agents and replacement of 2% of Siberian sturgeon fingerling diet with PHB has beneficial effects.
Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides
None, None
2016-03-22
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less
Molecular and chromosomal evidence for allopolyploidy in soybean.
Gill, Navdeep; Findley, Seth; Walling, Jason G; Hans, Christian; Ma, Jianxin; Doyle, Jeff; Stacey, Gary; Jackson, Scott A
2009-11-01
Recent studies have documented that the soybean (Glycine max) genome has undergone two rounds of large-scale genome and/or segmental duplication. To shed light on the timing and nature of these duplication events, we characterized and analyzed two subfamilies of high-copy centromeric satellite repeats, CentGm-1 and CentGm-2, using a combination of computational and molecular cytogenetic approaches. These two subfamilies of satellite repeats mark distinct subsets of soybean centromeres and, in at least one case, a pair of homologs, suggesting their origins from an allopolyploid event. The satellite monomers of each subfamily are arranged in large tandem arrays, and intermingled monomers of the two subfamilies were not detected by fluorescence in situ hybridization on extended DNA fibers nor at the sequence level. This indicates that there has been little recombination and homogenization of satellite DNA between these two sets of centromeres. These satellite repeats are also present in Glycine soja, the proposed wild progenitor of soybean, but could not be detected in any other relatives of soybean examined in this study, suggesting the rapid divergence of the centromeric satellite DNA within the Glycine genus. Together, these observations provide direct evidence, at molecular and chromosomal levels, in support of the hypothesis that the soybean genome has experienced a recent allopolyploidization event.
Crosslinked, porous, polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)
1976-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Crosslinked, porous, polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)
1977-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, M.S.; Saunders, R.
1997-02-18
Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.
Visualization of Two-Phase Fluid Distribution Using Laser Induced Exciplex Fluorescence
NASA Astrophysics Data System (ADS)
Kim, J. U.; Darrow, J.; Schock, H.; Golding, B.; Nocera, D.; Keller, P.
1998-03-01
Laser-induced exciplex (excited state complex) fluorescence has been used to generate two-dimensional images of dispersed liquid and vapor phases with spectrally resolved two-color emissions. In this method, the vapor phase is tagged by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. A new exciplex visualization system consisting of DMA and 1,4,6-TMN in an isooctane solvent was developed.(J.U. Kim et al., Chem. Phys. Lett. 267, 323-328 (1997)) The direct ca
Small, porous polyacrylate beads
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping Siao (Inventor); Rembaum, Alan (Inventor); Dreyer, William J. (Inventor)
1976-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Synthesis and characteristics of polyarylene ether sulfones
NASA Technical Reports Server (NTRS)
Viswanathan, R.; Johnson, B. C.; Ward, T. C.; Mcgrath, J. E.
1981-01-01
A method utilizing potassium carbonate/dimethyl acetamide, as base and solvent respectively, was used for the synthesis of several homopolymers and copolymers derived from various bisphenols. It is demonstrated that this method deviates from simple second order kinetics; this deviation being due to the heterogeneous nature of the reaction. Also, it is shown that a liquid induced crystallization process can improve the solvent resistance of these polymers. Finally, a Monte Carlo simulation of the triad distribution of monomers in nonequilibrium copolycondensation is discussed.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, Michael S.; Saunders, Randall
1997-01-01
Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.
Relief diffracted elements recorded on absorbent photopolymers.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Pascual, I; Beléndez, A
2012-05-07
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information for characterizing and understanding the material behavior. In this paper we use a 3-dimensional model, based on direct parameter measurements, for predicting the relief structures generated on without-coverplate photopolymers. We have analyzed different spatial frequency and recording intensity distributions such as binary and blazed periodic patterns. This model was successfully applied to different photopolymers with different values of monomer diffusion.
21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by a gas chromatographic method titled “Determination of Residual Acrylonitrile and Styrene Monomers... article shall yield not more than 0.0025 milligram per square inch of acrylonitrile monomer when exposed...
46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34 Section 151.50-34 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall...
46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...
NASA Technical Reports Server (NTRS)
Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.
1984-01-01
The ion-molecule and radical-molecule mechanisms are responsible for the dissociation of hydrocarbon, silane, and chlorosilane monomers and the formation of polymerized species, respectively, in an RF plasma discharge. In a plasma containing a mixture of monomer and argon the rate-determining step for both dissociation and polymerization is governed by an ion-molecule type of interaction. Adding hydrogen or ammonia to the monomer-argon mixture transforms the rate-determining step from an ion-molecule interaction to a radical-molecule interaction for both monomer dissociation and polymerization.
Status review of PMR polyimides. [Polymerization of Monomer Reactants
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1979-01-01
In the NASA developed PMR (polymerization of monomer reactants) the reinforcing fibers are impregnated with a solution containing a mixture of monomers dissolved in a low boiling point alkyl alcohol solvent, with the monomers reacting in situ at elevated temperatures to form a thermo-oxidatively stable polyimide matrix. The current status of first and second generation PMR polyimides is reviewed, considering synthesis and properties, processing, and applications. It is concluded that the PMR approach offers various significant advantages, especially superior high temperature properties and processing versatility, to fabricators and users of polyimide/fiber composites.
Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal
Guymon; Hoggan; Clark; Rieker; Walba; Bowman
1997-01-03
Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.
AFM study of the morphologic change of HDPE surface photografted with glycidyl methacrylate.
Wang, Huiliang; Han, Jianmei
2009-05-01
The UV-induced grafting of glycidyl methacrylate (GMA) onto high-density polyethylene (HDPE) and the atomic force microscopy (AFM) study of the morphologic change of the grafted surface are reported. The grafting was carried out in GMA acetone solutions with different monomer concentrations. Grafting was much faster in a solution with a higher monomer concentration. FTIR analyses proved that GMA had been successfully grafted onto HDPE. The morphologies of grafted HDPE surfaces changed with UV irradiation time. The monomer concentration had a significant effect on the morphologies of the grafted HDPE surfaces. The HDPE surface grafted in a solution with a higher monomer concentration was much rougher than that grafted in a solution with a lower monomer concentration. The growth models of the grafted granules or clusters are also proposed.
Ge, Junhao; Trujillo, Marianela; Stansbury, Jeffrey
2005-12-01
This study was conducted to determine whether novel photopolymerizable formulations based on dimethacrylate monomers with bulky substituent groups could provide low polymerization shrinkage without sacrifice to degree of conversion, and mechanical properties of the polymers. Relatively high molecular weight dimethacrylate monomers were prepared from rigid bisphenol A core groups. Photopolymerization kinetics and shrinkage as well as flexural strength and glass transition temperatures were evaluated for various comonomer compositions. Copolymerization of the bulky monomers with TEGDMA show higher conversion but similar shrinkage compared with Bis-GMA/TEGDMA controls. The resulting polymers have suitable mechanical strength properties for potential dental restorative materials applications. When copolymerized with PEGDMA, the bulky monomers show lower shrinkage, comparable conversion, and more homogeneous polymeric network structures compared with Bis-EMA/PEGDMA systems. The novel dimethacrylate monomers with reduced reactive group densities can decrease the polymerization shrinkage as anticipated, but there is no significant evidence that the bulky substituent groups have any additional effect on reducing shrinkage based on the physical interactions as polymer side chains. The bulky groups improve the double bond conversion and help maintain the mechanical properties of the resulting polymer, which would otherwise decrease rapidly due to the reduced crosslinking density. Further, it was found that bulky monomers help produce more homogeneous copolymer networks.
Pfeiffer, Peter; Rosenbauer, Ernst-Ulrich
2004-07-01
Denture base materials have the potential to cause irritation and allergic reaction to the oral mucosa. Water sorption and water solubility of denture base resins affect dimensional behavior and denture stability. A correlation between residual monomer and water sorption exists. This in vitro study compared the amount of residual monomer, quantity of water sorption, and solubility of 4 denture base materials purported to be hypoallergenic with those of a polymethyl methacrylate-based (PMMA) heat-polymerizing acrylic resin. The denture base resins Sinomer (heat-polymerized, modified methacrylate), Polyan (thermoplastic, modified methacrylate), Promysan (thermoplastic, enterephthalate-based), and Microbase (microwave polymerized, polyurethane-based), which are purported to be hypoallergenic, and Paladon 65 (heat-polymerized, methacrylate, control group) were examined. Specimens of each material were tested for residual methyl methacrylate (MMA) monomer (% wt, n=3), amount of water sorption (microg/mm3, n=5) and water solubility (microg/mm3, n=5), according to ISO 1567:2000. The residual MMA monomer concentrations were determined by gas chromatography (GC). The data were analyzed with 1-way ANOVA and the Bonferroni-Dunn multiple comparisons post hoc analysis for each test variable (alpha=.05). Significantly lower residual MMA monomer was shown for Sinomer and Polyan compared to the PMMA control group (0.90 +/- 0.20% wt, P<.05). Sinomer contained 0.31% +/- 0.00% wt MMA monomer, and Polyan exhibited residual MMA monomer content of 0.44% +/- 0.01% wt. Promysan and Microbase did not contain detectable residual MMA. Water sorption of Promysan (16.21 +/- 0.96 microg/mm3) was significantly lower than Paladon 65 (23.04 +/- 3.13 microg/mm3, P<.0001), whereas water solubility of the hypoallergenic denture base materials (0.34-0.84 +/- 0.05-0.09 microg/mm3) was not significantly lower than the PMMA material (0.40 +/- 0.06 microg/mm3, P>.05). Except for Sinomer, the tested denture base resins passed the requirements of ISO 1567 regarding residual MMA monomer (<2.2% wt). Sinomer failed to comply with the requirements for residual MMA monomer because the manufacturer claimed that the material did not contain any MMA. The tested denture base materials fulfilled the requirements regarding water sorption (<32 microg/mm3) and solubility (<1.6 microg/mm3). The tested hypoallergenic denture base materials exhibited significantly lower residual monomer content than PMMA. Promysan and Microbase showed no detectable residual MMA.
Li, Hao; Chen, Guang; Das, Siddhartha
2016-11-01
Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.
DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W., E-mail: Augusto_Carballido@baylor.edu
We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking andmore » compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.« less
Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell
NASA Astrophysics Data System (ADS)
Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa
2011-11-01
In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.
Study of low-velocity impact response of sandwich panels with shear-thickening gel cores
NASA Astrophysics Data System (ADS)
Wang, Yunpeng; Gong, Xinglong; Xuan, Shouhu
2018-06-01
The low-velocity impact response of sandwich panels with shear-thickening gel cores was studied. The impact tests indicated that the sandwich panels with shear-thickening gel cores showed excellent properties of energy dissipation and stress distribution. In comparison to the similar sandwich panels with chloroprene rubber cores and ethylene-propylene-diene monomer cores, the shear-thickening gel cores led to the obviously smaller contact forces and the larger energy absorptions. Numerical modelling with finite element analysis was used to investigate the stress distribution of the sandwich panels with shear-thickening gel cores and the results agreed well with the experimental results. Because of the unique mechanical property of the shear-thickening gel, the concentrated stress on the front facesheets were distributed to larger areas on the back facesheets and the peak stresses were reduced greatly.
New RTM/RI Resins for the HSCT
NASA Technical Reports Server (NTRS)
Harris, Frank W.
1999-01-01
In the first portion of this work, 1,2,3,3,4,4-hexafluoro-1,2-bis[4-(dimethylhydroxysilyl)phenoxy]cyclobutane and 1,2,3,3,4,4-hexafluoro-1,2-bis[3-(dimethylhydroxysilyl)phenoxy]cyclobutane were prepared and homopolymerized to afford polymers with excellent thermal stability and Tgs of 27 C and -12 C, respectively. Despite the moderately high wt% of fluorin in the polymer structure (23.8%), these polymers had poor fuel resistance. In fact, swelling measurements indicate that these polymers had apparent solubility parameters of about 18.2 J (exp 1/2) m (exp -3/2) (toluene). Copolymerization of the disilanol monomers with fluorosilicone monomers afforded copolymers containing 20-30 wt% of the perfluorocyclobutane-containing structure displayed adequate fuel resistance, enhanced thermal stability, and a Tg low enough to meet the requirements of a High Speed Civil Transport (HSCT) fuel tank sealant. In the second part of this work, trifluorovinylether-terminated oligomers were prepared and polymerized via cyclodimerization. Initially, an alpha, omega-silanol-terminated fluorosilicone was endcapped with trifluorovinylether end groups via a two-step synthetic sequence. The oligomer was thermally cyclodimerized to a polymer that displayed thermal stability similar to that of a fluorosilicone homopolymer. Second, 1,3-bis[4-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane and 1,3-bis{3-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane were prepared and cyclodimerized to afford polymers that contained pendant trifluoropropyl groups. The pendant trifluoropropyl groups did enhance solvent resistance in aliphatic hydrocarbon solvents, however, no improvement was observed in aromatic hydrocarbon solvents. These polymers also displayed excellent thermal stability. In the last part of this work, a series of monomers was prepared by the DCC-promoted esterification of 4-[trifluorovinyl(oxy)benzoic acid with alpha, omega-functionalized hydrogenated and partially fluorinated alcohols. The monomers were cyclodimerized to the corresponding polymers. The polymers that did not contain beta hydrogens displayed significantly higher thermal stability than the fully hydrogenated polymers. A commercially-available alpha,omega-hydroxy-terminated perfluoropolyether was then functionalized with 4-[trifluorovinyl(oxy)benzoylchloride. An attempt was made to polymerize the resulting oligomer via the cyclodimerization of the terminal trifluorovinylether moieties. Although the viscosity of the oligomer increased significantly during polymerization, Gel Permeation Chromatography (GPC) analysis revealed that the Tetrahydrofuran (THF) soluble portion of the polymer did not have high molecular weight.
Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana
2018-03-06
From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications, for instance, in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector but affect the properties of materials significantly. For a drug delivery system, for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time-consuming, and/or expensive 2D-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work, a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization (ESI) mass spectrometry is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RICs) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in, e.g., branching, 3D-structure, monomer sequence, or tacticity and could potentially be used in routine analysis to quickly determine deviations.
Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces
NASA Astrophysics Data System (ADS)
Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny
2013-04-01
One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of sorption, which combines site specific adsorption mechanism (Langmuir) and partitioning mechanism. Adsorption of monomers by Fe3+-montmorillonite was higher than for Ca2+ and crude -montmorillonites. XRD measurements showed expansion of d-spacing of montmorillonite samples with the increase in diHPA loading from 12.32, 12.66 and 12.17 Å for Fe3+- Ca2+- and crude-montmorillonite up to 16.84, 16.62 and 16.79 Å for organo-clay complexes of Fe3+-, Ca2+- and crude-montmorillonites respectively. This significant expansion of d-spacing suggests interlayer, and probably, multilayer diHPA adsorption by montmorillonite. Based on FTIR data we suggest that diHPA forms inner-sphere complexes with Fe3+-montmorillonite surface but not with Ca2+ and crude-montmorillonites. However all montmorillonite samples induce esterification and oligomerization of the monomers, which was demonstrated by FTIR spectra of the organo-montmorillonite complexes and by LC-MS analysis of the organic material extracted from organo-clay complexes. These results confirmed our hypothesis about oligomerization of cuticular monomers on mineral surfaces. We assume that esterification and oligomerization of monomers on montmorillonite surfaces simulate similar soil processes, which result in the formation of soil organo-mineral complexes and humin.
Interdependence of pyrene interactions and tetramolecular G4-DNA assembly.
Doluca, Osman; Withers, Jamie M; Loo, Trevor S; Edwards, Patrick J B; González, Carlos; Filichev, Vyacheslav V
2015-03-28
Controlling the arrangement of organic chromophores in supramolecular architectures is of primary importance for the development of novel functional molecules. Insertion of a twisted intercalating nucleic acid (TINA) moiety, containing phenylethynylpyren-1-yl derivatives, into a G-rich DNA sequence alters G-quadruplex folding, resulting in supramolecular structures with defined pyrene arrangements. Based on CD, NMR and ESI-mass-spectra, as well as TINA excited dimer (excimer) fluorescence emission we propose that insertion of the TINA monomer in the middle of a dTG4T sequence (i.e. dTGGXGGT, where X is TINA) converts a parallel tetramolecular G-quadruplex into an assembly composed of two identical antiparallel G-quadruplex subunits stacked via TINA-TINA interface. Kinetic analysis showed that TINA-TINA association controls complex formation in the presence of Na(+) but barely competes with guanine-mediated association in K(+) or in the sequence with the longer G-run (dTGGGXGGGT). These results demonstrate new perspectives in the design of molecular entities that can kinetically control G-quadruplex formation and show how tetramolecular G-quadruplexes can be used as a tuneable scaffold to control the arrangement of organic chromophores.
Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer.
Li, Ming-Hui; Luo, Quan; Xue, Xiang-Gui; Li, Ze-Sheng
2011-03-01
G-rich sequences can fold into a four-stranded structure called a G-quadruplex, and sequences with short loops are able to aggregate to form stable quadruplex multimers. Few studies have characterized the properties of this variety of quadruplex multimers. Using molecular modeling and molecular dynamics simulations, the present study investigated a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1), and its interactions with a planar ligand of a perylene derivative (Tel03). A series of analytical methods, including free energy calculations and principal components analysis (PCA), was used. The results show that a dimer structure with stacked parallel monomer structures is maintained well during the entire simulation. Tel03 can bind to the dimer efficiently through end stacking, and the binding mode of the ligand stacked with the 3'-terminal thymine base is most favorable. PCA showed that the dominant motions in the free dimer occur on the loop regions, and the presence of the ligand reduces the flexibility of the loops. Our investigation will assist in understanding the geometric structure of stacked G-quadruplex multimers and may be helpful as a platform for rational drug design.
Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.
Seward, Emily A; Kelly, Steven
2016-11-15
Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.
NASA Astrophysics Data System (ADS)
Shubin, Vladimir V.; Terekhova, Irina V.; Bolychevtseva, Yulia V.; El-Mohsnawy, Eithar; Rögner, Matthias; Mäntele, Werner; Kopczak, Marta J.; Džafić, Enela
2017-05-01
The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al. (2013) . To assess the thermostability of PSI complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus heating induced perturbations on the level of secondary structure of the proteins were studied. Changes were monitored by Fourier transform infrared (FT-IR) spectra in the mid-IR region upon slow heating (1 °C per minute) of samples in D2O phosphate buffer (pD 7.4) from 20 °C to 100 °C. These spectra showed distinct changes in the Amide I region of PSI complexes as a function of the rising temperature. Absorbance at the Amide I maximum of PSI monomers (centered around 1653 cm- 1), gradually dropped in two temperature intervals, i.e. 60-75 and 80-90 °C. In contrast, absorbance at the Amide I maximum of PSI trimers (around 1656 cm- 1) dropped only in one temperature interval 80-95 °C. The thermal profile of the spectral shift of α-helices bands in the region 1656-1642 cm- 1 confirms the same two temperature intervals for PSI monomers and only one interval for trimers. Apparently, the observed absorbance changes at the Amide I maximum during heating of PSI monomers and trimers are caused by deformation and unfolding of α-helices. The absence of absorbance changes in the interval of 20-65 °C in PSI trimers is probably caused by a greater stability of protein secondary structure as compared to that in monomers. Upon heating above 80 °C a large part of α-helices both in trimers and monomers converts to unordered and aggregated structures. Spectral changes of PSI trimers and monomers heated up to 100 °C are irreversible due to protein denaturation and non-specific aggregation of complexes leading to new absorption bands at 1618-1620 cm- 1. We propose that monomers shield the denaturation sensitive sides at the monomer/monomer interface within a trimer, making the oligomeric structure more stable against thermal stress.
Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2014-01-01
Objectives The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Materials and method Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA 45/55 w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). Results The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt % water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. Significance The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. PMID:24993811
Monomeric Nucleoprotein of Influenza A Virus
Chenavas, Sylvie; Estrozi, Leandro F.; Slama-Schwok, Anny; Delmas, Bernard; Di Primo, Carmelo; Baudin, Florence; Li, Xinping; Crépin, Thibaut; Ruigrok, Rob W. H.
2013-01-01
Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection. PMID:23555270
Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2014-09-01
The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA, 45/55, w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt% water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. Published by Elsevier Ltd.
Does Topology Drive Fiber Polymerization?
2015-01-01
We have developed new procedures to examine the early steps in fibrin polymerization. First, we isolated fibrinogen monomers from plasma fibrinogen by gel filtration. Polymerization of fibrinogen monomers differed from that of plasma fibrinogen. The formation of protofibrils was slower and the transformation of protofibrils to fibers faster for the fibrinogen monomers. Second, we used formaldehyde to terminate the polymerization reactions. The formaldehyde-fixed products obtained at each time point were examined by dynamic light scattering and transmission electron microscopy (TEM). The data showed the formaldehyde-fixed products were stable and representative of the reaction intermediates. TEM images showed monomers, short oligomers, protofibrils, and thin fibers. The amount and length of these species varied with time. Short oligomers were less than 5% of the molecules at all times. Third, we developed models that recapitulate the TEM images. Fibrin monomer models were assembled into protofibrils, and protofibrils were assembled into two-strand fibers using Chimera software. Monomers were based on fibrinogen crystal structures, and the end-to-end interactions between monomers were based on D-dimer crystal structures. Protofibrils assembled from S-shaped monomers through asymmetric D:D interactions were ordered helical structures. Fibers were modeled by duplicating a protofibril and rotating the duplicate 120° around its long axis. No specific interactions were presumed. The two protofibrils simply twisted around one another to form a fiber. This model suggests that the conformation of the protofibril per se promotes the assembly into fibers. These findings introduce a novel mechanism for fibrin assembly that may be relevant to other biopolymers. PMID:25419972
Comprehensive analysis of the dynamic structure of nuclear localization signals.
Yamagishi, Ryosuke; Okuyama, Takahide; Oba, Shuntaro; Shimada, Jiro; Chaen, Shigeru; Kaneko, Hiroki
2015-12-01
Most transcription and epigenetic factors in eukaryotic cells have nuclear localization signals (NLSs) and are transported to the nucleus by nuclear transport proteins. Understanding the features of NLSs and the mechanisms of nuclear transport might help understand gene expression regulation, somatic cell reprogramming, thus leading to the treatment of diseases associated with abnormal gene expression. Although many studies analyzed the amino acid sequence of NLSs, few studies investigated their three-dimensional structure. Therefore, we conducted a statistical investigation of the dynamic structure of NLSs by extracting the conformation of these sequences from proteins examined by X-ray crystallography and using a quantity defined as conformational determination rate (a ratio between the number of amino acids determining the conformation and the number of all amino acids included in a certain region). We found that determining the conformation of NLSs is more difficult than determining the conformation of other regions and that NLSs may tend to form more heteropolymers than monomers. Therefore, these findings strongly suggest that NLSs are intrinsically disordered regions.
Liu, Z; Somsook, E; White, C B; Rosaaen, K A; Landis, C R
2001-11-14
Metallocene-catalyzed polymerization of 1-alkenes offers fine control of critical polymer attributes such as molecular weight, polydispersity, tacticity, and comonomer incorporation. Enormous effort has been expended on the synthesis and discovery of new catalysts and activators, but elementary aspects of the catalytic processes remain unclear. For example, it is unclear how the catalyst is distributed among active and dormant sites and how this distribution influences the order in monomer for the propagation rates, for which widely varying values are reported. Similarly, although empirical relationships between average molecular weights and monomer have been established for many systems, the underlying mechanisms of chain termination are unclear. Another area of intense interest concerns the role of ion-pairing in controlling the activity and termination mechanisms of metallocene-catalyzed polymerizations. Herein we report the application of quenched-flow kinetics, active site counting, polymer microstructure analysis, and molecular weight distribution analysis to the determination of fundamental rate laws for initiation, propagation, and termination for the polymerization of 1-hexene in toluene solution as catalyzed by the contact ion-pair, [rac-(C(2)H(4)(1-indenyl)(2))ZrMe][MeB(C(6)F(5))(3)] (1) over the temperature range of -10 to 50 degrees C. Highly isotactic (>99% mmmm) poly-1-hexene is produced with no apparent enchained regioerrors. Initiation and propagation processes are first order in the concentrations of 1-hexene and 1 but independent of excess borane or the addition of the contact ion-pair [PhNMe(3)][MeB(C(6)F(5))(3)]. Active site counting and the reaction kinetics provide no evidence of catalyst accumulation in dormant or inactive sites. Initiation is slower than propagation by a factor of 70. The principal termination process is the formation of unsaturates of two types: vinylidene end groups that arise from termination after a 1,2 insertion and vinylene end groups that follow 2,1 insertions. The rate law for the former termination process is independent of the 1-hexene concentration, whereas the latter is first order. Analysis of (13)C-labeled polymer provides support for a mechanism of vinylene end group formation that is not chain transfer to monomer. Deterministic modeling of the molecular weight distributions using the fundamental rate laws and kinetic constants demonstrates the robustness of the kinetic analysis. Comparisons of insertion frequencies with estimated limits on the rates of ion-pair symmetrization obtained by NMR suggest that ion-pair separation prior to insertion is not required, but the analysis requires assumptions that cannot be validated.
Polymers containing borane or carborane cage compounds and related applications
Bowen, III, Daniel E.; Eastwood, Eric A [Raymore, MO
2012-06-05
Polymers comprising residues of borane and/or carborane cage compound monomers having at least one polyalkoxy silyl substituent. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Methods of making and applications for using such polymers are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczyk, Gerhard Erich; Miller, Kevin Michael
2011-07-26
There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.
Synthesis and polymerization of vinyl triazolium ionic liquids
Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian
2018-05-15
Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboia, S.; Moldovan, M.; Ardelean, I.
The residual monomer present in post-polymerized dental materials encourages premature degradation of the reconstructed tooth. That is why the residual monomer should be quantified in a simple, fast, accurate and reproducible manner. In our work we propose such an approach for accurate determination of the residual monomer in dental materials which is based on low-field nuclear magnetic resonance (NMR) relaxometry. The results of the NMR approach are compared with those of the high performance liquid chromatography (HPLC) technique. The samples under study contain the main monomers (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and triethylene glycol dimethacrylate) constituting the liquid phase of most dental materials andmore » an initiator. Two samples were analyzed with different ratios of chemical initiation systems: N,N-dimethyl-p-toluide: benzoyl peroxide (1:2 and 0.7:1.2). The results obtained by both techniques highlight that by reducing the initiator the polymerization process slows down and the amount of residual monomer reduces. This prevents the premature degradation of the dental fillings and consequently the reduction of the biomaterial resistance.« less
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Abstract Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins. PMID:29491797
NASA Astrophysics Data System (ADS)
Soliman, Yasser S.; Abdel-Fattah, A. A.; Hamed, A. A.; Bayomi, A. M. M.
2018-03-01
A conjugated monomer 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) (HDTU) was synthesized. Thereafter, it was incorporated into polyvinyl alcohol (PVA), and coated on self-adhesive sheet, thus to prepare film dosimeters. The monomer and films were analyzed using X-ray diffraction (XRD), FTIR spectroscopy and specular reflectance colorimetry. This monomer polymerizes in the films by radiation and turns progressively blue in proportion to absorbed dose, indicating the formation of π-conjugated colored poly-HDTU. Color development was investigated at 480 nm and 610 nm for dose monitoring ranging from 10 Gy to 15 kGy. HDTU in PVA film is highly ordered and crystalline and, upon irradiation, it forms a semi-crystalline polymer with nearly the same interplanar distances as the monomer, indicating the occurrence of topochemical polymerization. During irradiation, polymerization of the monomer is nearly independent of humidity in the range of 0-53% and temperature in the range of 25-45 °C. The uncertainty of this system is 5.16% at 95% confidence level.
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.
Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef
2017-01-01
Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-05-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-01-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060
(1→3)-β-d-Glucan oligosaccharides monomers purification and its H2O2 induction effect study.
Fu, Yunbin; Wang, Mengyu; Wang, Wenxia; Tuo, Yaqin; Guo, Zhimou; Du, Yuguang; Yin, Heng
2015-11-01
In order to produce highly purified (1→3)-β-d-glucan oligosaccharides ((1→3)-β-d-GOS) monomers, a hydrophilic interaction liquid chromatography (HILIC) system with X-Amide stationary phase was performed. Nine (1→3)-β-d-GOS monomers with degree of polymerization (DP) from 2 to 10 were successfully separated. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) demonstrated that these monomers were with high purity. Furthermore, a hydrogen peroxide (H2O2) online detection method was established to monitor H2O2 releases in tobacco cells. This is the first report on nine consecutive (1→3)-β-d-GOS monomers purification and its effect upon H2O2-releasing in plants. It was found that (1→3)-β-d-GOS monomers with higher DP induced stronger defense responses in plants, which will pave the way for elucidating the relationship between (1→3)-β-d-GOS and biological activities. Copyright © 2015 Elsevier B.V. All rights reserved.
Localized overlap algorithm for unexpanded dispersion energies
NASA Astrophysics Data System (ADS)
Rob, Fazle; Misquitta, Alston J.; Podeszwa, Rafał; Szalewicz, Krzysztof
2014-03-01
First-principles-based, linearly scaling algorithm has been developed for calculations of dispersion energies from frequency-dependent density susceptibility (FDDS) functions with account of charge-overlap effects. The transition densities in FDDSs are fitted by a set of auxiliary atom-centered functions. The terms in the dispersion energy expression involving products of such functions are computed using either the unexpanded (exact) formula or from inexpensive asymptotic expansions, depending on the location of these functions relative to the dimer configuration. This approach leads to significant savings of computational resources. In particular, for a dimer consisting of two elongated monomers with 81 atoms each in a head-to-head configuration, the most favorable case for our algorithm, a 43-fold speedup has been achieved while the approximate dispersion energy differs by less than 1% from that computed using the standard unexpanded approach. In contrast, the dispersion energy computed from the distributed asymptotic expansion differs by dozens of percent in the van der Waals minimum region. A further increase of the size of each monomer would result in only small increased costs since all the additional terms would be computed from the asymptotic expansion.
Assessment of the amide-I local modes in gamma- and beta-turns of peptides.
Wang, Jianping
2009-07-14
The amide-I local modes, mainly the C[double bond, length as m-dash]O stretching vibrations, form the structural basis of femtosecond 2D IR spectroscopy in characterizing backbone structures and dynamics of peptides and proteins. In this work, a density functional theory (DFT) level of computational assessment of the amide-I local modes in oligomers mostly in the turn conformations was carried out. It is shown that local mode properties, including transition frequencies and transition dipole magnitudes and orientations, are slightly conformational dependent. However, the distributions of these properties in the peptide oligomers are narrow and have mean values almost identical to those from an isolated peptide monomer, justifying the prevalent use of a uniform local mode in modeling the 1D and 2D IR spectra. In addition, it is shown that the transition dipole magnitude and orientation of the peptide monomer predicted by the DFT calculations can be well approximated by electrostatic potential-based transition charge schemes, e.g. Merz-Singh-Kollman, CHELP, as well as CHELPG.
The mechanism of monomer transfer between two structurally distinct PrP oligomers
Armiento, Aurora; Martin, Davy; Lepejova, Nad’a
2017-01-01
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population. PMID:28746342
The mechanism of monomer transfer between two structurally distinct PrP oligomers.
Armiento, Aurora; Moireau, Philippe; Martin, Davy; Lepejova, Nad'a; Doumic, Marie; Rezaei, Human
2017-01-01
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.
Surfactant mediated polyelectrolyte self-assembly
Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...
2015-11-25
Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less
Role of Transient Mobility on Submonolayer Island Growth: Extensions and Testing
NASA Astrophysics Data System (ADS)
Morales Cifuentes, Josue; Einstein, Theodore; Pimpinelli, Alberto
In studies of epitaxial growth a major goal is assessing the smallest stable cluster (i + 1 monomers, with i the critical nucleus size), by analyzing the capture zone distribution (CZD) or the scaling of incident flux F to the density of stable islands N (N ~Fα , with α the growth exponent). As noted in the previous talk, the GWD has well described the data in several experiments, including submonolayer para-hexaphenyl (6P) on amorphous mica (i ~ 3). Different scaling (Fα) for 6P at (small) large F is attributed to (DLA) ALA dynamics, i.e. i = (5) 7 +/- 2. Our recent theoretical work considered monomers propagating ballistically before thermalizing or attaching to islands, leading to scaling, non-monotonic crossover, and activation energies that account for the data and reconciling the values of i. We present applications to other experimental systems: 6P on SiO2 and pentacene (5A) on amorphous mica. We describe useful simplifying approximations, and preliminary kinetic Monte Carlo simulations including transient effects on growth. Work at UMD supported by NSF CHE 13-05892.
Westbrook, John D.; Shao, Chenghua; Feng, Zukang; Zhuravleva, Marina; Velankar, Sameer; Young, Jasmine
2015-01-01
Summary: The Chemical Component Dictionary (CCD) is a chemical reference data resource that describes all residue and small molecule components found in Protein Data Bank (PDB) entries. The CCD contains detailed chemical descriptions for standard and modified amino acids/nucleotides, small molecule ligands and solvent molecules. Each chemical definition includes descriptions of chemical properties such as stereochemical assignments, chemical descriptors, systematic chemical names and idealized coordinates. The content, preparation, validation and distribution of this CCD chemical reference dataset are described. Availability and implementation: The CCD is updated regularly in conjunction with the scheduled weekly release of new PDB structure data. The CCD and amino acid variant reference datasets are hosted in the public PDB ftp repository at ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif.gz, ftp://ftp.wwpdb.org/pub/pdb/data/monomers/aa-variants-v1.cif.gz, and its mirror sites, and can be accessed from http://wwpdb.org. Contact: jwest@rcsb.rutgers.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25540181
NASA Astrophysics Data System (ADS)
Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro
2018-04-01
The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.