Science.gov

Sample records for monooctanoyl phosphatidylcholine synthesis

  1. Synthesis of phosphatidylcholine under possible primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Rao, M.; Eichberg, J.; Oro, J.

    1982-01-01

    Using a primitive earth evaporating pond model, the synthesis of phosphatidylcholine was accomplished when a reaction mixture of choline chloride and disodium phosphatidate, in the presence of cyanamide and traces of acid, was evaporated and heated at temperatures ranging from 25 to 100 C for 7 hours. Optimum yields of about 15% were obtained at 80 C. Phosphatidylcholine was identified by chromatographic, chemical and enzymatic degradation methods. On enzymatic hydrolysis with phospholipase A2 and phospholipase C, lysophosphatidylcholine and phosphorylcholine were formed, respectively. Alkaline hydrolysis gave glycerophosphorylcholine. The synthesis of phosphatidylcholine as the major compound was accompanied by the formation of lysophosphatidylcholine in smaller amounts. Cyanamide was found to be essential for the formation of phosphatidylcholine, and only traces of HCl, of the order of that required to convert the disodium phosphatidate to free phosphatidic acid were found necessary for the synthesis. This work suggests that phosphatidylcholine, which is an essential component of most biological membranes, could have been synthesized on the primitive earth.

  2. Regulation of phosphatidylcholine synthesis in rat liver endoplasmic reticulum.

    PubMed Central

    Sribney, M; Knowles, C L; Lyman, E M

    1976-01-01

    The biosynthesis of phosphatidylcholine in rat liver microsomal preparations catalysed by CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) was inhibited by a combination of ATP and CoA or ATP and pantetheine. ATP alone at high concentrations (20 mM) inhibits phosphatidylcholine formation to the extent of 70%. In the presence of 0.1 mM-CoA, ATP (2 mM) inhibits to the extent of 80% and in the presence of 1 mM-pantetheine to the extent of 90%. ADP and other nucleotide triphosphates in combination with either CoA or pantetheine are only 10-30% as effective in inhibiting phosphatidylcholine synthesis. AMP(CH2)PP [adenosine 5'-(alphabeta-methylene)triphosphate] together with CoA inhibits to the extent of 59% and with pantetheine by 48%. AMP-P(CH2)P [adenosine 5'-(betagamma-methylene)triphosphate] together with either CoA or pantetheine had no significant effect on phosphatidylcholine formation. Other closely related derivatives of pantothenic acid were without effect either alone or in the presence of ATP, as were thiol compounds such as cysteine, homocysteine, cysteamine, dithiothreitol and glutathione. Several mechanisms by which this inhibition might take place were ruled out and it is concluded that ATP together with either CoA or pantetheine interacts reversibly with phosphatidylcholine synthetase to cause temporarily the inhibition of phosphatidylcholine formation. PMID:182154

  3. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

    SciTech Connect

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2014-03-07

    Highlights: • Dioctanoyl-PC (diC8PC) supported growth of a yeast mutant defective in PC synthesis. • diC8PC was converted to PC species containing longer acyl residues in the mutant. • Both acyl residues of diC8PC were replaced by longer fatty acids in vitro. • This system will contribute to the elucidation of the acyl chain remodeling of PC. - Abstract: A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of {sup 13}C-labeled diC8PC ((methyl-{sup 13}C){sub 3}-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-{sup 13}C){sub 3}-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.

  4. Phosphatidylcholine synthesis in castor bean endosperm. I. Metabolism of L-serine. [Ricinus communis

    SciTech Connect

    Kinney, A.J.; Moore, T.S. Jr.

    1987-05-01

    Endosperm halves from 3-day-old castor bean (Ricinus communis var Hale) were incubated for 30 minutes with L(/sup 14/C)serine, after which label was observed in ethanolamine, choline, phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, ethanolaminephosphate, and CDPethanolamine, but not in cholinephosphate or CDPcholine. Only later did significant amounts of isotope become incorporated into cholinephosphate and CDPcholine. The choline kinase inhibitor hemicholinium-3 prevented the incorporation of label from serine into choline-phosphate and CDPcholine, reduced the incorporation of (/sup 14/C)choline into phosphatidylcholine by 65%, but inhibited the incorporation of label into phosphatidylcholine from serine by only 15%. The inhibitor did not prevent the incorporation of labeled methyl groups from S-adenosyl-L-methionine into phosphatidyldimethylethanolamine plus phosphatidyl-choline. The amount of incorporation of label from the methyl donor was only 8% of that from choline into phosphatidylcholine. The implications of these results for the pathway and regulation of phosphatidylcholine synthesis from the water-soluble precursors are discussed.

  5. Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents

    PubMed Central

    Gliszczyńska, Anna; Niezgoda, Natalia; Gładkowski, Witold; Czarnecka, Marta; Świtalska, Marta; Wietrzyk, Joanna

    2016-01-01

    The synthesis of novel phosphatidylcholines with geranic and citronellic acids in sn-1 and sn-2 positions is described. The structured phospholipids were obtained in high yields (59–87%) and evaluated in vitro for their cytotoxic activity against several cancer cell lines of different origin: MV4-11, A-549, MCF-7, LOVO, LOVO/DX, HepG2 and also towards non-cancer cell line BALB/3T3 (normal mice fibroblasts). The phosphatidylcholines modified with monoterpene acid showed a significantly higher antiproliferative activity than free monoterpene acids. The highest activity was observed for the terpene-phospholipids containing the isoprenoid acids in sn-1 position of phosphatidylcholine and palmitic acid in sn-2. PMID:27310666

  6. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants

    PubMed Central

    Conover, Gloria M; Martinez-Morales, Fernando; Heidtman, Matthew I.; Luo, Zhao-Qing; Tang, May; Chen, Cui; Geiger, Otto; Isberg, Ralph R.

    2009-01-01

    The function of phosphatidylcholine (PC) in the bacterial cell envelope remains cryptic. We show here that productive interaction of the respiratory pathogen Legionella pneumophila with host cells requires bacterial PC. Synthesis of the lipid in L. pneumophila was shown to occur via either phospholipid N-methyltransferase (PmtA) or phosphatidylcholine synthase (PcsA), but the latter pathway was demonstrated to be of predominant importance. Loss of PC from the cell envelope caused lowered yields of L. pneumophila within macrophages as well as loss of high multiplicity cytotoxicity, while mutants defective in PC synthesis could be complemented either by reintroduction of PcsA or by overproduction of PmtA. The lowered yields and reduced cytotoxicity in mutants with defective PC biosynthesis were due to three related defects. First, there was a poorly functioning Dot/Icm apparatus, which delivers substrates required for intracellular growth into the cytosol of infected cells. Secondly, there was reduced bacterial binding to macrophages, possibly due to loss of PC or a PC derivative on the bacterium that is recognized by the host cell. Finally, strains lacking PC had low steady state levels of flagellin protein, a deficit that had been previously associated with the phenotypes of lowered cytotoxicity and poor cellular adhesion. PMID:17979985

  7. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants.

    PubMed

    Conover, Gloria M; Martinez-Morales, Fernando; Heidtman, Matthew I; Luo, Zhao-Qing; Tang, May; Chen, Cui; Geiger, Otto; Isberg, Ralph R

    2008-02-01

    The function of phosphatidylcholine (PC) in the bacterial cell envelope remains cryptic. We show here that productive interaction of the respiratory pathogen Legionella pneumophila with host cells requires bacterial PC. Synthesis of the lipid in L. pneumophila was shown to occur via either phospholipid N-methyltransferase (PmtA) or phosphatidylcholine synthase (PcsA), but the latter pathway was demonstrated to be of predominant importance. Loss of PC from the cell envelope caused lowered yields of L. pneumophila within macrophages as well as loss of high multiplicity cytotoxicity, while mutants defective in PC synthesis could be complemented either by reintroduction of PcsA or by overproduction of PmtA. The lowered yields and reduced cytotoxicity in mutants with defective PC biosynthesis were due to three related defects. First, there was a poorly functioning Dot/Icm apparatus, which delivers substrates required for intracellular growth into the cytosol of infected cells. Second, there was reduced bacterial binding to macrophages, possibly due to loss of PC or a PC derivative on the bacterium that is recognized by the host cell. Finally, strains lacking PC had low steady-state levels of flagellin protein, a deficit that had been previously associated with the phenotypes of lowered cytotoxicity and poor cellular adhesion.

  8. Phosphatidylcholine synthesis in the rat: The substrate for methylation and regulation by choline

    SciTech Connect

    Datko, A.H.; Aksamit, R.R.; Mudd, S.H. )

    1990-03-01

    Two lines of evidence led us to reexamine the possibility that methylation of phosphoethanolamine and its partially methylated derivatives, in addition to methylation of the corresponding phosphatidyl derivatives, plays a role in mammalian phosphatidylcholine biosynthesis: (a) Results obtained by Salerno and Beeler with rat appear to strongly support such a role for methylation of phosphobases; (b) Such reactions have recently been shown to play major roles in phosphatidylcholine synthesis by higher plants. We found that, following continuous labeling of rat liver with L-(methyl-3H)methionine for 10.4 min (intraperitoneal administration) or for 0.75 min (intraportal administration), virtually no 3H was detected in methylated derivatives of phosphoethanolamine, but readily detectable amounts of 3H were present in the base moiety of each methylated derivative of phosphatidylethanolamine. Thus, there was no indication that phospho-base methylation makes a significant contribution. Studies of cultured rat hepatoma cells showed definitively for the first time in a mammalian system that choline deprivation up-regulates the rate of flow of methyl groups originating in methionine into phosphatidylethanolamine and derivatives. Even under these conditions, methylation of phosphoethanolamine bases appeared to play a negligible role.

  9. The Rate-limiting Enzyme in Phosphatidylcholine Synthesis Regulates Proliferation of the Nucleoplasmic ReticulumD⃞

    PubMed Central

    Lagace, Thomas A.; Ridgway, Neale D.

    2005-01-01

    The nucleus contains a network of tubular invaginations of the nuclear envelope (NE), termed the nucleoplasmic reticulum (NR), implicated in transport, gene expression, and calcium homeostasis. Here, we show that proliferation of the NR, measured by the frequency of NE invaginations and tubules, is regulated by CTP:phosphocholine cytidylyltransferase-α (CCTα), the nuclear and rate-limiting enzyme in the CDP–choline pathway for phosphatidylcholine (PtdCho) synthesis. In Chinese hamster ovary (CHO)-K1 cells, fatty acids triggered activation and translocation of CCTα onto intranuclear tubules characteristic of the NR. This was accompanied by a twofold increase in NR tubules quantified by immunostaining for lamin A/C or the NE. CHO MT58 cells expressing a temperature-sensitive CCTα allele displayed reduced PtdCho synthesis and CCTα expression and minimal proliferation of the NR in response to oleate compared with CHO MT58 cells stably expressing CCTα. Expression of CCTα mutants in CHO58 cells revealed that both enzyme activity and membrane binding promoted NR proliferation. In support of a direct role for membrane binding in NR tubule formation, recombinant CCTα caused the deformation of liposomes into tubules in vitro. This demonstrates that a key nuclear enzyme in PtdCho synthesis coordinates lipid synthesis and membrane deformation to promote formation of a dynamic nuclear-cytoplasmic interface. PMID:15635091

  10. CTP:phosphocholine cytidylyltransferase α (CCTα) and lamins alter nuclear membrane structure without affecting phosphatidylcholine synthesis.

    PubMed

    Gehrig, Karsten; Ridgway, Neale D

    2011-06-01

    CTP:phosphocholine cytidylyltransferase α (CCTα) is a nuclear enzyme that catalyzes the rate-limiting step in the CDP-choline pathway for phosphatidylcholine (PC) synthesis. Lipid activation of CCTα results in its translocation to the nuclear envelope and expansion of an intranuclear membrane network termed the nucleoplasmic reticulum (NR) by a mechanism involving membrane deformation. Nuclear lamins are also required for stability and proliferation of the NR, but whether this unique structure, or the nuclear lamina in general, is required for PC synthesis is not known. To examine this relationship, the nuclear lamina was depleted by RNAi or disrupted by expression of the Hutchinson-Gilford progeria syndrome (HGPS) mutant lamin A (progerin), and the effect on CCTα and choline metabolism was analyzed. siRNA-mediated silencing of lamin A/C or lamin B1 in CHO cells to diminish the NR had no effect on PC synthesis, while double knockdown non-specifically inhibited the pathway. Confirming this minor role in PC synthesis, only 10% of transiently overexpressed choline/ethanolamine phosphotransferase was detected in the NR. In CHO cells, CCTα was nucleoplasmic and co-localized with GFP-progerin in nuclear folds and invaginations; however, HGPS fibroblasts displayed an abnormal distribution of CCTα in the cytoplasm and nuclear envelope that was accompanied by a 2-fold reduction in PC synthesis. In spite of its altered localization, choline-labeling experiments showed that CCT activity was unaffected, and inhibition of PC synthesis was traced to reduced activity of a hemicholinium-sensitive choline transporter. We conclude that CCTα and lamins specifically cooperate to form the NR, but the overall structure of the nuclear envelope has a minimal impact on CCT activity and PC synthesis.

  11. Intracellular localization of phosphatidylcholine and phosphatidylethanolamine synthesis in cotyledons of cotton seedlings

    SciTech Connect

    Chapman, K.D.; Trelease, R.N. )

    1991-01-01

    Subfractionation of clarified cotyledon homogenates of cotton (Gossypium hirsutum L.) seedlings on sucrose gradients revealed a single coincident peak of cholinephosphotransferase (CPT) and ethanolaminephosphotransferase (EPT) activities, which equilibrated with the main peak of Anti-mycin A-insensitive NADH: cytochrome c reductase (CCR) activity. The small percentage of CPT and EPT activities in glyoxysome-enriched pellets equilibrated with cytochrome c oxidase activity, not with catalase activity. Preincubation of microsomes in 0.2 millimolar MgCl{sub 2} followed by subfractionation on sucrose gradients resulted in peak CPT and EPT activities equilibrating with peak CCR activity at 24% (w/w) sucrose. Preincubation of microsomes with {sup 14}C-CCP choline (or {sup 14}C-CDPethanolamine) resulted in synthesis and incorporation of {sup 14}C-phosphatidylcholine (PC) (or {sup 14}C-phosphatidylethanolamine, PE) into membranes at the same density. Increasing the Mg{sup 2+} concentration to 2.0 millimolar facilitated binding of ribosomes and caused a concomitant shift in density (to 34% w/w sucrose) of peak CPT, EPT, and CCR activities. under these conditions, newly synthesized and incorporated {sup 14}C-PC (or PE) was recovered in these membranes. These results indicate that Er in cotyledons of germinated cotton seedlings is the primary subcellular site of PC and PE synthesis. This is similar to the situation in endosperm tissue but distinctly different from root and hypocotyl tissue where Golgi are a major subcellular site of PC and PE synthesis.

  12. Synthesis of acetylcholine from choline derived from phosphatidylcholine in a human neuronal cell line

    SciTech Connect

    Blusztajn, J.K.; Liscovitch, M.; Richardson, U.I.

    1987-08-01

    Cholinergic neurons are unique among cells since they alone utilize choline not only as a component of major membrane phospholipids, such as phosphatidylcholine (Ptd-Cho), but also as a precursor of their neurotransmitter acetylcholine (AcCho). It has been hypothesized that choline-phospholipids might serve as a storage pool of choline for AcCho synthesis. The selective vulnerability of cholinergic neurons in certain neurodegenerative diseases (e.g., Alzheimer disease, motor neuron disorders) might result from the abnormally accelerated liberation of choline (to be used a precursor of AcCho) from membrane phospholipids, resulting in altered membrane composition and function and compromised neuronal viability. However, the proposed metabolic link between membrane turnover and AcCho synthesis has been difficult to demonstrate because of the heterogeneity of the preparations used. Here the authors used a population of purely cholinergic cells (human neuroblastomas, LA-N-2), incubated in the presence of (methyl-/sup 3/H)methionine to selectively label PtdCho synthesized by methylation of phosphatidylethanolamine, the only pathway of de novo choline synthesis. Three peaks of radioactive material that cochromatographed with authentic AcCho, choline, and phosphocholine were observed when the water-soluble metabolites of the (/sup 3/H)PtdCho were purified by high-performance liquid chromatography. The results demonstrate that AcCho can be synthesized from choline derived from the degradation of endogenous PtdCho formed de novo by methylation of phosphatidylethanolamine.

  13. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites

    PubMed Central

    Zhang, Jiantao; Zhang, Zhenlu; Chukkapalli, Vineela; Nchoutmboube, Jules A.; Li, Jianhui; Randall, Glenn; Belov, George A.; Wang, Xiaofeng

    2016-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes. PMID:26858414

  14. Restrained Phosphatidylcholine Synthesis in a Cellular Model of Down's Syndrome is Associated with the Overexpression of Dyrk1A.

    PubMed

    Hijazi, Maruan; Medina, José M; Velasco, Ana

    2017-03-01

    Aberrant formation of the cerebral cortex could be attributed to the lack of suitable substrates that direct the migration of neurons. Previous work carried out at our laboratory has shown that oleic acid is a neurotrophic factor. In order to characterize the effect of oleic acid in a cellular model of Down's syndrome (DS), here, we used immortalized cell lines derived from the cortex of trisomy Ts16 and euploid mice. We report that in the plasma membrane of euploid cells, an increase in phosphatidylcholine concentrations occurs in the presence of oleic acid. However, in trisomic cells, oleic acid failed to increase phosphatidylcholine incorporation into the plasma membrane. Gene expression analysis of trisomic cells revealed that the phosphatidylcholine biosynthetic pathway was deregulated. Taken together, these results suggest that the overdose of specific genes in trisomic lines delays differentiation in the presence of oleic acid. The dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) gene is located on human chromosome 21. DYRK1A contributes to intellectual disability and the early onset of Alzheimer's disease in DS patients. Here, we explored the potential role of Dyrk1A in the reduction of phosphatidylcholine concentrations in trisomic cells in the presence of oleic acid. The downregulation of Dyrk1A by small interfering RNA (siRNA) in trisomic cells returned phosphatidylcholine concentrations up to similar levels to those of euploid cells in the presence of oleic acid. Thus, our results highlight the role of Dyrk1A in brain development through the modulation of phosphatidylcholine location, levels and synthesis.

  15. Synthesis of mixed-chain phosphatidylcholines including coumarin fluorophores for FRET-based kinetic studies of phospholipase A(2) enzymes.

    PubMed

    Wang, Manlin; Pinnamaraju, Susmitha; Ranganathan, Radha; Hajdu, Joseph

    2013-01-01

    Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 ester linkage of glycerophospholipids to produce fatty acids and lysophospholipids. A significant number of mammalian phospholipases comprise a family of secreted PLA2 enzymes, found in specific tissues and cellular locations, exhibiting unique enzymatic properties and distinct biological functions. Development of new real-time spectrofluorimetric PLA2 assays should facilitate the kinetic characterization and mechanistic elucidation of the isozymes in vitro, with the potential applicability to detect and measure catalytic PLA2 activity in tissues and cellular locations. Here we report a new synthesis of double-labeled phosphatidylcholine analogs with chain-terminal reporter groups including coumarin fluorophores for fluorescence resonance energy transfer (FRET)-based kinetic studies of PLA2 enzymes. The use of coumarin derivatives as fluorescent labels provides reporter groups with substantially decreased size compared to the first generation of donor-acceptor pairs of fluorescent phospholipids. The key advantage of the design is to interfere less with the physicochemical properties of the acyl chains, thereby improving the substrate quality of the synthetic probes. In order to assess the impact of the fluorophore substituents on the catalytic hydrolysis and on the phospholipid packing in the lipid-water interface of the assay, we used the experimentally determined specific activity of bee-venom phospholipase A2 as a model for the secretory PLA2 enzymes. Specifically, the rate of PLA2 hydrolysis of the coumarin labeled phosphatidylcholine analogs was less than three times slower than the natural substrate dipalmitoyl phosphatidylcholine (DPPC) under the same experimental conditions. Furthermore, variation of the mole fraction of the synthetic phosphatidylcholine vs. that of the natural DPPC substrate showed nearly ideal mixing behavior in the phospholipid-surfactant aggregates of the assay. The

  16. Synthesis and in vitro antioxidant and antimicrobial studies of novel structured phosphatidylcholines with phenolic acids.

    PubMed

    Balakrishna, Marrapu; Kaki, Shiva Shanker; Karuna, Mallampalli S L; Sarada, Sripada; Kumar, C Ganesh; Prasad, R B N

    2017-04-15

    Novel phenoylated phosphatidylcholines were synthesized from 1,2-dipalmitoyl phosphatidylcholine/egg 1,2-diacyl phosphatidylcholine and phenolic acids such as ferulic, sinapic, vanillic and syringic acids. The structures of phenoylated phosphatidylcholines were confirmed by spectral analysis. 2-acyl-1-lyso phosphatidylcholine was synthesized from phosphatidylcholine via regioselective enzymatic hydrolysis and was reacted with hydroxyl protected phenolic acids to produce corresponding phenoylated phosphatidylcholines in 48-56% yields. Deprotection of protected phenoylated phosphatidylcholines resulted in phenoylated phosphatidylcholines in 87-94% yields. The prepared compounds were evaluated for their preliminary in vitro antimicrobial and antioxidant activities. Among the active derivatives, compound 1-(4-hydroxy-3,5-dimethoxy) cinnamoyl-2-acyl-sn-glycero-3-phosphocholine exhibited excellent antioxidant activity with EC50 value of 16.43μg/mL. Compounds 1-(4-hydroxy-3-methoxy) cinnamoyl-2-acyl-sn-glycero-3-phosphocholine and 1-(4-hydroxy-3,5-dimethoxy) cinnamoyl-2-palmitoyl-sn-glycero-3-phosphocholine exhibited good antioxidant activity with EC50 values of 36.05 and 33.35μg/mL respectively. Compound 1-(4-hydroxy-3-methoxy) cinnamoyl-2-palmitoyl-sn-glycero-3-phosphocholine exhibited good antibacterial activity against Klebsiella planticola with MIC of 15.6μg/mL and compound 1-(4-hydroxy-3-methoxy) benzoyl-2-acyl-sn-glycero-3-phosphocholine exhibited good antifungal activity against Candida albicans with MIC of 15.6μg/mL.

  17. In vivo synthesis of phosphatidylcholine in rat brain via the phospholipid methylation pathway

    NASA Technical Reports Server (NTRS)

    Lakher, Michael; Wurtman, Richard J.

    1987-01-01

    The in vivo synthesis of brain phosphatidylcholine (PC) by the methylation of phosphatidylethanolamine (PE) was examined. (H-3)methyl)methionine was infused i.c.v., by indwelling cannula, and brain samples were taken 0.5-18 h thereafter and assayed for (H-3)PC, as well as for its biosynthetic intermediates (H-3)phosphatidyl monomethylethanolamine ((H-3)PMME) and (H-3)phosphatidyl dimethylethanolamine ((H-3)PDME), and for (H-3)lysophosphatidylcholine ((H-3)LPC) and S-(H-3)adenosylmethionine ((H-3)SAM). Most of the (H-3)PC (79-94 percent) was present ipsilateral to the infusion site; indicating that the radioactivity in the (H-3)PC was primarily of intracerebral origin, and not taken up from the blood. Moreover, only very low levels of (H-3)PC were attained in brains of animals receiving (H-3)methionine i.p. and these levels were symmetrically distributed. (H-3)PMME and (H-3)PDME turned over with apparent half-lives of 2.2 h and 2.4 h. In contrast, the accumulation of brain (H-3)PC was biphasic, suggesting the existence of two pools, the more labile of which turned over rapidly (t(sub 1/2) = 5 h) and was formed for as long as (H-3)PMME and (H-3)PDME are present in the brain, and another, which was distinguishable only at 18 h after the (H-3)methionine infusion. (The latter pool may have been synthesized from (H-3)choline that was released via the hydrolysis of some of the brain (H-3)PC previously formed by the methylation of PE.) Subcellular fractionation of brain tissue obtained after in vivo labelling with (H-3)methionine revealed that mitochondrial PC had the highest specific radioactivity (dpm per micromol total lipid phosphorus), and myelin the least. These observations affirm that rat brain does synthesize PC in vivo by methylating PE, and the technique provides an experimental system which may be useful for examining the physiological regulation of this process.

  18. Pool sizes of the precursors for phosphatidylcholine synthesis in developing rat lung.

    PubMed

    Tokmakjian, S; Possmayer, F

    1981-10-23

    1. Pulmonary maturation in the rat is accompanied by a 30% postnatal increase in the pool size of choline, a 4-fold overall prenatal and postnatal decrease in the level of cholinephosphate, a 3-fold decrease in CDPcholine levels and a 2-fold increase in the content of phosphatidylcholine. 2. The level of 1,2-diacyl-sn-glycerol in rat lung increases 5-fold during the fetal and neonatal periods. Only minor alterations were noted in the fatty acid composition. 3. These results are consistent with an increase in the relative rates of the cholinephosphate cytidylyl-transferase and cholinephosphotransferase steps of phosphatidylcholine production during pulmonary maturation. The relative rate of the step catalyzed by phosphatidate phosphohydrolase may also be increased.

  19. Selective use of palmitic acid over stearic acid for synthesis of phosphatidylcholine and phosphatidylglycerol in lung

    SciTech Connect

    Tsao, F.H.

    1986-11-01

    The incorporation of (/sup 3/H)palmitic acid and (/sup 14/C)stearic acid into phospholipids in rabbit lung tissue was studied. Under equal molar concentrations of palmitate and stearate, palmitate was incorporated to the 1- and 2-positions of phosphatidylcholine (PC) and phosphatidylglycerol (PG) 2-3 times more than stearate. By contrast, palmitate was 30% less than stearate in phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine. These results suggest that preferential utilization of palmitate over stearate, rather than substrate availability, determines the high content of palmitoyl at the 1- and 2-positions of PC and PG in lung.

  20. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

    PubMed

    Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A

    2016-10-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C

  1. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis.

    PubMed

    Wang, Liping; Kazachkov, Michael; Shen, Wenyun; Bai, Mei; Wu, Hong; Zou, Jitao

    2014-12-01

    Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.

  2. Inhaled nitric oxide alleviates hyperoxia suppressed phosphatidylcholine synthesis in endotoxin-induced injury in mature rat lungs

    PubMed Central

    Gong, Xiaohui; Guo, Chunbao; Huang, Shibing; Sun, Bo

    2006-01-01

    Background We investigated efficacy of inhaled nitric oxide (NO) in modulation of metabolism of phosphatidylcholine (PC) of pulmonary surfactant and in anti-inflammatory mechanism of mature lungs with inflammatory injury. Methods Healthy adult rats were divided into a group of lung inflammation induced by i.v. lipopolysaccharides (LPS) or a normal control (C) for 24 h, and then exposed to: room air (Air), 95% oxygen (O), NO (20 parts per million, NO), both O and NO (ONO) as subgroups, whereas [3H]-choline was injected i.v. for incorporation into PC of the lungs which were processed subsequently at 10 min, 4, 8, 12 and 24 h, respectively, for measurement of PC synthesis and proinflammatory cytokine production. Results LPS-NO subgroup had the lowest level of labeled PC in total phospholipids and disaturated PC in bronchoalveolar lavage fluid and lung tissue (decreased by 46–59%), along with the lowest activity of cytidine triphosphate: phosphocholine cytidylyltransferase (-14–18%) in the lungs, compared to all other subgroups at 4 h (p < 0.01), but not at 8 and 12 h. After 24-h, all LPS-subgroups had lower labeled PC than the corresponding C-subgroups (p < 0.05). LPS-ONO had higher labeled PC in total phospholipids and disaturated PC, activity of cytidylyltransferase, and lower activity of nuclear transcription factor-κB and expression of proinflammatory cytokine mRNA, than that in the LPS-O subgroup (p < 0.05). Conclusion In LPS-induced lung inflammation in association with hyperoxia, depressed PC synthesis and enhanced proinflammatory cytokine production may be alleviated by iNO. NO alone only transiently suppressed the PC synthesis as a result of lower activity of cytidylyltransferase. PMID:16403237

  3. Evidence for a regulatory role of CTP : choline phosphate cytidylyltransferase in the synthesis of phosphatidylcholine in fetal lung following premature birth.

    PubMed

    Weinhold, P A; Feldman, D A; Quade, M M; Miller, J C; Brooks, R L

    1981-07-24

    The sequence of reactions which function to incorporate choline into phosphatidylcholine was investigated in lung from fetuses following premature delivery. The rate of [methyl-14C]choline incorporation by rat lung slices into phosphatidylcholine increases following premature delivery at both 20 and 21 days gestation. The increase in choline incorporation is primarily due to an increased specific activity of phosphorylcholine resulting from a decreased pool size of phosphorylcholine. The decrease in the concentration of phosphorylcholine following premature delivery is apparently caused by an increased activity of cytidylyltransferase which leads to an increase in the conversion of phosphorylcholine to phosphatidylcholine. The total activity of choline kinase, cytidylyltransferase, cholinephosphotransferase and phosphatidate phosphohydrolase did not change significantly. However, the cytidylyltransferase activity in the microsome fraction increased following premature delivery at 20 and 21 days gestation. The amount of cytidylyltransferase in the H form in the cytosol fraction increased following premature delivery at 21 days gestation but not at 20 days gestation. The results are interpreted to indicate that the active form of cytidylyltransferase in lung cells is the membrane-bound enzyme and this form increases following birth resulting in an increased synthesis of phosphatidylcholine.

  4. Tumor necrosis factor-alpha-induced inhibition of phosphatidylcholine synthesis by human type II pneumocytes is partially mediated by prostaglandins.

    PubMed Central

    Arias-Díaz, J; Vara, E; García, C; Balibrea, J L

    1994-01-01

    TNF alpha seems to play an important role in the pathogenesis of adult respiratory distress syndrome. We studied the effect of TNF alpha on phospholipid synthesis by isolated type II pneumocytes and attempted to characterize the role of arachidonate metabolites and the influence of pentoxifylline on such an effect. Lung tissue obtained from both multiple organ donors (n = 14) and lung cancer patients (n = 11) was used for cell isolation. Surfactant synthesis was measured by the incorporation of D-[U-14C]glucose into phosphatidylcholine (PC). The basal PC synthesis was higher in the donor group than in the malignant group (3.44 +/- 0.19 vs 2.15 +/- 0.15 pmol/microgram protein x 120 min, P < 0.01), and, in the presence of 100 ng/ml of TNF alpha, the incorporation of labeled glucose into PC was reduced significantly in both donor (1.13 +/- 0.11 vs 3.44 +/- 0.19 pmol/microgram protein x 120 min, P < 0.01) and cancer (0.99 +/- 0.11 vs 2.15 +/- 0.15 pmol/microgram protein x 120 min, P < 0.01) groups. Indomethacin was able to completely block the cytokine-induced decrease in PC synthesis by pneumocytes from the malignant group and to attenuate the inhibitory effect of TNF alpha in those from donors, nordihydroguaiaretic acid having a similar effect. The TNF alpha effect can be blocked by pentoxifylline (100 micrograms/ml), a substance which can even succeed in reverting the basal secretory inhibition of cancer patients' pneumocytes to levels similar to those of the donor group. TNF alpha may contribute to the pathophysiology of adult respiratory distress syndrome by inhibiting the synthesis of surfactant. TNF alpha might be produced in lung tumors, resulting in chronic paracrine or systemic exposure of pneumocytes to low concentrations of the cytokine. The TNF alpha effect was not prevented completely by the blockage of the arachidonic acid metabolism, hence other mediators should also be implicated. PMID:8040266

  5. The rate-limiting reaction in phosphatidylcholine synthesis by alveolar type II cells isolated from fetal rat lung.

    PubMed

    Post, M; Batenburg, J J; Van Golde, L M; Smith, B T

    1984-10-04

    The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger than both the choline and CDPcholine pools. Chemical measurements of the pool sizes showed that the choline phosphate pool was indeed much larger than the intracellular choline and CDPcholine pools. Pulse-chase studies with [Me-3H]choline revealed that labelled choline taken up by the cells was rapidly phosphorylated to choline phosphate and that the radioactivity lost from choline phosphate during the chase period appeared in phosphatidylcholine. Little change was observed in the labelling of CDPcholine during the chase period. These results indicate that cholinephosphate cytidylyltransferase catalyzes a rate-limiting reaction in phosphatidylcholine formation by fetal rat lung type II cells.

  6. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    SciTech Connect

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. )

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  7. Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress.

    PubMed Central

    Moellering, Douglas R; Levonen, Anna-Liisa; Go, Young-Mi; Patel, Rakesh P; Dickinson, Dale A; Forman, Henry Jay; Darley-Usmar, Victor M

    2002-01-01

    Exposure of endothelial cells to oxidized low-density lipoprotein (oxLDL) leads to diverse cellular effects, including induction of the intracellular antioxidant GSH. It is not known whether lipid-or protein-derived oxidation products cause GSH induction and whether this involves increased activity of the key enzyme in its synthesis, glutamate-cysteine ligase (GCL). Furthermore, the effect of oxLDL exposure on the cell's ability to combat oxidative stress has not been previously examined. In the present study we found that, in bovine aortic endothelial cells, LDL or 1-palmitoyl-2-arachidonyl phosphatidylcholine oxidized by different reactive oxygen and nitrogen species induced GSH synthesis. However, prevention of GSH synthesis during exposure to oxLDL caused extensive cell death. The mediator causing GSH induction was shown to be a polar lipid and resulted in the increased activity of GCL as well as increased protein levels of the regulatory subunit of GCL. Pretreatment with both oxLDL and the polar lipid subfraction of the oxLDL protected cells against the toxicity of 2,3-dimethoxynaphthoquinone (DMNQ), a superoxide- and H(2)O(2)-forming compound. The potential of a low level of lipid peroxidation products to initiate cytoprotective pathways are discussed. PMID:11829739

  8. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins

    PubMed Central

    Huang, Jin; Ghosh, Ratna; Tripathi, Ashutosh; Lönnfors, Max; Somerharju, Pentti; Bankaitis, Vytas A.

    2016-01-01

    Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them. PMID:27193303

  9. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction.

    PubMed

    Adlercreutz, Dietlind; Budde, Heike; Wehtje, Ernst

    2002-05-20

    The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.

  10. Synthesis of DHA/EPA-rich phosphatidylcholine by immobilized phospholipase A1: effect of water addition and vacuum condition.

    PubMed

    Li, Daoming; Qin, Xiaoli; Wang, Weifei; Li, Zhigang; Yang, Bo; Wang, Yonghua

    2016-08-01

    DHA/EPA-rich phosphatidylcholine (PC) was successfully synthesized by immobilized phospholipase A1 (PLA1)-catalyzed transesterification of PC and DHA/EPA-rich ethyl esters in a solvent-free system. Effects of reaction temperature, water addition and substrate mass ratio on the incorporation of DHA/EPA were evaluated using response surface methods (RSM). Water addition had most significant effect on the incorporation. Reaction temperature and substrate mass ratio, however, had no significant effect on the incorporation. The maximal incorporation was 19.09 % (24 h) under the following conditions: temperature 55.7 °C, water addition 1.1 wt % and substrate mass ratio (ethyl esters/PC) 6.8:1. Furthermore, effects of water addition (from 0 to 1.25 wt %) on DHA/EPA incorporation and the composition of products were further investigated. The immobilized PLA1 was more active when water addition was above 0.5 wt %. By monitoring the reaction processes with different water addition, a possible reaction scheme was proposed for transesterification of PC with DHA/EPA-rich ethyl esters. In summary, PC and sn2-lysophosphatidylocholine (LPC) were predominant in the mixtures at early stages of reaction, whereas sn1-LPC and glycerophosphocholine (GPC) predominant at later stages. The vacuum employed after 24 h significantly increased the incorporation of DHA/EPA and the composition of PC, and the highest incorporation (30.31 %) of DHA/EPA was obtained at 72 h and the yield of PC was 47.2 %.

  11. Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low density lipoproteins in human hepatoma Huh7 cells.

    PubMed

    Yao, Hongbing; Ye, Jin

    2008-01-11

    Hepatocytes play a crucial role in regulating lipid metabolism by exporting cholesterol and triglyceride into plasma through secretion of very low density lipoproteins (VLDL). VLDL production is also required for release of hepatitis C virus (HCV) from infected hepatocytes. Here, we show that long chain acyl-CoA synthetase 3 (ACSL3) plays a crucial role in secretion of VLDL and HCV from hepatocytes. In cultured human hepatoma Huh7 cells, ACSL3 is specifically required for incorporation of fatty acids into phosphatidylcholine. In cells receiving small interfering RNA targeting ACSL3, secretion of apolipoprotein B, the major protein component of VLDL, was inhibited and the lipoprotein was rapidly degraded. This inhibition in secretion was completely eliminated when these cells were treated with phosphatidylcholine. Treatment of cells with small interfering RNA targeting ACSL3 also inhibited secretion of HCV from Huh7-derived cells. These results identify ACSL3 as a new enzymatic target to limit VLDL secretion and HCV infection.

  12. Phosphatidylcholine synthesis is essential for HrpZ harpin secretion in plant pathogenic Pseudomonas syringae and non-pathogenic Pseudomonas sp. 593.

    PubMed

    Xiong, Min; Long, Deliang; He, Huoguang; Li, Yang; Li, Yadong; Wang, Xingguo

    2014-01-01

    Pseudomonas syringae pv. syringae van Hall is important phytopathogenic bacterium of stone fruit trees, and able to elicit hypersensitive response (HR) in nonhost plants. The HrpZ, secreted via type III secretion system (T3SS) to the extracellular space of the plant, is a T3SS-dependent protein and a sole T3SS effector able to induce the host defense response outside host cells. We deleted the phosphatidylcholine synthase gene (pcs) of P. syringae pv. syringae van Hall CFCC 1336, and found that the 1336 pcs(-) mutant was unable to synthesize phosphatidylcholine and elicit a typical HR in soybean. Further studies showed that the 1336 pcs(-) mutant was unable to secrete HrpZ harpin but could express HrpZ protein in cytoplasm as effectively as the wild type. To confirm if phosphatidylcholine affects HrpZ harpin secretion, we introduced the hrpZ gene into the soil-dwelling bacterium Pseudomonas sp. 593 and the 593 pcs(-) mutant, which were unable to express HrpZ harpin and elicit HR in tobacco or soybean. Western blotting and HR assay showed that the 593H not only secreted HrpZ harpin but also caused a strong HR in tobacco and soybean. In contrast, the 593 pcs(-)H only expressed HrpZ protein in its cytoplasm at the wild type level, but did not secrete HrpZ harpin or elicit HR reaction. Our results demonstrate that phosphatidylcholine is essential for the secretion of HrpZ harpin in P. syringae pv. syringae van Hall and other Pseudomonas strains.

  13. Phosphatidylcholine and the CDP-Choline Cycle

    PubMed Central

    Fagone, Paolo; Jackowski, Suzanne

    2012-01-01

    The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477

  14. Do cholinephosphotransferase and phosphatidylethanolamine methyltransferase synthesize different species of phosphatidylcholine

    SciTech Connect

    Shin, S.H.; Moore, T.S.

    1986-04-01

    Two pathways exist for phosphatidylcholine (PC) synthesis in castor bean endosperm. The major pathway utilizes the reaction; (CDPcholine + diacylglycerol ..-->.. PC + CMP) while the other is through (PE + 3 S-Adenosylmethioninie ..-->.. PC + 3 homocysteine). The reason for two pathways is not clear. In an effort to determine if they produce two different products, radioactive precursors (SAM and CDPcholine) were administered to isolated endoplasmic reticulum from the castor bean endosperm. The products were extracted, chromatographed on TLC, and the PC classes separated by argentation chromatography. The radioactivity was determined by a RTLC Scanner. By these methods, it has been determined that there are differences between the PC products of the methyltransferase and the cholinephosphotransferase.

  15. Brucella abortus Synthesizes Phosphatidylcholine from Choline Provided by the Host

    PubMed Central

    Comerci, Diego J.; Altabe, Silvia; de Mendoza, Diego; Ugalde, Rodolfo A.

    2006-01-01

    The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-β-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process. PMID:16484204

  16. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.

    PubMed

    Ohvo, H; Olsio, C; Slotte, J P

    1997-11-15

    The hydrolysis of plasma membrane sphingomyelin is known to dramatically alter cellular cholesterol homeostasis in different ways, whereas the degradation of plasma membrane phosphatidylcholine has much less or no effects on cell cholesterol homeostasis [Pörn, Ares, Slotte, J. Lipid Res. 34 (1993) 1385-1392]. In this study, we used an efficient extracellular cholesterol acceptor (cyclodextrin) and determined the extent of cholesterol efflux from cultured fibroblasts in which plasma membrane sphingomyelin or phosphatidylcholine was degraded. Treatment of cells with sphingomyelinase reduced the cell sphingomyelin content by about 76% (about 13 nmol SM degraded), and dramatically increased the desorption of [3H]cholesterol from the plasma membrane to 2-hydroxypropyl-beta-cyclodextrin. The corresponding hydrolysis of cell surface phosphatidylcholine (about 12% reduction of the cellular phosphatidylcholine content, corresponding to about 12 nmol degraded PC) had almost no effect on cell [3H]cholesterol efflux. The stimulatory effect of sphingomyelin degradation on cell [3H]cholesterol efflux was reversible, since rates of [3H]cholesterol efflux dropped back to control levels when cells (in this case baby hamster kidney cells) were allowed to restore their sphingomyelin content by re-synthesis in the absence of sphingomyelinase. The findings of this study clearly demonstrate that plasma membrane sphingomyelin markedly affected the rate of cholesterol transfer between cells and an extracellular acceptor (i.e., cyclodextrin), whereas the effect of phosphatidylcholine on cholesterol efflux was much smaller.

  17. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.).

    PubMed

    Stobart, A K; Stymne, S

    1985-11-15

    Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalyse the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. Under these conditions the radioactive glycerol in sn-glycerol 3-phosphate accumulates in phosphatidic acid, phosphatidylcholine, diacyl- and tri-acylglycerol. The incorporation of glycerol into phosphatidylcholine is via diacylglycerol and probably involves a cholinephosphotransferase. The results show that the glycerol moiety and the acyl components in phosphatidylcholine exchange with the diacylglycerol during the biosynthesis of diacylglycerol from phosphatidic acid. The continuous reversible transfer of diacylglycerol with phosphatidylcholine, which operates during active triacylglycerol synthesis, will control in part the polyunsaturated-fatty-acid quality of the final seed oil.

  18. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    PubMed Central

    Crook, Matt; Upadhyay, Awani; Ido, Liyana J.; Hanna-Rose, Wendy

    2016-01-01

    Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions. PMID:27605519

  19. Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli

    PubMed Central

    Maric, Selma; Thygesen, Mikkel B.; Schiller, Jürgen; Marek, Magdalena; Moulin, Martine; Haertlein, Michael; Forsyth, V. Trevor; Bogdanov, Mikhail; Dowhan, William; Arleth, Lise

    2014-01-01

    Phosphatidylcholine (PC) is a major component of eukaryotic cell membranes and one of the most commonly used phospholipids for reconstitution of membrane proteins into carrier systems such as lipid vesicles, micelles and nanodiscs. Selectively deuterated versions of this lipid have many applications, especially in structural studies using techniques such as NMR, neutron reflectivity and small-angle neutron scattering. Here we present a comprehensive study of selective deuteration of phosphatidylcholine through biosynthesis in a genetically modified strain of Escherichia coli. By carefully tuning the deuteration level in E. coli growth media and varying the deuteration of supplemented carbon sources, we show that it is possible to achieve a controlled deuteration for three distinct parts of the PC lipid molecule, namely the (a) lipid head group, (b) glycerol backbone and (c) fatty acyl tail. This biosynthetic approach paves the way for the synthesis of specifically deuterated, physiologically relevant phospholipid species which remain difficult to obtain through standard chemical synthesis. PMID:25301578

  20. Isoniazid interaction with phosphatidylcholine-based membranes

    NASA Astrophysics Data System (ADS)

    Marques, Amanda Vicente; Marengo Trindade, Paulo; Marques, Sheylla; Brum, Tainá; Harte, Etienne; Rodrigues, Marieli Oliveira; D'Oca, Marcelo Gonçalves Montes; da Silva, Pedro Almeida; Pohlmann, Adriana R.; Alves, Isabel Dantas; de Lima, Vânia Rodrigues

    2013-11-01

    Interaction between the anti-tuberculosis drug isoniazid (INH) and phosphatidylcholine membranes was investigated in terms of: (i) drug affinity to a lipid bilayer and (ii) drug-induced changes in the dynamic properties of liposomes, such as membrane hydration state, polar head and non-polar acyl chain order and lipid phase transition behavior. These parameters were studied by plasmon waveguide resonance spectroscopy (PWR), UV-visible, horizontal attenuated total reflectance-Fourier transform infrared (HATR-FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. PWR measurements showed an INH membrane dissociation constant value of 0.031 μM to phosphatidylcholine bilayers. INH induced higher membrane perturbation in the plane which is perpendicular to the membrane plane. The INH saturation concentration in phosphatidylcholine liposomes was 170 μM. At this concentration, HATR-FTIR and NMR findings showed that INH may interact with the lipid polar head, increasing the number of hydrogen bonds in the phosphate region and enhancing the choline motional freedom. DSC measurements showed that, at 115 μM, INH was responsible for a decrease in lipid phase transition temperature of approximately 2 °C and had no influence in the lipid enthalpy variation (ΔH). However, at 170 μM, INH induced the reduction of the ΔH by approximately 52%, suggesting that the drug may increase the distance among lipid molecules and enhance the freedom of the lipid acyl chains methylene groups. This paper provides information on the effects of INH on membrane dynamics which is important to understand liposome targeting of the drug and for the development of anti-TB pharmacologic systems that not only are less susceptible to resistance but also have low toxicity.

  1. Membrane-mimetic films of asymmetric phosphatidylcholine lipid bolaamphiphiles.

    PubMed

    Sun, Xue-Long; Biswas, Nilanjana; Kai, Toshitsugu; Dai, Zhifei; Dluhy, Richard A; Chaikof, Elliot L

    2006-01-31

    Membrane-spanning phospholipid bolaamphiphiles either alone or as a constituent of a multicomponent lipid membrane may prove to be facile building blocks for generating robust bioactive membrane-mimetic assemblies. We have previously reported the synthesis of asymmetric dialkyl phospholipid bolaamphiphiles that contain ester linked phosphatidylcholine and amine functionalities at opposite chain ends. In this report, we describe the synthesis of phospholipid bolaamphiphiles that are conjugated to biotin via the terminal amine with or without a poly(ethylene oxide) spacer arm of varying chain length. The behavior of biotinylated bolaamphiphiles as a self-assembled monolayer at an air-water interface was characterized by epi-fluorescence microscopy and revealed that domain structure and pi-A isotherms were substantially influenced by linker type and size. Substrate bound assemblies were produced by Langmuir-Blodgett deposition onto planar substrates coated with an avidin derivatized polyelectrolyte multilayer. Significantly, external reflectance infrared spectroscopy confirmed the fabrication of bolaamphiphile thin films that display extended stability in vitro.

  2. The Origin of Chylomicron Phosphatidylcholine in the Rat

    PubMed Central

    Mansbach, Charles M.

    1977-01-01

    This study investigates the pathways of origin of chylomicron phosphatidylcholine (PC) using a lymph- and bile-fistulated rat infused with a stabilized triolein emulsion. [14C-glycerol]PC was used to evaluate chylomicron PC generated by lyso PC acyltransferase. The percentage of chylomicron PC derived from the PC infused was directly proportional to the PC concentration in the infusate. When the infusate PC concentration was 10 mM, essentially all the chylomicron PC was derived therefrom at 4-6 h of infusion. Incorporation of the radiolabel was not found to be as great in the lymph subnatant PC as in chylomicron PC, suggesting that chylomicron and lymph subnatant PC might be supplied from different PC precursor pools. 32Pi was infused into similarly prepared rats to judge chylomicron PC synthesized from de novo sources. In these experiments it was found that the percentage of chylomicron PC derived from de novo synthesis was inversely related to the PC concentration of the infusate. This suggests that exogenously infused PC inhibits de novo PC synthesis. When [32P]rat bile PC was infused with [14C-glycerol]potato PC, the bile PC was preferred as a chylomicron precursor despite the greater similarity of the saturated fatty acids of potato PC to those of chylomicron PC. When the saturated fatty acids of bile and chylomicron PC were compared, chylomicron PC was significantly richer in stearate, suggesting extensive enterocyte modification of the saturated fatty acids of bile PC. PMID:874099

  3. Phosphatidylcholine biosynthesis and insulin release in rat islets of Langerhans

    SciTech Connect

    Hoffman, J.M.

    1988-01-01

    Turnover of phosphatidylcholine (PC) has been demonstrated to play a role in glucose stimulation of insulin release by pancreatic islets of Langerhans. The activity of the islet CDP-choline pathway of PC synthesis was determined by measuring the incorporation of radiolabeled choline or {sup 32}PO{sub 4} into PC, phosphorylcholine and CDP-choline. Concurrently, insulin release was measured by radioimmunoassay to correlate insulin release and PC synthesis. Glucose concentrations greater than 8.5 mM stimulated CDP-choline pathway activity. However, measurement of PC lipid phosphorus tended to decrease, suggesting that stimulation of the CDP-choline pathway was a means of replenishing PC pools diminished by hydrolysis of PC. Inhibition of glucose oxidation by mannoheptulose or incubations under hypoxic conditions prevented stimulation of the CDP-choline pathway, while inhibition of phospholipase A{sub 2} (PLA{sub 2}) and secretion by the removal of extracellular Ca{sup 2+} potentiated the stimulation seen with glucose.

  4. Effects of diacylglycerols on conformation of phosphatidylcholine headgroups in phosphatidylcholine/phosphatidylserine bilayers.

    PubMed Central

    Goldberg, E M; Lester, D S; Borchardt, D B; Zidovetzki, R

    1995-01-01

    The effects of five diacylglycerols (DAGs), diolein, 1-stearoyl,2-arachidonoyl-sn-glycerol, dioctanoylglycerol, 1-oleoyl,2-sn-acetylglycerol, and dipalmitin (DP), on the structure of lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine (4:1 mol/mol) were examined by 2H nuclear magnetic resonance (NMR). Dipalmitoylphosphatidylcholine deuterated at the alpha- and beta-positions of the choline moiety was used to probe the surface region of the membranes. Addition of each DAG except DP caused a continuous decrease in the beta-deuteron quadrupole splittings and a concomitant increase in the alpha-deuteron splittings indicating that DAGs induce a conformational change in the phosphatidylcholine headgroup. Additional evidence of conformational change was found at high DAG concentrations (> or = 20 mol%) where the alpha-deuteron peaks became doublets indicating that the two alpha-deuterons were not equivalent. The changes induced by DP were consistent with the lateral phase separation of the bilayers into gel-like and fluid-like domains with the phosphatidylcholine headgroups in the latter phase being virtually unaffected by DP. The DAG-induced changes in alpha-deuteron splittings were found to correlate with DAG-enhanced protein kinase C (PK-C) activity, suggesting that the DAG-induced conformational changes of the phosphatidylcholine headgroups are either directly or indirectly related to a mechanism of PK-C activation. 2H NMR relaxation measurements showed significant increase of the spin-lattice relaxation times for the region of the phosphatidylcholine headgroups, induced by all DAGs except DP. However, this effect of DAGs did not correlate with the DAG-induced activation of PK-C. PMID:8519996

  5. Regulation of Phosphatidylcholine Biosynthesis in Saccharomyces cerevisiae

    PubMed Central

    Waechter, Charles J.; Lester, Robert L.

    1971-01-01

    Evidence is presented which indicates that the biosynthesis of phosphatidylcholine by the methylation pathway in growing cultures of Saccharomyces cerevisiae is repressed by the presence of choline in the growth medium. This result, obtained previously for glucose-grown cells, was also observed for lactate-grown cells, of which half of the phosphatidylcholine is mitochondrial. A respiration-deficient mutant of the parent wild-type strain has been studied, and its inability to form functional mitochondria cannot be due to an impaired methylation pathway, as it has been shown to incorporate 14C-CH3-methionine into all of the methylated glycerophosphatides. The incorporation rate is depressed by the inclusion of 1 mm choline in the growth medium, suggesting a regulatory effect similar to that demonstrated for the wild-type strain. The effects of choline on the glycerophospholipid composition of lactate and glucose-grown cells is presented. The repressive effects of the two related bases, mono- and dimethylethanolamine, were examined, and reduced levels of 14C-CH3-methionine incorporation were found for cells grown in the presence of these bases. The effect of choline on the methylation rates is reversible and glucosegrown cells regain the nonrepressed level of methylation activity in 60 to 80 min after removal of choline from the growth medium. Images PMID:5547992

  6. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  7. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner.

    PubMed

    Zhao, Yu; Ishigami, Masato; Nagao, Kohjiro; Hanada, Kentaro; Kono, Nozomu; Arai, Hiroyuki; Matsuo, Michinori; Kioka, Noriyuki; Ueda, Kazumitsu

    2015-03-01

    ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.

  8. Oral phosphatidylcholine pretreatment alleviates the signs of experimental rheumatoid arthritis

    PubMed Central

    Erős, Gabor; Ibrahim, Saleh; Siebert, Nikolai; Boros, Mihály; Vollmar, Brigitte

    2009-01-01

    Introduction Phosphatidylcholine and phosphatidylcholine-derived metabolites exhibit anti-inflammatory properties in various stress conditions. We hypothesized that dietary phosphatidylcholine may potentially function as an anti-inflammatory substance and may decrease inflammatory activation in a chronic murine model of rheumatoid arthritis (collagen-induced arthritis). Methods The experiments were performed on male DBA1/J mice. In groups 1 to 3 (n = 10 each), collagen-induced arthritis was induced by administration of bovine collagen II. In group 2 the animals were fed ad libitum with phosphatidylcholine-enriched diet as a pretreatment, while the animals of group 3 received this nourishment as a therapy, after the onset of the disease. The severity of the disease and inflammation-linked hyperalgesia were evaluated with semiquantitative scoring systems, while the venular leukocyte–endothelial cell interactions and functional capillary density were assessed by means of in vivo fluorescence microscopy of the synovial tissue. Additionally, the mRNA expressions of cannabinoid receptors 1 and 2, TNFα and endothelial and inducible nitric oxide synthase were determined, and classical histological analysis was performed. Results Phosphatidylcholine pretreatment reduced the collagen-induced arthritis-induced hypersensitivity, and decreased the number of leukocyte–endothelial cell interactions and the extent of functional capillary density as compared with those of group 1. It also ameliorated the tissue damage and decreased inducible nitric oxide synthase expression. The expressions of the cannabinoid receptors and TNFα were not influenced by the phosphatidylcholine intake. Phosphatidylcholine-enriched food administrated as therapy failed to evoke the aforementioned changes, apart from the reduction of the inducible nitric oxide synthase expression. Conclusions Phosphatidylcholine-enriched food as pretreatment, but not as therapy, appears to exert beneficial effects

  9. EPR study of spermine interaction with multilamellar phosphatidylcholine liposomes.

    PubMed

    Momo, F; Wisniewska, A; Stevanato, R

    1995-11-22

    The interaction of spermine with egg-yolk phosphatidylcholine liposomes was investigated. The EPR spin labeling technique evidenced that spermine induces modifications of some membrane functions of biological interest like water permeability and is a possible modulator of diffusion processes for charged and polar molecules. The association constant for a hypothesized complex between spermine and the phosphate group of phosphatidylcholine was evaluated by enzymatic methods.

  10. Phosphatidylcholine Derived Bolaamphiphiles via ‘Click’ Chemistry

    PubMed Central

    O’Neil, Edward J.; DiVittorio, Kristy M.; Smith, Bradley D.

    2010-01-01

    The copper catalyzed azide alkyne cycloaddition is employed to modify phosphatidylcholine precursors with sn-2 acyl chains containing terminal alkyne or azide groups. Although the reactions are conducted as biphasic dispersions, the yields are essentially quantitative. Bolaamphiphiles are formed by simply clicking together two phosphatidylcholine alkyne precursors to a central bisazide scaffold. The chemistry introduces polar 1,4-triazole units into the lipophilic region of the bilayer membrane, and the bolaamphiphiles do not form stable vesicles. PMID:17217264

  11. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines.

    PubMed

    Parkkila, Petteri; Stefl, Martin; Olżyńska, Agnieszka; Hof, Martin; Kinnunen, Paavo K J

    2015-01-01

    Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains.

  12. Interaction of fluoxetine with phosphatidylcholine liposomes.

    PubMed

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto

    2005-10-22

    Fluoxetine (Prozac) is one of the latest of a new generation of antidepressants, approved by FDA in 2002. The interactions of fluoxetine with multilamellar liposomes of pure phosphatidylcholine (PC) or containing cholesterol 10% molar were studied as a function of the lipid chain lengths, using differential scanning calorimetry and spin labelling EPR techniques. The DSC profiles of the gel-to-fluid state transition of liposomes of DMPC (C14:0) are broadened and shifted towards lower temperatures at increasing dopant concentrations and, with less than 10% fluoxetine, any detectable transition is destroyed. The broadened profiles and the lowered transition temperatures demonstrate that both the size and the packing of the cooperative units undergoing the transition are modified by fluoxetine, leading to a looser and more flexible bilayer. No phase separation was observed. The effects of fluoxetine on the thermotropic phase behaviour of DPPC (C16:0) and, even more, of DSPC (C18:0) are different from that of DMPC. In fact, in the former cases, two peaks appeared at increasing dopant concentrations, suggesting the occurrence of a phase separation phenomenon, which is a sign of a binding of fluoxetine in the phosphate region. In cholesterol containing membranes, fluoxetine, even at low concentrations, leads to a general corruption of the membrane, both in terms of packing and cooperativity, and the formation of any new phase is no longer observable. EPR spectra reflect the disordered motion of acyl chains in the bilayer. It was found that fluoxetine lowers the order of the lipid chains mainly in correspondence of the fifth carbon position of SASL, indicating a possible accumulation near the interfacial region.

  13. Effects of hypochlorous acid on unsaturated phosphatidylcholines.

    PubMed

    Arnhold, J; Osipov, A N; Spalteholz, H; Panasenko, O M; Schiller, J

    2001-11-01

    Effects of hypochlorous acid and of the myeloperoxidase-hydrogen peroxide-chloride system on mono- and polyunsaturated phosphatidylcholines were analyzed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Chlorohydrins and glycols were detected as main products according to the characteristic shift of molecular masses. Mainly mono-chlorohydrins result upon the incubation of HOCl/(-)OCl with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, whereas only traces of mono-glycols were detected. 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine yielded a complex mixture of products. Mono-chlorohydrins and glycols dominated only at short incubation, while bis-chlorohydrins as well as products containing one chlorohydrin and one glycol moiety appeared after longer incubation. Similarly, a complex product mixture resulted upon incubation of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine with hypochlorous acid. Additionally, tris-chlorohydrins, products with two chlorohydrin and one glycol moiety, as well as lysophosphatidylcholines and fragmentation products of the arachidonoyl side chain were detectable. Mono-chlorohydrins of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were detected after the incubation of the latter phospholipid with the myeloperoxidase-hydrogen peroxide-chloride system at pH 6.0. These chlorohydrins were not observed in the absence of chloride, hydrogen peroxide, or myeloperoxidase as well as in the presence of methionine, taurine, or sodium azide. Thus, mono-chlorohydrins in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine produced by hypochlorous acid from the myeloperoxidase-hydrogen peroxide-chloride system can also be detected by means of MALDI-TOF MS.

  14. Efficacy of phosphatidylcholine in the modulation of motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Ryan, P.; Homick, J. L.

    1985-01-01

    This study evaluated the efficacy of pharmacological doses of phosphatidylcholine (lecithin) in the modulation of motion sickness induced by exposure to coriolis stimulation in a rotating chair. Subjects received daily dietary supplements of 25 grams of lecithin (90 percent phosphatidylcholine) and were tested for their susceptibility to motion sickness after 4 h, 2 d, and 21 d. A small but statistically significant increase in susceptibility (+15 percent) was noted 4 h after supplemental phosphatidylcholine, with four of nine subjects demonstrating a marked increase in susceptibility. This finding was attributed to choline's stimulatory action on cholinergic systems, an action which opposes that of the classical antimotion sickness drug scopolamine. Chronic lecithin loading revealed a trend towards reduced susceptibility, possibly indicating the occurrence of adaptive mechanisms such as receptor down-regulation. Withdrawal from lecithin loading, perhaps coupled with anticholinergic treatment, might prove to be a potent prophylactic regimen and ought to be tested.

  15. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein

    PubMed Central

    Kang, Hye Won; Wei, Jie; Cohen, David E.

    2010-01-01

    Phosphatidylcholine transfer protein (PC-TP, a.k.a. StARD2) binds phosphatidylcholines and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head-group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor α. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp−/− mice are sensitized to insulin action and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-CoA thioesterase. Because PC-TP discriminates among phosphatidylcholines within lipid bilayers, it may function as a sensor that links metabolic regulation to membrane composition. PMID:20338778

  16. Production of 1,2-didocosahexaenoyl phosphatidylcholine by bonito muscle lysophosphatidylcholine/transacylase.

    PubMed

    Hirano, Kaoru; Matsui, Hidetoshi; Tanaka, Tamotsu; Matsuura, Fumito; Satouchi, Kiyoshi; Koike, Tohru

    2004-10-01

    1,2-Didocosahexaenoyl phosphatidylcholine (PC), which has highly unsaturated fatty acid at both sn-1 and sn-2 positions of glycerol, is a characteristic molecular species of bonito muscle. To examine the involvement of a de novo route in its synthesis, the molecular species of phosphatidic acid (PA) were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-olato dizinc(II) complex, a novel phosphate-capture molecule. However, 1,2-didocosahexaenoyl species could not be detected. Next, 1,2-didocosahexaenoyl PC synthesis by the cytosolic lysophosphatidylcholine (LPC)/transacylase was examined using endogenous LPC from bonito muscle, in which the 2-docosahexaenoyl species is abundant. The LPC/transacylase synthesized 1,2-didocosahexaenoyl PC as the most abundant molecular species. For further characterization, the LPC/transacylase was purified to homogeneity from the 100,000 x g supernatant of bonito muscle. The isolated LPC/transacylase is a labile glycoprotein with molecular mass of 52 kDa including a 5-kDa sugar moiety. The LPC/transacylase showed a PC synthesis (transacylase activity) below and above the critical micelle concentration of substrate LPC, and fatty acid release (lysophospholipase activity) was always smaller than the transacylase activity, even with a monomeric substrate. These results suggest that the LPC/transacylase is responsible for the synthesis of 1,2-didocosahexaenoyl PC.

  17. Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice.

    PubMed

    Huang, Madelyn C; Douillet, Christelle C; Stýblo, Miroslav

    2016-12-01

    Arsenic (+3 oxidation state) methyltransferase is the key enzyme in the methylation pathway for inorganic arsenic. We have recently shown that As3mt knockout (KO) has a profound effect on metabolomic profiles in mice. Phosphatidylcholine species (PCs) were the largest group of metabolites altered in both plasma and urine. The present study used targeted analysis to investigate the KO-associated changes in PC profiles in the liver, the site of PC synthesis. Results show that As3mt KO has a systemic effect on PC metabolism and that this effect is sex dependent.

  18. Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice

    PubMed Central

    Huang, Madelyn C.; Douillet, Christelle C.

    2017-01-01

    Arsenic (+3 oxidation state) methyltransferase is the key enzyme in the methylation pathway for inorganic arsenic. We have recently shown that As3mt knockout (KO) has a profound effect on metabolomic profiles in mice. Phosphatidylcholine species (PCs) were the largest group of metabolites altered in both plasma and urine. The present study used targeted analysis to investigate the KO-associated changes in PC profiles in the liver, the site of PC synthesis. Results show that As3mt KO has a systemic effect on PC metabolism and that this effect is sex dependent. PMID:27591999

  19. Chronopotentiometric studies of phosphatidylcholine bilayers modified by ergosterol.

    PubMed

    Naumowicz, Monika; Petelska, Aneta Dorota; Figaszewski, Zbigniew Artur

    2011-01-01

    We have monitored the effect of ergosterol on electrical capacitance and electrical resistance of the phosphatidylcholine bilayer membranes using chronopotentiometry method. The chronopotentiometric characteristic of the bilayers depends on constant-current flow through the membranes. For low current values, no electroporation takes place and the membrane voltage rises exponentially to a constant value described by the Ohm's law. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations is presented.

  20. Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts

    PubMed Central

    1985-01-01

    We have examined the effects of phospholipase C from Bacillus cereus on the extent of phospholipid hydrolysis in envelope membrane vesicles and in intact chloroplasts. When isolated envelope vesicles were incubated in presence of phospholipase C, phosphatidylcholine and phosphatidylglycerol, but not phosphatidylinositol, were totally converted into diacylglycerol if they were available to the enzyme (i.e., when the vesicles were sonicated in presence of phospholipase C). These experiments demonstrate that phospholipase C can be used to probe the availability of phosphatidylcholine and phosphatidylglycerol in the cytosolic leaflet of the outer envelope membrane from spinach chloroplasts. When isolated, purified, intact chloroplasts were incubated with low amounts of phospholipase C (0.3 U/mg chlorophyll) under very mild conditions (12 degrees C for 1 min), greater than 80% of phosphatidylcholine molecules and almost none of phosphatidylglycerol molecules were hydrolyzed. Since we have also demonstrated, by using several different methods (phase-contrast and electron microscopy, immunochemical and electrophoretic analyses) that isolated spinach chloroplasts, and especially their outer envelope membrane, remained intact after mild treatment with phospholipase C, we can conclude that there is a marked asymmetric distribution of phospholipids across the outer envelope membrane of spinach chloroplasts. Phosphatidylcholine, the major polar lipid of the outer envelope membrane, is almost entirely accessible from the cytosolic side of the membrane and therefore is probably localized in the outer leaflet of the outer envelope bilayer. On the contrary, phosphatidylglycerol, the major polar lipid in the inner envelope membrane and the thylakoids, is probably not accessible to phospholipase C from the cytosol and therefore is probably localized mostly in the inner leaflet of the outer envelope membrane and in the other chloroplast membranes. PMID:3988805

  1. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures.

    PubMed

    Trotta, Michele; Pattarino, Franco; Ignoni, Terenzio

    2002-03-01

    Lipid emulsion particles containing 10% of medium chain triglycerides were prepared using 2% w/w of a mixture 1:1 w/w of purified soya phosphatidylcholine and 2-hexanoyl phosphatidylcholine as emulsifier mixture, for use as drug carriers. The mean droplet sizes of emulsions, prepared using an Ultra Turrax or a high-pressure homogenizer, were about 288 and 158 nm, respectively, compared with 380 and 268 nm for emulsions containing lecithin, or 325 and 240 nm for those containing 6-phosphatidylcholine. The stability of the emulsions, determined by monitoring the decrease of a lipophilic marker at a specified level within the emulsion, and observing coalescence over time, was also greatly increased using the emulsifier mixture. The emulsion stability did not notably change in the presence of a model destabilizing drug, indomethacin. The use of a second hydrophilic surfactant to adjust the packing properties of the lecithin at the oil-water interface provided an increase in the stability of lipid emulsions, and this may be of importance in the formulation of drug delivery systems.

  2. The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane.

    PubMed

    Borochov, H; Zahler, P; Wilbrandt, W; Shinitzky, M

    1977-11-01

    Sheep red blood cells are shown to incorporate phosphatidylchline when incubated in human plasma in the presence of EGTA. This treatment results in up to a 5-fold increase in mol ratio of phosphatidylcholine to sphingomyelin. By replacing EGTA with Ca+ the increase of phsphatidylcholine content is completely inhibited, due to the activation of the membrane bound lecithinase which rapidly degrades the incorporated phosphatidylcholine. Analogous treatments of the isolate membranes resulted in similar phosphatidylcholine incorporation but in the presence of Ca+ a residual phosphatidylcholine uptake was still oberved. These results suggest that in the isolated membranes small amounts of phosphatidylcholine can be incorporated into an additional region which is unavailable for the membrane lecithinase. The increase in the phosphatidylcholine to sphingomyelin mol ratio in sheep red blood cells is concomitant with an increase in lipid fluidity, as well as increase in osmotic fragility9

  3. Binding of bovine factor Va to phosphatidylcholine membranes.

    PubMed Central

    Koppaka, V; Lentz, B R

    1996-01-01

    The interaction of bovine factor Va with phosphatidylcholine membranes was examined using four different fluorescence techniques: 1) changes in the fluorescence anisotropy of the fluorescent membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH) to monitor the interaction of factor Va with 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) small unilamellar vesicles (SUVs), 2) changes in the fluorescence anisotropy of N-(lissamine rhodamine B sulfonyl) diacyl phosphati-dylethanolamine (Rh-PE) incorporated into SUVs prepared from 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC), 3) changes in the fluorescence anisotropy of fluorescein-labeled factor Va (labeled in the heavy chain) upon interaction with POPC SUVs, 4) fluorescence energy transfer from fluorescein-labeled factor Va to rhodamine-labeled POPC SUVs. In the first two sets of experiments, labeled lipid vesicles were titrated with unlabeled protein, whereas, in the latter two types of experiments, labeled factor Va was titrated with vesicles. For the weak binding observed here, it was impossible from any one binding experiment to obtain precise estimates of the three parameters involved in modeling the lipid-protein interaction, namely, the dissociation constant Kd, the stoichiometry of binding i, and the saturation value of the observable Rmax from any one experiment. However, a global analysis of the four data sets involving POPC SUVs yielded a stable estimate of the binding parameters (Kd of approximately 3.0 microM and a stoichiometry of approximately 200 lipids per bound factor Va). Binding to DMPC SUVs may be of slightly higher affinity. These observations support the contention that association of factor Va with a membrane involves a significant acidic-lipid-independent interaction along with the more commonly accepted acidic-lipid-dependent component of the total binding free energy. PMID:8744331

  4. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.

    PubMed

    Fernández-Bussy, Rodrigo; Mouguelar, Valeria; Banchio, Claudia; Coux, Gabriela

    2015-04-01

    In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

  5. Dietary and biliary phosphatidylcholine activates PKCζ in rat intestine.

    PubMed

    Siddiqi, Shahzad; Mansbach, Charles M

    2015-04-01

    Chylomicron output by the intestine is proportional to intestinal phosphatidylcholine (PC) delivery. Using five different variations of PC delivery to the intestine, we found that lyso-phosphatidylcholine (lyso-PC), the absorbed form of PC, concentrations in the cytosol (0 to 0.45 nM) were proportional to the input rate. The activity of protein kinase C (PKC)ζ, which controls prechylomicron output rate by the endoplasmic reticulum (ER), correlated with the lyso-PC concentration suggesting that it may be a PKCζ activator. Using recombinant PKCζ, the Km for lyso-PC activation was 1.49 nM and the Vmax 1.12 nM, more than the maximal lyso-PC concentration in cytosol, 0.45 nM. Among the phospholipids and their lyso derivatives, lyso-PC was the most potent activator of PKCζ and the only one whose cytosolic concentration suggested that it could be a physiological activator because other phospholipid concentrations were negligible. PKCζ was on the surface of the dietary fatty acid transport vesicle, the caveolin-1-containing endocytic vesicle. Once activated, PKCζ, eluted off the vesicle. A conformational change in PKCζ on activation was suggested by limited proteolysis. We conclude that PKCζ on activation changes its conformation resulting in elution from its vesicle. The downstream effect of dietary PC is to activate PKCζ, resulting in greater chylomicron output by the ER.

  6. Physical and biological properties of cationic triesters of phosphatidylcholine

    PubMed Central

    MacDonald, RC; Ashley, GW; Shida, MM; Rakhmanova, VA; Tarahovsky, YS; Pantazatos, DP; Kennedy, MT; Pozharski, EV; Baker, KA; Jones, RD; Rosenzweig, HS; Choi, KL; Qiu, R; McIntosh, TJ

    1999-01-01

    The properties of a new class of phospholipids, alkyl phosphocholine triesters, are described. These compounds were prepared from phosphatidylcholines through substitution of the phosphate oxygen by reaction with alkyl trifluoromethylsulfonates. Their unusual behavior is ascribed to their net positive charge and absence of intermolecular hydrogen bonding. The O-ethyl, unsaturated derivatives hydrated to generate large, unilamellar liposomes. The phase transition temperature of the saturated derivatives is very similar to that of the precursor phosphatidylcholine and quite insensitive to ionic strength. The dissociation of single molecules from bilayers is unusually facile, as revealed by the surface activity of aqueous liposome dispersions. Vesicles of cationic phospholipids fused with vesicles of anionic lipids. Liquid crystalline cationic phospholipids such as 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine triflate formed normal lipid bilayers in aqueous phases that interacted with short, linear DNA and supercoiled plasmid DNA to form a sandwich-structured complex in which bilayers were separated by strands of DNA. DNA in a 1:1 (mol) complex with cationic lipid was shielded from the aqueous phase, but was released by neutralizing the cationic charge with anionic lipid. DNA-lipid complexes transfected DNA into cells very effectively. Transfection efficiency depended upon the form of the lipid dispersion used to generate DNA-lipid complexes; in the case of the O-ethyl derivative described here, large vesicle preparations in the liquid crystalline phase were most effective. PMID:10545361

  7. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

    PubMed Central

    Wang, Zeneng; Klipfell, Elizabeth; Bennett, Brian J.; Koeth, Robert; Levison, Bruce S.; DuGar, Brandon; Feldstein, Ariel E.; Britt, Earl B.; Fu, Xiaoming; Chung, Yoon-Mi; Wu, Yuping; Schauer, Phil; Smith, Jonathan D.; Allayee, Hooman; Tang, W. H. Wilson; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.

    2011-01-01

    Metabolomics studies hold promise for discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. A metabolomics approach was used to generate unbiased small molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine, namely choline, trimethylamine N-oxide (TMAO), and betaine, were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted up-regulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases (FMOs), an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidemic mice. Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for atherosclerotic heart disease. PMID:21475195

  8. The interaction of bioactive peptides with an immobilized phosphatidylcholine monolayer.

    PubMed Central

    Mozsolits, H; Lee, T H; Wirth, H J; Perlmutter, P; Aguilar, M I

    1999-01-01

    The interaction of three bioactive peptides, bombesin, beta-endorphin, and glucagon with a phosphatidylcholine monolayer that was immobilized to porous silica particles and packed into a stainless steel column cartridge, has been studied using dynamic elution techniques. This immobilized lipid monolayer provides a biophysical model system with which to study the binding of peptides to a lipid membrane. In particular, the influence of temperature and methanol concentration on the affinity of each peptide for the immobilized lipid surface was assessed. For all test peptides, nonlinear retention plots were observed at all temperatures that contrasted sharply with the simple linear plots observed for the small unstructured control molecules N-acetyltryptophanamide and diphenylalanine. An analysis of the thermodynamics of the interaction of peptides with the immobilized monolayer was also carried out. The results revealed that while the peptides interacted with the monolayer predominantly through hydrophobic interactions, the relative contribution of DeltaH(assoc)(O) and DeltaS(assoc)(O) to the overall free energy of association was dependent on the temperature and methanol concentration. In particular, it was evident that under most conditions, the binding of the peptides to the immobilized lipid monolayer was enthalpy-driven, i.e., mediated by nonclassical hydrophobic interactions. Significant band-broadening and asymmetric and split peaks were also observed for bombesin, beta-endorphin, and glucagon at different temperatures and methanol concentrations. These changes in affinity and peak shape are consistent with the formation of multiple conformational species during the interaction of these peptides with the lipid monolayer. In addition, the binding behavior of the three test peptides on an n-octylsilica surface that lacked the phospho headgroups of the phospholipid was significantly different from that observed with the immobilized phosphatidylcholine surface

  9. Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study.

    PubMed

    van Dijck, P W; Kaper, A J; Oonk, H A; de Gier, J

    1977-10-03

    From data obtained by differential scanning calorimetry phase diagrams were constructed, using a thermodynamically based fitting method. The following binary mixtures of phosphatidylcholines in water were studied: 14:0/14:0-glycerophosphocholine/16:0/16:0-glucerophosphocholine, 14:0/14:0-glycerophosphocholine/18:0/18:0-glycerophosphocholine, 12:0/12:0-glycerophosphocholine/16:0/16:0-glycerophosphocholine, 18:1t/18:1t-glycerophosphocholine/14:0/14:0-glycerophosphocholine and 18:1t/18:1t-glycerophosphocholine/16:0/16:0-glycerophosphocholine. A comparison is made of the present results with those obtained using probe techniques and the differences are discussed.

  10. Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages

    SciTech Connect

    Grove, R.I.; Allegretto, N.J.; Kiener, P.A.; Warr, G.A. )

    1990-07-01

    We investigated the effects of LPS on mouse peritoneal macrophage phospholipids using radiolabeled precursors. LPS (200 ng/ml) stimulated incorporation of ({sup 32}P) into all classes of phospholipids within 0.5 hr, and after 2 hr the increase was 60% greater than controls. Separation of the phospholipid classes by thin-layer chromatography revealed a selective increase in incorporation of label into phosphatidylcholine (PC) (90% increase compared to approximately 50% in the other phospholipids). In macrophages labeled with ({sup 3}H)-choline, LPS stimulated both the incorporation of label into PC and the release of incorporated label into the medium. The time dependencies of stimulated ({sup 3}H) release and ({sup 32}P) incorporation were similar. These data are consistent with the hypothesis that LPS activates macrophages via a PC-specific phospholipase-dependent mechanism.

  11. Kinetin Increases Water Permeability of Phosphatidylcholine Lipid Bilayers

    PubMed Central

    Stillwell, William; Hester, Paul

    1983-01-01

    Kinetin is shown to increase substantially the water permeability of liposomes composed of several types of phosphatidylcholines including the natural phospholipids egg lecithin and asolectin and the synthetic phospholipids dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine. Kinetin effects were measured from 16.3 micromolar to 2.4 millimolar at temperatures from 10°C to 50°C and at pH 2.0, 7.0, and 11.0. Temperature studies indicate that kinetin produces a larger increase in water permeability with membranes in the more fluid liquid crystalline state. Kinetin is also shown to enhance [14C]glucose permeability and perhaps promotes membrane aggregation. From these experiments, we conclude that kinetin may produce its initial effect by altering the lipid bilayer portion of membranes. PMID:16662860

  12. Antibiotic-loaded phosphatidylcholine inhibits staphylococcal bone infection

    PubMed Central

    Jennings, Jessica Amber; Beenken, Karen E; Skinner, Robert A; Meeker, Daniel G; Smeltzer, Mark S; Haggard, Warren O; Troxel, Karen S

    2016-01-01

    AIM To test antibiotic-loaded coating for efficacy in reducing bacterial biofilm and development of osteomyelitis in an orthopaedic model of implant infection. METHODS Phosphatidylcholine coatings loaded with 25% vancomycin were applied to washed and sterilized titanium wires 20 mm in length. A 10 mm segment was removed from rabbit radius (total = 9; 5 coated, 4 uncoated), and the segment was injected with 1 × 106 colony forming units (CFUs) of Staphylococcus aureus (UAMS-1 strain). Titanium wires were inserted through the intramedullary canal of the removed segment and into the proximal radial segment and the segment was placed back into the defect. After 7 d, limbs were removed, X-rayed, swabbed for tissue contamination. Wires were removed and processed to determine attached CFUs. Tissue was swabbed and streaked on agar plates to determine bacteriological score. RESULTS Antibiotic-loaded coatings resulted in significantly reduced biofilm formation (4.7 fold reduction in CFUs; P < 0.001) on titanium wires and reduced bacteriological score in surrounding tissue (4.0 ± 0 for uncoated, 1.25 ± 0.5 for coated; P = 0.01). Swelling and pus formation was evident in uncoated controls at the 7 d time point both visually and radiographically, but not in antibiotic-loaded coatings. CONCLUSION Active antibiotic was released from coated implants and significantly reduced signs of osteomyelitic symptoms. Implant coatings were well tolerated in bone. Further studies with additional control groups and longer time periods are warranted. Antibiotic-loaded phosphatidylcholine coatings applied at the point of care could prevent implant-associated infection in orthopaedic defects. PMID:27622146

  13. The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis.

    PubMed

    Yang, Li; Na, Cheng-Lun; Luo, Shiyu; Wu, David; Hogan, Simon; Huang, Taosheng; Weaver, Timothy E

    2017-04-12

    Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability. To test the hypothesis that Stard7 deficiency leads to altered barrier structure/function downstream of mitochondrial dysfunction, Stard7 expression was knocked down in a bronchiolar epithelial cell line (BEAS-2B) and specifically deleted in lung epithelial cells of mice (Stard7(epi∆/∆)). Stard7 deficiency was associated with altered mitochondrial size and membrane organization both in vitro and in vivo. Altered mitochondrial structure was accompanied by disruption of mitochondrial homeostasis, including decreased aerobic respiration, increased oxidant stress, and mitochondrial DNA damage that, in turn, was linked to altered barrier integrity and function. Both mitochondrial and barrier defects were largely corrected by targeting Stard7 to mitochondria or treating epithelial cells with a mitochondrial-targeted antioxidant. These studies suggest that Stard7-mediated transfer of PC is crucial for mitochondrial homeostasis and that mitochondrial dysfunction contributes to altered barrier permeability in Stard7-deficient mice.

  14. Inferior Prefrontal Cortex Mediates the Relationship between Phosphatidylcholine and Executive Functions in Healthy, Older Adults

    PubMed Central

    Zamroziewicz, Marta K.; Zwilling, Chris E.; Barbey, Aron K.

    2016-01-01

    Objectives: This study examines the neural mechanisms that mediate the relationship between phosphatidylcholine and executive functions in cognitively intact older adults. We hypothesized that higher plasma levels of phosphatidylcholine are associated with better performance on a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter structure of regions within the prefrontal cortex (PFC) that have been implicated in cognitive flexibility. Methods: We examined 72 cognitively intact adults between the ages of 65 and 75 in an observational, cross-sectional study to investigate the relationship between blood biomarkers of phosphatidylcholine, tests of cognitive flexibility (measured by the Delis–Kaplan Executive Function System Trail Making Test), and gray matter structure of regions within the PFC. A three-step mediation analysis was implemented using multivariate linear regressions and we controlled for age, sex, education, income, depression status, and body mass index. Results: The mediation analysis revealed that gray matter thickness of one region within the PFC, the left inferior PFC (Brodmann’s Area 45), mediates the relationship between phosphatidylcholine blood biomarkers and cognitive flexibility. Conclusion: These results suggest that particular nutrients may slow or prevent age-related cognitive decline by influencing specific structures within the brain. This report demonstrates a novel structural mediation between plasma phosphatidylcholine levels and cognitive flexibility. Future work should examine the potential mechanisms underlying this mediation, including phosphatidylcholine-dependent cell membrane integrity of the inferior PFC and phosphatidylcholine-dependent cholinergic projections to the inferior PFC. PMID:27733825

  15. Binding of calcium to phosphatidylcholines as determined by proton magnetic resonance and infrared spectroscopy.

    PubMed

    Yabusaki, K K; Wells, M A

    1975-01-14

    The interactions of calcium, magnesium, and the rare earth cations, cerium, neodymium, and praseodymium, with phosphatidylcholines were studied by proton magnetic resonance and infared spectroscopy. The calcium-induced chemical shifts for the various protons of phosphatidylcholine were C alpha choline greater than C beta choline greater than N(CH3)3 greater than C3 glycerol. No significant chemical shifts were observed for the C1 and C2 glycerol protons. None of the acyl chain protons were affected by the presence of calcium. Analysis of the salt-induced chemical shifts yielded binding curves with an excellent fit with the theoretical. The vicinal coupling constants for the various protons of phosphatidylcholine did not appear to change in the presence of calcium. The lanthanide-induced isotropic shifts for the protons of phosphatidylcholines followed the order Cbeta choline greater than C3 glycerol greater than Calpha choline greater than N(CH3)3. Examination of the P=O stretching band (1150-1300 cm-1) of phosphatidylcholines by differential infrared spectroscopy showed that this band shifted to shorter wavelengths in the presence of calcium. The site of calcium binding to phosphatidylcholines as deduced from the proton magnetic resonance and infrared data is discussed in light of the high specificity for calcium in enhancing the amino-catalyzed methanolysis of phosphatidylcholines.

  16. Phosphatidylcholine kinetics in neonatal rat lungs and the effects of rhuKGF and betamethasone.

    PubMed

    Bernhard, Wolfgang; Gesche, Jens; Raith, Marco; Poets, Christian F

    2016-05-15

    Surfactant, synthesized by type II pneumocytes (PN-II), mainly comprises phosphatidylcholine (PC) and is essential to prevent neonatal respiratory distress. Furthermore, PC is essential to lung tissue growth and maintenance as a membrane component. Recent findings suggest that the lung contributes to systemic lipid homeostasis via PC export through ABC-A1 transporter expression. Hence it is important to consider pharmacological interventions in neonatal lung PC metabolism with respect to such export. Five-day-old rats were treated with carrier (control), intraperitoneal betamethasone, subcutaneous recombinant human keratinocyte growth factor (rhuKGF), or their combination for 48 h. Animals were intraperitoneally injected with 50 mg/kg [D9-methyl]choline chloride 1.5, 3.0, and 6.0 h before death at day 7, and lung lavage fluid (LLF) and tissue were harvested. Endogenous PC, D9-labeled PC species, and their water-soluble precursors (D9-)choline and (D9-)phosphocholine were determined by tandem mass spectrometry. Treatment increased secreted and tissue PC pools but did not change equilibrium composition of PC species in LLF. However, all treatments increased specific surfactant components in tissue. In control rats, peak D9-PC in lavaged lung was reached after 3 h and was decreased at 6 h. Only 13% of this net loss in lavaged lung was found in LLF. Such decrease was not present in lungs treated with betamethasone and/or with rhuKGF. D9-PC loss at 3-6 h and PC synthesis calculated from D9 enrichment of phosphocholine indicated that daily synthesis rate is higher than total pool size. We conclude that lung tissue contributes to systemic PC homeostasis in neonatal rats, which is altered by glucocorticoid and rhuKGF treatment.

  17. A selective calix[6]arene-based fluorescent chemosensor for phosphatidylcholine type lipids.

    PubMed

    Brunetti, Emilio; Moerkerke, Steven; Wouters, Johan; Bartik, Kristin; Jabin, Ivan

    2016-11-02

    The development of chemosensors that can selectively detect phosphatidylcholines (PCs) in biological samples is of medical relevance considering the importance of these phospholipids in cell growth and survival. Their selective sensing over phosphatidylethanolamines (PEs) is however a challenging task. We report here on the chemosensing capacities of calix[6]tris-pyrenylurea 1, which is able to selectively interact with phosphatidylcholine-type lipids in organic media. Host 1 also binds them in a biphasic chloroform/water solution, opening the way to the design of selective chemosensors for these lipids in biological media. The results obtained by NMR, fluorescence spectroscopy and modelling studies show that the selectivity is the result of the high degree of complementarity between the lipids' zwitterionic phosphatidylcholine headgroup and the receptor's H-bonding donor site and hydrophobic pocket. The mode of recognition is reminiscent of natural systems, such as human phosphatidylcholine transfer proteins (PC-TPs), validating the biomimetic approach adopted in our work.

  18. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    PubMed

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim

    2008-02-15

    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  19. Origins of extreme boundary lubrication by phosphatidylcholine liposomes.

    PubMed

    Sorkin, Raya; Kampf, Nir; Dror, Yael; Shimoni, Eyal; Klein, Jacob

    2013-07-01

    Phosphatidylcholine (PC) vesicles have been shown to have remarkable boundary lubricating properties under physiologically-high pressures. Here we carry out a systematic study, using a surface force balance, of the normal and shear (frictional) forces between two opposing surfaces bearing different PC vesicles across water, to elucidate the origin of these properties. Small unilamellar vesicles (SUVs, diameters < 100 nm) of the symmetric saturated diacyl PCs DMPC (C(14)), DPPC (C(16)) and DSPC (C(18)) attached to mica surfaces were studied in their solid-ordered (SO) phase on the surface. Overall liposome lubrication ability improves markedly with increasing acyl chain length, and correlates strongly with the liposomes' structural integrity on the substrate surface: DSPC-SUVs were stable on the surface, and provided extremely efficient lubrication (friction coefficient μ ≈ 10(-4)) at room temperature at pressures up to at least 18 MPa. DMPC-SUVs ruptured following adsorption, providing poor high-pressure lubrication, while DPPC-SUVs behavior was intermediate between the two. These results can be well understood in terms of the hydration-lubrication paradigm, but suggest that an earlier conjecture, that highly-efficient lubrication by PC-SUVs depended simply on their being in the SO rather than in the liquid-disordered phase, should be more nuanced. Our results indicate that the resistance of the SUVs to mechanical deformation and rupture is the dominant factor in determining their overall boundary lubrication efficiency in our system.

  20. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity. PMID:26241051

  1. Phosphatidylcholine from "Healthful" Egg Yolk Varieties: An Organic Laboratory Experience

    NASA Astrophysics Data System (ADS)

    Hodges, Linda C.

    1995-12-01

    I have added an investigative element to a popular undergraduate experiment. the characterization of phosphatidylcholine (PC) from egg yolks. Varieties of eggs are commercially available which have been obtained from chickens fed a diet containing no animal fat. Presumably, less saturated fat in the diet of the chickens could be reflected in the fatty acid composition of various classes of biological lipids, including phospholipids, in the eggs from these chickens. PC is extracted using conventional methods, the extract is further purified by chromatography on silicic acid, and the column fractions are assayed for the presence and purity of PC by TLC. Fractions containing pure PC are pooled, concentrated, hydrolyzed, and esterified to obtain the fatty acid methyl esters (FAME) which are identified by GLC. Comparing FAMEs derived from PC of yolks of regular eggs to those obtained from the other special brands adds a novel twist to the students' work and generates greater student interest and involvement in both the interpretation of data than a simple isolation of a biological compound alone evokes.

  2. Chlorophyll a triplet-state ESR in frozen phosphatidylcholine vesicles

    SciTech Connect

    Hiromitsu, I.; Kevan, L.

    1988-05-19

    Photoexcited chlorophyll a (Chla) triplet state in rapidly frozen egg phosphatidylcholine (EPC) vesicles is investigated at 77 K by electron spin resonance (ESR) spectroscopy using light intensity modulation. The electron spin polarization (ESP) intensity is stronger for 0.2 mM Chla than for 1.0 mM Chla. The absolute values of the zero field splitting parameter, D, are 283 (+/-1) x 10/sup -4/ and 276 (+/-2) x 10/sup -4/ cm/sup -1/, and the average depopulation rates of the triplet state are 0.671 +/- 0.052 and 1.054 +/- 0.036 ms/sup -1/ for 0.2 mM Chla and 1.0 mM Chla, respectively. This difference can be consistently attributed to faster triplet-state migration between adjacent Chla's at the higher 1.0 mM Chla concentration. A characteristic migration time of 2.6 ms is obtained. The ESP pattern of the Chla triplet state in the frozen EPC vesicles resembles that in polycrystals more than that in glasses. This suggests that the local environment around Chla in the vesicles is more structured than in glasses.

  3. A simple method for positional analysis of phosphatidylcholine.

    PubMed

    Kiełbowicz, Grzegorz; Gładkowski, Witold; Chojnacka, Anna; Wawrzeńczyk, Czesław

    2012-12-15

    Simple and fast method of positional analysis of fatty acid composition of phosphatidylcholine (PC) from egg-yolk and soy has been elaborated. The key step of the procedure was complete ethanolysis of PC catalyzed by sn-1,3 specific lipase from Mucor miehei (Lipozyme). 2-Acyl-lysophosphatidylcholine (2-acyl LPC), fatty acids ethyl esters (FAEEs) and free fatty acids (FAs) were formed in this process. No acyl migration was observed during the reaction. The products were entirely separated from the products mixture by simple extraction in water:hexane (2:3 v/v) system. The hexane fraction containing free FAs and FAEEs was treated with BF(3)/Et(2)O in ethanol to obtain only FAEEs. The analysis of FAEEs by GC gave the composition of the FAs in the sn-1 position of the PC. 2-Acyl LPC from water fraction after precipitation in cold (-20°C) acetone was converted into FAEEs and analyzed by gas chromatography (GC) to determine FAs composition in the sn-2 position of the PC.

  4. The labeling of pulmonary surfactant phosphatidylcholine in newborn and adult sheep

    SciTech Connect

    Ikegami, M.; Jobe, A.; Nathanielsz, P.W.

    1981-08-01

    The labeling of the saturated phosphatidylcholine from surfactant with radiolabeled palmitic acid was characterized in seven newborn and seven adult sheep using a repetitive sampling technique. Each animal had a small cannula placed surgically in the trachea. Following the intravenous injection of (3H) palmitic acid, surfactant samples in saline were recovered from the distal airways of each animal with fine plastic catheters over a period of 10 days. The change in specific activity of the saturated phosphatidylcholine (cpm/mumol) was used to define the kinetics of secretion and then disappearance of the labeled saturated phosphatidylcholine. Labeled saturated phosphatidylcholine accumulated in a linear fashion without an apparent initial delay for 27 hr in adult and 44 hr in newborn sheep. The labeled saturated phosphatidylcholine then decayed with mean apparent biological half-life values of 45 hr and 54 hr in adult and newborn sheep, respectively. However, these half-life estimates are compromised by the long secretory phase of the labeling curves. The characteristics of the labeling of surfactant saturated phosphatidylcholine in sheep may be more representative of surfactant metabolism in large mammals than previous studies in small rodents.

  5. Hormonal induction of pulmonary maturation in the rabbit fetus: effects of maternal treatment with estradiol-17 beta on th endogenous levels of cholinephosphate, CDP-choline and phosphatidylcholine.

    PubMed

    Possmayer, F; Casola, P G; Chan, F; MacDonald, P; Ormseth, M A; Wong, T; Harding, P G; Tokmakjian, S

    1981-04-23

    1. Administration of estradiol-17 beta to pregnant rabbits at 25 days gestation (term, 31 days) resulted n a significant increase in the incorporation of [14C]-choline, but not [14C]ethanolamine, into the lipids of fetal lung slices. The incorporation of [35S]methionine was not affected. 2. Enzymatic assays conducted in vitro revealed no significant effect on either the activities of several enzyme markers for subcellular organelles, the activities of the enzymes responsible for the production of phosphatidylglycerol and phosphatidylinositol, membrane-bound or aqueously dispersed phosphatidate-dependent phosphatidic acid phosphohydrolase activities or the activities of the auxiliary enzymes responsible for the synthesis of dipalmitoylphosphatidylcholine. 3. The activity of the enzymes involved in the choline pathway for the de novo biosynthesis of phosphatidylcholine were not significantly altered except for a 66% increase in the CTP:cholinephosphate cytidylyltransferase activity assayed in the cytosol. The addition of phosphatidylglycerol stimulated cholinephosphate cytidylyltransferase activity approx. 3-fold. However, in the presence of this lipid, the activities in cytosol from control and treated fetuses were similar, indicating that the increased activity noted in the absence of phosphatidylglycerol was due to an activation of existing cytidylyltransferase activity rather than an increase in total enzyme units. 4. Estrogen treatment of the does was also associated with a marked decrease in the levels of cholinephosphate in fetal lung and significant increases in the levels of CDPcholine and phosphatidylcholine. These alterations in pool size are consistent with an increase in the activity of cholinephosphate cytidyltransferase in vivo. The results suggest that cholinephosphate cytidylyltransferase may catalyse an important rate-determining reaction in the synthesis of phosphatidylcholine in fetal lung. The data also support the view that the reaction

  6. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid.

    PubMed

    Onyango, Arnold N

    2016-01-01

    Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC) bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC) and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy)-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia.

  7. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid

    PubMed Central

    2016-01-01

    Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC) bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC) and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy)-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia. PMID:27366754

  8. Comparison of native, lyso and hydrogenated soybean phosphatidylcholine as phospholipid source in the diet of postlarval Penaeus japonicus bate.

    PubMed

    Kontara, E K; Djunaidah, I S; Coutteau, P; Sorgeloos, P

    1998-01-01

    Native and two modified forms of soybean phosphatidylcholine were used to study the nutritional effect of their fatty acids for postlarval Penaeus japonicus. Five semipurified and isolipidic diets were formulated using casein as a protein source. Three diets contained 1.5% of different types of phosphatidylcholine (95% purity), i.e. native soybean phosphatidylcholine, hydrogenated soybean phosphatidylcholine and 1-acyl lyso soybean phosphatidylcholine, besides 1% of n-3 highly unsaturated fatty acid formulated as triglycerides. Two negative control diets contained either triglycerides or ethyl esters as a source of n-3 highly unsaturated fatty acids without phospholipid. The experiment was conducted during two successive phases of 20 d starting from 12-d old postlarvae. Feeding the diet containing native soybean phosphatidylcholine resulted in significantly better growth and resistance to osmotic shock of P. japonicus postlarvae compared to the other diets. The total lipid content of the tissue was significantly increased by the supplementation of soybean phosphatidylcholine, whereas no significant difference was observed for the shrimp fed the modified phosphatidylcholine sources compared to the phosphatidylcholine-free diet at the end of the experiment. Shrimp fed the diet containing soybean phosphatidylcholine exhibited a higher polar lipid fraction in the whole body total lipid mainly as a result of the increased proportion of phosphatidylcholine and to a lesser extent of phosphatidylinositol at the expense of free fatty acids, free sterols and sterol esters. The content of 20:5n-3, 22:6n-3 and total n-3 highly unsaturated fatty acids in the shrimp tissue were higher in shrimp fed the native soybean and hydrogenated soybean phosphatidylcholine diets compared to those fed the phosphatidylcholine-free and 1-acyl lyso soybean phosphatidylcholine-based diets. The fatty acid profile of tissue phosphatidylethanolamine was more influenced by the type of dietary

  9. Modulation of a human lymphoblastoid B cell line by cyclic AMP. Ig secretion and phosphatidylcholine metabolism

    SciTech Connect

    Shearer, W.T.; Patke, C.L.; Gilliam, E.B.; Rosenblatt, H.M.; Barron, K.S.; Orson, F.M.

    1988-09-01

    A transformed human B cell line, LA350, was found to be sensitive to cAMP-elevating agents by responding with rapid (0 to 2 h) severalfold elevations of intracellular cAMP to treatment with cholera toxin, isobutylmethylxanthine (IBMX), forskolin, and dibutyryl cAMP (all p less than 0.001). These cAMP-elevating agents also produced significant inhibitions of subsequent (48 to 72 h) Ig secretion by the same B cells as measured by a reverse hemolytic plaque assay and an enzyme-linked immunoadsorbent assay for IgM (both p less than 0.001). PMA- and IBMX-treated cells were particularly responsive to the effects of cholera toxin, showing a doubling of cAMP content and profound decrease in Ig production (p less than 0.001). Because our previous studies had correlated activation of the metabolic turnover of the phosphatidylcholine (PC) fraction of membrane phospholipids with enhanced Ig secretion, we examined the sensitivity of PC metabolism to cAMP in control and PMA-stimulated cells. Formation of PC was found to be inhibited by forskolin and IBMX (both p less than 0.002) but breakdown of PC was stimulated (p less than 0.001). These findings imply that as the enzymatic products of PC, choline phosphate and diacylglycerol, are depleted due to the combined effects of cAMP upon synthesis and turnover of PC, there is a decrease in Ig secretion. Since diacylglycerol activates protein kinase C, it appears reasonable that Ig secretion is at least partially regulated by cAMP-responsive alterations in PC metabolism produced by protein kinase C-induced phosphorylation. We conclude that the early cAMP-sensitive changes in PC metabolism in this activated B cell line may signal for subsequent alterations in Ig secretion.

  10. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes.

    PubMed Central

    Zhelev, D V

    1996-01-01

    In a previous paper we described the experiments and the framework of a model for the exchange of monooleoylphosphatidylcholine with a single egg phosphatidylcholine membrane. In the present paper a model is presented that relates the experimentally measured apparent characteristics of the overall kinetics of lysolipid exchange to the true rates of lysolipid exchange and interbilayer transfer. It is shown that the adsorption of the lysolipid follows two pathways: one through the adsorption of lipid monomers and other through the fusion of micelles. The desorption of lysolipid follows a single pathway, namely, the desorption of monomers. The overall rate of fast desorption under convective flow conditions gives the true rate of monomer desorption from the outer membrane monolayer. The overall rate of both slow lysolipid uptake and slow desorption gives the rate of interbilayer transfer. Because of the uneven distribution of lysolipid between the two monolayers during its uptake, one of the membrane monolayers is apparently extended relative to the other. This relative extension of one of the monolayers induces a monolayer tension. The induced monolayer tension can increase up to 7 mN.m-1, when most of the intercalated lysolipid only partitions into the monolayer facing the lysolipid solution. This value is similar to the measured value for the critical monolayer tension of membrane failure, which is on the order of 5 mN.m-1. The similarity of the magnitudes of the induced monolayer tension during monooleoylphosphatidylcholine exchange and the monolayer tension of membrane failure suggests that the interbilayer lipid transfer may be affected by the formation of short living membrane defects. Furthermore, the pH-induced interbilayer exchange of phosphatidylglycerol is considered. In this case, it is shown that the rate of interbilayer transfer is a function of the phosphatidylglycerol concentration in the membrane. Images FIGURE 1 PMID:8804609

  11. 2-aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLC(Bc).

    PubMed

    González-Bulnes, Patricia; González-Roura, Albert; Canals, Daniel; Delgado, Antonio; Casas, Josefina; Llebaria, Amadeu

    2010-12-15

    Phosphatidylcholine preferring phospholipase C (PC-PLC) is an important enzyme that plays a key role in a variety of cellular events and lipid homoeostases. Bacillus cereus phospholipase C (PC-PLC(Bc)) has antigenic similarity with the elusive mammalian PC-PLC, which has not thus far been isolated and purified. Therefore the discovery of inhibitors of PC-PLC(Bc) is of current interest. Here, we describe the synthesis and biological evaluation of a new type of compounds inhibiting PC-PLC(Bc). These compounds have been designed by evolution of previously described 2-aminohydroxamic acid PC-PLC(Bc) inhibitors that block the enzyme by coordination of the zinc active site atoms present in PC-PLC(Bc) [Gonzalez-Roura, A.; Navarro, I.; Delgado, A.; Llebaria, A.; Casas, J. Angew. Chem. Int. Ed.2004, 43, 862]. The new compounds maintain the zinc coordinating groups and possess an extra trimethylammonium function, linked to the hydroxyamide nitrogen by an alkyl chain, which is expected to mimic the trimethylammonium group of the phosphatidylcholine PC-PLC(Bc) substrates. Some of the compounds described inhibit the enzyme with IC(50)'s in the low micromolar range. Unexpectedly, the most potent inhibitors found are those that possess a trimethylammonium group but have chemically blocked the zinc coordinating functionalities. The results obtained suggest that PC-PLC(Bc) inhibition is not due to the interaction of compounds with the phospholipase catalytic zinc atoms, but rather results from the inhibitor cationic group recognition by the PC-PLC(Bc) amino acids involved in choline lipid binding.

  12. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines.

    PubMed Central

    Smaby, J M; Kulkarni, V S; Momsen, M; Brown, R E

    1996-01-01

    The interfacial elastic packing interactions of different galactosylceramides (GalCers), sphingomyelins (SMs), and phosphatidylcholines (PC) were compared by determining their elastic area compressibility moduli (Cs-1) as a function of lateral packing pressure (pi) in a Langmuir-type film balance. To assess the relative contributions of the lipid headgroups as well as those of the ceramide and diacylglycerol hydrocarbon regions, we synthesized various GalCer and SM species with identical, homogeneous acyl residues and compared their behavior to that of PCs possessing similar hydrocarbon structures. For PCs, this meant that the sn-1 acyl chain was long and saturated (e.g., palmitate) and the sn-2 chain composition was varied to match that of GalCer or SM. When at equivalent pi and in either the chain-disordered (liquid-expanded) or chain-ordered (liquid-condensed) state, GalCer films were less elastic than either SM or PC films. When lipid headgroups were identical (SM and PC), Cs-1 values (at equivalent pi) for chain-disordered SMs, but not chain-ordered SMs, were 25-30% higher than those of PCs. Typical values for fluid phase (liquid-expanded) GalCer at 30 mN/m and 24 degrees C were 158 (+/- 7) mN/m, whereas those of SM were 135 (+/- 7) mN/m and those of PC were 123 (+/- 2) mN/m. Pressure-induced transitions to chain-ordered states (liquid-condensed) resulted in significant increases (two- to fourfold) in the "in-plane" compressibility for all three lipid types. Typical Cs-1 values for chain-ordered GalCers at 30 mN/m and 24 degrees C were between 610 and 650 mN/m, whereas those of SM and of PC were very similar and were between 265 and 300 mN/m. Under fluid phase conditions, the pi-Cs-1 behavior for each lipid type was insensitive to whether the acyl chain was saturated or monounsaturated. Measurement of the Cs-1 values also provided an effective way to evaluate the two-dimensional phase transition region of SMs, GalCers, and PCs. Modest heterogeneity in the acyl

  13. Enhancement by cytidine of membrane phospholipid synthesis

    NASA Technical Reports Server (NTRS)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  14. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes

    PubMed Central

    1994-01-01

    SEC14p is required for protein transport from the yeast Golgi complex. We describe a quantitative analysis of yeast bulk membrane and Golgi membrane phospholipid composition under conditions where Golgi secretory function has been uncoupled from its usual SEC14p requirement. The data demonstrate that SEC14p specifically functions to maintain a reduced phosphatidylcholine content in Golgi membranes and indicate that overproduction of SEC14p markedly reduces the apparent rate of phosphatidylcholine biosynthesis via the CDP-choline pathway in vivo. We suggest that SEC14p serves as a sensor of Golgi membrane phospholipid composition through which the activity of the CDP-choline pathway in Golgi membranes is regulated such that a phosphatidylcholine content that is compatible with the essential secretory function of these membranes is maintained. PMID:8294512

  15. Conditional Mutagenesis of a Novel Choline Kinase Demonstrates Plasticity of Phosphatidylcholine Biogenesis and Gene Expression in Toxoplasma gondii*

    PubMed Central

    Sampels, Vera; Hartmann, Anne; Dietrich, Isabelle; Coppens, Isabelle; Sheiner, Lilach; Striepen, Boris; Herrmann, Andreas; Lucius, Richard; Gupta, Nishith

    2012-01-01

    The obligate intracellular and promiscuous protozoan parasite Toxoplasma gondii needs an extensive membrane biogenesis that must be satisfied irrespective of its host-cell milieu. We show that the synthesis of the major lipid in T. gondii, phosphatidylcholine (PtdCho), is initiated by a novel choline kinase (TgCK). Full-length (∼70-kDa) TgCK displayed a low affinity for choline (Km ∼0.77 mm) and harbors a unique N-terminal hydrophobic peptide that is required for the formation of enzyme oligomers in the parasite cytosol but not for activity. Conditional mutagenesis of the TgCK gene in T. gondii attenuated the protein level by ∼60%, which was abolished in the off state of the mutant (Δtgcki). Unexpectedly, the mutant was not impaired in its growth and exhibited a normal PtdCho biogenesis. The parasite compensated for the loss of full-length TgCK by two potential 53- and 44-kDa isoforms expressed through a cryptic promoter identified within exon 1. TgCK-Exon1 alone was sufficient in driving the expression of GFP in E. coli. The presence of a cryptic promoter correlated with the persistent enzyme activity, PtdCho synthesis, and susceptibility of T. gondii to a choline analog, dimethylethanolamine. Quite notably, the mutant displayed a regular growth in the off state despite a 35% decline in PtdCho content and lipid synthesis, suggesting a compositional flexibility in the membranes of the parasite. The observed plasticity of gene expression and membrane biogenesis can ensure a faithful replication and adaptation of T. gondii in disparate host or nutrient environments. PMID:22451671

  16. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our aim in carrying out this analysis, was to assess the predictive value of plasma phosphatidylcholine (PC) DHA content, DHA intake, and fish intake for the risk of developing dementia in the Framingham Heart Study. A cohort of 899 subjects free of dementia was followed to assess the onset of incid...

  17. An LC method for the analysis of phosphatidylcholine hydrolysis products and its application to the monitoring of the acyl migration process.

    PubMed

    Kiełbowicz, Grzegorz; Smuga, Damian; Gładkowski, Witold; Chojnacka, Anna; Wawrzeńczyk, Czesław

    2012-05-30

    An assay for quantitative analysis of phosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and its hydrolysis products: 1-hydroxy-2-palmitoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine, sn-glycero-3-phosphocholine and palmitic acid using high-performance liquid chromatography with charge aerosol detector (CAD) was developed. The separation of the compounds of interest was achieved on a reversed-phase/hydrophilic interaction stationary phase with a mobile phase consisting of acetonitrile:methanol:10mM ammonium acetate solution. The method was applied to control the acyl migration process of LPC regioisomers in the most common solvents used in the synthesis or modification of PC.

  18. Radiotracer Evidence Implicating Phosphoryl and Phosphatidyl Bases as Intermediates in Betaine Synthesis by Water-Stressed Barley Leaves 12

    PubMed Central

    Hitz, William D.; Rhodes, David; Hanson, Andrew D.

    1981-01-01

    In barley, glycine betaine is a metabolic end product accumulated by wilted leaves; betaine accumulation involves acceleration of de novo synthesis from serine, via ethanolamine, N-methylethanolamines, choline, and betaine aldehyde (Hanson, Scott 1980 Plant Physiol 66: 342-348). Because in animals and microorganisms the N-methylation of ethanolamine involves phosphatide intermediates, and because in barley, wilting markedly increases the rate of methylation of ethanolamine to choline, the labeling of phosphatides was followed after supplying [14C]ethanolamine to attached leaf blades of turgid and wilted barley plants. The kinetics of labeling of phosphatidylcholine and betaine showed that phosphatidylcholine became labeled 2.5-fold faster in wilted than in turgid leaves, and that after short incubations, phosphatidylcholine was always more heavily labeled than betaine. In pulse-chase experiments with wilted leaves, label from [14C]ethanolamine continued to accumulate in betaine as it was being lost from phosphatidylcholine. When [14C]monomethylethanolamine was supplied to wilted leaves, phosphatidylcholine was initially more heavily labeled than betaine. These results are qualitatively consistent with a precursor-to-product relationship between phosphatidylcholine and betaine. The following experiments, in which tracer amounts of [14C]ethanolamine or [14C]formate were supplied to wilted barley leaves, implicated phosphoryl and phosphatidyl bases as intermediates in the methylation steps between ethanolamine and phosphatidylcholine. Label from both [14C]ethanolamine and [14C]formate entered phosphorylmonomethylethanolamine and phosphorylcholine very rapidly; these phosphoryl bases were the most heavily labeled products at 15 to 30 minutes after label addition and lost label rapidly as the fed 14C-labeled precursor was depleted. Phosphatidylmonomethylethanolamine and phosphatidylcholine were also significantly labeled from [14C]ethanolamine and [14C]formate at early

  19. Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability

    PubMed Central

    Guo, Qin; Cai, Jie; Li, Pengyu; Xu, Dongling; Ni, Xiaomin; Wen, Hui; Liu, Dan; Lin, Suizhen; Hu, Haiyan

    2016-01-01

    Androst-3β,5α,6β-triol (Triol) is a promising neuroprotective agent, but its poor solubility restricts its development into parenteral preparations. In this study, Triol is significantly solubilized by bile salt/phosphatidylcholine mixed micelles (BS/PC-MM). All BS/PC-MM systems are tested to remarkably improve the drug solubility with various stabilities after drug loading. Among them, the sodium glycocholate (SGC)/egg phosphatidylcholine (EPC) system with 2:1 ratio in weight and the total concentration of SGC and EPC of 100 mg/mL is proved to produce stable mixed micelles with high drug loading. It is found that the stability of drug-loaded mixed micelles is quite different, which might be related to the change in critical micelle concentration (CMC) after incorporating drugs. SGC/EPC and SGC/soya phosphatidylcholine (SPC) remain transparent under accelerated conditions and manifest a decreased CMC (dropping from 0.105 to 0.056 mg/mL and from 0.067 to 0.024 mg/mL, respectively). In contrast, swine bile acid-sodium salt (SBA-Na)/PC and sodium deoxycholate (SDC)/PC are accompanied by drug precipitation and reached the maximum CMC on the first and the third days, respectively. Interestingly, the variation of CMC under accelerated testing conditions highly matches the drug-precipitating event in the primary stability experiment. In brief, the bile salt/phosphatidylcholine system exists as a potential strategy of improving sterol drug solubility. CMC variation under accelerated testing conditions might be a simple and easy method to predict the stability of drug-loaded mixed micelles. PMID:27895469

  20. Systemic phosphatidylcholine pretreatment protects canine esophageal mucosa during acute experimental biliary reflux

    PubMed Central

    Eros, Gabor; Kaszaki, Jozsef; Czobel, Miklos; Boros, Mihaly

    2006-01-01

    AIM: To characterize the consequences of short-term exposure to luminal bile on mucosal mast cell reactions in a canine model, and to determine the effects of systemic phosphatidylcholine pretreatment in this condition. METHODS: Twenty mongrel dogs were used for experiments. Group 1 (n  = 5) served as a saline-treated control, while in group 2 (n = 5) the esophagus was exposed to bile for 3 h. In group 3 (n  = 5) the animals were pretreated with 7-nitroindazole to inhibit the neuronal isoform of nitric oxide synthase. In group 4 (n  = 5) phosphatidylcholine solution (50 mg/kg) was administered iv before the biliary challenge. Mucosal microcirculation was observed by intravital videomicroscopy. Myeloperoxidase and nitric oxide synthase activities, the degrees of mast cell degranulation and mucosal damage were evaluated via tissue biopsies. RESULTS: Exposure to bile evoked significant mast cell degranulation and leukocyte accumulation. The red blood cell velocity and the diameter of the postcapillary venules increased significantly. The tissue ATP content and constitutive nitric oxide synthase activity decreased, while the inducible nitric oxide synthase activity increased significantly as compared to the control values. 7-nitroindazole treatment significantly exacerbated the mucosal mast cell degranulation and tissue damage. In contrast, phosphatidylcholine pretreatment prevented the bile-induced ATP depletion, the inducible nitric oxide synthase and myeloperoxidase activity and the mast cell degranulation increased. CONCLUSION: The neuronal nitric oxide synthase - mast cell axis plays an important role in the esophageal mucosal defense system. Systemic phosphatidylcholine pretreatment affords effective protection through ameliorating the bile-induced ATP depletion and secondary inflammatory reaction. PMID:16482629

  1. Interaction of polyene antibiotics with sterols in phosphatidylcholine bilayer membranes as studied by spin probes.

    PubMed

    Ohki, K; Nozawa, Y; Ohnishi, S I

    1979-06-13

    Interaction of filipin and amphotericin B with sterols in phosphatidylcholine membranes has been studied using various spin probes; epiandrosterone, cholestanone, phosphatidylcholine with 12-nitroxide or 5-nitroxide stearate attached to 2 position and also with tempocholine at the head group. Filipin caused increase in the fluidity of cholesterol-containing phosphatidylcholine membranes near the center, while it rather decreased the fluidity near the polar surface. On the other hand, amphotericin B did not apparently affect the fluidity. In the electron spin resonance spectrum of steriod spin probes in the antibiotic-containing membranes, both bound and free signals were observed and the association constant was calculated from the siganal intensity. In the binding of steriods with filipin, both 3 and 17 positions were involved, while the 17 positions was less involved in the binding with amphotericin B. Phase change in the host membrane markedly affected the interaction of filipin with epiandrosterone probe. The bound fraction jumped from 0.4 to 0.8 on going to the crystalline state and increased further with decrease in temperature. The overall splitting of the bound signal also increased on lowering the temperature below phase transition. This change was attributed to aggregate formation of filipin-steriod complexes in the crystalline state. On the other hand, effect of phase transition was much smaller on the interaction of amphotericin B with the steriod probe.

  2. Enhanced gene delivery to the lung using biodegradable polyunsaturated cationic phosphatidylcholine-detergent conjugates.

    PubMed

    Pierrat, Philippe; Kereselidze, Dimitri; Lux, Marie; Lebeau, Luc; Pons, Françoise

    2016-09-10

    Lung diseases are among the more representative causes of mortality and morbidity worldwide and gene therapy is considered as a promising therapeutic approach for their treatment. However the design of efficient nucleic acid carriers for airway administration still is a challenge and there is a pressing need for new developments in this field. Herein, new synthetic DNA carriers based on the conjugation of a phospholipid and C12E4, a nonionic detergent, are developed. DNA complexes with phosphatidylcholine-detergent conjugates are administered in mouse airways, and transgene expression and inflammatory activity as an index of toxicity are investigated as a function of time, DNA dose, and presence of helper and stealth lipids. Introduction of a biodegradable linker between the phosphatidylcholine and detergent moieties significantly attenuates the severity of inflammatory response that characterizes cationic lipid-mediated gene transfer. Concurrent introduction of polyunsaturated fatty acid chains in the carrier scaffold improves transgene expression and further reduces airway inflammation. Finally, the biodegradable phosphatidylcholine-detergent conjugates favorably compare to GL67A, the gold standard for DNA delivery to the airway that is currently under clinical evaluation. Our findings indicate that the lipid formulations described herein may have great potential as nucleic acid carriers for gene therapy.

  3. Studies on the encapsulation of diclofenac in small unilamellar liposomes of soya phosphatidylcholine.

    PubMed

    Lopes, L B; Scarpa, M V; Silva, G V J; Rodrigues, D C; Santilli, C V; Oliveira, A G

    2004-12-25

    The encapsulation of acid (AD) and sodium diclofenac (SD) in small unilamellar liposomes (SUV) as well as the interactions of the drug with the bilayer was studied. SUV was prepared by sonication from multilamellar liposomes containing soya phosphatidylcholine and diclofenac at various proportions. The size distribution obtained from dynamic light scattering showed that the incorporation of SD decreases significantly the size of the liposomes suggesting that the drug interacts with the bilayer of the liposomes. This size decrease is related with the phase transition of liposomes to mixed micelar solution. The encapsulation of the hydrophilic dye indocyanine green in the aqueous compartment of liposomes showed that the rate of captured dye decreases with SD concentration suggesting the transition of liposomes to mixed micelles. The (31)P NMR analysis indicates that SD interacts with the phosphate of phosphatidylcholine head groups. A schematic model for interaction of SD with phosphatidylcholine of the liposomes in which the diclofenac anion interacts with the ammonium group of the phospholipid and the dichlorophenyl ring occupies a more internal site of bilayer near phosphate group was proposed.

  4. Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells.

    PubMed

    Lassègue, B; Alexander, R W; Clark, M; Akers, M; Griendling, K K

    1993-06-01

    In cultured vascular smooth-muscle cells, angiotensin II produces a sustained formation of diacylglycerol (DG) and phosphatidic acid (PtdOH). Since the fatty acid composition of these molecules is likely to determine their efficacy as second messengers, it is important to ascertain the phospholipid precursors and the biochemical pathways from which they are produced. Our experiments suggest that phospholipase D (PLD)-mediated phosphatidylcholine (PtdCho) hydrolysis is the major source of both DG and PtdOH during the late signalling phase. First, in cells labelled with [3H]myristate, which preferentially labels PtdCho, formation of [3H]PtdOH precedes formation of [3H]DG. Second, in contrast with phospholipase C (PLC) activation, DG mass accumulation is dependent on extracellular Ca2+. Similarly, DG mass accumulation is not attenuated by protein kinase C activation, which we have previously shown to inhibit the phosphoinositide-specific PLC. Third, the fatty acid composition of late-phase DG and PtdOH more closely resembles that of PtdCho than that of phosphatidylinositol. Finally, in cells labelled for a short time with [3H]glycerol, the radioactivity incorporated into [3H]DG and PtdOH was greater than that incorporated into PtdIns, but not into PtdCho. We found no evidence that synthesis de novo or phosphatidylethanolamine breakdown contributes to sustained DG and PtdOH formation. Thus, in angiotensin II-stimulated cultured vascular smooth-muscle cells, PLD-mediated PtdCho hydrolysis is the major source of sustained DG and PtdOH, whereas phosphoinositide breakdown is a minor contributor. Furthermore, PtdOH phosphohydrolase, which determines the relative levels of DG and PtdOH, appears to be regulated by protein kinase C. These results have important implications for the role of these second messengers in growth and contraction.

  5. Phase diagrams of pseudo-binary phospholipid systems. II. Selected calorimetric studies on the influence of branching on the mixing properties of phosphatidylcholines.

    PubMed

    Dörfler, H D; Miethe, P

    1990-04-01

    The miscibility properties of branched phosphatidylcholines in mixtures of aqueous dispersions were studied by means of differential scanning calorimetry. The phase diagrams of four pseudo-binary systems from mixing type unbranched phosphatidylcholine/branched phosphatidylcholine/water (50 wt. % water) were investigated and discussed. The unbranched dipalmitoylphosphatidylcholine acts as a reference component of the mixtures. The phase diagrams of these four pseudo-binary phosphatidylcholine systems showed some connections between chain structure of the branched phosphatidylcholines and miscibility of the components. A change of the phase diagram type has been observed according to the branching and/or chain length differences of the phosphatidylcholines: complete miscibility and peritectic mixing behaviour. Generally we observed complete miscibility in the high-temperature phase (La-phase) and demixing in the low-temperature phases (gel phase). This is dependent on the branching and chain length differences of the mixing components.

  6. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers.

    PubMed Central

    Goldberg, E M; Lester, D S; Borchardt, D B; Zidovetzki, R

    1994-01-01

    The combined effects of the diacylglycerols (DAGs) with the various acyl chains and Ca2+ on the structure of phosphatidylcholine/phosphatidylserine (4:1 mole/mole) bilayers were studied using 2H- and 31P NMR. The following DAG- and Ca(2+)-induced bilayer perturbations were identified. 1) Increased tendency to form nonbilayer lipid phases was induced by diolein or stearoylarachidonoylglycerol, and was synergistically enhanced by the addition of Ca2+. 2) "Transverse" bilayer perturbation was induced by dioctanoylglycerol. The addition of this DAG caused increased ordering of the phospholipid acyl side chains in the region adjacent to the headgroup, with the concomitant decrease of the order toward the bilayer interior. 3) Separation of the phosphatidylcholine and phosphatidylserine bilayer components was induced by combinations of relatively high (1:5 mole/mole to phosphatidylserine) Ca2+ and 25 mol% (to the phospholipids) of diolein, stearoylarachidonoylglycerol, or oleoylacetylglycerol. 4) Lateral phase separation of the bilayers on the regions of different fluidities was induced by dipalmitin. These physicochemical effects were correlated with the effects of these DAGs and Ca2+ on the activity of protein kinase C. The increased tendency to form nonbilayer lipid phases and the transverse bilayer perturbations correlated with the increased protein kinase C activity, whereas the actual presence of the nonbilayer lipid phases, as well as the separation of the phosphatidylcholine and phosphatidylserine components, was associated with the decrease in the protein kinase C activity. The lateral phase separation of the bilayer on gel-like and liquid crystalline regions did not have an effect on the activity of the enzyme. These results demonstrate the importance of the physicochemical properties of the membranes in the process of activation of protein kinase C. PMID:8161692

  7. Mastoparan-induced phosphatidylcholine hydrolysis by phospholipase D activation in human astrocytoma cells.

    PubMed Central

    Mizuno, K.; Nakahata, N.; Ohizumi, Y.

    1995-01-01

    1. The effect of mastoparan on phosphatidylcholine hydrolysis was examined in 1321N1 human astrocytoma cells. Mastoparan (3-30 microM) caused an accumulation of diacylglycerol (DG) and phosphatidic acd (PA) accompanied by choline release in a concentration- and time-dependent manner. 2. In the presence of 2% n-butanol, mastoparan (3-100 microM) induced phosphatidylbutanol (PBut) accumulation in a concentration- and time-dependent manner, suggesting that mastoparan activates phospholipase D (PLD). Propranolol (30-300 microM), a phosphatidate phosphohydrolase inhibitor, inhibited DG accumulation induced by mastoparan, supporting this idea. 3. Depletion of extracellular free calcium ion did not alter the effect of mastoparan on PLD activity. 4. A protein kinase C (PKC) inhibitor, calphostin C (1 microM), did not inhibit mastoparan-induce PLD activation but the ability of mastoparan to stimulate phospholipase D activity was decreased in the PKC down regulated cells. 5. PLD activity stimulated by mastoparan was not prevented by pretreatment of the cells with pertussis toxin (PT) or C3 ADP-ribosyltransferase. Furthermore, guanine nucleotides did not affect PLD activity stimulation by mastoparan in membrane preparations. 6. Mastoparan stimulated PLD in several cell lines such as RBL-2H3, RBL-1, HL-60, P388, endothelial cells, as well as 1321N1 human astrocytoma cells. 7. These results suggest that mastoparan induces phosphatidylcholine (PC) hydrolysis by activation of PLD, not by activation of phosphatidylcholine-specific phospholipase C (PC-PLC); mastoparan-induced PLD activation is not mediated by G proteins. PMID:8640350

  8. Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves

    SciTech Connect

    Hitz, W.D.; Rhodes, D.; Hanson, A.

    1981-10-01

    In pulse-chase experiments with barley wilted leaves, label from (/sup 14/C)-ethanolamine continued to accumulate in betaine as it was being lost from phosphatidylcholine. When (/sup 14/C)monomethylethanolamine was supplied to wilted leaves, phosphatidylcholine was initially more heavily labeled than betaine. These results are qualitatively consistent with a precursor-to-product relationship between phosphatidylcholine and betaine. The following experiments, in which tracer amounts of (/sup 14/C)ethanolamine or (/sup 14/C)formate were supplied to wilted barley leaves, implicated phosphoryl and phosphatidyl bases as intermediates in the methylation steps between ethanolamine and phosphatidylcholine. Label from both (/sup 14/C)ethanolamine and (/sup 14/C)formate entered phosphorylmonomethylethanolamine and phosphorylcholine very rapidly; these phosphoryl bases were the most heavily labeled products at 15 to 30 minutes after label addition and lost label rapidly as the fed /sup 14/C-labeled precursor was depleted. Phosphatidylmonomethylethanolamine and phosphatidylcholine were also significantly labeled from (/sup 14/C)ethanolamine and (/sup 14/)formate at early times; the corresponding free bases and nucleotide bases were not. Addition of a trapping pool of phosphorylcholine reduced (/sup 14/C)ethanolamine conversion to both phosphatidylcholine and betaine, and resulted in accumulation of labe in the trap. A computer model of the synthesis of betaine via phosphatidylcholine was developed from /sup 14/C kinetic data. The model indicates that about 20% of the total leaf phosphatidylcholine behaves as an intermediate in betaine biosynthesis and that a marked decrease (greater than or equal to2-fold) in the half-life of this metabolically active phosphatidylcholine fraction accompanies wilting.

  9. Automated monitoring of phosphatidylcholine biosyntheses in Plasmodium falciparum by electrospray ionization mass spectrometry through stable isotope labeling experiments.

    PubMed

    Enjalbal, Christine; Roggero, Rodolphe; Cerdan, Rachel; Martinez, Jean; Vial, Henri; Aubagnac, Jean-Louis

    2004-08-01

    The metabolic pathways contributing to phosphatidylcholine biosyntheses in Plasmodium falciparum, the malaria-causing parasite, was explored by electrospray ionization mass spectrometry. Phosphatidylcholine produced by the CDP-choline pathway and by the methylation of phosphatidylethanolamine was identified and quantified through isotopic labeling experiments. A straightforward method based on cone voltage directed in-source fragmentations and relative abundance measurement of endogenous versus deuterated specific fragment ions was developed for simple and rapid automated data acquisition. Such high-throughput analytical protocol allowed us to measure the relative contribution of two different metabolic pathways leading to phosphatidylcholine without performing technically more demanding and time-consuming MS/MS or LC/MS experiments.

  10. Reaction of discoidal complexes of apolipoprotein A-I and various phosphatidylcholines with lecithin cholesterol acyltransferase. Interfacial effects.

    PubMed

    Jonas, A; Zorich, N L; Kézdy, K E; Trick, W E

    1987-03-25

    Complexes of phospholipids-apolipoprotein A-I-cholesterol, containing various bulk phosphatidylcholines or a matrix of the ether analog of 1-palmitoyl 2-oleoyl phosphatidylcholine including test phosphatidylcholines were used as substrates for human lecithin-cholesterol acyltransferase. The enzymatic reaction rates for both series of complexes were determined as a function of temperature, particle concentration, neutral salt concentration, and the type of anion present in solution. The kinetic results support the hypothesis that phospholipids, in discoidal complexes, modulate the reaction rates by molecular effects at the active site, but also by interfacial effects on the interaction of the enzyme with the particles. The relevant interfacial parameters are the lipid packing at the interface and the structure of apolipoprotein A-I.

  11. Prediction of water-phosphatidylcholine membrane partition coefficient of some drugs from their molecular structures.

    PubMed

    Fatemi, Mohammad Hossein; Moghaddam, Masoomeh Raei

    2012-10-01

    In this work, the phosphatidylcholine membrane-water partition coefficients (MA) of some drugs were estimated from their theoretical derived molecular descriptors by applying quantitative structure-activity relationship (QSAR) methodology. The data set consisted of 46 drugs where their log MA were determined experimentally. Descriptors used in this work were calculated by DRAGON (version 1) package, on the basis of optimized molecular structures, and the most relevant descriptors were selected by stepwise multilinear regressions (MLRs). These descriptors were used to developing linear and nonlinear models by using MLR and artificial neural networks (ANNs), respectively. During this investigation, the best QSAR model was identified when using the ANN model that produced a reasonable level of correlation coefficients (R(train) = 0.995, R(test) = 0.948) and low standard error (SE(train) = 0.099, SE(test) = 0.326). The built model was fully assessed by various validation methods, including internal and external validation test, Y-randomization test, and cross-validation (Q(2) = 0.805). The results of this investigation revealed the applicability of QSAR approaches in the estimation of phosphatidylcholine membrane-water partition coefficients.

  12. Gas-phase transformation of phosphatidylcholine cations to structurally informative anions via ion/ion chemistry.

    PubMed

    Stutzman, John R; Blanksby, Stephen J; McLuckey, Scott A

    2013-04-02

    Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/18:1)) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC(18:1/16:0)), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry.

  13. Quantitative analysis of phosphatidylcholine molecular species using HPLC and light scattering detection.

    PubMed

    Brouwers, J F; Gadella, B M; van Golde, L M; Tielens, A G

    1998-02-01

    A number of HPLC chromatographic procedures can be used to separate intact molecular species of phosphatidylcholine (PC), but on-line quantification has remained problematic due to insensitivity of UV-detection for saturated species. Here, a new method is presented, separating all major PC molecular species from a variety of biological samples in intact form using a single, short and isocratic run. Species were separated on two RP18 reverse-phase columns in series and all species displayed an exponential relation between retention time and the percentage of acetonitrile or triethylamine in the mobile phase, allowing optimization of the mobile phase on a theoretical base, rather than on time-consuming test-runs. The use of triethylamine as a volatile additive instead of choline chloride allowed the use of light scattering detection. On a molar base, the response of the detector was invariant between species and allowed quantification of as little as 50 pmoles. The method was tested using phosphatidylcholines with widely different molecular species patterns, such a PC from rat liver, porcine pulmonary surfactant, bovine heart, boar sperm cells, and the parasite Schistosoma mansoni. As only volatile components are present in the solvents, individual molecular species can easily be recovered in pure form from the column effluent, enabling their further analysis (e.g., scintillation counting).

  14. Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration.

    PubMed

    Maciejewski, Arkadiusz; Pasenkiewicz-Gierula, Marta; Cramariuc, Oana; Vattulainen, Ilpo; Rog, Tomasz

    2014-05-01

    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM).

  15. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    SciTech Connect

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. )

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  16. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    PubMed Central

    Gándola, Yamila B.; Pérez, Sebastián E.; Irene, Pablo E.; Sotelo, Ana I.; Miquet, Johanna G.; Corradi, Gerardo R.; Carlucci, Adriana M.; Gonzalez, Lorena

    2014-01-01

    Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design. PMID:24772432

  17. Interferon-. alpha. selectively activates the. beta. isoform of protein kinase C through phosphatidylcholine hydrolysis

    SciTech Connect

    Pfeffer, L.M.; Saltiel, A.R. ); Strulovici, B. )

    1990-09-01

    The early events that occur after interferon binds to discrete cell surface receptors remain largely unknown. Human leukocyte interferon (interferon-{alpha}) rapidly increases the binding of ({sup 3}H)phorbol dibutyrate to intact HeLa cells a measure of protein kinase C activation, and induces the selective translocation of the {beta} isoform of protein kinase C from the cytosol to the particulate fraction of HeLa cells. The subcellular distribution of the {alpha} and {epsilon} isoforms is unaffected by interferon-{alpha} treatment. Activation of protein kinase C by phorbol esters mimics the inhibitory action of interferon-{alpha} on HeLa cell proliferation and down-regulation of protein kinase C blocks the induction of antiviral activity by interferon-{alpha} in HeLa cells. Increased phosphatidylcholine hydrolysis and phosphorylcholine production is accompanied by diacylglycerol production in response to interferon. However, inositol phospholipid turnover and free intracellular calcium concentration are unaffected. These results suggest that the transient increase in diacylglycerol, resulting from phosphatidylcholine hydrolysis, may selectively activate the {beta} isoform of protein kinase C. Moreover, the activation of protein kinase C is a necessary element in interferon action on cells.

  18. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures.

    PubMed Central

    Crane, J M; Putz, G; Hall, S B

    1999-01-01

    Prior reports that the coexistence of the liquid-expanded (LE) and liquid-condensed (LC) phases in phospholipid monolayers terminates in a critical point have been compromised by experimental difficulties with Langmuir troughs at high surface pressures and temperatures. The studies reported here used the continuous interface of a captive bubble to minimize these problems during measurements of the phase behavior for monolayers containing the phosphatidylcholines with the four different possible combinations of palmitoyl and/or myristoyl acyl residues. Isothermal compression produced surface pressure-area curves for dipalmitoyl phosphatidylcholine (DPPC) that were indistinguishable from previously published data obtained with Langmuir troughs. During isobaric heating, a steep increase in molecular area corresponding to the main LC-LE phase transition persisted for all four compounds to 45 mN/m, at which collapse of the LE phase first occurred. No other discontinuities to suggest other phase transitions were apparent. Isobars for DPPC at higher pressures were complicated by collapse of the monolayer, but continued to show evidence up to 65 mN/m for at least the onset of the LC-LE transition. The persistence of the main phase transition to high surface pressures suggests that a critical point for these monolayers of disaturated phospholipids is either nonexistent or inaccessible at an air-water interface. PMID:10585934

  19. Dynamics of the sorption of phosphatidylcholine by mesoporous composites based on MCM-41

    NASA Astrophysics Data System (ADS)

    Sinyaeva, L. A.; Belanova, N. A.; Karpov, S. I.; Selemenev, V. F.; Roessner, F.

    2016-11-01

    The possibility of predicting the breakthrough curves of a phospholipid (PL) during its sorption by mesoporous composites based on MCM-41 using models of the dynamics of sorption that consider the kinetics of adsorption (the Thomas model) and mixed diffusion (the asymptotic model) is demonstrated using phosphatidylcholine (PC) as an example. The effect the kinetic parameters have on the tailing of the sorption front with respect to the mixed diffusion limitation of the sorption of nonpolar biologically active substances (BASes) is shown. It is found that the ordered structure of composite materials based on MCM-41 ensures a high rate of mass transfer and thus little tailing of the sorption front, when compared to sorbents with a lower degree of order (silica gel and polymer materials) during the sorption of a phospholipid under dynamic conditions. Based on calculations of the parameter of pattern Λ under the conditions of the dynamic mode of sorption in mixed diffusion kinetics, it is shown that the sorption of phosphatidylcholine from hexane solutions by mesoporous composites based on MCM-41 allows the sorption chromatographic process to proceed in the most advantageous (quasi-equilibrium) mode.

  20. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures.

    PubMed

    Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A

    2016-06-01

    Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance.

  1. C1 Metabolism Inhibition and Nitrogen Deprivation Trigger Triacylglycerol Accumulation in Arabidopsis thaliana Cell Cultures and Highlight a Role of NPC in Phosphatidylcholine-to-Triacylglycerol Pathway

    PubMed Central

    Meï, Coline E.; Cussac, Mathilde; Haslam, Richard P.; Beaudoin, Frédéric; Wong, Yung-Sing; Maréchal, Eric; Rébeillé, Fabrice

    2017-01-01

    Triacylglycerol (TAG) accumulation often occurs in growth limiting conditions such as nutrient deprivations. We analyzed and compared the lipid contents of Arabidopsis cells grown under two conditions that inhibited growth as a way to study interactions between membrane and storage lipids. In order to inhibit C1 metabolism, the first condition utilized methotrexate (MTX), a drug that inhibits methyl transfer reactions and potentially reduces Pi-choline synthesis, the polar head of phosphatidylcholine (PC). MTX-treated cells displayed a 10- to 15-fold increase in TAG compared to that found in control cells. This corresponded to a net increase of lipids as the total amount of membrane glycerolipids was minimally affected. Under this condition, PC homeostasis appeared tightly regulated and not strictly dependent on the rate of Pi-choline synthesis. The second condition we investigated involved nitrogen deprivation. Here, we observed a 40-fold increase of TAG. In these cells, the overall lipid content remained unchanged, but membrane lipids decreased by a factor of two suggesting a reduction of the membrane network and a rerouting of membrane lipids to storage lipids. Under all conditions, fatty acid (FA) analyses showed that the FA composition of TAG was comparable to that in PC, but different from that in acyl-CoA, suggesting that TAG accumulation involved PC-derived DAG moieties. In agreement, analyses by qPCR of genes coding for TAG synthesis showed a strong increase of non-specific phospholipase C (NPC) expressions, and experiments using labeled (fluorescent) PC indicated higher rates of PC-to-TAG conversion under both situations. These results highlight a role for NPC in plant cell oil production. PMID:28101097

  2. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion trap mass spectrometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PC. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PC. This approach is comprised of two mass spectr...

  3. Twisting of the spermatic cord: ischemia and reperfusion, toxicogenetic evaluation, and the effects of phosphatidylcholine in pre-clinical trials.

    PubMed

    Coelho, H R S; Berno, C R; Falcão, G R; Hildebrand, C R; Oliveira, R J; Antoniolli-Silva, A C M B

    2016-08-29

    Phosphatidylcholine is the main phospholipid present in cell membranes and in lipoproteins, and can interfere with various biological processes. This lipid also has antioxidant activity, and protects against damage caused by free radicals under conditions of ischemia/reperfusion. Therefore, the present study was designed to evaluate toxicogenetic damage caused by twisting of the spermatic cord in ischemia/reperfusion, and whether phosphatidylcholine plays a role in conditions of ischemia/reperfusion in preclinical trials. The results indicate that spermatic cord torsion does not cause genotoxic damage or mutagenesis. A dose of 300 mg/kg of phosphatidylcholine is toxic and is thus not recommended. However, a dose of 150 mg/kg does not promote toxicogenetic damage, and though it does not statistically prevent tissue damage occurring from lack of oxygenation and nutrition of testicular cells, it has a tendency to reduce this damage. Therefore, this research suggests that further studies should be conducted to clarify this tendency and to provide a better explanation of the possible therapeutic effects of phosphatidylcholine in cytoprotection of germ cells affected by ischemia/reperfusion.

  4. Intestinal microbial metabolism of phosphatidylcholine: a novel insight in the cardiovascular risk scenario

    PubMed Central

    Sorrentino, Claudia; Principi, Mariabeatrice; Giorgio, Floriana; Losurdo, Giuseppe; Di Leo, Alfredo

    2015-01-01

    Intestinal microbiota is a “dynamic organ” influencing host metabolism, nutrition, physiology and immune system. Among its several interactions, the role of a phosphatidylcholine metabolite derived by gut flora activity, i.e., trimethylamine-N-oxide (TMAO), allows perceiving a novel insight in the cardiovascular risk scenario, being a strong predictor of this condition. Based on current reports, including the paper of Tang et al., we describe here: the possible role of intestinal microbiota in cardiovascular risk as well as potential interventions to reduce gut flora TMAO production by diet, probiotics and antibiotics. Finally, we highlight the possibility of evaluating, monitoring and modulating TMAO in order to use its serum levels as a marker of cardiovascular risk in the next future, when the need of controlled studies on large series will be satisfied. PMID:26312245

  5. Incorporation of monomethylethanolamine into phosphatidylcholine by way of an exchange reaction followed by methylation

    SciTech Connect

    Moore, T.S. Jr. )

    1989-04-01

    Recent evidence by Datko and Mudd indicates that phosphatidylcholine (PC) may be synthesized by methylation of phosphatidylmonomethyl-ethanolamine (PMME), but perhaps not by utilization of phosphatidylethanolamine (PE) as a source of PMME. They provided evidence that a CDP derivative of monomethylethanolamine (MME) might be the source of the headgroup. Another possibility is incorporation of MME by an exchange reaction. We tested this by incubating MME with ER from castor bean endosperm and radiolabeled S- adenosylmethionine under conditions which would allow incorporation of the headgroup and methylation to PC. Under these conditions the reaction proceeded, with radiolabel appearing in both PC and phosphatidyldimethylethanolamine. Neither ethanolamine nor L-serine, both of which are known to undergo exchange reactions, yielded PC under the same conditions.

  6. Formation of drug-bearing vesicles in mixed colloids of bile salts and phosphatidylcholine

    SciTech Connect

    Hjelm, R.P.; Mang, J.; Hofmann, A.F.; Schteingart, C.; Alkan-Onyuksel, H.; Ayd, S.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used small-angle neutron scattering to study drug interactions with mixed colloids of bile salt and phosphatidylcholine. Because the mixed colloids form liposomes spontaneously, this system is a model for drug-bile interactions that are important in understanding the efficacy of oral drug formulations and in advanced applications for liposome drug delivery systems. The authors studied particle formation in incorporation of enzymatic products formed in the gut and the effects of cholesteric drugs and taxol on vesicle formation. The studies show that particle morphology is not affected by inclusion of most cholesteric drugs and taxol, and is not affected by incorporation of the products of enzymatic action. The findings suggest that particle form is important for the physiological function of bile and they are beginning to show which drugs affect liposome formation.

  7. Reduced cytotoxicity of polyhexamethylene biguanide hydrochloride (PHMB) by egg phosphatidylcholine while maintaining antimicrobial efficacy.

    PubMed

    Müller, Gerald; Kramer, Axel; Schmitt, Jürgen; Harden, Daniela; Koburger, Torsten

    2011-04-25

    Liposomes or oil-in-water emulsions containing egg yolk phosphatidylcholine (EPC) were combined with aqueous polyhexamethylene biguanide hydrochloride (PHMB). The bactericidal activity of these preparations against Pseudomonas aeruginosa and Staphylococcus aureus as well as their cytotoxicity on cultured murine fibroblasts (L929 cells) was then assayed for either 30 min or 60 min in the presence of cell culture medium containing 10% fetal bovine serum as surrogate for wound fluid. We used two assay designs: in the first bactericidal activity and cytotoxicity were determined in separate experiments; in the second both were determined in one experiment. Combining PHMB and EPC containing o/w emulsions or liposomes protects mammalian cells without neutralizing the antiseptic effect. From all tested combinations the o/w emulsions containing 0.05% PHMB proved to be superior in this respect to the aqueous preparation.

  8. Production of soybean phosphatidylcholine-chitosan nanovesicles by reverse phase evaporation: a step by step study.

    PubMed

    Mertins, Omar; Sebben, Marcelo; Pohlmann, Adriana Raffin; da Silveira, Nádya Pesce

    2005-12-01

    In the present work, we describe the preparation of composite nanovesicles containing soybean phosphatidylcholine and polysaccharide chitosan by the reverse phase evaporation method. Nanovesicles free from chitosan prepared in the same way were studied as reference. The production method involves the preparation of reverse micelles followed by the formation of an organogel, which is dispersed in water to yield the final liposomal structures. Structural changes in each step of the nanovesicles preparation were studied by means of static and dynamic light scattering as well as small angle X-ray scattering. Chitosan was also fully characterized in solution. The hydrodynamic radius of the composite nanovesicles is in the range of 174-286 nm, depending on the chitosan contents. A comparison with nanovesicles free from chitosan indicates the existence of higher contents of multilamellae structures in the composites, as well as improved stability in water.

  9. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine.

    PubMed

    Kobayashi, Makoto; Nishizawa, Masato; Inoue, Nao; Hosoya, Takahiro; Yoshida, Masahito; Ukawa, Yuichi; Sagesaka, Yuko M; Doi, Takayuki; Nakayama, Tsutomu; Kumazawa, Shigenori; Ikeda, Ikuo

    2014-04-02

    The mechanisms underlying the effect of epigallocatechin gallate (EGCG) on the micellar solubility of cholesterol were examined. EGCG eliminated both cholesterol and phosphatidylcholine (PC) from bile salt micelles in a dose-dependent manner in vitro. When the bile salt micelles contained a phospholipid other than PC, neither cholesterol nor the phospholipid was eliminated following the addition of EGCG. When vesicles comprised of various phospholipids were prepared and, EGCG was added to the vesicles, EGCG effectively and exclusively eliminated only PC. An intermolecular nuclear Overhauser effect (NOE) was observed between PC and EGCG in bile salt micelles with EGCG added, but not between cholesterol and EGCG, by using a NOE-correlated spectroscopy nuclear magnetic resonance method. The results of binding analyses using surface plasmon resonance (SPR) showed that EGCG did not bind to cholesterol. These observations strongly suggest that EGCG decreases the micellar solubility of cholesterol via specific interaction with PC.

  10. Hydrolysis of phosphatidylcholine couples Ras to activation of Raf protein kinase during mitogenic signal transduction.

    PubMed Central

    Cai, H; Erhardt, P; Troppmair, J; Diaz-Meco, M T; Sithanandam, G; Rapp, U R; Moscat, J; Cooper, G M

    1993-01-01

    We have investigated the relationship between hydrolysis of phosphatidylcholine (PC) and activation of the Raf-1 protein kinase in Ras-mediated transduction of mitogenic signals. As previously reported, cotransfection of a PC-specific phospholipase C (PC-PLC) expression plasmid bypassed the block to cell proliferation resulting from expression of the dominant inhibitory mutant Ras N-17. In contrast, PC-PLC failed to bypass the inhibitory effect of dominant negative Raf mutants, suggesting that PC-PLC functions downstream of Ras but upstream of Raf. Consistent with this hypothesis, treatment of quiescent cells with exogenous PC-PLC induced Raf activation, even when normal Ras function was blocked by Ras N-17 expression. Further, activation of Raf in response to mitogenic growth factors was blocked by inhibition of endogenous PC-PLC. Taken together, these results indicate that hydrolysis of PC mediates Raf activation in response to mitogenic growth factors. Images PMID:8246981

  11. Density functional theory-based conformational analysis of a phospholipid molecule (dimyristoyl phosphatidylcholine).

    PubMed

    Krishnamurty, S; Stefanov, M; Mineva, T; Bégu, S; Devoisselle, J M; Goursot, A; Zhu, R; Salahub, D R

    2008-10-23

    The conformational space of the dimyristoyl phosphatidylcholine (DMPC) molecule has been studied using density functional theory (DFT), augmented with a damped empirical dispersion energy term (DFT-D). Fourteen ground-state isomers have been found with total energies within less than 1 kcal/mol. Despite differences in combinations of their torsion angles, all these conformers share a common geometric profile, which includes a balance of attractive, repulsive, and constraint forces between and within specific groups of atoms. The definition of this profile fits with most of the structural characteristics deduced from measured NMR properties of DMPC solutions. The calculated vibrational spectrum of the molecule is in good agreement with experimental data obtained for DMPC bilayers. These results support the idea that DMPC molecules preserve their individual molecular structures in the various assemblies.

  12. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study.

    PubMed

    Gorbenko, Galina P; Domanov, Yegor A

    2003-03-25

    Resonance energy transfer between lipid-bound fluorescent probe 3-methoxybenzanthrone as a donor and heme group of cytochrome c as an acceptor has been examined to ascertain the protein disposition relative to the surface of model membranes composed of phosphatidylcholine and cardiolipin (10, 50 and 80 mol%). The model of energy transfer in membrane systems has been extended to the case of donors distributed between the two-bilayer leaflets and acceptors located at the outer monolayer taking into account the donor and acceptor orientational behavior. Assuming specific protein orientation relative to the membrane surface and varying lateral distance of the donor-acceptor closest approach in the range from 0 to 3.5 nm the limits for possible heme distances from the bilayer midplane have been found to be 0.8-3 nm (10 mol% CL), 0-2.6 nm (50 mol% CL), and 1.4-3.3 nm (80 mol% CL).

  13. Identification of phosphatidylcholine transfer protein-like in the parasite Entamoeba histolytica.

    PubMed

    Piña-Vázquez, Carolina; Reyes-López, Magda; Mendoza-Hernández, Guillermo; Bermúdez-Cruz, Rosa María; de la Garza, Mireya

    2014-12-01

    Caveolin is the protein marker of caveola-mediated endocytosis. Previously, we demonstrated by immunoblotting and immunofluorescence that an anti-chick embryo caveolin-1 monoclonal antibody (mAb) recognizes a protein in amoeba extracts. Nevertheless, the caveolin-1 gene is absent in the Entamoeba histolytica genome database. In this work, the goal was to isolate, identify and characterize the protein that cross-reacts with chick embryo caveolin-1. We identified the protein using a proteomic approach, and the complete gene was cloned and sequenced. The identified protein, E. histolytica phosphatidylcholine transfer protein-like (EhPCTP-L), is a member of the StAR-related lipid transfer (START) protein superfamily. The human homolog binds and transfers phosphatidylcholine (PC) and phosphatidylethanolamine (PE) between model membranes in vitro; however, the physiological role of PCTP-L remains elusive. Studies in silico showed that EhPCTP-L has a central START domain and also contains a C-terminal intrinsically disordered region. The anti-rEhPCTP-L antibody demonstrated that EhPCTP-L is found in the plasma membrane and cytosol, which is in agreement with previous reports on the human counterpart. This result points to the plasma membrane as one possible target membrane for EhPCTP-L. Furthermore, assays using filipin and nystatin showed down regulation of EhPCTP-L, in an apparently cholesterol-independent way. Interestingly, EhPCTP-L binds primarily to anionic phospholipids phosphatidylserine (PS) and phosphatidic acid (PA), while its mammalian counterpart HsPCTP-L binds neutral phospholipids PC and PE. The present study provides information that helps reveal the possible function and regulation of PCTP-L expression in the primitive eukaryotic parasite E. histolytica.

  14. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins

    SciTech Connect

    Schroit, A.J.; Madsen, J.; Ruoho, A.E.

    1987-04-07

    An isotopically labeled cross-linking reagent, succinimido 3-(3-(/sup 125/I)iodo-4-azidophenyl)propionate, has been synthesized and coupled to 1-acyl-2-(aminocaproyl)phosphatidylcholine according to previously described procedures. /sup 125/I- and N/sub 3/-labeled phosphatidylserine (/sup 125/I-N/sub 3/-PS) was produced from the phosphatidylcholine (PC) analog by phospholipase D catalyzed base exchange in the presence of L-serine. These phospholipid analogues are photoactivatable, are labeled with /sup 125/I at high specific activity, completely incorporate into synthetic vesicles, and spontaneously transfer between membranes. When an excess of acceptor vesicles or red blood cells (RBC) was mixed with a population of donor vesicles containing the /sup 125/I-N/sub 3/-phospholipids, approximately 40% of the analogues transferred to the acceptor population. After transfer in the dark to RBC, all of the /sup 125/I-N/sub 3/-PC incorporated into the cells could be removed by washing with serum, whereas the /sup 125/I-N/sub 3/-PS could not. After photolabeling of intact RBC, approx.50% of the PC and 20% of the PS cross-linked to membrane proteins as determined by their insolubility in CHCl/sub 3//MeOH. Analysis of probe distribution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that /sup 125/I-N/sub 3/-PS preferentially labeled a M/sub r/ 30,000 peptide which contained approx.30% of the protein-bound label.

  15. Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.

    PubMed

    Gorbenko, Galyna P; Molotkovsky, Julian G; Kinnunen, Paavo K J

    2006-06-01

    Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL molecules are responsible for cyt c attachment to bilayer surface. To quantitatively describe cyt c membrane binding, the adsorption model based on scaled particle and double layer theories has been employed, with potential-dependent association constants being treated as a function of acidic phospholipid mole fraction, degree of CL protonation, ionic strength, and surface coverage. Multiple arrays of resonance energy transfer data obtained under conditions of varying pH, ionic strength, CL content, and protein/lipid molar ratio have been analyzed in terms of the model of energy transfer in two-dimensional systems combined with the adsorption model allowing for area exclusion and electrostatic effects. The set of recovered model parameters included effective protein charge, intrinsic association constants, and heme distance from the bilayer midplane for both types of protein-lipid complexes. Upon increasing CL mole fraction from 10 to 20 mol % (the value close to that characteristic of the inner mitochondrial membrane), the binding equilibrium dramatically shifted toward cyt c association with partially protonated CL species. The estimates of heme distance from bilayer center suggest shallow bilayer location of cyt c at physiological pH, whereas at pH below 6.0, the protein tends to insert into membrane core.

  16. Cytochrome c Interaction with Cardiolipin/Phosphatidylcholine Model Membranes: Effect of Cardiolipin Protonation

    PubMed Central

    Gorbenko, Galyna P.; Molotkovsky, Julian G.; Kinnunen, Paavo K. J.

    2006-01-01

    Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL molecules are responsible for cyt c attachment to bilayer surface. To quantitatively describe cyt c membrane binding, the adsorption model based on scaled particle and double layer theories has been employed, with potential-dependent association constants being treated as a function of acidic phospholipid mole fraction, degree of CL protonation, ionic strength, and surface coverage. Multiple arrays of resonance energy transfer data obtained under conditions of varying pH, ionic strength, CL content, and protein/lipid molar ratio have been analyzed in terms of the model of energy transfer in two-dimensional systems combined with the adsorption model allowing for area exclusion and electrostatic effects. The set of recovered model parameters included effective protein charge, intrinsic association constants, and heme distance from the bilayer midplane for both types of protein-lipid complexes. Upon increasing CL mole fraction from 10 to 20 mol % (the value close to that characteristic of the inner mitochondrial membrane), the binding equilibrium dramatically shifted toward cyt c association with partially protonated CL species. The estimates of heme distance from bilayer center suggest shallow bilayer location of cyt c at physiological pH, whereas at pH below 6.0, the protein tends to insert into membrane core. PMID:16565064

  17. Partitioning of anti-inflammatory steroid drugs into phosphatidylcholine and phosphatidylcholine-cholesterol small unilamellar vesicles as studied by second-derivative spectrophotometry.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Funakoshi, Takako; Kitade, Tatsuya

    2008-05-01

    The partition coefficients (Kps) of six anti-inflammatory steroid drugs, dexamethasone (DMS), betamethasone (BMS), triamcinolone acetonide (TCLA), fluocinolone acetonide (FCLA), betamethasone 17,21-dipropionate (BMSDP), and clobetasole propionate (CBSP), for phosphatidylcholine (PC), and PC-cholesterol small unilamellar vesicles (SUVs) were determined by a second-derivative spectrophotometric method. The Kp values were obtained with a relative standard deviation of below 10% and the following order was observed: BMS< or =DMS

  18. Surface properties of bacterial sulfhydryl-activated cytolytic toxins. Interaction with monomolecular films of phosphatidylcholine and various sterols.

    PubMed

    Alouf, J E; Geoffroy, C; Pattus, F; Verger, R

    1984-05-15

    Sulfhydryl-activated cytolysins are a group of bacterial protein toxins which, in the reduced state, lyse eukaryotic cells by disruption of the cytoplasmic membrane. Cell surface cholesterol is thought to be the target of the toxins. In the present work, the monolayer technique was used to investigate the interaction of four SH-activated toxins (streptolysin 0, alveolysin , perfringolysin 0, pneumolysin ) with various lipid films as a model for studying toxin-induced membrane disruption. A surface pressure increase up to very high values was elicited by reduced toxins (approximately equal to 10 nM) on films of cholesterol, other toxin-binding 3 beta-hydroxy-sterols, thiocholesterol and cholesterol-phosphatidylcholine mixtures suggesting deformation or penetration of the films. The surface-active potency of the toxins was of the same order as that of melittin and snake cardiotoxins at similar concentrations. No pressure increase was observed on films made of pure phosphatidylcholine, lanosterol and other sterols lacking the 3 beta-OH group. Optimal efficiency was at cholesterol/phosphatidylcholine molar ratio of 1 to 1. The critical pressures for toxin interaction with phosphatidylcholine and cholesterol monolayers were 25 mN X m-1 and 45 mN X m-1 respectively. Toxin interaction with phosphatidylcholine [14C]-cholesterol films did not modify monolayer radioactivity, indicating no cholesterol desorption. No pressure increase was elicited by toxins inactivated by SH-group reagents, heating or neutralization with antibody. Toxin effect was dependent temperature and pH. The overall potency of the four toxins tested was streptolysin 0 greater than alveolysin approximately equal to perfringolysin 0 greater than pneumolysin . The monolayer system mimicked in several respects toxin interaction with eukaryotic cells.

  19. Lateral mobility of an amphipathic apolipoprotein, ApoC-III, bound to phosphatidylcholine bilayers with and without cholesterol

    PubMed Central

    Vaz, Winchil L. C.; Jacobson, Kenneth; Wu, En-Shinn; Derzko, Zenon

    1979-01-01

    The technique of fluorescence recovery after photobleaching was used to investigate the lateral mobility of a fluorescein-labeled amphipathic apolipoprotein, ApoC-III, bound to multibilayers prepared from dipalmitoyl phosphatidylcholine, egg phosphatidylcholine, and a 1:1 (molar ratio) mixture of egg phosphatidylcholine and cholesterol. In dipalmitoyl phosphatidylcholine bilayers the lateral diffusion coefficient (D) for the protein is about 2 × 10-9 cm2 sec-1 at 20°C and about 9 × 10-8 cm2 sec-1 at 45°C. Plots of D versus temperature in this system show a transition between about 30 and 35°C. Arrhenius activation energies for the diffusion in this case between 15 and 30°C and between 35 and 45°C are 28.5 and 7.0 kcal mol-1, respectively (1 calorie = 4.18 joules). In egg phosphatidylcholine bilayers, D is about 3 × 10-8 cm2 sec-1 at 20°C and the Arrhenius activation energy for diffusion is 8.1 kcal mol-1 between 15 and 35°C in this system. In bilayers prepared from an equimolar mixture of egg phosphatidylcholine and cholesterol D at 20°C is about 1.4 × 10-9 cm2 sec-1 and the Arrhenius activation energy for the diffusion of the protein in this system between 15 and 35°C is 15.1 kcal mol-1. Light-scattering and fluorescence-polarization results indicate that binding of this protein does not affect the gel-to-liquid crystalline phase transition of bilayer membranes but does mediate a major, reversible aggregation of the vesicles at about 33°C. These results lend support to the view that ApoC-III resides in the head-group region of the bilayer and suggest that its lateral diffusion coefficient represents an upper bound for integral membrane proteins. PMID:293667

  20. Detection of Phosphatidylcholine-Coated Gold Nanoparticles in Orthotopic Pancreatic Adenocarcinoma using Hyperspectral Imaging.

    PubMed

    England, Christopher G; Huang, Justin S; James, Kurtis T; Zhang, Guandong; Gobin, André M; Frieboes, Hermann B

    2015-01-01

    Nanoparticle uptake and distribution to solid tumors are limited by reticuloendothelial system systemic filtering and transport limitations induced by irregular intra-tumoral vascularization. Although vascular enhanced permeability and retention can aid targeting, high interstitial fluid pressure and dense extracellular matrix may hinder local penetration. Extravascular diffusivity depends upon nanoparticle size, surface modifications, and tissue vascularization. Gold nanoparticles functionalized with biologically-compatible layers may achieve improved uptake and distribution while enabling cytotoxicity through synergistic combination of chemotherapy and thermal ablation. Evaluation of nanoparticle uptake in vivo remains difficult, as detection methods are limited. We employ hyperspectral imaging of histology sections to analyze uptake and distribution of phosphatidylcholine-coated citrate gold nanoparticles (CGN) and silica-gold nanoshells (SGN) after tail-vein injection in mice bearing orthotopic pancreatic adenocarcinoma. For CGN, the liver and tumor showed 26.5 ± 8.2 and 23.3 ± 4.1 particles/100 μm2 within 10 μm from the nearest source and few nanoparticles beyond 50 μm, respectively. The spleen had 35.5 ± 9.3 particles/100 μm2 within 10 μm with penetration also limited to 50 μm. For SGN, the liver showed 31.1 ± 4.1 particles/100 μm2 within 10 μm of the nearest source with penetration hindered beyond 30 μm. The spleen and tumor showed uptake of 22.1 ± 6.2 and 15.8 ± 6.1 particles/100 μm2 within 10 μm, respectively, with penetration similarly hindered. CGH average concentration (nanoparticles/μm2) was 1.09 ± 0.14 in the liver, 0.74 ± 0.12 in the spleen, and 0.43 ± 0.07 in the tumor. SGN average concentration (nanoparticles/μm2) was 0.43 ± 0.07 in the liver, 0.30 ± 0.06 in the spleen, and 0.20 ± 0.04 in the tumor. Hyperspectral imaging of histology sections enables analysis of phosphatidylcholine-coated gold-based nanoparticles in

  1. Interaction of alpha-lactalbumin with dimyristoyl phosphatidylcholine vesicles. II. A fluorescence polarization study.

    PubMed

    Herreman, W; van Tornout, P; van Cauwelaert, F H; Hanssens, I

    1981-01-22

    The interaction of alpha-lactalbumin with dimyristoyl phosphatidylcholine vesicles was studied as a function of temperature, pH and the molar ratio of phospholipid to protein. The method consisted of measuring the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene used as a probe embedded in the vesicles. After incubation of the protein with the phospholipid for 2 h at 23 degrees C, the polarization of the light emitted by this probe shifted to higher values; the shift was greater at acidic pH than at neutral pH. After incubation at 37 degrees C, no shift in polarization was found at pH 7, 6 and 5 while a strong increase occurred at pH 4. Lowering the temperature, after incubation at 37 degrees C, had little effect on the polarization at neutral pH. At pH 5, however, and in the transition range of the phospholipid, the polarization increased greatly. A kinetic study of the interaction carried out around the transition temperature of dimyristoyl phosphatidylcholine as a function of pH shows that the speed of complex formation between alpha-lactalbumin and the lipid increases from neutral to acidic pH. From the present results and in agreement with our earlier calorimetric and fluorescence data (Hanssens, I., Houthuys, C., Herreman, W. and van Cauwelaert, F.H. (1980) Biochim. Biophys, Acta 602, 539--557), it is concluded that at neutral pH the interaction mechanism is probably different from that at acidic pH. At neutral pH and at all temperatures, alpha-lactalbumin is mainly absorbed electrostatically to the outer surface of the vesicle with little or no influence on the transition temperature of the phospholipid. At this pH, only around the transition temperature is penetration possible. At pH 4, however, the protein is able to penetrate the vesicle at all temperatures and to interact hydrophobically with the phospholipid fatty acid chains. As a result of this interaction, the transition temperature is increased by about 4 degrees C. This different

  2. Characteristics of the mass transfer of phosphatidylcholine during its sorption on mesoporous composites based on MCM-41

    NASA Astrophysics Data System (ADS)

    Sinyaeva, L. A.; Karpov, S. I.; Belanova, N. A.; Roessner, F.; Selemenev, V. F.

    2015-12-01

    The kinetic parameters of sorption of phosphatidylcholine on mesoporous composites based on MCM-41 are considered. It is noted that the possibility of both the diffusion and adsorption rate limitations of the process should be taken into account in the description of the kinetics of sorption of non-polar fat-soluble physiologically active compounds (PACs) from hexane solutions onto mesoporous materials of MCM- 41 type. The adequacy of using the Boyd diffusion model and the Lagergren, Ho and McKay, and Elovich models to describe the kinetics of sorption of phosphatidylcholine on mesoporous composites based on MCM-41 is shown. The contributions from diffusion limitation (internal and external) and the rate of the chemical step of adsorption to the overall rate of the sorption process are determined. It is found that the sorption of the phospholipid is a mixed diffusion process.

  3. Effect of E coli endotoxin on the leakage of /sup 14/C-sucrose from phosphatidylcholine liposomes

    SciTech Connect

    Onji, T.; Liu, M.S.

    1981-01-01

    The effect of E coli endotoxin on the leakage of /sup 14/C-sucrose from phosphatidylcholine liposomes in the absence or presence of Ca/sup 2 +/ was studied. Endotoxin decreased the leakage from liposomes from 27% to 4% in 5 hr when Ca/sup 2 +/ (1 mM) was incorporated into liposomes during sonication. The effect of endotoxin on the leakiness of liposomes was concentration dependent. Ca/sup 2 +/ alone increased the leakage of /sup 14/C-sucrose from liposomes. Mg/sup 2 +/ at concentrations higher than 5 mM exhibited an effect similar to that of Ca/sup 2 +/. These findings suggest that endotoxin increases the molecular packing of phosphatidylcholine bilayers in the presence of Ca/sup 2 +/ or Mg/sup 2 +/. A change in the physical state of membrane lipid bilayers induced by endotoxin may affect the function of biological membranes.

  4. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    SciTech Connect

    Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B. )

    1990-11-01

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis.

  5. Preparation, characterization and in vivo studies of amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine.

    PubMed

    Shi, Chunyang; Tong, Qing; Fang, Jianguo; Wang, Chenguang; Wu, Jizhou; Wang, Wenqing

    2015-07-10

    Berberine, a pure crystalline quaternary ammonium salt with the basic structure of isoquinoline alkaloid, has multiple pharmacological bioactivities. But the poor bioavailability of berberine limited its wide clinical applications. In the present study, we aimed to develop an amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine (HPC) in order to improve its bioavailability. The physical characterization studies such as differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectrophotometry (FT-IR) and scanning electron microscopy (SEM) were conducted to characterize the formation of amorphous berberine HPC solid dispersion (BHPC-SD). The everted intestinal sac and single-pass intestinal perfusion study proved that permeability and intestinal absorption of amorphous BHPC-SD was improved compared with that of pure crystalline berberine, and the pharmacokinetic study results demonstrated that the extent of bioavailability was significantly increased as well. However, the dissolution study indicated that the aqueous cumulative dissolution percentages of berberine remained unchanged or even lower by means of preparation into solid dispersion with HPC. Therefore, according to the previous mechanistic studies, the present results supported that it is the enhanced molecularly dissolved concentration (supersaturation) of berberine by transformation from crystalline structure into amorphous solid dispersions that triggers the enhanced permeability, and consequently results in the improved intestinal absorption and bioavailability.

  6. The Distribution of Phosphatidylcholine Species in Superficial-Type Pharyngeal Carcinoma

    PubMed Central

    Hayasaka, Takahiro; Shinriki, Satoru; Masaki, Noritaka; Hirano, Shigeru; Kitamura, Morimasa; Muto, Manabu; Setou, Mitsutoshi; Ito, Juichi

    2017-01-01

    Objectives. Superficial-type pharyngeal squamous cell carcinoma (STPSCC) is defined as carcinoma in situ or microinvasive squamous cell carcinoma without invasion to the muscular layer. An exploration of the biological characteristics of STPSCC could uncover the invasion mechanism of this carcinoma. Phosphatidylcholine (PC) in combination with fatty acids is considered to play an important role in cell motility. Imaging mass spectrometry (IMS) is especially suitable for phospholipid analysis because this technique can distinguish even fatty acid compositions. Study Design. IMS analysis of frozen human specimens. Methods. IMS analysis was conducted to elucidate the distribution of PC species in STPSCC tissues. STPSCC tissue sections from five patients were analyzed, and we identified the signals that showed significant increases in the subepithelial invasive region relative to the superficial region. Results. Three kinds of PC species containing arachidonic acid, that is, PC (16:0/20:4), PC (18:1/20:4), and PC (18:0/20:4), were increased in the subepithelial invasive region. Conclusion. These results may be associated with the invasion mechanism of hypopharyngeal carcinoma. PMID:28373982

  7. Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates

    SciTech Connect

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren; San Emeterio, Josue; Mallapragada, Surya; Vaknin, David

    2016-07-13

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to a neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.

  8. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes

    PubMed Central

    Blackwell, Mary F.; Whitmarsh, John

    1990-01-01

    Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774

  9. A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation.

    PubMed

    Gruber, Florian; Bicker, Wolfgang; Oskolkova, Olga V; Tschachler, Erwin; Bochkov, Valery N

    2012-06-01

    Oxidized phospholipids (OxPLs) are increasingly recognized as signaling mediators that are not only markers of oxidative stress but are also "makers" of pathology relevant to disease pathogenesis. Understanding the biological role of individual molecular species of OxPLs requires the knowledge of their concentration kinetics in cells and tissues. In this work, we describe a straightforward "fingerprinting" procedure for analysis of a broad spectrum of molecular species generated by oxidation of the four most abundant species of polyunsaturated phosphatidylcholines (OxPCs). The approach is based on liquid-liquid extraction followed by reversed-phase HPLC coupled to electrospray ionization MS/MS. More than 500 peaks corresponding in retention properties to polar and oxidized PCs were detected within 8 min at 99 m/z precursor values using a single diagnostic product ion in extracts from human dermal fibroblasts. Two hundred seventeen of these peaks were fluence-dependently and statistically significantly increased upon exposure of cells to UVA irradiation, suggesting that these are genuine oxidized or oxidatively fragmented species. This method of semitargeted lipidomic analysis may serve as a simple first step for characterization of specific "signatures" of OxPCs produced by different types of oxidative stress in order to select the most informative peaks for identification of their molecular structure and biological role.

  10. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  11. Interactions of egg yolk phosphatidylcholine with cholesteryl polyethoxy neoglycolipids containing N-acetyl- D-glucosamine

    NASA Astrophysics Data System (ADS)

    Kemoun, Rachida; Gelhausen, Micaèle; Besson, Françoise; Lafont, Dominique; Buchet, René; Boullanger, Paul; Roux, Bernard

    1999-03-01

    Series of neoglycolipids containing cholesteryl and N-acetyl- D-glucosaminyl groups were synthesized with various ethoxy linkers. Their self aggregations and intermolecular interactions, without and with egg yolk phosphatidylcholine (EYPC), were characterized in dry and hydrated states, by using infrared spectroscopy. The neoglycolipids in the dry state formed intermolecular hydrogen bonds between the CO and N-H or O-H groups of N-acetyl- D-glucosamine (GlcNAc). In the presence of EYPC, these intermolecular interactions were broken and new hydrogen bonds, involving the phosphate group of EYPC and N-H or O-H groups of GlcNAc of neoglycolipid, were formed. The presence of water molecules altered these intermolecular hydrogen bonds. The CO groups of EYPC were not affected by the presence of neoglycolipids, either in hydrated or in dry states, indicating that the GlcNAc polar groups interacted mostly with EYPC phosphate residues. The phase transition-temperature of mixtures of EYPC containing either cholesterol or neoglycolipid were similar, indicating that the cholesteryl group of the neoglycolipid interacted in the same manner as cholesterol with hydrocarbon chains of EYPC. Some structural models of molecular interactions of neoglycolipids were discussed in relation with the molecular recognition of wheat germ agglutinin.

  12. Reparameterized United Atom Model for Molecular Dynamics Simulations of Gel and Fluid Phosphatidylcholine Bilayers.

    PubMed

    Tjörnhammar, Richard; Edholm, Olle

    2014-12-09

    A new united atom parametrization of diacyl lipids like dipalmitoylphosphatidylcholine (DPPC) and the dimyristoylphosphatidylcholine (DMPC) has been constructed based on ab initio calculations to obtain fractional charges and the dihedral potential of the hydrocarbon chains, while the Lennard-Jones parameters of the acyl chains were fitted to reproduce the properties of liquid hydrocarbons. The results have been validated against published experimental X-ray and neutron scattering data for fluid and gel phase DPPC. The derived charges of the lipid phosphatidylcholine (PC) headgroup are shown to yield dipole components in the range suggested by experiments. The aim has been to construct a new force field that retains and improves the good agreement for the fluid phase and at the same time produces a gel phase at low temperatures, with properties coherent with experimental findings. The gel phase of diacyl-PC lipids forms a regular triangular lattice in the hydrocarbon region. The global bilayer tilt obtains an azimuthal value of 31° and is aligned between lattice vectors in the bilayer plane. We also show that the model yields a correct heat of melting as well as decent heat capacities in the fluid and gel phase of DPPC.

  13. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-15

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  14. Submicellar bile salts stimulate phosphatidylcholine transfer activity of sterol carrier protein 2.

    PubMed

    Leonard, A N; Cohen, D E

    1998-10-01

    To explore a potential role for sterol carrier protein 2 (SCP2, also known as non-specific lipid transfer protein) in hepatocellular phospholipid trafficking, we examined the influence of submicellar bile salt concentrations on phosphatidylcholine (PC) transfer activity of SCP2. We measured rate constants for first-order transfer of sn-1 palmitoyl, sn-2 parinaroyl PC, a naturally fluorescent self-quenching phospholipid between model membranes. Purified bovine liver SCP2 promoted transfer of PC from donor to acceptor small unilamellar vesicles. Taurine- and glycine-conjugated bile salts (anionic steroid detergent-like molecules), at concentrations well below their critical micellar concentrations, stimulated PC transfer activity of SCP2 80- to 140-fold. Rate constants increased in proportion to bile salt concentration, temperature, and bile salt-membrane binding affinity. Sodium taurofusidate, a conjugated fungal bile salt analog, also activated PC transfer whereas no effect was observed with the anionic and non-ionic straight chain detergents sodium dodecyl sulfate and octylglucoside, respectively. Thermodynamic and kinetic analyses of PC transfer support a mechanism in which bile salts stimulate SCP2 activity by partitioning into donor vesicles and enhancing membrane association of SCP2. These results imply that under physiological conditions, SCP2 may contribute to hepatocellular selection and transport of biliary PCs.

  15. Melittin-Induced Lipid Extraction Modulated by the Methylation Level of Phosphatidylcholine Headgroups

    PubMed Central

    Therrien, Alexandre; Lafleur, Michel

    2016-01-01

    Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide. We specifically determined the modulation of melittin-induced lipid extraction from membranes by the change of the methylation level of phospholipid headgroups. Phosphatidylcholine (PC) bilayers were demethylated either by substitution with phosphatidylethanolamine (PE) or chemically by using mono- and dimethylated PE. It is shown that demethylation reduces the association of melittin with membranes, likely because of the resulting tighter chain packing of the phospholipids, which reduces the capacity of the membranes to accommodate inserted melittin. This reduced binding of the peptide is accompanied by an inhibition of the lipid extraction caused by melittin. We demonstrate that melittin selectively extracts PC from PC/PE membranes. This selectivity is proposed to be a consequence of a PE depletion in the surroundings of bound melittin to minimize disruption of the interphospholipid interactions. The resulting PC-enriched vicinity of melittin would be responsible for the observed formation of PC-enriched lipid/peptide particles resulting from the lipid efflux. These findings reveal that modulating the methylation level of phospholipid headgroups is a simple way to control the specificity of lipid extraction from membranes by peptides/proteins and thereby modulate the lipid composition of the membranes. PMID:26789763

  16. Mixed micelles loaded with silybin-polyene phosphatidylcholine complex improve drug solubility

    PubMed Central

    Duan, Rui-ling; Sun, Xun; Liu, Jie; Gong, Tao; Zhang, Zhi-rong

    2011-01-01

    Aim: To prepare a novel formulation of phosphatidylcholine (PC)-bile salts (BS)-mixed micelles (MMs) loaded with silybin (SLB)-PC complex for parenteral applications. Methods: SLB-PC-BS-MMs were prepared using the co-precipitation method. Differential scanning calorimetry (DSC) analysis was used to confirm the formation of the complex and several parameters were optimized to obtain a high quality formulation. The water-solubility, drug loading, particle size, zeta potential, morphology and in vivo properties of the SLB-PC-BS-MMs were determined. Results: The solubility of SLB in water was increased from 40.83±1.18 μg/mL to 10.14±0.36 mg/mL with a high drug loading (DL) of 14.43%±0.44% under optimized conditions. The SLB-PC-BS-MMs were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed spherical shapes. The particle size and zeta potential, as measured by photon correlation spectroscopy (PCS), were about 30±4.8 nm and −39±5.0 mV, respectively. In vivo studies showed that incorporation of the SLB-PC complex into PC-BS-MMs led to a prolonged circulation time of the drug. Conclusion: This novel formulation appears to be a good candidate for drug substances that exhibit poor solubility for parenteral administration. PMID:21170082

  17. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-01

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  18. Spectroscopic and morphological studies on interaction between gold nanoparticle and liposome constructed with phosphatidylcholine

    NASA Astrophysics Data System (ADS)

    Tsukada, C.; Tsuji, T.; Matsuo, K.; Nomoto, T.; Kutluk, G.; Sawada, M.; Ogawa, S.; Yoshida, T.; Yagi, S.

    2015-03-01

    The gold nanoparticles (Au NPs) colloidal solution and the phosphatidylcholine (PC) liposome aqueous solution are fabricated by the solution plasma method and the extrusion procedure, respectively. When the Au NPs colloidal solution and the PC liposome aqueous solution are mixed, considering the TEM image, we think that the Au NPs firstly are covered with the PC molecules, which do not contribute to form the PC liposome, and subsequently the Au NPs covered with the PC adsorb on the PC liposome surface. We propose that the PC molecule adsorbs on the Au sheet surface at the methyl group of N-CH3 and the oxygen atoms of P-O, P=O, C-O and C=O bonds, because each peak intensity of N, O and P K-edges NEXAFS spectra for the PC/Au sheet is reduced in comparison with that for the PC multilayer. Furthermore, the Au NPs covered with PC seem to be aggregated each other through the hydrophobic groups of PC on Au NPs.

  19. Effects of Alkali Cations and Halide Anions on the Self-Assembly of Phosphatidylcholine in Oils.

    PubMed

    Lin, Shih-Ting; Lin, Chen-Shin; Chang, Ya-Ying; Whitten, Andrew E; Sokolova, Anna; Wu, Chun-Ming; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang

    2016-11-22

    The interactions between ions and phospholipids are closely associated with the structures and functions of cell membrane. Instead of conventional aqueous systems, we systematically investigated the effects of inorganic ions on the self-assembly of lecithin, a zwitterionic phosphatidylcholine, in cyclohexane. Previous studies have shown that addition of inorganic salts with specific divalent and trivalent cations can transform lecithin organosols into organogels. In this study, we focused on the effect of monovalent alkali halides. Fourier transform infrared spectroscopy was used to demonstrate that the binding strength of the alkali cations with the phosphate of lecithin is in the order Li(+) > Na(+) > K(+). More importantly, the cation-phosphate interaction is affected by the paired halide anions, and the effect follows the series I(-) > Br(-) > Cl(-). The salts of stronger interactions with lecithin, including LiCl, LiBr, LiI, and NaI, were found to induce cylindrical micelles sufficiently long to form organogels, while others remain organosols. A mechanism based on the charge density of ions and the enthalpy change of the ion exchange between alkali halides and lecithin headgroup is provided to explain the contrasting interactions and the effectiveness of the salts to induce organogelation.

  20. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies.

    PubMed

    Bilge, Duygu; Sahin, Ipek; Kazanci, Nadide; Severcan, Feride

    2014-09-15

    Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The CO stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.

  1. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    SciTech Connect

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.

  2. Formulation and characterization of self-nanoemulsifying drug delivery systems containing monoacyl phosphatidylcholine.

    PubMed

    Tran, Thuy; Xi, Xi; Rades, Thomas; Müllertz, Anette

    2016-04-11

    The study investigated the use of monoacyl phosphatidylcholine (MAPC) in self-nanoemulsifying drug delivery system (SNEDDS). A D-optimal design was used to generate two sets of formulations containing long-chain (LC) or medium-chain (MC) glycerides, caprylocaproyl macrogol-8 glycerides (Labrasol), Lipoid S LPC 80 (LPC) (80% MAPC) and ethanol. The formulations were characterized using dynamic light scattering, microscopy, in vitro lipolysis and viscometric measurements. All LC formulations within the investigated range were predicted to generate polydisperse emulsions while MC formulations generated nanoemulsions with droplet sizes from 23 to 167 nm. Using LPC in MC formulations reduced the nanoemulsion droplet sizes in simulated gastric and intestinal media. The nanoemulsion droplet size of MC SNEDDS containing LPC was not affected by gastrointestinal pH, while the zeta potentials increased at low pH. During in vitro lipolysis, less fatty acids were released when LPC was incorporated into the formulations (2.05 ± 0.02 mmol reduced to 1.76 ± 0.05 mmol when incorporating 30% LPC). Replacing Labrasol by LPC increased the formulation dynamic viscosity from 57 ± 1 mPas (0% LPC) to 436 ± 8 mPas (35% LPC) at 25°C, however, this did not considerably prolong the formulation dispersion time. In conclusion, MC SNEDDS containing LPC are promising formulations when desiring to reduce the amount of synthetic surfactants and possibly modify the digestion rate.

  3. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  4. Hydration and hydrogen bonding of carbonyls in dimyristoyl-phosphatidylcholine bilayer.

    PubMed

    Volkov, Victor V; Nuti, Francesca; Takaoka, Yuji; Chelli, Riccardo; Papini, Anna Maria; Righini, Roberto

    2006-07-26

    We combine two-color ultrafast infrared spectroscopy and molecular dynamics simulation to investigate the hydration of carbonyl moieties in a dimyristoyl-phosphatidylcholine bilayer. Excitation with femtosecond infrared pulses of the OD stretching mode of heavy water produces a time dependent change of the absorption band of the phospholipid carbonyl groups. This intermolecular vibrational coupling affects the entire C=O band, thus suggesting that the optical inhomogeneity of the infrared response of carbonyl in phospholipid membranes cannot be attributed to the variance in hydration. Both the experimental and the theoretical results demonstrate that sn-1 carbonyl has a higher propensity to form hydrogen bonds with water in comparison to sn-2. The time-resolved experiment allows following the evolution of the system from a nonequilibrium localization of energy in the OD stretching mode to a thermally equilibrated condition and provides the characteristic time constants of the process. The approach opens a new opportunity for investigation of intermolecular structural relations in complex systems, like membranes, polymers, proteins, and glasses.

  5. Fluid Phase Lipid Areas and Bilayer Thicknesses of Commonly Used Phosphatidylcholines as a Function of Temperature

    SciTech Connect

    Kucerka, Norbert; Nieh, Mu-Ping; Katsaras, John

    2011-01-01

    The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.

  6. Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin

    SciTech Connect

    Boylan, J.G.; Hamilton, J.A. )

    1992-01-21

    Interactions of oleoyl- and octanoyl-coenzyme A (CoA) with phosphatidylcholine (PC) vesicles and bovine serum albumin (BSA) were investigated by NMR spectroscopy. Binding of acyl-CoA to small unilamellar PC vesicles and to BSA was detected by changes in {sup 13}C and {sup 31}P chemical shifts relative to the chemical shifts for aqueous acyl-CoA. PC vesicles remained intact with {le} 15 mol % oleoyl-CoA, while higher oleoyl-CoA proportions produced mixed micelles. In contrast, {sup 13}C spectra revealed rapid exchange (ms) of octanoyl-CoA between the aqueous phase and PC vesicles and a low affinity for the bilayer. Thus, the binding affinity of acyl-CoA for PC bilayers is dependent on the acyl chain length. Addition of ({sup 13}C)carboxyl-enriched oleic acid to oleoyl-CoA/BSA mixtures revealed simultaneous binding of oleic acid and oleoyl-CoA to BSA, with some perturbation of binding interactions. Thus, BSA contains multiple binding sites for oleoyl-CoA and can bind fatty acid and acyl-CoA simultaneously.

  7. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes

    PubMed Central

    Santhosh, Poornima Budime; Drašler, Barbara; Drobne, Damjana; Kreft, Mateja Erdani; Kralj, Slavko; Makovec, Darko; Ulrih, Nataša Poklar

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications. PMID:26491286

  8. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals

    PubMed Central

    Gutierrez, Danielle B.; Fahlman, Andreas; Gardner, Manuela; Kleinhenz, Danielle; Piscitelli, Marina; Raverty, Stephen; Haulena, Martin; Zimba, Paul V.

    2015-01-01

    Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation – a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes. PMID:25812797

  9. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery

    NASA Astrophysics Data System (ADS)

    da Silva, Indjara Mallmann; Boelter, Juliana Ferreira; da Silveira, Nádya Pesce; Brandelli, Adriano

    2014-07-01

    There is increased interest on the use of natural antimicrobial peptides in biomedicine and food preservation technologies. In this study, the antimicrobial activity of nisin encapsulated into nanovesicles containing polyanionic polysaccharides was investigated. Nisin was encapsulated in phosphatidylcholine (PC) liposomes containing chitosan or chondroitin sulfate by the thin-film hydration method and tested for antimicrobial activity against Listeria spp. The mean particle size of PC liposomes was 145 nm and varied to 210 and 134 nm with the incorporation of chitosan and chondroitin sulfate, respectively. Nisin-containing nanovesicles with and without incorporation of polysaccharides had a zeta potential values around -20 mV, showing mostly spherical structures when observed by transmission electron microscopy. Encapsulated nisin had similar efficiency as free nisin in inhibiting Listeria spp. isolated from bovine carcass, and greater efficiency in inhibiting Listeria monocytogenes. The formulation containing chitosan was more stable and more efficient in inhibiting L. monocytogenes when compared to the other nanovesicles tested. After 24 h, the viable cell counts were 2 log lower as compared with the other treatments and 7 log comparing to controls.

  10. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Sahin, Ipek; Kazanci, Nadide; Severcan, Feride

    2014-09-01

    Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The Cdbnd O stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.

  11. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure[S

    PubMed Central

    Son, Mijin; London, Erwin

    2013-01-01

    Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains. PMID:23093551

  12. Effect of glucosamine sulfate on surface interactions and lubrication by hydrogenated soy phosphatidylcholine (HSPC) liposomes.

    PubMed

    Gaisinskaya-Kipnis, Anastasia; Jahn, Sabrina; Goldberg, Ronit; Klein, Jacob

    2014-11-10

    Glucosamine sulfate (GAS) is a charged monosaccharide molecule that is widely used as a treatment for osteoarthritis, a joint disease related to friction and lubrication of articular cartilage. Using a surface force balance, we examine the effect of GAS on normal and, particularly, on shear (frictional) interactions between surfaces in an aqueous environment coated with small unilamellar vesicles (SUVs), or liposomes, of hydrogenated soy phosphatidylcholine (HSPC). We examine the effect of GAS solution, pure water, and salt solution (0.15 M NaNO3) both inside and outside the vesicles. Cryoscanning electron microscopy shows a closely packed layer of liposomes whose morphology is affected only slightly by GAS. HSPC-SUVs with encapsulated GAS are stable upon shear at high compressions (>100 atm) and provide very good lubrication when immersed both in pure water and physiological-level salt solutions (in the latter case, the liposomes are exceptionally stable and lubricious up to >400 atm). The low friction is attributed to several parameters based on the hydration lubrication mechanism.

  13. Phosphatidylcholine resynthesis from components of internalized phospholipids in rat granular pneumocytes in primary culture

    SciTech Connect

    Chander, A.; Reicherter, J.; Fisher, A.B.

    1986-05-01

    Uptake, degradation and reutilization of surfactant phospholipids was investigated by incubating granular pneumocytes in primary culture with 0.2 mM liposomal phosphatidylcholine containing (/sup 3/H-methyl)choline labeled dipalmitoyl PC. Trypsin-resistant cell associated liposome radioactivity in PC declined steadily with time of incubation to 50% of total radioactivity by 140 min. In the water soluble fraction, most of the radioactivity was present in glycerophosphorylcholine which increased steadily to 13% of total cell associated radioactivity. While the proportion of radioactivity in choline remained unchanged, it increased with time in CDP-choline and phosphorylcholine suggesting reutilization of choline for PC resynthesis. In lamellar bodies isolated from these cells, less than 10% of PC label was present in unsaturated PC. In the microsomal fraction the label in unsaturated PC at 21 min was 56% of total PC which increased to 71% by 140 min of incubation with liposomes (slope = 0.19%/min; r = 0.67) suggesting metabolic reutilization of dipalmitoyl PC in this compartment. These observations indicate that granular pneumocytes degrade internalized PC and resynthesize PC de novo from degradation products.

  14. Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry[S

    PubMed Central

    Maccarone, Alan T.; Duldig, Jackson; Mitchell, Todd W.; Blanksby, Stephen J.; Duchoslav, Eva; Campbell, J. Larry

    2014-01-01

    Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation. PMID:24939921

  15. Asymmetric 1-Alkyl-2-acyl Phosphatidylcholine: a Helper Lipid for Enhanced Non-viral Gene Delivery

    PubMed Central

    Huang, Zhaohua; Li, Weijun; Szoka, Francis C.

    2011-01-01

    Rationally designed asymmetrical alkylacyl phosphatidylcholines (APC) have been synthesized and evaluated as helper lipids for non-viral gene delivery. A long aliphatic chain (C22~C24) was introduced at the 1-position of glycerol backbone, a branched lipid chain (C18) at the 2-position, and a phosphocholine head group at the 3-position. The fusogenicity of APC depends on the length and degree of saturation of the alkyl chain. Cationic lipids were formulated with APC as either lipoplexes or nanolipoparticles, and evaluated for their stability, transfection efficiency, and cytotoxicity. APC mediated high in vitro transfection efficiency, and had low cytotoxicity. Small nanolipoparticles (less than 100 nm) can be obtained with APC by applying as low as 0.1% PEG-lipid. Our study extends the type of helper lipids that are suitable for gene transfer and points the way to improve non-viral nucleic acid delivery system other than the traditional cationic lipids optimization. This work is supported by NIH grant EB003008. PMID:21718766

  16. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  17. Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid.

    PubMed

    Hoppel, Magdalena; Ettl, Hanna; Holper, Evelyn; Valenta, Claudia

    2014-11-20

    Although microemulsions are one of the most promising dermal carrier systems, their clinical use is limited due to their skin irritation potential. Therefore, microemulsions based on naturally derived monoacyl phosphatidylcholine (MAPL) were developed. The influence of the water, oil and surfactant content on dermal delivery of flufenamic acid was systematically investigated for the first time. A water-rich microemulsion led to significantly higher in vitro skin penetration of flufenamic acid compared to other microemulsions. The superiority of the water-rich microemulsion over a marketed flufenamic acid containing formulation was additionally confirmed. Differences in drug delivery could be explained by alterations of the microemulsions after application. Evaporation of isopropanol led to crystal-like structures of MAPL on the skin surface from the surfactant- or oleic acid-rich microemulsions. In contrast, the formation of this additional barrier was hindered in case of the water-rich microemulsion. The skin penetration of MAPL was additionally analyzed by combined ATR-FTIR and tape stripping experiments, where MAPL itself penetrated only into the initial layers of the stratum corneum, independent of the microemulsion composition. Since a surfactant must penetrate the skin to cause irritation, MAPL can be presumed as a skin-friendly emulsifier with the ability to stabilize pharmaceutically acceptable microemulsions.

  18. Fluidization of a dipalmitoyl phosphatidylcholine monolayer by fluorocarbon gases: potential use in lung surfactant therapy.

    PubMed

    Gerber, Frédéric; Krafft, Marie Pierre; Vandamme, Thierry F; Goldmann, Michel; Fontaine, Philippe

    2006-05-01

    Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.

  19. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    PubMed

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  20. Interactions between adsorbed hydrogenated soy phosphatidylcholine (HSPC) vesicles at physiologically high pressures and salt concentrations.

    PubMed

    Goldberg, Ronit; Schroeder, Avi; Barenholz, Yechezkel; Klein, Jacob

    2011-05-18

    Using a surface force balance, we measured normal and shear interactions as a function of surface separation between layers of hydrogenated soy phosphatidylcholine (HSPC) small unilamellar vesicles (SUVs) adsorbed from dispersion at physiologically high salt concentrations (0.15 M NaNO₃). Cryo-scanning electron microscopy shows that each surface is coated by a close-packed HSPC-SUV layer with an overlayer of liposomes on top. A clear attractive interaction between the liposome layers is seen upon approach and separation, followed by a steric repulsion upon further compression. The shear forces reveal low friction coefficients (μ = 0.008-0.0006) up to contact pressures of at least 6 MPa, comparable to those observed in the major joints. The spread in μ-values may be qualitatively accounted for by different local liposome structure at different contact points, suggesting that the intrinsic friction of the HSPC-SUV layers at this salt concentration is closer to the lower limit (μ = ~0.0006). This low friction is attributed to the hydration lubrication mechanism arising from rubbing of the hydrated phosphocholine-headgroup layers exposed at the outer surface of each liposome, and provides support for the conjecture that phospholipids may play a significant role in biological lubrication.

  1. Solubilizing effects caused by the nonionic surfactant dodecylmaltoside in phosphatidylcholine liposomes.

    PubMed Central

    de la Maza, A; Parra, J L

    1997-01-01

    The interaction of the nonionic surfactant dodecylmaltoside (DM) with phosphatidylcholine liposomes was investigated. Permeability alterations were detected as a change in 5(6)-carboxyfluorescein released from the interior of vesicles and bilayer solubilization as a decrease in the static light scattered by liposome suspensions. This surfactant showed higher capacity to saturate and solubilize PC liposomes and greater affinity with these structures than those reported for the octyl glucoside. At subsolubilizing level an initial maximum in the bilayer/water partitioning (K) followed by an abrupt decrease of this parameter occurred as the effective molar ratio of surfactant to phospholipid in bilayers (Re) rose. However, at solubilizing level a direct dependence was established between both parameters. A direct correlation took place in the initial interaction steps (Re up to 0.28) between the growth of vesicles, their fluidity, and Re. A similar direct dependence was established during solubilization (Re range from 0.9 to 1.7) between the decrease in both the surfactant-PC aggregate size, the light scattering of the system, and Re (composition of aggregates). The fact that the free DM concentration at subsolubilizing and solubilizing levels showed values lower than and similar to its critical micelle concentration indicates that permeability alterations and solubilization were determined, respectively, by the action of surfactant monomer and by the formation of mixed micelles. Images FIGURE 3 PMID:9083670

  2. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes.

    PubMed

    Santhosh, Poornima Budime; Drašler, Barbara; Drobne, Damjana; Kreft, Mateja Erdani; Kralj, Slavko; Makovec, Darko; Ulrih, Nataša Poklar

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications.

  3. Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro.

    PubMed

    Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying

    2009-10-01

    Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS.

  4. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study.

    PubMed Central

    Pasenkiewicz-Gierula, M; Takaoka, Y; Miyagawa, H; Kitamura, K; Kusumi, A

    1999-01-01

    Molecular dynamics simulation of the hydrated dimyristoylphosphatidylcholine (DMPC) bilayer membrane in the liquid-crystalline phase was carried out for 5 ns to study the interaction among DMPC headgroups in the membrane/water interface region. The phosphatidylcholine headgroup contains a positively charged choline group and negatively charged phosphate and carbonyl groups, although it is a neutral molecule as a whole. Our previous study (Pasenkiewicz-Gierula, M., Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi. 1997. J. Phys. Chem. 101:3677-3691) showed the formation of water cross-bridges between negatively charged groups in which a water molecule is simultaneously hydrogen bonded to two DMPC molecules. Water bridges link 76% of DMPC molecules in the membrane. In the present study we show that relatively stable charge associations (charge pairs) are formed between the positively and negatively charged groups of two DMPC molecules. Charge pairs link 93% of DMPC molecules in the membrane. Water bridges and charge pairs together form an extended network of interactions among DMPC headgroups linking 98% of all membrane phospholipids. The average lifetimes of DMPC-DMPC associations via charge pairs, water bridges and both, are at least 730, 1400, and over 1500 ps, respectively. However, these associations are dynamic states and they break and re-form several times during their lifetime. PMID:10049307

  5. Positional analysis of phosphatidylcholine and phosphatidylethanolamine via LC with a charged aerosol detector.

    PubMed

    Kiełbowicz, Grzegorz; Chojnacka, Anna; Gliszczyńska, Anna; Gładkowski, Witold; Kłobucki, Marek; Niezgoda, Natalia; Wawrzeńczyk, Czesław

    2015-08-15

    A new method for the positional analysis of egg yolk phospholipids (PLs) (phosphatidylcholine-PC, phosphatidylethanolamine-PE) using liquid chromatography with charge aerosol detector (CAD) is described. The method is based on six-step procedure: 1) extraction of phospholipids from tissue sample, 2) separation of lipid classes by solid phase extraction (SPE), 3) complete regiospecific hydrolysis of phospholipids by phospholipase A2 (PLA2), 4) separation of reaction products (fatty acids from sn-2 position and 1-acyl lysophospholipids) by SPE, 5) chemical hydrolysis of 1-acyl lysophospholipids, and 6) analysis of obtained fatty acids by LC with charge aerosol detection (CAD). Total time of enzymatic hydrolysis of PLs ranged from 10-30min. The reaction products were separated by SPE in three-step gradient elution procedure. Chloroform: methanol mixtures were used as eluents to obtain pure fractions of FAs from sn-2 position of PL and 1-acyl lysoPL (chemically hydrolyzed to FAs). FAs were separated by reversed-phase LC using a gradient elution and detected using CAD detector. This combination enables determination of all fatty acids in a single analysis, and without the sample derivatization. The method was optimized and the response of CAD, linearity, precision and sensitivity of the method were studied.

  6. Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren; ...

    2016-07-13

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to a neutralmore » PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less

  7. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides.

    PubMed

    Schwarz, Emanuel; Prabakaran, Sudhakaran; Whitfield, Phil; Major, Hilary; Leweke, F M; Koethe, Dagmar; McKenna, Peter; Bahn, Sabine

    2008-10-01

    A mass spectrometry based high throughput approach was employed to profile white and gray matter lipid levels in the prefrontal cortex (Brodmann area 9) of 45 subjects including 15 schizophrenia and 15 bipolar disorder patients as well as 15 controls samples. We found statistically significant alterations in levels of free fatty acids and phosphatidylcholine in gray and white matter of both schizophrenia and bipolar disorder samples compared to controls. Also, ceramides were identified to be significantly increased in white matter of both neuropsychiatric disorders as compared to control levels. The patient cohort investigated in this study includes a number of drug naive as well as untreated patients, allowing the assessment of drug effects on lipid levels. Our findings indicate that while gray matter phosphatidylcholine levels were influenced by antipsychotic medication, this was not the case for phosphatidylcholine levels in white matter. Changes in free fatty acids or ceramides in either white or gray matter also did not appear to be influenced by antipsychotic treatment. To assess lipid profiles in the living patient, we also profiled lipids of 40 red blood cell samples, including 7 samples from drug naive first onset patients. We found significant alterations in the concentrations of free fatty acids as well as ceramide. Overall, our findings suggest that lipid abnormalities may be a disease intrinsic feature of both schizophrenia and bipolar disorder reflected by significant changes in the central nervous system as well as peripheral tissues.

  8. On the characteristics of mixed Langmuir monolayer templates containing dipalmitoyl phosphatidylcholine for gold nanoparticle formation.

    PubMed

    Hsiao, Fang-Wei; Lee, Yuh-Lang; Chang, Chien-Hsiang

    2009-10-01

    Mixed Langmuir monolayers containing dipalmitoyl phosphatidylcholine (DPPC) were applied as two-dimensional templates to incorporate with gold precursor AuCl4- in the subphases. The organic monolayer templates were then transferred onto solid substrates to form ultra-thin films by the Langmuir-Blodgett (LB) deposition technique. With an UV irradiation approach, gold nanoparticles were thus fabricated in the LB films of monolayer templates. Characteristics of the monolayer templates were studied by the surface pressure-area isotherm measurements and Brewster angle microscopy (BAM) observation. The factors affecting the formation of gold nanoparticle structures in the LB films of organic monolayer templates were elucidated by the atomic force microscopy (AFM). The monolayer isotherms and BAM images suggested that by changing the gold precursor concentration in the subphase, one could control the adsorption behavior of the gold precursor onto the monolayer templates. It was found that the association of the gold precursor with a pure DPPC monolayer template resulted in an unstable Langmuir monolayer, which was inappropriate for the following LB deposition. With the presence of n-hexadecanol in a DPPC monolayer, the monolayer template stability and corresponding LB deposition quality could be tremendously improved. Moreover, the distribution of DPPC molecules in the monolayer templates was possible to be regulated by the addition of n-hexadecanol, and the association behavior of the gold precursor with the monolayer templates was thus controlled. The AFM analysis then indicated that the number and size of gold nanoparticles fabricated in the LB films of the mixed DPPC/n-hexadecanol monolayer templates by a photoreduction reaction could be manipulated by the mole fraction of n-hexadecanol and UV irradiation time.

  9. Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine.

    PubMed

    Arendt, Bianca M; Ma, David W L; Simons, Brigitte; Noureldin, Seham A; Therapondos, George; Guindi, Maha; Sherman, Morris; Allard, Johane P

    2013-03-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with altered hepatic lipid composition. Animal studies suggest that the hepatic ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) contributes to steatogenesis and inflammation. This ratio may be influenced by dysregulation of the PE N-methyltransferase (PEMT) pathway or by a low-choline diet. Alterations in the liver may also influence lipid composition in circulation such as in erythrocytes, which therefore may have utility as a biomarker of hepatic disease. Currently, no study has assessed both liver and erythrocyte PC/PE ratios in NAFLD. The aim of this study was to compare the PC/PE ratio in the liver and erythrocytes of patients with simple steatosis (SS) or nonalcoholic steatohepatitis (NASH) with that of healthy controls. PC and PE were measured by mass spectrometry in 28 patients with biopsy-proven NAFLD (14 SS, 14 NASH) and 9 healthy living liver donors as controls. The hepatic PC/PE ratio was lower in SS patients (median [range]) (1.23 [0.27-3.40]) and NASH patients (1.29 [0.77-3.22]) compared with controls (3.14 [2.20-3.73]); both p < 0.001) but it was not different between SS and NASH. PC was lower and PE higher in the liver of SS patients compared with controls, whereas in NASH patients only PE was higher. The PC/PE ratio in erythrocytes was also lower in SS and NASH patients compared with controls because of lower PC in both patient groups. PE in erythrocytes was not different among the groups. In conclusion, NAFLD patients have a lower PC/PE ratio in the liver and erythrocytes than do healthy controls, which may play a role in the pathogenesis. The underlying mechanisms require further investigation.

  10. Transfer of arachidonate from phosphatidylcholine to phosphatidylethanolamine and triacylglycerol in guinea pig alveolar macrophages

    SciTech Connect

    Nijssen, J.G.; Oosting, R.S.; Nkamp, F.Pv.; van den Bosch, H.

    1986-10-01

    Guinea pig alveolar macrophages were labeled by incubation with either arachidonate or linoleate. Arachidonate labeled phosphatidylcholine (PC), phosphatidylethanolamine (PE) and triglycerides (TG) equally well, with each lipid containing about 30% of total cellular radioactivity. In comparison to arachidonate, linoleate was recovered significantly less in PE (7%) and more in TG (47%). To investigate whether redistributions of acyl chains among lipid classes took place, the macrophages were incubated with 1-acyl-2-(1-/sup 14/C)arachidonoyl PC or 1-acyl-2-(1-/sup 14/C)linoleoyl PC. After harvesting, the cells incubated with 1-acyl-2-(1-/sup 14/C)linoleoyl PC contained 86% of the recovered cellular radioactivity in PC, with only small amounts of label being transferred to PE and TG (3 and 6%, respectively). More extensive redistributions were observed with arachidonate-labeled PC. In this case, only 60% of cellular radioactivity was still associated with PC, while 22 and 12%, respectively, had been transferred to PE and TG. Arachidonate transfer from PC to PE was unaffected by an excess of free arachidonate which inhibited this transfer to TG for over 90%, indicating that different mechanisms or arachidonoyl CoA pools were involved in the transfer of arachidonate from PC to PE and TG. Cells prelabeled with 1-acyl-2-(1-/sup 14/C)arachidonoyl PC released /sup 14/C-label into the medium upon further incubation. This release was slightly stimulated by zymosan and threefold higher in the presence of the Ca2+-ionophore A23187. Labeling of macrophages with intact phospholipid molecules appears to be a suitable method for studying acyl chain redistribution and release reactions.

  11. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor.

    PubMed

    Smiley, P L; Stremler, K E; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1991-06-15

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows

  12. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group.

    PubMed

    Pomerantsev, A P; Kalnin, K V; Osorio, M; Leppla, S H

    2003-11-01

    Bacillus anthracis is nonhemolytic, even though it is closely related to the highly hemolytic Bacillus cereus. Hemolysis by B. cereus results largely from the action of phosphatidylcholine-specific phospholipase C (PC-PLC) and sphingomyelinase (SPH), encoded by the plc and sph genes, respectively. In B. cereus, these genes are organized in an operon regulated by the global regulator PlcR. B. anthracis contains a highly similar cereolysin operon, but it is transcriptionally silent because the B. anthracis PlcR is truncated at the C terminus. Here we report the cloning, expression, purification, and enzymatic characterization of PC-PLC and SPH from B. cereus and B. anthracis. We also investigated the effects of expressing PlcR on the expression of plc and sph. In B. cereus, PlcR was found to be a positive regulator of plc but a negative regulator of sph. Replacement of the B. cereus plcR gene by its truncated orthologue from B. anthracis eliminated the activities of both PC-PLC and SPH, whereas introduction into B. anthracis of the B. cereus plcR gene with its own promoter did not activate cereolysin expression. Hemolytic activity was detected in B. anthracis strains containing the B. cereus plcR gene on a multicopy plasmid under control of the strong B. anthracis protective antigen gene promoter or in a strain carrying a multicopy plasmid containing the entire B. cereus plc-sph operon. Slight hemolysis and PC-PLC activation were found when PlcR-producing B. anthracis strains were grown under anaerobic-plus-CO(2) or especially under aerobic-plus-CO(2) conditions. Unmodified parental B. anthracis strains did not demonstrate obvious hemolysis under the same conditions.

  13. Cubic Phases in Phosphatidylcholine-Cholesterol Mixtures: Cholesterol as Membrane 'Fusogen'

    SciTech Connect

    Tenchov, Boris G.; MacDonald, Robert C.; Siegel, David P.

    2010-01-18

    X-ray diffraction reveals that mixtures of some unsaturated phosphatidylcholines (PCs) with cholesterol (Chol) readily form inverted bicontinuous cubic phases that are stable under physiological conditions. This effect was studied in most detail for dioleoyl PC/Chol mixtures with molar ratios of 1:1 and 3:7. Facile formation of Im3m and Pn3m phases with lattice constants of 30-50nm and 25-30nm, respectively, took place in phosphate-buffered saline, in sucrose solution, and in water near the temperature of the L{alpha}HII transition of the mixtures, as well as during cooling of the HII phase. Once formed, the cubic phases displayed an ability to supercool and replace the initial L{sub {alpha}} phase over a broad range of physiological temperatures. Conversion into stable cubic phases was also observed for mixtures of Chol with dilinoleoyl PC but not for mixtures with palmitoyl-linoleoyl PC or palmitoyl-oleoyl PC, for which only transient cubic traces were recorded at elevated temperatures. A saturated, branched-chain PC, diphytanoyl PC, also displayed a cubic phase in mixture with Chol. Unlike the PEs, the membrane PCs are intrinsically nonfusogenic lipids: in excess water they only form lamellar phases and not any of the inverted phases on their own. Thus, the finding that Chol induces cubic phases in mixtures with unsaturated PCs may have important implications for its role in fusion. In ternary mixtures, saturated PCs and sphingomyelin are known to separate into liquid-ordered domains along with Chol. Our results thus suggest that unsaturated PCs, which are excluded from these domains, could form fusogenic domains with Chol. Such a dual role of Chol may explain the seemingly paradoxical ability of cell membranes to simultaneously form rigid, low-curvature raft-like patches while still being able to undergo facile membrane fusion.

  14. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics*

    PubMed Central

    Naito, Tomoki; Takatsu, Hiroyuki; Miyano, Rie; Takada, Naoto; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543–33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology. PMID:25947375

  15. Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers.

    PubMed Central

    Huang, H W; Goldberg, E M; Zidovetzki, R

    1999-01-01

    We studied the effects of natural ceramide and a series of ceramide analogs with different acyl chain lengths on the activity of rat brain protein kinase C (PKC) and on the structure of bovine liver phosphatidylcholine (BLPC)/dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylserine (DPPS) (3:1:1 molar ratio) bilayers using (2)H-NMR and specific enzymatic assays in the absence or presence of 7.5 mol % diolein (DO). Only a slight activation of PKC was observed upon addition of the short-chain ceramide analogs (C(2)-, C(6)-, or C(8)-ceramide); natural ceramide or C(16)-ceramide had no effect. In the presence of 7.5 mol % DO, natural ceramide and C(16)-ceramide analog slightly attenuated DO-enhanced PKC activity. (2)H-NMR results demonstrated that natural ceramide and C(16)-ceramide induced lateral phase separation of gel-like and liquid crystalline domains in the bilayers; however, this type of membrane perturbation has no direct effect on PKC activity. The addition of both short-chain ceramide analogs and DO had a synergistic effect in activating PKC, with maximum activity observed with 20 mol % C(6)-ceramide and 15 mol % DO. Further increases in C(6)-ceramide and/or DO concentrations led to decreased PKC activity. A detailed (2)H-NMR investigation of the combined effects of C(6)-ceramide and DO on lipid bilayer structure showed a synergistic effect of these two reagents to increase membrane tendency to adopt nonbilayer structures, resulting in the actual presence of such structures in samples exceeding 20 mol % ceramide and 15 mol % DO. Thus, the increased tendency to form nonbilayer lipid phases correlates with increased PKC activity, whereas the actual presence of such phases reduced the activity of the enzyme. Moreover, the results show that short-chain ceramide analogs, widely used to study cellular effects of ceramide, have biological effects that are not exhibited by natural ceramide. PMID:10465759

  16. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  17. Advent of Novel Phosphatidylcholine-Associated Nonsteroidal Anti-Inflammatory Drugs with Improved Gastrointestinal Safety

    PubMed Central

    Lim, Yun Jeong; Dial, Elizabeth J.

    2013-01-01

    The mucosa of the gastrointestinal (GI) tract exhibits hydrophobic, nonwettable properties that protect the underlying epithelium from gastric acid and other luminal toxins. These biophysical characteristics appear to be attributable to the presence of an extracellular lining of surfactant-like phospholipids on the luminal aspects of the mucus gel layer. Phosphatidylcholine (PC) represents the most abundant and surface-active form of gastric phospholipids. PC protected experimental rats from a number of ulcerogenic agents and/or conditions including nonsteroidal anti-inflammatory drugs (NSAIDs), which are chemically associated with PC. Moreover, preassociating a number of the NSAIDs with exogenous PC prevented a decrease in the hydrophobic characteristics of the mucus gel layer and protected rats against the injurious GI side effects of NSAIDs while enhancing and/or maintaining their therapeutic activity. Bile plays an important role in the ability of NSAIDs to induce small intestinal injury. NSAIDs are rapidly absorbed from the GI tract and, in many cases, undergo enterohepatic circulation. Thus, NSAIDs with extensive enterohepatic cycling are more toxic to the GI tract and are capable of attenuating the surface hydrophobic properties of the mucosa of the lower GI tract. Biliary PC plays an essential role in the detoxification of bile salt micelles. NSAIDs that are secreted into the bile injure the intestinal mucosa via their ability to chemically associate with PC, which forms toxic mixed micelles and limits the concentration of biliary PC available to interact with and detoxify bile salts. We have worked to develop a family of PC-associated NSAIDs that appear to have improved GI safety profiles with equivalent or better therapeutic efficacy in both rodent model systems and pilot clinical trials. PMID:23423874

  18. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https

  19. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase.

    PubMed Central

    Huang, J; Swanson, J E; Dibble, A R; Hinderliter, A K; Feigenson, G W

    1993-01-01

    The mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) in fluid bilayer model membranes was studied by measuring binding of aqueous Ca2+ ions. The measured [Ca2+]aq was used to derive the activity coefficient for PS, gamma PS, in the lipid mixture. For (16:0, 18:1) PS in binary mixtures with either (16:0, 18:1)PC, (14:1, 14:1)PC, or (18:1, 18:1)PC, gamma PS > 1; i.e., mixing is nonideal, with PS and PC clustered rather than randomly distributed, despite the electrostatic repulsion between PS headgroups. To understand better this mixing behavior, Monte Carlo simulations of the PS/PC distributions were performed, using Kawasaki relaxation. The excess energy was divided into an electrostatic term Uel and one adjustable term including all other nonideal energy contributions, delta Em. Uel was calculated using a discrete charge theory. Kirkwood's coupling parameter method was used to calculate the excess free energy of mixing, delta GEmix, hence In gamma PS,calc. The values of In gamma PS,calc were equalized by adjusting delta Em in order to find the simulated PS/PC distribution that corresponded to the experimental results. We were thus able to compare the smeared charge calculation of [Ca2+]surf with a calculation ("masked evaluation method") that recognized clustering of the negatively charged PS: clustering was found to have a modest effect on [Ca2+]surf, relative to the smeared charge model. Even though both PS and PC tend to cluster, the long-range nature of the electrostatic repulsion reduces the extent of PS clustering at low PS mole fraction compared to PC clustering at an equivalent low PC mole fraction. PMID:8457667

  20. Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat.

    PubMed

    Tokés, Tünde; Eros, Gábor; Bebes, Attila; Hartmann, Petra; Várszegi, Szilvia; Varga, Gabriella; Kaszaki, József; Gulya, Károly; Ghyczy, Miklós; Boros, Mihály

    2011-11-01

    Our goal was to characterize the neuroprotective properties of orally administered phosphatidylcholine (PC) in a rodent model of systemic inflammation. Sprague-Dawley rats were killed at 3 h, 1 day, 3 days, or 7 days after i.p. administration of lipopolysaccharide (LPS) to determine the plasma levels of tumor necrosis factor α (TNF-α) and interleukin 6 cytokines. The control group and one group of LPS-treated animals were nourished with standard laboratory chow, whereas another LPS-treated group received a special diet enriched with 1% PC for 5 days before the administration of LPS and thereafter during the 7-day observation period. Immunohistochemistry was performed to visualize the bromodeoxyuridine and doublecortin-positive neuroprogenitor cells and Iba1-positive microglia in the hippocampus, whereas the degree of mucosal damage was evaluated on ileal and colon biopsy samples after hematoxylin-eosin staining. The activities of proinflammatory myeloperoxidase and xanthine-oxidoreductase and the tissue nitrite/nitrate (NOx) level were additionally determined, and the cognitive functions were monitored via Morris water maze testing. The inflammatory challenge transiently increased the hippocampal NOx level and led to microglia accumulation and decreased neurogenesis. The intestinal damage, mucosal myeloperoxidase, xanthine-oxidoreductase, and NOx changes were less pronounced, and long-lasting behavioral alterations were not observed. Phosphatidylcholine pretreatment reduced the plasma TNF-α and hippocampal NOx changes and prevented the decreased neurogenesis. These data demonstrated the relative susceptibility of the brain to the consequences of transient peripheral inflammatory stimuli. Phosphatidylcholine supplementation did not reduce the overall extent of peripheral inflammatory activation, but efficiently counteracted the disturbed hippocampal neurogenesis by lowering circulating TNF-α concentrations.

  1. Properties of discoidal complexes of human apolipoprotein A-I with phosphatidylcholines containing various fatty acid chains.

    PubMed

    Zorich, N L; Kézdy, K E; Jonas, A

    1987-06-02

    In this study we demonstrate that apolipoprotein A-I determined the common size classes of discoidal particles formed with numerous phosphatidylcholines, and with ether analogs of phosphatidylcholines. We show furthermore, that the nature of the lipids dictates the distribution of particles among the different size classes. These experiments were performed with discoidal complexes containing various phospholipids (phosphatidylcholines with saturated and unsaturated fatty acid chains of different lengths and the ether analog of 1-palmitoyl-2-oleoylphosphatidylcholine), cholesterol, and human apolipoprotein A-I, prepared by the sodium cholate dialysis method, and fractionated by Bio-Gel A-5m gel-filtration chromatography. The complex preparations were analyzed in terms of their average composition, spectral properties of the apolipoprotein, and the dynamic behavior of the lipid domains. Nondenaturing gradient gel electrophoresis was used to analyze the size classes of particles present in the complex preparations. Starting with reaction mixtures containing around 100:1, phospholipid/apolipoprotein A-I molar ratios, complexes were isolated with molar ratios from 40:1 to 100:1. In most complexes apolipoprotein A-I had high levels of alpha-helical structure (65-77% alpha-helix), and tryptophan residues in a nonpolar environment. The lipid domains of complexes exhibited the dynamic behavior expected of the main phospholipid components. In the average size range from 90 to 100 A diameters, discrete particle classes with 80, 87, 102, 108, or 112 A Stokes diameters were observed for all the complexes containing different phospholipids. These discrete, recurring particle sizes are attributed to distinct apolipoprotein A-I conformations and variable lipid content.

  2. Phospholipase-mediated preparation of 1-ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine from soya and egg phosphatidylcholine.

    PubMed

    Vijeeta, T; Reddy, J R C; Rao, B V S K; Karuna, M S L; Prasad, R B N

    2004-07-01

    1-Ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine was prepared by incorporating ricinoleic acid completely in the sn-1 position of egg and soya phosphatidylcholine (PC) using immobilized phospholipase A(1) as the catalyst. The optimum reaction conditions for maximum incorporation of ricinoleic acid into PC through transesterification were 10% (w/w) immobilized enzyme (116 mg), a 1:5 mol ratio of PC (soya, 387 mg; egg, 384 mg) to methyl ricinoleate (780 mg) at 50 degrees C for 24 h in hexane.

  3. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles.

    PubMed

    Palominos, M A; Vilches, D; Bossel, E; Soto-Arriaza, M A

    2016-12-01

    This study contributes to an understanding of how different polymeric structures, in special triblock copolymers can interact with the lipid bilayer. To study the phospholipid-copolymer vesicles system, we report the effect of two amphipathic triblock copolymers of the type BAB, i.e., hydrophobic-hydrophilic-hydrophobic triblock copolymers arranged as poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) (PCLn-PEOm-PCLn), where n=12 and m=45 for COP1 and n=16 and m=104 for COP2, on the dynamic and structural properties of dipalmitoyl-phosphatidylcholine (DPPC) large unilamellar vesicles (LUVs). The interaction between the copolymers and DPPC LUVs was evaluated by means of several techniques: (a) Photographs of the dispersion for evaluation of colloidal stability; (b) Thermotropic behavior from generalized polarization of Laurdan and fluorescence anisotropy of DPH (c) Main phase transition temperature determination; (d) Order parameters and limiting anisotropy by time-resolved fluorescence anisotropy measurements; (e) Water outflow through the lipid bilayer and (f) Calcein release from DPPC LUVs. Steady-state fluorescence measurements as a function of temperature show a typical behavior. Laurdan and DPH are fluorescent probes that sense the interface and the inner part of the bilayer, respectively. Both copolymers increase the Tm value of DPPC LUVs sensed by DPH, i.e., in the inner part of the bilayer. On the contrary, only COP2 had an effect on increasing the Tm value at the interface of the bilayer. At low temperature, in the gel phase, the presence of the copolymers produced a slight decrease in generalized polarization of Laurdan sensed in the interface of the lipid bilayer, but in the liquid-crystalline phase it produced an increase. In contrast, the order parameters obtained from time-resolved fluorescence anisotropy of DPH show an increase in the presence of the copolymers in the gel phase, but a decrease in the liquid-crystalline phase. COP2

  4. Apparent Role of Phosphatidylcholine in the Metabolism of Petroselinic Acid in Developing Umbelliferae Endosperm.

    PubMed Central

    Cahoon, E. B.; Ohlrogge, J. B.

    1994-01-01

    Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn

  5. Effects of alcohols on the phase transition temperatures of mixed-chain phosphatidylcholines.

    PubMed Central

    Li, S; Lin, H N; Wang, G; Huang, C

    1996-01-01

    The biphasic effect of ethanol on the main phase transition temperature (Tm) of identical-chain phosphatidyl-cholines (PCs) in excess H2O is now well known. This biphasic effect can be attributed to the transformation of the lipid bilayer, induced by high concentrations of ethanol, from the partially interdigitated L beta, phase to the fully interdigitated L beta I phase at T < Tm. The basic packing unit of the L beta I phase has been identified recently as a binary mixture of PC/ethanol at the molar ratio of 1:2. The ethanol effect on mixed-chain PCs, however, is not known. We have thus in this study investigated the alcohol effects on the Tm of mixed-chain PCs with different delta C values, where delta C is the effective acyl chain length difference between the sn-1 and sn-2 acyl chains. Initially, molecular mechanics (MM) simulations are employed to calculate the steric energies associated with a homologous series of mixed-chain PCs packed in the partially and the fully interdigitated L beta I motifs. Based on the energetics, the preference of each mixed-chain PC for packing between these two different motifs can be estimated. Guided by MM results, high-resolution differential scanning calorimetry is subsequently employed to determine the Tm values for aqueous lipid dispersions prepared individually from a series of mixed-chain PCs (delta C = 0.5-6.5 C-C bond lengths) in the presence of various concentrations of ethanol. Results indicate that aqueous dispersions prepared from mixed-chain PCs with a delta C value of less than 4 exhibit a biphasic profile in the plot of Tm versus ethanol concentration. In contrast, highly asymmetric PCs (delta C > 4) do not exhibit such biphasic behavior. In the presence of a longer chain n-alcohol, however, aqueous dispersions of highly asymmetric C(12):C(20)PC (delta C = 6.5) do show such biphasic behavior against ethanol. Our results suggest that the delta C region in a highly asymmetric PC packed in the L beta I phase is most

  6. Increased phosphatidylcholine concentration in saliva reduces surface tension and improves airway patency in obstructive sleep apnoea.

    PubMed

    Kawai, M; Kirkness, J P; Yamamura, S; Imaizumi, K; Yoshimine, H; Oi, K; Ayuse, T

    2013-10-01

    Surface tension may have important role for maintaining upper airway patency in patients with obstructive sleep apnoea. It has been demonstrated that elevated surface tension increases the pharyngeal pressures required to reopen the upper airway following collapse. The aim of the study was to evaluate the associations between the concentrations of endogenous surfactants in saliva with indices of upper airway patency in obstructive sleep apnoea. We studied 20 male patients with obstructive sleep apnoea (age: 60·3 ± 10·3 years; BMI: 25·9 ± 4·6 kg m(-2); AHI: 41·5 ± 18·6 events h(-1)). We obtained 100-μL samples of saliva prior to overnight polysomnographic sleep study. The surface tension was determined using the pull-off force technique. The concentration of phosphatidylcholine (PC) was evaluated by liquid chromatography-mass spectrometry (LC-MS/MS). Regression analysis between apnoea, hypopnoea and apnoea/hypopnoea indices and the ratio of hypopnoea time/total disordered breathing time (HT/DBT) with surface tension and PC were performed. P < 0·05 was considered significant. The mean saliva surface tension was 48·8 ± 8·0 mN m(-1) and PC concentration was 15·7 ± 11·1 nM. The surface tension was negatively correlated with the PC concentration (r = -0·48, P = 0·03). There was a significant positive correlation between surface tension with hypopnoea index (r = 0·50, P = 0·03) and HT/DBT (r = 0·6, P = 0·006), but not apnoea or apnoea/hypopnoea index (P > 0·11). Similarly, PC concentration negatively correlated with hypopnoea index (r = -0·45, P = 0·04) and HT/DBT (r = -0·6, P = 0·004), but not with apnoea index or AHI (P > 0·08). An increase in salivary PC concentration may increase upper airway patency in obstructive sleep apnoea through a reduction in surface tension.

  7. The Phosphatidylcholine Diacylglycerol Cholinephosphotransferase Is Required for Efficient Hydroxy Fatty Acid Accumulation in Transgenic Arabidopsis1[W][OA

    PubMed Central

    Hu, Zhaohui; Ren, Zhonghai; Lu, Chaofu

    2012-01-01

    We previously identified an enzyme, phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), that plays an important role in directing fatty acyl fluxes during triacylglycerol (TAG) biosynthesis. The PDCT mediates a symmetrical interconversion between phosphatidylcholine (PC) and diacylglycerol (DAG), thus enriching PC-modified fatty acids in the DAG pool prior to forming TAG. We show here that PDCT is required for the efficient metabolism of engineered hydroxy fatty acids in Arabidopsis (Arabidopsis thaliana) seeds. When a fatty acid hydroxylase (FAH12) from castor (Ricinus communis) was expressed in Arabidopsis seeds, the PDCT-deficient mutant accumulated only about half the amount of hydroxy fatty acids compared with that in the wild-type seeds. We also isolated a PDCT from castor encoded by the RcROD1 (Reduced Oleate Desaturation1) gene. Seed-specific coexpression of this enzyme significantly increased hydroxy fatty acid accumulation in wild type-FAH12 and in a previously produced transgenic Arabidopsis line coexpressing a castor diacylglycerol acyltransferase 2. Analyzing the TAG molecular species and regiochemistry, along with analysis of fatty acid composition in TAG and PC during seed development, indicate that PDCT acts in planta to enhance the fluxes of fatty acids through PC and enrich the hydroxy fatty acids in DAG, and thus in TAG. In addition, PDCT partially restores the oil content that is decreased in FAH12-expressing seeds. Our results add a new gene in the genetic toolbox for efficiently engineering unusual fatty acids in transgenic oilseeds. PMID:22371508

  8. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil.

    PubMed

    Guan, Rui; Li, Xueyuan; Hofvander, Per; Zhou, Xue-Rong; Wang, Danni; Stymne, Sten; Zhu, Li-Hua

    2015-04-01

    The aim of this study was to evaluate the importance of three enzymes, LPCAT, PDCT and PDAT, involved in acyl turnover in phosphatidylcholine in order to explore the possibility of further increasing erucic acid (22:1) content in Crambe seed oil. The complete coding sequences of LPCAT1-1 and LPCAT1-2 encoding lysophosphatidylcholine acyltransferase (LPCAT), PDCT1 and PDCT2 encoding phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), and PDAT encoding phospholipid:diacylglycerol acyltransferase (PDAT) were cloned from developing Crambe seeds. The alignment of deduced amino acid sequences displayed a high similarity to the Arabidopsis homologs. Transgenic lines expressing RNA interference (RNAi) targeting either single or double genes showed significant changes in the fatty acid composition of seed oil. An increase in oleic acid (18:1) was observed, to varying degrees, in all of the transgenic lines, and a cumulative effect of increased 18:1 was shown in the LPCAT-PDCT double-gene RNAi. However, LPCAT single-gene RNAi led to a decrease in 22:1 accumulation, while PDCT or PDAT single-gene RNAi had no obvious effect on the level of 22:1. In agreement with the abovementioned oil phenotypes, the transcript levels of the target genes in these transgenic lines were generally reduced compared to wild-type levels. In this paper, we discuss the potential to further increase the 22:1 content in Crambe seed oil through downregulation of these genes in combination with fatty acid elongase and desaturases.

  9. Spectroscopic and calorimetric studies on trazodone hydrochloride-phosphatidylcholine liposome interactions in the presence and absence of cholesterol.

    PubMed

    Yonar, Dilek; Sünnetçioğlu, M Maral

    2014-10-01

    The interaction of antidepressant drug trazodone hydrochloride (TRZ) with dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes (MLVs) in the presence and absence of cholesterol (CHO) was investigated as a function of temperature by using Electron Paramagnetic Resonance (EPR) spin labeling, Fourier Transform Infrared (FTIR) Spectroscopy and Differential Scanning Calorimetry (DSC) techniques. These interactions were also examined for dimyristoyl phosphatidylcholine (DMPC) multilamellar liposomes by using Electron Paramagnetic Resonance (EPR) spin labeling technique. In the EPR spin labeling studies, 5- and 16-doxyl stearic acid (5-DS and 16-DS) spin labels were used to monitor the head group and alkyl chain region of phospholipids respectively. The results indicated that TRZ incorporation causes changes in the physical properties of PC liposomes by decreasing the main phase transition temperature, abolishing the pre-transition, broadening the phase transition profile, and disordering the system around the head group region. The interaction of TRZ with unilamellar (LUV) DPPC liposomes was also examined. The most pronounced effect of TRZ on DPPC LUVs was observed as the further decrease of main phase transition temperature in comparison with DPPC MLVs. The mentioned changes in lipid structure and dynamics caused by TRZ may modulate the biophysical activity of membrane associated receptors and in turn the pharmacological action of TRZ.

  10. Tb3+ and Ca2+ binding to phosphatidylcholine. A study comparing data from optical, NMR, and infrared spectroscopies.

    PubMed Central

    Petersheim, M; Halladay, H N; Blodnieks, J

    1989-01-01

    The paramagnetic and luminescent lanthanides are unique probes of cation-phospholipid interactions. Their spectroscopic properties provide the means to characterize and monitor complexes formed with lipids in ways not possible with biochemically more interesting cations, such as Ca2+. In this work, Tb3+-phosphatidylcholine complexes are described using the luminescence properties of Tb3+, the effect of its paramagnetism on the 31P NMR and 13C NMR spectra of the lipid, and changes in the infrared spectrum of the lipid induced by the cation. There are two Tb3+-phosphatidylcholine complexes with very different coordination environments, as evidenced by changes in the optical excitation spectrum of the lanthanide. The NMR experiments indicate that the two complexes differ in the number of phosphate groups directly coordinating Tb3+. Tb3+ binding induces changes in the phosphodiester infrared bands that are most consistent with bidentate chelation of Tb3+ by each phosphate, whereas Ca2+-induced changes are more consistent with monodentate coordination. The significance of this discrepancy is discussed. PMID:2790138

  11. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.

  12. Phosphocholine-Specific Antibodies Improve T-Dependent Antibody Responses against OVA Encapsulated into Phosphatidylcholine-Containing Liposomes

    PubMed Central

    Cruz-Leal, Yoelys; López-Requena, Alejandro; Lopetegui-González, Isbel; Machado, Yoan; Alvarez, Carlos; Pérez, Rolando; Lanio, María E.

    2016-01-01

    Liposomes containing phosphatidylcholine have been widely used as adjuvants. Recently, we demonstrated that B-1 cells produce dipalmitoyl-phosphatidylcholine (DPPC)-specific IgM upon immunization of BALB/c mice with DPPC-liposomes encapsulating ovalbumin (OVA). Although this preparation enhanced the OVA-specific humoral response, the contribution of anti-DPPC antibodies to this effect was unclear. Here, we demonstrate that these antibodies are secreted by B-1 cells independently of the presence of OVA in the formulation. We also confirm that these antibodies are specific for phosphocholine. The anti-OVA humoral response was partially restored in B-1 cells-deficient BALB/xid mice by immunization with the liposomes opsonized with the serum total immunoglobulin (Ig) fraction containing anti-phosphocholine antibodies, generated in wild-type animals. This result could be related to the increased phagocytosis by peritoneal macrophages of the particles opsonized with the serum total Ig or IgM fractions, both containing anti-phosphocholine antibodies. In conclusion, in the present work, it has been demonstrated that phosphocholine-specific antibodies improve T-dependent antibody responses against OVA carried by DPPC-liposomes. PMID:27713745

  13. Phosphatidylcholine and cholesteryl esters identify the infiltrating behaviour of a clear cell renal carcinoma: 1H, 13C and 31P MRS evidence.

    PubMed

    Tugnoli, V; Poerio, A; Tosi, M R

    2004-08-01

    This study presents a multinuclear (1H, 13C and 31P) magnetic resonance spectroscopy characterization of the total lipid fraction extracted from different regions of a human kidney affected by a clear cell renal carcinoma. It was thus possible to demonstrate that cholesteryl esters and phosphatidylcholine are markers of the tumor infiltration, histologically confirmed, in the kidney medulla. The tumor tissue contains twice the amount of phosphatidylcholine compared to normal cortex. The results appear relevant in light of new clinical applications based on the biochemical composition of human tissues.

  14. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hop bone mineral density and hip fracture in older adults: The Framingham Osteoporosis Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA) may influence bone health. Our objective was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: 1) femoral neck bone mineral density (FN-BMD) (n=765); 2) 4-y change in FN-BMD (n=556); and 3) hip fracture risk (n=76...

  15. [Dynamics of clinical changes and healing of purulent wounds in application of nanocapsules of phosphatidylcholine in complex of treatment of patients, suffering the oral cavity floor phlegmon].

    PubMed

    Avetikov, D S; Kuong, Vu Vyet; Stavytskiy, S O; Lokes, K P; Voloshyna, L I

    2015-03-01

    Substantiation of expediency for nanocapsules of phosphatidylcholine (lipin) application, owing antihypoxant, antioxydant and immunostimulating action in complex of treatment of patients, suffering odontogenic phlegmon of oral cavity floor (OPHOCF), is presented. The preparation application have promoted a trustworthy reduction of exudation of purulent content, as well as more rapid occurrence of granulations and the wound epithelization.

  16. First order melting transitions of highly ordered dipalmitoyl phosphatidylcholine gel phase membranes in molecular dynamics simulations with atomistic detail

    NASA Astrophysics Data System (ADS)

    Schubert, Thomas; Schneck, Emanuel; Tanaka, Motomu

    2011-08-01

    Molecular dynamics simulations with atomistic detail of the gel phase and melting transitions of dipalmitoyl phosphatidylcholine bilayers in water reveal the dependency of many thermodynamic and structural parameters on the initial system ordering. We quantitatively compare different methods to create a gel phase system and we observe that a very high ordering of the gel phase starting system is necessary to observe behavior which reproduces experimental data. We performed heating scans with speeds down to 0.5 K/ns and could observe sharp first order phase transitions. Also, we investigated the transition enthalpy as the natural intrinsic parameter of first order phase transitions, and obtained a quantitative match with experimental values. Furthermore, we performed systematic investigations of the statistical distribution and heating rate dependency of the microscopic phase transition temperature.

  17. Interaction of polyhexamethylene biguanide hydrochloride (PHMB) with phosphatidylcholine containing o/w emulsion and consequences for microbicidal efficacy and cytotoxicity.

    PubMed

    Müller, Gerald; Koburger, Torsten; Kramer, Axel

    2013-01-25

    Oil-in-water (o/w) emulsions containing egg yolk phosphatidylcholine (EPC) were combined with aqueous polyhexamethylene biguanide hydrochloride (PHMB). The PHMB concentration in the aqueous phase was estimated by filtration centrifugation experiments. In parallel, PHMB concentration was assessed utilizing cytotoxicity assays (neutral red) on cultured murine fibroblasts (L929 cells) and tests of bactericidal efficacy on either Pseudomonas aeruginosa or Staphylococcus aureus. Biological tests were performed in cell culture medium. Filtration centrifugation experiments demonstrated much higher aqueous PHMB concentrations than did the assays for biologically effective PHMB. Therefore, biological test systems should preferably be used to verify effective PHMB concentrations. Tests of microbicidal efficacy in which the same 0.05% PHMB o/w emulsion was re-used 8 times revealed a drug delivery system activated by the presence of test bacteria.

  18. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration.

    PubMed

    Manca, Maria Letizia; Cencetti, Claudia; Matricardi, Pietro; Castangia, Ines; Zaru, Marco; Sales, Octavio Diez; Nacher, Amparo; Valenti, Donatella; Maccioni, Anna Maria; Fadda, Anna Maria; Manconi, Maria

    2016-09-10

    In this work, diclofenac was encapsulated, as sodium salt, in glycerosomes containing 10, 20 or 30% of glycerol in the water phase with the aim to ameliorate its topical efficacy. Taking into account previous findings, glycerosome formulation was modified, in terms of economic suitability, using a cheap and commercially available mixture of hydrogenated soy phosphatidylcholine (P90H). P90H glycerosomes were spherical and multilamellar; photon correlation spectroscopy showed that obtained vesicles were ∼131nm, slightly larger and more polydispersed than those made with dipalmitoylphosphatidylcholine (DPPC) but, surprisingly, they were able to ameliorate the local delivery of diclofenac, which was improved with respect to previous findings, in particular using glycerosomes containing high amount of glycerol (20 and 30%). Finally, this drug delivery system showed a high in vitro biocompatibility toward human keratinocytes.

  19. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy.

    PubMed

    Ou-Yang, Wei; Weis, Martin; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-21

    The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.

  20. First order melting transitions of highly ordered dipalmitoyl phosphatidylcholine gel phase membranes in molecular dynamics simulations with atomistic detail.

    PubMed

    Schubert, Thomas; Schneck, Emanuel; Tanaka, Motomu

    2011-08-07

    Molecular dynamics simulations with atomistic detail of the gel phase and melting transitions of dipalmitoyl phosphatidylcholine bilayers in water reveal the dependency of many thermodynamic and structural parameters on the initial system ordering. We quantitatively compare different methods to create a gel phase system and we observe that a very high ordering of the gel phase starting system is necessary to observe behavior which reproduces experimental data. We performed heating scans with speeds down to 0.5 K/ns and could observe sharp first order phase transitions. Also, we investigated the transition enthalpy as the natural intrinsic parameter of first order phase transitions, and obtained a quantitative match with experimental values. Furthermore, we performed systematic investigations of the statistical distribution and heating rate dependency of the microscopic phase transition temperature.

  1. Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidylglycerol model membranes as evidenced by resonance energy transfer.

    PubMed

    Gorbenko, Galyna P; Trusova, Valeriya M; Molotkovsky, Julian G; Kinnunen, Paavo K J

    2009-06-01

    Resonance energy transfer (RET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as donors and the heme groups of cytochrome c (cyt c) as acceptors was examined in PC/PG model membranes containing 10, 20 or 40 mol% PG with an emphasis on evaluating lipid demixing caused by this protein. The differences between AV-PC and AV-PG RET profiles observed at PG content 10 mol% were attributed to cyt c ability to produce segregation of acidic lipids into lateral domains. The radius of lipid domains recovered using Monte-Carlo simulation approach was found not to exceed 4 nm pointing to the local character of cyt c-induced lipid demixing. Increase of the membrane PG content to 20 or 40 mol% resulted in domain dissipation as evidenced by the absence of any RET enhancement while recruiting AV-PG instead of AV-PC.

  2. Insights about α-tocopherol and Trolox interaction with phosphatidylcholine monolayers under peroxidation conditions through Brewster angle microscopy.

    PubMed

    Castro, Carla M; Pinheiro, Marina; Lúcio, Marlene; Giner-Casares, Juan J; Camacho, Luis; Lima, José L F C; Reis, Salette; Segundo, Marcela A

    2013-11-01

    Membranes are major targets to oxidative damage, particularly due to lipid oxidation, which has been associated to aging. The role, efficacy and membrane interaction of antioxidants is still unclear, requiring further understanding of molecular interaction. Hence, the objective of this work was to evaluate the interaction between antioxidants (α-tocopherol and its aqueous soluble analog Trolox) and the monolayer formed by phosphatidylcholine molecules at air/liquid interface upon peroxidation conditions, promoted by peroxyl radicals from thermal decomposition of 2,2'-azobis(2-methylpropionamidine) (AAPH). The interaction with three different monolayers, containing (i) 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC), (ii) DDPC+α-linolenic acid, or (iii) egg yolk l-α-phosphatidylcholine (EPC), was ascertain by surface pressure (π)-molecular area (A) isotherms and by monitoring monolayer features through Brewster angle microscopy (BAM). The interaction of antioxidants with DPPC monolayers was confirmed by modifications on DPPC domain shape for α-tocopherol and through the maintenance of typical multilobed domain shape during an extended surface pressure interval for Trolox. Under peroxidation conditions, BAM images showed a clear interaction between components of AAPH subphase with the monolayer through changes on DPPC domain shape and appearance of white dots, located mainly at the frontier between the condensed and expanded liquid phases. White branched structures were also observed whenever both α-linolenic acid and α-tocopherol were present, indicating the segregation of these components within the monolayer, which is highly significant in biological systems. For EPC monolayers, no information from BAM was obtained but π-A isotherms confirmed the existence of the same interactions observed within the other two monolayers.

  3. Blood Trimethylamine-N-Oxide Originates from Microbiota Mediated Breakdown of Phosphatidylcholine and Absorption from Small Intestine

    PubMed Central

    Stremmel, Wolfgang; Schmidt, Kathrin V.; Schuhmann, Vera; Kratzer, Frank; Garbade, Sven F.; Langhans, Claus-Dieter; Fricker, Gert; Okun, Jürgen G.

    2017-01-01

    Elevated serum trimethylamine-N-oxide (TMAO) was previously reported to be associated with an elevated risk for cardiovascular events. TMAO originates from the microbiota-dependent breakdown of food-derived phosphatidylcholine (PC) to trimethylamine (TMA), which is oxidized by hepatic flavin-containing monooxygenases to TMAO. Our aim was to investigate the predominant site of absorption of the bacterial PC-breakdown product TMA. A healthy human proband was exposed to 6.9 g native phosphatidylcholine, either without concomitant treatment or during application with the topical antibiotic rifaximin, or exposed only to 6.9 g of a delayed-release PC formulation. Plasma and urine concentrations of TMA and TMAO were determined by electrospray ionization tandem mass spectrometry (plasma) and gas chromatography-mass spectrometry (urine). Native PC administration without concomitant treatment resulted in peak plasma TMAO levels of 43 ± 8 μM at 12 h post-ingestion, which was reduced by concomitant rifaximin treatment to 22 ± 8 μM (p < 0.05). TMAO levels observed after delayed-release PC administration were 20 ± 3 μM (p < 0.001). Accordingly, the peak urinary concentration at 24 h post-exposure dropped from 252 ± 33 to 185 ± 31 mmol/mmol creatinine after rifaximin treatment. In contrast, delayed-release PC resulted in even more suppressed urinary TMAO levels after the initial 12-h observation period (143 ± 18 mmol/mmol creatinine) and thereafter remained within the control range (24 h: 97 ± 9 mmol/mmol creatinine, p < 0.001 24 h vs. 12 h), indicating a lack of substrate absorption in distal intestine and large bowel. Our results showed that the microbiota in the small intestine generated the PC breakdown product TMA. The resulting TMAO, as a cardiovascular risk factor, was suppressed by topical-acting antibiotics or when PC was presented in an intestinally delayed release preparation. PMID:28129384

  4. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    PubMed Central

    Epand, Richard M; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule. PMID:12324423

  5. Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine-specific phospholipase C

    SciTech Connect

    Kang, Mi Sun; Jeong, Ju Yeon; Seo, Ji Heui; Jeon, Hyung Jun; Jung, Kwang Mook; Chin, Mi-Reyoung; Moon, Chang-Kiu; Bonventre, Joseph V.; Jung, Sung Yun; Kim, Dae Kyong . E-mail: proteinlab@hanmail.net

    2006-10-15

    Methylmercury (MeHg) is a ubiquitous environmental toxicant to which humans can be exposed by ingestion of contaminated food. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of free intracellular Ca{sup 2+} levels ([Ca{sup 2+}]{sub i}). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity in MDCK cells. D609, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner with concomitant inhibition of the diacylglycerol (DAG) generation and the phosphatidylcholine (PC)-breakdown. MeHg activated the group IV cytosolic phospholipase A{sub 2} (cPLA{sub 2}) and acidic form of sphingomyelinase (A-SMase) downstream of PC-PLC, but these enzymes as well as protein kinase C (PKC) were not linked to the toxicity by MeHg. Furthermore, MeHg produced ROS, which did not affect the toxicity. Addition of EGTA to culture media resulted in partial decrease of [Ca{sup 2+}]{sub i} and partially blocked the toxicity. In contrast, when the cells were treated with MeHg in the presence of Ca{sup 2+} in the culture media, D609 completely prevented cell death with parallel decrease in [Ca{sup 2+}]{sub i}. Our results demonstrated that MeHg-induced toxicity was linked to elevation of [Ca{sup 2+}]{sub i} through activation of PC-PLC, but not attributable to the signaling pathways such as cPLA{sub 2}, A-SMase, and PKC, or to the generation of ROS.

  6. Resistance of lung fatty acid synthesis to inhibition by dietary fat in the meal-fed rat.

    PubMed

    Clarke, S D; Wilson, M D; Ibnoughazala, T

    1984-03-01

    One-half of the palmitate utilized by the lung for production of the surfactant phospholipid, dipalmitoyl phosphatidylcholine, originates from de novo palmitate synthesis in the lung. In this report the lung was examined for the influence of dietary fat on the lung de novo fatty acid synthesis pathway. Lung lipogenesis was reduced by fasting and accelerated by carbohydrate refeeding or insulin injection. However, in general lung fatty acid synthesis was unaffected by dietary fat. Supplementing one meal (high glucose diet) with as much as 36% additional fat kilocalories did not suppress lung fatty acid synthesis. An inhibition of fatty acid synthesis resulted from a fat supplement of +60 and +120% of meal kilocalories, but this inhibition was likely due to an attenuated rate of glucose absorption. Ingestion of a high carbohydrate diet supplemented with 10, 17, or 30% added kilocalories as safflower oil or palmitate had no effect on lipogenesis after 10 days. On the other hand, liver fatty acid synthesis and acetyl-CoA carboxylase were selectively suppressed by safflower oil, whereas dietary palmitate was ineffective as an inhibitor of lipogenesis. These data clearly demonstrate that the well-characterized preferential suppression of liver lipogenesis by dietary polyunsaturated fats does not extend to lung tissue, and, more importantly, the inhibition of liver lipogenesis is not secondary to an essential fatty acid deficiency. The marked resistance of lung fatty acid synthesis to inhibition by dietary fat might be a biological protective mechanism to ensure adequate palmitate for dipalmitoyl phosphatidylcholine synthesis.

  7. Effect of exogenous surfactant on the development of surfactant synthesis in premature rabbit lung.

    PubMed

    Amato, Maurizio; Petit, Kevin; Fiore, Humberto H; Doyle, Cynthia A; Frantz, Ivan D; Nielsen, Heber C

    2003-04-01

    Surfactant replacement is an effective therapy for neonatal respiratory distress syndrome. Full recovery from respiratory distress syndrome requires development of endogenous surfactant synthesis and metabolism. The influence of exogenous surfactant on the development of surfactant synthesis in premature lungs is not known. We hypothesized that different exogenous surfactants have different effects on the development of endogenous surfactant production in the premature lung. We treated organ cultures of d 25 fetal rabbit lung for 3 d with 100 mg/kg body weight of natural rabbit surfactant, Survanta, and Exosurf and measured their effects on the development of surfactant synthesis. Additional experiments tested how these surfactants and Curosurf affected surfactant protein (SP) SP-A, SP-B, and SP-C mRNA expression. Surfactant synthesis was measured as the incorporation of 3H-choline and 14C-glycerol into disaturated phosphatidylcholine recovered from lamellar bodies. Randomized-block ANOVA showed significant differences among treatments for incorporation of both labels (p < 0.01), with natural rabbit surfactant less than control, Survanta greater than control, and Exosurf unchanged. Additional experiments with natural rabbit surfactant alone showed no significant effects in doses up to 1000 mg/kg. Survanta stimulated disaturated phosphatidylcholine synthesis (173 +/- 41% of control; p = 0.01), increased total lamellar body disaturated phosphatidylcholine by 22% (p < 0.05), and increased 14C-disat-PC specific activity by 35% (p < 0.05). The response to Survanta was dose-dependent up to 1000 mg/kg. Survanta did not affect surfactant release. No surfactant altered the expression of mRNA for SP-A, SP-B, or SP-C. We conclude that surfactant replacement therapy can enhance the maturation of surfactant synthesis, but this potential benefit differs with different surfactant preparations.

  8. Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae.

    PubMed

    Gaspar, Maria L; Aregullin, Manuel A; Jesch, Stephen A; Henry, Susan A

    2006-08-11

    The addition of inositol to actively growing yeast cultures causes a rapid increase in the rate of synthesis of phosphatidylinositol and, simultaneously, triggers changes in the expression of hundreds of genes. We now demonstrate that the addition of inositol to yeast cells growing in the presence of choline leads to a dramatic reprogramming of cellular lipid synthesis and turnover. The response to inositol includes a 5-6-fold increase in cellular phosphatidylinositol content within a period of 30 min. The increase in phosphatidylinositol content appears to be dependent upon fatty acid synthesis. Phosphatidylcholine turnover increased rapidly following inositol addition, a response that requires the participation of Nte1p, an endoplasmic reticulum-localized phospholipase B. Mass spectrometry revealed that the acyl species composition of phosphatidylinositol is relatively constant regardless of supplementation with inositol or choline, whereas phosphatidylcholine acyl species composition is influenced by both inositol and choline. In medium containing inositol, but lacking choline, high levels of dimyristoylphosphatidylcholine were detected. Within 60 min following the addition of inositol, dimyristoylphosphatidylcholine levels had decreased from approximately 40% of total phosphatidylcholine to a basal level of less than 5%. nte1Delta cells grown in the absence of inositol and in the presence of choline exhibited lower levels of dimyristoylphosphatidylcholine than wild type cells grown under these same conditions, but these levels remained largely constant after the addition of inositol. These results are discussed in relationship to transcriptional regulation known to be linked to lipid metabolism in yeast.

  9. Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane

    PubMed Central

    1993-01-01

    Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were found: (1) transport by endocytosis to the vacuole and (2) transport by a non-endocytic pathway to the nuclear envelope and mitochondria. The endocytic pathway was inhibited at low temperature (< 2 degrees C) and by ATP depletion. Mutations in secretory (SEC) genes that are necessary for membrane traffic through the secretory pathway (including SEC1, SEC2, SEC4, SEC6, SEC7, SEC12, SEC14, SEC17, SEC18, and SEC21) almost completely blocked endocytic uptake. In contrast, mutations in the SEC63, SEC65, or SEC11 genes, required for translocation of nascent secretory polypeptides into the ER or signal peptide processing in the ER, only slightly reduced endocytic uptake. Phospholipid endocytosis was also independent of the gene encoding the clathrin heavy chain, CHC1. The correlation of biochemical analysis with fluorescence microscopy indicated that the fluorescent phosphatidylcholine was degraded in the vacuole and that degradation was, at least in part, dependent on the vacuolar proteolytic cascade. The non-endocytic route functioned with a lower cellular energy charge (ATP levels 80% reduced) and was largely independent of the SEC genes. Non-endocytic transport of NBD-phosphatidylcholine to the nuclear envelope and mitochondria was inhibited by pretreatment of cells with the sulfhydryl reagents N-ethylmaleimide and p- chloromercuribenzenesulfonic acid, suggesting the existence of protein- mediated transmembrane transfer (flip-flop) of phosphatidylcholine across the yeast plasma membrane. These data establish a link between lipid movement during secretion and endocytosis in yeast and suggest that phospholipids may also gain access to intracellular organelles through non

  10. Effects of ethanol and diclofenac on the organization of hydrogenated phosphatidylcholine bilayer vesicles and their ability as skin carriers.

    PubMed

    Castangia, Ines; Manca, Maria Letizia; Matricardi, Pietro; Catalán-Latorre, Ana; Nácher, Amparo; Diez-Sales, Octavio; Fernàndez-Busquets, Xavier; Fadda, Anna Maria; Manconi, Maria

    2015-03-01

    In this study, the effects of ethanol and/or diclofenac on vesicle bilayer structure have been studied. Liposomes with hydrogenated soy phosphatidylcholine, cholesterol and two different concentrations of diclofenac sodium (5 and 10 mg/ml) were obtained. In addition, ethanol was mixed in the water phase at different concentrations (5, 10 and 20 % v/v) to obtain ethosomes. To characterize vesicles, rehological analysis were carried out to investigate the intervesicle interactions, while bilayer structure was evaluated by small- and wide-angle X-ray scattering. Finally, the ethanol and/or diclofenac concentration-dependent ability to improve diclofenac skin delivery was evaluated in vitro. The addition of 20 % ethanol and/or diclofenac led to solid-like ethosome dispersion due to the formation of a new intervesicle structure, as previously found in transcutol containing vesicle dispersions. However, when using 5-10 % of ethanol the induction to form vesicle interconnections was less evident but the simultaneous presence of the drug at the highest concentration facilitated this phenomenon. Ethosomes containing the highest amount of both, drug (10 mg/ml) and ethanol (20 % v/v), improved the drug deposition in the skin strata and in the receptor fluid up to 1.5-fold, relative to liposomes. Moreover this solid-like formulation can easily overcome drawbacks of traditional liquid liposome formulations which undergo a substantial loss at the application site.

  11. A Biomimetic Phosphatidylcholine-Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer-Based Sensors.

    PubMed

    Li, Hui; Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Tran, Claire H; Vieira, Philip A; Li, Shaoguang; Shin, Christina; Somerson, Jacob; Kippin, Tod E; Plaxco, Kevin W

    2017-03-28

    The real-time monitoring of specific analytes in situ in the living body would greatly advance our understanding of physiology and the development of personalized medicine. Because they are continuous (wash-free and reagentless) and are able to work in complex media (e.g., undiluted serum), electrochemical aptamer-based (E-AB) sensors are promising candidates to fill this role. E-AB sensors suffer, however, from often-severe baseline drift when deployed in undiluted whole blood either in vitro or in vivo. We demonstrate that cell-membrane-mimicking phosphatidylcholine (PC)-terminated monolayers improve the performance of E-AB sensors, reducing the baseline drift from around 70 % to just a few percent after several hours in flowing whole blood in vitro. With this improvement comes the ability to deploy E-AB sensors directly in situ in the veins of live animals, achieving micromolar precision over many hours without the use of physical barriers or active drift-correction algorithms.

  12. Increased Expression of Phosphatidylcholine (16:0/18:1) and (16:0/18:2) in Thyroid Papillary Cancer

    PubMed Central

    Ishikawa, Seiji; Tateya, Ichiro; Hayasaka, Takahiro; Masaki, Noritaka; Takizawa, Yoshinori; Ohno, Satoshi; Kojima, Tsuyoshi; Kitani, Yoshiharu; Kitamura, Morimasa; Hirano, Shigeru; Setou, Mitsutoshi; Ito, Juichi

    2012-01-01

    A good prognosis can be expected for most, but not all, cases of thyroid papillary cancer. Numerous molecular studies have demonstrated beneficial treatment and prognostic factors in various molecular markers. Whereas most previous reports have focused on genomics and proteomics, few have focused on lipidomics. With the advent of mass spectrometry (MS), it has become possible to identify many types of molecules, and this analytical tool has become critical in the field of omics. Recently, imaging mass spectrometry (IMS) was developed. After a simple pretreatment process, IMS can be used to examine tissue sections on glass slides with location information. Here, we conducted an IMS analysis of seven cases of thyroid papillary cancer by comparison of cancerous with normal tissues, focusing on the distribution of phospholipids. We identified that phosphatidylcholine (16:0/18:1) and (16:0/18:2) and sphingomyelin (d18:0/16:1) are significantly higher in thyroid papillary cancer than in normal thyroid tissue as determined by tandem mass (MS/MS) analysis. These distributional differences may be associated with the biological behavior of thyroid papillary cancer. PMID:23139822

  13. Lipid transfer between phosphatidylcholine vesicles and human erythrocytes: exponential decrease in rate with increasing acyl chain length.

    PubMed

    Ferrell, J E; Lee, K J; Huestis, W H

    1985-06-04

    The rate of phospholipid transfer from sonicated phospholipid vesicles to human erythrocytes has been studied as a function of membrane concentration and lipid acyl chain composition. Phospholipid transfer exhibits saturable first-order kinetics with respect to both cell and vesicle membrane concentrations. This kinetic behavior is consistent either with transfer during transient contact between cell and vesicle surfaces (but only if the fraction of the cell surface susceptible to such interaction is small) or with transfer of monomers through the aqueous phase. The acyl chain composition of the transferred phospholipid affects the transfer kinetics profoundly; for homologous saturated phosphatidylcholines, the rate of transfer decreases exponentially with increasing acyl chain length. This behavior is consistent with passage of phospholipid monomers through a polar phase, which might be the bulk aqueous phase( as in the monomer transfer model) or the hydrated head-group regions of a cell-vesicle complex (transient collision model). Collisional transfer also predicts that intercell transfer of phospholipids should be slow compared to cell-vesicle transfer, as surface charge and steric effects should prevent close apposition of donor and acceptor membranes. This is not found; dilauroylphosphatidylcholine transfers rapidly between red cells. Thus, the observed relationship between acyl chain length and intermembrane phospholipid transfer rates likely reflects the energetics of monomer transfer through the aqueous phase.

  14. Adsorption equilibria between liposome membrane formed of phosphatidylcholine and aqueous sodium chloride solution as a function of pH.

    PubMed

    Kotyńska, J; Figaszewski, Z A

    2005-12-30

    The effect has been studied of the adsorption of ions (H(+), Na(+), OH(-), Cl(-)) which are present in solution upon the electric charge of the liposome membrane formed of phosphatidylcholine (PC). The surface charge density of the membrane was determined as a function of pH and electrolyte concentration from electrophoretic mobility measurements. The measurements were carried out by the laser-Doppler microelectrophoresis method. A four-equilibria model has been proposed to describe the phenomena occurring on the membrane surface. The equilibria in which the adsorption of other ions on the liposome membrane surface was involved were assumed to exist beside the equilibria in which the H(+) and OH(-) ions were engaged. The idea was confirmed by mathematical calculations. Association constants of the liposome membrane surface with ions of solution (K(AH), K(ANa), K(BOH), K(BCl)) were determined. The proposed model has been proved to be correct by comparing the resulting theoretic charge variation curves of the lecithin membrane with the experimental data.

  15. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer.

    PubMed

    Zacek, Petr; Bukowski, Michael; Rosenberger, Thad A; Picklo, Matthew

    2016-12-01

    Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PCs. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PCs. This approach is comprised of two MS methods: a precursor ion scanning (PIS) of mass m/z 184 in positive mode (PIS m/z +184) and MS(3) fragmentation in negative mode, both performed on the same instrument, a hybrid triple quadrupole ion-trap mass spectrometer. The MS(3) experiment identified the FA composition and the relative abundance of isobaric and sn-1, sn-2 positional isomeric PC species, which were subsequently combined with absolute quantitative data obtained by PIS m/z +184 scan. This approach was applied to the analysis of a National Institute of Standards and Technology human blood plasma standard reference material (SRM 1950). We quantified more than 70 PCs and confirmed that a majority are present in isobaric and isomeric mixtures. The FA content determined by this method was comparable to that obtained using GC with flame ionization detection, supporting the quantitative nature of this MS method. This methodology will provide more in-depth biomarker information for clinical and mechanistic studies.

  16. MALDI-TOF/TOF Mass Spectrometric Determination and Antioxidative Activity of Purified Phosphatidylcholine Fractions from Shrimp Species.

    PubMed

    Zhou, Li; Wang, Yan; Wang, Xiaolin; Liang, Yi; Huang, Zheng; Zeng, Xiaoxiong

    2017-02-15

    Purification, characterization, and antioxidative activity in vitro of shrimp phosphatidylcholines (PCs) were investigated. The molecular structures of shrimp PCs were determined by MALDI-TOF/TOF MS. The MS(2) fragments produced from protonated PC precursors and sodiated PC precursors were identified. The specific fragments including [M + Na - trimethylamine](+), [M + Na - 205](+), [M + Na - RCOOH - trimethylamine](+), and [M + H - RCOOH - trimethylamine](+) could distinguish the precursor type to confirm PC molecular structures. The antioxidative activities of purified shrimp PC fractions were evaluated by assay of DPPH free radical scavenging activity, and their effects on the oxidative stability of camellia oil were measured by monitoring changes in the peroxide value assay during oxidation. The PC fractions from Penaeus chinesis and Macrobranchium nipponense showed stronger antioxidative activities than those of other species. All of the shrimp PCs at 0.2% (w/w) improved the oxidative stability of camellia oil significantly (P < 0.05) compared to controls. The experimental findings suggest that shrimp PCs might be a valuable source of natural antioxidants for edible oils or other food dispersions.

  17. Distribution of plasma phosphatidylcholine molecular species in rabbits fed fish oil is modulated by dietary n-6 fatty acids.

    PubMed

    Koba, K; Horrobin, D F; DeMarco, A C; Ni, I H; Huang, Y S

    1995-12-01

    The present study examined the distribution of plasma phosphatidylcholine (PC) molecular species in rabbits fed a chow diet supplemented with fish oil (FO) in combination with either hydrogenated coconut oil or the n-6 fatty acid-rich evening primrose oil (EPO) for 4 weeks. Significant proportions of plasma PC molecular species contained long-chain n-3 fatty acids. Addition of EPO to the FO supplemented diet increased the incorporation of n-6 fatty acids into plasma PC molecules; it also raised the proportions of 16:0-18:2, n-6, 18:1-18:2, n-6, 18:2, n-6-18:2, n-6, and 16:0-20:4, n-6. The increase of n-6 fatty acid-containing PC was at the expense of n-3 fatty acid containing PC species. However, feeding n-6 fatty acids did not affect the distribution of PC molecular species based on total carbon chain length. The most interesting observation was that dietary suplementation with EPO, raised the ratio of 22:6, n-3-containing to 20:5, n-3-containing molecular species, suggesting an enhanced conversion of 20:5, n-3 to 22:6, n-3.

  18. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice.

    PubMed

    Ding, Lin; Wang, Dan; Zhou, Miaomiao; Du, Lei; Xu, Jie; Xue, Changhu; Wang, Yuming

    2016-07-01

    Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p < 0.05). Notably, the proportion of DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism.

  19. Use of a biomimetic chromatographic stationary phase for study of the interactions occurring between inorganic anions and phosphatidylcholine membranes.

    PubMed Central

    Hu, Wenzhi; Haddad, Paul R; Hasebe, Kiyoshi; Mori, Masanobu; Tanaka, Kazuhiko; Ohno, Masako; Kamo, Naoki

    2002-01-01

    A liquid chromatographic method for the study of ion-membrane interactions is reported. A phosphatidylcholine biomimetic stationary phase was established by loading dimyristoylphosphatidylcholine (DMPC) onto a reversed-phase octadecylsilica packed column. This column was then used to study the interaction of some inorganic anions with the stationary phase by UV and conductivity detection. Ten inorganic anions were selected as model ions and were analyzed with the proposed chromatographic system. Anion-DMPC interactions of differing magnitudes were observed for all of the model anions. Perchlorate-DMPC interactions were strongest, followed by thiocyanate-DMPC, iodide-DMPC, chlorate-DMPC, nitrate-DMPC, bromide-DMPC, chloride-DMPC, fluoride-DMPC, and then sulfate-DMPC. Cations in the eluent, especially H(+) ions and divalent cations such as Ca(2+), showed strong effects on anion-DMPC interactions. The chromatographic data suggest that DMPC interacts with both the anions and the cations. Anion-DMPC interactions were dependent on the surface potential of the stationary phase: at low surface potentials anion-DMPC interactions were predominantly solvation dependent in nature whereas at more positive surface potentials anion-DMPC interactions were predominantly electrostatic in nature. Cation-DMPC interactions served to raise the surface potential, causing the anion-DMPC interactions to vary from solvation dependent to electrostatic. The chromatographic data were used to provide quantitative estimates of the enthalpies of the anion-DMPC interactions. PMID:12496102

  20. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer[S

    PubMed Central

    Zacek, Petr; Bukowski, Michael; Rosenberger, Thad A.; Picklo, Matthew

    2016-01-01

    Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PCs. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PCs. This approach is comprised of two MS methods: a precursor ion scanning (PIS) of mass m/z 184 in positive mode (PIS m/z +184) and MS3 fragmentation in negative mode, both performed on the same instrument, a hybrid triple quadrupole ion-trap mass spectrometer. The MS3 experiment identified the FA composition and the relative abundance of isobaric and sn-1, sn-2 positional isomeric PC species, which were subsequently combined with absolute quantitative data obtained by PIS m/z +184 scan. This approach was applied to the analysis of a National Institute of Standards and Technology human blood plasma standard reference material (SRM 1950). We quantified more than 70 PCs and confirmed that a majority are present in isobaric and isomeric mixtures. The FA content determined by this method was comparable to that obtained using GC with flame ionization detection, supporting the quantitative nature of this MS method. This methodology will provide more in-depth biomarker information for clinical and mechanistic studies. PMID:27688258

  1. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models[S

    PubMed Central

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R.; Glunde, Kristine; Heeren, Ron M. A.

    2013-01-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  2. Effect of monoacyl phosphatidylcholine content on the formation of microemulsions and the dermal delivery of flufenamic acid.

    PubMed

    Hoppel, Magdalena; Juric, Sonja; Ettl, Hanna; Valenta, Claudia

    2015-02-01

    The choice of appropriate excipients is crucial for the success of a dermal drug delivery system. Especially surfactants should be chosen carefully, because of their possible interactions with the skin or the applied drug. Since monoacyl phosphatidylcholine (MAPL) exhibits great emulsification properties and can be derived from natural sources, it is of great interest as surfactant in microemulsions. Therefore, the aim of the present study was to investigate the effect of the MAPL content on the formation of microemulsions. The great emulsification power of MAPL was confirmed by increased isotropic areas with increasing MAPL content. Moreover, a decrease in particle size, particle size distribution and viscosity with increasing MAPL content was determined. Besides its effects on microemulsion structure, MAPL exhibited a significant influence on the skin permeation of flufenamic acid. Interestingly, the higher the MAPL content, the lower was the skin permeation of flufenamic acid. A possible explanation might be that the hydrophilic MAPL could hinder the permeation of the lipophilic drug. In contrast, the skin permeation enhancing effects of the microemulsion with the lowest MAPL content might be attributed to formation of a patch-like structure and therefore better contact between the formulation and the skin.

  3. Solubilization and localization of weakly polar lipids in unsonicated egg phosphatidylcholine: A sup 13 C MAS NMR study

    SciTech Connect

    Hamilton, J.A. ); Fujito, D.T.; Hammer, C.F. )

    1991-03-19

    The weakly polar lipids cholesteryl ester, triacylglycerol, and diacylglycerol incorporate to a limited extent into the lamellar structure of small unilamellar vesicles. The localization of the carbonyl group(s) at the aqueous interface was detected by ({sup 13}C)carbonyl chemical shift changes relative to the neat unhydrated lipid. This study uses {sup 13}C NMR to investigate the interactions of thes lipids with unsonicated (multilamellar) phosphatidylcholine, a model system for cellular membranes and surfaces of emulsion particles with low curvature. Magic angle spinning reduced the broad lines of the unsonicated dispersions to narrow lines comparable to those from sonicated dispersions. ({sup 13}C)Carbonyl chemical shifts revealed incorporation of the three lipids into the lamellar structure of the unsonicated phospholipids and a partial hydration of the carbonyl groups similar to that observed in small vesicles. Other properties of interfacial weakly polar lipids in multilayers were similar to those in small unilamellar bilayers. There is thus a general tendency of weakly polar lipids to incorparate at least to a small extent into the lamellar structure of phospholipids and take on interfacial properties that are distinct from their bulk-phase properties. This pool of surface-located lipid is likely to be directly involved in enzymatyic transformations and protein-mediated transport. The {sup 13}C magic angle spinning NMR method may be generally useful for determining the orientation of molecules in model membranes.

  4. Gas-Phase Chemical Separation of Phosphatidylcholine and Phosphatidylethanolamine Cations via Charge Inversion Ion/Ion Chemistry.

    PubMed

    Rojas-Betancourt, Stella; Stutzman, John R; Londry, Frank A; Blanksby, Stephen J; McLuckey, Scott A

    2015-11-17

    The [M + H](+) cations formed upon electrospray ionization of the glycerophospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) show distinct reactivities upon gas-phase reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). PC cations undergo charge inversion via adduct formation with subsequent methyl cation and proton transfer to the acid to yield [PC - CH3](-) anions. These demethylated PC anions fragment upon ion trap collision-induced dissociation (CID) to yield products that reveal fatty acid chain lengths and degrees of unsaturation. PE cations, on the other hand, undergo charge inversion via double proton transfer to the two carboxylate moieties in doubly deprotonated PDPA to yield [PE - H](-) anions. These anions also fragment upon ion trap CID to yield product ions indicative of chain lengths and degrees of unsaturation in the fatty acyl moieties. Advantage is taken of this distinct reactivity to separate isomeric and isobaric PC and PE cations present in mass spectra of lipid mixtures. A cation precursor ion population containing a mixture of PE and PC cations is mass-selected and subjected to ion/ion charge inversion reactions that result in separation of PC and PE anions into different mass-to-charge ratios. Mass selection and subsequent ion trap CID of the lipid anions allows for the characterization of the isomeric lipids within each subclass. The charge inversion approach described here is demonstrated to provide increased signal-to-noise ratios for detection of PCs and PEs relative to the standard negative ionization approach as well as improved mixture analysis performance.

  5. Interfacial Recognition of Acetylcholine by an Amphiphilic p-Sulfonatocalix[8]arene Derivative Incorporated into Dimyristoyl Phosphatidylcholine Vesicles

    PubMed Central

    Jin, Takashi; Fujii, Fumihiko; Ooi, Yasuhiro

    2008-01-01

    Dodecyl ether derivatives 1-3 of p-sulfonatocalix[n]arene were incorporated into dimyristoyl phosphatidylcholine (DMPC) vesicles, and their binding abilities for acetylcholine (ACh) were examined by using steady-state fluorescence/fluorescence anisotropy and fluorescence correlation spectroscopy (FCS). For the detection of ACh binding to the DMPC vesicles containing 5 mol % of 1-3, competitive fluorophore displacement experiments were performed, where rhodamine 6G (Rh6G) was used as a fluorescent guest. The addition of Rh6G to the DMPC vesicles containing 3 resulted in a decrease in the fluorescence intensity of Rh6G with an increase of its fluorescence anisotropy, indicating that Rh6G binds to the DMPC-3 vesicles. In the case of DMPC-1 and DMPC-2 vesicles, significant changes in the fluorescence spectra of Rh6G were not observed. When ACh was added to the DMPC-3 vesicles in the presence of Rh6G ([3]/[Rh6G]=100), the fluorescence intensity of Rh6G increased with a decrease in its fluorescence anisotropy. From the analysis of fluorescence titration data, the association constants were determined to be 7.1×105 M-1 for Rh6G-3 complex and 1.1×102 M-1 for ACh-3 complex at the DMPC-3 vesicles. To get a direct evidence for the binding of Rh6G and its displacement by ACh at the DMPC-3 vesicles, diffusion times of the Rh6G were measured by using FCS. Binding selectivity of the DMPC-3 vesicles for ACh, choline, GABA, l-aspartic acid,l-glutamic acid, l-arginine, l-lysine, l-histamine and ammonium chloride was also evaluated using FCS. PMID:27873899

  6. sup 31 P and sup 2 H NMR studies of structure and motion in bilayers of phosphatidylcholine and phosphatidylethanolamine

    SciTech Connect

    Ghosh, R. )

    1988-10-04

    The structural and motional properties of mixed bilayers of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been examined by using wide-line {sup 31}P, {sup 14}N, and {sup 2H} NMR. {sup 2}H and {sup 14}N NMR data showed that in mixed bilayers containing both PC and PE the conformations of the head-group moieties are essentially identical with those observed for bilayers containing a single phospholipid species. Equimolar amounts of cholesterol induce also only a small change in head-group conformation. For all phospholipid mixtures studied, the {sup 31}P T{sub 1} relaxation was homogeneous over the whole powder spectrum and could be fitted to a single-exponential decay. The {sup 31}P vs temperature profiles were analyzed by a simple correlation model. The presence of equimolar amounts of PE containing either the same (POPE) or a different (Escherichia coli PE) fatty acid composition had essentially no effect on the rate of rotational diffusion of the phosphate groups, with the correlation time being found to be 0.68 ns at 20{degree}C. The presence of equimolar amounts of cholesterol decreased the correlation time to 0.65 ns, and also the activation energy was reduced to 22.6 kJ mol{sup {minus}1}. The authors interpret the decrease in activation energy as being due to the spacing effect of cholesterol which reduces the H-bonding interactions between head-groups, allowing them to rotate more freely. For all cases examined, the rotational diffusion of the phosphate moieties was slower than that observed for the rigid glycerol backbone of the molecule, the latter probably corresponding to overall phospholipid rotation.

  7. An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma.

    PubMed

    Stremler, K E; Stafforini, D M; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1989-04-05

    Platelet-activating factor (PAF) is a glycerophospholipid that has diverse potent biological actions. A plasma enzyme catalyzes the hydrolysis of the sn-2 acetoyl group of PAF and thereby abolishes its bioactivity. This PAF acetylhydrolase is specific for phospholipids, such as PAF, with a short acyl group at the sn-2 position. The majority of it (60-70%) is associated with low density lipoprotein (LDL), and the remainder is with high density lipoprotein (HDL). LDL also has a phospholipase A2 activity that is specific for oxidized polyunsaturated fatty acids, which may be important in determining how LDL is recognized by cellular receptors. We previously have purified and characterized the PAF acetylhydrolase from human plasma. We now have found that the purified PAF acetylhydrolase catalyzes the hydrolysis of the oxidized fragments of arachidonic acid from the sn-2 position of phosphatidylcholine. One of the preferred substrates appeared by mass spectrometry to have 5-oxovalerate at the sn-2 position. We synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine and found that the PAF acetylhydrolase had the same apparent Km for it (11.3 microM) as for PAF (12.5 microM), with Vmax values of 100 and 167 mumol/h/mg of protein, respectively. We also conclude that the PAF acetylhydrolase is the sole activity in LDL that degrades oxidized phospholipids since we found co-localization of the activity against both substrates to LDL and HDL, and precipitation of enzyme activity with an antibody to the PAF acetylhydrolase. Thus, the PAF acetylhydrolase in human plasma degrades oxidized phospholipids, which may be involved in the modification of apolipoprotein B100 and other pathological processes.

  8. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.

    PubMed

    Vaughn, Alexandra R; Bell, Thomas A; Gibbons, Elizabeth; Askew, Caitlin; Franchino, Hannabeth; Hirsche, Kelsey; Kemsley, Linea; Melchor, Stephanie; Moulton, Emma; Schwab, Morgan; Nelson, Jennifer; Bell, John D

    2015-04-01

    The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid-crystalline phase of phosphatidylcholines and was observed even 90°C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid-crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition.

  9. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions.

    PubMed

    Sorkin, Raya; Kampf, Nir; Zhu, Linyi; Klein, Jacob

    2016-03-14

    Measurements of normal and shear (frictional) forces between mica surfaces across small unilamellar vesicle (SUV) dispersions of the phosphatidylcholine (PC) lipids DMPC (14:0), DPPC (16:0) and DSPC (18:0) and POPC (16:0, 18:1), at physiologically high pressures, are reported. We have previously studied the normal and shear forces between two opposing surfaces bearing PC vesicles across pure water and showed that liposome lubrication ability improved with increasing acyl chain length, and correlated strongly with the SUV structural integrity on the substrate surface (DSPC > DPPC > DMPC). In the current study, surprisingly, we discovered that this trend is reversed when the measurements are conducted in SUV dispersions, instead of pure water. In their corresponding SUV dispersion, DMPC SUVs ruptured and formed bilayers, which were able to provide reversible and reproducible lubrication with extremely low friction (μ < 10(-4)) up to pressures of 70-90 atm. Similarly, POPC SUVs also formed bilayers which exhibited low friction (μ < 10(-4)) up to pressures as high as 160 atm. DPPC and DSPC SUVs also provided good lubrication, but with slightly higher friction coefficients (μ = 10(-3)-10(-4)). We believe these differences originate from fast self-healing of the softer surface layers (which are in their liquid disordered phase, POPC, or close to it, DMPC), which renders the robustness of the DPPC or DSPC (both in their solid ordered phase) less important in these conditions. Under these circumstances, the enhanced hydration of the less densely packed POPC and DMPC surface layers is now believed to play an important role, and allows enhanced lubrication via the hydration lubrication mechanism. Our findings may have implications for the understanding of complex biological systems such us biolubrication of synovial joints.

  10. Structural effects of the dispersing agent polysorbate 80 on liquid crystalline nanoparticles of soy phosphatidylcholine and glycerol dioleate.

    PubMed

    Wadsäter, Maria; Barauskas, Justas; Rogers, Sarah; Skoda, Maximilian W A; Thomas, Robert K; Tiberg, Fredrik; Nylander, Tommy

    2015-02-14

    Well-defined, stable and highly structured I2 (Fd3̅m) liquid crystalline nanoparticles (LCNP) of 50/50 (wt/wt) soy phosphatidylcholine (SPC)/glycerol dioleate (GDO), can be formed by using a low fraction (5-10 wt%) of the dispersing polymeric surfactant polyoxyethylene (20) sorbitan monooleate (polysorbate 80 or P80). In the present study we used small angle neutron scattering (SANS) and deuterated P80 (d-P80) to determine the location and concentration of P80 within the LCNP and small angle X-ray scattering (SAXS) to reveal the internal structure. SANS data suggests that some d-P80 already penetrates the particle core at 5%. However, the content of d-P80 is still low enough not to significantly change the internal Fd3̅m structure of the LCNP. At higher fractions of P80 a phase separation occurs, in which a SPC and P80 rich phase is formed at the particle surface. The surface layer becomes gradually richer in both solvent and d-P80 when the surfactant concentration is increased from 5 to 15%, while the core of the particle is enriched by GDO, resulting in loss of internal structure and reduced hydration. We have used neutron reflectometry to reveal the location of the stabiliser within the adsorbed layer on an anionic silica and cationic (aminopropyltriethoxysilane (APTES) silanized) surface. d-P80 is enriched closest to the supporting surface and slightly more so for the cationic APTES surface. The results are relevant not only for the capability of LCNPs as drug delivery vehicles but also as means of preparing functional surface coatings.

  11. Effective bilayer expansion and erythrocyte shape change induced by monopalmitoyl phosphatidylcholine. Quantitative light microscopy and nuclear magnetic resonance spectroscopy measurements.

    PubMed Central

    Chi, L M; Wu, W G

    1990-01-01

    When human erythrocytes are treated with exogenous monopalmitoyl phosphatidylcholine (MPPC), the normal biconcave disk shape red blood cells (RBC) become spiculate echinocytes. The present study examines the quantitative aspect of the relationship between effective bilayer expansion and erythrocyte shape change by a newly developed method. This method is based on the combination of direct surface area measurement of micropipette and relative bilayer expansion measurement of 13C crosspolarization/magic angle spinning nuclear magnetic resonance (NMR). Assuming that 13C NMR chemical shift of fatty acyl chain can be used as an indicator of lateral packing of membrane bilayers, it is possible for us to estimate the surface area expansion of red cell membrane induced by MPPC from that induced by ethanol. Partitions of lipid molecules into cell membrane were determined by studies of shape change potency as a function of MPPC and red cell concentration. It is found that 8(+/- 0.5) x 10(6) molecules of MPPC per cell will effectively induce stage three echinocytes and yield 3.2(+/- 0.2)% expansion of outer monolayer surface area. Surface area of normal cells determined by direct measurements from fixed geometry of red cells aspirated by micropipette was 118.7 +/- 8.5 microns2. The effective cross-sectional area of MPPC molecules in the cell membrane therefore was determined to be 48(+/- 4) A2, which is in agreement with those determined by x-ray from model membranes and crystals of lysophospholipids. We concluded that surface area expansion of RBC can be explained by a simple consideration of cross-sectional area of added molecules and that erythrocyte shape changes correspond quantitatively to the incorporated lipid molecules. Images FIGURE 3 PMID:2393706

  12. Cholesterol modulates interaction between an amphipathic class A peptide, Ac-18A-NH2, and phosphatidylcholine bilayers.

    PubMed

    Egashira, Masashi; Gorbenko, Galyna; Tanaka, Masafumi; Saito, Hiroyuki; Molotkovsky, Julian; Nakano, Minoru; Handa, Tetsurou

    2002-03-26

    Cholesterol (Chol) in phosphatidylcholine large unilamellar vesicles (PC LUV) modulated interaction of the bilayers with a class A amphipathic peptide, Ac-18A-NH2: Chol increased the peptide binding capacity and reduced the affinity together with the peptide-induced leakage of calcein from LUV. Similar effects of Chol have been observed on the interaction of LUV with apoA-I [Saito, H., Miyako, Y., Handa, T., and Miyajima, K. (1997) J. Lipid Res. 38, 287-294]. Circular dichroism (CD) spectra of the peptide indicated a similar helical structure formation in LUV with and without Chol. The fluorescence spectral shift, quantum yield, anisotropy, and acrylamide-quenching of the peptide Trp indicated that in PC:Chol (3:2) LUV, Ac-18A-NH2 was located in a more polar membrane environment with increased motional freedom and greater accessibility to the aqueous medium. Fluorescence energy transfer from the Trp indole ring to acceptors situated at different depths in the bilayers revealed that the amphipathic peptide penetrated the hydrophobic interior of PC bilayers, while the peptide was located at the polar zwitterionic surface in PC:Chol LUV. The inclusion of Chol causes the headgroup separation of PC at the surface of LUV and increases the binding maximum of the wedge-shaped amphipathic peptide without disrupting the membrane structure. In addition, the rigidifying effect of Chol on PC acyl chains prevents the penetration of the peptide into the bilayer interior. These findings imply that Chol in membranes affects the binding and motional freedom of exchangeable plasma apolipoproteins containing class A amphipathic sequences, e.g., apoA-I and apoCs.

  13. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran.

    PubMed

    Duan, Zhang-Qun; Hu, Fei

    2013-01-10

    2-Methyltetrahydrofuran has recently been described as a promising and green solvent. Herein, it was successfully used as the reaction medium for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine with the aim of phosphatidylserine synthesis for the first time. Our results indicated that as high as 90% yield of phosphatidylserine could be achieved after 12 h combined with no byproduct (phosphatidic acid) forming. The present work accommodated a facilely and efficiently enzymatic strategy for preparing phosphatidylserine, which possessed obvious advantages over the reported processes in terms of high efficiency and environmental friendliness. This work is also a proof-of-concept opening the use of 2-methyltetrahydrofuran in biosynthesis as well.

  14. Activation of Phosphatidylcholine-Specific Phospholipase C in Breast and Ovarian Cancer: Impact on MRS-Detected Choline Metabolic Profile and Perspectives for Targeted Therapy

    PubMed Central

    Podo, Franca; Paris, Luisa; Cecchetti, Serena; Spadaro, Francesca; Abalsamo, Laura; Ramoni, Carlo; Ricci, Alessandro; Pisanu, Maria Elena; Sardanelli, Francesco; Canese, Rossella; Iorio, Egidio

    2016-01-01

    Elucidation of molecular mechanisms underlying the aberrant phosphatidylcholine cycle in cancer cells plays in favor of the use of metabolic imaging in oncology and opens the way for designing new targeted therapies. The anomalous choline metabolic profile detected in cancer by magnetic resonance spectroscopy and spectroscopic imaging provides molecular signatures of tumor progression and response to therapy. The increased level of intracellular phosphocholine (PCho) typically detected in cancer cells is mainly attributed to upregulation of choline kinase, responsible for choline phosphorylation in the biosynthetic Kennedy pathway, but can also be partly produced by activation of phosphatidylcholine-specific phospholipase C (PC-PLC). This hydrolytic enzyme, known for implications in bacterial infection and in plant survival to hostile environmental conditions, is reported to be activated in mitogen- and oncogene-induced phosphatidylcholine cycles in mammalian cells, with effects on cell signaling, cell cycle regulation, and cell proliferation. Recent investigations showed that PC-PLC activation could account for 20–50% of the intracellular PCho production in ovarian and breast cancer cells of different subtypes. Enzyme activation was associated with PC-PLC protein overexpression and subcellular redistribution in these cancer cells compared with non-tumoral counterparts. Moreover, PC-PLC coimmunoprecipitated with the human epidermal growth factor receptor-2 (HER2) and EGFR in HER2-overexpressing breast and ovarian cancer cells, while pharmacological PC-PLC inhibition resulted into long-lasting HER2 downregulation, retarded receptor re-expression on plasma membrane and antiproliferative effects. This body of evidence points to PC-PLC as a potential target for newly designed therapies, whose effects can be preclinically and clinically monitored by metabolic imaging methods. PMID:27532027

  15. The vertical location of α-tocopherol in phosphatidylcholine membranes is not altered as a function of the degree of unsaturation of the fatty acyl chains.

    PubMed

    Ausili, Alessio; de Godos, Ana M; Torrecillas, Alejandro; Aranda, Francisco J; Corbalán-García, Senena; Gómez-Fernández, Juan C

    2017-03-01

    α-Tocopherol is a natural preservative that prevents free radical chain oxidations in biomembranes. We have studied the location of α-tocopherol in model membranes formed by different unsaturated phosphatidylcholines, namely 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC). Small angle X-ray diffraction revealed that α-tocopherol was well mixed with all the phospholipids. In all the cases only one lamellar phase was detected. Very modest changes occasioned by α-tocopherol were observed in the electron density profiles. The results obtained from quenching of α-tocopherol intrinsic fluorescence by acrylamide showed that this vitamin was inefficiently quenched in the four types of membranes, indicating that the fluorescent chromanol ring was poorly accessible for this hydrophilic quencher. Compatible with that, quenching by doxyl derivatives of phosphatidylcholines indicated that the chromanol ring was close in the four membranes to the nitroxide probe located at position 5. Quenching by doxyl-phosphatidylcholines also indicated that the efficiency of quenching was higher in POPC than in the other unsaturated phospholipids. (1)H-MAS-NMR showed that α-tocopherol induced chemical shifts of protons from the phospholipids, especially of those bonded to carbons 2 and 3 of the acyl chains of the four phospholipids studied. The (1)H-MAS-NMR NOESY results suggested that the lower part of the chromanol ring was located between the C3 of the fatty acyl chains and the centre of the hydrophobic monolayer for the four phospholipid membranes studied. Taken together, these results suggest that α-tocopherol is located, in all the membranes studied, with the chromanol ring within the hydrophobic palisade but not far away from the lipid-water interface.

  16. Energy-minimized structures and packing states of a homologous series of mixed-chain phosphatidylcholines: a molecular mechanics study on the diglyceride moieties.

    PubMed Central

    Li, S; Wang, Z Q; Lin, H N; Huang, C

    1993-01-01

    Phosphatidylcholines or C(X):C(Y)PC, quantitatively the most abundant lipids in animal cell membranes, are structurally composed of two parts: a headgroup and a diglyceride. The diglyceride moiety consists of the glycerol backbone and two acyl chains. It is the wide diversity of the acyl chains, or the large variations in X and Y in C(X):C(Y)PC, that makes the family of phosphatidylcholines an extremely complex mixture of different molecular species. Since most of the physical properties of phospholipids with the same headgroup depend strongly on the structures of the lipid acyl chains, the energy-minimized structure and steric energy of each diglyceride moiety of a series of 14 molecular species of phosphatidylcholines with molecular weights identical to that of dimyristoylphosphatidylcholine without the headgroup are determined in this communication by molecular mechanics (MM) calculations. Results of two types of trans-bilayer dimer for each of the 14 molecular species of phosphatidylcholines are also presented; specifically, the dimeric structures are constructed initially based on the partially interdigitated and mixed interdigitated packing motifs followed subsequently by the energy-minimized refinement with MM calculations. Finally, tetramers with various structures to model the lateral lipid-lipid interactions in a lipid bilayer are considered. Results of laborious MM calculations show that saturated diacyl C(X):C(Y)PC with delta C/CL values greater than 0.41 prefer topologically to assemble into tetramers of the mixed interdigitated motif, and those with delta C/CL values less than 0.41 prefer to assemble into tetramers with a repertoire of the partially interdigitated motif. Here, delta C/CL, a lipid asymmetry parameter, is defined as the normalized acyl chain length difference between the sn-1 and sn-2 acyl chains for a C(X):C(Y)PC molecule; an increase in delta C/CL value is an indication of increasing asymmetry between the two lipid acyl chains. These

  17. Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells

    PubMed Central

    2010-01-01

    Introduction Overexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation. Methods Localization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab. Results PC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with

  18. Quantitative determination of phosphatidylcholine hydroperoxides during copper oxidation of LDL and HDL by liquid chromatography/mass spectrometry.

    PubMed

    Hui, Shu-Ping; Taguchi, Yudai; Takeda, Seiji; Ohkawa, Futaba; Sakurai, Toshihiro; Yamaki, Shinobu; Jin, Shigeki; Fuda, Hirotoshi; Kurosawa, Takao; Chiba, Hitoshi

    2012-06-01

    1-Palmitoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 16:0/18:2-OOH) and 1-stearoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 18:0/18:2-OOH) were measured by liquid chromatography/mass spectrometry (LC/MS) using nonendogenous 1-palmitoyl-2-heptadecenoylphosphatidylcholine monohydroperoxide as an internal standard. The calibration curves for synthetic PC 16:0/18:2-OOH and PC 18:0/18:2-OOH, which were obtained by direct injection of the internal standard into the LC/MS system, were linear throughout the calibration range (0.8-12.8 pmol). Within-day and between-day coefficients of variation were less than 10%, and the recoveries were between 86% and 105%. The limit of detection (LOD) and the limit of quantification (LOQ) were determined using synthetic standards. The LOD (signal-to-noise ratio 3:1) was 0.01 pmol, and the LOQ (signal-to-noise ratio 6:1) was 0.08 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. With use of this method, the concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH in the lipoprotein fractions during copper-mediated oxidation were determined. We prepared oxLDL and oxHDL by incubating native LDL and native HDL from human plasma (n =  10) with CuSO(4) for up to 4 h. The time course of the PC 16:0/18:2-OOH and PC 18:0/18:2-OOH levels during oxidation consisted of three phases. For oxidized LDL, both compounds exhibited a slow lag phase and a subsequent rapidly increasing propagation phase, followed by a gradually decreasing degradation phase. In contrast, for oxidized HDL, both compounds initially exhibited a prompt propagation phase with a subsequent plateau phase, followed by a rapid degradation phase. The analytical LC/MS method for phosphatidylcholine hydroperoxides might be useful for the analysis of biological samples.

  19. Influence of chloride on modification of unsaturated phosphatidylcholines by the myeloperoxidase/hydrogen peroxide/bromide system.

    PubMed

    Panasenko, Oleg M; Vakhrusheva, Tatyana; Tretyakov, Vadim; Spalteholz, Holger; Arnhold, Juergen

    2007-01-01

    The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds. This study was conducted to determine the effect physiological chloride concentration (140 mM) has on the formation of bromohydrins and lyso-PC from unsaturated PC upon treatment with the myeloperoxidase/hydrogen peroxide/bromide (MPO/H2O2/Br-) system using physiological bromide concentrations (20-100 microM). The composition of reaction products was analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). With monounsaturated PC, we demonstrated that the rate and extent of mono-bromohydrin formation were higher in the samples with 140 mM chloride compared to those with no added chloride. Moreover, mono-bromohydrin came to be the major product and no mono-chlorohydrin was observed already at 60 microM bromide. We attributed these effects to the involvement of HOBr arising from the reaction of MPO-derived HOCl with bromide rather than to the exchange of bromide with chlorine atoms of chlorohydrins or direct formation of HOBr by MPO. The presence of chloride shifted the pH optimum for mono-bromohydrin formation (pH 5.0) toward neutral values, and a significant yield of mono-bromohydrin was detected at physiological pH values (7.0-7.4). For polyunsaturated PC, chloride enhanced also lyso-PC production, the effect being pronounced at bromide concentrations below 40 microM. The results indicate that at physiological levels of chloride and bromide, chloride promotes MPO-mediated formation of bromohydrins and lyso

  20. Thermodynamics and dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state: effects of water.

    PubMed Central

    Shin, Y K; Budil, D E; Freed, J H

    1993-01-01

    A method for obtaining the thermodynamic activity of each membrane component in phosphatidylcholine (PC)/cholesterol mixtures, that is based upon ESR spin labeling is examined. The thermodynamic activity coefficients, gamma PC and gamma chol, for the PC and cholesterol, respectively, are obtained from the measured orientational order parameters, SPC and S(chol), as a function of cholesterol content for a spin-labeled PC and the sterol-type cholestane spin probe (CSL), respectively, and the effects of water concentration are also considered. At water content of 24 weight%, the thermodynamics of DMPC/cholesterol/water mixtures in the liquid-crystalline state may be treated as a two-component solution ignoring the water, but at lower water content the role of water is important, especially at lower cholesterol concentrations. At lower water content (17 wt%), gamma chol decreases with increasing cholesterol content which implies aggregation. However, at higher water content (24 wt%), gamma chol is found initially to increase as a function of cholesterol content before decreasing at higher cholesterol content. This implies a favorable accommodation for the cholesterol in the membrane at high water and low cholesterol content. Good thermodynamic consistency according to the Gibbs-Duhem equation was obtained for gamma PC and gamma chol at 24 wt% water. The availability of gamma chol (and gamma PC) as a function of cholesterol concentration permits the estimate of the boundary for phase separation. The rotational diffusion coefficients of the labeled PC and of CSL were also obtained from the ESR spectra. A previously proposed universal relation for the perpendicular component of the rotational diffusion tensor, R perpendicular, for CSL in PC/cholesterol mixtures (i.e., R perpendicular = R0 perpendicular exp(-AS2chol/RT)) is confirmed. A change in composition of cholesterol or of water for DMPC/cholesterol/water mixtures affects R perpendicular only through the dependence

  1. Probing the ethanol-induced chain interdigitations in gel-state bilayers of mixed-chain phosphatidylcholines.

    PubMed Central

    Huang, C; McIntosh, T J

    1997-01-01

    Using high-resolution differential scanning calorimetry (DSC), we have studied the effects of ethanol concentrations, [EtOH], on the main phase transition temperatures (T[m]) of the following mixed-chain phosphatidylcholines (PCs): C(15):C(17)PC, C(17):C(15)PC, and C(12):C(20)PC. These lipids have a common molecular weight; however, their apparent acyl chain-length differences between the sn-1 and sn-2 acyl chains, delta C, are distinctively different. The delta C values for these three mixed-chain PCs are, respectively, 0.5, 3.5, and 6.5 C-C bond lengths. DSC results show that the T(m) profiles for C(15):C(17)PC and C(17):C(15)PC bilayers in the plot of T(m) versus [EtOH] are V-shaped biphasic curves, with the minimum T(m) occurring at 50 and 73 mg/ml of ethanol, respectively. In contrast, the C(12):C(20)PC bilayer exhibits a nearly linear decrease in T(m) with increasing [EtOH]. In addition, x-ray diffraction experiments were also performed to assess the structural changes of these three mixed-chain PCs in the gel-state bilayers, at 20 degrees C, in response to high concentrations of ethanol. X-ray diffraction data indicate that, in the absence of ethanol, these three lamellar lipids are all packed in the normal (L beta') gel phase in aqueous media. In the presence of 120 mg/ml of ethanol, however, the C(15):C(17)PC and C(17):C(15)PC lamellae are packed in the fully interdigitated (L beta[I]) gel phase. The V-shaped T(m) curves detected calorimetrically for these two lipids in response to [EtOH] can thus be explained by the ethanol-induced L beta' --> L beta[I] isothermal phase transition. Interestingly, the results of x-ray diffraction study reveal, for the first time, that an ethanol-induced L beta' --> L(MI) (mixed interdigitated phase) isothermal phase transition occurs in the gel-state bilayer of highly asymmetrical C(12):C(20)PC. Therefore, the chain asymmetry is recognized to play an important role in the ethanol-induced chain interdigitation at T < T

  2. Protein kinase C-independent expression of stromelysin by platelet-derived growth factor, ras oncogene, and phosphatidylcholine-hydrolyzing phospholipase C.

    PubMed

    Diaz-Meco, M T; Quiñones, S; Municio, M M; Sanz, L; Bernal, D; Cabrero, E; Saus, J; Moscat, J

    1991-11-25

    Changes in the expression of several genes play critical roles in cell growth and tumor transformation. A number of proteases are increased in some tumors, and the level of these enzymes correlates with the metastatic potential of several cancer cell lines. Stromelysin, with the widest substrate specificity, can degrade the extracellular matrix conferring metastatic potential to tumor cells. The mechanisms whereby growth factors and oncogenes control the expression of stromelysin are beginning to be characterized. In the study shown here we also identify a region in the stromelysin promoter which is involved in the induction of stromelysin in response to platelet-derived growth factor, phosphatidylcholine-hydrolyzing phospholipase C, and ras oncogene. Our results are consistent with the notion that platelet-derived growth factor/phosphatidylcholine-hydrolyzing phospholipase C induces stromelysin gene expression through a phorbol myristate acetate/protein kinase C-independent mechanism by acting through elements in the stromelysin promoter distinct from the 12-O-tetradecanoylphorbol-13-acetate-responsive element.

  3. Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester.

    PubMed

    Xiao, Shi; Chen, Qin-Fang; Chye, Mee-Len

    2009-10-01

    In Arabidopsis thaliana, six genes encode acyl-CoA-binding proteins (ACBPs) that show conservation of an acyl-CoA-binding domain. These ACBPs display varying affinities for acyl-CoA esters, suggesting of different cellular roles. We have recently reported that three members (ACBP4, ACBP5 and ACBP6) are subcellularly localized to the cytosol by biochemical fractionation, confocal microscopy of transgenic Arabidopsis expressing autofluorescence-tagged fusions and immuno-electron microscopy using ACBP-specific antibodies. In this study, we observed by Northern blot analysis that ACBP4 and ACBP5 mRNAs in rosettes were up-regulated by light and dampened-off in darkness, mimicking FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial lipid metabolism. Results from in vitro binding assays indicate that recombinant ACBP4 and ACBP5 proteins bind [(14)C]oleoyl-CoA esters better than recombinant ACBP6, suggesting that light-regulated ACBP4 and ACBP5 encode cytosolic ACBPs that are potential candidates for the intracellular transport of oleoyl-CoA ester exported from the chloroplast to the endoplasmic reticulum for the biosynthesis of non-plastidial membrane lipids. Nonetheless, His-tagged ACBP4 and ACBP5 resemble ACBP6 in their ability to bind phosphatidylcholine suggesting that all three ACBPs are available for the intracellular transfer of phosphatidylcholine.

  4. Reductive metabolism of carbon tetrachloride by human cytochromes P-450 reconstituted in phospholipid vesicles: mass spectral identification of trichloromethyl radical bound to dioleoyl phosphatidylcholine.

    PubMed Central

    Trudell, J R; Bösterling, B; Trevor, A J

    1982-01-01

    It has been proposed that covalent binding of reactive metabolites to liver membrane constituents may be responsible for the hepatoxicity of carbon tetrachloride. This study demonstrates that trichloromethyl free radical is the major reductive metabolite of carbon tetrachloride by cytochrome P-450 and that this free radical is capable of binding to double bonds of fatty acyl chains of the phospholipids in the membrane surrounding cytochrome P-450. The structural identification of the reactive free radical metabolite and the product of its addition to phospholipids was accomplished by use of a reconstituted system of human cytochromes P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5 in phospholipid vesicles. The reconstituted vesicles contained a mixture of dioleoyl phosphatidylcholine and egg phosphatidylethanolamine that served as both structural components and targets for trichloromethyl free radical binding. After incubation of these vesicles under a N2 atmosphere in the presence of NADPH with 14CCl4, the phospholipids were extracted and then separated by high-pressure liquid chromatography. The dioleoyl phosphatidylcholine fraction was transesterified and the resulting single 14C-labeled fatty acid methyl ester was purified by reverse-phase chromatography. Desorption chemical ionization mass spectrometry with ammonia as reagent gas as well as desorption electron-impact mass spectrometry permitted identification of the molecular structure as a mixture of 9- and 10-(trichloromethyl)stearate methyl esters. PMID:6953422

  5. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson’s Disease

    PubMed Central

    Farmer, Kyle; Smith, Catherine A.; Hayley, Shawn; Smith, Jeffrey

    2015-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA), or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes) were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0) and LPC (18:1), which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD. PMID:26274953

  6. Gene cloning, structural gene and promoter identification, and active assay of the phosphatidylcholine synthase of Pseudomonas sp. strain 593.

    PubMed

    He, Huoguang; Wu, Bin; Xiong, Min; Li, Yang; Wu, Wenhua; Wang, Xingguo

    2011-10-01

    Pseudomonas sp. strain 593, a soil bacterium, is able to use exogenous choline to synthesize phosphatidylcholine via phosphatidylcholine synthase (Pcs). A 2020 bp DNA fragment that hybridized to a Pcs probe was cloned. This fragment contained a large open reading frame (ORF) with two potential ATG start sites that would encode for 293 and 231 amino acid proteins. Fragments containing the two ORFs encoded Pcs when they were inserted into the expression vector pET23a and expressed under the control of the T7 promoter in Escherichia coli BL21(DE3) pLysS. However, when the two ORFs were inserted into the cloning vector pMD18-T and expressed without control of the plasmid promoter in E. coli DH5α, only the larger clone exhibited Pcs activity. This suggested that the larger fragment contained a native promoter driving expression of the smaller ORF. A promoter activity assay, in which DNA fragments were inserted into the promoter-probe plasmid pCB182 and β-galactosidase activity of E. coli transformants was tested, demonstrated that a promoter is indeed present in the DNA region. All results together indicate that the 696 bp ORF, not the larger 897 bp ORF, encodes the Pcs in Pseudomonas sp. strain 593 and carries a promoter in front of its 5' terminus.

  7. Investigation of phospholipid synthesis and the disposition of amino acid and carbohydrate

    SciTech Connect

    Boehme, D.S.

    1986-01-01

    The synthesis of pulmonary phospholipids by offspring of diabetic female rats was assessed by means of high performance liquid chromatography combined with automated phosphate analysis. No changes in the pool sizes of the major phospholipids or their precursors were observed. However, offspring of both insulin-treated and untreated diabetic mothers displayed increased pulmonary lyso-phosphatidylcholine. The concentration of glycerylphosphorylcholine, the metabolic product of lyso-phosphatidylcholine, was also increased in these offspring, providing further evidence of a reduced reacylation pathway in the offspring of diabetic mothers. The concentration of phosphatidylglycerol was reduced in the lungs from offspring of diabetic mothers. Preliminary investigation suggested that the mechanism of insulin action on lungs from offspring of diabetic rats may be the diversion of substrate from lipid synthetic pathways into protein synthesis. The utilization of (14C)-labeled amino acids and carbohydrates by normal fetal rat lung, however, revealed no direct insulin effect on protein synthesis. The ability of the fetal lung to convert amino acids into Krebs Cycle intermediates was demonstrated.

  8. Hyperreactivity of Blood Leukocytes in Patients with NAFLD to Ex Vivo Lipopolysaccharide Treatment Is Modulated by Metformin and Phosphatidylcholine but Not by Alpha Ketoglutarate

    PubMed Central

    Daniluk, Jadwiga; Słabczyńska, Olga; Kandefer-Szerszeń, Martyna

    2015-01-01

    Introduction and Aims Toll-like receptor 4 and proinflammatory cytokines play a central role in the progression of nonalcoholic fatty liver disease. We investigated IL-1, IL-6 and TNFα production and toll-like receptor 4 in both—obese and lean patients with non-alcoholic fatty liver disease who met different sets of metabolic syndrome criteria and linked the results with the disease burden. Materials and Methods 95 subjects were divided into four groups depending on the following criteria: presence or absence of metabolic syndrome and/or non-alcoholic fatty liver disease, glucose tolerance (prediabetes or normoglycemia) and BMI value (obese or lean). We determined the levels of IL-1β, IL-6, TNFα, and monocyte toll-like receptor 4 expression in fresh blood as well as in blood cultures treated with lipopolysaccharide with or without metformin, alphaketoglutarate or phosphatidylcholine supplementation. Results The blood leukocytes of patients with non-alcoholic fatty liver disease are hypersensitive to lipopolysaccharide treatment and produce elevated levels of pro-inflammatory cytokines in response to ex vivo treatment with lipopolysaccharide. Moreover, they overexpress toll-like receptor-4. Hyperreactivity was typical mainly for obese patients with non-alcoholic fatty liver disease together with metabolic syndrome and decreased with the severity of disease. Metformin was the most effective in attenuation of hyperreactivity in all groups of patients with non-alcoholic fatty liver disease, but in obese patients the effectiveness of metformin was weaker than in lean. The reduction of cytokine level by metformin was accompanied by the decrease in toll-like receptor-4 expression. phosphatidylcholine also attenuated hyperreactivity to lipopolysaccharide but mainly in obese patients. Alpha ketoglutarate did not modulate cytokines’ level and toll-like receptor 4 expression in non-alcoholic fatty liver disease patients. Conclusions Metformin and phosphatidylcholine

  9. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    PubMed Central

    Letts, V A; Henry, S A

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. As expected, when chol mutants were starved for ethanolamine, the rates of synthesis of the phospholipids phosphatidylethanolamine and PC declined rapidly. Surprisingly, however, coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. The results obtained suggest that the slowing of PC biosynthesis in ethanolamine-starved chol cells leads to a coordinated decrease in the synthesis of all phospholipids. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed. Images PMID:2991194

  10. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast.

    PubMed

    Sreenivas, A; Patton-Vogt, J L; Bruno, V; Griac, P; Henry, S A

    1998-07-03

    The SEC14 gene encodes a phosphatidylinositol/phosphatidylcholine transfer protein essential for secretion and growth in yeast (1). Mutations (cki1, cct1, and cpt1) in the CDP-choline pathway for phosphatidylcholine synthesis suppress the sec14 growth defect (2), permitting sec14(ts) cki1, sec14(ts) cct1, and sec14(ts) cpt1 strains to grow at the sec14(ts) restrictive temperature. Previously, we reported that these double mutant strains also excrete the phospholipid metabolites, choline and inositol (3). We now report that these choline and inositol excretion phenotypes are eliminated when the SPO14 (PLD1) gene encoding phospholipase D1 is deleted. In contrast to sec14(ts) cki1 strains, sec14(ts) cki1 pld1 strains are not viable at the sec14(ts) restrictive temperature and exhibit a pattern of invertase secretion comparable with sec14(ts) strains. Thus, the PLD1 gene product appears to play an essential role in the suppression of the sec14(ts) defect by CDP-choline pathway mutations, indicating a role for phospholipase D1 in growth and secretion. Furthermore, sec14(ts) strains exhibit elevated Ca2+-independent, phophatidylinositol 4,5-bisphosphate-stimulated phospholipase D activity. We also propose that phospholipase D1-mediated phosphatidylcholine turnover generates a signal that activates transcription of INO1, the structural gene for inositol 1-phosphate synthase.

  11. Regulatory Role for Phosphatidylcholine Transfer Protein/StarD2 in the Metabolic Response to Peroxisome Proliferator Activated Receptor Alpha (PPARα)

    PubMed Central

    Kang, Hye Won; Kanno, Keishi; Scapa, Erez F.; Cohen, David E.

    2010-01-01

    Summary Phosphatidylcholine transfer protein (PC-TP, a.k.a. StarD2) is abundantly expressed in liver and is regulated by PPARα. When fed the synthetic PPARα ligand fenofibrate, Pctp−/− mice exhibited altered lipid and glucose metabolism. Microarray profiling of livers from fenofibrate fed wild type and Pctp−/− mice revealed differential expression of a broad array of metabolic genes, as well as their regulatory transcription factors. PC-TP expression in cell culture controlled the activities of both PPARα and HNF4α, suggesting that the mechanism by which it modulates hepatic metabolism is at least in part via activation of transcription factors that govern nutrient homeostasis. PMID:20045742

  12. PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing.

    PubMed

    Gao, Z; Lukyanov, A N; Chakilam, A R; Torchilin, V P

    2003-02-01

    Mixed micelles were prepared from poly(ethyleneglycol)-distearyl phosphoethanolamine (PEG2000-PE) and egg phosphatidylcholine. The micelles were covalently modified with the nucleosome-specific monoclonal antibody 2C5 known to recognize and bind a variety of tumor cells via their surface-bound nucleosomes. Covalent attachment of 2C5 antibody was performed via a micelle-incorporated PEG-PE with the distal terminus of the PEG block activated with p-nitrophenylcarbonyl group (pNP-PEG-PE). Micelle surface-attached 2C5 antibody maintained its specific activity. 2C5-targeted immunomicelles were able to carry more than 3 wt% of taxol. Taxol-loaded immunomicelles specifically recognized tumor cell lines of several types. The cytotoxicity of 2C5-targeted taxol-loaded immunomicelles in a cell culture model was much higher when compared with free taxol or taxol in non-targeted micelles.

  13. Development, characterization, and in vitro evaluation of phosphatidylcholine-sodium cholate-based nanoparticles for siRNA delivery to MCF-7 human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Pérez, Sebastián Ezequiel; Gándola, Yamila; Carlucci, Adriana Mónica; González, Lorena

    2015-03-01

    Phosphatidylcholine-sodium cholate (SC)-based nanoparticles were designed, characterized, and evaluated as plausible oligonucleotides delivery systems. For this purpose, formulation of the systems was optimized to obtain low cytotoxic vehicles with high siRNA-loading capacity and acceptable transfection ability. Mixtures of soybean phosphatidylcholine (SPC) and SC were prepared at different molar ratios with 2 % w/v total concentration; distilled water and two different buffers were used as dispersion medium. Nanoparticles below 150 nm were observed showing spherical shape which turned smaller in diameter as the SC molar proportion increased, accounting for small unilamellar vesicles when low proportions of SC were present in the formulation, but clear mixed micellar solutions at higher SC percentages. Macroscopic characteristics along with physico-chemical parameters values supported the presence of these types of structures. SYBR green displacement assays demonstrated an important oligonucleotide binding that increased as bile salt relative content got higher. Within the same molar ratio, nanoparticles showed the following binding efficiency order: pH 7.4 > pH 5.0 > distilled water. siRNA-loading capacity assays confirmed the higher siRNA binding by the mixed micelles containing higher SC proportion; moreover, the complexes formed were smaller as the SC:SPC ratio increased. Considering cytotoxicity and siRNA-loading capacity, 1:2 and 1:4 SPC:SC formulations were selected for further biological assays. Nanoparticles prepared in any of the three media were able to induce dsRNA uptake and efficiently transfect RNA for gene silencing, for the compositions prepared in buffer pH 5.0 being the most versatile.

  14. Dioctanoylglycerol stimulates accumulation of [methyl-14C]choline and its incorporation into acetylcholine and phosphatidylcholine in a human cholinergic neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Slack, B. E.; Richardson, U. I.; Nitsch, R. M.; Wurtman, R. J.

    1992-01-01

    Dioctanoylglycerol, a synthetic diacylglycerol, stimulated [14C]choline uptake in cultured human neuroblastoma (LA-N-2) cells. As this effect has not, to our knowledge, been reported before, it was of interest to characterize it in more detail. In the presence of 500 microM dioctanoylglycerol the levels of [14C]choline attained during a 2 hour labeling period were elevated by 78 +/- 12%, while [14C]acetylcholine and long fatty acyl chain [14C]phosphatidylcholine levels increased by 26 +/- 2% and 19 +/- 5%, respectively (mean +/- S.E.M.). Total (long chain plus dioctanoyl-) [14C]phosphatidylcholine was increased by 198 +/- 33%. Kinetic analysis showed that dioctanoylglycerol reduced the apparent Km for choline uptake to 56 +/- 9% of control (n = 4). The Vmax was not significantly altered. The stimulation of [14C]choline accumulation by dioctanoylglycerol was not dependent on protein kinase C activation; the effect was not mimicked by phorbol ester or by 1-oleoyl-2-acetylglycerol, and was not inhibited by the protein kinase C inhibitors H-7 or staurosporine, or by prolonged pretreatment with phorbol 12-myristate 13-acetate. The effect of dioctanoylglycerol was slightly (but not significantly) reduced by EGTA and strongly inhibited by the cell-permeant calcium chelator bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)ester. Although these results implicate elevated intracellular calcium in the response, dioctanoylglycerol did not increase phosphatidylinositol hydrolysis in LA-N-2 cells, and its effect was not inhibited by the diacylglycerol kinase inhibitor R 59 022 (which blocks the conversion of diacylglycerol to phosphatidic acid, a known stimulator of phosphatidylinositol hydrolysis).(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.

    PubMed

    Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E

    2010-05-01

    Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.

  16. Influence of trimetazidine on the synthesis of complex lipids in the heart and other target organs

    NASA Technical Reports Server (NTRS)

    Sentex, E.; Helies-Toussaint, C.; Rousseau, D.; Lucien, A.; Ferrary, E.; Grynberg, A.

    2001-01-01

    Trimetazidine exerts antianginal properties at the cellular level, without haemodynamic effect in clinical and experimental conditions. This cytoprotection was attributed to a decreased utilization of fatty acids for energy production, balanced by an increased incorporation in structural lipids. This study evaluated the influence of Trimetazidine on complex lipid synthesis from [2-(3)H] glycerol, in ventricular myocytes, isolated rat hearts and in vivo in the myocardium and several other tissues. In cardiomyocytes, Trimetazidine increased the synthesis of phosphatidyl-choline (+ 80%), phosphatidyl-ethanolamine (+ 210%), phosphatidyl-inositol (+ 250%) and cardiolipid (+ 100%). The common precursor diacylglycerol was also increased (+ 40%) whereas triacylglycerol was decreased (-70%). Similar results were obtained in isolated hearts with 10 microm Trimetazidine (phosphatidyl-choline + 60%, phosphatidyl-ethanolamine + 60%, phosphatidyl-inositol + 100% and cardiolipid + 50%), the last two phospholipids containing 85% of the radioactivity. At 1 microm, Trimetazidine still stimulated the phospholipid synthesis although the difference was found significant only in phosphatidyl-inositol and cardiolipid. In vivo studies (10 mg/kg per day for 7 days and 5 mg/kg, i.p. before the experiment) revealed significant changes in the intracellular lipid biosynthesis, with increased labelling of phospholipids and reduced incorporation of glycerol in nonphosphorous lipids. Trimetazidine increased the glycerol uptake from plasma to the other tissues (liver, cochlea, retina), resulting in an altered lipid synthesis. The anti-anginal properties of Trimetazidine involve a reorganisation of the glycerol-based lipid synthesis balance in cardiomyocytes, associated with an increased uptake of plasma glycerol that may contribute to explain the pharmacological properties reported in other organs.

  17. Ammonia synthesis

    SciTech Connect

    Mandelik, B.G.; Cassata, J.R.; Katy, P.J.S.; Van Dijk, C.P.

    1986-02-04

    In a process for producing ammonia in a synthesis loop in which fresh synthesis gas containing hydrogen, nitrogen and, lesser amounts of argon and methane is combined with a hydrogen enriched recycle gas to provide combined synthesis gas, the combined synthesis is introduced to and reacted over ammonia synthesis catalyst under synthesis conditions to provide converted gas containing ammonia, hydrogen, and nitrogen. The ammonia is recovered from the converted gas to provide recycle gas, and a purge stream is removed from the synthesis loop. A hydrogen-rich gas is recovered from the purge stream, and the hydrogen-rich gas is combined with the recycle gas to provide the hydrogen enriched gas. The improvement described in this patent consists of (a) providing the fresh synthesis gas at a hydrogen to nitrogen molar ratio between 1.7 and 2.5 and providing the hydrogen enriched recycle gas at a hydrogen to nitrogen molar ratio between 0.5 and 1.7 to provide the combined synthesis gas at a hydrogen to nitrogen molar ratio between 0.8 and 1.8. The volumetric flow rate ratio of the hydrogen enriched recycle gas to the fresh synthesis gas is between 2.2 and 3.7; and (b) introducing the combined synthesis gas from step (a) to an ammonia synthesis catalyst at a temperature between 315/sup 0/C. and 400/sup 0/C. and a pressure between 50 kg/cm/sup 2/ and 150 kg/cm/sup 2/.

  18. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis.

    PubMed

    Matozaki, T; Williams, J A

    1989-09-05

    Changes in the cellular content of 1,2-diacylglycerol (DAG) in isolated rat pancreatic acini in response to agonist stimulation were studied using a sensitive mass assay. When acini were stimulated by 10 nM COOH-terminal cholecystokinin-octapeptide (CCK8), the increase in DAG was biphasic, consisting of an early peak at 5 s and a second, larger, gradual increase that was maximal by 15 min. The basal level of DAG in acini was 1.04 nmol/mg of protein, which was increased to 1.24 nmol/mg of protein at 5 s and 2.76 nmol/mg of protein at 30 min. In comparison, the increase in DAG stimulated by 30 pM CCK8, a submaximal concentration for amylase release, was monophasic, increasing without an early peak but sustained to 60 min. Other Ca2+-mobilizing secretagogues such as carbamylcholine and bombesin increased DAG in acini, whereas vasoactive intestinal peptide, which acts to increase cAMP, had no effect. Phorbol ester and Ca2+ ionophore also stimulated DAG production. Analysis of the mass level of inositol 1,4,5-trisphosphate (1,4,5-IP3) showed that the generation of 1,4,5-IP3 stimulated by 10 nM CCK8 peaked at 5 s, a finding consistent with the early peak of DAG. The basal level was 4.7 pmol/mg of protein, which was increased to 144.6 pmol/mg of protein at 5 s by 10 nM CCK8. The levels of 1,4,5-IP3 then returned toward basal in contrast to the gradual and sustained increase of DAG. The dose dependencies of 1,4,5-IP3 and DAG formation at 5 s with respect to CCK8 were almost identical. This suggests that phosphatidylinositol 4,5-bisphosphate hydrolysis is a major source of the early increase in DAG but not of the sustained increase in DAG. Therefore, a possible contribution of phosphatidylcholine hydrolysis to DAG formation was examined utilizing acini prelabeled with [3H]choline. CCK8 (1 nM) maximally increased [3H]choline metabolite release by 133% of control at 30 min. Separation of these metabolites by thin layer chromatography showed that the products of CCK8

  19. Synthesis of 5,9-hexacosadienoic acid phospholipids. 11. Phospholipid studies of marine organisms.

    PubMed

    Mena, P L; Djerassi, C

    1985-01-01

    The synthesis of phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS) containing two acyl chains of the naturally occurring sponge fatty acid (5Z,9Z)-5,9-hexacosadienoic acid as well as its hitherto unknown geometrical isomers is described. The PCs were prepared by deacylation of natural lecithins, followed by reacylation with fatty acid anhydrides. The synthesis of mixed-acid PCs is also reported: a diacyl product was converted to the lyso-PC by treatment with phospholipase A2 and subsequent acylation of the secondary hydroxyl group to give the desired mixed-acid PCs. The PEs and the PSs were prepared from the corresponding PCs by enzymatic transphosphatidylation catalyzed by phospholipase D. Structural assignments of the compounds were confirmed by spectroscopy (1H-NMR and MS). Ammonia chemical ionization mass spectrometry provided molecular ion and significant fragment peaks for PCs and PEs.

  20. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    SciTech Connect

    Letts, V.A.; Henry, S.A.

    1985-08-01

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.

  1. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations.

    PubMed Central

    Wu, Y; He, K; Ludtke, S J; Huang, H W

    1995-01-01

    A variety of amphiphilic helical peptides have been shown to exhibit a transition from adsorbing parallel to a membrane surface at low concentrations to inserting perpendicularly into the membrane at high concentrations. Furthermore, this transition has been correlated to the peptides' cytolytic activities. X-ray lamellar diffraction of diphytanoyl phosphatidylcholine-alamethicin mixtures revealed the changes of the bilayer structure with alamethicin concentration. In particular, the bilayer thickness decreases with increasing peptide concentration in proportion to the peptide-lipid molar ratio from as low as 1:150 to 1:47; the latter is near the threshold of the critical concentration for insertion. From the decreases of the bilayer thickness, one can calculate the cross sectional expansions of the lipid chains. For all of the peptide concentrations studied, the area expansion of the chain region for each adsorbed peptide is a constant 280 +/- 20 A2, which is approximately the cross sectional area of an adsorbed alamethicin. This implies that the peptide is adsorbed at the interface of the hydrocarbon region, separating the lipid headgroups laterally. Interestingly, the chain disorder caused by a peptide adsorption tends to spread over a large area, as much as 100 A in diameter. The theoretical basis of the long range nature of bilayer deformation is discussed. PMID:7647240

  2. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum

    PubMed Central

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad

    2010-01-01

    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein β (PITPβ), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPβ at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPβ protein expression in HeLa cells. Depletion of PITPβ leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPβ but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the ER. PMID:20332109

  3. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum.

    PubMed

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad

    2010-04-15

    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein beta (PITPbeta), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPbeta at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPbeta protein expression in HeLa cells. Depletion of PITPbeta leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPbeta but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the ER.

  4. Visualization of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in mouse tongue body by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Enomoto, Hirofumi; Sugiura, Yuki; Setou, Mitsutoshi; Zaima, Nobuhiro

    2011-06-01

    The mammalian tongue is one of the most important organs during food uptake because it is helpful for mastication and swallowing. In addition, taste receptors are present on the surface of the tongue. Lipids are the second most abundant biomolecules after water in the tongue. Lipids such as phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) are considered to play fundamental roles in the mediation of cell signaling. Imaging mass spectrometry (IMS) is powerful tool for determining and visualizing the distribution of lipids across sections of dissected tissue. In this study, we identified and visualized the PC, LPC, and SM species in a mouse tongue body section with matrix-assisted laser desorption/ionization (MALDI)-IMS. The ion image constructed from the peaks revealed that docosahexaenoic acid (DHA)-containing PC, LPC, linoleic acid-containing PC and SM (d18:1/16:0), and oleic acid-containing PC were mainly distributed in muscle, connective tissue, stratified epithelium, and the peripheral nerve, respectively. Furthermore, the distribution of SM (d18:1/16:0) corresponded to the distribution of nerve tissue relating to taste in the stratified epithelium. This study represents the first visualization of PC, LPC and SM localization in the mouse tongue body.

  5. Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry[S

    PubMed Central

    Sugiura, Yuki; Konishi, Yoshiyuki; Zaima, Nobuhiro; Kajihara, Shigeki; Nakanishi, Hiroki; Taguchi, Ryo; Setou, Mitsutoshi

    2009-01-01

    Previous studies have shown that MALDI-imaging mass spectrometry (IMS) can be used to visualize the distribution of various biomolecules, especially lipids, in the cells and tissues. In this study, we report the cell-selective distribution of PUFA-containing glycerophospholipids (GPLs) in the mouse brain. We established a practical experimental procedure for the IMS of GPLs. We demonstrated that optimization of the composition of the matrix solution and spectrum normalization to the total ion current (TIC) is critical. Using our procedure, we simultaneously differentiated and visualized the localizations of specific molecular species of GPLs in mouse brain sections. The results showed that PUFA-containing phosphatidylcholines (PCs) were distributed in a cell-selective manner: arachidonic acid- and docosahexaenoic acid-containing PCs were seen in the hippocampal neurons and cerebellar Purkinje cells, respectively. Furthermore, these characteristic localizations of PUFA-PCs were formed during neuronal maturation. The phenomenon of brain cell-selective production of specific PUFA-GPLs will help elucidate the potential physiological functions of PUFAs in specific brain regions. PMID:19417221

  6. Injection of phosphatidylcholine and deoxycholic acid regulates gene expression of lipolysis-related factors, pro-inflammatory cytokines, and hormones on mouse fat tissue.

    PubMed

    Won, Tae Joon; Nam, Yunsung; Lee, Ho Sung; Chung, Sujin; Lee, Jong Hyuk; Chung, Yoon Hee; Park, Eon Sub; Hwang, Kwang Woo; Jeong, Ji Hoon

    2013-10-01

    Injection of phosphatidylcholine (PC) and deoxycholic acid (DA) preparation is widely used as an alternative to liposuction for the reduction of subcutaneous fat. Nevertheless, its physiological effects and mechanism of action are not yet fully understood. In this report, PC and deoxycholic acid (DA) were respectively injected into adipose tissue. PC decreased tissue mass on day 7, but DA did not. On the other hand, a decrement of DNA mass was observed only in DA-injected tissue on day 7. Both PC and DA reduced the mRNA expression of adipose tissue hormones, such as adiponectin, leptin, and resistin. In lipolysis-related gene expression profiles, PC increased hormone-sensitive lipase (HSL) transcription and decreased the expression other lipases, perilipin, and the lipogenic marker peroxisome proliferator-activated receptor-γ (PPARγ); DA treatment diminished them all, including HSL. Meanwhile, the gene expression of pro-inflammatory cytokines and a chemokine was greatly elevated in both PC-injected and DA-injected adipose tissue. Microscopic observation showed that PC induced lipolysis with mild PMN infiltration on day 7. However, DA treatment did not induce lipolysis but induced much amount of PMN infiltration. In conclusion, PC alone might induce lipolysis in adipose tissue, whereas DC alone might induce tissue damage.

  7. Chronic treatment with a precursor of cellular phosphatidylcholine ameliorates morphological and behavioral effects of aging in the mouse [correction of rat] hippocampus.

    PubMed

    Crespo, D; Megias, M; Fernandez-Viadero, C; Verduga, R

    2004-06-01

    Normal aging is commonly associated with a decline in memory, mainly for that related with newly acquired information. The hippocampal formation (HF) is a brain region that has been implicated in this dysfunction. Within the HF there are several cellular types, such as pyramidal cells, granule neurons of the dentate gyrus, and astrocytes. CDP-choline is a well-known intermediate in the biosynthesis of phosphatidylcholine, a phospholipid essential for neuronal membrane preservation and function; thus, this compound would attenuate the process of neuronal aging. To test this, three groups of male mice were used in this study. An adult 12-month-old group (ACG), a 24-month-old (OCG), and an old experimental group (OEG) were administered orally a solution of CDP-choline (150 mg/kg per day) from 12 up to 24 months. Experimental observations suggest that CDP-choline has a positive effect on memory (reference errors were attenuated), and hippocampal morphology resembled that of younger animals.

  8. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2.

    PubMed

    Stremmel, Wolfgang; Staffer, Simone; Gan-Schreier, Hongying; Wannhoff, Andreas; Bach, Margund; Gauss, Annika

    2016-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in intestinal mucus, indicative of a specific transport system across the mucosal epithelium to the intestinal lumen. To elucidate this transport mechanism, we employed a transwell tissue culture system with polarized CaCo2 cells. It was shown that PC could not substantially be internalized by the cells. However, after basal application of increasing PC concentrations, an apical transport of 47.1±6.3nmolh(-1)mMPC(-1) was observed. Equilibrium distribution studies with PC applied in equal concentrations to the basal and apical compartments showed a 1.5-fold accumulation on the expense of basal PC. Disruption of tight junctions (TJ) by acetaldehyde or PPARγ inhibitors or by treatment with siRNA to TJ proteins suppressed paracellular transport by at least 50%. Transport was specific for the choline containing the phospholipids PC, lysoPC and sphingomyelin. We showed that translocation is driven by an electrochemical gradient generated by apical accumulation of Cl(-) and HCO3(-) through CFTR. Pretreatment with siRNA to mucin 3 which anchors in the apical plasma membrane of mucosal cells inhibited the final step of luminal PC secretion. PC accumulates in intestinal mucus using a paracellular, apically directed transport route across TJs.

  9. Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species.

    PubMed

    Le Grandois, Julie; Marchioni, Eric; Zhao, Minjie; Giuffrida, Francesca; Ennahar, Saïd; Bindler, Françoise

    2009-07-22

    This study is a contribution to the exploration of natural phospholipid (PL) sources rich in long-chain polyunsaturated fatty acids (LC-PUFAs) with nutritional interest. Phosphatidylcholines (PCs) were purified from total lipid extracts of different food matrices, and their molecular species were separated and identified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(2)). Fragmentation of lithiated adducts allowed for the identification of fatty acids linked to the glycerol backbone. Soy PC was particularly rich in species containing essential fatty acids, such as (18:2-18:2)PC (34.0%), (16:0-18:2)PC (20.8%), and (18:1-18:2)PC (16.3%). PC from animal sources (ox liver and egg yolk) contained major molecular species, such as (16:0-18:2)PC, (16:0-18:1)PC, (18:0-18:2)PC, or (18:0-18:1)PC. Finally, marine source (krill oil), which was particularly rich in (16:0-20:5)PC and (16:0-22:6)PC, appeared to be an interesting potential source for food supplementation with LC-PUFA-PLs, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

  10. Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures.

    PubMed

    Georgieva, R; Chachaty, C; Hazarosova, R; Tessier, C; Nuss, P; Momchilova, A; Staneva, G

    2015-06-01

    The understanding of the functional role of the lipid diversity in biological membranes is a major challenge. Lipid models have been developed to address this issue by using lipid mixtures generating liquid-ordered (Lo)/liquid-disordered (Ld) immiscibility. The present study examined mixtures comprising Egg sphingomyelin (SM), cholesterol (chol) and phosphatidylcholine (PC) either containing docosahexaenoic (PDPC) or oleic acid (POPC). The mixtures were examined in terms of their capability to induce phase separation at the micron- and nano-scales. Fluorescence microscopy, electron spin resonance (ESR), X-ray diffraction (XRD) and calorimetry methods were used to analyze the lateral organization of the mixtures. Fluorescence microscopy of giant vesicles could show that the temperature of the micron-scale Lo/Ld miscibility is higher for PDPC than for POPC ternary mixtures. At 37°C, no micron-scale Lo/Ld phase separation could be identified in the POPC containing mixtures while it was evident for PDPC. In contrast, a phase separation was distinguished for both PC mixtures by ESR and XRD, indicative that PDPC and POPC mixtures differed in micron vs nano domain organization. Compared to POPC, the higher line tension of the Lo domains observed in PDPC mixtures is assumed to result from the higher difference in Lo/Ld order parameter rather than hydrophobic mismatch.

  11. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels.

    PubMed

    Sakai, Hiromichi; Kado, Sayaka; Taketomi, Akinobu; Sakane, Fumio

    2014-09-19

    Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels.

  12. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles.

    PubMed

    Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse

    2006-03-01

    The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).

  13. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets

    PubMed Central

    Soupene, Eric; Wang, Derek; Kuypers, Frans A

    2015-01-01

    The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nutrients and proteins with the host cell. We show that host lipids are scavenged and modified into bacterial-specific lipids by the action of a shared human-bacterial acylation mechanism. The bacterial acylating enzymes for the essential lipids 1-acyl-sn-glycerol 3-phosphate and 1-acyl-sn-phosphatidylcholine were identified as CT453 and CT775, respectively. Bacterial CT775 was found to be associated with lipid droplets (LDs). During the development of C. trachomatis, the human acyl-CoA carrier hACBD6 was recruited to cytosolic LDs and translocated into the inclusion. hACBD6 protein modulated the activity of CT775 in an acyl-CoA dependent fashion and sustained the activity of the bacterial acyltransferase by buffering the concentration of acyl-CoAs. We propose that disruption of the binding activity of the acyl-CoA carrier might represent a new drug-target to prevent growth of C. trachomatis. PMID:25604091

  14. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  15. Phospholipid-nucleic acid recognition: energetics of DNA-Mg2+-phosphatidylcholine ternary complex formation and its further compaction as a gene delivery formulation.

    PubMed

    Süleymanoglu, Erhan

    2006-01-01

    Thermodynamic features related to the preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation-induced adsorption, aggregation, and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followed by differential adiabatic scanning microcalorimetry. Nucleic acid condensation and compaction mediated by Mg2+ was followed, with regard to interfacial interaction with unilamellar vesicles. Microcalorimetric measurements of synthetic phospholipid vesicles and poly(ribo)nucleotides and their ternary complexes with inorganic cations were used to build the thermodynamic model of their structural transitions. The increased thermal stability of the phospholipid bilayers is achieved by affecting their melting transition temperature by nucleic acid-induced electrostatic charge screening. Measurements give evidence for the stabilization of polynucleotide helices upon their association with liposomes in the presence of divalent metal cations. Such an induced aggregation of vesicles leads either to heterogeneous multilamellar DNA-lipid arrangements or to DNA-induced bilayer destabilization and lipid fusion. The further employment of these polyelectrolyte nanostructures as improved formulations in therapeutic gene delivery trials, as well as in DNA chromatography, is discussed.

  16. Micropolarities of lipid bilayers and micelles. 3. Effect of monovalent ions on the dielectric constant of the water-membrane interface of unilamellar phosphatidylcholine vesicles

    SciTech Connect

    Lessard, J.G.; Fragata, M.

    1986-02-27

    A study was undertaken of the effect of monovalent cations (Li/sup +/, Na/sup +/, K/sup +/) on the dielectric constant (epsilon) of the water-lipid interface of unilamellar phosphatidylcholine (PC) vesicles, i.e., the ester carbonyl oxygen region of the PC molecules or the neighborhood of the oxygen atoms of the phosphorylcholine moiety. epsilon was determined by reacting the free radical 1,1-diphenyl-2-picrylhydrazyl with ..cap alpha..-tocopherol incorporated in the lipid vesicles. The results are consistent with a decrease of epsilon (LiCl: 35.5 to 29.5; NaCl: 34 to 29; KCl: 33 to 29) as the concentration of the salts in the solvent media increases from 0.025 to 0.5 M. These effects can be rationalized in terms of dielectric saturation at the water-lipid interface brought about by ion-induced local electric fields. In the unilamellar PC vesicles the effect of the ions on epsilon follows the sequence K/sup +/ > Na/sup +/ > Li/sup +/ which contrasts strikingly with what happens in the liquid state where this is Li/sup +/ > Na/sup +/ > K/sup +/. These effects are related to the degree of hydration of the dissociated ions at the water-lipid interface which must differ in a considerable way from that in the liquid state. 43 references, 5 figures, 2 tables.

  17. An integrated strategy for the rapid extraction and screening of phosphatidylcholines and lysophosphatidylcholines using semi-automatic solid phase extraction and data processing technology.

    PubMed

    Zhang, Zhenzhu; Zhang, Yani; Yin, Jia; Li, Yubo

    2016-08-26

    This study attempts to establish a comprehensive strategy for the rapid extraction and screening of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) in biological samples using semi-automatic solid phase extraction (SPE) and data processing technology based on ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). First, the Ostro sample preparation method (i.e., semi-automatic SPE) was compared with the Bligh-Dyer method in terms of substance coverage, reproducibility and sample preparation time. Meanwhile, the screening method for PCs and LysoPCs was built through mass range screening, mass defect filtering and diagnostic fragments filtering. Then, the Ostro sample preparation method and the aforementioned screening method were combined under optimal conditions to establish a rapid extraction and screening platform. Finally, this developed method was validated and applied to the preparation and data analysis of tissue samples. Through a systematic evaluation, this developed method was shown to provide reliable and high-throughput experimental results and was suitable for the preparation and analysis of tissue samples. Our method provides a novel strategy for the rapid extraction and analysis of functional phospholipids. In addition, this study will promote further study of phospholipids in disease research.

  18. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    PubMed

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV.

  19. Biocompatible phosphatidylcholine bilayer coated on magnetic nanoparticles and their application in the extraction of several polycyclic aromatic hydrocarbons from environmental water and milk samples.

    PubMed

    Zhang, Shengxiao; Niu, Hongyun; Zhang, Yuanyuan; Liu, Junshen; Shi, Yali; Zhang, Xiaole; Cai, Yaqi

    2012-05-18

    In this work, phosphatidylcholine (PC) was coated on magnetic nanoparticles to form lipid bilayer as solid-phase extraction (SPE) sorbents for the enrichment of polycyclic aromatic hydrocarbons (PAHs) from environmental water and milk samples. The lipid bilayer was coated on Fe(3)O(4) nanoparticles using a modified dry lipid film hydration method. The resulted Fe(3)O(4)/PC could be readily isolated from solution with a magnet, and exhibited excellent adsorption performance to organic pollutants. Only 0.1g of sorbents was enough to extract PAHs from 500 mL aqueous solution, and 6 mL of acetonitrile was required to desorb them. The method was fast and relied on 10 min extraction time and 5 min magnetic separation. The proposed method was successfully applied to determine PAHs in some environmental water and milk samples. The detection limit was in the range of 0.2-0.6 ng L(-1). The recoveries of the spiked water samples ranged from 89% to 115% with relative standard deviations (RSD) varying from 1% to 8%. For spiked milk samples, RSD was satisfactory (1-9%), but the recoveries were relatively low (42-62%). We show the potentials of Fe(3)O(4)/PC sorbents in environmental water and biological sample analyses.

  20. Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP30, a momordica anti-HIV protein.

    PubMed

    Caizhen, Guo; Yan, Gao; Ronron, Chang; Lirong, Yang; Panpan, Chu; Xuemei, Hu; Yuanbiao, Qiao; Qingshan, Li

    2015-04-10

    An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life.

  1. Substance P Activates Ca2+-Permeable Nonselective Cation Channels through a Phosphatidylcholine-Specific Phospholipase C Signaling Pathway in nNOS-Expressing GABAergic Neurons in Visual Cortex.

    PubMed

    Endo, Toshiaki; Yanagawa, Yuchio; Komatsu, Yukio

    2016-02-01

    To understand the functions of the neocortex, it is essential to characterize the properties of neurons constituting cortical circuits. Here, we focused on a distinct group of GABAergic neurons that are defined by a specific colocalization of intense labeling for both neuronal nitric oxide synthase (nNOS) and substance P (SP) receptor [neurokinin 1 (NK1) receptors]. We investigated the mechanisms of the SP actions on these neurons in visual cortical slices obtained from young glutamate decarboxylase 67-green fluorescent protein knock-in mice. Bath application of SP induced a nonselective cation current leading to depolarization that was inhibited by the NK1 antagonists in nNOS-immunopositive neurons. Ruthenium red and La(3+), transient receptor potential (TRP) channel blockers, suppressed the SP-induced current. The SP-induced current was mediated by G proteins and suppressed by D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), but not by inhibitors of phosphatidylinositol-specific PLC, adenylate cyclase or Src tyrosine kinases. Ca(2+) imaging experiments under voltage clamp showed that SP induced a rise in intracellular Ca(2+) that was abolished by removal of extracellular Ca(2+) but not by depletion of intracellular Ca(2+) stores. These results suggest that SP regulates nNOS neurons by activating TRP-like Ca(2+)-permeable nonselective cation channels through a PC-PLC-dependent signaling pathway.

  2. Kinetic Model for Surface-Active Enzymes Based on the Langmuir Adsorption Isotherm: Phospholipase C (Bacillus cereus) Activity toward Dimyristoyl Phosphatidylcholine/Detergent Micelles

    NASA Astrophysics Data System (ADS)

    Burns, Ramon A.; El-Sayed, Maha Y.; Roberts, Mary F.

    1982-08-01

    A simple kinetic model for the enzymatic activity of surface-active proteins against mixed micelles has been developed. This model uses the Langmuir adsorption isotherm, the classic equation for the binding of gas molecules to metal surfaces, to characterize enzyme adsorption to micelles. The number of available enzyme binding sites is equated with the number of substrate and inhibitor molecules attached to micelles; enzyme molecules are attracted to the micelle due to the affinity of the enzyme active site for the molecules in the micelle. Phospholipase C (Bacillus cereus) kinetics in a wide variety of dimyristoyl phosphatidylcholine/detergent micelles are readily explained by this model and the assumption of competitive binding of the detergent at the enzyme active site. Binding of phospholipase C to pure detergent micelles is demonstrated by gel filtration chromatography. The experimentally determined enzyme-detergent micelle binding constants are used directly in the rate equation. The Langmuir adsorption model predicts a variety of the characteristics observed for phospholipase kinetics, such as differential inhibition by various charged, uncharged, and zwitterionic detergents and surface-dilution inhibition. The essential idea of this model, that proteins can be attracted and bound to bilayers or micelles by possessing a binding site for the molecules composing the surface, may have wider application in the study of water-soluble (extrinsic) protein-membrane interactions.

  3. Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts.

    PubMed

    Bagnato, Carolina; Igal, R Ariel

    2003-12-26

    Diacylglycerol (DAG) is a versatile molecule that participates as substrate in the synthesis of structural and energetic lipids, and acts as the physiological signal that activates protein kinase C. Diacylglycerol acyltransferase (DGAT), the last committed enzyme in triacylglycerol synthesis, could potentially regulate the content and use of both signaling and glycerolipid substrate DAG by converting it into triacylglycerol. To test this hypothesis, we stably overexpressed the DGAT1 mouse gene in human lung SV40-transformed fibroblasts (DGAT cells), which contains high levels of DAG. DGAT cells exhibited a 3.9-fold higher DGAT activity and a 3.2-fold increase in triacylglycerol content, whereas DAG and phosphatidylcholine decreased by 70 and 20%, respectively, compared with empty vector-transfected SV40 cells (Control cells). Both acylation and de novo synthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were reduced by 30-40% in DGAT cells compared with controls, suggesting that DGAT used substrates for triacylglycerol synthesis that had originally been destined to produce phospholipids. The incorporation of [14C]DAG and [14C]fatty acids released from plasma membrane by additions of either phospholipase C or phospholipase A2 into triacylglycerol was increased by 6.2- and 2.8-fold, respectively, in DGAT cells compared with control cells, indicating that DGAT can attenuate signaling lipids. Finally, DGAT overexpression reversed the neoplastic phenotype because it dramatically reduced the cell growth rate and suppressed the anchorage-independent growth of the SV40 cells. These results strongly support the view that DGAT participates in the regulation of membrane lipid synthesis and lipid signaling, thereby playing an important role in modulating cell growth properties.

  4. A Small Phospholipase A2-α from Castor Catalyzes the Removal of Hydroxy Fatty Acids from Phosphatidylcholine in Transgenic Arabidopsis Seeds1[OPEN

    PubMed Central

    Bayon, Shen; Chen, Guanqun; Weselake, Randall J.; Browse, John

    2015-01-01

    Ricinoleic acid, an industrially useful hydroxy fatty acid (HFA), only accumulates to high levels in the triacylglycerol fraction of castor (Ricinus communis) endosperm, even though it is synthesized on the membrane lipid phosphatidylcholine (PC) from an oleoyl ester. The acyl chains of PC undergo intense remodeling through the process of acyl editing. The identities of the proteins involved in this process, however, are unknown. A phospholipase A2 (PLA2) is thought to be involved in the acyl-editing process. We show here a role for RcsPLA2α in the acyl editing of HFA esterified to PC. RcsPLA2α was identified by its high relative expression in the castor endosperm transcriptome. Coexpression in Arabidopsis (Arabidopsis thaliana) seeds of RcsPLA2α with the castor fatty acid hydroxylase RcFAH12 led to a dramatic decrease in seed HFA content when compared with RcFAH12 expression alone in both PC and the neutral lipid fraction. The low-HFA trait was heritable and gene dosage dependent, with hemizygous lines showing intermediate HFA levels. The low seed HFA levels suggested that RcsPLA2α functions in vivo as a PLA2 with HFA specificity. Activity assays with yeast (Saccharomyces cerevisiae) microsomes showed a high specificity of RcsPLA2α for ricinoleic acid, superior to that of the endogenous Arabidopsis PLA2α. These results point to RcsPLA2α as a phospholipase involved in acyl editing, adapted to specifically removing HFA from membrane lipids in seeds. PMID:25667315

  5. Reduction of sperm cholesterol:phospholipid ratio is a possible mechanism for enhancement of human sperm binding to the zona pellucida following incubation with phosphatidylcholine liposomes.

    PubMed

    Gamzu, R; Yogev, L; Paz, G; Yavetz, H; Lichtenberg, D

    1997-09-01

    TEST (TES (N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid) and Tris) yolk buffer (TYB) has recently been shown to improve the binding capacity of spermatozoa to zona pellucidae. The present study had two objectives: 1) to elucidate which component(s) of TYB dominates this effect and 2) to define the responsible mechanism. Sperm samples obtained from subfertile men were incubated for 2 h in either TYB or media containing egg yolk lipoproteins or phospholipids. After incubation, sperm binding was tested by the hemizona assay. Yolk lipoprotein-treated spermatozoa bound hemizonae with efficiency equal to that of the spermatozoa incubated in control medium. Conversely, incubation of spermatozoa in media containing either TYB, yolk-phospholipids, or pure phosphatidylcholine (PC) resulted in a 2- to 3-fold increased binding capacity (p < 0.01). A close correlation was found between the effect of yolk-phospholipids and TYB on the binding capacity of the same sperm samples, compared to spermatozoa incubated in control medium. Incubation of spermatozoa in yolk phospholipid medium caused a dose-dependent increase of sperm binding capacity (p < 0.05). Treatment of sperm samples with 1 mg/ml or more of purified PC preparation also resulted in a reduction of the sperm cholesterol:phospholipid molar ratio. Significant correlations between the effects of the treatments on sperm cholesterol: phospholipid molar ratio and sperm binding were obtained with yolk-phospholipids (r = -0.55) or 1 mg/ml purified PC (r = -0.61). We conclude that 1) the enhanced binding capacity of human spermatozoa following TYB treatment is probably due to yolk-phospholipids, mainly egg yolk PC; and 2) it appears that the enhanced binding capacity of human spermatozoa following treatment with egg yolk-containing media may be a result of the reduction of the cholesterol:phospholipid molar ratio in the sperm cells.

  6. Phosphatidylcholine/vegetable oil pseudo-binary mixtures at the air-water interface: predictive formulation of oil blends with selected surface behavior.

    PubMed

    Caruso, Benjamín; Maestri, Damián M; Perillo, María A

    2010-01-01

    The present work is an attempt to define how to formulate oil blends with an expected surface behavior using easily accessible data such as chemical compositions. Hence, we determined average surface properties of triglycerides (TG) from olive (O), soybean (S), and walnut (W) oils self-organized in Langmuir films alone or in pseudo-binary mixtures with phosphatidylcholines (PC). Collapse pressure (pi(c)), compressibility modulus (K) and molecular area at the closest packing (A(min)) were determined from pi-mean molecular area (Mma) isotherms. The pi(c)-composition phase diagrams of TG-PC mixtures provided information about oils solubility limit with PCs in the monolayer phase. A thermodynamic equilibrium model was fitted to the line joining points of monolayer-TG(liquid phase) coexistence and allowed to obtain interaction parameters, omega, which consistently with those of excess surface energy (Delta G(ex)) and Mma deviations from ideality, contributed to describe interfacial intermolecular interactions. Oil molar fractions (x(TG)) for TGs-PCs self-assembling into vesicles were estimated from x(TG) values at pi(c) congruent with 30 mN/m (equilibrium pi of bilayers), which resulted higher in egg PC (0.15, 0.2, 0.15 for O, S and W, respectively) than in dipalmitoyl-PC (0.125, 0.075, 0.1). Principal component analysis performed on surface parameters, grouped S and W separated from O. This result was mainly influenced by variables estimating the effect of unsaturation degrees of fatty acids sterified at TGs, A(min) and pi(c). Peanut oils surface data interpolated in pi(c)-C16/C18 and A(min)-DBI correlation lines obtained with O-S mixtures (TG(mix)) and with TG(mix)-PC supported C16/C18 ratio and DBI as predictors to formulate oil blends with selected surface behavior.

  7. Formation of an ordered phase by ceramides and diacylglycerols in a fluid phosphatidylcholine bilayer--Correlation with structure and hydrogen bonding capacity.

    PubMed

    Ekman, Peik; Maula, Terhi; Yamaguchi, Shou; Yamamoto, Tetsuya; Nyholm, Thomas K M; Katsumura, Shigeo; Slotte, J Peter

    2015-10-01

    Ceramides and diacylglycerols are lipids with a large hydrophobic part (acyl chains and long-chain base) whereas their polar function (hydroxyl group) is small. They need colipids with large head groups to coexist in bilayer membranes. In this study, we have determined how saturated and unsaturated ceramides and acyl-chain matched diacylglycerols form ordered domains in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers as a function of bilayer concentration. The formation of ordered domains was determined from lifetime analysis of trans-parinaric acid. Ceramides formed ordered domains with equal average tPA lifetime at lower bilayer concentration when compared to acyl-chain matched diacylglycerols. This was true for both saturated (16:0) and mono-unsaturated (18:1) species. This finding suggested that hydrogen bonding among ceramides contributed to their more efficient ordered phase formation, since diacylglycerols do not form similar hydrogen bonding networks. The role of hydrogen bonding in ordered domain formation was further verified by using palmitoyl ceramide analogs with 2N and 3OH methylated long-chain bases. These analogs do not form hydrogen bonds from the 2NH or the 3OH, respectively. While methylation of the 3OH did not affect ordered phase formation compared to native palmitoyl ceramide, 2NH methylation markedly attenuated ceramide ordered phase formation. We conclude that in addition to acyl chain length, saturation, molecular order, and lack of large head group, also hydrogen bonding involving the 2NH is crucial for efficient formation of ceramide-rich domains in fluid phosphatidylcholine bilayers.

  8. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR

    PubMed Central

    Zhang, Xu Hannah; Zhao, Chunying; Ma, Zhongmin Alex

    2010-01-01

    Summary The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca2+-independent-phospholipase A2 (iPLA2). We previously reported that inhibition of iPLA2 arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA2 induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA2. The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA2-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway. PMID:18032786

  9. A novel chiral stationary phase HPLC-MS/MS method to discriminate between enzymatic oxidation and auto-oxidation of phosphatidylcholine.

    PubMed

    Ito, Junya; Nakagawa, Kiyotaka; Kato, Shunji; Hirokawa, Takafumi; Kuwahara, Shigefumi; Nagai, Toshiharu; Miyazawa, Teruo

    2016-11-01

    To elucidate the role of enzymatic lipid peroxidation in disease pathogenesis and in food deterioration, we recently achieved stereoselective analysis of phosphatidylcholine hydroperoxide (PCOOH) possessing 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-9Z,11E-HPODE) using HPLC-MS/MS with a CHIRALPAK OP (+) column. Because enzymatic oxidation progresses concurrently with auto-oxidation, we need to distinguish them further. Here, we attempted such an analysis. First, we used lipoxygenase, linoleic acid, and lysophosphatidylcholine (LPC) to synthesize the enzymatic oxidation product 13(S)-9Z,11E-HPODE PC, and the auto-oxidation products 13(RS)-9Z,11E-HPODE PC and 13(RS)-9E,11E-HPODE PC, which were used as standards to test the ability of various columns to separate the enzymatic oxidation product from auto-oxidation products. Separation was achieved by connecting in series two columns with different properties: CHIRALPAK OP (+) and CHIRALPAK IB-3. The CHIRALPAK OP (+) column separated 13(R)-9Z,11E-HPODE PC and 13(S)-9Z,11E-HPODE PC, whereas CHIRALPAK IB-3 enabled separation of 13(S)-9Z,11E-HPODE PC and 13(RS)-9E,11E-HPODE PC. The results for the analysis of both enzymatically oxidized and auto-oxidized lecithin (an important phospholipid mixture in vivo and in food) indicate that our method would be useful for distinguishing enzymatic oxidation and auto-oxidation reactions. Such information will be invaluable for elucidating the involvement of PCOOH in disease pathogenesis and in food deterioration.

  10. Arachidonic acid-containing phosphatidylcholine characterized by consolidated plasma and liver lipidomics as an early onset marker for tamoxifen-induced hepatic phospholipidosis.

    PubMed

    Saito, Kosuke; Goda, Keisuke; Kobayashi, Akio; Yamada, Naohito; Maekawa, Kyoko; Saito, Yoshiro; Sugai, Shoichiro

    2017-01-31

    Lipid profiling has emerged as an effective approach to not only screen disease and drug toxicity biomarkers but also understand their underlying mechanisms of action. Tamoxifen, a widely used antiestrogenic agent for adjuvant therapy against estrogen-positive breast cancer, possesses side effects such as hepatic steatosis and phospholipidosis (PLD). In the present study, we administered tamoxifen to Sprague-Dawley rats and used lipidomics to reveal tamoxifen-induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. Treatment with tamoxifen for 28 days caused hepatic PLD in rats. We compared the plasma and liver lipid profiles in treated vs. untreated rats using a multivariate analysis to determine differences between the two groups. In total, 25 plasma and 45 liver lipids were identified and altered in the tamoxifen-treated group. Of these lipids, arachidonic acid (AA)-containing phosphatidylcholines (PCs), such as PC (17:0/20:4) and PC (18:1/20:4), were commonly reduced in both plasma and liver. Conversely, tamoxifen increased other phosphoglycerolipids in the liver, such as phosphatidylethanolamine (18:1/18:1) and phosphatidylinositol (18:0/18:2). We also examined alteration of AA-containing PCs and some phosphoglycerolipids in the pre-PLD stage and found that these lipid alterations were initiated before pathological alteration in the liver. In addition, changes in plasma and liver levels of AA-containing PCs were linearly associated. Moreover, levels of free AA and mRNA levels of AA-synthesizing enzymes, such as fatty acid desaturase 1 and 2, were decreased by tamoxifen treatment. Therefore, our study demonstrated that AA-containing PCs might have potential utility as novel and predictive biomarkers for tamoxifen-induced PLD. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The Significance of Different Diacylgycerol Synthesis Pathways on Plant Oil Composition and Bioengineering

    PubMed Central

    Bates, Philip D.; Browse, John

    2012-01-01

    The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA) composition of triacylglycerol (TAG). Plants can use two main pathways to produce diacylglycerol (DAG), the immediate precursor molecule to TAG synthesis: (1) De novo DAG synthesis, and (2) conversion of the membrane lipid phosphatidylcholine (PC) to DAG. The FA esterified to PC are also the substrate for FA modification (e.g., desaturation, hydroxylation, etc.), such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions. PMID:22783267

  12. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH.

    PubMed Central

    Garidel, P; Johann, C; Blume, A

    1997-01-01

    The miscibilities of phosphatidic acids (PAs) and phosphatidylcholines (PCs) with different chain lengths (n = 14, 16) at pH 4, pH 7, and pH 12 were examined by differential scanning calorimetry. Simulation of heat capacity curves was performed using a new approach that incorporates changes of cooperativity of the transition in addition to nonideal mixing in the gel and the liquid-crystalline phase as a function of composition. From the simulations of the heat capacity curves, first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained, and phase diagrams were constructed using temperatures for onset and end of melting, which were corrected for the broadening effect caused by a decrease in cooperativity. In all cases the composition dependence of the nonideality parameters indicated nonsymmetrical mixing behavior. The phase diagrams were therefore further refined by simulations of the coexistence curves using a four-parameter approximation to account for nonideal and nonsymmetrical mixing in the gel and the liquid-crystalline phase. The mixing behavior was studied at three different pH values to investigate how changes in headgroup charge of the PA influences the miscibility. The experiments showed that at pH 7, where the PA component is negatively charged, the nonideality parameters are in most cases negative, indicating that electrostatic effects favor a mixing of the two components. Partial protonation of the PA component at pH 4 leads to strong changes in miscibility; the nonideality parameters for the liquid-crystalline phase are now in most cases positive, indicating clustering of like molecules. The phase diagram for 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid:1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine mixtures at pH 4 indicates that a fluid-fluid immiscibility is likely. The results show that a decrease in ionization of PAs can induce large changes in mixing behavior. This occurs because of a

  13. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  14. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model

    PubMed Central

    Sovadinova, Iva; Babica, Pavel; Böke, Hatice; Kumar, Esha; Wilke, Andrew; Park, Joon-Suk; Trosko, James E.; Upham, Brad L.

    2015-01-01

    Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. In conclusion: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap

  15. Human- and mouse-inducible nitric oxide synthase promoters require activation of phosphatidylcholine-specific phospholipase C and NF-kappa B.

    PubMed Central

    Spitsin, S. V.; Farber, J. L.; Bertovich, M.; Moehren, G.; Koprowski, H.; Michaels, F. H.

    1997-01-01

    BACKGROUND: The production of nitric oxide by type II inducible nitric oxide synthase (type II NOS) gene is controlled at least in part by transcriptional activation. Although the murine and human type II NOS genes share significant sequence homology, they differ in the induction stimuli required for activation. MATERIALS AND METHODS: The A549 human and murine RAW 264.7 cell lines were cultured in the presence of inducers of the type II NOS gene and exposed to specific inhibitors of phosphatidyl choline-specific phospholipase C, NF-kappa B, and endocytosis, as well as to reagents that deplete stores of ATP or prevent the acidification of endosomes. The effect of these reagents on the induction of the type II NOS gene transcription, translation, and NO expression was studied using electromobility shift assays, Western blotting, and the detection of NO as nitrates, as appropriate. Additionally, the ability of the native human type II NOS NF-kappa B recognition sequence to bind NF-kappa B was compared with a concensus sequence and with a mutated oligomer. RESULTS: Type II NOS production by both human and mouse cells could be prevented by the addition of the specific inhibitor of phosphatidylcholine-specific phospholipase C, D609, and of agents that interfere with the activation of NF-kappa B. Both mouse and human cells also required acidic endosome formation and the production of 1,2-diacylglycerol for type II NOS expression. Additionally, the native human type II NOS NF-kappa B recognition sequence bound NF-kappa B with significantly less affinity than did the recognition sequence derived from the human immunoglobulin light-chain gene promoter. CONCLUSIONS: These experiments show that whereas mouse cells can be activated by lipopolysaccharide to produce nitric oxide, and human cells require activation by a mixture of cytokines to produce nitric oxide, the intracellular activation pathway following receptor binding of these heterologous stimuli is shared. Additionally

  16. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.

    PubMed

    Sun, Zhenxin; Kang, Yun; Norris, Michael H; Troyer, Ryan M; Son, Mike S; Schweizer, Herbert P; Dow, Steven W; Hoang, Tung T

    2014-01-01

    Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient

  17. Changes of Phosphatidylcholine and Fatty Acids in Germ Cells during Testicular Maturation in Three Developmental Male Morphotypes of Macrobrachium rosenbergii Revealed by Imaging Mass Spectrometry

    PubMed Central

    Siangcham, Tanapan; Chansela, Piyachat; Hayasaka, Takahiro; Masaki, Noritaka; Sroyraya, Morakot; Poljaroen, Jaruwan; Suwansa-ard, Saowaros; Engsusophon, Attakorn; Hanna, Peter J.; Sobhon, Prasert; Setou, Mitsutoshi

    2015-01-01

    Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity. PMID:25781176

  18. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures.

    PubMed Central

    Hsieh, C. H.; Wu, W. G.

    1995-01-01

    The packing and dynamics of lipid bilayers at the phosphocholine headgroup region within the temperature range of -40 to -110 degrees C have been investigated by solid-state nuclear magnetic resonance (NMR) measurements of selectively deuterium-labeled H2O/dimyristoylphosphatidylcholine (DMPC) bilayers. Two coexisting signals with 2H NMR quadrupolar, splittings of 36.1 and 9.3 (or smaller) kHz were detected from the -CD3 of choline methyl group. These two signals have been assigned to two coexisting gel-state headgroup structures with fast rotational motion of -CD3 and -N(CD3)3 group, respectively, with a threefold symmetry. The largest quadrupolar splitting of the NMR signal detected from the -CD2 of C alpha and C beta methylene segment was found to be 115.2 kHz, which is 10% lower than its static value of 128.2 kHz. Thus, there are extensive motions of the entire choline group of gel-state phosphatidylcholine bilayers even at a subzero temperature of -110 degrees C. These results strongly support the previous suggestion (E. J. Dufourc, C. Mayer, J. Stohrer, G. Althoff, and G. Kothe, 1992, Biophys. J. 61:42-57) that 31P chemical shift tensor elements of DMPC determined under similar conditions are not the rigid static values. The free energy difference between the two gel-state headgroup structures was determined to be 26.3 +/- 0.9 kJ/mol for fully hydrated bilayers. Furthermore, two structures with similar free energy difference were also detected for "frozen" phosphorylcholine chloride solution in a control experiment, leading to the conclusion that the two structures may be governed solely by the energetics of fully hydrated phosphocholine headgroup. The intermolecular interactions among lipids, however, stabilize the static headgroup structure as evidenced by the apparently lower free energy difference between the two structures for partially hydrated lipid bilayers. Evidence is also presented to suggest that one of the headgroup structures with

  19. Phosphatidylethanolamine Synthesis Is Required for Optimal Virulence of Brucella abortus▿

    PubMed Central

    Bukata, Lucas; Altabe, Silvia; de Mendoza, Diego; Ugalde, Rodolfo A.; Comerci, Diego J.

    2008-01-01

    The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell. PMID:18931122

  20. Generation of choline for acetylcholine synthesis by phospholipase D isoforms

    PubMed Central

    Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof

    2001-01-01

    Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063

  1. Adrenocorticotropin and adenosine 3',5'-monophosphate stimulate de novo synthesis of adrenal phosphatidic acid by a cycloheximide-sensitive, CA++-dependent mechanism

    SciTech Connect

    Farese, R.V.; Sabir, M.A.; Larson, R.E.

    1981-12-01

    We tested further our postulate that enhanced de novo synthesis of phosphatidic acid is responsible for ACTH- and cAMP-induced increases in adrenal phospholipids in the phosphatidate polyphosphoinositide pathway. During incubation of adrenal sections or cells in vitro, ACTH and cAMP increased the concentrations of and incorporation of (3H)glycerol and (14C)palmitate into phosphatidylcholine and phosphatidylethanolamine, two major phospholipids which are derived from phosphatidic acid, but are extrinsic to the inositide pathway. Thus, it is unlikely that ACTH and cAMP increase inositide phospholipids at the expense of other phospholipids. Similar to previously reported effects on phosphatidic acid and inositide phospholipids, cycloheximide blocked the effects of ACTH and cAMP on phosphatidylcholine and phosphatidylethanolamine. In addition, Ca++ was required for these effects, as well as for cAMP-induced increases in phosphatidic acid, inositide phospholipids, and steroidogenesis. Our findings strongly suggest that ACTH, via cAMP, stimulates de novo phosphatidate synthesis by a cycloheximide-sensitive, Ca++-dependent process, and this stimulation causes a rapid generalized increase in adrenal phospholipids. Moreover, the increased incorporation of labeled glycerol and palmitate into phospholipids suggests that ACTH and cAMP may stimulate the glycerol-3'-PO4 acyltransferase reaction. This stimulatory effect may play a central role in the steroidogenic and trophic actions of ACTH and cAMP.

  2. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong

    2015-02-11

    Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.

  3. Altered lipid synthesis in type II pneumonocytes exposed to lung surfactant.

    PubMed Central

    Thakur, N R; Tesan, M; Tyler, N E; Bleasdale, J E

    1986-01-01

    When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein. Images Fig. 4. PMID:3827860

  4. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles.

    PubMed

    Nchoutmboube, Jules A; Viktorova, Ekaterina G; Scott, Alison J; Ford, Lauren A; Pei, Zhengtong; Watkins, Paul A; Ernst, Robert K; Belov, George A

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  5. Synthesis of lyso(bis)phosphatidic acid in rabbit alveolar macrophages

    SciTech Connect

    Thornburg, T.; Roddick, V.; Wykle, R.L.; Waite, M.

    1987-05-01

    Reported here are studies on the biosynthetic pathway used by normal and BCG elicited alveolar macrophages for the synthesis of lyso(bis)phosphatidic acid (L(bis)PA). Earlier observations by this laboratory have shown that although L(bis)PA is abundant in these cells, there is little de novo synthesis of this lipid. Diaceyl phosphatidylglycerol (PG) labeled with either (1,2,3-/sup 3/H) glycerol or /sup 32/P demonstrated that PG is used as an exogenous substrate for L(bis)PA formation; both glycerol moieties are incorporated. Other phospholipids do not have this capacity. BCG-elicited macrophages are capable of only one-quarter the synthesis of L(bis)PA seen with normal cells, and also show a decreased amount of cell associated substrate. In addition, (/sup 3/H) 1-0-alkyl PG was used as a substrate to test the importance of the sn-1 acyl linkage in the synthetic pathway. This substrate produced less L(bis)PA while dramatically increasing the amounts of labelled phosphatidylethanolamine and phosphatidylcholine within the cell. The alkyl substrate also showed increased uptake by the cell. They conclude that the hydrolysis of the acyl group at the sn-1 position of PG is essential in the synthetic pathway leading to the production of L(bis)PA. They further suggest that the PG used by these cells as an exogenous substrate in vitro is obtained from the PG-rich surfactant surrounding the alveolar macrophage.

  6. Interaction of n-octyl β,D-glucopyranoside with giant magnetic-fluid-loaded phosphatidylcholine vesicles: direct visualization of membrane curvature fluctuations as a function of surfactant partitioning between water and lipid bilayer.

    PubMed

    Ménager, Christine; Guemghar, Dihya; Cabuil, Valérie; Lesieur, Sylviane

    2010-10-05

    The present study deals with the morphological modifications of giant dioleoyl phosphatidylcholine vesicles (DOPC GUVs) induced by the nonionic surfactant n-octyl β,D-glucopyranoside at sublytic levels, i.e., in the first steps of the vesicle-to-micelle transition process, when surfactant inserts into the vesicle bilayer without disruption. Experimental conditions were perfected to exactly control the surfactant bilayer composition of the vesicles, in line with former work focused on the mechanical properties of the membrane of magnetic-fluid-loaded DOPC GUVs submitted to a magnetic field. The purpose here was to systematically examine, in the absence of any external mechanical constraint, the dynamics of giant vesicle shape and membrane deformations as a function of surfactant partitioning between the aqueous phase and the lipid membrane, beforehand established by turbidity measurements from small unilamellar vesicles.

  7. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase

    PubMed Central

    McNeil, Scott D.; Nuccio, Michael L.; Ziemak, Michael J.; Hanson, Andrew D.

    2001-01-01

    Choline (Cho) is the precursor of the osmoprotectant glycine betaine and is itself an essential nutrient for humans. Metabolic engineering of Cho biosynthesis in plants could therefore enhance both their resistance to osmotic stresses (drought and salinity) and their nutritional value. The key enzyme of the plant Cho-synthesis pathway is phosphoethanolamine N-methyltransferase, which catalyzes all three of the methylations required to convert phosphoethanolamine to phosphocholine. We show here that overexpressing this enzyme in transgenic tobacco increased the levels of phosphocholine by 5-fold and free Cho by 50-fold without affecting phosphatidylcholine content or growth. Moreover, the expanded Cho pool led to a 30-fold increase in synthesis of glycine betaine via an engineered glycine betaine pathway. Supplying the transgenics with the Cho precursor ethanolamine (EA) further enhanced Cho levels even though the supplied EA was extensively catabolized. These latter results establish that there is further scope for improving Cho synthesis by engineering an increased endogenous supply of EA and suggest that this could be achieved by enhancing EA synthesis and/or by suppressing its degradation. PMID:11481443

  8. PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 Regulate Phospholipid Synthesis at the Endoplasmic Reticulum in Arabidopsis[W

    PubMed Central

    Eastmond, Peter J.; Quettier, Anne-Laure; Kroon, Johan T.M.; Craddock, Christian; Adams, Nicolette; Slabas, Antoni R.

    2010-01-01

    Phospholipid biosynthesis is essential for the construction of most eukaryotic cell membranes, but how this process is regulated in plants remains poorly understood. Here, we show that in Arabidopsis thaliana, two Mg2+-dependent phosphatidic acid phosphohydrolases called PAH1 and PAH2 act redundantly to repress phospholipid biosynthesis at the endoplasmic reticulum (ER). Leaves from pah1 pah2 double mutants contain ~1.8-fold more phospholipid than the wild type and exhibit gross changes in ER morphology, which are consistent with massive membrane overexpansion. The net rate of incorporation of [methyl-14C]choline into phosphatidylcholine (PC) is ~1.8-fold greater in the double mutant, and the transcript abundance of several key genes that encode enzymes involved in phospholipid synthesis is increased. In particular, we show that PHOSPHORYLETHANOLAMINE N-METHYLTRANSFERASE1 (PEAMT1) is upregulated at the level of transcription in pah1 pah2 leaves. PEAMT catalyzes the first committed step of choline synthesis in Arabidopsis and defines a variant pathway for PC synthesis not found in yeasts or mammals. Our data suggest that PAH1/2 play a regulatory role in phospholipid synthesis that is analogous to that described in Saccharomyces cerevisiae. However, the target enzymes differ, and key components of the signal transduction pathway do not appear to be conserved. PMID:20699392

  9. Choline Synthesis in Spinach in Relation to Salt Stress.

    PubMed Central

    Summers, P. S.; Weretilnyk, E. A.

    1993-01-01

    Choline metabolism was examined in spinach (Spinacia oleracea L.) plants growing under nonsaline and saline conditions. In spinach, choline is required for phosphatidylcholine synthesis and as a precursor for the compatible osmolyte glycine betaine (betaine). When control (nonsalinized) leaf discs were incubated for up to 2 h with [1,2-14C]ethanolamine, label appeared in the N-methylated derivatives of phosphoethanolamine including phosphomono-, phosphodi-, and phosphotri- (i.e. phosphocholine) methyl-ethanolamine, as well as in choline and betaine, whereas no radioactivity could be detected in the mono- and dimethylated derivatives of the free base ethanolamine. Leaf discs from salinized plants showed the same pattern of labeling, although the proportion of label that accumulated in betaine was almost 3-fold higher in the salinized leaf discs. Enzymes involved in choline metabolism were assayed in crude leaf extracts of plants. The activites of ethanolamine kinase and of the three S-adenosylmethionine:phospho-base N-methyltransferase enzymes responsible for N-methylating phosphoethanolamine to phosphocholine were all higher in extracts of plants salinized step-wise to 100, 200, or 300 mM NaCI compared with controls. In contrast, choline kinase, phosphocholine phosphatase, and cytidine 5[prime]-triphosphate: phosphocholine cytidylyltransferase activities showed little variation with salt stress. Thus, the increased diversion of choline to betaine in salt-stressed spinach appears to be mediated by the increased activity of several key enzymes involved in choline biosynthesis. PMID:12232019

  10. Tracking synthesis and turnover of triacylglycerol in leaves.

    PubMed

    Tjellström, Henrik; Strawsine, Merissa; Ohlrogge, John B

    2015-03-01

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [(14)C]lauric acid (12:0), a major initial product was [(14)C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [(14)C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [(14)C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [(14)C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [(14)C]12:0 and the plastid products of [(14)C]12:0 metabolism entered different pathways. Although plastid-modified (14)C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [(14)C]16:0 and [(14)C]18:1 in TAG. Because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [(14)C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.

  11. Tracking synthesis and turnover of triacylglycerol in leaves

    DOE PAGES

    Tjellstrom, Henrik; Strawsine, Merissa; Ohlrogge, John B.

    2015-01-21

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [14C]lauric acid (12:0), a major initial product was [14C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 andmore » pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [14C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [14C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [14C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [14C]12:0 and the plastid products of [14C]12:0 metabolism entered different pathways. Although plastid-modified 14C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [14C]16:0 and [14C]18:1 in TAG. Lastly, because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [14C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.« less

  12. Changes in the Enzymes for Fatty Acid Synthesis and Desaturation during Acclimation of Developing Soybean Seeds to Altered Growth Temperature

    PubMed Central

    Cheesbrough, Thomas M.

    1989-01-01

    Temperature-induced changes in the enzymes for fatty acid synthesis and desaturation were studied in developing soybean seeds (Glycine max L. var Williams 82). Changes were induced by culture of the seed pods for 20 hours in liquid media at 20, 25, or 35°C. Linoleoyl and oleoyl desaturases were 94 and 10 times as active, respectively, in seeds cultured at 20°C as those cultured at 25°C. Both desaturases had negligible activity in seeds cultured at 35°C compared to seeds cultured at 20°C. Though less dramatic, other enzymes also showed differences in activity after 20 hours in culture at 20, 25, or 35°C. Stearoyl-acyl carrier protein (ACP) desaturase and CDP-choline:diacylglycerol phosphorylcholine transferase were most active in preparations from 20°C cultures. Activities were twofold lower at 25°C and a further threefold lower in 35°C cultures. Cultures from 25 and 35°C had 60 and 40%, respectively, of the phosphorylcholine:CTP cytidylyl transferase activity present in cultures grown at 20°C. Fatty acid synthetase, malonyl-coenzyme A:ACP transacylase, palmitoyl-ACP elongation, and choline kinase were not significantly altered by culture temperature. These data suggest that the enzymes for fatty acid desaturation and phosphatidylcholine synthesis can be rapidly modulated in response to altered growth temperatures, while the enzymes for fatty acid synthesis and elongation are not. PMID:16666840

  13. Cytidine monophosphate-dependent synthesis of phosphatidylglycerol in permeabilized type II pneumonocytes.

    PubMed Central

    Bleasdale, J E; Thakur, N R; Rader, G R; Tesan, M

    1985-01-01

    Results of previous investigations support the proposition that, in type II pneumonocytes, CMP is involved in integration of the synthesis of phosphatidylcholine and phosphatidylglycerol for lung surfactant. In the present investigation, the amount of CMP in rat type II pneumonocytes was altered directly and resultant changes in the synthesis of phosphatidylglycerol were examined. Type II pneumonocytes were made permeable to CMP by treatment with Ca2+-free medium, and phosphatidylglycerol synthesis was then assessed by measurement of the incorporation of a radiolabelled precursor, [14C]glycerol 3-phosphate, that was not effectively utilized by cells that resisted permeabilization. Incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol (but not into other lipids) was stimulated greatly by CMP (half-maximal stimulation at approx. 0.1 mM). CMP stimulated the incorporation of [14C]glycerol 3-phosphate into both the phosphatidyl moiety and the head group of phosphatidylglycerol. Incorporation of [14C]palmitate into phosphatidylglycerol was also stimulated by CMP. myo-Inositol, at concentrations found in foetal-rat serum (0.2-2.0 mM), inhibited CMP-dependent incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol and promoted, instead, CMP-dependent incorporation into phosphatidylinositol. These data, when extrapolated to foetal type II pneumonocytes, are consistent with the view that the developmental increase in the synthesis of phosphatidylglycerol for surfactant by foetal lungs is promoted by the increase in intracellular CMP and the declining availability of myo-inositol that were found previously to be associated with this period of development. PMID:3004409

  14. Very high frequency electron paramagnetic resonance of 2,2,6,6-tetramethyl-1-piperidinyloxy in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine liposomes: partitioning and molecular dynamics.

    PubMed Central

    Smirnov, A I; Smirnova, T I; Morse, P D

    1995-01-01

    Partitioning and molecular dynamics of 2,2,6,6,-tetramethylpiperedine-1-oxyl (TEMPO) nitroxide radicals in large unilamellar liposomes (LUV) composed from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine were investigated by using very high frequency electron paramagnetic resonance (EPR) spectroscopy. Experiments carried out at a microwave frequency of 94.3 GHz completely resolved the TEMPO EPR spectrum in the aqueous and hydrocarbon phases. An accurate computer simulation method combined with Levenberg-Marquardt optimization was used to analyze the TEMPO EPR spectra in both phases. Spectral parameters extracted from the simulations gave the actual partitioning of the TEMPO probe between the LUV hydrocarbon and aqueous phases and allowed analysis of picosecond rotational dynamics of the probe in the LUV hydrocarbon phase. In very high frequency EPR experiments, phase transitions in the LUV-TEMPO system were observed as sharp changes in both partitioning and rotational correlation times of the TEMPO probe. The phase transition temperatures (40.5 +/- 0.2 and 32.7 +/- 0.5 degrees C) are in agreement with previously reported differential scanning microcalorimetry data. Spectral line widths were analyzed by using existing theoretical expressions for motionally narrowed nitroxide spectra. It was found that the motion of the small, nearly spherical, TEMPO probe can be well described by anisotropic Brownian diffusion in isotropic media and is not restricted by the much larger hydrocarbon chains existing in ripple structure (P beta') or fluid bilayer structure (L alpha) phases. PMID:7647239

  15. Stachybotrys chartarum alters surfactant-related phospholipid synthesis and CTP:cholinephosphate cytidylyltransferase activity in isolated fetal rat type II cells.

    PubMed

    Hastings, C; Rand, T; Bergen, H T; Thliveris, J A; Shaw, A R; Lombaert, G A; Mantsch, H H; Giles, B L; Dakshinamurti, S; Scott, J E

    2005-03-01

    Stachybotry chartarum, a fungal contaminant of water-damaged buildings commonly grows on damp cellulose-containing materials. It produces a complex array of mycotoxins. Their mechanisms of action on the pulmonary system are not entirely clear. Previous studies suggest spore products may depress formation of disaturated phosphatidylcholine (DSPC), the major surface-active component of pulmonary surfactant (PS). If S. chartarum can indeed affect formation of this phospholipid, then mold exposure may be a significant issue for pulmonary function in both mature lung and developing fetal lung. To address this possibility, fetal rat type II cells, the principal source of DSPC, were used to assess effects of S. chartarum extract on formation of DSPC. Isolated fetal rat lung type II cells prelabeled with 3H-choline and incubated with spore extract showed decreased incorporation of 3H-choline into DSPC. The activity of CTP:cholinephosphate cytidylyltransferase (CPCT), the rate-limiting enzyme in phosphatidylcholine synthesis was reduced by approximately 50% by a 1:10 dilution of spore extract. Two different S. chartarum extracts (isolates from S. chartarum (Cleveland) and S. chartarum (Hawaiian)) were used to compare activity of CPCT in the presence of phosphatidylglycerol (PG), a known activator. PG produced an approximate two-fold increase in CPCT activity. The spore isolate from Hawaii did not alter enzyme activity. S. chartarum (Cleveland) eliminated the PG-induced activation of CPCT. These results support previous observations that mold products alter PS metabolism and may pose a risk in developing lung, inhibiting surfactant synthesis. Different isolates of the same species of fungus are not equivalent in terms of potential exposure risks.

  16. Transitions and molecular packing in highly purified 1,2-dipalmitoyl- phosphatidylcholine-water phases. I. Transitions, improved phase diagrams, method of packing analysis, molecular structures of diglyceride, and polar regions

    NASA Astrophysics Data System (ADS)

    Albon, Norman

    1983-04-01

    Results of extensive studies of phases prepared from highly purified 1,2-dipalmitoyl-sn-phosphatidylcholine and 1,2-dipalmitoyl-sn -glycerol are presented. The methods used included x-ray diffraction and thermal analysis and both temperature and water content were varied. Details of the many well-defined phases obtained, all with bilayer structures, are given in tables. An improved phase diagram was obtained from thermal data which showed well-defined transitions, and from discontinuities in a plot of bilayer repeat spacings with water content. For analysis of molecular packing the bilayer was divided into diglyceride and phosphorylcholine regions. The properties of the diglyceride regions of both compounds are discussed. Estimates of the size and shape of the polar groups are made and the general principles involved in their packing and the influence of water are discussed. Among new features reported, are the existence of the 0⊥ close chain packing for the crystalline dipalmitoyl glycerol but not in any lecithin phase. Three single crystal lecithin phases with different water contents were prepared which are more stable than the hexagonal chain phases usually reported in the same regions. These hexagonal phases slowly recrystallize to more stable forms, but are usually obtained on cooling melts or higher temperature phases. However, the single crystal phases only exist over restricted composition ranges while phases with hexagonal, square, and disordered chain packing can accommodate a variation in water content by a tilt of the chain axes and changes in bilayer thickness. Transition widths vary and are extremely sensitive to impurities.

  17. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and /sup 31/P NMR spectroscopic studies

    SciTech Connect

    Lewis, R.N.A.H.; Sykes, B.D.; McElhaney, R.N.

    1988-02-09

    The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by /sup 31/P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (L/sub c/ phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of undercooling observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, /sup 31/P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an L/sub c/-like phase and the liquid-crystalline state. These results demonstrate that although the presence of a cis double bond can perturb the solid-state packing of the acyl chains, its presence does not preclude the formation of highly ordered subgel-like phases in lipid bilayers. In the particular case of these unsaturated phosphatidylcholines, the formation of the subgel phases is more kinetically favorable than is the case with their saturated n-acyl counterparts.

  18. Total Synthesis of (-)-Conolutinine.

    PubMed

    Feng, Xiangyang; Jiang, Guangde; Xia, Zilei; Hu, Jiadong; Wan, Xiaolong; Gao, Jin-Ming; Lai, Yisheng; Xie, Weiqing

    2015-09-18

    The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.

  19. Effect of chlorpromazine on lipid metabolism in aortas from cholesterol-fed rabbits and normal rats, in vitro: inhibition of sterol esterification and modification of phospholipid synthesis

    SciTech Connect

    Bell, F.P.

    1983-06-01

    Chlorpromazine (CPZ), a major tranquilizer, was found to be a potent inhibitor of acylCoA:cholesterol acyltransferase (ACAT, EC 2.3.1.26) in isolated arterial microsomes and in intact arterial tissue from the rat and cholesterol-fed rabbit in vitro. In isolated rabbit arterial microsomes, CPZ resulted in a concentration-dependent inhibition of ACAT with 50% inhibition of (1-14C)oleoylCoA incorporation into (14C)cholesteryl esters occurring at 0.1 mM CPZ. CPZ also effectively inhibited the incorporation of (14C)oleate into triglycerides without affecting incorporation into diglycerides. Additionally, CPZ altered the pattern of arterial phospholipids synthesized from (1-14C)oleate. Incorporation into phosphatidylcholine was depressed while incorporation into phosphatidylinositol was increased. Since diglyceride synthesis appeared to be unaffected by CPZ, a redirection of phosphatidic acid into the CDP-diglyceride pathway of glycerolipid synthesis does not adequately account for the effect of CPZ on arterial phospholipid and triglyceride synthesis in these experiments.

  20. MICOS and phospholipid transfer by Ups2–Mdm35 organize membrane lipid synthesis in mitochondria

    PubMed Central

    Aaltonen, Mari J.; Friedman, Jonathan R.; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi

    2016-01-01

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2–Mdm35 complexes (SLMO2–TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2–Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2–Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. PMID:27241913

  1. Effect of substratum, serum and linoleic acid on the lipid synthesis of isolated alveolar type II cells

    SciTech Connect

    Cott, G.R.; Edeen, K.E.; Hale, S.G.; Mason, R.J.

    1986-03-05

    The authors examined the effect of cellular substratum (plastic or amnionic basement membrane (ABM)) and serum additive (fetal bovine (FBS), pork, horse, rat or human) on phospholipid synthesis in alveolar type II cells. The cells were isolated from adult rats, cultured for 48 hours under the various substratum and serum conditions, and then incubated for an additional 2 hours with (1-/sup 14/C) acetate. ABM consistently caused a significant increase in the percent of radiolabel incorporated into phosphatidylcholine (PC) and/or phosphatidylglycerol (PG). Serum also had a significant effect with the highest values of PC and saturated PC being obtained with rat serum and the highest PG values with horse serum. The fatty acid composition of the sera used varied according to species with the largest variations in percent linoleic acid. Supplementing media with linoleic acid resulted in a marked increase in saturated PC values and a fall in PG values. Therefore, they conclude that: 1) ABM improves differentiated function, 2) FBS supplementation may not be optimal, and 3) the different effects of linoleic acid supplementation on PC, saturated PC, and PG values suggests an independent regulation of synthesis for these lipid species in vitro.

  2. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis.

    PubMed Central

    Hirsch, J P; Henry, S A

    1986-01-01

    The INO1 gene of Saccharomyces cerevisiae encodes the regulated enzyme inositol-1-phosphate synthase, which catalyzes the first committed step in the synthesis of inositol-containing phospholipids. The expression of this gene was analyzed under conditions known to regulate phospholipid synthesis. RNA blot hybridization with a genomic clone for INO1 detected two RNA species of 1.8 and 0.6 kb. The abundance of the 1.8-kb RNA was greatly decreased when the cells were grown in the presence of the phospholipid precursor inositol, as was the enzyme activity of the synthase. Complementation analysis showed that this transcript encoded the INO1 gene product. The level of INO1 RNA was repressed 12-fold when the cells were grown in medium containing inositol, and it was repressed 33-fold when the cells were grown in the presence of inositol and choline together. The INO1 transcript was present at a very low level in cells containing mutations (ino2 and ino4) in regulatory genes unlinked to INO1 that result in inositol auxotrophy. The transcript was constitutively overproduced in cells containing a mutation (opi1) that causes constitutive expression of inositol-1-phosphate synthase and results in excretion of inositol. The expression of INO1 RNA was also examined in cells containing a mutation (cho2) affecting the synthesis of phosphatidylcholine. In contrast to what was observed in wild-type cells, growth of cho2 cells in medium containing inositol did not result in a significant decrease in INO1 RNA abundance. Inositol and choline together were required for repression of the INO1 transcript in these cells, providing evidence for a regulatory link between the synthesis of inositol- and choline-containing lipids. The level of the 0.6-kb RNA was affected, although to a lesser degree, by many of the same factors that influence INO1 expression. Images PMID:3025587

  3. Total synthesis of haliclamide.

    PubMed

    Gahalawat, Suraksha; Pandey, Satyendra Kumar

    2016-10-04

    A stereoselective approach for the synthesis of haliclamide 1, a marine natural product, has been developed. The notable features of our synthesis include MacMillan cross aldol, Mitsunobu inversion, Yamaguchi-Hirao alkylation, Steglich esterification and macrolactamization reactions and the Corey-Fuchs protocol as the key steps.

  4. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  5. Automatic Program Synthesis Reports.

    ERIC Educational Resources Information Center

    Biermann, A. W.; And Others

    Some of the major results of future goals of an automatic program synthesis project are described in the two papers that comprise this document. The first paper gives a detailed algorithm for synthesizing a computer program from a trace of its behavior. Since the algorithm involves a search, the length of time required to do the synthesis of…

  6. Synthesis of Psychrophilin E.

    PubMed

    Ngen, Sarah T Y; Kaur, Harveen; Hume, Paul A; Furkert, Daniel P; Brimble, Margaret A

    2016-09-02

    The first total synthesis of psychrophilin E, a potent antiproliferative cyclic tripeptide isolated from Aspergillus versicolor ZLN-60, is reported herein. Key features of the synthesis include the installation of an amide bond between the indole-nitrogen of tryptophan and an anthranilic acid residue, and a high yielding macrolactamization of the linear tripeptide to the desired macrocycle.

  7. Chemical Synthesis of Cycloparaphenylenes

    NASA Astrophysics Data System (ADS)

    Segawa, Yasutomo; Yagi, Akiko; Itami, Kenichiro

    2017-01-01

    Cycloparaphenylenes and analogues thereof are substances having excellent structural and electronic properties due to radial π-conjugation modes and porous structures. Since they are partial structures of carbon nanotubes, they have also attracted attention as a template for carbon nanotube synthesis. In this chapter, we introduce a series of research on the synthesis of cycloparaphenylenes and their analogues.

  8. Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NFkappaB activation and interleukin-6 release.

    PubMed

    Wenk, Jutta; Schüller, Jutta; Hinrichs, Christina; Syrovets, Tatjana; Azoitei, Ninel; Podda, Maurizio; Wlaschek, Meinhard; Brenneisen, Peter; Schneider, Lars-A; Sabiwalsky, Andrea; Peters, Thorsten; Sulyok, Silke; Dissemond, Joachim; Schauen, Matthias; Krieg, Thomas; Wirth, Thomas; Simmet, Thomas; Scharffetter-Kochanek, Karin

    2004-10-29

    Phospholipid-hydroperoxide glutathione peroxidase (PHGPx) exhibits high specific activity in reducing phosphatidylcholine hydroperoxides (PCOOHs) and thus may play a central role in protecting the skin against UV irradiation-triggered detrimental long term effects like cancer formation and premature skin aging. Here we addressed the role of PHGPx in the protection against UV irradiation-induced expression of matrix metalloproteinase-1 (MMP-1). For this purpose, we created human dermal fibroblast cell lines overexpressing human PHGPx. Overexpression led to a significant increase in PHGPx activity. In contrast to a maximal 4.5-fold induction of specific MMP-1 mRNA levels in vector-transfected cells at 24 h after UVA irradiation, no MMP-1 induction occurred at any studied time point after UVA treatment of PHGPx-overexpressing fibroblasts. As interleukin-6 (IL-6) was earlier shown to mediate the UVA induction of MMP-1, we studied whether PHGPx overexpression might interfere with the NFkappaB-mediated IL-6 induction and downstream signaling. Using transient transfections of IL-6 promoter constructs containing NFkappaB binding sites, we observed a high induction of the reporter gene luciferase in vector-transfected control cells and a significantly lower induction in PHGPx-overexpressing fibroblasts following UVA irradiation. Consistently both UVA irradiation and treatment of fibroblasts with PCOOHs led to phosphorylation and nuclear translocation of the p65 subunit, whereas cells overexpressing PHGPx exhibited impaired NFkappaB activation, p65 phosphorylation, and nuclear translocation. In line with this, the PHGPx-overexpressing fibroblasts showed a reduced constitutive and UVA irradiation-induced IL-6 release. After incubating PHGPx-overexpressing cells with PCOOHs a reduced induction of IL-6 was observed. This together with the suppression of UVA irradiation-induced IL-6 release in the presence of Trolox, a chain breaker of PCOOH-initiated lipid peroxidation

  9. Rapid Degradation and Limited Synthesis of Phospholipids in the Cotyledons of Mung Bean Seedlings 1

    PubMed Central

    Gilkes, Neil R.; Herman, Eliot M.; Chrispeels, Maarten J.

    1979-01-01

    Seedling growth of mung bean is accompanied by the rapid catabolism of the three major phospholipids in the cotyledons (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol). The decline starts 24 hours after the beginning of imbibition and by the 4th day of growth more than 50% of the phospholipids have been catabolized. Extracts of cotyledons of 24-hour-imbibed beans contain enzymes capable of degrading membrane-associated phospholipids in vitro. This degradation involves phospholipase D and phosphatase activity. Studies with radioactive acetate, glycerol, and orthophosphate indicate that the three major phospholipids are also synthesized in the cotyledons. Incorporation of glycerol and acetate into phospholipids of cotyledons is relatively constant throughout seedling growth, while the incorporation of [32P]orthophosphate steadily declines from a high value 24 hours after the start of imbibition. The newly synthesized phospholipids become associated with membranous organelles, especially the endoplasmic reticulum, and have an in situ half-life of 2 to 2.5 days. Determination of the activities of two enzymes involved in phospholipid biosynthesis (phosphorylcholine-glyceride transferase and CDP-diglyceride-inositol transferase) shows that the enzymes have their highest activities 12 hours after the start of imbibition. High activities for both enzymes were found in cotyledons of beans incubated at 1 C, indicating that the enzymes may preexist in the dry seeds. The experiments demonstrate that cotyledons start synthesizing new phospholipids immediately after imbibition, but that the rate of phospholipid catabolism far exceeds the rate of synthesis long before the cotyledons start to senesce. PMID:16660911

  10. Daily rhythms of glycerophospholipid synthesis in fibroblast cultures involve differential enzyme contributions[S

    PubMed Central

    Acosta-Rodríguez, Victoria A.; Márquez, Sebastián; Salvador, Gabriela A.; Pasquaré, Susana J.; Gorné, Lucas D.; Garbarino-Pico, Eduardo; Giusto, Norma M.; Guido, Mario Eduardo

    2013-01-01

    Circadian clocks regulate the temporal organization of several biochemical processes, including lipid metabolism, and their disruption leads to severe metabolic disorders. Immortalized cell lines acting as circadian clocks display daily variations in [32P]phospholipid labeling; however, the regulation of glycerophospholipid (GPL) synthesis by internal clocks remains unknown. Here we found that arrested NIH 3T3 cells synchronized with a 2 h-serum shock exhibited temporal oscillations in a) the labeling of total [3H] GPLs, with lowest levels around 28 and 56 h, and b) the activity of GPL-synthesizing and GPL-remodeling enzymes, such as phosphatidate phosphohydrolase 1 (PAP-1) and lysophospholipid acyltransferases (LPLAT), respectively, with antiphase profiles. In addition, we investigated the temporal regulation of phosphatidylcholine (PC) biosynthesis. PC is mainly synthesized through the Kennedy pathway with choline kinase (ChoK) and CTP:phosphocholine cytidylyltranferase (CCT) as key regulatory enzymes. We observed that the PC labeling exhibited daily changes, with the lowest levels every ∼28 h, that were accompanied by brief increases in CCT activity and the oscillation in ChoK mRNA expression and activity. Results demonstrate that the metabolisms of GPLs and particularly of PC in synchronized fibroblasts are subject to a complex temporal control involving concerted changes in the expression and/or activities of specific synthesizing enzymes. PMID:23641021

  11. Antibodies to Liposomal Phosphatidylcholine and Phosphatidylsulfocholine

    DTIC Science & Technology

    1990-01-01

    689: 319-326. ing mice with bromelain -treated mouse erythrocytes (Cox BiSSERET, P., ITO, S., TREMBLAY, P.-A., VOLCANI, B.E., and Hardy 1985), and...Cox, K.O., and HARDY, S.J. 1985. Autoantibodies against mouse and cross-reacted with lysolecithin and sphingomyelin, thus bromelain -modified RBC are

  12. Antibodies to Liposomal, Phosphatidylcholine and Phosphatidylsulfocholine

    DTIC Science & Technology

    1990-01-01

    Biochim. Biophys. tidylcholine have also been induced by immuniz- Acta, 689: 319-326. ing mice with bromelain -treated mouse erythrocytes (Cox BISSERET, P...with lysolecithin and sphingomyelin, thus bromelain -modified RBC are specifically inhibited by a common indicating specificity for the phosphocholine

  13. Transport of Ca2+ across Phosphatidylcholine Vesicles.

    DTIC Science & Technology

    1983-01-01

    ws close to one with an error limit of about 10%. Therefore, in contradiction ith previous findings ( Kafka and Dolz, 1976) our results Indicate a...lariat Pether series. L •9 tETERENCES , yono, A. , Hendriks. T., Daement, F.J.H. and Bonting, S.L. 11975) Biochim. Biophys. Act& M 34-46. Kafka , M.S

  14. Tracking synthesis and turnover of triacylglycerol in leaves

    SciTech Connect

    Tjellstrom, Henrik; Strawsine, Merissa; Ohlrogge, John B.

    2015-01-21

    Triacylglycerol (TAG), typically represents <1% of leaf glycerolipids but can accumulate under stress and other conditions or if leaves are supplied with fatty acids, or in plants transformed with regulators or enzymes of lipid metabolism. To better understand the metabolism of TAG in leaves, pulse-chase radiolabelling experiments were designed to probe its synthesis and turnover. When Arabidopsis leaves were incubated with [14C]lauric acid (12:0), a major initial product was [14C]TAG. Thus, despite low steady-state levels, leaves possess substantial TAG biosynthetic capacity. The contributions of diacylglycerol acyltransferase1 and phospholipid:diacylglycerol acyltransferase1 to leaf TAG synthesis were examined by labelling of dgat1 and pdat1 mutants. The dgat1 mutant displayed a major (76%) reduction in [14C]TAG accumulation whereas pdat1 TAG labelling was only slightly reduced. Thus, DGAT1 has a principal role in TAG biosynthesis in young leaves. During a 4h chase period, radioactivity in TAG declined 70%, whereas the turnover of [14C]acyl chains of phosphatidylcholine (PC) and other polar lipids was much lower. Sixty percent of [14C]12:0 was directly incorporated into glycerolipids without modification, whereas 40% was elongated and desaturated to 16:0 and 18:1 by plastids. The unmodified [14C]12:0 and the plastid products of [14C]12:0 metabolism entered different pathways. Although plastid-modified 14C-labelled products accumulated in monogalactosyldiacylglycerol, PC, phosphatidylethanolamine, and diacylglcerol (DAG), there was almost no accumulation of [14C]16:0 and [14C]18:1 in TAG. Lastly, because DAG and acyl-CoA are direct precursors of TAG, the differential labelling of polar glycerolipids and TAG by [14C]12:0 and its plastid-modified products provides evidence for multiple subcellular pools of both acyl-CoA and DAG.

  15. Spectroscopic characterizations of a mixed surfactant mesophase and its application in materials synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Limin

    A viscous lyotropic crystalline mesophase containing bis (2-ethylhexyl) sodium sulfosuccinate (AOT), alpha-phosphatidylcholine (lecithin), with comparable volume fractions of isooctane and water was characterized by Fourier-transform 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. Shear alignment on the reverse hexagonal mesophase was reflected through both 31P NMR and 1H NMR spectra. A complicated 31P spectrum was observed as a result of superposition of chemical shifts according to the distribution of crystalline domains prior to shear. The initially disordered samples with polydomain structures became macroscopically aligned after Couette shear and the alignment retained for a long period of time. 31P NMR chemical shift anisotropy characteristics were used to elucidate orientation of the hexagonal phase. Interestingly, 1H NMR of the water, methyl and methylene groups exhibited spectral changes upon shear alignment closely corresponding with that of 31P NMR spectra. A reverse hexagonal to lamellar phase transition was manifested as an expanding of the expressed 31P NMR chemical shift anisotropy and an apparent reversal of the powder pattern with increasing water content and/or temperature. Correspondingly, 1H NMR spectra also experienced a spectral pattern transition as the water content or temperature was increased. These observations complement the findings of mesophase alignment obtained using small angle neutron scattering (SANS) and imply that 31P and 1H NMR spectroscopy can be used as probes to define microstructure and monitor orientation changes in this binary surfactant system. This is especially beneficial if these mesophases are used as templates for materials synthesis. The mesophase retains its alignment for extended periods allowing materials synthesis to be decoupled from the application of shear. Highly aligned string-like silica nanostructures were obtained through templated synthesis in the columnar hexagonal structure of the viscous

  16. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  17. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  18. Mechanochemical organic synthesis.

    PubMed

    Wang, Guan-Wu

    2013-09-21

    Recently, mechanical milling using a mixer mill or planetary mill has been fruitfully utilized in organic synthesis under solvent-free conditions. This review article provides a comprehensive overview of various solvent-free mechanochemical organic reactions, including metal-mediated or -catalyzed reactions, condensation reactions, nucleophilic additions, cascade reactions, Diels-Alder reactions, oxidations, reductions, halogenation/aminohalogenation, etc. The ball milling technique has also been applied to the synthesis of calixarenes, rotaxanes and cage compounds, asymmetric synthesis as well as the transformation of biologically active compounds.

  19. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  20. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  1. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  2. The regulation of superoxide generation and nitric oxide synthesis by C-reactive protein.

    PubMed Central

    Ratnam, S; Mookerjea, S

    1998-01-01

    Activated macrophages utilize both reactive oxygen intermediates and reactive oxynitrogen intermediates for defence against microbes. However, simultaneous generation of superoxide (O- 2;) and nitric oxide (NO) could be harmful to host cells due to the production of peroxynitrite, nitrogen dioxide and hydroxyl radicals. Therefore, the regulation of the production of these molecules is critical to host survival. During periods of inflammation or infection, the level of serum C-reactive protein (CRP) increases in many species. Human and rat CRP have been shown to bind and interact with phagocytic cells. Since many of the interactions of CRP involve the binding to the phosphocholine ligand, we studied the role of CRP in O- 2; and NO generation through the modulation of phosphatidylcholine (PC) metabolism in macrophages. This study has shown that, while rat CRP inhibited phorbol myristate acetate- (PMA) induced release of O- 2; by rat macrophages, CRP-treated macrophages released NO in a time- and dose-dependent manner. CRP increased inducible nitric oxide synthase (iNOS) enzyme as well as iNOS mRNA levels in rat macrophages. Tricyclodecan-9-yl-xanthogenate (D609), an inhibitor to PC phospholipase C (PC-PLC), suppressed iNOS induction but enhanced PMA-induced release of O- 2;. These data indicate that an increased level of CRP during periods of inflammation may result in differential regulation of macrophage NADPH oxidase and iNOS activity. Increased hepatic synthesis of CRP may contribute to the mechanism by which phagocytic cells avoid simultaneous O- 2; and NO synthesis, and this could possibly be mediated through the regulation of PC-PLC. Images Figure 4 Figure 5 PMID:9767445

  3. Betaine synthesis and accumulation in barley during field water-stress

    SciTech Connect

    Hitz, W.D.; Ladyman, J.A.R.; Hanson, A.D.

    1982-01-01

    The timing and extent of betaine accumulation by mature leaves of barley (Hordeum vulgare L.) were followed in irrigated (I) and non-irrigated (N-I) plots under rain-shelters. In the N-I crop, leaf water potential (/sup psi/leaf) began to fall at the five-leaf stage, continued to drop steadily until maturity, and reached a minimum of about -35 bars. Betaine accumulation started in the N-I crop about a week after the decline in /sup psi/leaf began and continued until about 10 days post-anthesis. The maximum betaine concentration attained by N-I leaves (100 ..mu..mol/g dry wt) was three times that in I leaves. Betaine accumulation by upper leaves was due mainly to de novo synthesis in these leaves, because: (1) there was little /sup 14/C-import into upper leaves when (/sup 14/C)betaine was applied to lower leaves, and (2) attached upper leaves of N-I plants rapidly converted supplied (/sup 14/C)ethanolamine to (/sup 14/C)betaine during the peak period of betaine accumulation. Phosphatidylcholine (PC) behaved as an intermediate in the conversion of (/sup 14/C)ethanolamine to betaine. The estimated peak metabolic cost of betaine biosynthesis via PC by stressed leaves (about 2 mg hexose/g dry wt/day) approached the cost of protein turnover in the same leaves (3 to 5 mg hexose/g dry wt/day) as estimated from (/sup 3/H) lysine incorporation. In N-I plants, cessation of betaine synthesis preceded the onset of senescence by several days, indicating that continuous betaine production is not mandatory for leaf function at lowered /sup psi/leaf. These field results are consistent with an adaptive value for betaine accumulation in barley during prolonged water stress. A search for genetic variation in betaine-accumulating potential in barley is now warranted.

  4. Enantioselective Synthesis of (+)-Majusculone

    PubMed Central

    Taber, Douglass F.; Sikkander, M. Inthikhab; Storck, Pierre H.

    2011-01-01

    The first enantioselective synthesis of a chamigrane sesquiterpene, (+)-majusculone, has been completed. The quaternary center was generated asymmetrically by alkylidene carbene insertion, with retention of absolute configuration, from a diastereomerically pure ketal. PMID:17447815

  5. Total synthesis of atropurpuran

    PubMed Central

    Gong, Jing; Chen, Huan; Liu, Xiao-Yu; Wang, Zhi-Xiu; Nie, Wei; Qin, Yong

    2016-01-01

    Due to their architectural intricacy and biological significance, the synthesis of polycyclic diterpenes and their biogenetically related alkaloids have been the subject of considerable interest over the last few decades, with progress including the impressive synthesis of several elusive targets. Despite tremendous efforts, conquering the unique structural types of this large natural product family remains a long-term challenge. The arcutane diterpenes and related alkaloids, bearing a congested tetracyclo[5.3.3.04,9.04,12]tridecane unit, are included in these unsolved enigmas. Here we report a concise approach to the construction of the core structure of these molecules and the first total synthesis of (±)-atropurpuran. Pivotal features of the synthesis include an oxidative dearomatization/intramolecular Diels-Alder cycloaddition cascade, sequential aldol and ketyl-olefin cyclizations to assemble the highly caged framework, and a chemoselective and stereoselective reduction to install the requisite allylic hydroxyl group in the target molecule. PMID:27387707

  6. Synthesis of Potential Trypanocides

    DTIC Science & Technology

    1987-12-01

    Keywords: antiparasitic, trypanosomiasis , chemotherapy , 03 trypanocides, synthesis, heteroaromatic, heterocyclic 6 18 19, ABSTRACT (Continue on reverse if... trypanosomiasis (T. rhodesiense) infections in mice. A standard protocol was used in which groups of five mice were treated by subcutaneous injection with a...C. J. Bacchi, "Content, Synthesis, and Function of Polyamines i. Trypanosomatides: Relationship to Chemotherapy ," J. Protozool., 28, 20 . p (1981); C

  7. Synthesis of Energetic Materials.

    DTIC Science & Technology

    1986-03-31

    1 ) ................... 2 2 GPC of Polyformal of Decafluorodiol ( 2 ) .......................... 4 3 GPC of Polyformal of...turn: ( 1 ) synthesis of energetic monomers and polymers, and ( 2 ) synthesis of polycyclic and adamantoid nitramines. Both tasks were continuations of...preparation of 2,2,3,3,4,4-hexafluoropentane-l,lidiol polyformal (FPF- 1 ) by the 2 step sequence shown below was reported. " HOCH2 (CF2 )3CH20H + (CH20) 3

  8. Benzothiazines in Synthesis. A Formal Total Synthesis of Pseudopteroxazole

    PubMed Central

    Harmata, Michael; Cai, Zhengxin; Chen, Yugang

    2010-01-01

    A formal total synthesis of the antitubercular natural product was accomplished. This work was undertaken to address certain stereochemical problems in our initial synthesis. By using an ester group as a surrogate for a methyl group, we were able to intercept a key intermediate in our first synthesis with better selectivity and greater convergence than had previously been the case. PMID:19537725

  9. The Synthesis of Lepidoptera Pheromones

    NASA Astrophysics Data System (ADS)

    Matveeva, Elena D.; Kurts, A. L.; Bundel', Yurii G.

    1986-07-01

    The review surveys the data in numerous publications of the synthesis of the pheromones of scale-winged insects (Lepidoptera). Attention is concentrated on problems of the sterospecific synthesis of pheromones. The bibliography includes 217 references.

  10. Shell's Middle Distillate Synthesis process

    SciTech Connect

    Voetter, H.; VanDerBurgt, M.J. B.V., The Hague )

    1988-01-01

    The basis of the Shell Middle Distillate Synthesis (SMDS) process is the classic Fischer-Tropsch synthesis. For the case of middle distillate production from natural gas the procedure has been developed to commercial maturity, making use of tailored line-up for synthesis gas production and of proprietary modern catalysts in synthesis. Development work over the last years has in particular lead to improvement of the economy of the process altogether via catalyst performance, reactor sizing and syngas manufacturing line-up.

  11. Revisiting Methods of Literature Synthesis.

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    This paper highlights the relative strengths and weaknesses of the contemporary methods of research synthesis and proposes a multistage approach to research synthesis that draws on the strengths of each of these individual methods. In this approach, the decisions at every step of the synthesis process are guided by the nature of the data. The…

  12. Big6 Turbotools and Synthesis

    ERIC Educational Resources Information Center

    Tooley, Melinda

    2005-01-01

    The different tools that are helpful during the Synthesis stage, their role in boosting students abilities in Synthesis and the way in which it can be customized to meet the needs of each group of students are discussed. Big6 TurboTools offers several tools to help complete the task. In Synthesis stage, these same tools along with Turbo Report and…

  13. Glycals in enantiospecific synthesis

    NASA Astrophysics Data System (ADS)

    Tolstikov, Alexander G.; Tolstikov, Genrikh A.

    1993-06-01

    The reactions of 1,2-unsaturated sugars (glycals) are considered in this review in relation to problems of the enantiospecific synthesis of natural products, their fragments, and their analogues. The reactions occurring both with retention of the heterocycle and those carried out with the aim of obtaining open chain chiral units are discussed. It is shown that the use of glycals as a stock of chiral substances which determine the configuration of the asymmetric centres in the target products of multistage synthesis is promising. Schemes for the synthesis of natural products of different types are considered: O- and C-glycosides, nucleosides, oligosaccharides, pheromones, antibiotics, toxins, glycosphingolipids, etc. The bibliography includes 161 references.

  14. Synthesis of organosilicon compounds

    SciTech Connect

    Zhao, G.

    1996-01-01

    Silicon-containing polymers have been a focus of synthesis and study in Dr. Barton`s group because of their chemistry and properties which are not offered by other systems or materials. For example, the polymer -[-SiMe2C≡C-]n-can be easily processed to films or fibers from melt or solution, and thermally converted to a SiC-containing ceramic in high yield at high temperature. In recent years, carbosilane dendritic polymers have been of great interests in many research groups. However, no synthesis of carbosilane dendrimers with functionalties both inside and outside the dendrimer has been reported. Functionality is very important in the synthesis of preceramic polymers. This thesis will be devoted to exploring several new organosilicon polymer systems.

  15. Metabolic Interactions between the Lands Cycle and the Kennedy Pathway of Glycerolipid Synthesis in Arabidopsis Developing Seeds[W

    PubMed Central

    Wang, Liping; Shen, Wenyun; Kazachkov, Michael; Chen, Guanqun; Chen, Qilin; Carlsson, Anders S.; Stymne, Sten; Weselake, Randall J.; Zou, Jitao

    2012-01-01

    It has been widely accepted that the primary function of the Lands cycle is to provide a route for acyl remodeling to modify fatty acid (FA) composition of phospholipids derived from the Kennedy pathway. Lysophosphatidylcholine acyltransferase (LPCAT) is an evolutionarily conserved key enzyme in the Lands cycle. In this study, we provide direct evidence that the Arabidopsis thaliana LPCATs, LPCAT1 and LPCAT2, participate in the Lands cycle in developing seeds. In spite of a substantially reduced initial rate of nascent FA incorporation into phosphatidylcholine (PC), the PC level in the double mutant lpcat1 lpcat2-2 remained unchanged. LPCAT deficiency triggered a compensatory response of de novo PC synthesis and a concomitant acceleration of PC turnover that were attributable at least in part to PC deacylation. Acyl-CoA profile analysis revealed complicated metabolic alterations rather than merely reduced acyl group shuffling from PC in the mutant. Shifts in FA stereo-specific distribution in triacylglycerol of the mutant seed suggested a preferential retention of saturated acyl chains at the stereospecific numbering (sn)-1 position from PC and likely a channeling of lysophosphatidic acid, derived from PC, into the Kennedy pathway. Our study thus illustrates an intricate relationship between the Lands cycle and the Kennedy pathway. PMID:23150634

  16. Testing Models of Fatty Acid Transfer and Lipid Synthesis in Spinach Leaf Using in Vivo Oxygen-18 Labeling1

    PubMed Central

    Pollard, Mike; Ohlrogge, John

    1999-01-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [13C218O2]Acetate was incubated with spinach (Spinacia oleracea) leaves and the 18O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an 18O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the 18O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of 18O or, less likely, complete loss of 18O, but not a 50% loss of 18O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of “prokaryotic” and “eukaryotic” lipids have both been confirmed. PMID:10594108

  17. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling

    SciTech Connect

    Pollard, M.; Ohlrogge, J.

    1999-12-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

  18. Radiotracer computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco

    SciTech Connect

    McNeil, S.D.; Nuccio, M.L.; Rhodes, D.; Shachar-Hill, Y.; Hanson, A.D.

    2000-05-01

    Among flowering plants, the synthesis of choline (Cho) from ethanolamine (EA) can potentially occur via three parallel, interconnected pathways involving methylation of free bases, phospho-bases, or phosphatidyl-bases. The authors investigated which pathways operate in tobacco (Nicotiana tabacum L.) because previous work has shown that the endogenous Cho supply limits accumulation of glycine betaine in transgenic tobacco plants engineered to convert Cho to glycine betaine. The kinetics of metabolite labeling were monitored in leaf discs supplied with [{sup 33}P]phospho-EA,[{sup 33}P]phospho-monomethylethanolamine, or [{sup 14}C]formate, and the data were subjected to computer modeling. Because partial hydrolysis of phospho-bases occurred in the apoplast, modeling of phospho-base metabolism required consideration of the re-entry of [{sup 33}P]phosphate into the network. Modeling of [{sup 14}C]formate metabolism required consideration of the labeling of the EA and methyl moieties of Cho. Results supported the following conclusions: (a) The first methylation step occurs solely at the phospho-base level; (b) the second and third methylations occur mainly (83%--92% and 65%--85%, respectively) at the phospho-base level, with the remainder occurring at the phosphatidyl-base level; and (c) free Cho originates predominantly from phosphatidylcholine rather than from phospho-Cho. This study illustrates how computer modeling of radiotracer data, in conjunction with information on chemical pool sizes, can provide a coherent, quantitative picture of fluxes within a complex metabolic network.

  19. Synthesis of taurospongin A.

    PubMed

    Wu, Boshen; Mallinger, Aurélie; Robertson, Jeremy

    2010-06-18

    Two new routes to the C(1-10) carboxylic acid core of taurospongin A are presented. In the first route, overall asymmetric hydration of a C(2)-C(3) alkene is achieved by Sharpless AD and selective deoxygenation at C(2); in the second route, the C(3) stereogenic center is set by Tietze asymmetric allylation. A short synthesis of the C(1'-25') fatty acid combines with the product from the first route to complete the total synthesis of taurospongin A.

  20. Distributed aperture synthesis.

    PubMed

    Rabb, David; Jameson, Douglas; Stokes, Andrew; Stafford, Jason

    2010-05-10

    Distributed aperture synthesis is an exciting technique for recovering high-resolution images from an array of small telescopes. Such a system requires optical field values measured at individual apertures to be phased together so that a single, high-resolution image can be synthesized. This paper describes the application of sharpness metrics to the process of phasing multiple coherent imaging systems into a single high-resolution system. Furthermore, this paper will discuss hardware and present the results of simulations and experiments which will illustrate how aperture synthesis is performed.

  1. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  2. Synthesis: Intertwining product and process

    NASA Technical Reports Server (NTRS)

    Weiss, David M.

    1990-01-01

    Synthesis is a proposed systematic process for rapidly creating different members of a program family. Family members are described by variations in their requirements. Requirements variations are mapped to variations on a standard design to generate production quality code and documentation. The approach is made feasible by using principles underlying design for change. Synthesis incorporates ideas from rapid prototyping, application generators, and domain analysis. The goals of Synthesis and the Synthesis process are discussed. The technology needed and the feasibility of the approach are also briefly discussed. The status of current efforts to implement Synthesis methodologies is presented.

  3. Synthesis of Chemiluminescent Esters: A Combinatorial Synthesis Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko

    2004-01-01

    A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.

  4. Multi-Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Conway, J. E.; Sault, R. J.

    Introduction; Image Fidelity; Multi-Frequency Synthesis; Spectral Effects; The Spectral Expansion; Spectral Dirty Beams; First Order Spectral Errors; Second Order Spectral Errors; The MFS Deconvolution Problem; Nature of The Problem; Map and Stack; Direct Assault; Data Weighting Methods; Double Deconvolution; The Sault Algorithm; Multi-Frequency Self-Calibration; Practical MFS; Conclusions

  5. Synthesis in Science.

    ERIC Educational Resources Information Center

    Horsella, Maria

    This paper discusses various techniques that scientists and other professionals can use to keep current in their field despite the large amount of available information, such as consulting abstracts, indexes, reviews, and catalogues. It also examines specific language patterns that are used in the sciences to produce synthesis and abridgement,…

  6. Total Synthesis of Kopsinine

    PubMed Central

    Xie, Jian; Wolfe, Amanda L.; Boger, Dale L.

    2013-01-01

    The use of a powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of an 1,3,4-oxadiazole in the divergent total synthesis of kopsinine (1), featuring an additional unique SmI2-promoted transannular cyclization reaction for formation of the bicyclo[2.2.2]octane central to its hexacyclic ring system, is detailed. PMID:23391149

  7. Oxenoids in organic synthesis.

    PubMed

    Minko, Yury; Marek, Ilan

    2014-03-14

    Experimental and theoretical studies of metalated peroxides confirmed their unique properties as oxenoids (electrophilic oxidants) allowing for a highly selective and efficient oxidation processes of nucleophilic organometallic species. In this short review we present the most prominent examples of the application of this class of reagents towards organic synthesis.

  8. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  9. Tetrahydrocannabinol (THC) alters synthesis and release of surfactant-related material in isolated fetal rabbit type II cells.

    PubMed

    Cherlet, T; Scott, J E

    2002-05-01

    Over the years, there has been a great deal of interest in the biological consequences of marijuana use. While evidence indicates that cannabinoids may have therapeutic uses in alleviating certain disease discomfort, there is little recent information on potential health risks, particularly related to the developing fetus. The present study was undertaken to determine the effects of delta 9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana on fetal lung development specifically related to surfactant production. The rationale for the choice of this model lies in the importance of adequate lung development and surfactant production for the successful transition of the fetus to an air-breathing environment. Lung type II cells, the source of pulmonary surfactant, were isolated from fetal rabbit lungs on the 24th gestational day and incubated concurrently with various concentrations of THC and [3H]choline to label disaturated phosphatidylcholine (DSPC) the major surface-active phospholipid of surfactant. Under these conditions THC significantly reduced radiolabelling of DSPC and at the highest concentration (10(-4) M) induced release of DSPC. Pulse-chase studies were also conducted. Cells were prelabelled with [3H]choline, removed to fresh medium with THC (10(-4) M) and incubated for various time periods. Aqueous- and organic-soluble intermediates of DSPC formation were isolated. THC induced a significant increase in radiolabelling of CDPcholine, the rate-limiting conversion in DSPC synthesis. Radiolabelling of total phosphatidylcholine and DSPC was also significantly increased. Assay of CTP: cholinephosphate cytidylyltransferase which enzymatically converts cholinephosphate to CDPcholine showed that THC and phosphatidylglycerol (PG) both induced activation of the enzyme in fetal lung cytosol but not in the membranes. This effect of THC and PG was not additive. THC activated the enzyme only in fetal and not adult rabbit lung. The ability of THC

  10. Lyso(bis)phosphatidic acid: a preferred donor of arachidonic acid for macrophage-synthesis of eicosanoids

    SciTech Connect

    Cochran, F.; Roddick, V.; Connor, J.; Waite, M.

    1986-05-01

    In order to dissect mechanisms of arachidonic acid (20:4) metabolism, two cell populations were investigated, resident (AM) and Bacillus Calmette-Guerin-activated (BCG-AM) rabbit alveolar macrophages. After purified AM were labeled overnight with (/sup 3/H)20:4, radioactivity was localized primarily within lyso(bis)phosphatidic acid (L(bis)PA) (13.1%), phosphatidylethanolamine (PE) (22.8%) and phosphatidylcholine (PC) (26.7%), with lesser amounts recovered in phosphatidyl-serine (PS) plus phosphatidylinositol (PI) (9.2%). By contrast, analysis of the phospholipid classes from prelabeled BCG-AM revealed that the mass of L(bis)PA as well as its (/sup 3/H)20:4 content was profoundly decreased while other BCG-AM phospholipids remained unchanged. When (/sup 3/H)20:4-labeled AM were stimulated with 1 ..mu..M 12-0-tetradecanoyl-phorbol-13-acetate (TPA), a loss of (/sup 3/H)20:4 was observed from L(bis)PA, PE, PC, and PS/PI with a corresponding increase in eicosanoid synthesis. BCG-AM exposed to either TPA or 3.8 ..mu..M Ca/sup +2/ ionophore A23187 liberated (/sup 3/H)20:4 solely from Pe and PC. BCG-AM, which exhibited depressed eicosanoid formation, consistently failed to deacylate (/sup 3/H)20:4 from L(bis)PA or PI. Their evidence suggests that the diminution of eicosanoid synthesis by BCG-AM may be due to the reduction of 20:4 contained within specific phospholipid pools, namely L(bis)PA.

  11. Coupling of the thrombin receptor to G12 may account for selective effects of thrombin on gene expression and DNA synthesis in 1321N1 astrocytoma cells.

    PubMed Central

    Post, G R; Collins, L R; Kennedy, E D; Moskowitz, S A; Aragay, A M; Goldstein, D; Brown, J H

    1996-01-01

    In 1321N1 astrocytoma cells, thrombin, but not carbachol, induces AP-1-mediated gene expression and DNA synthesis. To understand the divergent effects of these G protein-coupled receptor agonists on cellular responses, we examined Gq-dependent signaling events induced by thrombin receptor and muscarinic acetylcholine receptor stimulation. Thrombin and carbachol induce comparable changes in phosphoinositide and phosphatidylcholine hydrolysis, mobilization of intracellular Ca2+, diglyceride generation, and redistribution of protein kinase C; thus, activation of these Gq-signaling pathways appears to be insufficient for gene expression and mitogenesis. Thrombin increases Ras and mitogen-activated protein kinase activation to a greater extent than carbachol in 1321N1 cells. The effects of thrombin are not mediated through Gi, since ribosylation of Gi/Go proteins by pertussis toxin does not prevent thrombin-induced gene expression or thrombin-stimulated DNA synthesis. We recently reported that the pertussis toxin-insensitive G12 protein is required for thrombin-induced DNA synthesis. We demonstrate here, using transfection of receptors and G proteins in COS-7 cells, that G alpha 12 selectively couples the thrombin receptor to AP-1-mediated gene expression. This does not appear to result from increased mitogen-activated protein kinase activity but may reflect activation of a tyrosine kinase pathway. We suggest that preferential coupling of the thrombin receptor to G12 accounts for the selective ability of thrombin to stimulate Ras, mitogen-activated protein kinase, gene expression, and mitogenesis in 1321N1 cells. Images PMID:8930892

  12. The total synthesis of psymberin.

    PubMed

    Huang, Xianhai; Shao, Ning; Palani, Anandan; Aslanian, Robert; Buevich, Alexei

    2007-06-21

    The total synthesis of a new member of the pederin family of natural products, psymberin 1, was accomplished. Using a recently reported novel and efficient PhI(OAc)2 mediated oxidative entry to 2-(N-acylaminal)-substituted tetrahydropyrans as the key step, this total synthesis was executed in a convergent and efficient manner. The longest linear sequence of this synthesis was 22 steps starting from known 6.

  13. Total synthesis of clostrubin

    PubMed Central

    Yang, Ming; Li, Jian; Li, Ang

    2015-01-01

    Clostrubin is a potent antibiotic against methicillin- and vancomycin-resistant bacteria that was isolated from a strictly anaerobic bacterium Clostridium beijerinckii in 2014. This polyphenol possesses a fully substituted arene moiety on its pentacyclic scaffold, which poses a considerable challenge for chemical synthesis. Here we report the first total synthesis of clostrubin in nine steps (the longest linear sequence). A desymmetrization strategy is exploited based on the inherent structural feature of the natural product. Barton–Kellogg olefination forges the two segments together to form a tetrasubstituted alkene. A photo-induced 6π electrocyclization followed by spontaneous aromatization constructs the hexasubstituted B ring at a late stage. In total, 200 mg of clostrubin are delivered through this approach. PMID:25759087

  14. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  15. Continuous organic electrochemical synthesis

    SciTech Connect

    Nobe, K.; Baizer, M.; Pintauro, P.; Park, K.; Gilbert, S.

    1984-07-01

    The electrochemical oxidation of glucose to gluconic acid and reduction of glucose to sorbitol has been successfully paired in an undivided packed bed electrode flow cell. The use of a Raney nickel powder catalytic cathode significantly improved the current efficiency for sorbitol production, as compared to a high hydrogen overpotential Zn(Hg) cathode. The optimum operating conditions for the paired synthesis are: activity W-2 Raney nickel powder cathode, graphite chip anode, a 1.6 M glucose and 0.4 M CaBr/sub 2/ initial solution composition, pH 6-7, 60/sup 0/C solution temperature, a current density of 250 to 500 mA and a solution volumetric flow rate of 100 ml min/sup -1/. Under these conditions the sorbitol current efficiencies are at least 80%, the glucose acid current efficiencies are 100% and the product yields are quantitative. A separation scheme for the paired synthesis has also been devised. It consists of the precipitation of the oxidation product (calcium gluconate) and the ethanol extraction of glucose and CaBr/sub 2/ from sorbitol. Based on a preliminary economic analysis of the cost of raw materials, energy and the electrochemical cell and separation equipment the cost of producing 1 lb calcium gluconate and 0.68 lb sorbitol in a paired synthesis was estimated to be $0.896. The cost of producing the same amount of sorbitol and calcium gluconate in separate electrochemical cells was calculated to be $1.20. Thus, the paired synthesis appears to be an economically viable process.

  16. [Meta-synthesis].

    PubMed

    Debout, Christophe

    2016-01-01

    Nursing science's body of knowledge is mainly composed of the results of qualitative studies which, since the 1970s, have contributed notably to improving understanding of patients' experiences. This abundant scientific literature enables reviews to be carried out with the aim of producing solid theories. Meta-synthesis is a methodology which was created for this purpose. The theories which it produces constitute reference frameworks for researchers wishing to develop innovative nursing procedures and to test them within the context of clinical studies.

  17. Extended cooperative control synthesis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1994-01-01

    This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.

  18. Total synthesis of teixobactin

    NASA Astrophysics Data System (ADS)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-08-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.

  19. Synthesis of Alocasin A.

    PubMed

    Kim, Se Hun; Sperry, Jonathan

    2015-12-24

    Herein is reported a synthesis of alocasin A (1), an alkaloid component of Alocasia macrorrhiza, a herbaceous plant used in folk medicine throughout southern Asia. A double Suzuki-Miyaura cross-coupling reaction between a 3-borylindole and 2,5-dibromopyrazine was used to assemble the heteroaromatic framework of the natural product. Removal of the protecting groups gave a synthetic sample of 1, the spectroscopic data of which matched those in the isolation report of this compound.

  20. Adaptive aperture synthesis

    NASA Astrophysics Data System (ADS)

    Johnson, A. M.; Zhang, S.; Mudassar, A.; Love, G. D.; Greenaway, A. H.

    2005-12-01

    High-resolution imaging can be achieved by optical aperture synthesis (OAS). Such an imaging process is subject to aberrations introduced by instrumental defects and/or turbulent media. Redundant spacings calibration (RSC) is a snapshot calibration technique that can be used to calibrate OAS arrays without use of assumptions about the object being imaged. Here we investigate the analogies between RSC and adaptive optics in passive imaging applications.

  1. Synthesis of SYEP Plasticizer

    DTIC Science & Technology

    1975-10-01

    enerjy functional groups are direct fluorination of dinitrocompounds (Ref. l) and reaction of ketones with difluoramine (Ref. 2). Because the ether...containing the maximum number of these energetic groups . The target compound of this study was 1,3-bis(fluorodinitroethoxy)-2,2-bis(difluor- aiiiino...FEASIBILITY STUDY The proposed synthesis of SYEP required dlfluoranlnation of 1,3- blG (fluoro- dlnitroethoxy)acetone with difluoraraine in a stronc

  2. Synthesis at the molecular frontier

    PubMed Central

    Wender, Paul A.; Miller, Benjamin L.

    2010-01-01

    Driven by remarkable advances in the understanding of structure and reaction mechanisms, organic synthesis will be increasingly directed to producing bioinspired and newly designed molecules. PMID:19587760

  3. Synthesis of mercury cuprates

    NASA Astrophysics Data System (ADS)

    Odier, P.; Sin, A.; Toulemonde, P.; Bailly, A.; LeFloch, S.

    2000-08-01

    Mercury cuprates have very interesting potential applications that have not been thoroughly explored until now because of the complexity of their synthesis. This paper presents an overview of recent results concerning their processing. At first, a simple sol-gel technique is described that permits one to easily and intimately mix the precursors. The method uses the gelification of an inorganic solution of the cations by acrylamide polymerization. Mercuration of the precursor at moderate pressures (<2-5 MPa) is then discussed. The control of the total pressure during the synthesis by a simple method is shown, and this enables one to quantify some important parameters of the synthesis and to optimize the superconducting properties. This method has been also used successfully to incorporate mercury into layers of precursors and then to form thick layers of superconducting (Hg, Re)-1223, c-axis oriented. Finally, mercuration at higher pressures (up to 6 GPa) is considered and the case of the double mercury layer Hg-2212 is discussed in connection with the oxygen content of the reactants.

  4. Bayesian Face Sketch Synthesis.

    PubMed

    Wang, Nannan; Gao, Xinbo; Sun, Leiyu; Li, Jie

    2017-03-01

    Exemplar-based face sketch synthesis has been widely applied to both digital entertainment and law enforcement. In this paper, we propose a Bayesian framework for face sketch synthesis, which provides a systematic interpretation for understanding the common properties and intrinsic difference in different methods from the perspective of probabilistic graphical models. The proposed Bayesian framework consists of two parts: the neighbor selection model and the weight computation model. Within the proposed framework, we further propose a Bayesian face sketch synthesis method. The essential rationale behind the proposed Bayesian method is that we take the spatial neighboring constraint between adjacent image patches into consideration for both aforementioned models, while the state-of-the-art methods neglect the constraint either in the neighbor selection model or in the weight computation model. Extensive experiments on the Chinese University of Hong Kong face sketch database demonstrate that the proposed Bayesian method could achieve superior performance compared with the state-of-the-art methods in terms of both subjective perceptions and objective evaluations.

  5. Aircraft noise synthesis system

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.; Grandle, Robert E.

    1987-02-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  6. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  7. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  8. Rubber Research. The Synthesis of Unsaturated Fluorocarbons.

    DTIC Science & Technology

    HALOGENATED HYDROCARBONS, SYNTHESIS(CHEMISTRY)), (*NITROSO COMPOUNDS, SYNTHESIS(CHEMISTRY)), FLUORINE COMPOUNDS, CHLORINE COMPOUNDS, ORGANIC SOLVENTS, ALKENES, IRON COMPOUNDS, PHOTOLYSIS, ACETIC ANHYDRIDE, ACETIC ACID

  9. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The serious scientific debate about spontaneous generation which raged for centuries reached a climax in the nineteenth century with the work of Spallanzani, Schwann, Tyndall, and Pasteur. These investigators demonstrated that spontaneous generation from dead organic matter does not occur. Although no aspects of these experiments addressed the issue of whether organic compounds could be synthesized abiotically, the impact of the experiments was great enough to cause many investigators to assume that life and its organic compounds were somehow fundamentally different than inorganic compounds. Meanwhile, other nineteenth-century investigators were showing that organic compounds could indeed be synthesized from inorganic compounds. In 1828 Friedrich Wohler synthesized urea in an attempt to form ammonium cyanate by heating a solution containing ammonia and cyanic acid. This experiment is generally recognized to be the first to bridge the artificial gap between organic and inorganic chemistry, but it also showed the usefulness of heat in organic synthesis. Not only does an increase in temperature enhance the rate of urea synthesis, but Walker and Hambly showed that equilibrium between urea and ammonium cyanate was attainable and reversible at 100 C. Wohler's synthesis of urea, and subsequent syntheses of organic compounds from inorganic compounds over the next several decades dealt serious blows to the 'vital force' concept which held that: (1) organic compounds owe their formation to the action of a special force in living organisms; and (2) forces which determine the behavior of inorganic compounds play no part in living systems. Nevertheless, such progress was overshadowed by Pasteur's refutation of spontaneous generation which nearly extinguished experimental investigations into the origins of life for several decades. Vitalism was dealt a deadly blow in the 1950's with Miller's famous spark-discharge experiments which were undertaken in the framework of the Oparin

  10. Lactobacillusassisted synthesis of titanium nanoparticles

    PubMed Central

    2007-01-01

    An eco-friendlylactobacillussp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  11. Total Synthesis of Amphidinolide E

    PubMed Central

    Va, Porino; Roush, William R.

    2008-01-01

    A convergent and highly stereocontrolled synthesis of amphidinolide E (1) has been accomplished. The synthesis features a highly diastereoselective (>20:1) BF3·Et2O promoted [3+2] annulation reaction between aldehyde 3 and allylsilane 4 to afford substituted tetrahydrofuran 2. PMID:17165709

  12. Preparation of ammonia synthesis gas

    SciTech Connect

    Shires, P.J.; van Dijk, C.P.; Cassata, J.R.; Mandelik, B.G.

    1984-10-30

    Ammonia synthesis gas having excess nitrogen is produced in a reactor-exchanger primary reformer followed by an autothermal secondary reformer wherein process air for the latter is preheated by heat exchange with gas turbine exhaust and the primary reformer is heated by synthesis gas from the secondary reformer.

  13. Total Synthesis of Propolisbenzofuran B†

    PubMed Central

    Jones, Brian T.; Avetta, Christopher T.; Thomson, Regan J.

    2014-01-01

    The first total synthesis of propolisbenzofuran B, a bioactive natural product isolated from honeybee propolis resin, is reported. The convergent synthesis makes use of a silicon-tether controlled oxidative ketone–ketone cross-coupling and a novel benzofuran-generating cascade reaction to deliver the core structure of the natural product from readily prepared precursors. PMID:24976944

  14. Enantioselective synthesis of (-)-basiliskamide A.

    PubMed

    Chen, Ming; Roush, William R

    2012-03-16

    Basiliskamide A is an antifungal polyketide natural product isolated by Andersen and co-workers from a Bacillus laterosporus isolate, PNG-276. A nine-step enantioselective synthesis of (-)-basiliskamide A is reported, starting from commercially available β-hydroxy ester 7. The synthesis features a highly diastereoselective mismatched double asymmetric δ-stannylallylboration reaction of aldehyde 5 with the bifunctional allylborane reagent 4.

  15. Lung epinephrine synthesis

    SciTech Connect

    Kennedy, B.; Elayan, H.; Ziegler, M.G. )

    1990-04-01

    We studied in vitro and in vivo epinephrine (E) synthesis by rat lung. Nine days after removal of the adrenal medullas, circulating E was reduced to 7% of levels found in sham-operated rats but 30% of lung E remained. Treatment of demedullated rats with 6 hydroxydopamine plus reserpine did not further reduce lung E. In the presence of S-(3H)adenosylmethionine lung homogenates readily N-methylated norepinephrine (NE) to form (3H)E. The rate of E synthesis by lung homogenates was progressively more rapid with increasing NE up to a concentration of 3 mM, above which it declined. The rate of E formation was optimal at an incubation pH of 8 and at temperatures of approximately 55 degrees C. We compared the E-forming enzyme(s) of lung homogenates with those of adrenal and cardiac ventricle. The adrenal contains mainly phenylethanolamine N-methyltransferase (PNMT), which is readily inhibited by SKF 29661 and methylates dopamine (DA) very poorly. Cardiac ventricles contain mainly nonspecific N-methyltransferase (NMT), which is poorly inhibited by SKF 29661 and readily methylates both DA and NE. Lung homogenates were inhibited by SKF 29661 about half as well as adrenal but more than ventricle. We used the rate of E formation from NE as an index of PNMT-like activity and deoxyepinephrine synthesis from DA as an index of NMT-like activity. PNMT and NMT activity in rat lung homogenates were not correlated with each other, displayed different responses to change in temperature, and were affected differently by glucocorticoids.

  16. Multi-Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Sault, R. J.; Conway, J. E.

    Multi-frequency synthesis is the practice of using visibility data measured over a range of frequencies when forming a continuum image. Because observing frequency is easier to vary than antenna location, it is an effective way of filling the (u,v) plane for an observation. Here we consider the artifacts in MFS images caused by source spectral variation. For frequency ranges of about 30%, for observations where only modest dynamic range is required, the artifacts of MFS can be completely ignored. For higher dynamic range observations, some calibration techniques and deconvolution algorithms are described which minimize the artifacts.

  17. [New synthesis empathogenic agents].

    PubMed

    Velea, D; Hautefeuille, M; Vazeille, G; Lantran-Davoux, C

    1999-01-01

    The use of synthesis drugs is the object of numerous written articles and TV programs in the last, decade. These synthesis drugs or "designer drugs", are well known for their ability to enhance, reinforce or appease social difficulties and relationships. In the research for empathetic and entactogenic relations one discover an obvious lack of communication and "warmth" in personal or professional relationship. An image of chemical "well being" has become a frequent stereotype of a society with an atrophying of performance and values while supposedly dedicating itself to individual performance. The youths are the first victims of these new drugs, the economical and social environment are the main reinforcing factors of this behaviour. The main characteristic of these drugs, is the non-recognition of their danger, some users go so far as to describe this category of substances as "drugs which are not drugs". As a characteristic, the use of a these synthesis drugs is almost recreative, during the week-end and holiday. The drug addiction is different than that of opiates or cocaine. One can observe some cases of real dependence--corresponding to the DSW IV criterion--when the personality of the users is the main characteristic (narcissic failure, immature personality, family and school problems). Many adverse effects--hypertension, kidney failure, psychoses--were declared. The mass-media has presented many articles concerning Ecstasy (MDMA). This is the most used drug during the rave parties. Its adverse effects are well known and proven. The authors would like to present other more recent synthesis drugs, also known as "analogs". These drugs, a kind of mixture between amphetamine-like (MDMA, MBDB, MDA) and misused medicines (ketamine, gamma OH, atropine) represent a real danger. GHB, 2 CB, HMB, are some of these recent substances. The possibility to procure them on the Web, or to produce them by oneself, add to their danger because of the lack of controls on toxicity

  18. Synthesis of Laser Dyes

    DTIC Science & Technology

    1988-11-09

    block number) This report describes the progress made in attempts to prepare seven laser dyes. These dyes all have a 2-(L-pyridy.)-1,3- oxazole ...structure one dye, The synthesis of one dye, 2-(Ni-met.hyl-4-pyridiniiumi)pherianthroL9,10-dJ-1,3- oxazole tosylate (I) has been com-pleted. Preliminary...1,3- oxazoles . I~ 20 [IISTRI:’UTIGTJi/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 0UNITILA-,SIFIEDI.JNLiITED 0 SAME AS RPT El DTIC

  19. Aperture synthesis in space

    NASA Astrophysics Data System (ADS)

    Faucherre, Michel; Greenaway, A. H.; Merkle, F.; Noordam, J. E.; Perryman, M. A. C.

    1989-09-01

    The principles of optical aperture synthesis (OAS), which can yield images of much higher resolution than current ground observations, are essentially those of radio astronomy, and may be used in either space- or ground-based studies of the stellar envelopes around Be stars, the internal dynamics of active galaxies, etc. An account is presently given of possible OAS instrument configurations; it is shown that a large field of view can be achieved, so that the instrument may be calibrated on bright stars during the observation of faint sources. Mission concepts for a 'monostructure' OAS instrument of about 30-m size are examined.

  20. Asymmetric synthesis of (-)-adaline.

    PubMed

    Itoh, Toshimasa; Yamazaki, Naoki; Kibayashi, Chihiro

    2002-07-25

    [reaction: see text] An enantioselective total synthesis of (-)-adaline has been achieved starting from a chiral 6,6-disubstituted piperidone derivative previously prepared by diastereoselective allylation of a chiral tricyclic N-acyl-N,O-acetal. The key steps include lithium ion-activated SN2-type alkynylation of the tricyclic N,O-acetal leading to exclusive formation of the (6S)-ethynylpiperidine and ring-closing olefin metathesis of the (2R,6S)-cis-2,6-dialkenylpiperidine for constructing the bridged azabicyclononane.

  1. Exploring and Implementing Participatory Action Synthesis

    ERIC Educational Resources Information Center

    Wimpenny, Katherine; Savin-Baden, Maggi

    2012-01-01

    This article presents participatory action synthesis as a new approach to qualitative synthesis which may be used to facilitate the promotion and use of qualitative research for policy and practice. The authors begin by outlining different forms of qualitative research synthesis and then present participatory action synthesis, a collaborative…

  2. Synthesis Gas Biorefinery.

    PubMed

    Dahmen, N; Henrich, E; Henrich, T

    2017-03-23

    Synthesis gas or syngas is an intermediate, which can be produced by gasification from a variety of carbonaceous feedstocks including biomass. Carbon monoxide and hydrogen, the main constituents of syngas, can be subjected to a broad range of chemical and microbial synthesis processes, leading to gaseous and liquid hydrocarbon fuels as well as to platform and fine chemicals. Gasification of solid biomass differs from coal gasification by chemical composition, heating value, ash behavior, and other technical and biomass related issues. By thermochemical pre-treatment of lignocellulose as the most abundant form of biomass, for example, by torrefaction or fast pyrolysis, energy dense fuels for gasification can be obtained, which can be used in the different types of gasifiers available today. A number of pilot and demonstration plants exist, giving evidence of the broad technology portfolio developed so far. Therefore, a syngas biorefinery is highly flexible in regard to feedstock and product options. However, the technology is complex and does not result in competitive production costs today. Added value can be generated by suitable integration of thermochemical, biochemical, and chemical processes.

  3. Oxygenates vs. synthesis gas

    SciTech Connect

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double

  4. Organic Synthesis in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    This talk will review our current understanding of the synthesis of organic molecules in space, with particular emphasis on the synthesis of those compounds that may be of prebiotic interest. The talk will address the possibility that molecules created in the interstellar medium may play a role in the origin and evolution of life on planetary surfaces. The various organic and volatile compounds that are now known or suspected to exist in a variety of space environments (stellar outflows, the diffuse interstellar medium, dense molecular clouds, protostellar nebulae, and planetesimal parent bodies in planetary systems) will be reviewed. This information comes largely from the combined applications of observational infrared and radio spectroscopy, laboratory astrophysical simulations, and theoretical astrochemistry. This will be followed by a discussion of the evidence, largely gathered from the laboratory isotopic study of extraterrestrial materials (meteorites and cosmic dust), that interstellar materials, including organics, can and do survive the transition from the interstellar space into forming stellar systems. Once there, some of this material can be delivered largely unaltered to planetary surfaces where it can play key roles in the origin and subsequent evolution of life.

  5. Synthesis of perfluoroalkylene dianilines

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Harris, D. H.; Beechan, C. M.; Nakaham, J. H.; Kratzer, R. H.

    1981-01-01

    The objective of this contrast was to optimize and scale-up the synthesis of 2,2-bis(4-aminophenyl)-hexafluoropropane and 1,3-bis(4-aminophenyl)hexafluoropropane, as well as to explore avenues to other perfluoroalkyl-bridged dianilines. Routes other than Friedel-Crafts reaction leading to 2,2-bis(4-aminophenyl)hexafluoropropane were investigated. The processes utilizing bisphenol-AF were all unsuccessful; reactions aimed at the production of 4-(hexafluoro-2-halo-isopropyl)aniline from the hydroxyl intermediate failed to yield the desired products. Tailoring the conditions of the Friedel-Crafts reaction of 4-(hexafluoro-2-hydroxyisopropyl)aniline, aniline, and aluminum chloride by using hydrochloride salts and selecting optimum reagent ratios, reaction times, and temperature resulted in approx. 20% yield of pure crystallized 2,2-bis(4-aminophenyl)hexafluoropropane in 0.2 mole reaction batches. Yields up to approx. 40% were realized in small, approx. 0.01 mole, batches. The synthesis of 1,3-bis(4-aminophenyl)hexafluoropropane starting with perfluoroglutarimidine was reinvestigated. The yield of the 4-step reaction sequence giving 1,3-bis(4-acetamidophenyl)hexafluoropropane was raised to 44%. The yield of the subsequent hydrolysis process was improved by a factor of approx. 2. Approaches to prepare other perfluoroalkyl-bridged dianilines were unsuccessful. Reactions reported to proceed readily with trifluoromethyl substituents failed when longer chain perfluoroalkyl groups were employed.

  6. Graphene synthesis by ion implantation

    PubMed Central

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-01-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  7. Synthesis of Enantiomerically Pure Anthracyclinones

    NASA Astrophysics Data System (ADS)

    Achmatowicz, Osman; Szechner, Barbara

    The anthracycline antibiotics are among the most important clinical drugs used in the treatment of human cancer. The search for new agents with improved therapeutic efficacy and reduced cardiotoxicity stimulated considerable efforts in the synthesis of new analogues. Since the biological activity of anthracyclines depends on their natural absolute configuration, various strategies for the synthesis of enantiomerically pure anthracyclinones (aglycones) have been developed. They comprise: resolution of racemic intermediate, incorporation of a chiral fragment derived from natural and non-natural chiral pools, asymmetric synthesis with the use of a chiral auxiliary or a chiral reagent, and enantioselective catalysis. Synthetic advances towards enantiopure anthracyclinones reported over the last 17 years are reviewed.

  8. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  9. Synthesis of biomedical tissue

    NASA Astrophysics Data System (ADS)

    Rolland, Jannick P.; Goon, Alexei A.; Clarkson, Eric; Yu, Liyun

    1998-04-01

    Image quality assessment in medical imaging requires realistic textured background that can be statistically characterized for the computation of model observers' performance. We present a modeling framework for the synthesis of texture as well as a statistical analysis of both sample and synthesized textures. The model employs a two-component image-decomposition consisting of a slowly, spatially varying mean-background and a residual texture image. Each component is synthesized independently. The technique is demonstrated using radiological breast tissue. For statistical characterization, we compute the two-point probability density functions for the real and synthesized breast tissue textures in order to provide a complete characterization and comparison of their second-order statistics. Similar computations for other textures yield further insight into the statistical properties of these types of random fields.

  10. Photocontrol of Anthocyanin Synthesis

    PubMed Central

    Ku, Ping-Kaung; Mancinelli, Alberto L.

    1972-01-01

    Red far red reversibility (phytochrome control) of anthocyanin synthesis can be easily demonstrated for the response induced by short (5 minutes) and relatively short (4 hours) irradiation. Red far red reversibility of the response induced by longer irradiations can be demonstrated by the use of cyclic irradiations alternating short exposures to red and far red light. The level of anthocyanin formed during the dark incubation period following exposure to light depends upon the duration of the irradiation and becomes proportionally smaller as the length of the irradiation increases. Production of anthocyanins under cyclic irradiations depends upon the total energy applied and upon the length of the dark interval between successive irradiations. The relative efficiencies of radiations in various spectral ranges change with changes in the length of the irradiations. PMID:16657927

  11. [Visual synthesis of speech].

    PubMed

    Blanco, Y; Villanueva, A; Cabeza, R

    2000-01-01

    The eyes can come to be the sole tool of communication for highly disabled patients. With the appropriate technology it is possible to successfully interpret eye movements, increasing the possibilities of patient communication with the use of speech synthesisers. A system of these characteristics will have to include a speech synthesiser, an interface for the user to construct the text and a method of gaze interpretation. In this way a situation will be achieved in which the user will manage the system solely with his eyes. This review sets out the state of the art of the three modules that make up a system of this type, and finally it introduces the speech synthesis system (Síntesis Visual del Habla [SiVHa]), which is being developed in the Public University of Navarra.

  12. Green chemistry for nanoparticle synthesis.

    PubMed

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  13. Synthesis of Quaternary Heterocyclic Salts

    PubMed Central

    Winstead, Angela J.; Nyambura, Grace; Matthews, Rachael; Toney, Deveine; Oyaghire, Stanley

    2014-01-01

    The microwave synthesis of twenty quaternary ammonium salts is described. The syntheses feature comparable yields to conventional synthetic methods reported in the current literature with reduced reaction times and the absence of solvent or minimal solvent. PMID:24256924

  14. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  15. Vanillin Synthesis from 4-Hydroxybenzaldehyde

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Patel, Shweta; Hambleton, Travis M.; Winkel, Emma E.

    2007-01-01

    A regioselective, safe and efficient method for the synthesis of vanillin from 4-hydroxybenzaldehyde is being described. The vanillin derived from the process is cheap and can be used as a flavor or in the paper industry.

  16. CLEAN CHEMICAL SYNTHESIS IN WATER

    EPA Science Inventory

    Newer green chemistry approach to accomplish chemical synthesis in water is summarized. Recent global developments pertaining to C-C bond forming reactions using metallic reagents and direct use of the renewable materials such as carbohydrates without derivatization are described...

  17. Concise asymmetric synthesis of (-)-sparteine.

    PubMed

    Hermet, Jean-Paul R; McGrath, Matthew J; O'Brien, Peter; Porter, David W; Gilday, John

    2004-08-21

    A six-step asymmetric synthesis of natural (-)-sparteine from ethyl 7-iodohept-2-enoate is reported, involving a connective Michael addition of an amino ester-derived enolate to an alpha,beta-unsaturated amino ester.

  18. Borinic acid catalysed peptide synthesis.

    PubMed

    El Dine, Tharwat Mohy; Rouden, Jacques; Blanchet, Jérôme

    2015-11-18

    The catalytic synthesis of peptides is a major challenge in the modern organic chemistry hindered by the well-established use of stoichiometric coupling reagents. Herein, we describe for the first time that borinic acid is able to catalyse this reaction under mild conditions with an improved activity compared to our recently developed thiophene-based boronic acid. This catalyst is particularly efficient for peptide bond synthesis affording dipeptides in good yields without detectable racemization.

  19. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  20. Exploiting Constraints in Design Synthesis

    DTIC Science & Technology

    1987-04-01

    policy for a state. Herbert Simon , The Science of Design 1.1 Overview Robot planning, genetic synthesis, chemical synthesis, circuit design, and...Sanders Peirce (1839-1914) [36] used "abduction" to mean the "creative formulation of statistical hypotheses" (Encyclopedia of Philosophy, page 4-176... theory be part of the design. In short, there is a certain threshold of detail that is agreed upon by the designer and implementor as being primitively

  1. Selective isoparaffin synthesis from naphtha

    SciTech Connect

    Bogdan, P.L.; Lawson, R.J.; Sachtler, J.W.A.

    1993-08-10

    A process combination is described for selectively upgrading a naphtha feedstock to obtain lower-boiling hydrocarbons having an increased content of branched-chain paraffins comprising the steps of: (a) contacting the naphtha feedstock in a hydrogenation zone with a hydrogenation catalyst comprising a platinum-group metal component and a refractory inorganic oxide in the presence of hydrogen at a pressure of from about 10 to 100 atmospheres, a temperature of at least 30 C, and a liquid hourly space velocity of from about 1 to 8 to produce a saturated intermediate; (b) contacting the saturated intermediate without heating in a selective-isoparaffin-synthesis zone at a pressure of from about 10 to 100 atmospheres, a temperature of between about 50 and 350 C, and a liquid hourly space velocity of between about 0.5 and 20 with a solid acid selective isoparaffin-synthesis catalyst comprising a combination of a platinum-group metal component on a chlorided inorganic-oxide support with a Friedel-Crafts metal halide in the presence of hydrogen, recovering synthesis product containing butanes and pentanes, and separating the synthesis product to obtain an isobutane concentrate, a light synthesis product comprising pentanes and a heavy synthesis product comprising C[sub 7] and C[sub 8] hydrocarbons; (c) dehydrogenating at least a portion of the isobutane concentrate in a dehydrogenation zone at dehydrogenation conditions using a dehydrogenation catalyst and recovering an isobutene-containing stream; (d) contacting at least a portion of the isobutene-containing stream with an alcohol in an etherification zone at etherification conditions to obtain an ether and a hydrocarbon raffinate; (e) contacting the heavy synthesis product in a reforming zone at reforming conditions using a reforming catalyst to obtain a reformate; and, (f) blending a gasoline component comprising at least a portion of each of the light synthesis product, ether and reformate.

  2. Albumin synthesis in surgical patients.

    PubMed

    Hülshoff, Ansgar; Schricker, Thomas; Elgendy, Hamed; Hatzakorzian, Roupen; Lattermann, Ralph

    2013-05-01

    Albumin plasma concentrations are being used as indicators of nutritional status and hepatic function based on the assumption that plasma levels reflect the rate of albumin synthesis. However, it has been shown that albumin levels are not reliable markers of albumin synthesis under a variety of clinical conditions including inflammation, malnutrition, diabetes mellitus, liver disease, and surgical tissue trauma. To date, only a few studies have measured albumin synthesis in surgical and critically ill patients. This review summarizes the findings from these studies, which used different tracer methodology in various surgical or critically ill patient populations. The results indicate that the fractional synthesis rate of albumin appears to decrease during surgery, followed by an increase during the postoperative phase. In the early postoperative phase, albumin fractional synthesis rate can be stimulated by perioperative nutrition, if enough amino acids are being provided and if nutrition is being initiated before the operation. The physiologic meaning of albumin synthesis after surgery, however, still needs to be further clarified.

  3. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    PubMed

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells.

  4. Synthesis of nanostructured polyaniline

    NASA Astrophysics Data System (ADS)

    Surwade, Sumedh P.

    The organization of my thesis is as follows: (a) Chapter III describes the synthesis of bulk quantities of polyaniline nanofibers in one step using a simple and versatile high ionic strength aqueous system (HCl/NaCl) that permits the use of pure H2O2 as a mild oxidant without any added metal or enzyme catalyst. Polyaniline nanofibers obtained are highly conducting, sigma˜1--5 S/cm, and spectroscopically similar to conventional polyaniline synthesized using stronger oxidants. The synthesis method is further extended to the synthesis of oligoanilines of controlled molecular weight, e.g., aniline tetramer, octamer, and hexadecamer. Microns long tetramer nanofibers are synthesized using this method. (b) Chapter IV describes the mechanism of nanofiber formation in polyaniline. It is proposed that the surfaces such as the walls of the reaction vessel and/or intentionally added surfaces play a dramatic role in the evolution of nanofibrillar morphology. Nucleation sites on surfaces promote the accumulation of aniline dimer that reacts further to yield aniline tetramer, which (surprisingly) is entirely in form of nanofibers and whose morphology is transcribed to the bulk by a double heterogeneous nucleation mechanism. This unexpected phenomenon could form the basis of nanofiber formation in all classes of precipitation polymerization systems. (c) Chapter V is the mechanistic study on the formation of oligoanilines during the chemical oxidation of aniline in weakly acidic, neutral or basic media using peroxydisulfate oxidant. It is proposed that the reaction proceeds via the intermediacy of benzoquinone monoimine that is formed as a result of a Boyland-Sims rearrangement of aniline. The initial role of peroxydisulfate is to provide a pathway for the formation of benzoquinone monoimine intermediate that is followed by a conjugate Michael-type addition reaction with aniline or sulfated anilines. The products isolated in pH 2.5--10.0 buffers are intermediate species at various

  5. Accuracy of results with NASTRAN modal synthesis

    NASA Technical Reports Server (NTRS)

    Herting, D. N.

    1978-01-01

    A new method for component mode synthesis was developed for installation in NASTRAN level 17.5. Results obtained from the new method are presented, and these results are compared with existing modal synthesis methods.

  6. Control Augmented Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  7. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  8. Collaboration and Productivity in Scientific Synthesis

    ERIC Educational Resources Information Center

    Hampton, Stephanie E.; Parker, John N.

    2011-01-01

    Scientific synthesis has transformed ecological research and presents opportunities for advancements across the sciences; to date, however, little is known about the antecedents of success in synthesis. Building on findings from 10 years of detailed research on social interactions in synthesis groups at the National Center for Ecological Analysis…

  9. The modern synthesis, Ronald Fisher and creationism.

    PubMed

    Leigh

    1999-12-01

    The 'modern evolutionary synthesis' convinced most biologists that natural selection was the only directive influence on adaptive evolution. Today, however, dissatisfaction with the synthesis is widespread, and creationists and antidarwinians are multiplying. The central problem with the synthesis is its failure to show (or to provide distinct signs) that natural selection of random mutations could account for observed levels of adaptation.

  10. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  11. Maitotoxin: An Inspiration for Synthesis

    PubMed Central

    Aversa, Robert J.

    2011-01-01

    Maitotoxin holds a special place in the annals of natural products chemistry as the largest and most toxic secondary metabolite known to date. Its fascinating, ladder-like, polyether molecular structure and diverse spectrum of biological activities elicited keen interest from chemists and biologists who recognized its uniqueness and potential as a probe and inspiration for research in chemistry and biology. Synthetic studies in the area benefited from methodologies and strategies that were developed as part of chemical synthesis programs directed toward the total synthesis of some of the less complex members of the polyether marine biotoxin class, of which maitotoxin is the flagship. This account focuses on progress made in the authors’ laboratories in the synthesis of large maitotoxin domains with emphasis on methodology development, strategy design, and structural comparisons of the synthesized molecules with the corresponding regions of the natural product. The article concludes with an overview of maitotoxin’s biological profile and future perspectives. PMID:21709816

  12. Flavivirus RNA Synthesis in vitro

    PubMed Central

    Padmanabhan, Radhakrishnan; Takhampunya, Ratree; Teramoto, Tadahisa; Choi, Kyung H.

    2015-01-01

    Summary Establishment of in vitro systems to study mechanisms of RNA synthesis for positive strand RNA viruses have been very useful in the past and have shed light on the composition of protein and RNA components, optimum conditions, the nature of the products formed, cis-acting RNA elements and trans-acting protein factors required for efficient synthesis. In this review, we summarize our current understanding regarding the requirements for flavivirus RNA synthesis in vitro. We describe details of reaction conditions, the specificity of template used by either the multi-component membrane-bound viral replicase complex or by purified, recombinant RNA-dependent RNA polymerase. We also discuss future perspectives to extend the boundaries of our knowledge. PMID:26272247

  13. CHEMICAL SYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS

    PubMed Central

    Swarts, Benjamin M.; Guo, Zhongwu

    2013-01-01

    Many eukaryotic cell-surface proteins and glycoproteins are anchored to the plasma membrane by glycosylphosphatidylinositols (GPIs), a family of glycolipids that are post-translationally attached to proteins at their C-termini. GPIs and GPI-anchored proteins play important roles in many biological and pathological events, such as cell recognition and adhesion, signal transduction, host defense, and acting as receptors for viruses and toxins. Chemical synthesis of structurally defined GPI anchors and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems and exploring their potential therapeutic applications. In the first part of this comprehensive article on the chemical synthesis of GPIs, classic syntheses of naturally occurring GPI anchors from protozoan parasites, yeast, and mammals are covered. The second part of the article focuses on recent diversity-oriented strategies for the synthesis of GPI anchors containing unsaturated lipids, “click chemistry” tags, and highly branched and modified structures. PMID:22794184

  14. Erythropoietin Derived by Chemical Synthesis

    PubMed Central

    Shieh, Jae-Hung; Peguero, Elizabeth; Hendrickson, Ronald; Moore, Malcolm A. S.; Danishefsky, Samuel J.

    2014-01-01

    Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid–containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice. PMID:24337294

  15. Sterol Synthesis in Diverse Bacteria

    PubMed Central

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  16. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  17. A sustainable catalytic pyrrole synthesis

    NASA Astrophysics Data System (ADS)

    Michlik, Stefan; Kempe, Rhett

    2013-02-01

    The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

  18. Total Synthesis of (+)-Superstolide A

    PubMed Central

    Tortosa, Mariola; Yakelis, Neal A.; Roush, William R.

    2009-01-01

    A convergent and highly stereocontrolled total synthesis of the cytotoxic macrolide (+)-superstolide A is described. Key features of this synthesis include the use of bimetallic linchpin 36b for uniting the C(1)-C(15) (43) and the C(20)-C(27) (38) fragments of the natural product, a late-stage Suzuki macrocyclization of 49, and a highly diastereoselective transannular Diels-Alder reaction of macrocyclic octanene 4. In contrast, the intramolecular Diels-Alder reaction of pentaenal 5 provided the desired cycloadduct with lower stereoselectivity (6:1:1). PMID:18956845

  19. Quinazoline derivatives: synthesis and bioactivities

    PubMed Central

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reaction, Ultrasound-promoted reaction and Phase-transfer catalysis reaction. The biological activities of the synthesized quinazoline derivatives also are discussed. PMID:23731671

  20. Aiming for the ideal synthesis.

    PubMed

    Gaich, Tanja; Baran, Phil S

    2010-07-16

    The field of total synthesis has a rich history and a vibrant future. Landmark advances and revolutionary strides in the logic of synthesis have put the practicing chemist in the enviable position of being able to create nearly any molecule with enough time and effort. The stage is now set for organic chemists to aim for "ideality" in the way molecules are synthesized. This perspective presents a simple and informative definition of "ideality" and demonstrates its use during the self-evaluation of several syntheses from our laboratory.

  1. Stereocontrolled total synthesis of (+)-vincristine

    PubMed Central

    Kuboyama, Takeshi; Yokoshima, Satoshi; Tokuyama, Hidetoshi; Fukuyama, Tohru

    2004-01-01

    An efficient total synthesis of (+)-vincristine has been accomplished through a stereoselective coupling of demethylvindoline and the eleven-membered carbomethoxyverbanamine presursor. Demethylvindoline was prepared by oxidation of 17-hydroxy-11-methoxytabersonine, followed by regioselective acetylation with mixed anhydride method. Although an initial attempt of coupling by using demethylvindoline formamide was not successful and resulted in recovery of the starting compounds, the reaction using demethylvindoline took place smoothly to furnish the desired bisindole product with the correct stereochemistry at C18′. After formation of the piperidine ring by sequential removal of the protective groups and intramolecular nucleophilic cyclization, the total synthesis of vincristine was completed by formylation of N1. PMID:15141084

  2. Heterogeneous photocatalysts in organic synthesis

    NASA Astrophysics Data System (ADS)

    Cherevatskaya, M.; König, B.

    2014-03-01

    The review deals with the application of inorganic semiconductors in organic synthesis. Although the majority of reported reactions still aim at the photocatalytic decomposition of organic compounds, the number of examples in synthetic applications is growing. The principal mechanisms of heterogeneous semiconductor photocatalysis are considered and examples illustrating the use of inorganic semiconductors in organic synthesis are given. The discussion is arranged according to the required excitation wavelength (UV or visible light) and to the new bond that is formed (carbon-carbon or carbon-heteroatom bond). The bibliography includes 47 references.

  3. Synthesis of Illudinine from Dimedone.

    PubMed

    Morrison, Alec E; Hoang, Tung T; Birepinte, Mélodie; Dudley, Gregory B

    2017-02-17

    A total synthesis of the illudalane sesquiterpene illudinine was realized in eight steps and 14% overall yield from commercially available dimedone. The approach features tandem fragmentation/Knoevenagel-type condensation and microwave-assisted oxidative cycloisomerization to establish the isoquinoline core. Completion of the synthesis involves a recently reported cascade SNAr/Lossen rearrangement on a densely functionalized aryl bromide and an optimized procedure for O-methylation of 8-hydroxyisoquinolines. The oxidative cycloisomerization proceeds by way of a novel inverse-demand intramolecular dehydro-Diels-Alder cycloaddition, which has a potentially broader appeal for preparing substituted isoquinolines.

  4. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will

  5. Plant mediated green synthesis: modified approaches.

    PubMed

    Das, Ratul Kumar; Brar, Satinder Kaur

    2013-11-07

    Plant mediated green synthesis of different metallic nanoparticles has emerged as one of the options for implementation of green chemistry principles, and successfully made an important contribution towards green nanotechnology. However, beyond the synthesis and application aspects, the science of green synthesis has carried some wrong perceptions in an unforeseen fashion. In this review, some of the key issues related to the green synthesis of metallic nanoparticles employing plants as reducing/capping agents have been addressed. Random selection of plants and its overall impact on the different aspects of green synthesis have been discussed. Emphasis is given to the setting of some standard selection criteria to be adopted for selecting a plant for use in green synthesis. How selection of a plant can positively or negatively influence both procedure and products of a green synthesis process is the prime concern of this article. In addition to selection, the key issue of biocompatibility associated with green synthesized metallic nanoparticles has been considered. Both selection of plant and biocompatibility were reconsidered for their minute details in terms of synthesis, analysis and data interpretation in the green synthesis approach. The key factors capable of fine tuning the core meaning of "green" in the synthesis of any metallic nanoparticles were taken into consideration. This article is an effort towards keeping the core meaning of green synthesis.

  6. The Gabriel Synthesis of Benzylamine

    ERIC Educational Resources Information Center

    Nigh, W. G.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the Gabriel Synthesis to demonstrate the acidity of imides and to provide an example of nucleophilic substitution reactions. The experiment also demonstrates the laboratory techniques involved in simple and steam distillation, filtration, extraction, and…

  7. Catalysis and prebiotic RNA synthesis

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  8. 3-Ketoesters by Malonic Synthesis.

    ERIC Educational Resources Information Center

    Pollet, Patrick L.

    1983-01-01

    Discusses the acylation version of malonic synthesis of three-ketoesters. Includes advantages of this method over other methodologies including a final selective removal of the "activating" ester function in such mild conditions that most of the organic functions may survive. (JN)

  9. Green chemistry for chemical synthesis

    PubMed Central

    Li, Chao-Jun; Trost, Barry M.

    2008-01-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  10. Chronology of a Difficult Synthesis

    ERIC Educational Resources Information Center

    Menger, Fredric M.; Sorrells, Jennifer L.

    2009-01-01

    This article describes a short synthesis and many of the difficulties experienced while carrying it out (e.g., low yields, impurities, racemization, nonrepeatable literature preps, etc.). As such, students will be educated in aspects of synthetic organic chemistry that are often down-played, or even not mentioned, in published syntheses. (Contains…

  11. IN SEARCH OF A SYNTHESIS.

    ERIC Educational Resources Information Center

    HAWLEY, D.C.

    LANGUAGE INSTRUCTION SHOULD BE A SYNTHESIS OF THE BEST OF ALL METHODS. NO METHODOLOGY OR COMBINATION OF METHODOLOGIES WILL CHANGE THE FACT THAT LEARNING ANOTHER LANGUAGE IS THE ACQUISITION OF A COMPLEX AND DIFFICULT SKILL AND CAN BE ACCOMPLISHED ONLY WITH A GREAT DEAL OF TIME AND WORK ON THE PART OF BOTH TEACHER AND STUDENT. HOWEVER, IF, WITH THE…

  12. Synthesis of nanosized sodium titanates

    DOEpatents

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  13. Synthesis of a symmetrical dithiirane

    SciTech Connect

    Allakverdiev, M.A.; Farzaliev, V.M.; Mamedov, C.I.

    1986-04-01

    The reaction of p-xylene with epichlorohydrin in the presence of aluminum chloride gave 1,4-dimethyl-2,5-bis(1-chloro-2-hydroxypropyl) benzene, which serves as the starting compound for the synthesis of the corresponding symmetrical dithiirane.

  14. Robust Face Sketch Style Synthesis.

    PubMed

    Shengchuan Zhang; Xinbo Gao; Nannan Wang; Jie Li

    2016-01-01

    Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.

  15. Analysis and synthesis of laughter

    NASA Astrophysics Data System (ADS)

    Sundaram, Shiva; Narayanan, Shrikanth

    2004-10-01

    There is much enthusiasm in the text-to-speech community for synthesis of emotional and natural speech. One idea being proposed is to include emotion dependent paralinguistic cues during synthesis to convey emotions effectively. This requires modeling and synthesis techniques of various cues for different emotions. Motivated by this, a technique to synthesize human laughter is proposed. Laughter is a complex mechanism of expression and has high variability in terms of types and usage in human-human communication. People have their own characteristic way of laughing. Laughter can be seen as a controlled/uncontrolled physiological process of a person resulting from an initial excitation in context. A parametric model based on damped simple harmonic motion to effectively capture these diversities and also maintain the individuals characteristics is developed here. Limited laughter/speech data from actual humans and synthesis ease are the constraints imposed on the accuracy of the model. Analysis techniques are also developed to determine the parameters of the model for a given individual or laughter type. Finally, the effectiveness of the model to capture the individual characteristics and naturalness compared to real human laughter has been analyzed. Through this the factors involved in individual human laughter and their importance can be better understood.

  16. Steganography using reversible texture synthesis.

    PubMed

    Wu, Kuo-Chen; Wang, Chung-Ming

    2015-01-01

    We propose a novel approach for steganography using a reversible texture synthesis. A texture synthesis process resamples a smaller texture image, which synthesizes a new texture image with a similar local appearance and an arbitrary size. We weave the texture synthesis process into steganography to conceal secret messages. In contrast to using an existing cover image to hide messages, our algorithm conceals the source texture image and embeds secret messages through the process of texture synthesis. This allows us to extract the secret messages and source texture from a stego synthetic texture. Our approach offers three distinct advantages. First, our scheme offers the embedding capacity that is proportional to the size of the stego texture image. Second, a steganalytic algorithm is not likely to defeat our steganographic approach. Third, the reversible capability inherited from our scheme provides functionality, which allows recovery of the source texture. Experimental results have verified that our proposed algorithm can provide various numbers of embedding capacities, produce a visually plausible texture images, and recover the source texture.

  17. Organic chemistry: Streamlining drug synthesis

    NASA Astrophysics Data System (ADS)

    Hawkins, Joel M.

    2015-04-01

    Drug manufacture can benefit from flow synthesis, in which raw materials are fed into a sequence of reactors, producing the drug as a continuous output. A flow strategy that capitalizes on solid catalysts has now been realized. See Letter p.329

  18. CHEMICAL SYNTHESIS & TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    A historical account of the utility of microwaves in a variety of chemical synthesis applications will be presented, including a solvent-free strategy that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such...

  19. Enzymatic synthesis of prebiotic oligosaccharides.

    PubMed

    Rabelo, Maria C; Honorato, Talita L; Gonçalves, Luciana R B; Pinto, Gustavo A S; Rodrigues, Sueli

    2006-04-01

    Prebiotic oligosaccharides are nondigestible carbohydrates that can be obtained by enzymatic synthesis. Glucosyltransferases can be used to produce these carbohydrates through an acceptor reaction synthesis. When maltose is the acceptor a trisaccharide composed of one maltose unit and one glucose unit linked by an alpha-1,6-glycosidic bond (panose) is obtained as the primer product of the dextransucrase acceptor reaction. In this work, panose enzymatic synthesis was evaluated by a central composite experimental design in which maltose and sucrose concentration were varied in a wide range of maltose/sucrose ratios in a batch reactor system. A partially purified enzyme was used in order to reduce the process costs, because enzyme purification is one of the most expensive steps in enzymatic synthesis. Even using high maltose/sucrose ratios, dextran and higher-oligosaccharide formation were not avoided. The results showed that intermediate concentrations of sucrose and high maltose concentration resulted in high panose productivity with low dextran and higher-oligosaccharide productivity.

  20. Sulfur monochloride in organic synthesis

    NASA Astrophysics Data System (ADS)

    Konstantinova, L. S.; Rakitin, O. A.

    2014-03-01

    The data on the reactivity of sulfur monochloride published in the past 15 years have been reviewed and systematized. The review focuses on the synthesis of acyclic and heterocyclic compounds with the use of S2Cl2. The bibliography includes 154 references.

  1. Total synthesis of (-)-depyranoversicolamide B.

    PubMed

    Qin, Wen-Fang; Xiao, T; Zhang, D; Deng, Lin-Feng; Wang, Y; Qin, Y

    2015-11-18

    Starting from easily prepared (R)-C3-isoprenylated pyrroloindoline, the C3-isoprenylated indolyl diketopiperazine is prepared by an efficient reductive opening of the pyrrolo ring, and undergoes biomimetic Diels-Alder reaction to generate an anti-adduct as a sole stereoisomer. Oxidation of the indoline moiety to oxindole completes the synthesis of (-)-depyranoversicolamide B.

  2. Insolubilized enzymes for food synthesis

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  3. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  4. Organocatalyzed asymmetric synthesis of morphans.

    PubMed

    Bradshaw, Ben; Parra, Claudio; Bonjoch, Josep

    2013-05-17

    A general effective organocatalyzed synthesis of enantioenriched morphans with up to 92% ee was developed. The morphan scaffold was constructed in a one-pot tandem asymmetric organocatalyzed Michael addition followed by a domino Robinson annulation/aza-Michael intramolecular reaction sequence from easily available starting materials.

  5. Phytochelatin synthesis in tomato cells

    SciTech Connect

    Goldsbrough, P.; Gupta, S.; Huang, B.; Scheller, H.

    1987-04-01

    Tomato cells that are exposed to cadmium and other heavy metals synthesize phytochelatins (PCs), a family of peptides that bind heavy metals and are structurally related to glutathione (GSH). PCs have the structure (..gamma..-glutamyl-cysteinyl) glycine; for PCs, n=2-10; GSH, n=1. GSH levels decline rapidly in tomato cells exposed to Cd/sup 2 +/. Buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, prevents sustained synthesis of PC. However the addition of GSH to the medium of BSO-treated cells restores PC production. In vivo labeling studies indicate that /sup 35/(S)-cysteine is incorporated into PC via GSH, rather than being added directly to GSH or pre-formed PC. Initial synthesis of PCs is not inhibited by cycloheximide. Tomato cell cultures that are tolerant of high levels of Cd/sup 2 +/ contain large amounts of PCs. However, when sensitive and tolerant cells that have been grown in the absence of Cd/sup 2 +/ are exposed to relatively low concentrations of Cd/sup 2 +/, they synthesize PCs at similar rates. These and other results suggest that, although PCs are necessary, increased PC synthesis is not sufficient for expression of the Cd/sup 2 +/ tolerant phenotype.

  6. Globin chain synthesis ratios in sideroblastic anaemia.

    PubMed

    Peters, R E; May, A; Jacobs, A

    1983-02-01

    Globin synthesis ratios were measured on reticulocytes from nine patients with primary acquired sideroblastic anaemia (SA), four patients with hereditary or congenital SA, two patients with secondary acquired SA and three patients with iron deficiency (ID). Ten of the samples from patients with SA and all the samples from patients with ID had normal ratios. Samples from three patients had significantly abnormal ratios, one from a patient with SA and acquired Hb H disease (alpha/beta 0 X 26), one from a patient with secondary acquired SA (alpha/beta 0 X 88), and one from a patient who went on to develop acute myeloblastic leukaemia (alpha/beta 1 X 36). Globin synthesis was stimulated by 100 microM haem similarly in normal, SA and ID reticulocytes. Any limitation of globin synthesis in SA and ID is therefore not easily reversible by adding haem. Inhibition of haem synthesis in nonsideroblastic reticulocytes using 4 mM isonicotinic acid hydrazide for 1 h incubation affected neither total globin synthesis nor the alpha/beta ratio. These results contradict the view that decreased haem synthesis decreases globin chain synthesis and decreases the alpha/beta globin chain synthesis ratios in human reticulocytes. Previously reported findings that haem could reverse globin chain synthesis inhibition in SA were good evidence for a primary deficiency of haem synthesis in the erythroblasts of these patients. Our inability to substantiate these findings emphasizes the need for a re-evaluation of the aetiology of sideroblastic anaemia.

  7. [THE SPIRIT CHOLESTEROL, BIOLOGICA L ROLE AT STAGES OF PHYLOGENESIS, MECHANISMS OF INHIBITION OF SYNTHESIS OF STEROL BY STATINS, FACTORS OF PHARMACOGENOMICS AND DIAGNOSTIC SIGNIFICANCE OF CHOLESTEROL OF LIPOPROTEINS OF LOW DENSITY].

    PubMed

    Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M

    2015-04-01

    The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid.

  8. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unu...

  9. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes

    SciTech Connect

    Beschiaschvili, G.; Seelig, J. )

    1990-01-09

    The binding of bee venom melittin to negatively charged unilamellar vesicles and planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) was studied with circular dichroism and deuterium NMR spectroscopy. The melittin binding isotherm was measured for small unilamellar vesicles containing 10 or 20 mol % POPG. Due to electrostatic attraction, binding of the positively charged melittin was much enhanced as compared to the binding to neutral lipid vesicles. However, after correction for electrostatic effects by means of the Gouy-Chapman theory, all melittin binding isotherms could be described by a partition Kp = (4.5 +/- 0.6) x 10(4) M-1. It was estimated that about 50% of the total melittin surface was embedded in a hydrophobic environment. The melittin partition constant for small unilamellar vesicles was by a factor of 20 larger than that of planar bilayers and attests to the tighter lipid packing in the nonsonicated bilayers. Deuterium NMR studies were performed with coarse lipid dispersions. Binding of melittin to POPC/POPG (80/20 mol/mol) membranes caused systematic changes in the conformation of the phosphocholine and phosphoglycerol head groups which were ascribed to the influence of electrostatic charge on the choline dipole. While the negative charge of phosphatidylglycerol moved the N+ end of the choline -P-N+ dipole toward the bilayer interior, the binding of melittin reversed this effect and rotated the N+ end toward the aqueous phase. No specific melittin-POPG complexes could be detected. The phosphoglycerol head group was less affected by melittin binding than its choline counterpart.

  10. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.

    PubMed

    Vácha, Robert; Jurkiewicz, Piotr; Petrov, Michal; Berkowitz, Max L; Böckmann, Rainer A; Barucha-Kraszewska, Justyna; Hof, Martin; Jungwirth, Pavel

    2010-07-29

    Interactions of different anions with phospholipid membranes in aqueous salt solutions were investigated by molecular dynamics simulations and fluorescence solvent relaxation measurements. Both approaches indicate that the anion-membrane interaction increases with the size and softness of the anion. Calculations show that iodide exhibits a genuine affinity for the membrane, which is due to its pairing with the choline group and its propensity for the nonpolar region of the acyl chains, the latter being enhanced in polarizable calculations showing that the iodide number density profile is expanded toward the glycerol level. Solvent relaxation measurements using Laurdan confirm the influence of large soft ions on the membrane organization at the glycerol level. In contrast, chloride exhibits a peak at the membrane surface only in the presence of a surface-attracted cation, such as sodium but not potassium, suggesting that this behavior is merely a counterion effect.

  11. Bilayer properties of hydroxytyrosol- and tyrosol-phosphatidylcholine lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tyrosol and hydroxytyrosol are the phytochemicals abundantly found in olive oil. Transphosphatidylation of tyrosol and hydroxytyrosol with dioleoylphosphocholine resulted in phospholipids with antioxidant properties. The ability of these phyto-phospholipids to form liposomes and supported bilayers w...

  12. Properties of phosphatidylcholine in the presence of its monofluorinated analogue.

    PubMed

    Smith, Eric A; van Gorkum, Christiaan M; Dea, Phoebe K

    2010-03-01

    In aqueous solution, the monofluorinated phospholipid 1-palmitoyl-2-[16-fluoropalmitoyl]sn-glycero-3-phosphocholine (F-DPPC) interdigitates without the use of inducing agents. To understand the thermal and physical properties of this unique lipid, F-DPPC was combined with the non-fluorinated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC). Differential scanning calorimetry (DSC) was used to determine the miscibility and thermotropic phase behavior of these binary lipid mixtures. In addition, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and a DPH-labeled analogue of DPPC, 2-(3-(diphenylhexatrienyl) propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (beta-DPH HPC, aka DPH-PC or DPHpPC), were used to detect interdigitation. In F-DPPC, the fluorescence intensity of both probes decreased a similar amount and to a degree that is consistent with an interdigitated system. We also determined that there are two separate effects of increasing the ratio of F-DPPC in the DPPC/F-DPPC system. With low amounts of F-DPPC, there is little evidence that the system is heavily interdigitated. Instead, we hypothesize that the introduction of F-DPPC provides nucleation sites that alter the kinetics, reversibility, and temperature of the main transition (T(m)). At higher mol% of F-DPPC, we propose that interdigitated F-DPPC-rich domains form to create a phase-segregated system. While DPPC/F-DPPC was highly miscible, the DAPC/F-DPPC system was significantly less miscible. Additionally, we observed that DAPC/F-DPPC samples have reduced solubility in water, which affected the acquisition of fluorescence data. However, our DSC results indicate the existence of DAPC-rich and F-DPPC-rich components. Furthermore, this data support that the mixing was disruptive to lipid packing and that the presence of DAPC hinders the interdigitation of F-DPPC.

  13. Thermodynamics of monolayers formed by mixtures of phosphatidylcholine/phosphatidylserine.

    PubMed

    Luna, Carlos; Stroka, Kimberly M; Bermudez, Harry; Aranda-Espinoza, Helim

    2011-07-01

    In this work we obtain the thermodynamic properties of mixed (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) PC and (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)) PS monolayers. Measurements of compressibility (isotherms, bulk modulus, and excess area per molecule) and surface potential show that the properties of monolayers at the air-water interface depend on the concentration of ions (Na(+) and K(+)) and the proportion of PS in the mixture. The dependence on PS arises because the molecule is originally bound to a Na(+) counterion; by increasing the concentration of ions the entropy changes, creating a favorable system for the bound counterions of PS to join the bulk, leaving a negatively charged molecule. This change leads to an increase in electrostatic repulsions which is reflected by the increase in area per molecule versus surface pressure and a higher surface potential. The results lead to the conclusion that this mixture of phospholipids follows a non ideal behavior and can help to understand the thermodynamic behavior of membranes made of binary mixtures of a zwitterionic and an anionic phospholipid with a bound counterion.

  14. Syntheses and antiproliferative activities of novel phosphatidylcholines containing dehydroepiandrosterone moieties.

    PubMed

    Kłobucki, Marek; Grudniewska, Aleksandra; Smuga, Damian A; Smuga, Małgorzata; Jarosz, Joanna; Wietrzyk, Joanna; Maciejewska, Gabriela; Wawrzeńczyk, Czesław

    2017-02-01

    Dehydroepiandrosterone (DHEA) is a natural hormone with many beneficial properties including an anticancer activity. Unfortunately, DHEA is unstable in the body and exhibits cytotoxicity against healthy cells. In this study, a series of new phosphocholines containing DHEA at sn-1 and/or sn-2 positions were prepared. Succinic acid was used as a linker between the active drug and sn-glycero-3-phosphocholine. All the compounds were evaluated in vitro for their antiproliferative activities against four cell lines: Balb/3T3, HL-60, B16, and LNCaP. The results showed that phosphocholines with DHEA at sn-1 and/or sn-2 positions did not have cytotoxic effects on the normal cell line (Balb/3T3). Mixed-chain phospholipids with DHEA and fatty acid residues showed the highest activity against tumor cell lines. The most active compound, 11c, showed a moderate cytotoxic effect against the HL-60 and B16 cell lines.

  15. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    PubMed Central

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  16. Flow "Fine" Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods.

    PubMed

    Kobayashi, Shū

    2016-02-18

    The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society.

  17. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  18. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  19. The chemical synthesis of aryltetralin glycosides.

    PubMed

    Sun, Jian-Song; Liu, Hui; Guo, Xiao-Hong; Liao, Jin-Xi

    2016-01-28

    Led by etoposide and teniposide, the synthesis of aryltetralin glycosides has been experiencing flourishing development in the past five decades. Herein, a review focusing on the total synthesis of aryltetralin glycosides is provided. The main body of this review is composed of two parts, one is the enantioselective synthesis of aryltetralin derivatives and the other one is the construction of key glycosidic linkages. In each part the contents are organised based on the different strategies or protocols applied in the original documents. The total synthesis of aryltetralin glycosides represents the developing direction of this field, and sooner or later will replace the currently applied semi-total synthesis method, using the aglycon residue acquired directly from natural sources. This account provides a comprehensive and deep insight into the field of aryltetralin glycoside synthesis for chemists who have the intention of committing themselves to the development of aryltetralin glycoside medicine.

  20. Stereoselective Halogenation in Natural Product Synthesis.

    PubMed

    Chung, Won-jin; Vanderwal, Christopher D

    2016-03-24

    At last count, nearly 5000 halogenated natural products have been discovered. In approximately half of these compounds, the carbon atom to which the halogen is bound is sp(3) -hybridized; therefore, there are an enormous number of natural products for which stereocontrolled halogenation must be a critical component of any synthesis strategy. In this Review, we critically discuss the methods and strategies used for stereoselective introduction of halogen atoms in the context of natural product synthesis. Using the successes of the past, we also attempt to identify gaps in our synthesis technology that would aid the synthesis of halogenated natural products, as well as existing methods that have not yet seen application in complex molecule synthesis.