Hu, Yuanyuan; Wang, Tong; Yang, Xingbin; Zhao, Yan
2014-02-15
A rapid analytical method of capillary zone electrophoresis (CZE) was established for the simultaneous separation and determination of 10 monosaccharides (aldoses and uronic acids). The monosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP), and subsequently separated using an uncoated capillary (50 μm i.d. × 58.5 cm) and detected by UV at 245 nm with pH 11.0, 175 mM borate buffer at voltage 20 kV and capillary temperature 25 °C by CZE. The 10 PMP-labeled monosaccharides were rapidly baseline separated within 20 min. The optimized CZE method was successfully applied to the simultaneous separation and identification of the monosaccharide composition in Termitomyces albuminosus polysaccharides (TAPs) and Panus giganteus polysaccharides (PGPs). The quantitative recovery of the component monosaccharides in the fungus polysaccharides was in the range of 92.0-101.0% and the CV value was lower than 3.5%. The results demonstrate that the proposed CZE method is precise and practical for the monosaccharide analysis of fungus polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xia, Bing; Zhou, Yan; Liu, Xin; Xiao, Juan; Liu, Qing; Gu, Yucheng; Ding, Lisheng
2012-06-15
Carbohydrates are good source of drugs and play important roles in metabolism processes and cellular interactions in organisms. Distinguishing monosaccharide isomers in saccharide derivates is an important and elementary work in investigating saccharides. It is important to develop a fast, simple and direct method for this purpose, which is described in this study. Stock solutions of monosaccharide with a concentration of 400 μM and sodium chloride at a concentration of 10 μM were made in water/methanol (50:50, v/v). The samples were subjected to electrospray ionization ion-trap tandem mass spectrometry (ESI-MS) and the detected [2M + Na - H(2)O](+) ions were further investigated by tandem mass spectrometry (MS/MS), followed by applying principal component analysis (PCA) on the obtained MS/MS data sets. The MS/MS spectra of the [2M + Na - H(2)O](+) ions at m/z 365 for hexoses and m/z 305 for pentoses yielded unambiguous fragment patterns, while rhamnose can be directly identified by its ESI-MS [M + Na](+) ion at m/z 187. PCA showed clustering of MS/MS data of identical monosaccharide samples obtained from different experiments. By using this method, the monosaccharide in daucosterol hydrolysate was successfully identified. A new strategy was developed for differentiation of the monosaccharides using ESI-MS/MS and PCA. In MS/MS spectra, the [2M + Na - H(2)O](+) ions yielded unambiguous distinction. PCA of the archived MS/MS data sets was applied to demonstrate the spatial resolution of the studied samples. This method presented a simple and reliable way for distinguishing monosaccharides by ESI-MS/MS. Copyright © 2012 John Wiley & Sons, Ltd.
Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying
2018-01-01
Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel
2017-10-09
The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area ratios of monosaccharides. The proposed procedure using UHPSFC/MS represents an interesting alternative which can compete with other chromatographic methods in the field of saccharide analysis in terms of speed, sensitivity and simplicity of workflow. Copyright © 2017 Elsevier B.V. All rights reserved.
Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms
NASA Astrophysics Data System (ADS)
Kochetkov, Nikolai K.
1996-09-01
The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.
Wang, Qiong; Wang, Feng; Xu, Zhenghong; Ding, Zhongyang
2017-06-13
Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.
Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.
Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira
2013-01-01
Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.
USDA-ARS?s Scientific Manuscript database
A new type of carbohydrate derivative is described that is suitable for analysis by GC/MS. Reaction of free aldoses (pentoses or hexoses), or the component aldoses arising from acid hydrolysis of polysaccharides or oligosaccharides, with excess cysteamine hydrochloride in pyridine, results in the qu...
Shi, Yan
2014-02-01
Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.
USDA-ARS?s Scientific Manuscript database
A novel group of carbohydrate derivatives is described that uniquely assign cis/trans-2,3 aldose stereoisomers at low nanomolar concentrations. Aldopentoses or aldohexoses, or component aldoses from hydrolysis of polysaccharides or oligosaccharides, react with cysteamine in pyridine to give quantita...
[Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].
Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi
2011-01-01
The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.
Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide
2011-05-01
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones
Xu, Ren-Bo; Yang, Xin; Wang, Jing; Zhao, Hai-Tian; Lu, Wei-Hong; Cui, Jie; Cheng, Cui-Lin; Zou, Pan; Huang, Wei-Wei; Wang, Pu; Li, Wen-Jing; Hu, Xing-Long
2012-01-01
The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine. PMID:23203063
Large Scale Green Synthesis of 1,2,4-Butanetriol
2007-03-31
processing Corn fiber was pretreated by AFEX and the resultant glucan was enzymatically converted to monosaccharide . Saccharification of the cellulose...After removing the residual solids from the hydrolyzate solution, solubilized hemicellulose and monosaccharides were measured in solution, where the...resulting hemicellulose was 62% polysachharide by mass. The component polysaccharide content of the hemicellulose was 35% xylan, 18% arabinan, 6
Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight
NASA Astrophysics Data System (ADS)
Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.
This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.
Yan, Jun; Shi, Songshan; Wang, Hongwei; Liu, Ruimin; Li, Ning; Chen, Yonglin; Wang, Shunchun
2016-01-20
A novel analytical method for neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides was developed using hydrophilic interaction liquid chromatography coupled to a charged aerosol detector. The effects of column type, additives, pH and column temperature on retention and separation were evaluated. Additionally, the method could distinguish potential impurities in samples, including chloride, sulfate and sodium, from sugars. The results of validation demonstrated that this method had good linearity (R(2) ≥ 0.9981), high precision (relative standard deviation ≤ 4.43%), and adequate accuracy (94.02-103.37% recovery) and sensitivity (detection limit: 15-40 ng). Finally, the monosaccharide compositions of the polysaccharide from Eclipta prostrasta L. and stachyose were successfully profiled through this method. This report represents the first time that all of these common monosaccharides could be well-separated and determined simultaneously by high performance liquid chromatography without additional derivatization. This newly developed method is convenient, efficient and reliable for monosaccharide analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biological Sciences Division 1991 Programs
1991-08-01
missing offending polysaccharides and 2) identify monosaccharide peaks in gas chromatography that we know are not holdfast- derived and can ignore. 3-On...ACCOMPLISHMENTS: 1. The polysaccharidic component of the extracellular slime of Flexibacter maritimus is predominantly a glucose polymer. In collaboration...are due to the presence of polypeptide(s), not polysaccharide as predicted. W.H. Schwarz (John Hopkins) has performed rheological analysis of this
Wu, Xiaodan; Jiang, Wei; Lu, Jiajia; Yu, Ying; Wu, Bin
2014-02-15
Sargassum fusiforme (hijiki) is the well-known edible algae, whose polysaccharides have been proved to possess interesting bioactivities like antitumor, antioxidant, antimicrobial and immunomodulatory activities. A facile and sensitive method based on high-performance liquid chromatography method of pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) coupled with electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been established for the analysis of the monosaccharide composition of polysaccharides in S. fusiforme. Monosaccharides have been converted into PMP-labelled derivatives with aqueous ammonia as a catalyst at 70 °C for 30 min. The optimisation of the pre-column derivatization process was studied. The LODs of the monosaccharides were in the range from 0.01 to 0.02 nmol. PMP-labelled mixture of monosaccharides has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimised conditions. The mobile phase of elution system was chosen as acetonitrile (solvent A) and 20mM aqueous ammonium acetate (solvent B) (pH 3.0) with Zorbax XDB-C18 column at 30 °C for the separation of the monosaccharide derivatives. Identification of the monosaccharides composition was carried out by analysis with mass spectral behaviour and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone (PMP) labelled monosaccharides. All PMP-labelled derivatives display high chemical stabilities, whose regular MS fragmentation is specific for reducing labelled sugars. The result showed that the S. fusiforme polysaccharide consisted of mannose, glucose, galactose, xylose, fucose and glucuronic acid or galacturonic acid, or both uronic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates
Van Wychen, Stefanie; Long, William; Black, Stuart K.; ...
2016-11-24
A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.
Structure of bacterial lipopolysaccharides.
Caroff, Martine; Karibian, Doris
2003-11-14
Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.
MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wychen, Stefanie; Long, William; Black, Stuart K.
A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.
USDA-ARS?s Scientific Manuscript database
The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...
MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates.
Van Wychen, Stefanie; Long, William; Black, Stuart K; Laurens, Lieve M L
2017-02-01
A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. The MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 μg mL -1 without interference from other algae acidic hydrolyzate components. Copyright © 2016 Elsevier Inc. All rights reserved.
2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates.
Cai, Zhi Peng; Hagan, Andrew Kevin; Wang, Mao Mao; Flitsch, Sabine Lahja; Liu, Li; Voglmeir, Josef
2014-05-20
We herein report the use of 1,3-di(2-pyridyl)-1,3-propanedione (DPPD) as a fluorogenic labeling reagent for sugars. Reaction of DPPD with the anomeric carbon affords a fluorescent 2-pyridylfuran (2-PF) moiety that permits the sensitive HPLC-based detection of monosaccharides. 2-PF-labeled monosaccharides can be easily separated and analyzed from mixtures thereof, and the reported protocol compares favorably with established labeling reagents such as 2-aminobenzoic acid (2-AA) and 1-phenyl-3-methyl-5-pyrazolone (PMP), ultimately allowing subfemtomole detection of the galactose-derived product. Furthermore, we demonstrate the application of DPPD in the labeling of monosaccharides in complex biological matrices such as blood and milk samples. We envisage that DPPD will prove to be an excellent choice of labeling reagent in monosaccharide and carbohydrate analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sal'kova, E.G.
1963-04-11
Onion bulbs, garlic bulbs, and apples were subjected to gamma radiation, and the changes in carbohydrate content were determined at 5 days and 2 months after irradiation. No accumulation of sugars could be detected in the onion or garlic buibs up to a dose of 60,000 r. The content of monosaccharides decreased from 1.75% of the dry weight for the controls to 1.15% on the 5th day after irradiation of the onion bulbs with a dose of 30,000 r. No break-down of polysaccharides due to irradiation could be observed in the onion or garlic. No change in the monosaccharide contentmore » of irradiated onion bulbs could be detected by chromatographic analysis. The apples were irradiated with a dose of 40,000 r which caused ripening of the fruit, and with a dose of 200,000 to 400,000 r, which sterilized the fruit. On irradiating apples with a dose of 40,000 r, the monosaccharide content decreased, while the starch content increased. The sucrose content fell to zero at a dose of 400,000 r. After storage for a month, the monosaccharide content in the irradiated apples was less than that in the unirradiated apples. A chromatographic analysis showed that the content of galactic acid was increased in the irradiated apples due to the break-down of pectin-like materials. The maltose and lactose contents were much lower, while the contents of fructose and glucose were higher after irradiation than before irradiation of the apples. The data show that irradiation has an effect on the carbohydrate content of plants that varies from plant to plant. The reasons for the differences in stability of the various carbohydrate components in different plants are not known at present. (TTT)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moers, M.E.C.; Larter, S.R.
1993-07-01
Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analyzed for carbohydrates (as neutral monosaccharides) to distinguish and characterize various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass (Halodule uninervis), and mangrove (Avicennia marine) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr BP. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose andmore » glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose, and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria (Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria (Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other [open quotes]minor[close quotes] saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms. 22 refs., 4 figs., 4 tabs.« less
Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J
2008-12-01
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.
de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C
2013-08-01
The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P < 0.05) hydrolyzed monosaccharide concentrations. The SCFsd blends had intermediate to high amounts of monosaccharides released as a result of in vitro hydrolytic digestion. The SCFsd:pullulan blends were more digestible in vitro (approximately 91%; P < 0.05) than SCFsd:fructose or SCFsd:sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P < 0.05). The SCF:pullulan:sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in decreased glycemic and insulinemic responses compared with the maltodextrin control (P < 0.05) using a canine model. The addition of pullulan reduced the glycemic response compared with maltodextrin at all concentrations, but only 50:50 SCFsd:pullulan resulted in a reduction of the glycemic response compared with SCFsd alone (P < 0.05). The addition of fructose and sorbitol in the blends had the greatest impact on glycemic and insulinemic responses, even at concentrations as low as 5% of the blends. Overall, SCF and their blends may prove beneficial as components of low glycemic foodstuffs.
Liu, Qin; Dang, Huijie; Chen, Zhijian; Wu, Junzheng; Chen, Yinhua; Chen, Songbi; Luo, Lijuan
2018-03-26
The sugar transporter ( STP ) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava ( Manihot esculenta ) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes ( MeSTP1 - 20 ) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast ( Saccharomyces cerevisiae ) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.
Composition of Fatty Acids and Carbohydrates in Leptospira1
Kondo, Eiko; Ueta, Nobuo
1972-01-01
The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167
Chen, Nai-dong; Meng, Yun-fei; Yao, Hou-jun; Cao, Cai-yun; Chen, Chen; Li, Jun
2015-08-01
To establish a PMP-HPCE method for comparing the monosaccharides of polysaccharide in tissue-cultured and wild Dedrobium huoshanese and Dedrobium moniliforme as well as wild Dedrobium henanese, in order to investigate the similarities of their bioactive components. The PMP-monosaccharides of polysaccharide from the five investigated Dedrobium samples were separated by HPCE on a fused silica capillary column(100 cm x 50 µm) at 25 °C with 350 mmol/L BAS (adjusted to pH 10 with 1.0 mol/L NaOH) as running buffer for 34 min. The applied voltage was 20 kV and the detection wavelength was set at 250 nm. Total six monosaccharides including xylose, glucose, mannose, galactose, galacturonic acid and ribose were detected in the five Dendrobiurms samples and the similarity coefficients between the ten batches of the same Dendrobium species were all above 0. 98,while remarkable dissimilarity were exhibited among species and different resources. PMP-HPCE technique combined with chemometrics is simple, convenient, precise, reproducible and proved to be an effective strategy for identifying the species and origins, especially in the quality assessment of Dendrobium stems.
Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young
2009-01-01
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878
Ravcheev, Dmitry A.; Thiele, Ines
2017-01-01
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions. PMID:28912798
Ravcheev, Dmitry A; Thiele, Ines
2017-01-01
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.
Ylstra, Bauke; Garrido, Dolores; Busscher, Jacqueline; van Tunen, Arjen J.
1998-01-01
We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented. PMID:9733549
Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J
2015-09-11
A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
The effect of growth medium on B. anthracis Sterne spore carbohydrate content.
Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B
2011-06-01
The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong
2015-11-01
Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.
A preliminary study on the synthesis of monosaccharide palmitate
NASA Astrophysics Data System (ADS)
Othman, Nor Hamidah Abu; Jafri, Nur Hafifah Nahdirah; Salimon, Jumat
2018-04-01
The esterification reaction between palmitic acid and different monosaccharides using 1.5% sulfuric acid as the catalyst to produce monosachharide palmitate was studied. The highest percentage yield obtained was 20% from tripalmitate (TAG01) whereas the lowest percentage formed was 0.8% from glucose pentapalmitate (GPP01). Functional group analysis was conducted using ATR-FTIR spectroscopy. Infrared spectroscopy showed C=O ester stretching at 1735, 1697, 1732 and 1729 cm-1, C-O ester stretching at 1265, 1269, 1284 and 1265 while C-H sp3 stretching was observed at 2847-2914 cm-1 for tripalmitate (TAG), glucose pentapalmitate (GPP), xylitol pentapalmitate (XPP) and sorbitol hexapalmitate (SHP) with no observed -OH stretch after esterification to produce monosaccharide palmitate.
Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.
Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin
2015-01-01
Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi
2016-01-01
Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.
Hydrolysis of biomass material
Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail
2004-02-17
A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.
Pinilla, V; Luu, B
1999-08-01
The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.
Fructose and high fructose corn syrup
USDA-ARS?s Scientific Manuscript database
Fructose, a monosaccharide, is naturally present in fruits, vegetables and honey, usually accompanied by other sugars including glucose and the disaccharide sucrose. It is also found as a component of sweeteners used in many processed food products, usually as sucrose or high fructose corn syrup (HF...
Chemical signals of fish skin for the attachment response of Acanthostomum brauni cercariae.
Haas, W; de Nuñez, M O
1988-01-01
The chemical signals of the skin surface of fish, which stimulate the attachment responses of Acanthostomum brauni cercariae, were identified by offering chemicals and fish-skin extracts in agarose substrates to the cercariae. Smaller molecules such as amino acids, fatty acids, monosaccharides, electrolytes, urea, and carbonate solutions did not stimulate attachments, but hyaluronic acid had some effects. Bovine submaxillary glycoproteins had a strong stimulating activity that disappeared after neuraminidase digestion. The stimulating components of the skin surface of fish were hydrophilic substances with molecular weights of more than 10,000. They were sensitive to neuraminidase digestion but not to hyaluronidase digestion and thus can be identified as glycoproteins. A. brauni cercariae respond only to the complete glycoprotein molecules and not to their monosaccharide components. The known attachment triggers of other cercariae are small molecules. Large glycoproteins as host signals for A. brauni cercariae may be an adaptation to muddy habitats, where various substances with low molecular weights may interfere with the host identification.
LEVOGLUCOSAN, A TRACER FOR CELLULOSE IN BIOMASS BURNING AND ATMOSPHERIC PARTICLES. (R823990)
The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation wa...
Lim, Sun Ha; Kim, Yaesil; Yun, Ki Na; Kim, Jin Young; Jang, Jung-Hee; Han, Mee-Jung; Lee, Jongwon
2016-12-08
Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.
NASA Astrophysics Data System (ADS)
Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.
2012-04-01
The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15:0, ai15:0 and 18:1ω7c which likely resulted from production of these bacterial fatty acids during bacterial reworking of the organic matter. Differences between loss rate constants for individual monosaccharides were not significant. An exception was ribose that was produced and lost relatively rapidly, which may be related to ribose being an important component of RNA. Losses of bulk 13C and 15N were closely coupled despite partly being present in different biochemicals and partly being derived from different microbial sources, indicating no selective preservation of either C or N during organic matter diagenesis.
Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Ruiz-Sainz, J E; Buendía-Clavería, A M; Ollero, F J; Yang, S S; Gil-Serrano, A M
2001-01-01
We have determined the structure of a polysaccharide from strain B33, a fast-growing bacterium that forms nitrogen-fixing nodules with Asiatic and American soya bean cultivars. On the basis of monosaccharide analysis, methylation analysis, one-dimensional 1H- and 13C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the repeating unit -->6)-4-O-methyl-alpha-D-Glcp-(1-->4)-3-O-methyl-beta-D-GlcpA-(1--> (where GlcpA is glucopyranuronic acid and Glcp is glucopyranose). Strain B33 produces a K-antigen polysaccharide repeating unit that does not have the structural motif sugar-Kdx [where Kdx is 3-deoxy-D-manno-2-octulosonic acid (Kdo) or a Kdo-related acid] proposed for different Sinorhizobium fredii strains, all of them being effective with Asiatic soya bean cultivars but unable to form nitrogen-fixing nodules with American soya bean cultivars. Instead, it resembles the K-antigen of S. fredii strain HH303 (rhamnose, galacturonic acid)n, which is also effective with both groups of soya bean cultivars. Only the capsular polysaccharide from strains B33 and HH303 have monosaccharide components that are also present in the surface polysaccharide of Bradyrhizobium elkanii strains, which consists of a 4-O-methyl-D-glucurono-L-rhamnan. PMID:11439101
MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)
Monosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...
Potential Explosive Hazards from Hydrogen Sulfide Production in Ship Ballast and Sewage Tanks.
1998-12-01
support growth. Anaerobic degradation of the organic components of sewage follows a number of stages. Firstly, the proteins, polysaccharides and fats...present are converted to long chain fatty acids, peptides, amino acids, glycerol and monosaccharide . The second stage involves the production of a
Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation.
Gómez-Fernández, José; Gómez-Izquierdo, Emilio; Tomás, Cristina; Mocé, Eva; de Mercado, Eduardo
2012-07-01
The aim of the present study was to evaluate the cryoprotectant effect of different non-permeating sugars for boar sperm. Pooled semen from three boars was used for the experiments. In the first experiment, the sperm quality of boar sperm cryopreserved with an egg-yolk based extender supplemented with different monosaccharides (glucose, galactose or fructose) was compared to a control cryopreserved in lactose-egg yolk extender. In the second experiment, the effect of five disaccharides (lactose, sucrose, lactulose, trehalose or melibiose) on boar sperm cryosurvival was studied. Several sperm quality parameters were assessed by flow cytometry in samples incubated for 30 and 150 min at 37°C after thawing: percentages of sperm with intact plasma membrane (SIPM), sperm presenting high plasma membrane fluidity (HPMF), sperm with intracellular reactive oxygen substances production (IROSP) and apoptotic sperm (AS). In addition, the percentages of total motile (TMS) and progressively motile sperm (PMS) were assessed at the same incubation times with a computer-assisted sperm analysis system. Freezing extenders supplemented with each of the monosaccharide presented smaller cryoprotective effect than the control extender supplemented with lactose (P<0.05). However, from the three monosaccharides tested, glucose provided the best sperm quality after freezing-thawing. With respect to the disaccharides studied, samples frozen with the extender supplemented with lactulose exhibited in general the lowest sperm quality, except for the percentage of capacitated sperm, which was highest (P<0.05) in the samples cryopreserved with the trehalose extender. Our results suggest that disaccharides have higher cryoprotective effect than monosaccharides, although the monosaccharide composition of the disaccharides is also important, since the best results were obtained with those disaccharides presenting glucose in their composition. Copyright © 2012 Elsevier B.V. All rights reserved.
Vanfossen, Amy L; Verhaart, Marcel R A; Kengen, Servé M W; Kelly, Robert M
2009-12-01
Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.
Component analysis and free radicals scavenging activity of Cicer arietinum L. husk pectin.
Urias-Orona, Vania; Huerta-Oros, Joselina; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Gardea, Alfonso A
2010-10-11
A pectin (CAP) was extracted from the husk of Cicer arietinum L. Monosaccharide analysis of CAP revealed the dominance of galacturonic acid and smaller amounts of galactose, arabinose, rhamnose, glucose, xylose and mannose. Viscosimetric analysis showed that the intrinsic viscosity ([η]) and the molecular weight (MW) of CAP were 296 mL/g and 105 kDa, respectively. The degree of esterification (DE = 10%) was determined by FTIR spectroscopy. CAP exhibited a dose-dependent free radical scavenging activity, as shown by its DPPH radical inhibition. At 1.0 mg/mL CAP exhibited a scavenging rate of 29% on DPPH radicals. The evaluation of antioxidant activity suggested that CAP had good potential for DPPH radical scavenging activity and should be explored as a novel potential antioxidant.
NASA Astrophysics Data System (ADS)
Rios-Corripio, M. A.; Rios-Leal, E.; Rojas-López, M.; Delgado-Macuil, R.
2011-01-01
A chemometric analysis of adulteration of Mexican honey by sugar syrups such as corn syrup and cane sugar syrup was realized. Fourier transform infrared spectroscopy (FTIR) was used to measure the absorption of a group of bee honey samples from central region of Mexico. Principal component analysis (PCA) was used to process FTIR spectra to determine the adulteration of bee honey. In addition to that, the content of individual sugars from honey samples: glucose, fructose, sucrose and monosaccharides was determined by using PLS-FTIR analysis validated by HPLC measurements. This analytical methodology which is based in infrared spectroscopy and chemometry can be an alternative technique to characterize and also to determine the purity and authenticity of nutritional products as bee honey and other natural products.
Wang, Xiao-Yin; Yin, Jun-Yi; Nie, Shao-Ping; Xie, Ming-Yong
2018-02-01
Hericium erinaceus was extracted with boiling water to obtain the crude polysaccharide (HECP) and refined polysaccharide (HERP). HERP was further purified using gradual ethanol precipitation to obtain five sub-fractions. Their physicochemical properties were evaluated, including chemical components, monosaccharide composition and molecular weight. Meanwhile, the effect of HERP on colonic health of mice was investigated by oral administration at dosages of 100, 200 and 400mg/kg of body weight (mg/kgbw), comparing with that of HECP. Results showed that the gradual ethanol precipitation could remarkably increase polysaccharide purity. HERP, HECP and the five purified fractions had different monosaccharide compositions, while the main monosaccharides were Glc and Gal. They all showed similar structure with amorphous appearance. Short-chain fatty acids productions in colonic and cecum contents, and feces of mice were increased in polysaccharide treated groups. Mice administrated with HERP at 400mg/kgbw showed significant reductions in pH values while obvious increases in moisture amounts. This study suggests that gradual ethanol precipitation is available for purification of polysaccharide from Hericium erinaceus and the extracted polysaccharide could improve colonic health. Copyright © 2017. Published by Elsevier B.V.
2013-01-01
Ammoxidized technical lignins are valuable soil-improving materials that share many similarities with native terrestrial humic substances. In contrast to lignins, the chemical fate of carbohydrates as typical minor constituents of technical lignins during the ammoxidation processes has not been thoroughly investigated. Recently, we reported the formation of N-heterocyclic, ecotoxic compounds (OECD test 201) from both monosaccharides (d-glucose, d-xylose) and polysaccharides (cellulose, xylan) under ammoxidation conditions and showed that monosaccharides are a source more critical than polysaccharides in this respect. GC/MS-derivatization analysis of the crude product mixtures revealed that ammoxidation of carbohydrates which resembles the conditions encountered in nonenzymatical browning of foodstuff affords also a multitude of nonheterocyclic nitrogenous compounds such as aminosugars, glycosylamines, ammonium salts of aldonic, deoxyaldonic, oxalic and carbaminic acids, urea, acetamide, α-hydroxyamides, and even minor amounts of α-amino acids. d-Glucose and d-xylose afforded largely similar product patterns which differed from each other only for those products that were formed under preservation of the chain integrity and stereoconfiguration of the respective monosaccharide. The kinetics and reaction pathways involved in the formation of the different classes of nitrogenous compounds under ammoxidation conditions are discussed. PMID:23967905
USDA-ARS?s Scientific Manuscript database
This study was undertaken in order to isolate and compare three carbohydrate-rich fractions: Hemicellulose A (Hemi A), Hemicellulose B (Hemi B) and cellulose-rich residue (CRF) from sorghum bran (SBR), sorghum bagasse (SBA) and sorghum biomass (SBI). The monosaccharide composition of the purified He...
Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S
2017-12-20
Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.
Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel
2000-01-01
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802
Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying
2012-05-01
In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung
2014-07-01
Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.
Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung
2014-07-01
Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.
Song, Yajian; Xue, Yanfen; Ma, Yanhe
2013-01-01
The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578
Huang, Caoxing; He, Juan; Wang, Yan; Min, Douyong; Yong, Qiang
2015-10-01
Cooking additive pulping technique is used in kraft mill to increase delignification degree and pulp yield. In this work, cooking additives were firstly applied in the sodium hydroxide pretreatment for improving the bioconversion of bamboo residues to monosaccharides. Meanwhile, steam explosion and sulfuric acid pretreatments were also carried out on the sample to compare their impacts on monosaccharides production. Results indicated that associating anthraquinone with sodium hydroxide pretreatment showed the best performance in improving the original carbohydrates recovery, delignification, enzymatic saccharification, and monosaccharides production. After consecutive pretreatment and enzymatic saccharification process, 347.49 g, 307.48 g, 142.93 g, and 87.15 g of monosaccharides were released from 1000 g dry bamboo residues pretreated by sodium hydroxide associating with anthraquinone, sodium hydroxide, steam explosion and sulfuric acid, respectively. The results suggested that associating cooking additive with sodium hydroxide is an effective pretreatment for bamboo residues to enhance enzymatic saccharification for monosaccharides production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ou, Yunfu; Yin, Pinghe; Zhao, Ling
2006-07-01
Sargassum hemiphyllum polysaccharides (SHP) was extracted from dry Sargassum hemiphyllum (Turner) C. Ag. powder using 60 - 80 degrees C purified water and then hydrolyzed with 4.0 g/L trifluoroacetic acid at 80 degrees C. Without any derivatization reaction, the determination of monosaccharides in SHP was developed by anion-exchange chromatography with pulsed amperometric detection with an Au working electrode and an Ag/AgCl reference electrode. Monosaccharides were separated on a CarboPac PA10 anion-column (2 mm i. d. x 250 mm) by using isocratic elution consisting of 14 mmol/L sodium hydroxide at a flow rate of 0.20 mL/min. Six monosaccharides, xylose, galactose, arabinose, glucose, rhamnose and fructose, contained in SHP were separated and determined. Their contents in SHP were 2 200, 820, 98, 4 560, 358 and 740 mg/kg, respectively. The recoveries of the six monosaccharides were in the range 86.0% - 108.0%. The detection limits for these monosaccharides ranged from 5.6 to 89.6 microg/kg. The experimental results showed that SHP mainly consisted of xylose and glucose with smaller quantities of galactose, arabinose, rhamnose and fructose. This method is suitable for the determination of monosaccharides without any derivatization reaction at the level of microg/kg in dry algae with high sensitivity and good precision.
Wingenter, Karina; Schulz, Alexander; Wormit, Alexandra; Wic, Stefan; Trentmann, Oliver; Hoermiller, Imke I.; Heyer, Arnd G.; Marten, Irene; Hedrich, Rainer; Neuhaus, H. Ekkehard
2010-01-01
The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyllab-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO2 release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development. PMID:20709831
Sun, Xiaomei; Wang, Haohao; Han, Xiaofeng; Chen, Shangwei; Zhu, Song; Dai, Jun
2014-12-19
A fingerprint analysis method has been developed for characterization and discrimination of polysaccharides from different Ganoderma by high performance liquid chromatography (HPLC) coupled with chemometrics means. The polysaccharides were extracted under ultrasonic-assisted condition, and then partly hydrolyzed with trifluoroacetic acid. Monosaccharides and oligosaccharides in the hydrolyzates were subjected to pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and HPLC analysis, which will generate unique fingerprint information related to chemical composition and structure of polysaccharides. The peak data were imported to professional software in order to obtain standard fingerprint profiles and evaluate similarity of different samples. Meanwhile, the data were further processed by hierarchical cluster analysis and principal component analysis. Polysaccharides from different parts or species of Ganoderma or polysaccharides from the same parts of Ganoderma but from different geographical regions or different strains could be differentiated clearly. This fingerprint analysis method can be applied to identification and quality control of different Ganoderma and their products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beg, Ilyas; Minton, Allen P; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan
2018-06-01
The thermal stability of apo α-lactalbumin (α-LA) and lysozyme was measured in the presence of mixtures of glucose, fructose, and galactose. Mixtures of these monosaccharides in the appropriate stoichiometric ratio were found to have a greater stabilizing effect on each of the two proteins than equal weight/volume concentrations of di- tri- and tetrasaccharides with identical subunit composition (sucrose, trehalose, raffinose, and stachyose). The excluded volume model for the effect of a single saccharide on the stability of a protein previously proposed by Beg et al. [Biochemistry 54 (2015) 3594] was extended to treat the case of saccharide mixtures. The extended model predicts quantitatively the stabilizing effect of all monosaccharide mixtures on α-LA and lysozyme reported here, as well as previously published results obtained for ribonuclease A [Biophys. Chem. 138 (2008) 120] to within experimental uncertainty. Copyright © 2018 Elsevier B.V. All rights reserved.
Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization
NASA Astrophysics Data System (ADS)
Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro
2013-06-01
Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
NASA Astrophysics Data System (ADS)
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Meng, Qingran; Li, Yinghao; Xiao, Tiancun; Zhang, Lianfu; Xu, Dan
2017-12-01
A water-soluble polysaccharide fraction (DJP-2) isolated from Diaphragma juglandis was successfully purified by ion-exchange chromatography (DEAE-cellulose) and gel-permeation chromatography (Sephadex G-100). The weight-average molecular weight (Mw) and number-average molecular weight (Mn) of DJP-2 were 4.95 and 3.99kDa, respectively. Monosaccharide component analysis indicated that DJP-2 comprised arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 0.27:0.55:1:0.14:0.08. The evaluation of the antioxidant and antibacterial activities of polysaccharides from Diaphragma juglandis fructus indicated that they could be explored as promising natural antioxidant and bacteriostatic agents in the food and pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.
Sainio, Tuomo; Kallioinen, Mari; Nakari, Olli; Mänttäri, Mika
2013-05-01
Processing of hemicelluloses obtained with pressurized hot water extraction (PHWE) from Scots pine to monosaccharides and other chemicals was investigated experimentally. A process scheme consisting of ultrafiltration, acid hydrolysis, and chromatographic separation was proposed and evaluated. A two-stage ultrafiltration was found necessary for efficient fractionation of the wood extract. It was shown that the monosaccharides can be released from a concentrated hemicellulose fraction with sulfuric acid hydrolysis without a significant loss of yield due to decomposition of monosaccharides. Acid hydrolysate was successfully fractionated with ion exchange chromatography and the hydrolysis acid was recovered for reuse. The product fractions obtained include polyphenols and high molar mass hemicelluloses (from UF stage 1), arabinose (from UF stage 2), as well as acetic acid and a mixture of monosaccharides (xylose, galactose, mannose, glucose) from chromatography. Copyright © 2012 Elsevier Ltd. All rights reserved.
Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.
Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W
2016-03-18
We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microdetermination of Sucrose in Plasma with the Anthrone Reagent.
1979-11-01
polysaccharides . The initial attempts to use it for selective determinations of monosaccharides in a mixture, however, were frustrated by a mutual...disaccharides and polysaccharides are hydrolyzed to form monosaccharides . In addition, water is split off from the latter to form hydroxaldehyde...supernate were then concentrated to dryness at 80 C with a manifold evaporator after which endogenous monosaccharides were destroyed by the addition of
Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs
Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu
2015-01-01
N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626
Bertozzi, Carolyn C [Albany, CA; Yarema, Kevin J [Albany, CA; Mahal, Lara K [Berkeley, CA
2008-04-01
Methods for making the functionalized glycoconjugates include (a) contacting a cell with a first monosaccharide, and (b) incubating the cell under conditions whereby the cell (i) internalizes the first monosaccharide, (ii) biochemically processes the first monosaccharide into a second saccharide, (iii) conjugates the saccharide to a carrier to form a glycoconjugate, and (iv) extracellularly expresses the glycoconjugate to form an extracellular glycoconjugate comprising a selectively reactive functional group. Methods for forming products at a cell further comprise contacting the functional group of the extracellularly expressed glycoconjugate with an agent which selectively reacts with the functional group to form a product. Subject compositions include cyto-compatible monosaccharides comprising a nitrogen or ether linked functional group selectively reactive at a cell surface and compositions and cells comprising such saccharides.
Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana).
Raju, T S; Jagadish, R L; Anjaneyalu, Y V
2001-02-01
The polysaccharide components present in the scape of Musa paradisiaca (banana) were fractionated into water-soluble (WSP), EDTA-soluble (EDTA-SP), alkali-soluble (ASP) and alkali-insoluble (AISP) polysaccharide fractions [Anjaneyalu, Jagadish and Raju (1997) Glycoconj. J. 14, 507-512]. The EDTA-SP was further fractionated by iso-amyl alcohol into EDTA-SP-A and EDTA-SP-B. The homogeneity of these two polysaccharides was established by repeated precipitation with iso-amyl alcohol, gel-filtration chromatography and sedimentation analysis. The polysaccharides were characterized by monosaccharide composition analysis, methylation linkage analysis, iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase, gold-electron microscopy and X-ray diffraction spectroscopy. Data from all of these studies suggest that EDTA-SP-A is a branched amylose-type alpha-D-glucan and that EDTA-SP-B is a highly branched amylopectin-type polymer. The nature of the branching patterns of these polysaccharides suggests that they are unique to M. paradisiaca.
Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides.
Cheng, Jing; He, Siyu; Wan, Qiang; Jing, Pu
2018-03-01
Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen. Copyright © 2018 Elsevier B.V. All rights reserved.
Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi
2013-08-01
Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo
2015-02-03
We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.
NASA Astrophysics Data System (ADS)
Nouara, Amel; Panagiotopoulos, Christos; Balesdent, Jérôme; Sempéré, Richard
2017-04-01
Carbohydrates are among the most abundant organic molecules on the Earth and are present in all geochemical systems. Despite their high abundance in the environment, very few studies assessed their origin using molecular carbohydrate isotopic analyses. In contrast with bulk stable isotope analysis (BSIA), which gives the isotopic signature of the entire sample without any specification about its chemical composition, compound specific 13C isotopic analysis of individual sugars (CSIA) offers valuable information about the origin of single molecules. Previous investigations used gas or liquid chromatography coupled with isotope ratio mass spectroscopy (GC-IRMS; HPLC-IRMS) for CSIA of sugars however the former requires δ13C corrections due to the carbon added to the sugar (derivatization) while the later does not provide always adequate separations among monosaccharides. Here we used cation preparative chromatography (Ca2+, Pb2+ and Na+) with refractive index detection in order to produce pure monosaccharide targets for subsequent EA-IRMS analyses. Milli-Q water was used as eluant at a flow rate 0.6 ml min-1. In general, three successive purifications (Ca2+, Pb2+, Ca2+) were sufficient to produce pure compounds. Pure monosaccharides were compared with authentic monosaccharide standards using 1H NMR and/or mass spectroscopy. The detection limit of our technique was about 1µM/sugar with a precision of 10% (n=6). Blanks run with Milli-Q water after three successive purifications resulted in carbon content of 0.13 to 2.77 µgC per collected sugar. These values are much lower than the minimum required amount (5 µgC) of the EA-IRSMS system with a precision of ± 0.35 ‰. Application of our method to environmental samples resulted in δ13C values of glucose, fructose, and levoglucosan in the range of -24 to -26 ‰ (PM10 atmospheric particles), and -15‰ to -22 ‰ for arabinose, glucose, and xylose (marine high molecular dissolved organic matter). These results fall in the range of previous reported values for terrestrial and aquatic ecosystems.
Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola
2018-01-01
This article illustrates the basis and applications of methodologies for the analysis of simple and complex carbohydrates by means of CE. After a description of the most common and novel approaches useful for the analysis and characterization of carbohydrates, this review covers the recent advances in CE separation of monosaccharides, oligosaccharides, and polysaccharides. Various CE techniques are also illustrated for the study of carbohydrates derived from complex glyco-derivatives such as glycoproteins and glycolipids, essential for biopharmaceutical and glycoproteomics applications as well as for biomarker detection. Most glycans have no significant UV absorption, and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved electrophoretic profile. We also discuss the recent applications and separations by CE of derivatized simple and more complex carbohydrates with different chromophoric active tags. Overall, this review aims to give an overview of the most recent state-of-the-art techniques used in carbohydrate analysis by CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography.
Lodi, Gabriele; Pellegrini, Laura Annamaria; Aliverti, Alessandro; Rivas Torres, Beatriz; Bernardi, Marco; Morbidelli, Massimo; Storti, Giuseppe
2017-05-05
The production of sugars from lignocellulosic biomass is the key to a sustainable, renewable chemical industry. Glucose, xylose and other monosaccharides can be easily produced by hydrolyzing cellulose and hemicellulose, the primary polysaccharides in biomass. However, the hydrolysis of biomass generates byproducts that, together with the mineral acid normally added in the hydrolysis step, have to be removed before the downstream conversion processes. In this work, the recovery of monosaccharides from lignocellulosic hydrolysates by means of Ion Exclusion Chromatography (IEC) has been studied. The analyzed process relies on new pretreatment and hydrolysis steps, involving the neutralization of the hydrolysate with sodium hydroxide. The adsorption behavior of the main components involved in the separation has been experimentally investigated. Pulse tests at the high loading encountered in preparative conditions have been performed for a selected group of model components found in the hydrolysates. For all the electrolytes, the retention volume fraction was always between the interparticle porosity and the total column porosity, confirming that ion exclusion was the dominant retention mechanism. On the other hand, sugars eluted before the total column porosity, indicating partial steric exclusion from the resin pores. This observation was then confirmed by size-exclusion experiments with polyethylene glycol standards, from which the distribution coefficient of the studied sugars has been determined. The comparison between the elution profiles of the same sugars in pure form and as a mixture present in the hydrolysate showed differences in both peak shape and retention times. Therefore, an investigation of the influence of the main electrolytes contained in the hydrolysates on sugars adsorption has been performed through the pulse on a plateau method. The electrolytes were found to enhance the sugars retention by promoting their adsorption onto the resin. However, this effect was not sufficient to explain the observed differences, which were effectively explained in terms of viscous fingering, due to the high viscosity differences between the eluent and the sample. A previously developed model for IEC has been updated to take into account all the observed phenomena and applied to simulate the experimental results. The proposed model was in good agreement with the batch-column elution profiles both for the pure components and for the actual hydrolysate, allowing a quantitative description of the separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.
Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru
2016-08-16
Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using 1 H, 13 C, 1 H- 1 H DQF-COSY, 1 H- 13 C edited-HSQC, 1 H- 13 C CT-HMBC, and 1 H- 13 C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.
Biochemical and nutritional components of selected honey samples.
Chua, Lee Suan; Adnan, Nur Ardawati
2014-01-01
The purpose of this study was to investigate the relationship of biochemical (enzymes) and nutritional components in the selected honey samples from Malaysia. The relationship is important to estimate the quality of honey based on the concentration of these nutritious components. Such a study is limited for honey samples from tropical countries with heavy rainfall throughout the year. A number of six honey samples that commonly consumed by local people were collected for the study. Both the biochemical and nutritional components were analysed by using standard methods from Association of Official Analytical Chemists (AOAC). Individual monosaccharides, disaccharides and 17 amino acids in honey were determined by using liquid chromatographic method. The results showed that the peroxide activity was positively correlated with moisture content (r = 0.8264), but negatively correlated with carbohydrate content (r = 0.7755) in honey. The chromatographic sugar and free amino acid profiles showed that the honey samples could be clustered based on the type and maturity of honey. Proline explained for 64.9% of the total variance in principle component analysis (PCA). The correlation between honey components and honey quality has been established for the selected honey samples based on their biochemical and nutritional concentrations. PCA results revealed that the ratio of sucrose to maltose could be used to measure honey maturity, whereas proline was the marker compound used to distinguish honey either as floral or honeydew.
Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang
2014-02-01
A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.
Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.
2013-01-01
Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760
Price, Neil P J; Hartman, Trina M; Vermillion, Karl E
2015-07-21
The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step.
Glucose: detection and analysis
USDA-ARS?s Scientific Manuscript database
Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...
Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom
2016-10-10
Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.
Szilágyi, Tamás Gábor; Vecseri, Beáta Hegyesné; Kiss, Zsuzsanna; Hajba, László; Guttman, András
2018-08-01
Determination of the oligosaccharide composition in different wort samples is important to monitor their change during the brewing process with different yeast types. In our work, the concentration of fermentable and non-fermentable sugars were monitored by capillary electrophoresis to observe the effect of two different types of yeasts, Saccharomyces pastorianus and Saccharomycodes ludwigii. The former first ferments the monosaccharides, then the higher sugar oligomers, such as maltose and maltotriose, to ethanol, while the latter fully ferments the monosaccharides, but ferments only very low percentages of the oligosaccharides. Therefore, breweries use Saccharomycodes ludwigii to produce beers with low alcohol content. The CE-LIF traces of the wort samples represented unique oligosaccharide signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yamaguchi, Fuminori; Takata, Maki; Kamitori, Kazuyo; Nonaka, Machiko; Dong, Youyi; Sui, Li; Tokuda, Masaaki
2008-02-01
'Rare sugars' are defined as monosaccharides that exist in nature but are only present in limited quantities. The development of mass production method of rare sugars revealed some interesting physiological effects of these on animal cells, but the mechanisms have not been well studied. We examined the effect of D-allose on the proliferation of cancer cells and the underlying molecular mechanism of the action. The HuH-7 hepatocellular carcinoma cells were treated with various monosaccharides for 48 h and D-allose was shown to inhibit cell growth by 40% in a dose-dependent manner. D-allose induced G1 cell cycle arrest but not apoptosis. The microarray analysis revealed that D-allose significantly up-regulated thioredoxin interacting protein (TXNIP) gene expression, which is often suppressed in tumor cells and western blot analysis confirmed its increase at protein level. The overexpression of TXNIP also induced G1 cell cycle arrest. Analysis of cell cycle regulatory genes showed p27kip1, a key regulator of G1/S cell cycle transition, to be increased at the protein but not the transcriptional level. Protein interaction between TXNIP and jab1, and p27kip1 and jab1, was observed, suggesting stabilization of p27kip1 protein by the competitive inhibition of jab1-mediated nuclear export of p27kip1 by TXNIP. In addition, increased interaction and nuclear localization of TXNIP and p27kip1 were apparent after D-allose treatment. Our findings surprisingly suggest that D-allose, a simple monosaccharide, may act as a novel anticancer agent via unique TXNIP induction and p27kip1 protein stabilization.
Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.
Piller, Friedrich; Mongis, Aline; Piller, Véronique
2015-01-01
By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.
Cantu-Jungles, Thaisa Moro; Almeida, Carolina Pierobom de; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C
2015-05-20
Primary cell wall polysaccharides from aqueous extract of buriti fruit pulp (Mauritia flexuosa, an exotic tropical palm) were isolated and characterized. After freeze-thaw and α-amylase treatments, extracted polysaccharides were purified by sequential ultrafiltration through membranes. Two homogeneous fractions were obtained, SBW-100R and SBW-30R (Mw of 126 kDa and 20 kDa, respectively). Monosaccharide composition, methylation and (13)C NMR analysis showed that fraction SBW-100R contained a (1 → 5)-linked arabinan, branched at O-3 and O-2 positions, linked to a type I rhamnogalacturonan. Low amounts of these polymers were also present in fraction SBW-30R according to (13)C NMR analysis and monosaccharide composition. However, a high methyl esterified homogalacturonan (HG) was present in higher proportions. These results reinforce previous findings present in literature data which indicate that pectic polysaccharides are found in high amounts in primary cell walls of palms, which are commelinid monocotyledons. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, A.; Doctor, B.P.
1995-12-31
Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of themore » two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.« less
2010-01-01
Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters. PMID:21073695
Singh, B N; BonDurant, R H; Campero, C M; Corbeil, L B
2001-08-01
Immunoaffinity-purified TF1.17 adhesin antigen was compared biochemically and antigenically to Tritrichomonas foetus (TF) lipophosphoglycan (LPG) and a soluble glycosylated antigen (SGA) released from T. foetus and implicated in pathogenesis and immunity. The monoclonal antibodies (Mabs TF1.15 and TF1.17) specific for a glycosylated TF1.17 antigen were previously shown to prevent adhesion of the T. foetus parasites to bovine vaginal epithelial cells and to mediate killing by bovine complement. SGA was isolated from T. foetus-conditioned buffer and purified by octyl-Sepharose hydrophobic column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SGA showed a major SGA1 component (approximately 190 kDa) and a minor SGA2 component (50-70 kDa), which migrated close to TF-LPG and TF1.17. The carbohydrate and lipid compositional analyses of affinity-purified TF1.17 and SGA2 by high-performance liquid chromatography (HPLC) and gas-liquid chromatography revealed the presence of monosaccharides and fatty acids as found in TF-LPG. All antigens contained terminal fucose as determined by alpha-fucosidase digestion followed by HPLC. ELISA and western blots were used to further characterize these glycosylated antigens and to analyze their relationships. The Mabs TF1.15 and TF1.17 reacted very strongly to TF-LPG and SGA2. as well as TF1.17 antigen, indicating that these molecules share common epitopes. These Mabs did not react with the SGA1 component either in ELISA and western blot analyses. Also, the monosaccharide composition of SGA1 was very different from the other three antigen, suggesting SGA1 was different from LPG, SGA2 and TF1.17. Although LPG reacted with Mabs to native TF1.17 antigen, LPG did not induce an immune response in cattle with the same route and adjuvant used to produce strong antibody responses to the native antigen. The latter response suggests that the tightly bound peptide present in the immunoaffinity-purified antigen is necessary for induction of a response to (an) epitope(s) in TF-LPG and TF1.17. Furthermore, vaginal fluid from T. foetus-infected heifers and serum from a cow with a T. foetus-associated pyometra recognized both TF1.17 and TF-LPG in western blots. These results suggest that T. foetus LPG and SGA2 are related to TF1.17 antigen, which was previously shown to play an important role in the pathogenesis and host response in bovine trichomoniasis.
Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang
2015-11-20
We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Junfeng; Hse, Chungyun; Yang, Zhongzhi; Wang, Kui; Jiang, Jianchun; Xu, Junming
2017-11-01
Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3g catalyst per 18g methanol and 2g bamboo at 160°C with 10min. Approximately 78-86wt% of the six biomass materials were converted into liquid products. After the stepwise extraction and precipitation process, the yields of monosaccharide derivatives and three phenolic compound fractions were 39-45% and 28-32%, respectively. Monosaccharides from holocellulose collected with a high purity of methyl glycosides were higher than 90%. Aromatic derivatives with different weight-molecular distributions were separated into three fractions with more than 80% phenolics. As their similar chemical properties within each fraction, platform chemicals have great commercial potential for producing high-quality chemicals and biofuels using mild upgrading conditions. Copyright © 2017. Published by Elsevier Ltd.
Brunt, Kommer; Sanders, Peter; Spichtig, Véronique; Ernste-Nota, Veronica; Sawicka, Paulina; Iwanoff, Kimberley; Van Soest, Jeroen; Lin, Paul Kong Thoo; Austin, Sean
2017-05-01
Until recently, only two AOAC Official MethodsSM have been available for the analysis of fructans: Method 997.08 and Method 999.03. Both are based on the analysis of the fructan component monosaccharides (glucose and fructose) after hydrolysis. The two methods have some limitations due to the strategies used for removing background interferences (such as from sucrose, α-glucooligosaccharides, and free sugars). The method described in this paper has been developed to overcome those limitations. The method is largely based on Method 999.03 and uses combined enzymatic and SPE steps to remove the interfering components without impacting the final analytical result. The method has been validated in two laboratories on infant formula and adult nutritionals. Recoveries were in the range of 86-119%, with most being in the range of 91-104%. RSDr values were in the range of 0.7-2.6%, with one exception when the fructan concentration was close to the LOQ, resulting in an RSDr of 8.9%. The performance is generally within the requirements outlined in the AOAC Standard Method Performance Requirements (SMPR® 2014.002), which specifies recoveries in the range of 90-110% and RSDr values below 6%.
Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.
Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M
1985-01-01
Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.
The name of the -ose: An editorial on carbohydrate nomenclature
USDA-ARS?s Scientific Manuscript database
What’s in a name? The term "sugar" is usually applied to the monosaccharides, disaccharides, and lower oligosaccharides, although "carbohydrate" ("hydrate de carbone") was originally used only for monosaccharides, because their composition can be expressed as Cn(H2O)n. Historically, sugars were name...
L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.
Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C
2008-01-01
The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).
2010-01-15
Analysis of the chemical composition of the Asn-linked polysaccharides decorating many archaeal proteins has revealed the use of a wider variety of sugar...reminiscent of the eukaryal glycan-charged lipid, linked to a variety of monosaccharides , including glucose, mannose, and N-acetylglucosamine (GlcNAc
NASA Astrophysics Data System (ADS)
Kokubun, Tetsuo
2017-10-01
The chemical composition of the exudate mucilage droplets of the carnivorous plant Drosera capensis was investigated using nuclear magnetic resonance spectroscopy. The mucilage was found to contain beside a very large molecular weight polysaccharide a significant amount of myo-inositol. It appears that myo-inositol escaped detection due to the commonly applied methodology on the chemical analysis of plant mucilage, such as dialysis, precipitation of polysaccharide component with alcohol, acid hydrolysis and detection of the resultant monosaccharide (aldose) units. The possible functions of myo-inositol in the mucilage droplets and the fate after being washed off from the leaf tentacles are proposed. On the polysaccharide component, the presence of methyl ester and alkyl chain-like moieties could be confirmed. These lipophilic moieties may provide the prey-trapping mucilage with the unique adhesive property onto the hydrophobic insect body parts, as well as onto the nature's well-known superhydrophobic surfaces such as the leaves of the sacred lotus plants. A re-evaluation of the mineral components of the mucilage, reported 40 years ago, is presented from the viewpoints of the current result and plants' natural habitat. A case for re-examination of the well-studied plant mucilaginous materials is made in light of the new findings.
Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel
2013-01-01
The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination. PMID:23827999
Structural elucidation of rhamnogalacturonans from flaxseed hulls.
Qian, Ke-Ying; Cui, Steve W; Nikiforuk, John; Goff, H Douglas
2012-11-15
The structure of acidic fraction gum (AFG) from flaxseed hulls was elucidated by methylation analysis and 1D/2D NMR spectroscopy. This acidic fraction was separated from water-soluble flaxseed gum using anion-exchange chromatography. AFG consisted of a rhamnogalacturonan-I (RG-I) backbone that features diglycosyl repeating units, →2)-α-l-Rhap-(1→4)-α-d-GalpA-(1→. Rhamnosyl residues (38.2%) were the most abundant neutral sugar component. It was present mainly as unbranched (16.5%) and branched (19.5%) →2)-α-l-Rhap-(1→ at O-3. Most of its branches were terminated by monosaccharides, α/β-d-Galp-(1→ (19.6%), α-l-Fucp-(1→ (4.5%) or β-d-Xylp-(1→ (3.1%). However, when this branching site was occasionally appended with →4)-α-d-GalpA-(1→ or →2)-α-l-Rhap-(1→, side chains may consist of rhamnogalacturonan-I (RG-I), homorhamnan (HR) or a mixture of both. AFG was highly branched as indicated by its high degree of branching (0.55). A possible structure of AFG was proposed: (HR, RG-I, and HG refer to homorhamnan, rhamnogalacturonan-I, and homogalacturonan, respectively. The locations of HR, RG-I, and HG are interchangeable; (m+n)/(n+i)≈1.5. The substitution rate of R(1) is ∼54%. R(1) is mostly monosaccharide (α/β-d-Galp-(1→, α-l-Fucp-(1→ or β-d-Xylp-(1→). R(1) may also occasionally be a longer side chain with more than two residues beginning with →4)-α-GalpA-(1→ or →2)-α-l-Rhap-(1→, wherein the side-chain structure may be similar to part of the main chain.). Copyright © 2012. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, M.; Lee, C.S.
1997-12-31
The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymesmore » to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.« less
Tomiya, N; Suzuki, T; Awaya, J; Mizuno, K; Matsubara, A; Nakano, K; Kurono, M
1992-10-01
A sensitive and simple high-performance liquid chromatographic method has been developed to determine the concentration of monosaccharides and sugar alcohols in animal tissues. Five neutral monosaccharides (D-glucose, D-galactose, D-mannose, D-fructose, and D-ribose) and three neutral sugar alcohols (myo-inositol, glycerol, and D-sorbitol) predominate in the renal cortices and sciatic nerves of rats. These monosaccharides and sugar alcohols were extracted with distilled water, purified by deproteinization with ethanol, a Sep-Pak C18 cartridge, and columns of Dowex 50W-X8 and Amberlite CG-400, then separated on Ca2+ and Pb2+ cation-exchange columns, eluted with deionized distilled water at 80 degrees C, and detected using integrated pulsed amperometry. About 10 pmol of each sugar was detectable with a signal-to-noise ratio of 10:1. D-Glucose, D-fructose, D-sorbitol, and D-mannose were higher in both the renal and sciatic tissues of diabetic rats than in those of normal animals. D-Ribose and glycerol were higher in the renal cortex of diabetic animals.
Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You
2016-02-01
A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.
Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao
2018-07-01
Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.
Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.
Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi
2017-04-01
The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.
NASA Astrophysics Data System (ADS)
Chiantore, Oscar; Riedo, Chiara; Scalarone, Dominique
2009-07-01
Plant gums are complex polysaccharides used in the field of cultural heritage especially as binding media. Classification of polysaccharides may be achieved on the basis of monosaccharides composition after cleavage of glycosidic bond. Characterization of plant gums in works of art is complicated by the necessity of to use a method minimally invasive and requiring a small mount of sample. Pyrolisys is an useful method to obtain polysaccharides decomposition and generally pyrolysis products can be identified by the use of gas chromatography-mass spectrometry. This paper describes a method where two plant gums, arabic and tragacanth, were pyrolized in presence of silylating agents (HMDS e BSTFA alone and with TMCS as catalyst) using an on-line Py-GC/MS apparatus. Some characteristic trimethylsilyl derivatives of monosaccharides were identified on the basis of mass spectra. The presence of characteristic pyrolysis products of sugars allows to distinguish the two gums.
Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua
2007-01-01
An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.
Cheong, Kit-Leong; Wu, Ding-Tao; Deng, Yong; Leong, Fong; Zhao, Jing; Zhang, Wen-Jie; Li, Shao-Ping
2016-11-20
The objective of this study was to qualify and quantify the specific polysaccharides in Panax spp. The analyses of specific polysaccharides were performed by using GC-MS, saccharide mapping and high performance size exclusion chromatography (HPSEC) coupled with multi angle laser light scattering (MALLS) and refractive index detector (RID). Results showed that compositional monosaccharides were the same in different species of Panax and composed of rhamnose, arabinose, galacturonic acid, mannose, glucose, and galactose. Saccharide mapping results showed that glycosides linkages, which existed in specific polysaccharides from Panax spp., were similar. Additionally, the content of specific polysaccharides of P. ginseng, P. notoginseng and P. quinquefolium were 17.9-20.5mg/g, 11.9-15.0mg/g, and 9.9-13.3mg/g, respectively. P. ginseng, P. notoginseng, and P. quinquefolium could be clustered into three groups using both hierarchical cluster analysis and principal component analysis. The results possessed great potential in characterization and content determination of specific polysaccharides in Panax spp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lv, Jun-Jiang; Yu, Shan; Xin, Ying; Cheng, Rong-Rong; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun
2015-09-01
In an effort to identify anti-viral and cytotoxic compounds from Phyllanthus spp., 14 highly oxygenated norbisabolane sesquiterpenoids, phyllaemblicins H1-H14, were isolated from the roots of Phyllanthus emblica Linn, along with phyllaemblicins B and C and glochicoccinoside D. Their structures were determined on the basis of detailed spectroscopic analysis and chemical methods. Determination of absolute configurations of these compounds was facilitated by theoretical calculations of electronic circular dichroism (ECD) spectra using time-dependent density functional theory (TDDFT) for the aglycone components, and pre-column derivative/chiral HPLC analysis for the monosaccharides. The known glochicoccinoside D displayed potent activity against influenza A virus strain H3N2 and hand, foot and mouth virus EV71, with IC50 values of 4.5±0.6 and 2.6±0.7 μg/ml, respectively. Phyllaemblicin H1 showed moderate cytotoxicity against human cancer cell lines A-549 and SMMC-7721, with IC50 values of 4.7±0.7 and 9.9±1.3 μM, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
78 FR 33354 - Xanthan Gum From Austria: Final Determination of Sales at Less Than Fair Value
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...
USDA-ARS?s Scientific Manuscript database
In natural product chemistry, it is often crucial to determine sugar composition as well as the absolute configuration of each monosaccharide in glycosides. An ultra-performance liquid chromatography method using both photodiode array (PDA) and mass spectrometry detectors (UPLC-UV/MS) was developed....
Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O.; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji
2015-01-01
Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions. PMID:25378397
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...
Interferon Inducers Against Infectious Diseases.
1991-06-15
mouse there was little, if any, difference. b. PLL- Monosaccharide Grafts. The PLL-dextran grafts described above contain long polysaccharide chains...engrafted polysaccharides . Our research has resulted in the demonstration that effective IFN inducers can be formulated without using...Action of IC-(PLL-dextran) .............. 7. Induction of IFN in Mice by IC-(PLL- monosaccharides ). I 8. ICL-SCDS04; Compositions and IFN Titers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... limited to, sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation... consists of a backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)- P-DGlucuronic acid-(1,2) - a-D- Mannose monosaccharide units. The...
Wound Healing: Biochemical Pathways and in vivo Studies.
1980-02-01
glycosaminoglycans (mucopolysaccharides) and glycoproteins (proteins with covalently bound hetero- polysaccharide chains). The matrix portion of the collagen unit is...the monosaccharides to the more complex mucopolysaccharides and glycoproteins and their role in the production and structure of collagen is evolving...glucosamine, and hexoses--glucose, galac- tose, and mannose. The monosaccharide pattern was similar in the wound tissue of the three species. These
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmich, G.A.; Randles, J.
1975-01-01
A monosaccharide transport system in addition to the active Na/sup +/-dependent system characteristic of the brush border surface of vertebrate intestinal tissue has been identified in isolated chick intestinal epithelial cells. The newly described system differs in several characteristics from the Na/sup +/-dependent process, including function in the absence of Na/sup +/; a high sensitivity to phloretin, relative insensitivity to phlorizin; different substrate specificity; and a very high K/sub T/ and V/sub max/. The system apparently functions only in a facilitated diffusion manner so that it serves to move monosaccharide across the cell membrane down its chemical gradient. An appreciablemore » fraction of total sugar efflux occurs via the Na/sup +/-independent carrier from cells which have accumulated sugar to a steady state. Phloretin selectively blocks this efflux so that a normal steady-state sugar gradient of seven- to eightfold is transformed to a new steady-state gradient which is greater than 14-fold. Locus of the new system is tentatively ascribed to the serosal cell surface where it would serve for monosaccharide transfer between enterocyte and lamina propria of the villus. (auth)« less
Thilavech, Thavaree; Ngamukote, Sathaporn; Abeywardena, Mahinda; Adisakwattana, Sirichai
2015-04-01
Cyanidin-3-rutinoside (C3R), a naturally occurring anthocyanin, is present in various fruits and vegetables as a colorant. C3R has been well characterized and demonstrated a number of biological activities attributed to its antioxidant properties. The present study compared the effectiveness of C3R against monosaccharide-induced protein glycation and oxidation in vitro using bovine serum albumin (BSA).The results demonstrated that C3R (0.125-1.00 mM) inhibited the formation of fluorescent AGEs in ribose-glycated BSA (2-52%), fructose-glycated BSA (81-93%), glucose-glycated BSA (30-74%) and galactose-glycated BSA (6-79%).Correspondingly, C3R (1.00 mM) decreased the level of N(ɛ)-(carboxymethyl) lysine (56-86%) in monosaccharide-induced glycation in BSA. C3R also reduced the level of fructosamine, β-amyloid cross structure, protein carbonyl content as well as the depletion of thiol in BSA/monosaccharide system. In summary, C3R might offer a new promising antiglycation agent for the prevention of diabetic complications by inhibiting AGE formation and oxidation-dependent protein damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN
2017-01-01
The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usov, A.I.; Dobkina, I.M.
1986-06-01
It has been shown that pyridylamino derivatives are convenient for the identification of various products of the galactans of red algae. Reductive amination with 2-aminopyridine and sodium thiohydroborate has been investigated for the case of several monosaccharides that are common components of the polysaccharide fractions of red seaweeds and also for carrabiose, agarobiose, and oligosaccharides of the neoagarobiose series. Various forms of chromatography and high-voltage paper electrophoresis were used to separate the pyridylamino derivatives, and NMR spectroscopy and mass spectroscopy of the full acetates for structural characterization.
Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions
Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.
2015-01-01
RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031
Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling
2013-09-12
Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Immunoregulatory activities of polysaccharides from mung bean.
Yao, Yang; Zhu, Yingying; Ren, Guixing
2016-03-30
Ultrasonic treatment was performed on water-extractable polysaccharides from the seed of mung beans. Purified by anion-exchange and gel filtration chromatography, MWP-1' and MWP-2' were obtained. Average molecular weights (Mws) of MWP-1' and MWP-2' were 68.4 kDa, and 52.4 kDa, respectively. Monosaccharides components analysis indicated that MWP-1' was composed of Rha, Ara, Man and Gal in a molar percent of 0.4:2.6:5.3:0.7. MWP-2' was composed of Ara, Man, Gal and Glc in a molar percent of 0.5:1.4:2.1:0.4. In vitro study showed that both polysaccharides samples were able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in a dosage dependent manner. MWP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic treatment polysaccharides isolated in our study have immune potentiation effects on macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A
2015-03-18
Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.
Wang, Donghui; Fan, Bei; Wang, Yan; Zhang, Lijing
2018-01-01
Response surface methodology (RSM) was employed to optimize the conditions for the ultrasonic-assisted extraction (UAE) of polysaccharides from the flowers of Dendrobium devonianum. The optimal conditions for the maximum yields of DDFPs are as follows: an extraction temperature of 63.13°C, an extraction time of 53.10 min, and a water-to-raw material ratio of 22.11 mL/g. Furthermore, three fractions (DDFPs30, DDFPs50, and DDFPs70) were prepared from Dendrobium devonianum flowers polysaccharides (DDFPs) by the stepwise ethanol precipitation method. The DDFPs50 exhibited the highest antioxidant activity compared to the other fractions. The molecular weight, polydispersity, and conformation of these fractions were also characterized. In particular, the monosaccharide composition analysis of the DDFPs indicates that mannose and glucose are the primary components, similar to those of the D. officinale plant. This study provides a rapid extraction technology and essential information for the production of DDFPs, which could be potentially used as healthcare food. PMID:29581723
Development of Vaccines to Prevent Wound Infections Due to Anerobic Bacteria
1981-09-01
lot variability of the monosaccharide constituents 4 IV. Safety and toxicity testing of Lot 1 of polysaccharide antigens from B. fragilis strains 9343...the polysaccharide into monosac- charides followed by conversion of these to alditol acetates demonstrates several interesting monosaccharides present...rats with the capsular polysaccharide of B. fragilis iniuces protection to subsequent challenge with this organism. We have prpviously shown that in
Merino, Susana; de Mendoza, Elena; Canals, Rocío; Tomás, Juan M.
2015-01-01
The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens. PMID:26082990
Mandelalides A-D, cytotoxic macrolides from a new Lissoclinum species of South African tunicate.
Sikorska, Justyna; Hau, Andrew M; Anklin, Clemens; Parker-Nance, Shirley; Davies-Coleman, Michael T; Ishmael, Jane E; McPhail, Kerry L
2012-07-20
Mandelalides A-D are variously glycosylated, unusual polyketide macrolides isolated from a new species of Lissoclinum ascidian collected from South Africa, Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela Metropole. Their planar structures were elucidated on submilligram samples by comprehensive analysis of 1D and 2D NMR data, supported by mass spectrometry. The assignment of relative configuration was accomplished by consideration of homonuclear and heteronuclear coupling constants in tandem with ROESY data. The absolute configuration was assigned for mandelalide A after chiral GC-MS analysis of the hydrolyzed monosaccharide (2-O-methyl-α-L-rhamnose) and consideration of ROESY correlations between the monosaccharide and aglycone in the intact natural product. The resultant absolute configuration of the mandelalide A macrolide was extrapolated to propose the absolute configurations of mandelalides B-D. Remarkably, mandelalide B contained the C-4' epimeric 2-O-methyl-6-dehydro-α-L-talose. Mandelalides A and B showed potent cytotoxicity to human NCI-H460 lung cancer cells (IC(50), 12 and 44 nM, respectively) and mouse Neuro-2A neuroblastoma cells (IC(50), 29 and 84 nM, respectively).
Analysis of N-acetylaminosugars by CE: a comparative derivatization study.
Rustighi, Isabella; Campa, Cristiana; Rossi, Marco; Semeraro, Sabrina; Vetere, Amedeo; Gamini, Amelia
2009-08-01
N-linked or O-linked glycans derived from glycoprotein processing carry, an N-acetylglucosamine or an N-acetylgalactosamine respectively, at their reducing termini. The presence of the N-acetylamino group on C-2 of reducing sugar residues has been reported to hamper the derivatization reaction with a chromophore at the anomeric centre. In this paper N-acetyllactosamine, N-acetylglucosamine, N-acetylgalactosamine and several other neutral monosaccharides are coupled to three different dyes (4-aminobenzonitrile, 2-aminopyridine, 2-aminobenzoic acid (2-AA)) by reductive amination and analysed by CE with UV detection. The 2-AA derivatives showed the lowest concentration detection limits, varying approximately in the 2-3 muM range for the saccharides tested including the N-acetamido ones. The possibility to separate and detect with the same sensitivity ten 2-AA-labelled monosaccharides mainly found in mammalian or plant glycoproteins in a single CE run is highlighted. The analysis has been carried out in less than 25 min using the borate-complexation method in CZE mode. The influence of the strength of the acid used as catalyst in the chemical modification of the sugars with 2-AA is also shortly addressed.
Peng, Tianyuan; Wooke, Zachary; Pohl, Nicola L B
2018-03-22
Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stereospecific generation and analysis of α- and β-hemiacetals of monosaccharides in gas phase.
Shioiri, Yuki; Suzuki, Katsuhiko; Daikoku, Shusaku; Kurimoto, Ayako; Ito, Yukishige; Kanie, Osamu
2013-12-15
A series of Boc-protected 4-aminobutyl α- and β-glycosides of commonly found neutral monosaccharides were synthesized. The sodium adducted ions of these individual molecules were used in producing corresponding α- and β-anomers of hemiacetal species under collision-induced dissociation (CID) conditions. The Boc group was successfully removed under CID conditions producing 4-aminobutyl glycosides, which were then used as the precursors. An intramolecular attack of the aglyconic nitrogen atom onto C-1 position of aglycon assisted to leave hemiacetal ion species without affecting anomeric configurations. In this manner, stereospecific syntheses of sugar hemiacetals were first achieved in gas phase. The dissociation of sodium cation from a series of these hemiacetals was further studied according to energy-resolved mass spectrometry. In this study, it was found that all the sugar hemiacetals could be distinguished even if they have same m/z values. Furthermore, the order of affinity of Na(+) toward the hemiacetals was determined. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Jing-En; Wang, Wen-Jun; Zheng, Guo-Dong; Li, Lin-Yan
2017-02-01
Four new polysaccharides (GPP-20, GPP-40, GPP-60 and GPP-80) were fractionated from Gynura procumbens leaves by 20%, 40%, 60% and 80% (v/v) ethanol, successively. Their physicochemical properties including the contents of neutral sugar, uronic acid and protein, as well as the monosaccharide composition were determined. In addition, the antioxidant activities of them were investigated via the reducing power assay and scavenging capacities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and hydroxyl free radicals, respectively. The results indicated that apart from neutral sugar, they all contained uronic acids and proteins in their structures, which were further proved by the UV-vis and FT-IR spectra. Monosaccharide composition analysis implied that they all belonged to heteropolysaccharides consisted of arabinose, galactose, glucose, xylose and galacturonic acid with different types and ratios. What's more, GPP-20, GPP-40 and GPP-80 always exhibited better antioxidant activities than GPP-60 among these three antioxidant assays in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya
2015-08-04
Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.
The Utilization of Sugars and Other Substances by Drosophila,
1948-03-01
many compounds, including sugars, polysaccharides , polyhydric alcohols, aliphatic acids, etc. 2. In equivalent solutions, ’the order of usefulness of...span’between flies fed on disaccharides and their constituent monosaccharides . 4’. Doubtful sugars can usually be resolved into toxic, reprl- lent...The molaritie.s of the sugar solutions were varied so as to equate the monosaccharides and disaccharides. The longevity of flies fed on di- and
2005-12-31
No. carbons Pore volume data. Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. To...interwoven polysaccharide chains embedded in a gel matrix of galacturonic acid rich polysaccharides connected by calcium bridges. This network also...picomolar levels). Also, it allows the determination of intact monosaccharides without pre or post column derivatisation, decreasing the time of
Junfeng Feng; Chungyun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu
2017-01-01
Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3 g catalyst per 18 g methanol and 2 g bamboo at 160 °C with 10 min. Approximately 78â86 wt%...
NASA Astrophysics Data System (ADS)
Duan, Dandan; Zhang, Dainan; Yang, Yu; Wang, Jingfu; Chen, Jing'an; Ran, Yong
2017-09-01
Neutral monosaccharides, algal organic matter (AOM), and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO) range from 0.51 to 6.4 mg g-1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g-1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C/N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.
The Effect of Inorganic Particles on Metabolism by Marine Bacteria.
1982-05-01
Wright, 1974; 1978). Glucose is the dominant monosaccharide in seawater I (Mopper et al., 1980). It is found in seawater at concentrations ranging from... monosaccharides in seawater (Stumm and Morgan, 1981). However, concentrations of specific amino acids are lower than those reported for glucose (Lee and Bada...Fletcher, 1979B; this study). However there is also an active process involved in attachment; this is the secretion of polysaccharide holdfast material
Process for the treatment of lignocellulosic biomass
Dale, Bruce E.
2014-07-08
A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.
Process for the treatment of lignocellulosic biomass
Dale, Bruce E.; Lynd, Lee R.; Laser, Mark
2013-03-12
A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.
Wang, Duoduo; Zhang, Haiyan; Wu, Fuwang; Li, Taotao; Liang, Yuxiang; Duan, Xuewu
2013-01-01
To investigate the modification of cell wall polysaccharides in relation to aril breakdown in harvested longan fruit, three pectin fractions (WSP, water soluble pectin; CSP, CDTA-soluble pectin; ASP, alkali soluble pectin) and one hemicellulose fraction (4 M KOH-SHC, 4 M KOH-soluble hemicellulose) were extracted, and their contents, monosaccharide compositions and molecular weights were evaluated. As aril breakdown intensified, CSP content increased while ASP and 4 M KOH-SHC contents decreased, suggesting the solubilization and conversion of cell wall components. Furthermore, the molar percentage of arabinose (Ara), as the main component of the side-chains, decreased largely in CSP and ASP while that of rhamnose (Rha), as branch point for the attachment of neutral sugar side chains, increased during aril breakdown. Analysis of (Ara + Gal)/Rha ratio showed that the depolymerization of CSP and ASP happened predominantly in side-chains formed of Ara residues. For 4 M KOH-SHC, more backbones were depolymerized during aril breakdown. Moreover, it was found that the molecular weights of CSP, ASP and 4 M KOH-SHC polysaccharides tended to decrease as aril breakdown intensified. These results suggest that both enhanced depolymerization and structural modifications of polysaccharides in the CSP, ASP and 4 M KOH-SHC fractions might be responsible for aril breakdown of harvested longan fruit. PMID:24287911
Marszewska, Kinga; Czerwicka, Małgorzata; Forsythe, Stephen J; Ossowska, Karolina; Dziadziuszko, Halina; Kaczyński, Zbigniew
2015-04-30
The O-polysaccharide (OPS) of Cronobacter sakazakii NTU 696 (Sequence Type 12) from a case of neonatal necrotizing enterocolitis was isolated from the polysaccharide fraction obtained after lipopolysaccharide (LPS) hydrolysis. Purified OPS was analyzed by NMR spectroscopy ((1)H, COSY, TOCSY, NOESY, HSQC, HSQC-TOCSY and HMBC experiments) and chemical methods. Obtained monosaccharide derivatives analyzed by gas chromatography and gas chromatography-mass spectrometry allowed the identification of six sugar components. Performed experiments enabled to establish a structure of the OPS repeating unit of C. sakazakii NTU 696, as: [structure: see text]. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meng, Lan-Zhen; Xie, Jing; Lv, Guang-Ping; Hu, De-Jun; Zhao, Jing; Duan, Jin-Ao; Li, Shao-Ping
2014-01-01
Two Ganoderma species, G. lucidum and G. sinense, are listed as Lingzhi in Chinese Pharmacopoeia and they are considered to have the same therapeutic effects. Polysaccharides were the main immunomodulatory and anticancer components in Ganoderma. In this study, the chemical characters and the effects of polysaccharides from G. lucidum (GLPS) and G. sinense (GSPS) on macrophage functions were investigated and compared. Chemical studies showed that GLPS and GSPS were different, displaying various molecular weight distribution and ratio of monosaccharide components. In vitro pharmacological studies showed that both GLPS and GSPS had potent effects on macrophage functions, such as promoting macrophage phagocytosis, increasing their release of nitric oxide and cytokines interleukin (IL)-1α, IL-6, IL-10, and tumor necrosis factor-α. Generally, GLPS was more powerful than GSPS. This study is helpful to elucidate the active components and pharmacological variation between the 2 Ganoderma species. The structure-activity relationship of polysaccharides from Ganoderma needs further study.
Analysis of Prebiotic Oligosaccharides
NASA Astrophysics Data System (ADS)
Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.
Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.
Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.
Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho
2017-06-01
The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
NASA Astrophysics Data System (ADS)
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-09-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j
Luo, Zhengshan; Liu, Song; Du, Guocheng; Zhou, Jingwen; Chen, Jian
2017-06-01
Candida glabrata has great potential for the accumulation of pyruvate as a preferred strain in pyruvate production by fermentation. However, its substrate conversion rate is relatively low. In this study, a novel polysaccharide containing α-1,4-glucosidic bonds was observed accidentally in screening a high-titer pyruvate strain by atmospheric and room temperature plasma mutagenesis of C. glabrata. Chemical analysis of the partially purified polysaccharide S 4-C10 showed the main components were 1.2% (w/w) protein and 94.2% (w/w) total sugar. Fourier transform infrared and molecular mass distribution analysis indicated that the main component (PSG-2) of S 4-C10 was a small molecular homogeneous protein-bound polysaccharide. Monosaccharide analysis of PSG-2 showed it consisted of glucose, mannose, and fructose. By optimizing the vitamin mix content, 77.6 g L -1 S 4-C10 polysaccharide could be obtained after 72 h fermentation at 30 °C in 500-mL flasks. RT-qPCR analysis showed that transcriptional level of some key genes related to polysaccharide biosynthesis was upregulated compared to that of wild-type strain. By knocking out two most significantly upregulated genes, CAGL0H02695g and CAGL0K10626g, in the wild-type strain, the pyruvate consumption rate was significantly reduced in late pyruvate fermentation phase, while the titer of polysaccharides was reduced by 18.0%. Besides the potential applications of the novel identified polysaccharide, this study provided clues for increasing the conversion ratio of glucose to pyruvate in C. glabrata by further decreasing the accumulation of polysaccharides.
N-Acetylglucosamine: Production and Applications
Chen, Jeen-Kuan; Shen, Chia-Rui; Liu, Chao-Lin
2010-01-01
N-Acetylglucosamine (GlcNAc) is a monosaccharide that usually polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin, the second most abundant carbohydrate after cellulose. In addition to serving as a component of this homogeneous polysaccharide, GlcNAc is also a basic component of hyaluronic acid and keratin sulfate on the cell surface. In this review, we discuss the industrial production of GlcNAc, using chitin as a substrate, by chemical, enzymatic and biotransformation methods. Also, newly developed methods to obtain GlcNAc using glucose as a substrate in genetically modified microorganisms are introduced. Moreover, GlcNAc has generated interest not only as an underutilized resource but also as a new functional material with high potential in various fields. Here we also take a closer look at the current applications of GlcNAc, and several new and cutting edge approaches in this fascinating area are thoroughly discussed. PMID:20948902
2004-04-30
a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid...12, 13), a linear polysaccharide composed of entirely of -2,8-linked sialic acid, which is implicated in the complex neural processes (14), synaptic...acetylated monosaccharides (22–25). In a previous study, we demonstrated that various acetylated ManNAc analogs are used with up to 900-fold increased
NASA Astrophysics Data System (ADS)
Box, V. G. S.; Evans-Lora, T.
2000-01-01
The molecular modeling program STR3DI.EXE, and its molecular mechanics module, QVBMM, were used to simulate, and evaluate, the stereo-electronic effects in the mono-alkoxides of the 4,6- O-ethylideneglycopyranosides of allose, mannose, galactose and glucose. This study has confirmed the ability of these molecular modeling tools to predict the regiochemistry and reactivity of these sugar derivatives, and holds considerable implications for unraveling the chemistry of the rare monosaccharides.
Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar
2008-08-01
Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457 is reported. Construction of the tetrasaccharide as its 4-methoxyphenyl glycoside was achieved by condensation of less abundant monosaccharide units such as, D-galactofuranose, N-acetyl-D-galactosamine and N-acetylneuraminic acid. The synthetic strategy consists of the preparation of suitably protected required monosaccharide intermediates from the commercially available reducing sugars and high yielding glycosylation reactions.
1998-05-01
polysaccharides ) can be interpreted by matching to these chemical markers. Differentiation of the aldohexose monosaccharides or determination of simple...experiments involving qualitative and quantitative analysis of monomeric carbohydrate content in bacterial polysaccharides by Py-GC/MS has been...residues in the group-specific polysaccharide of group B streptococci8 and differentiation of B. anthracis strains by a pyrolysis product from its
Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm
2008-01-01
Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500
Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei
2016-10-01
Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.
Yin, Huifang; Bultema, Jelle B; Dijkhuizen, Lubbert; van Leeuwen, Sander S
2017-06-15
β-Galactosidase enzymes are used in the dairy industry to convert lactose into galactooligosaccharides (GOS) that are added to infant formula to mimic the molecular sizes and prebiotic functions of human milk oligosaccharides. Here we report a detailed analysis of the clearly different GOS profiles of the commercial β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Also the GOS yields of these enzymes differed, varying from 48.3% (B. circulans) to 34.9% (K. lactis), and 19.5% (A. oryzae). Their incubation with lactose plus the monosaccharides Gal or Glc resulted in altered GOS profiles. Experiments with 13 C 6 labelled Gal and Glc showed that both monosaccharides act as acceptor substrates in the transgalactosylation reactions. The data shows that the lactose isomers β-d-Galp-(1→2)-d-Glcp, β-d-Galp-(1→3)-d-Glcp and β-d-Galp-(1→6)-d-Glcp are formed from acceptor reactions with free Glc and not by rearrangement of Glc in the active site. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lakhera, Ajeet Kumar; Kumar, Vineet
2017-01-01
Acacia tortilis ssp. raddiana (Savi) Brenan commonly known as Israeli Babool has contributed immensely for sand dunes management in Indian desert leading to wind erosion control and increased biological productivity. The species is extensively used in traditional medicine system for a number of therapeutic applications and as nutraceutical. The polysaccharide was isolated in 43.6% yield from gum exudates. The monosaccharides, L-arabinose, D-galactose D-glucose, L-rhamnose and D-mannose were determined in molar ratio of 78.1%, 18.64%, 0.60%, 1.71% and 0.74% respectively. The molar ratio of uronic acids was studied using diverse spectrophotometric methods and compared with GLC. The content of D-galacturonic acid and D-glucuronic was determined as 3.88% and 4.35% respectively by GLC. The results were compared with the spectrophotometric methods. The results using DMP as chromogenic reagent are closer to that obtained by GLC. Structural analysis of the polysaccharide may provide scientific basis for nutraceutical, pharmaceutical and biological applications of gum exudates from A. tortilis, which is extensively planted in India. Copyright © 2016 Elsevier B.V. All rights reserved.
Baik, Yoon Suk; Cheong, Won Jo
2007-07-01
A new SPE cartridge has been prepared in this study to purify polysaccharides of high molecular weights. A porous nonpolar styrene-divinylbenzene copolymer phase (Hamilton PRP-1) was used to make the new cartridge. The cartridge was conditioned with methanol, water, and ACN in sequence, and the sample dissolved in a small amount of water was loaded. Impurities of low molecular weights were removed first by elution of 80:20 or 90:10 v/v% ACN/water, and polysaccharides were quantitatively recovered by elution of 50:50 v/v% ACN/water or pure water. The recovery of pure dextran 10000 was 90-95%. The SPE method was applied to purification of the polysaccharide sample of KLB58, a new lactobacillus discovered in Korea. The purified KLB 58 sample (weight recovery after SPE purification; 60%) was hydrolyzed for analysis of composition of monosaccharides. The hydrolysate was found to be composed primarily of fructose, glucose, galactose, rhamnose, mannose with small amounts of fucose and ribose.
WURCS 2.0 Update To Encapsulate Ambiguous Carbohydrate Structures.
Matsubara, Masaaki; Aoki-Kinoshita, Kiyoko F; Aoki, Nobuyuki P; Yamada, Issaku; Narimatsu, Hisashi
2017-04-24
Accurate representation of structural ambiguity is important for storing carbohydrate structures containing varying levels of ambiguity in the literature and databases. Although many representations for carbohydrates have been developed in the past, a generalized but discrete representation format did not exist. We had previously developed the Web3 Unique Representation of Carbohydrate Structures (WURCS) in an attempt to define a generalizable and unique linear representation for carbohydrate structures. However, it lacked sufficient rules to uniquely describe ambiguous structures. In this work, we updated WURCS to handle such ambiguous monosaccharide structures. In particular, to handle structural ambiguity around (potential) carbonyl groups incidental to the carbohydrate analysis, we defined a representation of backbone carbons containing atomic-level ambiguity. As a result, we show that WURCS 2.0 can represent a wider variety of carbohydrate structures containing ambiguous monosaccharides, such as those whose ring closure is undefined or whose anomeric information is only known. This new format provides a representation of carbohydrates that was not possible before, and it is currently being used by the International Glycan Structure Repository GlyTouCan.
Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan
2016-03-01
Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak
2007-01-01
We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.
Andrews, P.; Hough, L.; Picken, J. M.
1965-01-01
1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252
Potential Prebiotic Oligosaccharide Mixtures from Acidic Hydrolysis of Rice Bran and Cassava Pulp.
Hansawasdi, Chanida; Kurdi, Peter
2017-12-01
Two agricultural wastes, rice bran and cassava pulp were subjected to acidic hydrolysis by 2 M sulfuric acid which resulted in hemicellulosic oligosaccharide mixtures. Monosaccharide component analysis of these mixtures revealed that the oligosaccharides of rice bran acid hydrolysate (RAHF) composed of glucose and arabinose while cassava pulp acid hydrolysate (CAHF) was found to be comprised of glucose, galactose and arabinose. Both RAHF and CAHF were able to fuel all of the tested three Lactobacillus, five Bifidobacterium and three Bacteroides strains indicating the prebiotic potential of these oligosaccharide mixtures. Moreover, Lb. gasseri grew significantly better on RAHF than on inulin, a benchmark prebiotic oligo- and polysaccharide mixture. When the digestibility of RAHF and CAHF were tested it was found that these oligosaccharide mixtures were only slightly hydrolyzed upon exposure to simulated human gastric (by less than 8%) and pancreatic juices (by less than 3%). Additionally, most sensory attributes of the above obtained oligosaccharide mixtures supplemented two model cereal drink formulations were generally not different from those of the control, while the overall acceptance was not affected significantly in one cereal drink formulation.
Cura, Anthony J.; Carruthers, Anthony
2012-01-01
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol and dehydroascorbic acid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into 3 classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been co-opted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 (HMIT1) is a proton/myoinositol co-transporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption, distribution, cellular transport and metabolism and recovery/retention. Glucose transport and metabolism have co-evolved in mammals to support cerebral glucose utilization. PMID:22943001
Phrutivorapongkul, Ampai; Lipipun, Vimolmas; Ruangrungsi, Nijsiri; Watanabe, Toshiko; Ishikawa, Tsutomu
2002-04-01
Studies on the chemical constituents of the seeds of Pachyrrhizus erosus (Leguminosae) resulted in the isolation of nine known components: five rotenoids [dolineone (3), pachyrrhizone (5), 12a-hydroxydolineone (7), 12a-hydroxypachyrrhizone (9), and 12a-hydroxyrotenone (2)], two isoflavonoids [neotenone (4) and dehydroneotenone (8)], one phenylfuranocoumarin [pachyrrhizine (6)], and a monosaccharide (dulcitol). The full 1H- and 13C-NMR assignments for the isolated products except a sugar, including revision of previous assignments in the literature, are reported. Moderate anti herpes simplex virus (HSV) activity was observed in 12a-hydroxydolineone (7) and 12a-hydroxypachyrrhizone (9) among the isolated products.
Pathogenicity of Exopolysaccharide-Producing Actinomyces oris Isolated from an Apical Abscess Lesion
2013-01-01
sugars with man- nose constituting 77.5% of the polysaccharides . Strain K20 induced persistent abscesses in mice lasting at least 5 days at a... polysaccharides (EPSs) could contribute to their survival and the development of persistent infections in the human body (Costerton et al. 1999). For example...High-performance liquid chromatography (HPLC) analysis of EPSs Neutral monosaccharides were released from purified EPS (5 mg) by hydrolysis in a
Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; ...
2018-04-16
Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Brady D.; Apel, William A.; Sheridan, Peter P.
Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.
NASA Astrophysics Data System (ADS)
Sun, Pengfei; Hui, Cai; Bai, Naling; Yang, Shengmao; Wan, Li; Zhang, Qichun; Zhao, Yuhua
2015-12-01
In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.
A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doores, Katie J.; Fulton, Zara; Hong, Vu
2011-08-24
Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12,more » their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.« less
Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco
2015-05-01
This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo
2016-06-01
Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo
2016-04-20
A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan
2013-01-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. PMID:23934399
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette.
Vilozny, Boaz; Wollenberg, Alexander L; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-10-07
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.
Extreme ultraviolet photoionization of aldoses and ketoses
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.
2011-04-01
Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.
Izumoring: a novel and complete strategy for bioproduction of rare sugars.
Granström, Tom Birger; Takata, Goro; Tokuda, Masaaki; Izumori, Ken
2004-01-01
Starch, whey or hemicellulosic waste can be used as a raw material for the industrial production of rare sugars. D-glucose from starch, whey and hemicellulose, D-galactose from whey, and D-xylose from hemicellulose are the main starting monosaccharides for production of rare sugars. We can produce all monosaccharides; tetroses, pentoses and hexoses, from these raw materials. This is achieved by using D-tagatose 3-epimerase, aldose isomerase, aldose reductase, and oxidoreductase enzymes or whole cells as biocatalysts. Bioproduction strategies for all rare sugars are illustrated using ring form structures given the name Izumoring.
A perspective on the primary and three-dimensional structures of carbohydrates.
Widmalm, Göran
2013-08-30
Carbohydrates, in more biologically oriented areas referred to as glycans, constitute one of the four groups of biomolecules. The glycans, often present as glycoproteins or glycolipids, form highly complex structures. In mammals ten monosaccharides are utilized in building glycoconjugates in the form of oligo- (up to about a dozen monomers) and polysaccharides. Subsequent modifications and additions create a large number of different compounds. In bacteria, more than a hundred monosaccharides have been reported to be constituents of lipopolysaccharides, capsular polysaccharides, and exopolysaccharides. Thus, the number of polysaccharide structures possible to create is huge. NMR spectroscopy plays an essential part in elucidating the primary structure, that is, monosaccharide identity and ring size, anomeric configuration, linkage position, and sequence, of the sugar residues. The structural studies may also employ computational approaches for NMR chemical shift predictions (CASPER program). Once the components and sequence of sugar residues have been unraveled, the three-dimensional arrangement of the sugar residues relative to each other (conformation), their flexibility (transitions between and populations of conformational states), together with the dynamics (timescales) should be addressed. To shed light on these aspects we have utilized a combination of experimental liquid state NMR techniques together with molecular dynamics simulations. For the latter a molecular mechanics force field such as our CHARMM-based PARM22/SU01 has been used. The experimental NMR parameters acquired are typically (1)H,(1)H cross-relaxation rates (related to NOEs), (3)JCH and (3)JCCtrans-glycosidic coupling constants and (1)H,(13)C- and (1)H,(1)H-residual dipolar couplings. At a glycosidic linkage two torsion angles ϕ and ψ are defined and for 6-substituted residues also the ω torsion angle is required. Major conformers can be identified for which highly populated states are present. Thus, in many cases a well-defined albeit not rigid structure can be identified. However, on longer timescales, oligosaccharides must be considered as highly flexible molecules since also anti-conformations have been shown to exist with H-C-O-C torsion angles of ∼180°, compared to syn-conformations in which the protons at the carbon atoms forming the glycosidic linkage are in close proximity. The accessible conformational space governs possible interactions with proteins and both minor changes and significant alterations occur for the oligosaccharides in these interaction processes. Transferred NOE NMR experiments give information on the conformation of the glycan ligand when bound to the proteins whereas saturation transfer difference NMR experiments report on the carbohydrate part in contact with the protein. It is anticipated that the subtle differences in conformational preferences for glycan structures facilitate a means to regulate biochemical processes in different environments. Further developments in the analysis of glycan structure and in particular its role in interactions with other molecules, will lead to clarifications of the importance of structure in biochemical regulation processes essential to health and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Parodi, A J
1979-10-25
The oligosaccharides previously bound to dolichol diphosphate were isolated from Saccharomyces cerevisiae cells incubated with [U-14C]glucose. Five compounds were obtained that migrated with RGlucose of 0.100, 0.120, 0.145, 0.180, and 0.215 on paper chromatography. All of them contained mannose and 2 N-acetylhexosamine residues. The substances that migrated with the three lower RGlucose values had, in addition, glucose units. The structure of the oligosacchardies was very similar if not identical with that of the oligosaccharides isolated from the dolichol diphosphate derivatives synthesized "in vitro" by yeast or rat liver particulate preparations or "in vivo" by dog thyroid or rat liver slices as judged by their migration on paper chromatography, monosaccharide composition, and degradation compounds produced by alpha-mannosidase treatment or acetolysis. The oligosaccharides previously bound to asparagine residues in proteins were isolated from yeast cells which had been pulsed with [U-14C]glucose and chased with medium containing the unlabeled monosaccharide. The samples taken after very short pulses contained four oligosaccharides that migrated with RGlucose of 0.100, 0.120, 0.145, and 0.180 on paper chromatography. The first three compounds contained glucose, mannose, and 2 N-acetylhexosamine residues whereas the one that migrated with a RGlucose of 0.180 was devoid of the former monosaccharide. Samples taken after short chase periods revealed that the compounds that migrated with the lower RGlucose values gradually disappeared and were converted to the oligosaccharide with the higher RGlucose value was they lost their glucose residues. Similar analysis as those mentioned above showed that the structures of these compounds were similar to those of the dolichol diphosphate-bound oligosaccharides. Samples taken after longer chase periods revealed that the oligosaccharide that migrated with a RGlucose of 0.180 was subsequently either enlarged by the addition of more mannose residues or trimmed to smaller sizes.
Wallace, Ian S.
2015-01-01
The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071
Vibrational Raman optical activity of ketose monosaccharides
NASA Astrophysics Data System (ADS)
Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.
1995-07-01
The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.
Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans.
Stepan, Herwig; Bleckmann, Christina; Geyer, Hildegard; Geyer, Rudolf; Staudacher, Erika
2010-07-02
The N- and O-glycans of Arianta arbustorum, Achatina fulica, Arion lusitanicus and Planorbarius corneus were analysed for their monosaccharide pattern by reversed-phase HPLC after labelling with 2-aminobenzoic acid or 3-methyl-1-phenyl-2-pyrazolin-5-one and by gas chromatography-mass spectrometry. Glucosamine, galactosamine, mannose, galactose, glucose, fucose and xylose were identified. Furthermore, three different methylated sugars were detected: 3-O-methyl-mannose and 3-O-methyl-galactose were confirmed to be a common snail feature; 4-O-methyl-galactose was detected for the first time in snails. Copyright 2010 Elsevier Ltd. All rights reserved.
Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.
Wang, Ying; Yuan, Bo; Ji, Yingchao; Li, Hong
2013-09-12
In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge to hydrolyze hemicellulose. The orthogonal experiment L₂₅(5(6)) was used to optimize such hydrolysis conditions. The total reducing sugar (TRS) was measured by the DNS method. To determine whether the oligosaccharide existed in the hydrolysis products, it was hydrolyzed by sulfuric acid for a second time following the same procedure as reported earlier. The monosaccharide compositions of the hydrolyzed sample were analyzed by high-performance liquid chromatography (HPLC) and Fourier transformed infrared spectroscopy (FTIR). The results showed that pH 2.81 of plasma acid, 100 °C and 50 min were assigned as an optimal hydrolysis condition by plasma acid. Under this condition, the hemicellulose was hydrolyzed completely to produce monosaccharides including xylose, glucose, and galactose with the mole ratio being 17:3:1. The yields of xylose, glucose, and galactose were 38.67%, 9.28% and 3.09%, respectively. Compared with the hemicellulose hydrolysis results by sulfuric acid, it is concluded that plasma acid is an environmental-friendly and efficient method to explore and hydrolyze the hemicellulose existed in biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.
Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D
2012-03-01
Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.
Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A
2017-09-13
The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.
Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean.
Yao, Yang; Zhu, Yingying; Ren, Guixing
2016-03-01
Alkali-extractable polysaccharides from the seeds of mung beans and two polysaccharide sub-fractions (MAP-1 and MAP-2) were isolated and purified by anion-exchange and gel filtration chromatography. The average molecular weights (Mws) of MAP-1 and MAP-2 were 94.2 kDa and 60.4 kDa, respectively. Monosaccharide component analysis indicated that MAP-1 was composed of Rha, Ara, Glu, Gal, and GalA in a molar ratio of 1.1:0.4:0.7:0.5:0.3. MAP-2 consisted of Xyl, Rha, Gal, Glu and GalA with a relative molar ratio of 0.4:1.4:1.6:0.5:0.2. Antioxidant assays indicated that both MAP-1 and MAP-2 exhibit significant antioxidant activity in a dose-dependent manner. An in vitro study further showed that MAP-1 and MAP-2 were both able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) by RAW 264.7 murine macrophages in a concentration-dependent manner. These findings suggest that the polysaccharides isolated in our study have immunoregulatory effects on macrophages and can be used as a beneficial health food. Copyright © 2015. Published by Elsevier B.V.
IDAWG: Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells
Orlando, Ron; Lim, Jae-Min; Atwood, James A.; Angel, Peggi M.; Fang, Meng; Aoki, Kazuhiro; Alvarez-Manilla, Gerardo; Moremen, Kelley W.; York, William S.; Tiemeyer, Michael; Pierce, Michael; Dalton, Stephen; Wells, Lance
2012-01-01
Robust quantification is an essential component of comparative –omic strategies. In this regard, glycomics lags behind proteomics. Although various isotope-tagging and direct quantification methods have recently enhanced comparative glycan analysis, a cell culture labeling strategy, that could provide for glycomics the advantages that SILAC provides for proteomics, has not been described. Here we report the development of IDAWG, Isotopic Detection of Aminosugars With Glutamine, for the incorporation of differential mass tags into the glycans of cultured cells. In this method, culture media containing amide-15N-Gln is used to metabolically label cellular aminosugars with heavy nitrogen. Because the amide side chain of Gln is the sole source of nitrogen for the biosynthesis of GlcNAc, GalNAc, and sialic acid, we demonstrate that culturing mouse embryonic stems cells for 72 hours in the presence of amide-15N-Gln media results in nearly complete incorporation of 15N into N-linked and O-linked glycans. The isotopically heavy monosaccharide residues provide additional information for interpreting glycan fragmentation and also allow quantification in both full MS and MS/MS modes. Thus, IDAWG is a simple to implement, yet powerful quantitative tool for the glycomics toolbox. PMID:19449840
Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus.
Hou, Yiling; Ding, Xiang; Hou, Wanru
2015-05-01
Oligosaccharide are carbohydrate molecules, comprising repeating units joined together by glycosidic bonds. In recent years, an increasing number of oligosaccharides have been reported to exhibit various biological activities, including antitumor, immune-stimulation and antioxidation effects. In the present study, crude water‑soluble oligosaccharides were extracted from the fruiting bodies of Hericium erinaceus with water and then successively purified by diethylaminoethyl‑cellulose 52 and Sephadex G‑100 column chromatography, yielding one major oligosaccharide fraction: Hericium erinaceus oligosaccharide (HEO‑A). The structural features of HEO‑A were investigated by a combination of monosaccharide component analysis by thin layer chromatography, infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy and high‑performance gel permeation chromatography. The results indicated that HEO‑A was composed of D‑xylose and D‑glucose, and the average molecular size was ~1,877 Da. The antioxidant activity of HEO‑A was evaluated using three biochemical methods to determine the scavenging activity of HEO‑A on 1,1‑diphenyl‑2‑picrylhydrazyl, hydrogen peroxide and 2,2'‑azino‑bis(3‑ethylbenzthiazoline‑6‑sufonic acid) diammonium radicals. The results indicated that HEO‑A may serve as an effective healthcare food and source of natural antioxidant compounds.
NASA Astrophysics Data System (ADS)
Renois-Predelus, G.; Schindler, B.; Compagnon, I.
2018-04-01
We report distinctive spectroscopic fingerprints of the monosaccharide standards GalNAc4S and GalNAc6S by coupling mass spectrometry and ion spectroscopy in the 3-μm range. The disaccharide standards CSA and CSC are used to demonstrate the applicability of a novel approach for the analysis of sulfate position in GalNAc-containing glycosaminoglycans. This approach was then used for the analysis of a sample containing CSA and CSC disaccharides. Finally, we discuss the generalization of the coupling of mass spectrometry with ion spectroscopy for the structural analysis of glycosaminoglycans on a tetrasaccharide from dermatan sulfate source. [Figure not available: see fulltext.
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.
Larsbrink, Johan; Rogers, Theresa E; Hemsworth, Glyn R; McKee, Lauren S; Tauzin, Alexandra S; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A; Urs, Karthik; Koropatkin, Nicole M; Creagh, A Louise; Haynes, Charles A; Kelly, Amelia G; Cederholm, Stefan Nilsson; Davies, Gideon J; Martens, Eric C; Brumer, Harry
2014-02-27
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.
Lertanekawattana, S; Wichatrong, T; Chaisari, K; Uchikawa, R; Arizono, N
2005-01-01
To determine whether common helminth infections could modify the intestinal immunopathological status of the host, the expression in the human duodenal mucosa of cytokines, eosinophil- and mast-cell-specific molecules and monosaccharide transporters of the glucose-transporter (GLUT) family was explored. The 31 subjects were all patients at the gastro-intestinal disease unit of Nongkhai Hospital, Thailand. Four of the 10 patients who presented with eosinophilia (> or = 6.0% of their leucocytes were eosinophils), and five of the other 21 patients, had intestinal infections with helminths when they presented or within the previous 3 months. Studies based on semi-quantitative, reverse-transcriptase PCR revealed that the interleukin-5/interferon-gamma ratio was significantly higher in the noneosinophilic, helminth-infected patients than in the non-eosinophilic, uninfected patients, whereas the IgE receptor type I (Fc epsilon RI)/mast-cell tryptase ratio was significantly higher in the eosinophilic, helminth-infected patients than in the eosinophilic, uninfected patients. Expression of Charcot-Leyden-crystal protein, GLUT-1 and GLUT-5, however, showed no significant inter-group differences. Principal-components analysis of the data on eosinophils, interleukin-5, interferon-gamma, Fc epsilon RI and mast-cell tryptase revealed that one principal component could discriminate the patients who had helminth infection from the non-eosinophilic, uninfected patients, but not from the eosinophilic, uninfected patients. These results indicate that, whatever the intestinal pathology, patients infected with common intestinal helminths tend to develop a mucosal immunological response of the Th2 type.
Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang
2016-10-01
Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Jiafu; Ou, Yixin; Yew, Tai Wai David; Liu, Jingna; Leng, Bo; Lin, Zhichao; Su, Yi; Zhuang, Yuanhong; Lin, Jiaofen; Li, Xiumin; Xue, Yu; Pan, Yutian
2016-01-01
During the industrial production of canned mushroom (Agaricus bisporus), a large quantity of wastewater is produced. In this study, the wastewater generated during the canning of mushroom was analyzed. From this wastewater, four polysaccharide components (Abnp1001, Abnp1002, Abap1001, and Abap1002) with hepatic-protective activity were isolated by ultrafiltration, DEAE cellulose-52 chromatography and Sephadex G-200 size-exclusion chromatography. Results of ultraviolet spectra analysis and molecular weight determination showed that Abnp1001, Abnp1002, Abap1001 and Abap1002 were uniform with average molecular weights of 336, 12.8, 330 and 15.8kDa, respectively. The monosaccharide composition analysis using gas chromatography (GC) showed that the four fractions were heteropolysaccharides and mainly composed of glucose. Fourier transform-infrared (FT-IR) analysis showed that the isolated fractions were all composed of β-glycoside linkages. Additionally, the potential hepatoprotective activities of these polysaccharides against CCl4-induced hepatic injury in mice were studied. Notably, Abnp1002 and Abap1002 could lower the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations in serum in a dose dependent manner and reduce the hepatocellular degeneration and necrosis, as well as inflammatory infiltration. These results indicate that these two polysaccharides had protective effects on acute hepatic injury induced by CCl4 in mice and suggest that the polysaccharides extracted from A. bisporus industrial wastewater might have potential in therapeutics of acute hepatic injury. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.
2014-07-01
The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.
NASA Astrophysics Data System (ADS)
Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.
2015-01-01
The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.
Jahouh, Farid; Saksena, Rina; Kováč, Pavol; Banoub, Joseph
2012-01-01
In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein. PMID:22791257
Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation.
Baldwin, S A; Baldwin, J M; Lienhard, G E
1982-08-03
The human erythrocyte monosaccharide transporter has been purified through the use of the dialyzable detergent octyl glucoside. It was found that the transporter denatures in the detergent and that the rate of this process could be reduced by increasing the ratio of phospholipid to detergent. The transporter was obtained in higher yield and with a higher specific activity for cytochalasin B binding than has been previously reported. Scatchard plot analysis of cytochalasin B binding to the reconstituted preparations gave a dissociation constant of 1.5 X 10(-7) M, and there were found to be 15.3 nmol of sites/mg of protein. On the basis of a value of 46 000 for the molecular weight of the polypeptide, this specific activity corresponds to 0.70 site/polypeptide chain; and there are reasons to believe that the value of the stoichiometry may be one site per functional transporter polypeptide. The complete amino acid composition and the N- and C-terminal residues of the transporter have been determined. Both the intact transporter and transporter that had been partially depleted of carbohydrate by treatment with endo-beta-galactosidase were found to migrate anomalously upon sodium dodecyl sulfate--polyacrylamide gel electrophoresis, relative to the behavior of standard proteins.
Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B; Rieger, Leonie; Frenger, Marc S; Marschall, André; Franke, Rochus B; Pattathil, Sivakumar; Voll, Lars M
2017-01-01
Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.
Prichard, Rebeca; Rossi, Megan; Muir, Jane; Yao, Ck; Whelan, Kevin; Lomer, Miranda
2016-06-01
Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) is an effective management approach for functional bowel disorders; however, its application is limited by the paucity of food composition data available for ethnic minority groups. The aim was to identify and measure the FODMAP content of these commonly consumed foods. According to their perceived importance to clinical practise, the top 20 ranked foods underwent FODMAP analysis using validated analytical techniques (total fructans, Megazyme hexokinase (HK) assay; all others, high-performance liquid chromatography (HPLC) with evaporative light scattering detectors). Of the 20 foods analysed, five were identified as significant sources of at least one FODMAP. Fructans and galacto-oligosaccharides were the major FODMAPs in these foods, including channa dal (0.13 g/100 g; 0.36 g/100 g), fenugreek seeds (1.11 g/100 g; 1.27 g/100 g), guava (0.41 g/100 g; not detected), karela (not detected; 1.12 g/100 g) and tamarind (2.35 g/100 g; 0.02 g/100 g). Broadening the availability of FODMAP composition data will increase the cultural application of low FODMAP dietary advice.
Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.
2011-01-01
The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.
Luo, Aoxue; Fan, Yijun
2011-01-01
A water-soluble crude polysaccharide (DFHP) obtained from the aqueous extracts of the stem of Dendrobium fimhriatum Hook.var.oculatum Hook through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 209.3 kDa. Monosaccharide analysis revealed that DFHP was composed of mannose, glucose and galactose in a content ratio of 37.52%; 43.16%; 19.32%. The investigation of antioxidant activity in vitro showed that DFHP is a potential antioxidant. PMID:21747725
Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H
2016-12-16
Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.
Ontogenetic changes in helminth membrane function.
Arme, C
1988-01-01
During their life-cycle many parasites experience a wide range of environments including free living and those provided by a variety of intermediate and final hosts. The nutritional requirements of parasites are met by physiological processes adapted to exploit the physicochemical characteristics provided by different hosts. In helminth parasites these adaptations are frequently expressed on the tegumentary surface. As an example of adaptations within the Trematoda, the control of monosaccharide transport in Proterometra sp. is described. Environmental sodium, although not directly involved in the uptake process, nevertheless regulates the expression of transport capabilities. In the Cestoda, the uptake of monosaccharides and amino acids is described for Hymenolepis diminuta. The metacestode of this tapeworm inhabits the blood system of an arthropod, and the adult the gut of a mammal. There are quantitative and qualitative differences in the amino acids and monosaccharides in these two environments and these are reflected in the transport mechanisms exhibited by the two forms of the life-cycle. In Echinococcus granulosus the transfer of amino acids, sugars and macromolecules across the membranes of hydatid cysts and protoscoleces is described. The major difference between these two stages in the life-cycle relates to the ability of hydatid cysts to absorb macromolecules, whereas protoscoleces are impermeable to these compounds. The potential for future work is emphasized.
Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo
2015-06-01
The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.
Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction
NASA Astrophysics Data System (ADS)
Wilson, Iain B. H.
Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.
Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells
Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.
2010-01-01
Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation. PMID:20424595
Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.
Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z
2010-04-27
Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.
A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.
Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram
2017-11-01
Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MS n spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Wu, Guo Quan; Lv, Chun Rong; Jiang, Yan Ting; Wang, Si Yu; Shao, Qing Yong; Hong, Qiong Hua; Quan, Guo Bo
2016-10-01
In this study, the protective effects of monosaccharides (glucose and fructose) and sugar alcohols (mannitol, sorbitol, and xylitol) on frozen ram spermatozoa were evaluated and compared. The motility, moving velocity, and hypoosmotic swelling capability of spermatozoa frozen with monosaccharide or sugar alcohol were measured using a computer-assisted spermatozoa analyzer system. The acrosome status, membrane integrity, distribution of phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed using fluorescence staining and flow cytometry. The results indicated that similar to glucose or fructose, the presence of sugar alcohol in the freezing extender cannot significantly improve the motility and moving velocity of ram spermatozoa equilibrated at 5°C. In terms of motility, pathway velocity, curve velocity, hypoosmotic swelling capability, acrosome and membrane integrity, and MMP, the inclusion of mannitol or sorbitol in the extender can significantly improve the quality of frozen-thawed ram spermatozoa compared to glucose or fructose. However, the effects of mannitol or sorbitol on linear velocity and PS distribution of frozen-thawed spermatozoa were similar to those of the monosaccharides (p > 0.05). In addition, the ability of xylitol to protect acrosome and maintain MMP in frozen-thawed spermatozoa was significantly higher compared with glucose or fructose (p < 0.05), although it could not improve the other evaluated parameters. Finally, there is no significant difference existing between mannitol and sorbitol with respect to the above evaluated parameters. In conclusion, the replacement of glucose or fructose by mannitol or sorbitol in a freezing extender can improve the postthaw quality of ram spermatozoa under specific freezing conditions. Moreover, the protective effects of mannitol and sorbitol on frozen-thawed ram spermatozoa are superior to that of xylitol. However, in the presence of sugar alcohols, the cryoinjury on spermatozoa membrane is still serious. In the future, the question of protecting the membrane of frozen-thawed spermatozoa needs further research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilli, S.; Garnett, J.L.
In a study of the mechanism of radiation-induced reactions with cellulose, the radiation chemistry of a number of simple crystalline sugars and polysaccharides was investigated. All solid sugars were irradiated in both air and vacuum to total doses of 10/sup 7/ and 10/sup 8/ rad in a Co/sup 60/ source at 1.25 megarad/hr. Examination of the gaseous products showed that irradiated cellobiose yields a relatively high hydrogen content, while amylose and amylopectin (amorphous) at doses of 10/sup 8/ rads show the presence of no water vapor. The same gases were also reported to result from the irradiation of crystalline glucose.more » In the solid state, the majority of the saccharides showed marked color changes following irradiation. The se colors, which were unchanged after 2 yr, varied from bright yellow with amylose, amylopectin, and glucose to dark brown with sucrose. Melibiose, lyxose, and fucose showed no change. Aqueous solutions of the irradiated materials were distinctly acid (pH 3-5). Paper chromatographic examination of the aqueous carbohydrate solutions showed no differences for the carbohydrates irradiated in air or vacuum. In marked contrast to the monosaccharides, the radiation stability of disaccharides was relatively poor. Each of the disaccharides tested yielded a large number of degradation products of which the component monosaccharides predominated. With the irradiated polysaccharides (amylose, amylopectin, and cellulose) characteristic chromatographic behavior in all solvents was a trail of reducing material often running to the end of the sheet. In the chromatography of all three compounds, only a faint spot corresponding to glucose was observed. Data are tabulated for the gas yields (H/sub 2/, CH/sub 4/, H/sub 2/O, CO, CO/sub 2/) and Rf values of the products from the irradiation of amylose, amylopectin, cellulose, trehalose, cellobiose, maltose, sucrose, lactose, and melibiose. (BBB)« less
NASA Astrophysics Data System (ADS)
Pielesz, A.
In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants.
Zhang, Yan; Shi, Junling; Gao, Zhenhong; Yangwu, Ruiming; Jiang, Huanshi; Che, Jinxin; Liu, Yanlin
2015-06-01
Phomopsis sp. XP-8 is an endophytic fungus that has the ability to produce pinoresinol diglucoside (PDG) in vitro and thus has potential application for the biosynthesis of PDG independent of plants. When cultivated in mung bean medium, PDG production was significantly improved and pinoresinol monoglucoside (PMG) and pinoresinol (Pin) were also found in the culture medium. In this experiment, starch, protein, and polysaccharides were isolated from mung beans and separately used as the sole substrate in order to explore the mechanism of fermentation and identify the major substrates that attributed to the biotransformation of PDG, PMG, and Pin. The production of PDG, PMG, and Pin was monitored using high-performance liquid chromatography (HPLC) and confirmed using HPLC-MS. Activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) were analyzed and tracked during the cultivation. The reaction system contained the compounds isolated from mung bean in the designed amount. Accumulation of phenylalanine, cinnamic acid, p-coumaric acid, PDG, PMG, and Pin and the activities of PAL, C4H, and 4CL were measured during the bioconversion. PMG was found only when mung bean polysaccharide was analyzed, while production of PDG and Pin were found when both polysaccharide and starch were analyzed. After examining the monosaccharide composition of the mung bean polysaccharide and the effect of the different monosaccharides had on the production of PMG, PDG, and Pin, galactose in mung bean polysaccharide proved to be the major factor that stimulates the production of PMG.
Pielesz, A
2012-07-01
In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants. Copyright © 2012 Elsevier B.V. All rights reserved.
Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction
NASA Astrophysics Data System (ADS)
Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.
2018-04-01
Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.
A new approach to explore the binding space of polysaccharide-based ligands: selectin antagonists.
Calosso, Mickael; Charpentier, Daniel; Vaillancourt, Marc; Bencheqroun, Mohammed; St-Pierre, Gabrielle; Wilkes, Brian C; Guindon, Yvan
2012-12-13
The discovery of molecules that interfere with the binding of a ligand to a receptor remains a topic of great interest in medicinal chemistry. Herein, we report that a monosaccharide unit of a polysaccharide ligand can be replaced advantageously by a conformationally locked acyclic molecular entity. A cyclic component of the selectin ligand Sialyl Lewis(x), GlcNAc, is replaced by an acyclic tether, tartaric esters, which link two saccharide units. The conformational bias of this acyclic tether originates from the minimization of intramolecular dipole-dipole interaction and the gauche effect. The evaluation of the binding of these derivatives to P-selectin was measured by surface plasmon resonance spectroscopy. The results obtained in our pilot study suggest that the discovery of tunable tethers could facilitate the exploration of the carbohydrate recognition domain of various receptors.
Cross-linked polyvinyl alcohol and method of making same
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)
1981-01-01
A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.
Glucose and D-Allulose contained medium to support the growth of lactic acid bacteria
NASA Astrophysics Data System (ADS)
Al-Baarri, A. N.; Legowo, A. M.; Pramono, Y. B.; Sari, D. I.; Pangestika, W.
2018-01-01
Monosaccharide has been known as support agent for the growth of lactic acid bacteria. However the combination among monosaccharides for supporting the living of bacteria has not been understood well. This research was done for analyzing the combination glucose and D-allulose for the growth of Lactobacillus acidophilus and Streptococcus thermophillus. The NaCl medium containing glucose and D-allulose was used to analyse the growth of bacteria. The study showed that glucose and D-allulose have been detected as supportive agent to L. acidophilus and S. thermophillus specifically. As conclusion, glucose and D-allulose supported the growth of lactic acid bacteria equally. This finding might provide the beneficial information for industry to utilize D-allulose as well as glucose.
Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea
2016-12-01
The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the larger ones favor the formation of vitreous states. Copyright © 2016 Elsevier Ltd. All rights reserved.
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes
Larsbrink, Johan; Rogers, Theresa E.; Hemsworth, Glyn R.; McKee, Lauren S.; Tauzin, Alexandra S.; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A.; Urs, Karthik; Koropatkin, Nicole M.; Creagh, A. Louise; Haynes, Charles A.; Kelly, Amelia G.; Cederholm, Stefan Nilsson; Davies, Gideon J.; Martens, Eric C.; Brumer, Harry
2014-01-01
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed “dietary fibre,” from the cell walls of diverse fruits and vegetables.1 Due to a paucity of alimentary enzymes encoded by the human genome,2 our ability to derive energy from dietary fibre depends on saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut.3,4 The xyloglucans (XyGs), in particular, are a ubiquitous family of highly branched plant cell wall polysaccharides5,6 whose mechanism(s) of degradation in the human gut and consequent importance in nutrition was heretofore unknown.1,7,8 Here, we demonstrate that a single, complex gene locus in Bacteroides ovatus confers xyloglucan catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous xyloglucan utilization loci (XyGULs) serve as genetic markers of xyloglucan catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.9–12 PMID:24463512
Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria
2018-06-01
Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.
Glucan common to the microcyst walls of cyst-forming bacteria.
Sutherland, I W; Mackenzie, C L
1977-01-01
Chemical analysis indicated that D-glucose is tha major neutral monosaccharide present in the microcysts of a range of gram-negative bacteria. Varying amounts of other neutral sugars were found. The glucose was mainly present as a glucan that could be extracted from microcysts of representative strains with alkali or mild acid treatment. The glucan could be identified as an alpha-1,3-linked polymer on the basis of (i) periodate resistance of the extracted polymer and the material present in microcysts; (ii) lectin agglutination of the microcysts; (iii) lectin precipitation of the extracted glucans; and (iv) susceptibility of the glucan either in the walls or after extraction to a specific alpha-1,3-glucanase from Aspergillus nidulans, yielding glucose as the sole hydrolysis product. The galactosamine found in microcysts of Myxococcus xanthus by other workers is clearly a component of another polymer, distinct from the glucan. The presence of an alpha 1,3-linked glucan, common to microcyst walls of various bacterial genera, probably contributes to the rigidity of the walls of these forms and, inter alia, to their resistance to ultrasonic treatment. Preliminary experiments indicate that the gulcan is discarded on germination of the microcysts rather than being broken down by specific enzymes. PMID:402353
Glauser, Bianca F; Vairo, Bruno C; Oliveira, Stephan-Nicollas M C G; Cinelli, Leonardo P; Pereira, Mariana S; Mourão, Paulo A S
2012-02-01
Patent protection for enoxaparin has expired. Generic preparations are developed and approved for clinical use in different countries. However, there is still skepticism about the possibility of making an exact copy of the original drug due to the complex processes involved in generating low-molecular-weight heparins. We have undertaken a careful analysis of generic versions of enoxaparin available for clinical use in Brazil. Thirty-three batches of active ingredient and 70 of the final pharmaceutical product were obtained from six different suppliers. They were analysed for their chemical composition, molecular size distribution, in vitro anticoagulant activity and pharmacological effects on animal models of experimental thrombosis and bleeding. Clearly, the generic versions of enoxaparin available for clinical use in Brazil are similar to the original drug. Only three out of 33 batches of active ingredient from one supplier showed differences in molecular size distribution, resulting from a low percentage of tetrasaccharide or the presence of a minor component eluted as monosaccharide. Three out of 70 batches of the final pharmaceutical products contained lower amounts of the active ingredient than that declared by the suppliers. Our results suggest that the generic versions of enoxaparin are a viable therapeutic option, but their use requires strict regulations to ensure accurate standards.
How cell wall complexity influences saccharification efficiency in Miscanthus sinensis
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.
The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less
How cell wall complexity influences saccharification efficiency in Miscanthus sinensis
De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...
2015-04-23
The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less
van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P
2014-10-01
Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monosaccharide transport into hemocytes of a sipunculan worm Themiste dyscrita
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingermann, R.L.; Hall, R.E.; Bissonnette, J.M.
1985-07-01
The hemerythrin-containing blood cells, or hemocytes, of the sipunculan worm Themiste dyscrita were found to have a stereospecific and nonconcentrative monosaccharide transport system. The transport system transferred both D-glucose and 3-O-methyl-D-glucose (3-OMG), and transport into cells by this system was rapid, reaching 50% equilibrium in approximately 20 s at 10 degrees C with an initial concentration gradient of 0.1 mM; the contribution to total uptake by simple diffusion was very small. 3-OMG uptake showed saturation kinetics with a low half-saturation constant (Km less than or equal to 0.1 mM). The uptake of labeled 3-OMG by the hemocytes was strongly inhibitedmore » by unlabeled 3-OMG, 2-deoxy-D-glucose, alpha- and beta-D-glucose, D-galactose, and D-mannose. It was moderately inhibited by D-xylose, only slightly by alpha-methyl-D-glucoside and D-fructose, and uninhibited by sucrose, L-glucose, or D-sorbitol. Phloretin was more potent than phloridzin in blocking entry of 3-OMG. Cytochalasin B did not bind tightly to the T. dyscrita transporter and was not a potent inhibitor of transport; it half-maximally inhibited 3-OMG transport at 0.1 mM. Therefore, despite some differences the data suggest functional similarities in the mechanism of monosaccharide transport into blood cells of mammals and this invertebrate.« less
Haas, Isabel Cristina da Silva; Toaldo, Isabela Maia; de Gois, Jefferson Santos; Borges, Daniel L G; Petkowicz, Carmen Lúcia de Oliveira; Bordignon-Luiz, Marilde T
2016-12-01
Grape and grape derivatives contain a variety of antioxidants that have gain increasing interest for functional foods applications. The chemical composition of grapes is mainly related to grape variety and cultivation factors, and each grape constituent exhib its unique characteristics regarding its bioactive properties. This study investigated the chemical composition and the effect of drying on the bioactive content of the non-pomace constituent obtained in the processing of organic and conventional grape juices from V. labrusca L. The non-pomace samples were analyzed for polyphenols, monosaccharides, antioxidant activity and elemental composition and the effect of drying on the bioactive composition was evaluated in samples subjected to lyophilization and drying with air circulation. The analyses revealed high concentrations of proanthocyanidins, flavanols and anthocyanins, and high antioxidant capacity of the organic and conventional samples. The drying processes reduced significantly (P < 0.05) the total phenolic content that ranged from 13.23 to 36.36 g/kg. Glucose, xylose, and mannose were the predominant monosaccharides, whereas K, Ca and Mg were the most abundant minerals. Variations in the chemical composition of organic and conventional samples were associated with cultivation factors. Nevertheless, this non-pomace constituent is a promising source of nutrients and polyphenols with bioactive potential.
The sugar transporter inventory of tomato: genome-wide identification and expression analysis.
Reuscher, Stefan; Akiyama, Masahito; Yasuda, Tomohide; Makino, Haruko; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro
2014-06-01
The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar
2017-01-01
Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541
Composition and Antioxidant Activity of Water-Soluble Polysaccharides from Tuber indicum
Luo, Qiang; Zhang, Jie; Yan, Liang; Tang, Yuanlin; Ding, Xiang; Yang, Zhirong
2011-01-01
Abstract Crude water-soluble Chinese truffle Tuber indicum polysaccharide (TIP) was extracted from the fruiting bodies with water and then successively purified by DEAE–cellulose 52 and Sephadex G-100 column chromatography, yielding two major polysaccharide fractions: TIP1-1 and TIP2-1. High-performance gel permeation chromatography analysis showed that the average molecular sizes of TIP1-1 and TIP2-1 were approximately 1.75×104 Da and 5.73×103 Da, respectively. Monosaccharide component analysis by gas chromatography indicated that TIP1-1 was composed of mannose, glucose, galactose, and rhamannose in the respective molar ratio of 3.93:1.24:0.75:1.26 and that TIP2-1 contained mannose, glucose, and arabinose in the respective molar ratio of 5.27:1.44:0.43. The antioxidant activity analyses revealed that TIP1-1 and TIP2-1 possessed considerable antioxidant activity. Compared with TIP1-1, which has a higher molecular weight and contains no uronic acid, TIP2-1 exhibited a protective effect on PC12 cells injured by H2O2 and a higher scavenging activity against free radicals. The relative effects of the lower molecular size, the presence of uronic acid, and the antioxidant activity of TIP2-1 appear to be significant. Accordingly, the Chinese truffle T. indicum might serve as an effective antioxidative healthcare food and source of natural antioxidants. PMID:21877953
Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides.
Yashunsky, Dmitry V; Tsvetkov, Yury E; Grachev, Alexey A; Chizhov, Alexander O; Nifantiev, Nikolay E
2016-01-01
3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk
2004-01-22
Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.
Liu, Xiao; Wei, Weiqi; Wu, Shubin; Lei, Ming; Liu, Ying
2018-06-01
In this study, a novel and facile approach of conversion monosaccharides (glucose and xylose) to oligosaccharides (Cello-oligosaccharides and Xylo-oligosaccharides) was demonstrated. The approach did not introduce any chemical reagent and the preparation process could be environmentally friendly. Identification and quantification by ion chromatography (IC) and high performance liquid chromatography (HPLC) showed that the yields of COS and XOS reached to 44.62% (38 s) and 47.09% (30 s) respectively at 500 °C reaction temperature coupled with sharp-quenching method. Structural characterization indicated that such oligosaccharides showed a degree of polymerization (DP) with 2-6, and the units mainly linked by β-(1 → 4)-glycosidic bond. Copyright © 2018 Elsevier Ltd. All rights reserved.
Translational and rotational dynamics of monosaccharide solutions.
Lelong, Gérald; Howells, W Spencer; Brady, John W; Talón, César; Price, David L; Saboungi, Marie-Louise
2009-10-01
Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.
Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.
Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam
2013-10-01
Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine.
GLYDE-II: The GLYcan data exchange format
Ranzinger, Rene; Kochut, Krys J.; Miller, John A.; Eavenson, Matthew; Lütteke, Thomas; York, William S.
2017-01-01
Summary The GLYcan Data Exchange (GLYDE) standard has been developed for the representation of the chemical structures of monosaccharides, glycans and glycoconjugates using a connection table formalism formatted in XML. This format allows structures, including those that do not exist in any database, to be unambiguously represented and shared by diverse computational tools. GLYDE implements a partonomy model based on human language along with rules that provide consistent structural representations, including a robust namespace for specifying monosaccharides. This approach facilitates the reuse of data processing software at the level of granularity that is most appropriate for extraction of the desired information. GLYDE-II has already been used as a key element of several glycoinformatics tools. The philosophical and technical underpinnings of GLYDE-II and recent implementation of its enhanced features are described. PMID:28955652
Accurate Quantification of Laminarin in Marine Organic Matter with Enzymes from Marine Microbes.
Becker, Stefan; Scheffel, André; Polz, Martin F; Hehemann, Jan-Hendrik
2017-05-01
Marine algae produce a variety of glycans, which fulfill diverse biological functions and fuel the carbon and energy demands of heterotrophic microbes. A common approach to analysis of marine organic matter uses acid to hydrolyze the glycans into measurable monosaccharides. The monosaccharides may be derived from different glycans that are built with the same monosaccharides, however, and this approach does not distinguish between glycans in natural samples. Here we use enzymes to digest selectively and thereby quantify laminarin in particulate organic matter. Environmental metaproteome data revealed carbohydrate-active enzymes from marine flavobacteria as tools for selective hydrolysis of the algal β-glucan laminarin. The enzymes digested laminarin into glucose and oligosaccharides, which we measured with standard methods to establish the amounts of laminarin in the samples. We cloned, expressed, purified, and characterized three new glycoside hydrolases (GHs) of Formosa bacteria: two are endo-β-1,3-glucanases, of the GH16 and GH17 families, and the other is a GH30 exo-β-1,6-glucanase. Formosa sp. nov strain Hel1_33_131 GH30 (FbGH30) removed the β-1,6-glucose side chains, and Formosa agariphila GH17A (FaGH17A) and FaGH16A hydrolyzed the β-1,3-glucose backbone of laminarin. Specificity profiling with a library of glucan oligosaccharides and polysaccharides revealed that FaGH17A and FbGH30 were highly specific enzymes, while FaGH16A also hydrolyzed mixed-linked glucans with β-1,4-glucose. Therefore, we chose the more specific FaGH17A and FbGH30 to quantify laminarin in two cultured diatoms, namely, Thalassiosira weissflogii and Thalassiosira pseudonana , and in seawater samples from the North Sea and the Arctic Ocean. Combined, these results demonstrate the potential of enzymes for faster, stereospecific, and sequence-specific analysis of select glycans in marine organic matter. IMPORTANCE Marine algae synthesize substantial amounts of the glucose polymer laminarin for energy and carbon storage. Its concentrations, rates of production by autotrophic organisms, and rates of digestion by heterotrophic organisms remain unknown. Here we present a method based on enzymes that hydrolyze laminarin and enable its quantification even in crude substrate mixtures, without purification. Compared to the commonly used acid hydrolysis, the enzymatic method presented here is faster and stereospecific and selectively cleaves laminarin in mixtures of glycans, releasing only glucose and oligosaccharides, which can be easily quantified with reducing sugar assays. Copyright © 2017 American Society for Microbiology.
Code of Federal Regulations, 2012 CFR
2012-04-01
... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... hydrolysis of any edible starch. The solids of glucose sirup contain not less than 40 percent by weight of...
... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...
Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.
Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong
2017-12-13
Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.
CHANGES IN FLAVONOIDS INDUCED BY $gamma$-RAY IRRADIATION (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, T.; Kinpyo, T.
1960-07-01
Ethanol or pyridine solutions of five flavonoids, i.e., myricetin, quercetin, quercitrin, rutin, and hesperidin, were irradiated with gamma -rays (source Co/sup 60/). Results show that the decomposition of flavonoids increased with the increase of the total-dose gamma rays (0.5 to 770 k. r.) and that glycosides such as quercitrin and rutin were more stable than aglycons, such as myricetin or quercetin. It was found that monosaccharides and aglycons, which are the components of glycosides, were formed by gamma -ray decomposition of glycosides, such as quercitrin, rutin, or hesperidin, and that by the decomposition of aglycons such as myricetin or quercetinmore » an unknown substance (showing its peak at 297 m mu in ultraviolet absorption spectra) was formed. Infrared absorption spectra of the substances produced by radiolysis from the above-mentioned flavonoids were compared with those of the flavonoids. (auth)« less
Non Celiac Gluten Sensitivity.
Bardella, Maria Teresa; Elli, Luca; Ferretti, Francesca
2016-12-01
A new syndrome responding to gluten-free diet and defined non-celiac gluten sensitivity entered the spectrum of gluten-related disorders, together with celiac disease and wheat allergy. However, its definition, prevalence, diagnosis, pathogenesis, treatment, and follow up are still controversial. The purpose of the review is to summarize the evidence and problems emerging from the current literature. Direct implication of gluten in the onset of symptoms is often unproved as a low fermentable oligo-, di- and mono-saccharides and polyols diet or other components of cereals as wheat amylase trypsin inhibitor could be similarly involved. To date, no specific biomarkers or histological abnormalities confirm diagnosis, and only the self-reported response to gluten-free diet as well as a positive double blind placebo-gluten challenge characterizes these non-celiac, non-wheat allergic patients. Critical revision of published studies can offer practical indications in approaching this clinical topic and useful suggestions to standardize scientific researches.
Herrick, James; St Cyr, John
2008-01-01
Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.
Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun
2014-01-01
In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties. PMID:25414708
Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun
2014-01-01
In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.
Phosphate Dependence of Monosaccharide Transport in Nocardia
Cerbón, Jorge; Ortigoza-Ferado, Jorge
1968-01-01
Uptake of the monosaccharides d-glucose and d-mannose by Nocardia asteroides and N. brasiliensis is dependent on the presence of an adequate phosphate concentration in the environment. When phosphate is replaced by solutions of sodium chloride or potassium chloride of identical ionic strength, there is no sugar uptake. In the presence of iso-osmolar concentrations of sodium arsenate, there is, however, sugar uptake activation. When nonmetabolizable 3-O-methyl d-glucose is used, most of the sugar taken up can be shown to be in the cell at a concentration never exceeding that of the external medium. Phosphate, or arsenate, seems to be essential for the actual migration of the sugar through the cell envelope. The transport of the nonmetabolizable 3-O-methyl glucose also requires phosphate, and the transport seems to be of a type that does not require energy. PMID:5640377
Thieme, Nils; Wu, Vincent W.; Dietschmann, Axel; ...
2017-06-12
Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction.more » Results: The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieme, Nils; Wu, Vincent W.; Dietschmann, Axel
Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction.more » Results: The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.« less
Zhao, Jinlei
2014-01-01
Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625
Mosier, Nathan S; Hendrickson, Richard; Brewer, Mark; Ho, Nancy; Sedlak, Miroslav; Dreshel, Richard; Welch, Gary; Dien, Bruce S; Aden, Andy; Ladisch, Michael R
2005-05-01
The pretreatment of cellulose in corn fiber by liquid hot water at 160 degrees C and a pH above 4.0 dissolved 50% of the fiber in 20 min. The pretreatment also enabled the subsequent complete enzymatic hydrolysis of the remaining polysaccharides to monosaccharides. The carbohydrates dissolved by the pretreatment were 80% soluble oligosaccharides and 20% monosaccharides with <1% of the carbohydrates lost to degradation products. Only a minimal amount of protein was dissolved, thus enriching the protein content of the undissolved material. Replication of laboratory results in an industrial trial at 43 gallons per minute (163 L/min) of fiber slurry with a residence time of 20 min illustrates the utility and practicality of this approach for pretreating corn fiber. The added costs owing to pretreatment, fiber, and hydrolysis are equivalent to less than 0.84 dollars/gal of ethanol produced from the fiber. Minimizing monosaccharide formation during pretreatment minimized the formation of degradation products; hence, the resulting sugars were readily fermentable to ethanol by the recombinant hexose and by pentose-fermenting Saccharomyces cerevisiae 424A(LNH-ST) and ethanologenic Escherichia coli at yields >90% of theoretical based on the starting fiber. This cooperative effort and first successful trial opens the door for examining the robustness of the pretreatment system under extended run conditions as well as pretreatment of other cellulose-containing materials using water at controlled pH.
Possibility as monosaccharide laxative of rare sugar alcohols.
Oosaka, Kazumasa
2009-05-01
Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation.
Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus
2013-01-01
Background Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. Results In this study, genes encoding putative enzymes from carbon metabolism were identified and their expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies. Conclusions The compost grown vegetative mycelium of A. bisporus consumes a wide variety of monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars was observed. This suggests that only hexoses or their conversion products are transported from the vegetative mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the vegetative mycelium. Clear correlations were found between expression of the genes and composition of carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different gene sets were expressed in these samples. PMID:24074284
Deng, Ying; Nagachar, Nivedita; Fang, Lin; ...
2015-03-19
Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.« less
Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui
2015-01-01
Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.
Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui
2015-01-01
Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose. PMID:25790428
Structural analysis of glycoproteins: building N-linked glycans with Coot.
Emsley, Paul; Crispin, Max
2018-04-01
Coot is a graphics application that is used to build or manipulate macromolecular models; its particular forte is manipulation of the model at the residue level. The model-building tools of Coot have been combined and extended to assist or automate the building of N-linked glycans. The model is built by the addition of monosaccharides, placed by variation of internal coordinates. The subsequent model is refined by real-space refinement, which is stabilized with modified and additional restraints. It is hoped that these enhanced building tools will help to reduce building errors of N-linked glycans and improve our knowledge of the structures of glycoproteins.
Luo, Aoxue; Luo, Aoshuang; Huang, Jiandong; Fan, Yijun
2012-07-05
A water-soluble polysaccharide (BEBP) was extracted from Boletus edulis Bull using hot water extraction followed by ethanol precipitation. The polysaccharide BEBP was further purified by chromatography on a DEAE-cellulose column, giving three major polysaccharide fractions termed BEBP-1, BEBP-2 and BEBP-3. In the next experiment, the average molecular weight (Mw), IR and monosaccharide compositional analysis of the three polysaccharide fractions were determined. The evaluation of antioxidant activities both in vitro and in vivo suggested that BEBP-3 had good potential antioxidant activity, and should be explored as a novel potential antioxidant.
Zeng, Hongliang; Miao, Song; Zheng, Baodong; Lin, Shan; Jian, Yeye; Chen, Shen; Zhang, Yi
2015-11-01
The objective of this study was to investigate the multiple relations between the preliminary molecular structural characteristics and antioxidant activities of polysaccharides from Canarium album (Lour.) Raeusch (CPS). Three polysaccharide fractions, CPS1, CPS2, and CPS3, were isolated from CPS by column chromatography. CPS1 and CPS3 were mainly composed of neutral polysaccharides linked by α- and β-glycosidic linkages while CPS2 was pectin polysaccharides mainly linked by β-glycosidic linkages. According to the SEC-MALLS-RI system, the molecular weight of CPS1 was greater compared to CPS2 and CPS3, and the molecular weight and radius of CPS did not display positive correlation. The chain conformation analysis indicated CPS1 and CPS2 were typical highly branched polysaccharides while CPS3 existed as a globular shape in aqueous. Furthermore, the antioxidant activity of CPS2 was better than that of CPS3, while that of CPS1 was the weakest. The antioxidant activities of polysaccharide fractions were affected by their monosaccharide composition, glycosidic linkage, molecular weight, and chain conformation. This functional property was a result of a combination of multiple molecular structural factors. CPS2 was the major antioxidant component of CPS and it could be exploited as a valued antioxidant product. The molecular structural characteristics, antioxidant activities, and structure-function relationships of polysaccharide fractions from Canarium album were first investigated in this study. The results provided background and practical knowledge for the deep-processed products of C. album with high added value. CPS2 was the major antioxidant component of CPS, which could be exploited as a valued antioxidant ingredient in food and pharmaceutical industries. © 2015 Institute of Food Technologists®
Exopolymer Particles in the Sea Surface Microlayer (SML) of the Coastal Pacific Ocean
NASA Astrophysics Data System (ADS)
Thornton, D. C.; Brooks, S. D.; Chen, J.
2015-12-01
Exchanges of matter and energy between the ocean and atmosphere occur through the sea surface microlayer (SML). The SML is biogeochemically distinct from the underlying water and overlying atmosphere in terms of physical environment, chemical composition, and biological community. We sampled the Pacific Ocean in coastal waters off the state of Oregon (United States) along a seaward transect out from the mouth of the Columbia River (3 stations) and in deeper waters beyond the shelf break (2 stations) in July 2011. SML samples were collected using the glass plate method and the underlying water was sampled using a peristaltic pump from 1, 5 and 10 m depth. The samples were analyzed for carbohydrates and exopolymer particles. Carbohydrates were significantly enriched in the SML compared with the underlying water. The concentration of polysaccharides was higher than monosaccharides at all depths. We enumerated two classes of exopolymer particles: transparent exopolymer particles (TEP) and Coomassie staining particles (CSP). TEP are composed of acid polysaccharides and CSP are formed from proteins. While TEP have been widely studied, CSP are generally overlooked, despite the biogeochemical significance of proteins. Our data showed that TEP and CSP concentrations were enriched in the SML compared with the underlying waters in most cases. The ubiquitous presence of empty diatom frustules in the samples indicates that the collapse of a diatom bloom was the source of the exopolymers. Further, we conducted image analysis of particle size and abundance, which indicated that TEP and CSP are not the same particles and form distinct populations in the ocean. Our data confirm recent observations indicating that TEP are an important component of the SML. In addition, these data show that CSP are also important components of the SML.
Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P
2016-08-05
Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automated glycan assembly of xyloglucan oligosaccharides.
Dallabernardina, Pietro; Schuhmacher, Frank; Seeberger, Peter H; Pfrengle, Fabian
2016-01-07
We report the automated glycan assembly of oligosaccharide fragments related to the hemicellulose xyloglucan (XG). Iterative addition of monosaccharide and disaccharide building blocks to a solid support provided seven cellulose and xyloglucan fragments including XXGG- and XXXG-type oligosaccharides.
In vitro prebiotic effects of seaweed polysaccharides
NASA Astrophysics Data System (ADS)
Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng
2017-09-01
Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.
Van Eylen, David; van Dongen, Femke; Kabel, Mirjam; de Bont, Jan
2011-05-01
Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.
Sharma, S K; Gautam, N
2015-01-01
The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.
Mei, Yuxia; Zhu, Hai; Hu, Qiming; Liu, Yangyang; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang
2015-06-25
Two novel polysaccharides termed PLPS-1 and PLPS-2 were isolated from mycelia of cultured Phellinus linteus by hot water extraction, purified by DEAE-52 cellulose and Sephadex G-100 column chromatography, and structurally characterized by FTIR and NMR spectroscopy, GC-MS, periodate oxidation/Smith degradation, and methylation analysis. The monosaccharide compositions of PLPS-1 (MW 2.5×10(5)Da) and PLPS-2 (MW 2.8×10(4)Da) were respectively Glc, Ara, Fuc, Gal, and Xyl in molar ratio 21.964:1.336:1.182:1:1, and Glc, Gal, Man, Ara, Fuc, Xyl in molar ratio 14.368:2.594:1.956:1.552:1.466:1; i.e., both were heteropolysaccharides. The backbone of PLPS-1 consisted primarily of repeating α-d-Glc(1→4)-α-d-Glc(1→6) units, while that of PLPS-2 consisted of α-(1→3)-d-Glc and α-(1→6)-d-Glc. The side branches were also different in their carbohydrate components. In in vitro antitumor assays, PLPS-1 displayed strong anti-proliferative effect against S-180 sarcoma cells through apoptosis, whereas PLPS-2 had no such effect. The difference in antitumor activity between the two PLPS evidently results from their structural differences. PLPS-1 has potential as a novel anticancer agent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nguyen, Hong Phuong; Jeong, Ho Young; Jeon, Seung Ho; Kim, Donghyuk; Lee, Chanhui
2017-01-01
Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.
Surface component characterization as taxonomic tools for Phytomonas spp identification.
Abreu Filho, B A; Dias Filho, B P; Vermelho, A B; Jankevicius, S I; Jankevicius, J V; dos Santos, R L
2001-02-01
The genus Phytomonas arbitrarily includes all protozoa of the family Trypanosomatidae isolated from plants, but its differentiation is a complex task. The phase separation technique using Triton X-114 was used to analyze hydrophobic and hydrophilic surface proteins in ten strains of Phytomonas isolated from various fruits. The iodination of surface proteins by the Iodo-Gen method was also used for Phytomonas isolates from tomatoes, corn and annatto, Herpetomonas samuelpessoai and Crithidia fasciculata. The distribution of protein-bound radioactivity in acrylamide gels was determined by autoradiograms and showed the presence of protein bands of 36-68 kDa in all strains of Phytomonas: there were two major bands at 88 kDa and 94 kDa, with minor bands at 36 kDa and 142 kDa in H. samuelpessoai; and there were three bands at 74, 86 and 94 kDa, with minor bands at 23 kDa and 105 kDa in C. fasciculata. The results demonstrated that samples of plant parasites can be clearly differentiated from H. samuelpessoai and C. fasciculata. These plant parasites were also submitted to polysaccharide analysis by gas-liquid chromatography of the corresponding alditol acetate. Arabinose, galactose, glucose and mannose, were the major monosaccharides found, while fucose, rhamnose and xylose were found in smaller amounts. The results of all these methods indicated that, after extension to a wider range of trypanosomatid strains, they may be useful in Phytomonas taxonomy.
Zhou, Xin; Deng, Qingfang; Chen, Huaguo; Hu, Enming; Zhao, Chao; Gong, Xiaojian
2017-09-01
Crude polysaccharides of Mori Fructus (MFPs) were found to have anti-inflammatory antioxidant, and immuno-enhancing activities. However, the structure of the polysaccharides was ambiguous and its holistic hepatic protection evaluation was defective. This study was conducted to illustrate the characterization of MFPs, and evaluate its hepatoprotective activities. The results found that MFPs contained 67.93±1.18% carbohydrates, 31.03±0.54% uronic acid, and little protein and sulfate. The average molecular weight was ranging from 112.2kDa to 181.9kDa. Monosaccharide component analysis indicated that MFPs was mainly composed of glucose, galacturonic acid, rhamnose and galactose. Both the acute and subacute alcoholic-induced liver injury animal models were adopted to evaluate the MFPs's hepatoprotective activity. After administration of MFPs, both serological indexes (aspartate aminotransferase and alanine aminotransferase) and hepatic indicators (glutathione, superoxide dismutase, glutathione peroxidase and malondialdehyde) were improved by comparing with the non-MFPs group. The hepatic histopathology results also showed a prominent lipid degeneration and microvesicular steatosis attenuation in the MFPs groups. These outstanding hepatic protecting activities of MFPs might be related to its activation of ethanol dehydrogenase, elimination of free radicals and/or inhibition of lipid peroxidation capacities. MFPs could be important active substances for preventing and remedying liver injury. Copyright © 2017. Published by Elsevier B.V.
Hsu, Kai-Di; Wu, Shu-Pei; Lin, Shin-Ping; Lum, Chi-Chin; Cheng, Kuan-Chen
2017-10-01
Extracellular polysaccharide (EPS) is one of the major bioactive ingredients contributing to the health benefits of Ganoderma spp. In this study, response surface methodology was applied to determine the optimal culture conditions for EPS production of Ganoderma formosanum. The optimum medium composition was found to be at initial pH 5.3, 49.2 g/L of glucose, and 4.9 g/L of yeast extract by implementing a three-factor-three-level Box-Behnken design. Under this condition, the predicted yield of EPS was up to 830.2 mg/L, which was 1.4-fold higher than the one from basic medium (604.5 mg/L). Furthermore, validating the experimental value of EPS production depicted a high correlation (100.4%) with the computational prediction response model. In addition, the percentage of β-glucan, a well-recognized bioactive polysaccharide, in EPS was 53±5.5%, which was higher than that from Ganoderma lucidum in a previous study. Moreover, results of monosaccharide composition analysis indicated that glucose was the major component of G. formosanum EPS, supporting a high β-glucan percentage in EPS. Taken together, this is the first study to investigate the influence of medium composition for G. formosanum EPS production as well as its β-glucan composition. Copyright © 2017. Published by Elsevier B.V.
Ion chromatography characterization of polysaccharides in ancient wall paintings.
Colombin, Maria Perla; Ceccarini, Alessio; Carmignani, Alessia
2002-08-30
An analytical procedure for the characterisation of polysaccharides and the identification of plant gums in old polychrome samples is described. The procedure is based on hydrolysis with 2 M trifluoroacetic acid assisted by microwaves (20 min, 120 degrees C, 500 W), clean-up of the hydrolysate by an ion-exchange resin, and analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Using this method the hydrolysis time was reduced to 20 min and the chromatographic separation of seven monosaccharides (fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose) and two uronic acids (galacturonic and glucuronic) was achieved in 40 min. The whole analytical procedure allows sugar determination in plant gums at picomole levels, with an average recovery of 72% with an RSD of 8% as tested on arabic gum. The analytical procedure was tested with several raw gums, watercolour samples and reference painting specimens prepared according to old recipes at the Opificio delle Pietre Dure of Florence (Italian Ministry of Cultural Heritage, Italy). All the data collected expressed in relative sugar percentage contents were submitted to principal components analysis for gum identification: five groups were spatially separated and this enabled the identification of arabic, tragacanth, karaya, cherry+ghatty, and guar+locust bean gum. Wall painting samples from Macedonian tombs (Greece) of the 4th-3rd Centuries B.C., processed by the suggested method, showed the presence of a complex paint media mainly consisting of tragacanth and fruit tree gums. Moreover, starch had probably been added to plaster as highlighted by the presence of a huge amount of glucose.
Chill, Liat; Trinh, Loc; Azadi, Parastoo; Ishihara, Mayumi; Sonon, Roberto; Karnaukhova, Elena; Ophir, Yakir; Golding, Basil; Shiloach, Joseph
2009-02-15
Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.
Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.
2015-01-01
Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490
Campbell, B K; Kendall, N R; Onions, V; Guo, L; Scaramuzzi, R J
2014-03-01
The aim of the present study was to investigate the effects of glucose, galactose and fructose on the LH-induced differentiation and mRNA expression of sugar transport facilitators (SLC2A) by sheep thecal cells derived from small antral follicles cultured under serum-free conditions for 6 days. The dose and type of monosaccharide had a significant effect on LH-induced androstenedione production by theca cells and there was a significant interaction (P<0.001). Glucose and galactose were used with equal efficiency so that cell numbers and androstenedione production at the end of the culture were comparable. Pharmacological doses of glucose (16.7 mM) inhibited steroidogenesis (P<0.05). Cell numbers and androstenedione production by cells cultured with fructose were lower than for cells cultured with either glucose or galactose (P<0.001). None of the monosaccharides resulted in the production of lactate. Expression of SLC2A1, SLC2A4 and SLC2A8, but not SLC2A5, mRNA was detected in fresh and cultured theca cells. Large doses (16.7 mM) of glucose and fructose, but not galactose, suppressed (P<0.05) SLC2A expression. The results show that glucose and galactose, but not fructose, are readily metabolised via oxidative pathways to support LH-induced differentiation of sheep theca cells. Further work is required to determine the mechanisms resulting in these differences in relation to the established effects of nutrition on reproductive function.
Somera, Alexandre F; Lima, Adriel M; Dos Santos-Neto, Álvaro J; Lanças, Fernando M; Bacci, Maurício
2015-07-01
Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Selective Methods for C-X Activation in Carbohydrates
2013-01-01
system, the major products observed for the hydrosilylation of monosaccharides were n-hexane, 2- and 3-methylpentane. Glucose hydrosilylation could... polysaccharide cellulose reacting faster than unprotected glucose. Complete hydrosilylation of methyl cellulose yielded a similar mixture of alkane products
Bacterial dye-decolorizing peroxidases: biochemical properties and biotechnological opportunities
In biorefineries, processing biomass begins with separating lignin from cellulose and hemicellulose. The latter two are depolymerized to give monosaccharides (e.g. glucose and xylose), which can be converted to fuels or chemicals. In contrast, lignin presents a challenging target...
Capillary Electrophoresis of Mono- and Oligosaccharides.
Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana
2016-01-01
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Carbohydrates as indicators of biogeochemical processes
NASA Astrophysics Data System (ADS)
Lazareva, E. V.; Romankevich, E. A.
2012-05-01
A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface
NASA Astrophysics Data System (ADS)
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-01
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface.
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-29
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component "Recognition-Mediating-Function" design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall.
Dongowski, G; Sembries, S
2001-09-01
The action of three different commercial enzyme combinations on apple cell wall material has been examined in a model system under conditions of mash and pomace treatment by using an alcohol-insoluble substance prepared from apples. A part of the total dietary fiber, for example, galacturonan (pectin), appeared in the soluble fraction after enzymatic mash treatment. The soluble fraction increased intensely during pomace treatment. Furthermore, enzyme actions caused a change in the water-binding capacity of residues as well as changes in the monosaccharide composition and in the molecular weight distribution of saccharides in filtrates (soluble parts). The extent of decomposition of cell wall material and the increase of soluble oligomeric and/or polymeric dietary fiber components are caused by both the composition (pectinases, cellulases, and hemicellulases) and the activities of the enzyme preparations. The model experiments allow an insight into the reactions occurring during enzyme action on the plant cell wall, for example, during apple juice production using pectolytic and cellulolytic enzyme preparations.
Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis
Wu, Ding-Tao; Lv, Guang-Ping; Zheng, Jian; Li, Qian; Ma, Shuang-Cheng; Li, Shao-Ping; Zhao, Jing
2016-01-01
Natural Cordyceps collected in Bhutan has been widely used as natural Cordyceps sinensis, an official species of Cordyceps used as Chinese medicines, around the world in recent years. However, whether Cordyceps from Bhutan could be really used as natural C. sinensis remains unknown. Therefore, DNA sequence, bioactive components including nucleosides and polysaccharides in twelve batches of Cordyceps from Bhutan were firstly investigated, and compared with natural C. sinensis. Results showed that the fungus of Cordyceps from Bhutan was C. sinensis and the host insect belonged to Hepialidae sp. In addition, nucleosides and their bases such as guanine, guanosine, hypoxanthine, uridine, inosine, thymidine, adenine, and adenosine, as well as compositional monosaccharides, partial acid or enzymatic hydrolysates, molecular weights and contents of polysaccharides in Cordyceps from Bhutan were all similar to those of natural C. sinensis. All data suggest that Cordyceps from Bhutan is a rational alternative of natural C. sinensis, which is beneficial for the improvement of their performance in health and medicinal food areas. PMID:27874103
Meillisa, Aviannie; Woo, Hee-Chul; Chun, Byung-Soo
2015-03-15
Polysaccharides are the major components of brown seaweed, accounting for approximately 40-65% of the total mass. The majority of the brown seaweed polysaccharides consists of alginate (40% of dry matter), a linear hetero-polysaccharides commonly developed in fields. However, depolymerisation of alginate is required to recover high-value compounds. In this report, depolymerisation was performed using subcritical water hydrolysis (SWH) at 180-260°C, with a ratio of material to water of 1:25 (w/v) and 1% formic acid as a catalyst. Sugar recovery was higher at low temperatures in the presence of catalyst. The antioxidant properties of Saccharina japonica showed the best activity at 180°C in the presence of a catalyst. The mass spectra produced using MALDI-TOF showed that polysaccharides and oligosaccharides were produced during hydrothermal treatment. Hydrolysis treatment at 180°C in the presence of a catalyst may be useful for modifying the structure of S. japonica and purified alginate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis.
Wu, Ding-Tao; Lv, Guang-Ping; Zheng, Jian; Li, Qian; Ma, Shuang-Cheng; Li, Shao-Ping; Zhao, Jing
2016-11-22
Natural Cordyceps collected in Bhutan has been widely used as natural Cordyceps sinensis, an official species of Cordyceps used as Chinese medicines, around the world in recent years. However, whether Cordyceps from Bhutan could be really used as natural C. sinensis remains unknown. Therefore, DNA sequence, bioactive components including nucleosides and polysaccharides in twelve batches of Cordyceps from Bhutan were firstly investigated, and compared with natural C. sinensis. Results showed that the fungus of Cordyceps from Bhutan was C. sinensis and the host insect belonged to Hepialidae sp. In addition, nucleosides and their bases such as guanine, guanosine, hypoxanthine, uridine, inosine, thymidine, adenine, and adenosine, as well as compositional monosaccharides, partial acid or enzymatic hydrolysates, molecular weights and contents of polysaccharides in Cordyceps from Bhutan were all similar to those of natural C. sinensis. All data suggest that Cordyceps from Bhutan is a rational alternative of natural C. sinensis, which is beneficial for the improvement of their performance in health and medicinal food areas.
The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.
Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen
2013-05-21
Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.
Oh, Nam Su; Lee, Ji Young; Joung, Jae Yeon; Kim, Kyung Su; Shin, Yong Kook; Lee, Kwang-Won; Kim, Sae Hun; Oh, Sangnam; Kim, Younghoon
2016-08-01
The objective of this study was to investigate the effect of 2 plant leaf extracts on fermentation mechanisms and health-promoting activities and their potential as a nutraceutical prebiotics ingredient for application in dairy products. The individual active phenolic compounds in the plant extract-supplemented milk and yogurts were also identified. Compared with control fermentation, the plant extracts significantly increased the growth and acidification rate of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. In particular, plant extract components, including monosaccharides, formic acid, and hydroxycinnamic acid, such as neo-chlorogenic, chlorogenic, and caffeic acid, together play a stimulatory role and cause this beneficial effect on the growth of yogurt culture bacteria through fermentation. In addition, supplementation with the plant extracts enhanced antioxidant activities with increased total phenolic contents, especially the highest antioxidant activity was observed in yogurt supplemented with Cudrania tricuspidata leaf extract. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian
2014-07-01
The physicochemical properties of the extra-cellular polysaccharide (EPS) produced by a Micrococcus luteus strain, a dominating strain isolated from membrane biofouling layer, were determined in this study. The EPS isolated from this strain was measured to have an average molecular weight of 63,540 Da and some typical polysaccharide absorption peaks in Fourier transform infrared spectrum. Monosaccharide components of the EPS contained rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose in a molar ratio of 0.2074:0.0454:0.0262:0.0446:1.7942:1.2086:0.4578. Pseudo plastic properties were also observed for the EPS through the rheological measurement. The EPS was further characterized for its behavior to cause membrane flux decline. The results showed that both flux declines for polyvinylidenefluoride (PVDF) and polypropylene membranes became more severe as EPS feed concentration increased. A higher irreversible fouling for the PVDF membrane suggested that the EPS had the larger fouling potential to this microfiltration membrane.
Qin, Yujing; Yuan, Qingxia; Zhang, Yuexing; Li, Jialu; Zhu, Xinjiao; Zhao, Lingling; Wen, Jing; Liu, Jikai; Zhao, Longyan; Zhao, Jinhua
2018-03-06
Enzyme-assisted extraction optimization, characterization and in vitro antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus (PPP) were investigated in the present study. The optimal extraction conditions with a yield of 6.44 ± 0.06% for PPP were determined as follows: Extraction time of 2.89 h, ratio of extraction solvent to raw material of 16.26 mL/g, extraction pH of 6.83, exraction temperature of 50 °C and papain concentration of 0.15%. Three purified fractions, PPP-1a, PPP-1b and PPP-2 with molecular weights of 369.60, 41.73 and 57.76 kDa, respectively, were obtained from PPP by chromatography of FPA98Cl and Sepharose CL-6B columns. Analysis of monosaccharide compositions showed that PPP-1a consisted of N -acetyl-galactosamine (GalNAc), galactose (Gal) and fucose (Fuc), PPP-1b of Fuc as the only monosaccharide and PPP-2 of glucuronic acid, GalNAc and Fuc. Sulfate contents of PPP, PPP-1a, PPP-1b and PPP-2 were determined to be 21.9%, 20.6%, 25.2% and 28.0% ( w / w ), respectively. PPP and PPP-1a had higher molecular weight and intrinsic viscosity than those of the PPP-1b and PPP-2. PPP, PPP-1a, PPP-1b and PPP-2 exhibited obvious activities of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide radical and ABTS radical in different extent, which suggested that the polysaccharides from Phyllophorus proteus may be novel agents having potential value for antioxidation.
Space Biology and Aerospace Medicine, Number 3, 1977
1977-07-07
of synthesis of hexosamines in skeletal muscle and the heart. Under these conditions, the increase in acid muco- polysaccharides of skeletal...the 95 form of monosaccharides and disaccharides. Accumulation of ascorbic acid follows the same patterns as were noted in levels thereof. /I
A Laboratory Exercise in the Determination of Carbohydrate Structures.
ERIC Educational Resources Information Center
White, Bernard J.; Robyt, John F.
1988-01-01
Describes an experiment in which students are given a naturally occurring oligosaccharide as an unknown and are asked to determine both its monosaccharide composition and its structure. Discusses methods and experimental techniques including thin layer chromatography and the use of enzymes. (CW)
Code of Federal Regulations, 2011 CFR
2011-04-01
... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... of inverted or partly inverted, refined or partly refined sucrose, the solids of which contain not... sweetness. (f) The term sugar means refined sucrose. (g) The terms edible organic acid and edible organic...
Code of Federal Regulations, 2010 CFR
2010-04-01
... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... of inverted or partly inverted, refined or partly refined sucrose, the solids of which contain not... sweetness. (f) The term sugar means refined sucrose. (g) The terms edible organic acid and edible organic...
Code of Federal Regulations, 2013 CFR
2013-04-01
... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...
Klukowski, Piotr; Schubert, Mario
2018-06-15
A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.
Xing, Rongrong; Wang, Shuangshou; Bie, Zijun; He, Hui; Liu, Zhen
2017-05-01
Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.
Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L
2012-01-01
Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye ("SQ-BA") is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λ(ex) = 630 nm, λ(em) = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 10(2.80), 10(2.08) and 10(0.86) M(-1) were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I-S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions.
Saito, Shingo; Massie, Tara L.; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L.
2012-01-01
Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye (“SQ-BA”) is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λex = 630 nm, λem = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 102.80, 102.08 and 100.86 M−1 were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I–S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions. PMID:22778592
Varjú, Péter; Farkas, Nelli; Hegyi, Péter; Garami, András; Szabó, Imre; Illés, Anita; Solymár, Margit; Vincze, Áron; Balaskó, Márta; Pár, Gabriella; Bajor, Judit; Szűcs, Ákos; Huszár, Orsolya; Pécsi, Dániel; Czimmer, József
2017-01-01
Irritable bowel syndrome (IBS) and functional digestive tract disorders, e.g. functional bloating, carbohydrate maldigestion and intolerances, are very common disorders frequently causing significant symptoms that challenge health care systems. A low Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols (FODMAP) diet is one of the possible therapeutic approaches for decreasing abdominal symptoms and improving quality of life. We aimed to meta-analyze data on the therapeutic effect of a low-FODMAP diet on symptoms of IBS and quality of life and compare its effectiveness to a regular, standard IBS diet with high FODMAP content, using a common scoring system, the IBS Symptom Severity Score (IBS-SSS). A systematic literature search was conducted in PubMed, EMBASE and the Cochrane Library as well as in the references in a recent meta-analysis. Adult patients diagnosed with IBS according to the Rome II, Rome III, Rome IV or NICE criteria were included in the analysis. Mean differences with 95% confidence intervals were calculated from studies that contained means, standard deviation (SD) or mean differences and SD of differences and p-values. A random effect model was used because of the heterogeneity (Q test (χ2) and I2 indicator). A p-value of less than 0.05 was chosen to indicate a significant difference. The literature search yielded 902 publications, but only 10 were eligible for our meta-analysis. Both regular and low-FODMAP diets proved to be effective in IBS, but post-diet IBS-SSS values were significantly lower (p = 0.002) in the low-FODMAP group. The low-FODMAP diet showed a correlation with the improvement of general symptoms (by IBS-SSS) in patients with IBS. This meta-analysis provides high-grade evidence of an improved general symptom score among patients with irritable bowel syndrome who have maintained a low-FODMAP diet compared to those on a traditional IBS diet, therefore showing its superiority to regular IBS dietary therapy. These data suggest that a low-FODMAP diet with dietitian control can be a candidate for first-line therapeutic modality in IBS. Because of a lack of data, well-planned randomized controlled studies are needed to ascertain the correlation between improvement of separate key IBS symptoms and the effect of a low-FODMAP diet.
USDA-ARS?s Scientific Manuscript database
Lignocellulosic feedstocks are often prepared for ethanol fermentation by treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and possibly cellulose into soluble carbohydrates. The acid catalyzed reaction scheme is sequential whereby released monosaccharides are further ...
Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)
USDA-ARS?s Scientific Manuscript database
Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...
Characterisation and molecular association of Nigerian and Sudanese Acacia gum exudates
USDA-ARS?s Scientific Manuscript database
The chemical and physicochemical characteristics of gum exudate samples harvested from mature trees of Acacia senegal at two specific locations in Nigeria have been investigated together with gum samples harvested from Acacia senegal and Acacia seyal originating from Sudan. The monosaccharide sugar ...
Chamorro, S; Viveros, A; Alvarez, I; Vega, E; Brenes, A
2012-07-15
Grape seed extract and grape pomace are rich sources of polyphenols. The aim of this study was to evaluate the release of polyphenols, the solubilisation of carbohydrate, and the antioxidant capacity of these grape by-products after enzymatic reaction with carbohydrases (cellulolytic and pectinolytic activities) and tannase for 24h. The use of tannase in these by-products, and pectinase in grape pomace changed the galloylated form of catechin to its free form, releasing gallic acid and increasing the antioxidant activity. In grape pomace, cellulase treatment was not efficient for phenolic release and antioxidant activity improvement. The addition of carbohydrases to grape pomace, either alone or in combination, degraded the cell wall polysaccharides, increasing the content of monosaccharides. These results provide relevant data about the potential of pectinase, tannase and combinations of enzymes on the release of polyphenols and monosaccharides from grape by-products, improving the antioxidant capacity and the nutritional value. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hashimoto, Wataru; Kawai, Shigeyuki; Murata, Kousaku
2010-01-01
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically. © 2010 Landes Bioscience
Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong
2016-10-01
The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanistic understanding of monosaccharide-air flow battery electrochemistry
NASA Astrophysics Data System (ADS)
Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann
Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.
Bramono, Sandhi Eko; Lam, Yuen Sean; Ong, Say Leong; He, Jianzhong
2011-10-01
A unique mesophilic Clostridium species strain BOH3 is obtained in this study, which is capable of fermenting monosaccharides to produce butanol and hydrolyzing polysaccharides to produce hydrogen (H(2)) and volatile fatty acids (VFAs). From 30 g/L of glucose and xylose each, batch culture BOH3 was able to produce 4.67 and 4.63 g/L of butanol. Enhancement treatments by increasing the inoculated cells improved butanol production to 7.05 and 7.41 g/L, respectively. Hydrogen production (2.47 and 1.93 mmol) was observed when cellulose and xylan (10 g/L each) were used, suggesting that strain BOH3 possesses xylanolytic and cellulolytic capabilities. These unique features reveal the strain's novelty as most wild-type solventogenic strains have not been reported to have such properties. Therefore, culture BOH3 is promising in generating butanol and hydrogen from renewable feedstock. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Formation and ecotoxicity of N-heterocyclic compounds on ammoxidation of mono- and polysaccharides.
Klinger, Karl Michael; Liebner, Falk; Fritz, Ines; Potthast, Antje; Rosenau, Thomas
2013-09-25
Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).
NASA Astrophysics Data System (ADS)
Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees
2017-01-01
Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.
NASA Astrophysics Data System (ADS)
Both, P.; Green, A. P.; Gray, C. J.; Šardzík, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R. A.; Widmalm, G.; Flitsch, S. L.; Eyers, C. E.
2014-01-01
Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-α-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry (IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.
Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.
2013-01-01
Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119
Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species
Sharma, S. K.; Gautam, N.
2015-01-01
The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938
NASA Astrophysics Data System (ADS)
Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob
2016-08-01
Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.
USDA-ARS?s Scientific Manuscript database
Enzyme catalysts will be vital in the development of synthetic biology approaches for converting pectinic monosaccharides from citrus and beet processing waste streams to value-added materials. We describe here the biophysical and mechanistic characterization of uronate dehydrogenases from a wide va...
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
Gionata Scalcinati; Jose´ Manuel Otero; Jennifer R.H. Van Vleet; Thomas W. Jeffries; Lisbeth Olsson; Jens Nielsen
2012-01-01
Industrial biotechnology aims to develop robust microbial cell factories, such as , to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research...
European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science,
1988-02-01
monosaccharides and stated that genetic stability of certain for the preparation of isotopically la- recombinant microoraanisms is one of the beled sugars...hydrocarbons and polyethylene glycol (PEG)/ polysaccharide hydrocarbon derivatives) in the aqueous and PEG/salt. The polysaccharide may be phase. The solvent
Vaccination of High-Risk Breast Cancer Patients with Carbohydrate Mimicking Peptides
2007-05-01
and Wheat germ Agglutin (WGA) while mimotope 106 only reacts with WGA. These lectins see terminal monosaccharides . To demonstrate that autoimmunity...Westerink MAJ, Giardina PC, Apicella MA, Kieber-Emmons T. Pep- tide mimicry of the meningococcal group C capsular polysaccharide . Proc Natl Acad Sci
Gel coating of edible Brasenia schreberi leaves lowers plasma cholesterol in hamsters (abstract)
USDA-ARS?s Scientific Manuscript database
The young leaves of B. schreberi are coated with gelatinous water-insoluble mucilage. This mucilage is a polysaccharide composed of galactose, mannose, fucose and other monosaccharides. Since some carbohydrate gels are hypocholesterolemic, we evaluated the cholesterol lowering properties in male h...
Chen, Guangjing; Kan, Jianquan
2018-03-01
In this study, the response surface methodology was utilized to determine optimum conditions for extracting the polysaccharides from Rosa roxburghii Tratt fruit (RRTPs) using ultrasonic-assisted extraction, and the characterization and antioxidant activities of the RRTPs were discussed. RRTPs yield was 6.59 ± 1.34%, which was well consistent with the predicted value of 6.716%, under the following optimum conditions: ratio of water to raw material 40.18 mL/g, extraction temperature 78.8 °C, ultrasonic power 148 W, and extraction time 32.8 min. The monosaccharide composition analysis indicated that RRTPs were composed of mannose (Man), rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), glucose (Glc), galactose (Gal), arabinose (Ara) and xylose (Xyl). The molecular weight distribution analysis showed that RRTPs had four main components with molecular weights of 332.56, 183.96, 11.92 and 5.95 kDa, respectively. In vitro antioxidant studies revealed RRTPs exhibited significant antioxidant potential on hydroxyl, superoxide and DPPH radicals. In addition, antioxidant assays in vivo demonstrated that RRTPs can significantly increase the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and total antioxidant capacity (TAOC) to some extent, as well as decrease the level of malondialdehyde (MDA) in both serum and liver of d-Gal aging-induced mice. These data suggested that RRTPs could be a potential candidate of natural antioxidants for applications in functional food, pharmaceuticals or cosmetic industries. In summary, this work provided an effective method for the exploitation and utilization of value-added R. roxburghii Tratt fruit which would be useful to fully utilize this resource.
An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.
Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup
2009-01-01
Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.
Li, Sensen; Lin, Zongtao; Jiang, Haixiu; Tong, Lingkun; Wang, Hong; Chen, Shizhong
2016-08-01
Fufang Banbianlian Injection (FBI) is a well-known traditional Chinese medicine formula composed of three herbal medicines. However, the systematic investigation on its chemical components has not been reported yet. In this study, a high-performance liquid chromatography combined with diode-array detector, and coupled to an electrospray ionization with ion-trap time-of-flight mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS) method, was established for the identification of chemical profile in FBI. Sixty-six major constituents (14 phenolic acids, 14 iridoids, 20 flavonoids, 2 benzylideneacetone compounds, 3 phenylethanoid glycosides, 1 coumarin, 1 lignan, 3 nucleosides, 1 amino acids, 1 monosaccharides, 2 oligosaccharides, 3 alduronic acids and citric acid) were identified or tentatively characterized by comparing their retention times and MS spectra with those of standards or literature data. Finally, all constituents were further assigned in the individual herbs (InHs), although some of them were from multiple InHs. As a result, 11 compounds were from Lobelia chinensis Lour, 33 compounds were from Scutellaria barbata D. Don and 38 compounds were from Hedyotis diffusa Willd. In conclusion, the developed HPLC-DAD-ESI-IT-TOF-MS method is a rapid and efficient technique for analysis of FBI sample, and could be a valuable method for the further study on the quality control of the FBI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
de Laurentiis, Annamaria; Gaspari, Marco; Palmieri, Camillo; Falcone, Cristina; Iaccino, Enrico; Fiume, Giuseppe; Massa, Ornella; Masullo, Mariorosario; Tuccillo, Franca Maria; Roveda, Laura; Prati, Ubaldo; Fierro, Olga; Cozzolino, Immacolata; Troncone, Giancarlo; Tassone, Pierfrancesco; Scala, Giuseppe; Quinto, Ileana
2011-01-01
The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100–120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis. PMID:21372249
Complete Hexose Isomer Identification with Mass Spectrometry
NASA Astrophysics Data System (ADS)
Nagy, Gabe; Pohl, Nicola L. B.
2015-04-01
The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.
Structural analysis of a homogeneous polysaccharide from Achatina fulica.
Liu, Jie; Shang, Feineng; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua
2017-05-01
Edible snails have been widely used as a health food and medicine in many countries. In our study, a water-soluble polysaccharide (AF-1) was isolated and purified from Achatina fulica by papain enzymolysis, alcohol precipitation and strong anion exchange chromatography. Structureof the polysaccharide was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, high performance liquid chromatography, analysis of monosaccharide composition, methylation analysis, and nuclear magnetic resonance (NMR) spectroscopy ( 1 H, 13 C, COSY, TOCSY, NOESY, HSQC and HMBC). Chemical composition analysis indicated that AF-1 is composed of glucose (Glc) and its average molecular weight is 1710kDa. Structural analysis suggested that AF-1 is mainly consisted of a linear repeating backbone of (1→4) linked α-d-Glc p residues with one branch, α-d-Glc p, attached to the main chain by (1→6) glycosidic bonds at every five main-chain units. Further studies on biological activities of the polysaccharide are currently in progress. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish.
Li, Qiang-Ming; Wang, Jing-Fei; Zha, Xue-Qiang; Pan, Li-Hua; Zhang, Hai-Lin; Luo, Jian-Ping
2017-03-01
A new polysaccharide (JSP-11) with a molecular weight of 1.25×10 6 Da was extracted and purified from jellyfish. Monosaccharide analysis showed that JSP-11 was composed of mannose, galactose and glucuronic acid with a molar ratio of 2.18:1.00:1.94. According to the analysis of fourier transform-infrared spectroscopy, methylation analysis, and NMR spectroscopy, JSP-11 was determined to contain a linear backbone which consisted of (1→3,6)-linked β-d-Manp and (1→6)-linked β-d-Galp. The branch of (1→)-linked α-d-GlcpA was attached to the C-3 position of (1→3,6)-linked β-d-Manp in the backbone. The immunomodulatory assay exhibited that JSP-11 could significantly enhance the viability of RAW 264.7 macrophage cells, and promote the release of NO, TNF-α, and IL-1β via activating NF-κB, MAPKs and PI3K/Akt signal pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto
2017-09-01
Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.
Wu, Ding-Tao; Li, Wen-Zhi; Chen, Jun; Zhong, Qian-Xia; Ju, Yao-Jun; Zhao, Jing; Bzhelyansky, Anton; Li, Shao-Ping
2015-06-25
An evaluation system including colorimetric assay with iodine and potassium iodide, HPSEC-MALLS-RID analysis, GC-MS analysis, and saccharide mapping based on PACE analysis was proposed for the identification and discrimination of commercial product of Hericium erinaceus based on the chemical characters of polysaccharides in H. erinaceus fruiting body collected from different regions of China. The results showed that the molecular weights, the compositional monosaccharides and the glycosidic linkages of polysaccharides in H. erinaceus collected from different regions of China were similar, respectively. However, polysaccharides in the widely consumed product of H. erinaceus in China were significantly different from those of H. erinaceus fruiting body. The implications from these results were found to be beneficial to improve the quality control of polysaccharides from the H. erinaceus fruiting body, and suggest that the proposed evaluation system could be used as a routine approach for the quality control of polysaccharides in other edible and medicinal mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sources markers in aerosols, oceanic particles and sediments
NASA Astrophysics Data System (ADS)
Saliot, A.
2009-02-01
This review presents some diagnostic criteria used for identifying and quantifying terrestrial organic matter inputs to the ocean. Coupled to the isotopic composition of total organic carbon, the analysis of stable biomarkers permits to trace higher plant contributions in aerosols, dusts, sedimenting particles and dissolved phase in the water column and ultimately in recent and ancient sediments and soils. Some applications are presented, based on the analysis of n-alkyl compounds by a combination of gas chromatography and mass spectrometry (n-alkanes, n-alkanols, n-alkanoic acids and wax esters). Another approach has been developed using the analysis of macromolecular compounds present in higher plants. Abundances of the phenolic compounds from lignin, benzene carboxylic acids obtained during cupric oxide oxidation, Curie pyrolysis are used to characterise terrestrial organic matter sources and inputs. Finally due to the importance of biomass burning in continent-ocean transfers, biomarkers are presented in the polycyclic aromatic hydrocarbon class and for monosaccharide derivatives from the breakdown of cellulose.
The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...
Sato, Kohei; Kitakaze, Keisuke; Nakamura, Takahiro; Naruse, Naoto; Aihara, Keisuke; Shigenaga, Akira; Inokuma, Tsubasa; Tsuji, Daisuke; Itoh, Kohji; Otaka, Akira
2015-06-21
We describe a novel peptide ligation/desulfurization strategy using a β-mercapto-N-glycosylated asparagine derivative. The newly developed procedure was successfully applied to the total chemical synthesis of the GM2 ganglioside activator protein bearing a monosaccharide on the native glycosylation site.
DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM
The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...
USDA-ARS?s Scientific Manuscript database
Monosaccharide C-glycoside ketones have been prepared by aqueous-based Knoevenagel condensation of isotopically-labeled and unlabeled aldoses with cyclic diketones, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and 1,3-cyclohexanedione (1,3-CHD). The reaction products and their corresponding acetyla...
1987-05-11
ensure solubilization of 90% of the polysaccharides , was attained at -60°C with 6 h of digestion in the frozen state by 2.5% H2SO4. Below -600C...decomposition of the monosaccharides was accelerated, and above -40°C, the process was ineffective. Growth of Candida scottii on hydrolysate diluted to
7-Day Biodefense: Engineered Nanoparticle for Virus Elimination by Opsonization (ENVELOP)
2013-12-10
spectrum for LSTc, specifically the identity of the four distinct monosaccharides and the presence of 2→6 sialic acid at stoichimetric levels. 7-Day...A. Previous studies definitively demonstrated that cell surface heparan sulfate, a complex highly charged polysaccharide , plays an important role in
Small Sites in the Central Hueco Bolson: A Final Report on Project 90-11
1998-01-01
raw starch, being composed of polysaccharides , is incompletely digest- ed. However, with applications of heat and moisture over time, these...complex sugars break down into monosaccharides that are more readily absorbed by the body. The critical variable is the exposure of the starch to heat
Nutrient transporter gene expression in poultry, livestock and fish
USDA-ARS?s Scientific Manuscript database
The absorption of nutrients such as amino acids, peptides, monosaccharides and minerals by cells and tissues is mediated by a series of membrane bound transporters that are members of the solute carrier (SLC) gene family. These transporters regulate the influx and efflux of nutrients in a wide vari...
Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred
2018-01-01
Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.
Sungur, Tolga; Aslim, Belma; Karaaslan, Cagtay; Aktas, Busra
2017-10-01
Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼10 8 CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by which L. gasseri strains result in strain specific anti-proliferative activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deutscher, Josef; Francke, Christof; Postma, Pieter W.
2006-01-01
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705
Liu, Jie; Zhou, Lutan; He, Zhicheng; Gao, Na; Shang, Feineng; Xu, Jianping; Li, Zi; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua
2018-02-01
Edible snails have been widely used as a health food and medicine in many countries. A unique glycosaminoglycan (AF-GAG) was purified from Achatina fulica. Its structure was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, analysis of monosaccharide composition, and 1D/2D nuclear magnetic resonance spectroscopy. Chemical composition analysis indicated that AF-GAG is composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) and its average molecular weight is 118kDa. Structural analysis clarified that the uronic acid unit in glycosaminoglycan (GAG) is the fully epimerized and the sequence of AF-GAG is →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. Although its structure with a uniform repeating disaccharide is similar to those of heparin and heparan sulfate, this GAG is structurally highly regular and homogeneous. Anticoagulant activity assays indicated that AF-GAG exhibits no anticoagulant activities, but considering its structural characteristic, other bioactivities such as heparanase inhibition may be worthy of further study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xue, Chuizhao; Wang, Libo; Wu, Tong; Zhang, Shiping; Tang, Tao; Wang, Liang; Zhao, Quanyu; Sun, Yuhan
2017-01-01
Cyanobacteria as biofertilizers are benefit to reduce the use of chemical fertilizers and reestablish the ecological system in soil. In general, several strains of cyanobacteria were involved in the biofertilizers. The co-cultivation of cyanobacteria were characterized on growth profile, production of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity for three selected N 2 -fixing cyanobacteria, Anabaena cylindrica (B1611 and F243) and Nostoc sp. (F280). After eight-day culture, the highest dry weights were obtained in F280 pure culture and co-cultivation of B1611 and F280. Higher production of extracellular proteins and cell-bonding polysaccharides (CPS) were observed in co-cultivations compared with pure culture. The highest released polysaccharides (RPS) contents were obtained in pure culture of F280 and co-cultivation of F280 and F243. Galactose and glucose were major components of CPS and RPS in all samples. Trehalose was a specific component of RPS in F280 pure culture. Based on the monosaccharide contents of CPS and RPS, F280 was the dominant species in the related treatments of co-cultivation. The nitrogenase activities in all treatments exhibited a sharp rise at the late stage while a significant decrease existed when three cyanobacteria strains were mixed. Photosynthetic activities for all treatments were determined with rapid light curve, and the related parameters were estimated.
Li, Min; Yan, Yi-Xi; Yu, Qing-Tao; Deng, Yong; Wu, Ding-Tao; Wang, Ying; Ge, Ya-Zhong; Li, Shao-Ping; Zhao, Jing
2017-03-01
Garlic has a long history to be used for medicine and food purposes. Black garlic, the fermented product of fresh garlic, is considered with better biological activities, such as antioxidant activity, and is developed as an increasingly popular functional food. Polysaccharides are the major components of fresh and black garlic, and immunomodulatory activity is one major pharmacological effect of polysaccharides. Therefore, chemical characteristics and immunomodulatory effects of polysaccharides from fresh and black garlic are investigated and compared in vitro for the 1st time, in order to reveal their molecular and pharmacological differences. It is demonstrated that the molecular weights of polysaccharides from the 2 sources and molar ratios of monosaccharides after acid hydrolysis are greatly variant. The effects of polysaccharides from 2 sources on RAW 264.7 macrophages functions, including promotion of phagocytosis, release of NO, and expressions of several immune-related cytokines (including interleukin [IL]-6, IL-10, tumor necrosis factor alpha, and interferon gamma), were different from each other. The results indicated that fresh garlic polysaccharide exhibited stronger immunomodulatory activities than that of black garlic. Moreover, it is revealed that fructan might be the bioactive component in garlic and it is indicated that during the fermentation treatment, fructan constituents of garlic has degraded, and basically no immunomodulatory effect can be found in black garlic polysaccharides. © 2017 Institute of Food Technologists®.
USDA-ARS?s Scientific Manuscript database
Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...
Interferon Inducers against Infectious Diseases
1990-07-13
22 7. Induction of IFN in Micoe by IC-(PLL- monosaccharides ............................... *23 8. ICL- CDS04...seeking to replace both PLL and CM by modifying the PLL with engrafted polysaccharides . 2. Background A number of candidates have been developed in this...expanders, or being closely related to such. These include gelatin, anionically-modified gelatin, oarboxymethyl polysaocharides, sulfated polysaccharides
2010-01-01
and polysaccharides ) and some hydrophilic macromolecular systems, including biopolymers (from polypeptides to several proteins) [r008, r009, r010...investigated and here presented are the monosaccharide 2-Deoxy-D- ribose, mixed with 32% wt. fraction of water, and the heptamer of polypropylene glycol, with
Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo
2017-03-01
A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e ) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.
Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric
2016-01-01
Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less
Glycomics: revealing the dynamic ecology and evolution of sugar molecules.
Springer, Stevan A; Gagneux, Pascal
2016-03-01
Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.
Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees
2017-01-15
Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.
Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides
2013-01-01
Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16–30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4–160.5 mg/g of educt) and polysaccharides (140 °C: 5.52–16.03 mg/g of educt). PMID:23967874
Li, Jingbo; Zhou, Pengfei; Liu, Hongmei; Xiong, Chunjiang; Lin, Jianghai; Xiao, Wenjuan; Gong, Yingxue; Liu, Zehuan
2014-03-01
Sugarcane bagasse (SCB) resulting from different pretreatments was hydrolyzed by enzyme cocktails based on replacement of cellulase (Celluclast 1.5 L:Novozym 188=1FPU:4pNPGU) by xylanase or pectinase at different proportions. Lignin content of NaOH pretreated SCB and hemicellulose content of H2SO4 pretreated SCB were the lowest. NaOH pretreatment showed the best for monosaccharide production among the four pretreatments. Synergism was apparently observed between cellulase and xylanase for monosaccharide production from steam exploded SCB (SESB), NaOH, and H2O2 pretreated SCB. No synergism was observed between cellulase and pectinase for producing glucose. Additionally, no synergism was present when H2SO4 pretreated SCB was used. Replacement of 20% of the cellulase by xylanase enhanced the glucose yield by 6.6%, 8.8%, and 9.5% from SESB, NaOH, and H2O2 pretreated SCB, respectively. Degree of synergism between cellulase and xylanase had positive relationship with xylan content and was affected by hydrolysis time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M
2017-10-04
Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56% reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO 2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.
Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.
Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R
2017-10-01
The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Ahmad, Mohd Noor; Adom, Abdul Hamid; Jaafar, Mahmad Nor; Ghani, Supri A.; Abdullah, Abu Hassan; Aziz, Abdul Hallis Abdul; Kamarudin, Latifah Munirah; Subari, Norazian; Fikri, Nazifah Ahmad
2011-01-01
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused. PMID:22164046
Zakaria, Ammar; Shakaff, Ali Yeon Md; Masnan, Maz Jamilah; Ahmad, Mohd Noor; Adom, Abdul Hamid; Jaafar, Mahmad Nor; Ghani, Supri A; Abdullah, Abu Hassan; Aziz, Abdul Hallis Abdul; Kamarudin, Latifah Munirah; Subari, Norazian; Fikri, Nazifah Ahmad
2011-01-01
The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
Physiological, biochemical and transcriptional analysis of onion bulbs during storage
Chope, Gemma A.; Cools, Katherine; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.
2012-01-01
Background and Aims During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Methods Biochemical and physiological analyses were conducted on different cultivars (‘Wellington’, ‘Sherpa’ and ‘Red Baron’) grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 °C) and stored under different regimes (1, 3, 6 and 6 → 1 °C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. Key Results There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. Conclusions These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 °C, producing a considerable saving in energy and costs. PMID:22234560
The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†
Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen
2013-01-01
Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524
[Non-celiac gluten sensitivity: a critical review of current evidence].
Molina-Infante, Javier; Santolaria, Santos; Montoro, Miguel; Esteve, María; Fernández-Bañares, Fernando
2014-01-01
Non-celiac gluten sensitivity (NCGS) is an emerging disorder characterized by intestinal and extra-intestinal symptoms related to the ingestion of gluten-containing food in non-celiac patients. Its prevalence has been estimated to be six to ten-times higher than that of celiac disease (CD). A gluten-free diet is the most widely recommended therapy, but the causative agent remains unknown and there are no consensus diagnostic criteria. Recent studies on NCGS have included patients with possibly overlooked minor CD and diarrhea-predominant irritable bowel syndrome without self-reported gluten intolerance, but showing a response to a gluten-free diet. Furthermore, FODMAPs (Fermentable Oligosaccharides, Disaccharides, Monosaccharides And Polyols) have recently been postulated as the culprit component for NCGS in wheat, instead of gluten. This review updates evidence on the pathophysiology of NCGS and the efficacy of different dietary interventions in its treatment, stressing the need for proper screening for CD before a diagnosis of NCGS is made. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.
NASA Astrophysics Data System (ADS)
Meador, Travis B.; Aluwihare, Lihini I.
2014-10-01
In North Atlantic waters impacted by discharges from the Amazon and Orinoco Rivers, where planktonic diatom-diazotroph associations (DDA) were active, we observed that an average (± standard deviation) of 61 ± 12% of the biological drawdown of dissolved inorganic carbon (DIC) was partitioned into the accumulating total organic carbon pool, representing a flux of up to 9 ± 4 Tg C yr-1. This drawdown corresponded with chemical alteration of ultrafiltered dissolved organic matter (UDOM), including increases in stable C isotopic composition (δ13C) and C:N. The dissolved carbohydrate component of UDOM also increased with biological DIC drawdown and diatom-associated diazotroph (i.e., Richelia) abundance. New carbohydrates could be distinguished by distinctively high relative abundances of deoxy sugars (up to 55% of monosaccharides), which may promote aggregate formation and enhance vertical carbon export. The identified production of non-Redfieldian, C-enriched UDOM thus suggests a mechanism to explain enhanced C sequestration associated with DDA N2 fixation, which may be widespread in mesohaline environments.
Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E.; ...
2016-05-13
We identified the d-galacturonic acid (GA)-responsive transcriptional activator GaaR of the saprotrophic fungus, Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression analysis showed that GaaR is required for the expression of genes necessary to release GA from PGA and more complex pectins, to transport GA into the cell, and to induce the GA catabolic pathway. Residual growth of ΔgaaR on complex pectins is likely due to the expression of pectinases acting on rhamnogalacturonan and subsequent metabolism of the monosaccharides othermore » than GA.« less
Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy.
Garozzo, D; Spina, E; Cozzolino, R; Cescutti, P; Fett, W F
2000-01-12
The introduction of size-exclusion chromatography (SEC) analysis of polysaccharides prior to MALDI mass spectroscopy accounts for the determination of the molecular mass of the repeating unit when neutral homopolymers are investigated. In the case of natural polysaccharides characterised by more complicated structural features (presence of non-carbohydrate substituents, charged groups, etc.), this mass value usually is in agreement with more than one sugar composition. Therefore, it is not sufficient to give the correct monosaccharidic composition of the polysaccharide investigated. To solve this problem, MALDI spectra were recorded on the permethylated sample and post-source decay experiments were performed on precursor ions. In this way, the composition (in terms of Hex, HexNAc, etc.), size and sequence of the repeating unit were determined.
[Sugar content in non-alcoholic beverages and dietary recemmendations for children and adolescents].
Bilek, Maciej; Rybakowa, Maria
2015-01-01
Increase the intake of sugars among the inhabitants of developed countries is related to, among others, increasing consumption of non-alcoholic beverages, for which the relationship with the epidemic of obesity, particularly among children and adolescents, has been proven. The most frequently cited are non-alcoholic beverages, sweetened glucose-fructose syrup, ie. colas, tonics, ice teas, lemonades. Fruit drinks, fruit juices and nectars are commonly cited as a healthy alternative to non-alcoholic beverages and, however, we do not pay attention to the high content of sugars in these products. Determine the content of sugars in non-alcohollic beverages popular among children and adolescents. 80 non-alcoholic beverages such as cola, tonic, lemonade, ice tea, flavored waters, fruit juices, fruit nectars and fruit drinks. Evaluation of the content of monosaccharides and sucrose was performed by high performance liquid chromatography method (HPLC). In the tested non-alcohollic beverages, monosaccharides ie. glucose and fructose and the disaccharide sucrose were detected in different proportions. The product with the lowest content of the total sugars content was flavored water with lemon flavor based on the mineral water (2.72 g/100 ml). In the group of fruit juices, fruit nectars and fruit drinks highest sugars content have been reported (12.94 g/100 ml for aronia nectar and 12.76 g/100ml for the juice of pomegranate and grapes). Significant monosaccharides and sucrose content in the tested non-alcohollic beverages tends to claim that their manufacturers should be obliged to place warnings on the labels addressed to patients suffering from disorders of carbohydrate metabolism. Educational programs for children and adolescents with diabetes should include information about the content of a large amount of sugars in fruit products: fruit juices, fruit drinks and fruit nectar. © Polish Society for Pediatric Endocrinology and Diabetology.
Levina, E V; Kalinovskiĭ, A I; Andriiashchenko, P V; Menzorova, N I; Dmitrenok, P S
2007-01-01
Three new polar steroids identified as trofoside A, (20R,24S)-24-O-(3-O-methyl-beta-D-xylopyranosyl)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfoxy-(20R,24S)-5alpha-cholestane-3beta,6beta,8,15alpha,24-pentaol sodium salt, were isolated from Trofodiscus uber starfish extracts collected in the Sea of Okhotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3beta,6alpha,8,15beta-tetrahydroxy-5alpha-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius (C(min)) and terminating the cell division at the stage of the first division (C(min) embr.), as well as the concentrations causing 50% immobilization of sperm cells (ImC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono- and double chained glycosides with the monosaccharide fragment at C3 and C24 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.
Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides
Sukumaran, Sunil K.; Yee, Karen K.; Iwata, Shusuke; Kotha, Ramana; Quezada-Calvillo, Roberto; Nichols, Buford L.; Mohan, Sankar; Pinto, B. Mario; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F.
2016-01-01
The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K+ (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal “brush border” disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways. PMID:27162343
Varjú, Péter; Farkas, Nelli; Hegyi, Péter; Garami, András; Szabó, Imre; Illés, Anita; Solymár, Margit; Vincze, Áron; Balaskó, Márta; Pár, Gabriella; Bajor, Judit; Szűcs, Ákos; Huszár, Orsolya; Pécsi, Dániel
2017-01-01
Background Irritable bowel syndrome (IBS) and functional digestive tract disorders, e.g. functional bloating, carbohydrate maldigestion and intolerances, are very common disorders frequently causing significant symptoms that challenge health care systems. A low Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols (FODMAP) diet is one of the possible therapeutic approaches for decreasing abdominal symptoms and improving quality of life. Objectives We aimed to meta-analyze data on the therapeutic effect of a low-FODMAP diet on symptoms of IBS and quality of life and compare its effectiveness to a regular, standard IBS diet with high FODMAP content, using a common scoring system, the IBS Symptom Severity Score (IBS-SSS). Methods A systematic literature search was conducted in PubMed, EMBASE and the Cochrane Library as well as in the references in a recent meta-analysis. Adult patients diagnosed with IBS according to the Rome II, Rome III, Rome IV or NICE criteria were included in the analysis. Statistical methods Mean differences with 95% confidence intervals were calculated from studies that contained means, standard deviation (SD) or mean differences and SD of differences and p-values. A random effect model was used because of the heterogeneity (Q test (χ2) and I2 indicator). A p-value of less than 0.05 was chosen to indicate a significant difference. Results The literature search yielded 902 publications, but only 10 were eligible for our meta-analysis. Both regular and low-FODMAP diets proved to be effective in IBS, but post-diet IBS-SSS values were significantly lower (p = 0.002) in the low-FODMAP group. The low-FODMAP diet showed a correlation with the improvement of general symptoms (by IBS-SSS) in patients with IBS. Conclusions This meta-analysis provides high-grade evidence of an improved general symptom score among patients with irritable bowel syndrome who have maintained a low-FODMAP diet compared to those on a traditional IBS diet, therefore showing its superiority to regular IBS dietary therapy. These data suggest that a low-FODMAP diet with dietitian control can be a candidate for first-line therapeutic modality in IBS. Because of a lack of data, well-planned randomized controlled studies are needed to ascertain the correlation between improvement of separate key IBS symptoms and the effect of a low-FODMAP diet. PMID:28806407
Synthesis of 3-aminopropyl glycoside of branched β-(1 → 3)-d-glucooctaoside.
Yashunsky, Dmitry V; Tsvetkov, Yury E; Nifantiev, Nikolay E
2016-12-21
The synthesis was described of branched glucooctaoside bearing the β-(1 → 3)-glucotrioside side chain at O-6 of the second (from the reducing end) monosaccharide unit of the linear β-(1 → 3)-glucopentaoside core. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of sugars in honey by liquid chromatography
Kamal, Mohammad A.; Klein, Peter
2010-01-01
Honey is a rich conventional natural resource of sweetness and energy for human beings. A protocol for the determination of two important monosaccharide sugars (fructose and glucose) in honey was established in the current study by using normal phase partition liquid chromatography and 1–5% combined working standard of glucose, fructose and sucrose. PMID:23961099
MOLECULAR STRUCTURAL FACTORS IN COMPETITIVE INHIBITION OF SUGAR TRANSPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeFevre, P.G.
1959-07-10
The high potency of phloretin as a competitive inhibitor of the human red cell's monosaccharide transport system is not shared by any of several molecular fragments of phloretin, but is duplicated in certain artificial estrogens resembling phloretin in respect to the spacing between terminal phenolic---OH groups. Related molecules which are slightly less extendible are comparatively inactive. (auth)
USDA-ARS?s Scientific Manuscript database
A low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet can ameliorate symptoms in adult irritable bowel syndrome (IBS) within 48 h. To determine the efficacy of a low FODMAP diet in childhood IBS and whether gut microbial composition and/or metabolic capacity ar...
de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco
2013-01-01
Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan V.
The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoidmore » of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.« less
2012-01-01
Background This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils. Results Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions. Conclusions Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues. PMID:23095284
Liao, Jingzhu; Li, Chanyi; Huang, Jing; Liu, Wuping; Chen, Hongce; Liao, Shuangye; Chen, Hongyuan; Rui, Wen
2018-01-15
Honey-processed Astragalus is a dosage form of Radix Astragalus mixed with honey by a traditional Chinese medicine processing method which strengthens the tonic effect. Astragalus polysaccharide (APS), perform its immunomodulatory effects by relying on the tonic effect of Radix Astragalus , therefore, the improved pharmacological activity of honey-processed Astragalus polysaccharide (HAPS) might be due to structural changes during processing. The molecular weights of HAPS and APS were 1,695,788 Da, 2,047,756 Da, respectively, as determined by high performance gel filtration chromatography combined with evaporative light scattering detection (HPGFC-ELSD). The monosaccharide composition was determined by ultra-performance liquid chromatogram quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF-MS) after pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP). The results showed that the essential components were mannose, glucose, xylose, arabinose, glucuronic acid and rhamnose, is molar ratios of 0.06:28.34:0.58:0.24:0.33:0.21 and 0.27:12.83:1.63:0.71:1.04:0.56, respectively. FT-IR and NMR analysis of HAPS results showed the presence of uronic acid and acetyl groups. The anti-inflammatory activities of HAPS were more effective than those of APS according to the NO contents and the expression of IFN-γ, IL-1β, IL-22 and TNF-α in lipopolysaccharide (LPS)-induced RAW264.7 cells. This findings suggest that the anti-inflammatory and bioactivity improvement might be associated with molecular structure changes, bearing on the potential immunomodulatory action.
Chen, Xiaomei; Wang, Fangfei; Wang, Yunqiang; Li, Xuelan; Wang, Airong; Wang, Chunlan; Guo, Shunxing
2012-12-01
The aim of this study was to establish a method for discriminating Dendrobium officinale from four of its close relatives Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum and Dendrobium devonianum based on chemical composition analysis. We analyzed 62 samples of 24 Dendrobium species. High performance liquid chromatography analysis confirmed that the four low molecular weight compounds 4',5,7-trihydroxyflavanone (naringenin), 3,4-dihydroxy-4',5-dime-thoxybibenzyl (DDB-2), 3',4-dihydroxy-3,5'-dimethoxybibenzyl (gigantol), and 4,4'-dihydroxy-3,3',5-trimethoxybibenzy (moscatilin), were common in the genus. The phenol-sulfuric acid method was used to quantify polysaccharides, and the monosaccharide composition of the polysaccharides was determined by gas chromatography. Stepwise discriminant analysis was used to differentiate among the five closely related species based on the chemical composition analysis. This proved to be a simple and accurate approach for discriminating among these species. The results also showed that the polysaccharide content, the amounts of the four low molecular weight compounds, and the mannose to glucose ratio, were important factors for species discriminant. Therefore, we propose that a chemical analysis based on quantification of naringenin, bibenzyl, and polysaccharides is effective for identifying D. officinale.
MCAW-DB: A glycan profile database capturing the ambiguity of glycan recognition patterns.
Hosoda, Masae; Takahashi, Yushi; Shiota, Masaaki; Shinmachi, Daisuke; Inomoto, Renji; Higashimoto, Shinichi; Aoki-Kinoshita, Kiyoko F
2018-05-11
Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The profiles in MCAW-DB could potentially be used as predictors of affinity of unknown or novel glycans to particular GBPs by comparing how well they match the existing profiles for those GBPs. Moreover, as the glycan profiles of diseased tissues become available, glycan alignments could also be used to identify glycan biomarkers unique to that tissue. Databases of these alignments may be of great use for drug discovery. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ashford, David; Desai, Nila N.; Allen, Anthony K.; Neuberger, Albert; O'Neill, Malcolm A.; Selvendran, Robert R.
1982-01-01
1. Methylation analysis of potato (Solanum tuberosum) lectin and thorn-apple (Datura stramonium) lectin confirmed previous conclusions that both glycoproteins contained high proportions of l-arabinofuranosides and lesser amounts of d-galactopyranosides. The arabinofuranosides are present in both lectins as short unbranched chains containing 1→2- and 1→3-linkages, which are known to be linked to hydroxyproline. Galactopyranosides are present as monosaccharides, which are known to be attached to serine, in potato lectin and as both the monosaccharide and the 1→3-linked disaccharide in Datura lectin. 2. Alkaline digestion of potato lectin and subsequent separation of the components by gel filtration led to the isolation of four fractions corresponding to the mono-, di-, tri- and tetra-arabinosides of hydroxyproline. The latter two fractions accounted for over 70% of the total hydroxyproline. 3. Methylation analysis was used to show that the triarabinoside contained only 1→2-linkages between sugars, but that the tetra-arabinoside contained both 1→2- and 1→3-linkages. Direct-insertion mass spectrometry of these compounds using electron impact and chemical ionization, in a comparison with other known structural patterns, was used to determine the sequences of the sugars, which were Araƒ1→2Araƒ1→2Araƒ1→Hyp and Araƒ1→3Araƒ1→2Araƒ1→2Araƒ 1→Hyp. 4. On the basis of optical rotation it had previously been suggested [Allen, Desai, Neuberger & Creeth (1978) Biochem. J. 171, 665–674] that all the arabinose of potato lectin was present as the β-l-furanoside. However, measurement of the optical rotations of the hydroxyprolyl arabinosides showed that whereas the diarabinoside had a molar rotation ([m]) value close to that predicted, the triarabinoside was more dextrorotatory and the tetra-arabinoside was less dextrorotatory than expected. Possible explanations for these findings are that, although the di- and tri-arabinosides contain exclusively β-arabinofuranosides, in the tri-arabinoside, interactions between pentose units lead to an enhanced positive rotation. The tetra-arabinoside, however, is proposed to contain a single α-arabinofuranoside residue, which is responsible for the lower than expected positive rotation. The observed rotation of the tetra-arabinoside was found to be close to the theoretical value predicted on that basis. Furthermore, the action of a specific α-arabinofuranosidase on the tetrasaccharide was to remove a single arabinose residue, presumably the terminal non-reducing sugar, and to produce a product that was indistinguishable on electrophoresis from the triarabinoside. Changes in rotation were compatible with this assumption. 5. It is concluded that the structures of the hydroxyprolyl tri- and tetra-arabinosides of potato lectin are: βAraƒ1→2βAraƒ1→2βAraƒ1→Hyp and αAraƒ1→3βAraƒ1→2βAraƒ 1→2βAraƒ1→Hyp. These are identical with compounds that have been isolated from the insoluble hydroxyproline-rich glycoproteins of plant cell walls. PMID:7082284
Molecularly imprinted polymers for separation of various sugars from human urine.
Okutucu, Burcu; Onal, Seçil
2011-12-15
Molecularly imprinted polymers were the new, simple and unexpensive materials that can be used in several clinical applications. Phenylboronic acid has been frequently used as functional monomer for the covalent imprinting of diols. In this study, the phenylboronic acid esters of fructose, galactose, glucose and raffinose were synthesized and then used as template analytes. The adsorption capacities of fructose, galactose and glucose-phenylboronic acid imprinted polymers were 75, 10 and 30%, respectively. The batch rebinding studies and Scatchard analysis were done for all sugar imprinted polymer. Glucose is one of the mostly found sugar in the urine. The glucose:phenylboronic acid imprinted polymer was used for the analysis of glucose, fructose, galactose, sucrose, maltose, lactose and raffinose in spiked urine. The selectivity of glucose:phenylboronic acid imprinted polymer to urine monosaccharides was found as nearly 45-55% and to di- and polysaccharides was found as 30-35%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Chemical studies on the polysaccharides of Salicornia brachiata.
Sanandiya, Naresh D; Siddhanta, A K
2014-11-04
A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mzoughi, Zeineb; Chakroun, Ibtissem; Hamida, Sarra Ben; Rihouey, Christophe; Mansour, Hedi Ben; Le Cerf, Didier; Majdoub, Hatem
2017-12-01
The isolation, purification and ozone depolymerization of polysaccharides from Arthrocnemum indicum as well as the evaluation of their antiproliferative capacities were investigated. The ozone treatment for various reaction times (0, 15, 30, 45 and 60min) was employed as degradation method in order to attain lower molecular weight product with stronger antiproliferative property. According to FTIR, 1 H NMR and UV-vis analysis, the main chain of ozonolytic degraded polysaccharides could be preserved. The monosaccharide composition, which was determined via GC/MS analysis, showed that extracted polysaccharides were of type of arabinan-rich pectic polysaccharides. Macromolecular characteristics as well as intrinsic viscosity of the degraded polysaccharides were performed by size exclusion chromatography before and after ozone treatment. These experiments showed that intrinsic viscosity and molecular weight (Mn and Mw) of degraded samples decreased with increase in reaction time. Furthermore, preliminary antiproliferative tests indicated that degraded polysaccharide for 1h showed even better antiproliferative capacity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ai-Lati, Aisikaer; Liu, Shuangping; Ji, Zhongwei; Zhang, Hao; Mao, Jian
2017-09-03
In this study, a Ganoderma lucidum polysaccharide GLP-1-1 was isolated from a culture broth with Mw of 22014 Da. Monosaccharide contained glucose, mannose, and galactose with mole percentages of 92.33%, 7.55%, and 0.22%, respectively. Moreover, FTIR and methylation analysis were conducted to characterize the structural properties of GLP-1-1. The results of antioxidant activity analysis showed that GLP-1-1 had a great DPPH and ABTS radical scavenging activity. Meanwhile, GLP-1-1 also exhibited anti-tumor activity to A431 and MDA-MB-231 cells, and inhibitory rates were dose-dependent. During culturing with GLP-1-1, the G1/G0 cell percentage of A431 cells was increased from 48.64% to 84.52%, and the G1/G0 cell percentage of MDA-MB-231 cells was increased from 57.14% to 73.48%. Therefore, the anti-tumor activity of GLP-1-1 may be caused by inducing the G1/G0 arrest of tumor cells.
Monošík, Rastislav; Magdolen, Peter; Stredanský, Miroslav; Šturdík, Ernest
2013-05-01
The aim of the present study was to analyze sugar levels (namely maltose, maltotriose, glucose and fructose) and alcohols (ethanol and glycerol) during the fermentation process in wort samples by amperometric enzymatic biosensors developed by our research group for industrial application, HPLC and spectrophotometry, and to compare the suitability of the presented methods for determination of individual analytes. We can conclude that for the specific monitoring of maltose or maltotriose only the HPLC method was suitable. On the other hand, biosensors and spectrophotometry reflected a decrease in total sugar concentration better and were able to detect both glucose and fructose in the later stages of fermentation, while HPLC was not. This can be attributed to the low detection limits and good sensitivity of the proposed methods. For the ethanol and glycerol analysis all methods proved to be suitable. However, concerning the cost expenses and time analysis, biosensors represented the best option. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Qiao-Zhen; Wu, Di; Zhou, Shuai; Liu, Yan-Fang; Li, Zheng-Peng; Feng, Jie; Yang, Yan
2016-06-25
HPB-3, a heteropolysaccharide, with a mean molecular weight of 1.5×10(4)Da, was obtained from the maturating-stage IV, V and VI fruiting body of Hericium erinaceus, exhibited higher macrophages stimulation activities, was able to upregulate the functional events mediated by activated macrophages, such as production of nitric oxide (NO). Monosaccharide composition analysis showed that HPB-3 comprised l-fucose, d-galactose and d-glucose in the ratio of 5.2:23.9:1. Its chemical structure was characterized by sugar and methylation analysis, along with (1)H and (13)C NMR spectroscopy, including (1)H-(1)H COSY, TOCSY, NOESY, HMQC and HMBC experiments. The results indicated that HPB-3 contained a-(1/6)-linked galactopyranosyl backbone, partially with a side chain composed of α-l-fucopyranose at the O-2 position. The predicted primary structure of the polysaccharide was established as below. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters.
Zhu, Wen-Zhuo; Yang, Gui-Peng; Zhang, Hong-Hai
2017-12-31
Chromophoric dissolved organic matter (CDOM), carbohydrates, and amino acids were analyzed to investigate the photochemistry of total dissolved (<0.22μm) organic matter (DOM), high-molecular-weight (HMW, 1kDa-0.22μm) DOM and low-molecular-weight (LMW, <1kDa) DOM at stations in the Yangtze River and its coastal area, and in the Western Pacific Ocean. Results revealed that the humic-like and tryptophan-like CDOM fluorescent components in riverine, coastal, and oceanic surface waters were photodegraded during irradiation. However, the photochemical behavior of tyrosine-like component was obscured by the excessive fluorescence intensities of humic- and tryptophan-like fluorescent components. Light sensitivity varied depending on the source material; terrestrially derived DOM was more susceptible to irradiation than autochthonous DOM. In contrast to the expected photodegradation of CDOM, photo-induced synthetic reaction transformed the LMW matters to polysaccharides (PCHO) and degradation reaction decomposed the HMW DOM to Monosaccharides. Colloidal DOM preferentially underwent photodegradation, whereas permeate DOM mainly photosynthesized PCHO. The total hydrolysable amino acid (THAA) pool changed because of the additional input by the photodegradation of DOM or THAA itself. The compositions of THAA changed during the irradiation experiments, indicating that the different photochemical behavior of individual amino acids were related to their different original photoreactivities; the relatively stable amino acids (e.g., Ser and Gly) significantly accumulated during irradiation, whereas photo-active aromatic amino acids (e.g. Tyr and His) were prone to photodegradation. The data presented here demonstrated that irradiation significantly influence the conversion between dissolved and colloid organic matter. These results can promote the understanding of irradiation effect on the carbon and nitrogen cycle in riverine, estuarine and oceanic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates.
Schindler, B; Barnes, L; Gray, C J; Chambert, S; Flitsch, S L; Oomens, J; Daniel, R; Allouche, A R; Compagnon, I
2017-03-16
IR spectroscopy of gas-phase ions is proposed to resolve positional isomers of sulfated carbohydrates. Mass spectrometric fingerprints and gas-phase vibrational spectra in the near and mid-IR regions were obtained for sulfated monosaccharides, yielding unambiguous signatures of sulfated isomers. We report the first systematic exploration of the biologically relevant but notoriously challenging deprotonated state in the near IR region. Remarkably, anions displayed very atypical vibrational profiles, which challenge the well-established DFT (Density Functionnal Theory) modeling. The proposed approach was used to elucidate the sulfate patterns in glycosaminoglycans, a ubiquitous class of mammalian carbohydrates, which is regarded as a major challenge in carbohydrate structural analysis. Isomeric glycosaminoglycan disaccharides from heparin and chondroitin sources were resolved, highlighting the potential of infrared multiple photon dissociation spectroscopy as a novel structural tool for carbohydrates.
Process for the preparation of lactic acid and glyceric acid
Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI
2008-12-02
Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.
de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco
2013-01-01
Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426
Recent Development in Spectroscopic and Chemical Characterization of Cellulose
2005-01-01
specific to the reducing end groups of the polysaccharides , confirmed the parallel alignment of molecular chains within the microfibrils in native...they include primary, secondary, and tertiary structures. And indeed, crystallographic studies of the monosaccharides and of related structures...Two approaches were adopted for this purpose. The first was based on examining the Raman spectra of polysaccharide polymers and oligomers that
Diane Dietrich; Barbara Illman; Casey Crooks
2013-01-01
The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides...
A simple and rapid microplate assay for glycoprotein-processing glycosidases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, M.S.; Zwolshen, J.H.; Harry, B.S.
1989-08-15
A simple and convenient microplate assay for glycosidases involved in the glycoprotein-processing reactions is described. The assay is based on specific binding of high-mannose-type oligosaccharide substrates to concanavalin A-Sepharose, while monosaccharides liberated by enzymatic hydrolysis do not bind to concanavalin A-Sepharose. By the use of radiolabeled substrates (( 3H)glucose for glucosidases and (3H)mannose for mannosidases), the radioactivity in the liberated monosaccharides can be determined as a measure of the enzymatic activity. This principle was employed earlier for developing assays for glycosidases previously reported. These authors have reported the separation of substrate from the product by concanavalin A-Sepharose column chromatography. Thismore » procedure is handicapped by the fact that it cannot be used for a large number of samples and is time consuming. We have simplified this procedure and adapted it to the use of a microplate (96-well plate). This would help in processing a large number of samples in a short time. In this report we show that the assay is comparable to the column assay previously reported. It is linear with time and enzyme concentration and shows expected kinetics with castanospermine, a known inhibitor of alpha-glucosidase I.« less
Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen
2017-04-10
Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Probing sialoglycans on fetal bovine fetuin with azido-sugars using glycosyltransferases.
Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D
2016-04-01
Sialic acids are negatively charged sugar residues commonly found on the terminal positions of most glycoproteins. They play important roles in the stability and solubility of these proteins. Due to their unique positioning, they also frequently act as receptors for various ligands, and therefore are involved in numerous cell-cell and cell-pathogen interactions. Here, using in vitro incorporation of clickable monosaccharides with various glycosyltransferases, we probed the sialoglycans on fetal bovine fetuin. The incorporated monosaccharides were detected with chemiluminescence via click chemistry in a format of western blotting. The results indicate that the non-reducing end Gal residues on both N- and O-glycans are fully sialylated, but the peptide-linked GalNAc residues in O-glycans are not. The presence of sialyl core-1 glycan was repeatedly confirmed by probing with α-2,3-sialyltransferases, N-acetylgalactosaminide α-2,6-sialyltransferases and a β-1,6-N-acetylglucosaminyltransferase that is specific for core-1 glycan. The results also suggest the presence of a minute amount of sialyl Tn antigen on the protein. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo
2017-03-01
Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.
Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin
2015-01-01
In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768
Liu, Jun; Zou, Yang; Guan, Wanyi; Zhai, Yafei; Xue, Mengyang; Jin, Lan; Zhao, Xueer; Dong, Junkai; Wang, Wenjun; Shen, Jie; Wang, Peng George; Chen, Min
2013-07-01
Nucleotide sugars are activated forms of monosaccharides and key intermediates of carbohydrate metabolism in all organisms. The availability of structurally diverse nucleotide sugars is particularly important for the characterization of glycosyltransferases. Given that limited methods are available for preparation of nucleotide sugars, especially their useful non-natural derivatives, we introduced herein an efficient one-step three-enzyme catalytic system for the synthesis of nucleotide sugars from monosaccharides. In this study, a promiscuous UDP-sugar pyrophosphorylase (USP) from Arabidopsis thaliana (AtUSP) was used with a galactokinase from Streptococcus pneumoniae TIGR4 (SpGalK) and an inorganic pyrophosphatase (PPase) to effectively synthesize four UDP-sugars. AtUSP has better tolerance for C4-derivatives of Gal-1-P compared to UDP-glucose pyrophosphorylase from S. pneumoniae TIGR4 (SpGalU). Besides, the nucleotide substrate specificity and kinetic parameters of AtUSP were systematically studied. AtUSP exhibited considerable activity toward UTP, dUTP and dTTP, the yield of which was 87%, 85% and 84%, respectively. These results provide abundant information for better understanding of the relationship between substrate specificity and structural features of AtUSP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evidence for Apoplasmic Phloem Unloading in Developing Apple Fruit1
Zhang, Ling-Yun; Peng, Yi-Ben; Pelleschi-Travier, Sandrine; Fan, Ying; Lu, Yan-Fen; Lu, Ying-Min; Gao, Xiu-Ping; Shen, Yuan-Yue; Delrot, Serge; Zhang, Da-Peng
2004-01-01
The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H+-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process. PMID:15122035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevcik, R. S.; Hyman, D. A.; Basumallich, L.
2013-01-01
A technique for carbohydrate analysis for bioprocess samples has been developed, providing reduced analysis time compared to current practice in the biofuels R&D community. The Thermofisher CarboPac SA10 anion-exchange column enables isocratic separation of monosaccharides, sucrose and cellobiose in approximately 7 minutes. Additionally, use of a low-volume (0.2 mL) injection valve in combination with a high-volume detection cell minimizes the extent of sample dilution required to bring sugar concentrations into the linear range of the pulsed amperometric detector (PAD). Three laboratories, representing academia, industry, and government, participated in an interlaboratory study which analyzed twenty-one opportunistic samples representing biomass pretreatment, enzymaticmore » saccharification, and fermentation samples. The technique's robustness, linearity, and interlaboratory reproducibility were evaluated and showed excellent-to-acceptable characteristics. Additionally, quantitation by the CarboPac SA10/PAD was compared with the current practice method utilizing a HPX-87P/RID. While these two methods showed good agreement a statistical comparison found significant quantitation difference between them, highlighting the difference between selective and universal detection modes.« less
Conde, Artur; Regalado, Ana; Rodrigues, Diana; Costa, J Miguel; Blumwald, Eduardo; Chaves, M Manuela; Gerós, Hernâni
2015-02-01
Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer
NASA Astrophysics Data System (ADS)
Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.
2012-07-01
The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.
On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer
NASA Astrophysics Data System (ADS)
Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.
2012-01-01
The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud-Ocean Study (ASCOS) in August 2008, particulate and dissolved organic matter (POM, DOM) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.
de Godoy, M R C; Knapp, B K; Parsons, C M; Swanson, K S; Fahey, George C
2014-06-01
The objective of this research was to measure in vitro hydrolytic digestion, glycemic and insulinemic responses in dogs, and true ME (TMEn) content of select soluble corn fibers (SCF) in roosters. The first generation (G1) SCF included hydrochloric acid-treated corn syrup (G1-CS-HCl), an SCF with an increased total dietary fiber (TDF) content (G1-SCF-HCl), an SCF that was spray-dried (G1-SCF-SD), and a hydrogenated SCF (G1-SCF-hydrog). The second generation (G2) SCF included those prepared using phosphoric acid catalyzation in both a liquid [G2-SCF-phos (Lq)] and powder [G2-SCF-phos (Pw)] form, and SCF that were prepared using hydrochloric acid catalyzation in both a liquid [G2-SCF-HCl (Lq)] and powder [G2-SCF-HCl (Pw)] form. Also, in the G2 set of samples were SCF prepared using the same method, but in 3 separate batches, all of which contained 70% TDF and 15% sugars. Two were in liquid form [G2-SCF-phos+HCl (Lq1)] and [G2-SCF-phos+HCl (Lq2)], and one in powder form ([G2-SCF-phos+HCl (Pw)]. A lower sugar form (80% TDF and 5% sugar) of SCF was also evaluated (G2-SCF-low sugar). Glucose was the major free sugar and bound monosaccharide in all SCF except for G1-SCF-hydrog that had greater concentrations of sorbitol. All SCF had intermediate to low amounts of monosaccharides released as a result of in vitro hydrolytic digestion, with glucose being the primary sugar component released. The G1-SCF were more digestible in vitro (approximately 50%) compared to G2-SCF (approximately 32%). All SCF had attenuated glycemic responses in adult dogs compared to a maltodextrin control (P < 0.05). The G2-SCF, on average, had lower glycemic responses and TMEn values in roosters than G1-SCF. All SCF had low free sugar concentrations with varying degrees of resistance to digestion, reduced caloric content, and attenuated glycemic and insulinemic responses in adult dogs. These ingredients are potential candidates for inclusion in reduced calorie and low glycemic canine diets.
Bruce S. Dien; Junyong Zhu; Patricia J. Slininger; Cletus P. Kurtzman; Bryan R. Moser; Patricia J. O' Bryan; Roland Gleisner; Michael A. Cotta
2016-01-01
Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils (SCO) using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrolyzing using commercial cellulases. A new SPORL process that uses pH...
Symposium on Dissertations on Chemical Oceanography, March 5-9, 1984. Abstracts.
1984-03-09
polysaccharides ; to determine their chemical structures by the application of various chemical and physical methods; and, finally, to clarity the distri...conducted to determine linkage types of monosaccharide constituents of oligo- and poly- saccharides from seawater samples. The following results were...coastal water. Mono-, oligo- and polysaccharides accounted for 7-9%, lb-26 , and ;1- 43% of the dissolved carbohydrates, respectively. The polysaccharide
USSR Report, Life Sciences, Biomedical and Behavioral Sciences
1985-02-13
characterizing the geometry of the main polysaccharide chain were close to 180°, indicating that the C-C and C-0 bonds of adjacent monosaccharide moieties...Containing Copolymers With Streptococcus Pneumoniae Type 3 Capsular Polysaccharide Specificity (A. Ya. Chernyak, et al.; BIOORGANICHESKAYA KHIMIYA, No... Polysaccharides (N.■ F. Yankina, et al.; BIOORGANICHESKAYA KHIMIYA, No 10, Oct 84) .. 26 LASER EFFECTS Effects of Laser irradiation on Inflammation and
Process for purifying lignocellulosic feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Matthew; Matthes, Megan; Nelson, Thomas
The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.
Evaluation of FODMAP Carbohydrates Content in Selected Foods in the United States.
Chumpitazi, Bruno P; Lim, Jongbin; McMeans, Ann R; Shulman, Robert J; Hamaker, Bruce R
2018-04-26
We analyzed the fermentable oligosaccharide, disaccharide, monosaccharide, and polyols (FODMAP) content of several foods potentially low in FODMAP which are commonly consumed by children. We determined that several processed foods (eg, gluten-free baked products) had unlabeled FODMAP content. Determining FODMAP content within foods distributed in the US may support educational and dietary interventions. Copyright © 2018 Elsevier Inc. All rights reserved.
Oursel, Stéphanie; Cholet, Sophie; Junot, Christophe; Fenaille, François
2017-12-15
Human milk oligosaccharides (HMOs) represent the third most abundant components of milk after lactose and lipids. HMOs are indigestible by the suckling infant but can act as prebiotics and have significant biological functions regarding the organism defense against pathogens (such as bacteria or viruses) by preventing interactions with their receptors. Although constituted of only five distinct monosaccharide building blocks, HMOs are highly structurally diverse compounds with many co-existing structural isomers. Here we report the development and comparison of two distinct glycomic platforms based on liquid chromatography coupled to high resolution mass spectrometry (LC-MS) for analyzing HMOs. We have implemented and thoroughly compared the LC-MS of permethylated and native HMOs on reversed phase (RP) and porous graphitic carbon (PGC) columns for their ability to resolve the natural heterogeneity of milk oligosaccharides at the highest sensitivity. Our data essentially underlines the usefulness of analyzing HMOs as permethylated derivatives especially for getting more precise structural information at high sensitivity. For instance, permethylation annihilates gas-phase fucose migration during MS/MS experiments, thus facilitating spectra interpretation and giving access to relevant information regarding oligosaccharide branching and isomer distinction. At the opposite, LC-MS profiling of native HMOs (using PGC) in milk performed best in terms of detected species, while also being much faster in terms of sample preparation. Although less efficient than PGC chromatography, RPLC proved successful for separating pairs of permethylated isomeric HMOs. A key advantage of RP over PGC liquid chromatography is that retention times can be correlated to molecular weights, which can greatly facilitate further HMO identification using retention time prediction. Altogether these data lead us to think that LC-MS analysis of native HMOs (using PGC) can be used as first-line profiling approach while permethylation can be performed afterwards for facilitating structural characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Blue-Print Autophagy: Potential for Cancer Treatment
Ruocco, Nadia; Costantini, Susan; Costantini, Maria
2016-01-01
The marine environment represents a very rich source of biologically active compounds with pharmacological applications. This is due to its chemical richness, which is claiming considerable attention from the health science communities. In this review we give a general overview on the marine natural products involved in stimulation and inhibition of autophagy (a type of programmed cell death) linked to pharmacological and pathological conditions. Autophagy represents a complex multistep cellular process, wherein a double membrane vesicle (the autophagosome) captures organelles and proteins and delivers them to the lysosome. This natural and destructive mechanism allows the cells to degrade and recycle its cellular components, such as amino acids, monosaccharides, and lipids. Autophagy is an important mechanism used by cells to clear pathogenic organism and deal with stresses. Therefore, it has also been implicated in several diseases, predominantly in cancer. In fact, pharmacological stimulation or inhibition of autophagy have been proposed as approaches to develop new therapeutic treatments of cancers. In conclusion, this blue-print autophagy (so defined because it is induced and/or inhibited by marine natural products) represents a new strategy for the future of biomedicine and of biotechnology in cancer treatment. PMID:27455284
Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.
2016-01-01
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562
Low-Temperature Blanching as a Tool to Modulate the Structure of Pectin in Blueberry Purees.
Chevalier, Laura M; Rioux, Laurie-Eve; Angers, Paul; Turgeon, Sylvie L
2017-09-01
Blueberry composition was characterized for 6 cultivars. It contains a good amount of dietary fiber (10% to 20%) and pectin (4% to 7%) whose degree of methylation (DM) is sensitive to food processing. A low temperature blanching (LTB: 60 °C/1 h) was applied on blueberry purees to decrease pectin DM, in order to modulate puree properties and functionalities (that is, viscosity and stability), and to enhance pectin affinity toward other components within food matrices. Fiber content, viscosity, pectin solubility, DM, and monosaccharide composition were determined for both pasteurized, and LTB+pasteurized blueberry purees. The results showed that neither the amount of fiber, nor the viscosity were affected by LTB, indicating that this treatment did not result in any significant pectin depolymerization and degradation. LTB caused a decrease both in pectin DM from 58-67% to 45-47% and in the amount of water-soluble pectin fraction, the latter remaining the major fraction of total pectin at 52% to 57%. A LTB is a simple and mild process to produce blueberry purees with mostly soluble and low-methylated pectin in order to extend functionality and opportunities for interactions with other food ingredients. © 2017 Institute of Food Technologists®.
Piotrowska, Alicja; Bajguz, Andrzej; Godlewska-Zyłkiewicz, Beata; Zambrzycka, Elzbieta
2010-04-01
The present study investigated the biochemical response of aquatic plant Wolffia arrhiza (Lemnaceae) treated with lead (Pb) and cadmium (Cd) at a range of concentrations from 1 to 1000 microM. W. arrhiza has been identified as good scavenger of heavy metals from aqueous solution. Pb and Cd accumulation was found to be increased in a concentration- and duration-dependent manner. However, the highest biosorption of heavy metals was found in plants exposed to low levels (10 microM) of Cd and Pb in the nutrient medium. In observing the response to heavy-metal stress, we noted inhibited plant growth and decreased photosynthetic pigments, monosaccharides, and proteins. In addition, Cd was found to be more toxic to plants than Pb. Heavy metals also induced oxidative damage as evidenced by increased lipid peroxidation and hydrogen peroxide levels. In contrast, the deleterious effects resulting from the cellular oxidative state can be alleviated by enzymatic (catalase, ascorbate peroxidase, nicotinamide dinucleotide [NADH] peroxidase) and nonenzymatic (ascorbate, glutathione) antioxidant mechanisms activated in W. arrhiza plants exposed to Cd and Pb, especially at 10 microM. These results suggest that W. arrhiza is a promising bioindicator of heavy-metal toxicity.
Determination of "net carbohydrates" using high-performance anion exchange chromatography.
Lilla, Zach; Sullivan, Darryl; Ellefson, Wayne; Welton, Kevin; Crowley, Rick
2005-01-01
For labeling purposes, the carbohydrate content of foods has traditionally been determined by difference. This value includes sugars, starches, fiber, dextrins, sugar alcohols, polydextrose, and various other organic compounds. In some cases, the current method may lack sufficient specificity, precision, and accuracy. These are subsequently quantitated by high performance anion exchange chromatography with pulsed amperometric detection and expressed as total nonfiber saccharides or percent "net carbohydrates." In this research, a new method was developed to address this need. The method consists of enzyme digestions to convert starches, dextrins, sugars, and polysaccharides to their respective monosaccharide components. These are subsequently quantified by high-performance anion exchange chromatography with pulsed amperometric detector and expressed as total nonfiber saccharides or percent "net carbohydrates." Hydrolyzed end products of various novel fibers and similar carbohydrates have been evaluated to ensure that they do not register as false positives in the new test method. The data generated using the "net carbohydrate" method were, in many cases, significantly different than the values produced using the traditional methodology. The recoveries obtained in a fortified drink matrix ranged from 94.9 to 105%. The coefficient of variation was 3.3%.
Park, David; Jagtap, Sujit; Nair, Satish K.
2014-01-01
Brown macroalgae represent an ideal source for complex polysaccharides that can be utilized as precursors for cellulosic biofuels. The lack of recalcitrant lignin components in macroalgae polysaccharide reserves provides a facile route for depolymerization of constituent polysaccharides into simple monosaccharides. The most abundant sugars in macroalgae are alginate, mannitol, and glucan, and although several classes of enzymes that can catabolize the latter two have been characterized, studies of alginate-depolymerizing enzymes have lagged. Here, we present several crystal structures of Alg17c from marine bacterium Saccharophagus degradans along with structure-function characterization of active site residues that are suggested to be involved in the exolytic mechanism of alginate depolymerization. This represents the first structural and biochemical characterization of a family 17 polysaccharide lyase enzyme. Despite the lack of appreciable sequence conservation, the structure and β-elimination mechanism for glycolytic bond cleavage by Alg17c are similar to those observed for family 15 polysaccharide lyases and other lyases. This work illuminates the evolutionary relationships among enzymes within this unexplored class of polysaccharide lyases and reinforces the notion of a structure-based hierarchy in the classification of these enzymes. PMID:24478312
Selective derivatization and sequestration of ribose from a prebiotic mix.
Springsteen, Greg; Joyce, Gerald F
2004-08-11
Observations regarding the catalytic potential of RNA and the role of RNA in biology have formed the basis for the "RNA world" hypothesis, which suggests that a genetic system based on self-replicating polyribonucleotides preceded modern biology. However, attempts to devise a realistic prebiotic synthesis of nucleic acids from simple starting materials have been plagued by problems of poor chemical selectivity, lack of stereo- and regiospecificity, and similar rates of formation and degradation of some of the key intermediates. For example, ribose would have been only a small component of a highly complex mix of sugars resulting from the condensation of formaldehyde in a prebiotic world. In addition, ribose is more reactive and degrades more rapidly compared with most other monosaccharides. This study demonstrates an approach for the preferential sequestration of ribose relative to other sugars that takes advantage of its greater reactivity. Cyanamide reacts especially rapidly with ribose to form a stable bicyclic adduct. This product crystallizes spontaneously in aqueous solution, whereas the corresponding products derived from threose, galactose, glucose, mannose, and each of the other pentoses do not. Furthermore, when employing a racemic mixture of d- and l-ribose, enantiomerically twinned crystals are formed that contain discrete homochiral domains.
NASA Astrophysics Data System (ADS)
Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.
2016-04-01
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.
Isolation and Composition Analysis of Bioactive Glycosaminoglycans from Whelk.
Khurshid, Chrow; Pye, David Alexander
2018-05-18
Glycosaminoglycans (GAGs) are found covalently attached to proteins, which create conjugates known as proteoglycans. GAGs have remarkable biological activity as co-receptors for a variety of growth factors, cytokines, and chemokines. The present study identifies the key compositional differences between the GAGs isolated from whelk and mammalian GAGs. This polysaccharide represents a new, previously undescribed GAG with cytotoxic activity on cancer cells. Disaccharides were obtained by sample digestion with heparinases I, II, and III and chondroitinase ABC. The resistant oligosaccharides from whelk GAGs treated with heparinase I, II, and III and chondroitinase ABC were retained by the filter due to their larger size. Disaccharide analysis was performed using Glycan Reduction Isotope Labeling (GRIL LCQ-MS). The amounts of filter-retained fragments, as assessed by monosaccharides analysis, suggested that a proportion of the whelk GAG chains remained resistant to the enzymes used in the disaccharide analysis. Thus, the proportions of individual disaccharide produced in this analysis may not truly represent the overall proportions of disaccharide types within the intact whelk GAGs chain. However, they do serve as important descriptors for the classification and make-up of the anti-cancer GAGs chains. Furthermore, these data represent clear evidence of the compositional differences between whelk GAGs and commercial mammalian GAGs.
Isolation and Composition Analysis of Bioactive Glycosaminoglycans from Whelk
Khurshid, Chrow; Pye, David Alexander
2018-01-01
Glycosaminoglycans (GAGs) are found covalently attached to proteins, which create conjugates known as proteoglycans. GAGs have remarkable biological activity as co-receptors for a variety of growth factors, cytokines, and chemokines. The present study identifies the key compositional differences between the GAGs isolated from whelk and mammalian GAGs. This polysaccharide represents a new, previously undescribed GAG with cytotoxic activity on cancer cells. Disaccharides were obtained by sample digestion with heparinases I, II, and III and chondroitinase ABC. The resistant oligosaccharides from whelk GAGs treated with heparinase I, II, and III and chondroitinase ABC were retained by the filter due to their larger size. Disaccharide analysis was performed using Glycan Reduction Isotope Labeling (GRIL LCQ-MS). The amounts of filter-retained fragments, as assessed by monosaccharides analysis, suggested that a proportion of the whelk GAG chains remained resistant to the enzymes used in the disaccharide analysis. Thus, the proportions of individual disaccharide produced in this analysis may not truly represent the overall proportions of disaccharide types within the intact whelk GAGs chain. However, they do serve as important descriptors for the classification and make-up of the anti-cancer GAGs chains. Furthermore, these data represent clear evidence of the compositional differences between whelk GAGs and commercial mammalian GAGs. PMID:29783688
Talaromyces emersonii thermostable enzyme systems and their applications in wheat baking systems.
Waters, Deborah M; Murray, Patrick G; Ryan, Liam A; Arendt, Elke K; Tuohy, Maria G
2010-06-23
In this study, novel extracellular thermozymes were produced by the thermophilic fungus Talaromyces emersonii (IMI 392299) on low-cost carbon inducers. This paper reports the cocktail characterization, substrate hydrolysis studies, and their application in baking. Relevant enzymes were optimally active at pH 4.5-5.0 and 70 degrees C. Model studies confirmed production of significant levels of yeast monosaccharide sugars during cereal flour hydrolysis. The "thermozyme cocktails" are thermostable secreted T. emersonii enzyme blends. In baking trials, these thermozyme cocktails showed significant improvements in bread quality with respect to hardness, staling, and loaf volume (p < 0.5). Thermozyme cocktail B- treated loaf volume was 23.2% greater than the control and 49.5% softer. Staling analysis showed that bread treated with cocktail B was 41.7% softer than the control. This is the first report of T. emersonii thermozymes positively influencing bread quality.
Sharma, Manisha; Patel, Satya Narayan; Lata, Kusum; Singh, Umesh; Krishania, Meena; Sangwan, Rajender S; Singh, Sudhir P
2016-11-01
In this work, the sugar industry by-product cane molasses was investigated as feedstock for acceptor reactions by dextransucrase from Leuconostoc mesenteroides MTCC 10508, leading to the biosynthesis of oligosaccharides. The starch industry corn fiber residue was used as a source for acceptor molecules, maltose, in the reaction. Production of approximately 124g oligosaccharides (DP3-DP6) per kg of fresh molasses was achieved. Further, cane molasses based medium was demonstrated as a sole carbon source for L. mesenteroides growth and dextransucrase production. d-Fructose released by dextransucrase activity as processing by-product was transformed into the functional monosaccharide with zero caloric value, d-psicose, by inducing its epimerization. Quantitative analysis approximated 37g d-psicose per kg of fresh molasses. Thus, the study established a novel approach of integrated bioprocessing of cane molasses into prebiotic and functional food additives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zdorovenko, E L; Wang, Y; Shashkov, A S; Chen, T; Ovchinnikova, O G; Liu, B; Golomidova, A K; Babenko, V V; Letarov, A V; Knirel, Y A
2018-05-01
Glycerophosphate-containing O-specific polysaccharides (OPSs) were obtained by mild acidic degradation of lipopolysaccharides isolated from Escherichia coli type strain O81 and E. coli strain HS3-104 from horse feces. The structures of both OPSs and of the oligosaccharide derived from the strain O81 OPS by treatment with 48% HF were studied by monosaccharide analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. Both OPSs had similar structures and differed only in the presence of a side-chain glucose residue in the strain HS3-104 OPS. The genes and the organization of the O-antigen biosynthesis gene cluster in both strains are almost identical with the exception of the gtr gene cluster responsible for glucosylations in the strain HS3-104, which is located elsewhere in the genome.
Structural characterization of pharmaceutical heparins prepared from different animal tissues.
Fu, Li; Li, Guoyun; Yang, Bo; Onishi, Akihiro; Li, Lingyun; Sun, Peilong; Zhang, Fuming; Linhardt, Robert J
2013-05-01
Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007-2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. Copyright © 2013 Wiley Periodicals, Inc.
He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong
2016-11-03
A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10 4 Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter.
Han, Lei; Zhu, Yongping; Liu, Min; Zhou, Ye; Lu, Guangyuan; Lan, Lan; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C
2017-09-19
Sugar Will Eventually be Exported Transporters (SWEETs) are recently identified sugar transporters that can discriminate and transport di- or monosaccharides across a membrane following the concentration gradient. SWEETs play key roles in plant biological processes, such as pollen nutrition, nectar secretion, seed filling, and phloem loading. SWEET13 from Arabidopsis thaliana (AtSWEET13) is an important sucrose transporter in pollen development. Here, we report the 2.8-Å resolution crystal structure of AtSWEET13 in the inward-facing conformation with a substrate analog, 2'-deoxycytidine 5'-monophosphate, bound in the central cavity. In addition, based on the results of an in-cell transport activity assay and single-molecule Förster resonance energy transfer analysis, we suggest a mechanism for substrate selectivity based on the size of the substrate-binding pocket. Furthermore, AtSWEET13 appears to form a higher order structure presumably related to its function.
Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.).
López-Molina, Dorotea; Navarro-Martínez, María Dolores; Rojas Melgarejo, Francisco; Hiner, Alexander N P; Chazarra, Soledad; Rodríguez-López, José Neptuno
2005-06-01
A high molecular weight inulin has been prepared from artichoke (Cynara scolymus L.) agroindustrial wastes using environmentally benign aqueous extraction procedures. Physico-chemical analysis of the properties of artichoke inulin was carried out. Its average degree of polymerization was 46, which is higher than for Jerusalem artichoke, chicory, and dahlia inulins. GC-MS confirmed that the main constituent monosaccharide in artichoke inulin was fructose and its degradation by inulinase indicated that it contained the expected beta-2,1-fructan bonds. The FT-IR spectrum was identical to that of chicory inulin. These data indicate that artichoke inulin will be suitable for use in a wide range of food applications. The health-promoting prebiotic effects of artichoke inulin were demonstrated in an extensive microbiological study showing a long lasting bifidogenic effect on Bifidobacterium bifidum ATCC 29521 cultures and also in mixed cultures of colonic bacteria.
NASA Astrophysics Data System (ADS)
Bemiller, James N.
Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).
Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana
Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia
2015-01-01
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700
Polysaccharide composition of raw and cooked chayote (Sechium edule Sw.) fruits and tuberous roots.
Shiga, Tânia M; Peroni-Okita, Fernanda Helena Gonçalves; Carpita, Nicholas C; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana
2015-10-05
Chayote is a multipurpose table vegetable widely consumed in Latin America countries. Chayote fruits, leaves and tuberous roots contain complex carbohydrates as dietary fiber and starch, vitamins and minerals. The complex polysaccharides (cell walls and starch) were analyzed in the black and green varieties of chayote fruits as well as in green chayote tuberous root before and after a controlled cooking process to assess changes in their composition and structure. The monosaccharide composition and linkage analysis indicated pectins homogalacturonans and rhamnogalacturonan I backbones constitute about 15-20% of the wall mass, but are heavily substituted with, up to 60% neutral arabinans, galactans, arabinogalactans. The remainder is composed of xyloglucan, glucomannans and galactoglucomannans. Chayote cell-wall polysaccharides are highly stable under normal cooking conditions, as confirmed by the optical microscopy of wall structure. We found also that tuberous roots constitute a valuable additional source of quality starch and fiber. Published by Elsevier Ltd.
Structure analysis and laxative effects of oligosaccharides isolated from bananas.
Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming
2012-10-01
Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine.
Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive.
Tingirikari, Jagan Mohan Rao; Kothari, Damini; Shukla, Rishikesh; Goyal, Arun
2014-09-01
Dextran produced from Weissella cibaria JAG8 was purified and characterized. The molecular mass of dextran as determined by the gel filtration and copper bicinchoninate method was approximately, 800 kDa. Monosaccharide analysis revealed that the polysaccharide comprised only glucose units. Dynamic light scattering study confirmed the mono-disperse nature of dextran with hydrodynamic radius of 900 nm. Surface morphology study of dextran by scanning electron microscopy showed the porous web like structure. Cytotoxicity studies on human cervical cancer (HeLa) cell line showed non-toxic and biocompatible nature of dextran. The relative browning for dextran from W. cibaria JAG8 was similar to commercial prebiotic Nutraflora P-95 and 3-fold lower than Raftilose P-95. Synthesis of dextran by dextransucrase treated, sucrose-supplemented skimmed milk revealed the promising potential of dextran as a food additive.
Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.
2011-01-01
Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590
Ombouma, Joanna; Vullo, Daniela; Supuran, Claudiu T; Winum, Jean-Yves
2014-11-15
Ferrier sulfamidoglycosylation of glycals catalyzed by nitrosonium tetrafluoroborate allowed the preparation of hydroxysulfamide glycosides in good yields with a good α stereoselectivity. A variety of mono-saccharide derivatives was synthesized using this new methodology leading to selective and powerful glycoinhibitors of the tumor associated carbonic anhydrases (CA, EC 4.2.1.1) isoforms CA IX and CA XII. Copyright © 2014 Elsevier Ltd. All rights reserved.
On-the-Move Nutrient Delivery System Performance Characteristics
2008-09-01
types - ranging from simple sugar (monosaccharide fructose or disaccharide sucrose) to more complex sugars (short length maltodextrin (Grain...characteristics of the NOS Position Chest Chest Chest Pressure, Flow Rate, Glucose Conc in Sip-to-Sip Estimated CHO mm Hg Setting Time, s Volume, ml...on the drink produced (Table 2). When the top of the concentrate bag was level with the bite valve, the drink had an estimated carbohydrate
Adhesive Property of Bacteria and Its Relationship to Microbial Spoilage of Shrimp.
1983-01-04
that it may be either homopolymers or complex heteropolymers, made up of varying monosaccharides . However, neutral hexoses, 6-deoxyhexoses, polyols...a surface, surrounds itself with addi- tional exopolysaccharide and then replicates within this environment. This protective polysaccharide shell... polysaccharide adhesions produced by S. mutans to be alpha 1,3 and alpha 1,6 branched glucans produced by a group of glucosyltransferaces. 6 Hamada and
Characterization of a novel antibacterial glycopeptide produced by Penicillium sp. M03.
Yang, W H; Zhang, W C; Lu, X M; Jiang, G S; Gao, P J
2009-04-01
To isolate a novel antibiotic termed AF from fermentation broth of Penicillium sp. M03 and to examine its antimicrobial activity, biological properties and structure characteristics. Sephadex LH-20 and HPLC were used to purify AF from fermentation broth of Penicillium sp. M03. The antimicrobial activity of AF was evaluated with the agar diffusion test. Amino acid and monosaccharide composition of AF was analysed by a HITACHI 835 detector and HPLC assay, respectively. Matrix-assisted laser desorption time of flight mass spectrometry, FT-IR and (1)H nuclear magnetic resonance spectra analyses were performed to examine the initial structure of AF. Eighty milligrams of AF was isolated as white powder from 1-l Penicillium sp. M03 fermentation broth. It consists of five amino acid and two monosaccharide residues and the molecular weight of it was 1017, and it was stable to beta-lactamase, heat, acid and alkali. AF showed inhibitory activity to a wide range of bacteria, particularly to multidrug-resistant Staphylococcus aureus. AF was a novel antibacterial glycopeptide with a broad inhibitory spectrum to pathogenic bacteria including multidrug-resistant agents. Furthermore, it is difficult to generate bacteria resistant to AF. Characterization of AF made it a potential antibiotic to fight against antibiotic-resistant bacterial pathogens.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
Sukwong, Pailin; Ra, Chae Hun; Sunwoo, In Yung; Tantratian, Sumate; Jeong, Gwi-Taek; Kim, Sung-Koo
2018-03-23
This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H 2 SO 4 , and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.
NASA Astrophysics Data System (ADS)
Zhang, Yan-Ping; Yang, Gui-Peng; Lu, Xiao-Lan; Ding, Hai-Bing; Zhang, Hong-Hai
2013-07-01
Sea surface microlayer (SML) samples and corresponding bulk surface water (SW) samples were collected in the Jiaozhou Bay and its adjacent area in July and November 2008. The average concentrations of dissolved monosaccharides (MCHO) and polysaccharides (PCHO) revealed similar temporal variability, with higher concentrations during the green-tide period (in July) than during the non-green-tide period (in November). Average enrichment factors (EF) of MCHO and PCHO, defined as the ratio of the concentration in the SML to that in the SW, were 1.3 and 1.4 in July, respectively, while those values in November were 1.9 and 1.6. Our data also showed that the concentrations of MCHO and PCHO in the SML were strongly correlated with those in the SW, indicating that most of the organic materials in the SML came from the SW. The total dissolved carbohydrate concentrations (TDCHO) in the bulk surface water were closely correlated with salinity during the cruises (July: r=-0.580, n=18, P=0.01; November: r=-0.679, n=26, P<0.001), suggesting that riverine input had an important effect on the distribution of TDCHO in surface seawater of the study area.
Islam, S M Mahfuzul; Loman, Abdullah A; Ju, Lu-Kwang
2018-05-01
Defatted soybean meal has 30-35% oligo-/polymeric carbohydrates and approximately 50% proteins. Enzymatic carbohydrate monomerization enables easy separation to enrich protein content, reduces indigestibility concerns, and facilitates use of carbohydrate as fermentation feedstock. Among soybean carbohydrates, pectin and glucan are more recalcitrant to hydrolyze. To destabilize Ca 2+ -bridged junctures in pectin, effects of 3 chelators ethylenediaminetetraacetic acid (EDTA), sodium hexametaphosphate (HMP) and citric acid under 2-h 90 °C pretreatments were investigated here. Citric acid was the most effective while EDTA decreased enzymatic hydrolysis. In a 3-factor 2-level factorial study, heat (90 °C, 2 h) and citric acid (10 g/L) pretreatments and cellulase supplementation (10 FPU/g) were found to increase yields of all monosaccharides, to 86.8 ± 5.2% glucose, 98.1 ± 1.6% xylose, 87.5 ± 5.2% galactose, 83.6 ± 1.6% arabinose, and 91.4 ± 3.1% fructose + mannose. The largest percentage improvements were for arabinose (382%), mannose (113%) and glucose (51%). Achieving high monosaccharide yields greatly increases value of soybean carbohydrate as fermentation feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.
Yu, Hai; Chen, Xi
2016-03-14
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates
Yu, Hai; Chen, Xi
2016-01-01
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with the glycosyltransferases in one pot for efficient production of target glycans from simple monosaccharides and accpetors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitate the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modificiation (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequential for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of glycosyltransferasese define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. The Perspective summariezes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed. PMID:26881499
Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees
Thursfield, Lucy
2017-01-01
Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose) increased maximum cell density, while a common floral phytochemical (caffeic acid) with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides. PMID:28503378
Chemical modification of citrus pectin: Structural, physical and rheologial implications.
Fracasso, Aline Francielle; Perussello, Camila Augusto; Carpiné, Danielle; Petkowicz, Carmen Lúcia de Oliveira; Haminiuk, Charles Windson Isidoro
2018-04-01
The present study aimed to investigate the physical, structural and rheological modifications caused by the chemical modification process of citrus pectin. Therefore, three commercial citrus pectins with different degree of esterification were chemically modified by sequential alkali and acidic hydrolytic process to produce modified citrus pectins (MCP) with special properties. The molar mass (M w ), degree of esterification (DE), monosaccharide composition, 13 C NMR spectra, homogeneity, morphology (SEM) and rheological behavior of both native and modified citrus pectins (MCP) were investigated. The chemical modification reduced the acid uronic content (up to 28.3%) and molar mass (up to 29.98%), however, showed little influence on the degree of esterification of native pectins. Modified citrus pectins presented higher amounts of neutral monosaccharides, mainly galactose, arabinose and rhamnose, typical of the Ramnogalacturonana-I (RG-I) region. Rheological tests indicated that the native and modified citrus pectins presented pseudoplastic behavior, however, the MCP samples were less viscous, compared to the native ones. Modified samples presented better dissolution in water and less strong gels, with good stability during oscillatory shearing at 25°C. This study aims to better understand the implications that chemical modifications may impose on the structure of citrus pectins. Copyright © 2017 Elsevier B.V. All rights reserved.
Anumula, K R; Du, P
1999-11-15
Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.
Duruflé, Harold; Hervé, Vincent; Ranocha, Philippe; Balliau, Thierry; Zivy, Michel; Chourré, Josiane; San Clemente, Hélène; Burlat, Vincent; Albenne, Cécile; Déjean, Sébastien; Jamet, Elisabeth; Dunand, Christophe
2017-10-01
With the global temperature change, plant adaptations are predicted, but little is known about the molecular mechanisms underlying them. Arabidopsis thaliana is a model plant adapted to various environmental conditions, in particular able to develop along an altitudinal gradient. Two ecotypes, Columbia (Col) growing at low altitude, and Shahdara (Sha) growing at 3400m, have been studied at optimal and sub-optimal growth temperature (22°C vs 15°C). Macro- and micro-phenotyping, cell wall monosaccharides analyses, cell wall proteomics, and transcriptomics have been performed in order to accomplish an integrative analysis. The analysis has been focused on cell walls (CWs) which are assumed to play roles in response to environmental changes. At 15°C, both ecotypes presented characteristic morphological traits of low temperature growth acclimation such as reduced rosette diameter, increased number of leaves, modifications of their CW composition and cuticle reinforcement. Altogether, the integrative analysis has allowed identifying several candidate genes/proteins possibly involved in the cell wall modifications observed during the temperature acclimation response. Copyright © 2017 Elsevier B.V. All rights reserved.
Kumar Varma, Chekuri Ashok; Jayaram Kumar, K
2017-11-01
Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa
2008-12-01
Single-cell cytoplasm sap (1-10 pL) was extracted by using a pressure probe glass microcapillary tip from tulip leaf and bulb and analyzed by UV-MALDI-TOF MS for free underivatized carbohydrate content. Three matrices including 2,5-dihydroxybenzoic acid (DHB), 2,4,6-trihydroxyacetophenone (THAP), and carbon nanotubes (CNTs) in positive ion mode were selected for analysis because of acceptable carbohydrate-related signal reproducibility. Disaccharide and oligosaccharide (up to 15 Hex when THAP was used, 11 Hex with DHB, and 7 Hex with CNTs) were detected in tulip bulb cell cytoplasm sample. When DHB was used as matrix, neutral carbohydrates were more abundantly detected as sodiated cations; the sugar-related signals, however, appeared as dominant potassiated cations when THAP and CNTs were used. Small amount of monosaccharide was also detected in bulb cell cytoplasm with CNTs as matrix. UV-MALDI-TOF MS of leaf cell extract resulted in high-resolution detection of hexose and disaccharide with DHB, THAP, and CNTs.
Genistein Enhances or Reduces Glycosaminoglycan Quantity in a Cell Type-Specific Manner.
Lan, Ying; Li, Xiulian; Liu, Xuebo; Hao, Cui; Song, Ni; Ren, Sumei; Wang, Wei; Feng, Ningchuan; Zhang, Lijuan
2018-06-27
Genistein is a natural isoflavone enriched in soybeans. It has beneficial effects for patients with mucopolysaccharidose type III through inhibiting glycosaminoglycan biosynthesis. However, other studies indicate that genistein does not always inhibit glycosaminoglycan biosynthesis. To understand the underlying molecular mechanisms, CHOK1, CHO3.1, CHO3.3, and HCT116 cells were treated with genistein and the monosaccharide compositions and quantity of all glycans from the cell lysate were measured after thorough acid hydrolysis followed by HPLC analysis. In addition, the glycosaminoglycan disaccharide compositions were obtained by stable isotope labeling coupled with LC/MS analysis. Genistein treatment reduced the amount of glycans but increased the amount of glycosaminoglycans in HCT116 cells. In contrast, genistein treatment reduced both glycan and glycosaminoglycan quantities in CHOK1, CHO3.1, and CHO3.3 cells in addition to differential changes in glycosaminoglycan disaccharide compositions. Genistein treatment reduced overall glycan quantity but glycosaminoglycan quantities were either increased or decreased in a cell type-dependent manner. © 2018 The Author(s). Published by S. Karger AG, Basel.
Thermal restraint of a bacterial exopolysaccharide of shallow vent origin.
Caccamo, Maria Teresa; Zammuto, Vincenzo; Gugliandolo, Concetta; Madeleine-Perdrillat, Claire; Spanò, Antonio; Magazù, Salvatore
2018-07-15
To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility. Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Tan, Hwee-Feng; Gan, Chee-Yuen
2016-04-01
Functional polysaccharide was isolated from Momordica charantia, with a yield of 36% (w/w). M. charantia bioactive polysaccharide (MCBP) was an acidic and branched heteropolysaccharide with a molecular weight of 92 kDa. Fourier transform infrared spectroscopic analysis indicated that MCBP was a pectin-like polysaccharide with an esterification degree of 53% and it contains numerous monosaccharides, predominantly glucose, galactose, and galaturonic acid. The results also showed that MCBP exhibited free radical scavenging activity (31.9%), ferric reducing antioxidant power (0.95 mM), α-amylase inhibition (89.1%), and angiotensin-converting enzyme inhibition (94.1%). In the terms of functionality, MCBP showed a lower water-holding capacity but higher in oil-holding capacity, emulsifying activity and foaming capacity compared to citrus pectin. Scanning electron microscopy images demonstrated that MCBP formed gels with a porous structure, and flow analysis showed that the gel solution exhibited pseudoplastic shear-thinning behavior. These findings indicated that MCBP is a promising functional macromolecular carbohydrate for the food and nutraceutical industries. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Jian-Hua; Liu, Xin; Shen, Ming-Yue; Nie, Shao-Ping; Zhang, Hui; Li, Chang; Gong, De-Ming; Xie, Ming-Yong
2013-02-15
A Cyclocarya paliurus (Batal.) Iljinskaja polysaccharide (CPP) was isolated and purified by hot water extraction, ethanol precipitation, deproteinisation and anion-exchange chromatography. Its physicochemical properties were characterised by gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), thermal gravimetric analysis (TGA), Fourier transform infrared spectrometry (FTIR), UV-visible spectrophotometry, dynamic light scattering (DLS) and viscometry analysis. The anticancer effect of CPP in human gastric cancer HeLa cells was also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the molecular weight of CPP was 900 kDa, and it contained 64.8% total sugar, 23.5% uronic acid, 9.26% protein, and six kinds of monosaccharides, including glucose, rhamnose, arabinose, xylose, mannose and galactose, with molar percentages of 32.7%, 9.33%, 30.6%, 3.48%, 10.4%, and 13.5%, respectively. Furthermore, the results showed that CPP exhibited a strong inhibition effect on the growth of human gastric cancer HeLa cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sadhukhan, Suvra; Bhattacharjee, Annesha; Sarkar, Ujjaini; Baidya, Pabitra Kumar; Baksi, Sibashish
2018-05-01
The oil extracted from Crotalaria juncea (Sunn-hemp) contains 70% of gum. Several methods of degumming are attempted in order to maximize the yield of gum. During appropriate water induced degumming, about 95-98% of phosphatides are separated. The maximum oil yield for two types of degummimg processes are 0.59% and 0.69% corresponding to hot water and pure O-phosphoric acid (19.88 N) treatment respectively. The % oil yield obtained for TOP degumming is about 0.78%. Physico-chemical characteristics of the isolated gum such as moisture, ash, protein, fat and aqueous solubility along with FTIR and TGA analysis are studied in order to evaluate the effect of extraction process. The behaviour of gum on the molecular scale is evaluated through alcohol treatment. Chromatographic analysis determines the monosaccharide content of the gum with glucose: xylose: arabinose::54: 34:1. Rheological characterization shows that the juncea gum solutions are shear rate dependent and the behaviour is shear-thinning (or pseudoplastic). Results show that the temperature dependent viscosity decreases with increasing shear rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparative study of Acacia nilotica exudate gum and acacia gum.
Bhushette, Pravin R; Annapure, Uday S
2017-09-01
Over 900 species of Acacia trees are found on earth, most of them produce gums. Acacia nilotica (Babul tree) is one of the major gum-yielding acacia species found in he Indian subcontinent. A. nilotica gum was collected from Maharashtra, India and characterised for its proximate analysis, physicochemical, functional, rheological and thermal properties. These properties further were compared with commercially available Acacia gum (AG). The sugar composition of the gums indicated the presence of arabinose, galactose, and rhamnose in ANG and AG. FTIR spectrums revealed the typical trend of polysaccharides for both the gums, however, the difference was observed in fingerprint region. The rheological outcomes were derived from flow curve measurements of gums at different concentrations and temperatures. Investigations of the flow curves of both gums revealed the diminutive difference in viscosity profile. The concentration difference in the monosaccharides of polysaccharides and proximate analysis of gums could be the responsible for the difference in rheological and thermal properties of gums. However, ANG shows good resemblance with AG and can be substituted for numerous applications in food and pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng
2015-01-01
Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137
Gil-Serrano, A M; Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Menendez, M; Corzo, J; Ruiz-Sainz, J E; BuendíA-Clavería, A M
1999-01-01
The structure of a polysaccharide from Sinorhizobium fredii HH103 has been determined. This polysaccharide was isolated by following the protocol for lipopolysaccharide extraction. On the basis of monosaccharide analysis, methylation analysis, fast atom bombardment MS, matrix-assisted laser desorption ionization MS, electron-impact high-resolution MS, one-dimensional (1)H-NMR and (13)C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a homopolymer of a 3:1 mixture of 5-acetamido-3,5,7, 9-tetradeoxy-7-[(R)- and (S)-3-hydroxybutyramido]-l-glycero-l-manno-nonulosonic acid. The sugar residues are attached via a glycosidic linkage to the OH group of the 3-hydroxybutyramido substituent and thus the monomers are linked via both glycosidic and amidic linkages. In contrast with the Sinorhizobium K-antigens previously reported, which are composed of a disaccharide repeating unit, the K-antigen polysacharide of S. fredii HH103 is a homopolysaccharide. PMID:10477263
Ai-lati, Aisikaer; Liu, Shuangping; Ji, Zhongwei; Zhang, Hao; Mao, Jian
2017-01-01
ABSTRACT In this study, a Ganoderma lucidum polysaccharide GLP-1–1 was isolated from a culture broth with Mw of 22014 Da. Monosaccharide contained glucose, mannose, and galactose with mole percentages of 92.33%, 7.55%, and 0.22%, respectively. Moreover, FTIR and methylation analysis were conducted to characterize the structural properties of GLP-1–1. The results of antioxidant activity analysis showed that GLP-1–1 had a great DPPH and ABTS radical scavenging activity. Meanwhile, GLP-1–1 also exhibited anti-tumor activity to A431 and MDA-MB-231 cells, and inhibitory rates were dose-dependent. During culturing with GLP-1–1, the G1/G0 cell percentage of A431 cells was increased from 48.64% to 84.52%, and the G1/G0 cell percentage of MDA-MB-231 cells was increased from 57.14% to 73.48%. Therefore, the anti-tumor activity of GLP-1–1 may be caused by inducing the G1/G0 arrest of tumor cells. PMID:28140757
Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira
2012-01-01
Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway.
Single tag for total carbohydrate analysis.
Anumula, Kalyan Rao
2014-07-15
Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo
2002-06-10
chain, the core polysaccharide , and the lipid A domain (Figure 1A). The hydrophilic O-specific chain is a polymer of repeating oligosaccharide units...necessary for protection from phagocytosis and complement-mediated lysis in vivo (9, 10). Linking the O-specific chain to lipid A is a core polysaccharide ...region that is relatively conserved among bacterial families on the basis of its monosaccharide composition. Among the common elements in the
2007-03-01
deoxygalactose and galactose, respectively. Relatively less mITLN-1 was eluted by these monosaccharides . The oligomeric Hu/Mo chimeric ITLN-1 had...Abeygunawardana, C., Bush, C. A. and Cisar, J. O. (1991) Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR...Hoogerhout, P. and van Boom, J. H. (1988) (1-5)-linked beta-D-galactofuranosides are immunodominant in extracellular polysaccharides of
Development of Vaccines to Prevent Wound Infections due to Anaerobic Bacteria
1982-08-01
monosaccharides are common to both. To define further these interestir.g results, we studied cross-protection of these two polysaccharides in the B. fragilis...and abscess formation. We have found that vmmunization of rats with a purified capsular polysaccharide (CP) of a B. fragilis ýtrain protects against...which protection is afforded to animals after immunization "with the capsular polysaccharide (CP) of B. fragilis. The decision to proceed along these
Topiramate for Abnormal Eating Behaviour in Frontotemporal Dementia
Singam, Colin; Walterfang, Mark; Mocellin, Ramon; Evans, Andrew; Velakoulis, Dennis
2013-01-01
Topiramate is a sulfamate-substituted monosaccharide anticonvulsant that is associated with anorexia and weight loss and has been used to treat binge eating disorder and bulimia nervosa. This report describes a man with frontotemporal dementia, behavioural variant, associated with abnormal eating behaviour which appeared to respond to topiramate. We review the physiological basis of abnormal eating behaviour in frontotemporal dementia and explore possible mechanisms of action by which topiramate may modify eating behaviour in this condition. PMID:23548883
Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents
2009-09-01
linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into
Methods for conversion of carbohydrates in ionic liquids to value-added chemicals
Zhao, Haibo [The Woodlands, TX; Holladay, Johnathan E [Kennewick, WA; Zhang, Zongchao C [Norwood, NJ
2011-05-10
Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.
Automated Glycan Assembly of Oligosaccharides Related to Arabinogalactan Proteins.
Bartetzko, Max P; Schuhmacher, Frank; Hahm, Heung Sik; Seeberger, Peter H; Pfrengle, Fabian
2015-09-04
Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology.
Evaluation of the Flavor Contribution of Products of the Maillard Reaction
the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.
The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation
Akimitsu, Kazuya
2013-01-01
Only d-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to d-allose. d-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-d-allose, a structural derivative of d-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding d-allose kinase to increase d-allose 6-phosphate synthesis were more sensitive to d-allose, but E. coli AlsI encoding d-allose 6-phosphate isomerase expression to decrease d-allose 6-phosphate reduced sensitivity. A d-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, d-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of d-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of d-allose to d-allose 6-phosphate, and treatment with d-allose might prove to be useful for reducing disease development in rice. PMID:24014866
Mannose and fructose metabolism in red blood cells during cold storage in SAGM.
Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard
2017-11-01
Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.
KISHIMOTO, Mana; NOMOTO, Ryohei; OSAWA, Ro
2014-01-01
We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties. PMID:25625033
Su, Chun-Han; Lai, Min-Nan; Lin, Ching-Chuan; Ng, Lean-Teik
2016-05-01
Mushroom polysaccharides have been known to possess various pharmacological activities. However, information on their chemical and biological differences between mushrooms remains limited. In this study, we aimed to examine the differences in physicochemical characteristics of polysaccharides prepared from Antrodia cinnamomea (AC-P), Coriolus versicolor (CV-P), Grifola frondosa (GF-P), Ganoderma lucidum (GL-P), and Phellinus linteus (PL-P), followed by evaluating their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Results showed that under similar conditions of preparation, the monosaccharide composition of polysaccharides varied between different mushrooms, and glucose was the predominant monosaccharide, followed by galactose and mannose. AC-P and GF-P contained the highest amount of (1,3;1,6)-β-D-glucans. The degree of branching of (1,3;1,6)-β-D-glucans in all polysaccharides ranged from 0.21 to 0.26, with the exception of GF-P (0.38). The molecular weights of different polysaccharides showed diverse distributions; AC-P, CV-P, and GF-P contained two major macromolecular populations (< 30 and >200 kDa) and possessed triple-helix conformation, whereas GL-P (10.2 kDa) and PL-P (15.5 kDa) only had a low molecular weight population without triple-helix structure. These polysaccharides showed different inhibitory potency on NO production in LPS-stimulated RAW264.7 cells.
Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T
2016-05-01
Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.
Jin, Weihua; Liu, Ge; Zhong, Weihong; Sun, Chaomin; Zhang, Quanbin
2017-12-01
Monthly variations of polysaccharides from Sargassum thunbergii and their anti-complement and anti-tumour activities were investigated. It was observed that an increase in fucose and total sugar contents occurred during the growth period (from early April to mid-June), accompanied by a decrease in molar ratios of other monosaccharides to fucose. The highest yields were obtained from early July to early September, which was in accordance with the significant increase in molar ratio of glucose to fucose and decrease in molar ratio of other monosaccharides to fucose. And the above results suggested that S. Thunbergii synthesized large amount of laminaran, the storage substance of brown algae, during the senescence period. However, sulfate contents were relatively stable in the life cycle of S. thunbergii. These results suggested that S. thunbergii synthesized complex sulfated heteropolysacchairdes during inactive period, while during other periods, it synthesized more sulfated galactofucan. All polysaccharides showed anti-complement activity, suggesting that the harvesting time did not influence the anti-complement activities. In the anti-tumour assay in vitro, the polysaccharides taken during the senescence period had much lower anti-tumour activity, suggesting that fucoidan, but not laminaran, determined the anti-tumour activities. Therefore, polysaccharides from S. thunbergii might have great potential in anti-complement and anti-tumour application. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization and in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates.
Thanzami, K; Malsawmtluangi, C; Lalhlenmawia, H; Seelan, T Veenus; Palanisamy, Selvamani; Kandasamy, Ruckmani; Pachuau, Lalduhsanga
2015-09-01
The objective of the present study is to characterize the physicochemical properties and to determine the in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates collected from Northeast India. The total carbohydrate, uronic acid and protein contents, monosaccharide composition and the molecular weight distribution of the purified gum was determined. The powder flow property and preliminary compressibility test were performed on the dried gum exudates. Fourier transform infrared spectroscopy (FTIR) study was performed to analyze the functional groups present in the structure. Differential scanning calorimetry (DSC) and thermogravimetry (TGA/DTA) analyses were performed to study the thermal stability of the gum. The antioxidant properties of the gum were evaluated by determining 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl scavenging activities and reducing power. The total carbohydrate and protein contents of the gum were found to be 75.17±3.21% and 2.60±1.05% respectively. The viscosity of 2% aqueous solution of the gum exhibited non-Newtonian type of flow showing pH dependent swelling. Arabinose and galactose were found to be the main monosaccharides present in the gum exudates and the molecular weight distribution of the gum was also found to be polydispersed. Results from DPPH, hydroxyl scavenging and reducing power studies showed the gum possesses antioxidant properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Egan, Muireann; Motherway, Mary O'Connell; Kilcoyne, Michelle; Kane, Marian; Joshi, Lokesh; Ventura, Marco; van Sinderen, Douwe
2014-11-25
Bifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010. B. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype. This study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.
Kishimoto, Mana; Nomoto, Ryohei; Osawa, Ro
2015-01-01
We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.
2013-04-03
Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmedmore » with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.« less
The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation.
Kano, Akihito; Fukumoto, Takeshi; Ohtani, Kouhei; Yoshihara, Akihide; Ohara, Toshiaki; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ohkouchi, Takeo; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Gomi, Kenji; Akimitsu, Kazuya
2013-11-01
Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.
Identification and determination of 3-deoxyglucosone and glucosone in carbohydrate-rich foods.
Ruiz-Matute, Ana I; Castro Vazquez, Lucía; Hernández-Hernández, Oswaldo; Sanz, María L; Martínez-Castro, Isabel
2015-09-01
α-Dicarbonyl compounds (α-DCs) such as 3-deoxyglucosone (3-DG) and glucosone are markers of both Maillard and degradation reactions of sugars and also of certain enzymatic processes. However, quantitation of these compounds is not straightforward when more abundant carbohydrates are present in real samples. Therefore in this work a GC/MS method was developed to separate monosaccharides, 3-DG and glucosone and applied to analyze them in carbohydrate-rich food products. Difructose anhydrides (DFAs), known markers of sugar degradation, were also determined. The effect of time and temperature in the production and storage of these compounds was also evaluated. Under optimized conditions, good separation between monosaccharides and α-DCs was achieved. Must syrups showed the highest concentrations of 3-DG and glucosone (average values 9.2 and 5.8 mg g(-1) respectively). Coffee substitutes based on carob, chicory and blends showed the highest content of DFAs. Heating and storage assays proved that production of 3-DG was influenced by temperature, while glucosone was more affected by storage time. The proposed method allows the rapid quantitation of 3-DG and glucosone along with carbohydrates and DFAs in different food products, which is essential to determine their degradation level. Moreover, the α-DC content in several foods is reported for the first time. © 2014 Society of Chemical Industry.
Yuki, Masahiro; Kuwahara, Hirokazu; Shintani, Masaki; Izawa, Kazuki; Sato, Tomoyuki; Starns, David; Hongoh, Yuichi; Ohkuma, Moriya
2015-12-01
Wood-feeding lower termites harbour symbiotic gut protists that support the termite nutritionally by degrading recalcitrant lignocellulose. These protists themselves host specific endo- and ectosymbiotic bacteria, functions of which remain largely unknown. Here, we present draft genomes of a dominant, uncultured ectosymbiont belonging to the order Bacteroidales, 'Candidatus Symbiothrix dinenymphae', which colonizes the cell surface of the cellulolytic gut protists Dinenympha spp. We analysed four single-cell genomes of Ca. S. dinenymphae, the highest genome completeness was estimated to be 81.6-82.3% with a predicted genome size of 4.28-4.31 Mb. The genome retains genes encoding large parts of the amino acid, cofactor and nucleotide biosynthetic pathways. In addition, the genome contains genes encoding various glycoside hydrolases such as endoglucanases and hemicellulases. The genome indicates that Ca. S. dinenymphae ferments lignocellulose-derived monosaccharides to acetate, a major carbon and energy source of the host termite. We suggest that the ectosymbiont digests lignocellulose and provides nutrients to the host termites, and hypothesize that the hydrolytic activity might also function as a pretreatment for the host protist to effectively decompose the crystalline cellulose components. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gene expression of enzymes involved in utilization of xylooligosaccharides by Lactobacillus strains
Maria, Ananieva; Margarita, Tzenova; IIlia, Iliev; Iskra, Ivanova
2014-01-01
Prebiotics are defined as food components that confer health benefits on the host through modulation of the microbiota. Xylooligosaccharides (XOS) are non-digestible oligosaccharides that have recently received increasing attention as potential prebiotic candidates. XOS are sugar oligomers composed of 1,4-linked xylopyranosyl backbone and are obtained by either chemical or, more commonly, enzymatic hydrolysis of xylan polysaccharides, extracted from the plant cell wall. The bifidogenic effect of XOS was demonstrated by both in vitro studies and small-scale in vivo human studies. Some intestinal bacterial strains are able to grow on XOS, yet numerous studies have demonstrated that the ability to utilize these oligosaccharides varies considerably among these bacteria. The aim of this study is to investigate the ability of several strains Lactobacillus to use XOS. Fifteen Lactobacillus strains, allifiated to L. plantarum, L. brevis and L. sakei, were studied. Screening procedure was performed for the ability of the strains to utilize XOS as an alternative carbon source. Only some of them utilize XOS. The growth kinetics show the presence of two lag phases, indicating that these bacteria utilize probably some monosaccharides present in the used XOS. XOS were fermented with high specificity by Bifidobacteria strains, but Lactobacilli did not metabolize XOS efficiently. PMID:26019582
Chen, Ching-Fu; Su, Chun-Han; Lai, Ming-Nan; Ng, Lean-Teik
2018-05-12
Polysaccharides including β-glucans are important bioactive components of mushroom. Xylaria nigripes is a popular medicinal fungus that has been used for treating trauma, insomnia and mental illness. This study examined the physicochemical characteristics and anti-inflammatory activities of water soluble non-digestible polysaccharides (TXNP and CXNP) from fruiting bodies of two cultivated X. nigripes strains (TXN and CXN). Results showed that both TXNP and CXNP possessed relatively similar FT-IR spectra. TXNP had a triple helix conformation and molecular weight of 853.8 kDa, whereas the molecular weight of CXNP was 14.7 kDa. The monosaccharide composition of TXNP was predominantly glucose, whereas CXNP contained xylose, mannose and glucose. Although both TXNP and CXNP dose-dependently suppressed the production of NO, IL-1β, TNF-α and PGE2, as well as the expression of iNOS, COX-2 and NF-κB in the lipopolysaccharide-induced RAW264.7 macrophages, the potency of TXNP was stronger. This study reveals that under similar conditions of cultivation and extraction procedures, the different physicochemical characteristics of polysaccharides from TXN and CXN may have contributed to the differences in their anti-inflammatory potency. Copyright © 2018. Published by Elsevier B.V.
Martinez-Saez, Nuria; Hochkogler, Christina Maria; Somoza, Veronika; del Castillo, Maria Dolores
2017-01-01
This study assessed the in vitro effects of the bioaccessible food components released during the simulated human digestion of a coffee fibre-containing biscuit (CFB) on α-glucosidase activity, antioxidant capacity and satiety hormones. Digest of CFB presented a significantly (p < 0.05) lower amount of sugar (68.6 mg/g) and a higher antioxidant capacity (15.1 mg chlorogenic acid eq./g) than that of a sucrose-containing biscuit (SCB). The CFB significantly reduced (p < 0.05) α-glucosidase activity (IC50 = 3.3 mg/mL) compared to the SCB (IC50 = 6.2 mg/mL). Serotonin and glucagon-like peptide-1 (GLP-1) release by differentiated Caco-2 and HuTu-80 cells, respectively, was stimulated by the CFB (355% at a concentration of 0.5 mg/mL and 278% at a concentration of 0.05 mg/mL) to the same order of magnitude as those of the SCB. To summarize, the CFB was demonstrated to reduce monosaccharide bioaccessibility, to inhibit a diabetes-related digestive enzyme, and to improve the release of satiety hormones. PMID:28677657
Martinez-Saez, Nuria; Hochkogler, Christina Maria; Somoza, Veronika; Del Castillo, Maria Dolores
2017-07-04
This study assessed the in vitro effects of the bioaccessible food components released during the simulated human digestion of a coffee fibre-containing biscuit (CFB) on α-glucosidase activity, antioxidant capacity and satiety hormones. Digest of CFB presented a significantly ( p < 0.05) lower amount of sugar (68.6 mg/g) and a higher antioxidant capacity (15.1 mg chlorogenic acid eq./g) than that of a sucrose-containing biscuit (SCB). The CFB significantly reduced ( p < 0.05) α-glucosidase activity (IC50 = 3.3 mg/mL) compared to the SCB (IC50 = 6.2 mg/mL). Serotonin and glucagon-like peptide-1 (GLP-1) release by differentiated Caco-2 and HuTu-80 cells, respectively, was stimulated by the CFB (355% at a concentration of 0.5 mg/mL and 278% at a concentration of 0.05 mg/mL) to the same order of magnitude as those of the SCB. To summarize, the CFB was demonstrated to reduce monosaccharide bioaccessibility, to inhibit a diabetes-related digestive enzyme, and to improve the release of satiety hormones.
From coeliac disease to noncoeliac gluten sensitivity; should everyone be gluten free?
Aziz, Imran; Dwivedi, Krit; Sanders, David S
2016-03-01
Gluten-free diets (GFDs) have seen a disproportional rise in use and popularity relative to the prevalence of established gluten-related disorders such as coeliac disease or immunoglobulin E wheat allergy. This entity has been termed noncoeliac gluten sensitivity (NCGS). This review aims to provide a current perspective on the emerging evidence for and against NCGS, along with the associated need for a GFD. NCGS and the benefits of a GFD are reported amongst patients with irritable bowel syndrome, inflammatory bowel disease, and nonintestinal disorders such as neuropsychiatric diseases and fibromyalgia. However, no reliable biomarkers currently exist to diagnose NCGS and hence confirmatory testing can only be performed using double-blind placebo-controlled gluten-based challenges. Unfortunately, such tests are not available in routine clinical practice. Furthermore, recent novel studies have highlighted the role of other gluten-based components in contributing to the symptoms of self-reported NCGS. These include fermentable oligo, di, mono-saccharides and polyols, amylase trypsin inhibitors, and wheat germ agglutinins. Therefore, NCGS is now seen as a spectrum encompassing several biological responses and terms such as 'noncoeliac wheat sensitivity' have been suggested as a wider label to define the condition. Despite the rising use of a GFD further studies are required to clearly establish the extent and exclusivity of gluten in NCGS.
Wood, Jennifer A; Tan, Hwei-Ting; Collins, Helen M; Yap, Kuok; Khor, Shi Fang; Lim, Wai Li; Xing, Xiaohui; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B; Tucker, Matthew R
2018-03-13
Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Food choice as a key management strategy for functional gastrointestinal symptoms.
Gibson, Peter R; Shepherd, Susan J
2012-05-01
Recognition of food components that induce functional gut symptoms in patient's functional bowel disorders (FBD) has been challenging. Food directly or indirectly provides considerable afferent input into the enteric nervous system. There is an altered relationship between the afferent input and perception/efferent response in FBD. Defining the nature of food-related stimuli may provide a means of minimizing such an input and gut symptoms. Using this premise, reducing the intake of FODMAPs (fermentable oligo-, di-, and mono-saccharides and polyols)--poorly absorbed short-chain carbohydrates that, by virtue of their small molecular size and rapid fermentability, will distend the intestinal lumen with liquid and gas--improves symptoms in the majority of patients. Well-developed methodologies to deliver the diet via dietician-led education are available. Another abundant source of afferent input is natural and added food chemicals (such as salicylates, amines, and glutamates). Studies are needed to assess the efficacy of the low food chemical dietary approach. A recent placebo-controlled trial of FODMAP-poor gluten provided the first valid evidence that non-celiac gluten intolerance might actually exist, but its prevalence and underlying mechanisms require elucidation. Food choice via the low FODMAP and potentially other dietary strategies is now a realistic and efficacious therapeutic approach for functional gut symptoms.
Pielesz, Anna; Biniaś, Włodzimierz; Paluch, Jadwiga
2012-01-01
The formation of AGEs progressively increases with normal aging, even in the absence of disease (the pathogenesis of diabetes associated vascular disorders and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease). However, they are formed at accelerated rates in age-related diseases. The polysaccharides might play a role in wound healing, both internally and externally, and also that they could play a role against inflammation and may lead to the production of better medicines to be used as supplements in cancer treatment. The acid hydrolysis was studied with H2SO4 at 80% concentration to determine the most effective procedure for total hydrolysis of beta-glucan. The standard of beta-glucans acid hydrolysate were compared for commercial oat and oatmeal, mushrooms: Pleurotus ostreatus, Fungus and yeast Saccharomyces cerevisiae. The following materials and reagents were used in the examination: reference beta-(1 --> 3)-(1 --> 6)-glucan, oat and oatmeal, mushrooms: Pleurotus ostreatus, Fungus and yeast Saccharomyces cerevisiae. The Raman spectra of the sample solutions (beta-glucan acid hydrolysates) were recorded on a MAGNA-IR 860 with FT-Raman accessory. Sample was irradiated with a 1064 nm line of the T10-8S Nd spectra-physics model: YAG laser and scattered radiation were collected at 180 degrees, using 4 cm(-1) resolution. The polysaccharide was hydrolyzed into component monosaccharides with 80% H2SO4 at 0 degrees C for 30 minutes and monosaccharide derivatives were subjected to electrophoresis, as in a ealier authors study, on a strip of cellulose acetate membrane (CA-SYS-MINI Cellulose Acetate Systems) in 0.2 M Ca(OAc)2 (pH 7.5) at 10 mA, max. 240 V for 1.5 h. The strips were stained with 0.5% toluidine blue in 3% HOAc solution and then rinsed in distilled water and air-dried. A part of the hexoses (for example glucose) are converted, to products such as 5-hydroxymethylfurfural. Various coloured substances, through the Maillard reaction have been reported for saccharides. The resulting mono- and oligosaccharides were analysed by cellulose acetate membrane electrophoresis CAE and Raman spectroscopy. Individual bands or CAE spots were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed sample: oat and oatmeal, mushrooms: Pleurotus ostreatus, Fungus and yeast Saccharomyces cerevisiae. The possibility of a taxonomic classification of products rich in cell-wall materials based on cellulose acetate membrane electrophoresis CAE and Raman spectroscopy for authentication and detection of adulteration of products are discussed.
HOGG, TANIS; MENDEL, JAMESON T.; LAVEZO, JONATHAN L.
2015-01-01
Pokeweed antiviral protein (PAP) belongs to the family of type I ribosome-inactivating proteins (RIPs): Ribotoxins, which function by depurinating the sarcin-ricin loop of ribosomal RNA. In addition to its antibacterial and antifungal properties, PAP has shown promise in antiviral and targeted tumor therapy owing to its ability to depurinate viral RNA and eukaryotic rRNA. Several PAP genes are differentially expressed across pokeweed tissues, with natively isolated seed forms of PAP exhibiting the greatest cytotoxicity. To help elucidate the molecular basis of increased cytotoxicity of PAP isoenzymes from seeds, the present study used protein sequencing, mass spectroscopy and X-ray crystallography to determine the complete covalent structure and 1.7 Å X-ray crystal structure of PAP-S1aci isolated from seeds of Asian pokeweed (Phytolacca acinosa). PAP-S1aci shares ~95% sequence identity with PAP-S1 from P. americana and contains the signature catalytic residues of the RIP superfamily, corresponding to Tyr72, Tyr122, Glu175 and Arg178 in PAP-S1aci. A rare proline substitution (Pro174) was identified in the active site of PAP-S1aci, which has no effect on catalytic Glu175 positioning or overall active-site topology, yet appears to come at the expense of strained main-chain geometry at the pre-proline residue Val173. Notably, a rare type of N-glycosylation was detected consisting of N-acetyl-D-glucosamine monosaccharide residues linked to Asn10, Asn44 and Asn255 of PAP-S1aci. Of note, our modeling studies suggested that the ribosome depurination activity of seed PAPs would be adversely affected by the N-glycosylation of Asn44 and Asn255 with larger and more typical oligosaccharide chains, as they would shield the rRNA-binding sites on the protein. These results, coupled with evidence gathered from the literature, suggest that this type of minimal N-glycosylation in seed PAPs and other type I seed RIPs may serve to enhance cytotoxicity by exploiting receptor-mediated uptake pathways of seed predators while preserving ribosome affinity and rRNA recognition. PMID:26238506
NASA Astrophysics Data System (ADS)
Smith, David Eugene
Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for solutions of mixtures of these sugars at concentrations to 0.9m could be calculated with accuracy. Each sugar contributed independently to structure of solution and sound velocity values. At solute concentrations greater than 0.9m, there appeared to be some interaction among mixed solute molecules in solution.
Size resolved airborne particulate polysaccharides in summer high Arctic
NASA Astrophysics Data System (ADS)
Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.
2013-04-01
Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that the presence of biogenic polysaccharides, due to their surface active and hygroscopic nature, could play a potential role as cloud condensation nuclei in the pristine high Arctic.
Size-resolved atmospheric particulate polysaccharides in the high summer Arctic
NASA Astrophysics Data System (ADS)
Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.
2013-12-01
Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble bursting at the air-sea interface. We speculate that the occurrence of atmospheric surface-active polymer gels with their hydrophilic and hydrophobic segments, promoting cloud droplet activation, could play a potential role as cloud condensation nuclei in the pristine high Arctic.
Zha, Xue-Qiang; Li, Xiao-Long; Zhang, Hai-Lin; Cui, Shao-Hua; Liu, Jian; Wang, Jun-Hui; Pan, Li-Hua; Luo, Jian-Ping
2013-10-01
The aim of this study was to investigate the inhibitory effects of molecular weight alteration of Dendrobium huoshanense polysaccharide on protein nonenzymatic glycation. For this purpose, one homogeneous active polysaccharide DHPD1 with molecular weight 3.2 kDa was extracted from D. huoshanense. GC analysis showed that DHPD1 was mainly composed of glucose, arabinose, galactose in a molar ratio of 0.023:1.023:0.021 with a trace of mannose and xylose. In order to get DHPD1-derived fragments with different molecular weight, response surface methodology was employed to optimize the enzymatic degradation conditions. The maximum reducing sugar production (0.399 mg/mL) was obtained under an optimal condition including pectinase dosage 126 U/mL, reaction pH 4.46 and reaction temperature 48 °C. By applying this condition, three DHPD1-derived fragments with different molecular weights were obtained through changing the hydrolysis time. Infrared spectroscopy analysis indicated that the backbone structure of DHPD1 was not destroyed by pectinase hydrolysis. Monosaccharide composition analysis showed that pectinase preferred to liberate glucose from DHPD1. The inhibitory action of DHPD1 on protein nonenzymatic glycation reduced with the decrease of molecular weight. Copyright © 2013 Elsevier B.V. All rights reserved.
Deng, Yong; Chen, Ling-Xiao; Han, Bang-Xing; Wu, Ding-Tao; Cheong, Kit-Leong; Chen, Nai-Fu; Zhao, Jing; Li, Shao-Ping
2016-09-10
Qualitative and quantitative analysis of specific polysaccharides from ten batches of Dendrobium huoshanense were performed using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector (HPSEC-MALLS-RID), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) and saccharide mapping based on polysaccharides analysis by using carbohydrate gel electrophoresis (PACE) and high performance thin layer chromatography (HPTLC). Results showed that molecular weights, the radius of gyrations, and contents of specific polysaccharides in D. huoshanense were ranging from 1.16×10(5) to 2.17×10(5)Da, 38.8 to 52.1nm, and 9.9% to 19.9%, respectively. Furthermore, the main monosaccharide compositions were Man and Glc. Indeed, the main glycosidic linkages were β-1,4-Manp and β-1,4-Glcp, and substituted with acetyl groups at O-2 and O-3 of 1,4-linked Manp. Moreover, results showed that PACE and HPTLC fingerprints of partial acidic and enzymatic hydrolysates of specific polysaccharides were similar, which are helpful to better understand the specific polysaccharides in D. huoshanense and beneficial to improve their quality control. These approaches could also be routinely used for quality control of polysaccharides in other medicinal plants. Copyright © 2016 Elsevier B.V. All rights reserved.