Sample records for monosaccharide compositional analysis

  1. Neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides by high performance liquid chromatography.

    PubMed

    Yan, Jun; Shi, Songshan; Wang, Hongwei; Liu, Ruimin; Li, Ning; Chen, Yonglin; Wang, Shunchun

    2016-01-20

    A novel analytical method for neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides was developed using hydrophilic interaction liquid chromatography coupled to a charged aerosol detector. The effects of column type, additives, pH and column temperature on retention and separation were evaluated. Additionally, the method could distinguish potential impurities in samples, including chloride, sulfate and sodium, from sugars. The results of validation demonstrated that this method had good linearity (R(2) ≥ 0.9981), high precision (relative standard deviation ≤ 4.43%), and adequate accuracy (94.02-103.37% recovery) and sensitivity (detection limit: 15-40 ng). Finally, the monosaccharide compositions of the polysaccharide from Eclipta prostrasta L. and stachyose were successfully profiled through this method. This report represents the first time that all of these common monosaccharides could be well-separated and determined simultaneously by high performance liquid chromatography without additional derivatization. This newly developed method is convenient, efficient and reliable for monosaccharide analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Analysis of compositional monosaccharides in fungus polysaccharides by capillary zone electrophoresis.

    PubMed

    Hu, Yuanyuan; Wang, Tong; Yang, Xingbin; Zhao, Yan

    2014-02-15

    A rapid analytical method of capillary zone electrophoresis (CZE) was established for the simultaneous separation and determination of 10 monosaccharides (aldoses and uronic acids). The monosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP), and subsequently separated using an uncoated capillary (50 μm i.d. × 58.5 cm) and detected by UV at 245 nm with pH 11.0, 175 mM borate buffer at voltage 20 kV and capillary temperature 25 °C by CZE. The 10 PMP-labeled monosaccharides were rapidly baseline separated within 20 min. The optimized CZE method was successfully applied to the simultaneous separation and identification of the monosaccharide composition in Termitomyces albuminosus polysaccharides (TAPs) and Panus giganteus polysaccharides (PGPs). The quantitative recovery of the component monosaccharides in the fungus polysaccharides was in the range of 92.0-101.0% and the CV value was lower than 3.5%. The results demonstrate that the proposed CZE method is precise and practical for the monosaccharide analysis of fungus polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A comparative study of monosaccharide composition analysis as a carbohydrate test for biopharmaceuticals.

    PubMed

    Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide

    2011-05-01

    The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry.

    PubMed

    Wu, Xiaodan; Jiang, Wei; Lu, Jiajia; Yu, Ying; Wu, Bin

    2014-02-15

    Sargassum fusiforme (hijiki) is the well-known edible algae, whose polysaccharides have been proved to possess interesting bioactivities like antitumor, antioxidant, antimicrobial and immunomodulatory activities. A facile and sensitive method based on high-performance liquid chromatography method of pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) coupled with electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been established for the analysis of the monosaccharide composition of polysaccharides in S. fusiforme. Monosaccharides have been converted into PMP-labelled derivatives with aqueous ammonia as a catalyst at 70 °C for 30 min. The optimisation of the pre-column derivatization process was studied. The LODs of the monosaccharides were in the range from 0.01 to 0.02 nmol. PMP-labelled mixture of monosaccharides has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimised conditions. The mobile phase of elution system was chosen as acetonitrile (solvent A) and 20mM aqueous ammonium acetate (solvent B) (pH 3.0) with Zorbax XDB-C18 column at 30 °C for the separation of the monosaccharide derivatives. Identification of the monosaccharides composition was carried out by analysis with mass spectral behaviour and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone (PMP) labelled monosaccharides. All PMP-labelled derivatives display high chemical stabilities, whose regular MS fragmentation is specific for reducing labelled sugars. The result showed that the S. fusiforme polysaccharide consisted of mannose, glucose, galactose, xylose, fucose and glucuronic acid or galacturonic acid, or both uronic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica).

    PubMed

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J

    2008-12-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.

  6. Nickel-catalyzed proton-deuterium exchange (HDX) procedures for glycosidic linkage analysis of complex carbohydrates

    USDA-ARS?s Scientific Manuscript database

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...

  7. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica)

    PubMed Central

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young

    2009-01-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878

  8. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    PubMed

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  9. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation.

    PubMed

    Wang, Qiong; Wang, Feng; Xu, Zhenghong; Ding, Zhongyang

    2017-06-13

    Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.

  10. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation.

    PubMed

    Gómez-Fernández, José; Gómez-Izquierdo, Emilio; Tomás, Cristina; Mocé, Eva; de Mercado, Eduardo

    2012-07-01

    The aim of the present study was to evaluate the cryoprotectant effect of different non-permeating sugars for boar sperm. Pooled semen from three boars was used for the experiments. In the first experiment, the sperm quality of boar sperm cryopreserved with an egg-yolk based extender supplemented with different monosaccharides (glucose, galactose or fructose) was compared to a control cryopreserved in lactose-egg yolk extender. In the second experiment, the effect of five disaccharides (lactose, sucrose, lactulose, trehalose or melibiose) on boar sperm cryosurvival was studied. Several sperm quality parameters were assessed by flow cytometry in samples incubated for 30 and 150 min at 37°C after thawing: percentages of sperm with intact plasma membrane (SIPM), sperm presenting high plasma membrane fluidity (HPMF), sperm with intracellular reactive oxygen substances production (IROSP) and apoptotic sperm (AS). In addition, the percentages of total motile (TMS) and progressively motile sperm (PMS) were assessed at the same incubation times with a computer-assisted sperm analysis system. Freezing extenders supplemented with each of the monosaccharide presented smaller cryoprotective effect than the control extender supplemented with lactose (P<0.05). However, from the three monosaccharides tested, glucose provided the best sperm quality after freezing-thawing. With respect to the disaccharides studied, samples frozen with the extender supplemented with lactulose exhibited in general the lowest sperm quality, except for the percentage of capacitated sperm, which was highest (P<0.05) in the samples cryopreserved with the trehalose extender. Our results suggest that disaccharides have higher cryoprotective effect than monosaccharides, although the monosaccharide composition of the disaccharides is also important, since the best results were obtained with those disaccharides presenting glucose in their composition. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Glycoconjugates and methods

    DOEpatents

    Bertozzi, Carolyn C [Albany, CA; Yarema, Kevin J [Albany, CA; Mahal, Lara K [Berkeley, CA

    2008-04-01

    Methods for making the functionalized glycoconjugates include (a) contacting a cell with a first monosaccharide, and (b) incubating the cell under conditions whereby the cell (i) internalizes the first monosaccharide, (ii) biochemically processes the first monosaccharide into a second saccharide, (iii) conjugates the saccharide to a carrier to form a glycoconjugate, and (iv) extracellularly expresses the glycoconjugate to form an extracellular glycoconjugate comprising a selectively reactive functional group. Methods for forming products at a cell further comprise contacting the functional group of the extracellularly expressed glycoconjugate with an agent which selectively reacts with the functional group to form a product. Subject compositions include cyto-compatible monosaccharides comprising a nitrogen or ether linked functional group selectively reactive at a cell surface and compositions and cells comprising such saccharides.

  12. Analysis of the oligosaccharide composition in wort samples by capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Szilágyi, Tamás Gábor; Vecseri, Beáta Hegyesné; Kiss, Zsuzsanna; Hajba, László; Guttman, András

    2018-08-01

    Determination of the oligosaccharide composition in different wort samples is important to monitor their change during the brewing process with different yeast types. In our work, the concentration of fermentable and non-fermentable sugars were monitored by capillary electrophoresis to observe the effect of two different types of yeasts, Saccharomyces pastorianus and Saccharomycodes ludwigii. The former first ferments the monosaccharides, then the higher sugar oligomers, such as maltose and maltotriose, to ethanol, while the latter fully ferments the monosaccharides, but ferments only very low percentages of the oligosaccharides. Therefore, breweries use Saccharomycodes ludwigii to produce beers with low alcohol content. The CE-LIF traces of the wort samples represented unique oligosaccharide signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Arabinan-rich pectic polysaccharides from buriti (Mauritia flexuosa): an Amazonian edible palm fruit.

    PubMed

    Cantu-Jungles, Thaisa Moro; Almeida, Carolina Pierobom de; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2015-05-20

    Primary cell wall polysaccharides from aqueous extract of buriti fruit pulp (Mauritia flexuosa, an exotic tropical palm) were isolated and characterized. After freeze-thaw and α-amylase treatments, extracted polysaccharides were purified by sequential ultrafiltration through membranes. Two homogeneous fractions were obtained, SBW-100R and SBW-30R (Mw of 126 kDa and 20 kDa, respectively). Monosaccharide composition, methylation and (13)C NMR analysis showed that fraction SBW-100R contained a (1 → 5)-linked arabinan, branched at O-3 and O-2 positions, linked to a type I rhamnogalacturonan. Low amounts of these polymers were also present in fraction SBW-30R according to (13)C NMR analysis and monosaccharide composition. However, a high methyl esterified homogalacturonan (HG) was present in higher proportions. These results reinforce previous findings present in literature data which indicate that pectic polysaccharides are found in high amounts in primary cell walls of palms, which are commelinid monocotyledons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nickel-Catalyzed Proton-Deuterium Exchange (HDX) Procedures for Glycosidic Linkage Analysis of Complex Carbohydrates.

    PubMed

    Price, Neil P J; Hartman, Trina M; Vermillion, Karl E

    2015-07-21

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step.

  15. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes.

    PubMed

    Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang

    2015-11-20

    We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The name of the -ose: An editorial on carbohydrate nomenclature

    USDA-ARS?s Scientific Manuscript database

    What’s in a name? The term "sugar" is usually applied to the monosaccharides, disaccharides, and lower oligosaccharides, although "carbohydrate" ("hydrate de carbone") was originally used only for monosaccharides, because their composition can be expressed as Cn(H2O)n. Historically, sugars were name...

  17. Protein Glycosylation in Archaea: A Post-Translational Modification to Enhance Extremophilic Protein Stability

    DTIC Science & Technology

    2010-01-15

    Analysis of the chemical composition of the Asn-linked polysaccharides decorating many archaeal proteins has revealed the use of a wider variety of sugar...reminiscent of the eukaryal glycan-charged lipid, linked to a variety of monosaccharides , including glucose, mannose, and N-acetylglucosamine (GlcNAc

  18. Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: Measurement and analysis in the context of excluded volume theory.

    PubMed

    Beg, Ilyas; Minton, Allen P; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2018-06-01

    The thermal stability of apo α-lactalbumin (α-LA) and lysozyme was measured in the presence of mixtures of glucose, fructose, and galactose. Mixtures of these monosaccharides in the appropriate stoichiometric ratio were found to have a greater stabilizing effect on each of the two proteins than equal weight/volume concentrations of di- tri- and tetrasaccharides with identical subunit composition (sucrose, trehalose, raffinose, and stachyose). The excluded volume model for the effect of a single saccharide on the stability of a protein previously proposed by Beg et al. [Biochemistry 54 (2015) 3594] was extended to treat the case of saccharide mixtures. The extended model predicts quantitatively the stabilizing effect of all monosaccharide mixtures on α-LA and lysozyme reported here, as well as previously published results obtained for ribonuclease A [Biophys. Chem. 138 (2008) 120] to within experimental uncertainty. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs, South China

    NASA Astrophysics Data System (ADS)

    Duan, Dandan; Zhang, Dainan; Yang, Yu; Wang, Jingfu; Chen, Jing'an; Ran, Yong

    2017-09-01

    Neutral monosaccharides, algal organic matter (AOM), and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO) range from 0.51 to 6.4 mg g-1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g-1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C/N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.

  20. Existence of the sugar-bisulfite adducts and its inhibiting effect on degradation of monosaccharide in acid system.

    PubMed

    Shi, Yan

    2014-02-01

    Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.

  1. Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by UPLC-UV/MS method

    USDA-ARS?s Scientific Manuscript database

    In natural product chemistry, it is often crucial to determine sugar composition as well as the absolute configuration of each monosaccharide in glycosides. An ultra-performance liquid chromatography method using both photodiode array (PDA) and mass spectrometry detectors (UPLC-UV/MS) was developed....

  2. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants.

    PubMed

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B; Rieger, Leonie; Frenger, Marc S; Marschall, André; Franke, Rochus B; Pattathil, Sivakumar; Voll, Lars M

    2017-01-01

    Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.

  3. Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation.

    PubMed

    Li, Jing-En; Wang, Wen-Jun; Zheng, Guo-Dong; Li, Lin-Yan

    2017-02-01

    Four new polysaccharides (GPP-20, GPP-40, GPP-60 and GPP-80) were fractionated from Gynura procumbens leaves by 20%, 40%, 60% and 80% (v/v) ethanol, successively. Their physicochemical properties including the contents of neutral sugar, uronic acid and protein, as well as the monosaccharide composition were determined. In addition, the antioxidant activities of them were investigated via the reducing power assay and scavenging capacities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and hydroxyl free radicals, respectively. The results indicated that apart from neutral sugar, they all contained uronic acids and proteins in their structures, which were further proved by the UV-vis and FT-IR spectra. Monosaccharide composition analysis implied that they all belonged to heteropolysaccharides consisted of arabinose, galactose, glucose, xylose and galacturonic acid with different types and ratios. What's more, GPP-20, GPP-40 and GPP-80 always exhibited better antioxidant activities than GPP-60 among these three antioxidant assays in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Composition of Fatty Acids and Carbohydrates in Leptospira1

    PubMed Central

    Kondo, Eiko; Ueta, Nobuo

    1972-01-01

    The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167

  5. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    PubMed Central

    Xu, Ren-Bo; Yang, Xin; Wang, Jing; Zhao, Hai-Tian; Lu, Wei-Hong; Cui, Jie; Cheng, Cui-Lin; Zou, Pan; Huang, Wei-Wei; Wang, Pu; Li, Wen-Jing; Hu, Xing-Long

    2012-01-01

    The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine. PMID:23203063

  6. Interferon Inducers Against Infectious Diseases.

    DTIC Science & Technology

    1991-06-15

    mouse there was little, if any, difference. b. PLL- Monosaccharide Grafts. The PLL-dextran grafts described above contain long polysaccharide chains...engrafted polysaccharides . Our research has resulted in the demonstration that effective IFN inducers can be formulated without using...Action of IC-(PLL-dextran) .............. 7. Induction of IFN in Mice by IC-(PLL- monosaccharides ). I 8. ICL-SCDS04; Compositions and IFN Titers

  7. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content.

    PubMed

    Haas, Isabel Cristina da Silva; Toaldo, Isabela Maia; de Gois, Jefferson Santos; Borges, Daniel L G; Petkowicz, Carmen Lúcia de Oliveira; Bordignon-Luiz, Marilde T

    2016-12-01

    Grape and grape derivatives contain a variety of antioxidants that have gain increasing interest for functional foods applications. The chemical composition of grapes is mainly related to grape variety and cultivation factors, and each grape constituent exhib its unique characteristics regarding its bioactive properties. This study investigated the chemical composition and the effect of drying on the bioactive content of the non-pomace constituent obtained in the processing of organic and conventional grape juices from V. labrusca L. The non-pomace samples were analyzed for polyphenols, monosaccharides, antioxidant activity and elemental composition and the effect of drying on the bioactive composition was evaluated in samples subjected to lyophilization and drying with air circulation. The analyses revealed high concentrations of proanthocyanidins, flavanols and anthocyanins, and high antioxidant capacity of the organic and conventional samples. The drying processes reduced significantly (P < 0.05) the total phenolic content that ranged from 13.23 to 36.36 g/kg. Glucose, xylose, and mannose were the predominant monosaccharides, whereas K, Ca and Mg were the most abundant minerals. Variations in the chemical composition of organic and conventional samples were associated with cultivation factors. Nevertheless, this non-pomace constituent is a promising source of nutrients and polyphenols with bioactive potential.

  8. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants

    PubMed Central

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar

    2017-01-01

    Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541

  9. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    PubMed

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  10. [Analysis of monosaccharides and uronic acids in polysaccharides by pre-column derivatization with p-aminobenzoic acid and high performance liquid chromatography].

    PubMed

    Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua

    2007-01-01

    An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.

  11. Development of SPE for recovery of polysaccharides and its application to the determination of monosaccharides composition of the polysaccharide sample of a lactobacillus KLB 58.

    PubMed

    Baik, Yoon Suk; Cheong, Won Jo

    2007-07-01

    A new SPE cartridge has been prepared in this study to purify polysaccharides of high molecular weights. A porous nonpolar styrene-divinylbenzene copolymer phase (Hamilton PRP-1) was used to make the new cartridge. The cartridge was conditioned with methanol, water, and ACN in sequence, and the sample dissolved in a small amount of water was loaded. Impurities of low molecular weights were removed first by elution of 80:20 or 90:10 v/v% ACN/water, and polysaccharides were quantitatively recovered by elution of 50:50 v/v% ACN/water or pure water. The recovery of pure dextran 10000 was 90-95%. The SPE method was applied to purification of the polysaccharide sample of KLB58, a new lactobacillus discovered in Korea. The purified KLB 58 sample (weight recovery after SPE purification; 60%) was hydrolyzed for analysis of composition of monosaccharides. The hydrolysate was found to be composed primarily of fructose, glucose, galactose, rhamnose, mannose with small amounts of fucose and ribose.

  12. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.

  13. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    PubMed

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media

    NASA Astrophysics Data System (ADS)

    Chiantore, Oscar; Riedo, Chiara; Scalarone, Dominique

    2009-07-01

    Plant gums are complex polysaccharides used in the field of cultural heritage especially as binding media. Classification of polysaccharides may be achieved on the basis of monosaccharides composition after cleavage of glycosidic bond. Characterization of plant gums in works of art is complicated by the necessity of to use a method minimally invasive and requiring a small mount of sample. Pyrolisys is an useful method to obtain polysaccharides decomposition and generally pyrolysis products can be identified by the use of gas chromatography-mass spectrometry. This paper describes a method where two plant gums, arabic and tragacanth, were pyrolized in presence of silylating agents (HMDS e BSTFA alone and with TMCS as catalyst) using an on-line Py-GC/MS apparatus. Some characteristic trimethylsilyl derivatives of monosaccharides were identified on the basis of mass spectra. The presence of characteristic pyrolysis products of sugars allows to distinguish the two gums.

  15. THE CHANGE IN CARBOHYDRATE COMPOSITION WITHIN THE STORAGE ORGANS OF PLANTS UNDER THE EFFECT OF GAMMA IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sal'kova, E.G.

    1963-04-11

    Onion bulbs, garlic bulbs, and apples were subjected to gamma radiation, and the changes in carbohydrate content were determined at 5 days and 2 months after irradiation. No accumulation of sugars could be detected in the onion or garlic buibs up to a dose of 60,000 r. The content of monosaccharides decreased from 1.75% of the dry weight for the controls to 1.15% on the 5th day after irradiation of the onion bulbs with a dose of 30,000 r. No break-down of polysaccharides due to irradiation could be observed in the onion or garlic. No change in the monosaccharide contentmore » of irradiated onion bulbs could be detected by chromatographic analysis. The apples were irradiated with a dose of 40,000 r which caused ripening of the fruit, and with a dose of 200,000 to 400,000 r, which sterilized the fruit. On irradiating apples with a dose of 40,000 r, the monosaccharide content decreased, while the starch content increased. The sucrose content fell to zero at a dose of 400,000 r. After storage for a month, the monosaccharide content in the irradiated apples was less than that in the unirradiated apples. A chromatographic analysis showed that the content of galactic acid was increased in the irradiated apples due to the break-down of pectin-like materials. The maltose and lactose contents were much lower, while the contents of fructose and glucose were higher after irradiation than before irradiation of the apples. The data show that irradiation has an effect on the carbohydrate content of plants that varies from plant to plant. The reasons for the differences in stability of the various carbohydrate components in different plants are not known at present. (TTT)« less

  16. The effect of growth medium on B. anthracis Sterne spore carbohydrate content.

    PubMed

    Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice.

    PubMed

    Wang, Xiao-Yin; Yin, Jun-Yi; Nie, Shao-Ping; Xie, Ming-Yong

    2018-02-01

    Hericium erinaceus was extracted with boiling water to obtain the crude polysaccharide (HECP) and refined polysaccharide (HERP). HERP was further purified using gradual ethanol precipitation to obtain five sub-fractions. Their physicochemical properties were evaluated, including chemical components, monosaccharide composition and molecular weight. Meanwhile, the effect of HERP on colonic health of mice was investigated by oral administration at dosages of 100, 200 and 400mg/kg of body weight (mg/kgbw), comparing with that of HECP. Results showed that the gradual ethanol precipitation could remarkably increase polysaccharide purity. HERP, HECP and the five purified fractions had different monosaccharide compositions, while the main monosaccharides were Glc and Gal. They all showed similar structure with amorphous appearance. Short-chain fatty acids productions in colonic and cecum contents, and feces of mice were increased in polysaccharide treated groups. Mice administrated with HERP at 400mg/kgbw showed significant reductions in pH values while obvious increases in moisture amounts. This study suggests that gradual ethanol precipitation is available for purification of polysaccharide from Hericium erinaceus and the extracted polysaccharide could improve colonic health. Copyright © 2017. Published by Elsevier B.V.

  18. 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates.

    PubMed

    Cai, Zhi Peng; Hagan, Andrew Kevin; Wang, Mao Mao; Flitsch, Sabine Lahja; Liu, Li; Voglmeir, Josef

    2014-05-20

    We herein report the use of 1,3-di(2-pyridyl)-1,3-propanedione (DPPD) as a fluorogenic labeling reagent for sugars. Reaction of DPPD with the anomeric carbon affords a fluorescent 2-pyridylfuran (2-PF) moiety that permits the sensitive HPLC-based detection of monosaccharides. 2-PF-labeled monosaccharides can be easily separated and analyzed from mixtures thereof, and the reported protocol compares favorably with established labeling reagents such as 2-aminobenzoic acid (2-AA) and 1-phenyl-3-methyl-5-pyrazolone (PMP), ultimately allowing subfemtomole detection of the galactose-derived product. Furthermore, we demonstrate the application of DPPD in the labeling of monosaccharides in complex biological matrices such as blood and milk samples. We envisage that DPPD will prove to be an excellent choice of labeling reagent in monosaccharide and carbohydrate analysis.

  19. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.

    PubMed

    Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C

    2008-01-01

    The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).

  20. Preparative chromatography for specific δ13C isotopic analysis of individual carbohydrates in environmental samples

    NASA Astrophysics Data System (ADS)

    Nouara, Amel; Panagiotopoulos, Christos; Balesdent, Jérôme; Sempéré, Richard

    2017-04-01

    Carbohydrates are among the most abundant organic molecules on the Earth and are present in all geochemical systems. Despite their high abundance in the environment, very few studies assessed their origin using molecular carbohydrate isotopic analyses. In contrast with bulk stable isotope analysis (BSIA), which gives the isotopic signature of the entire sample without any specification about its chemical composition, compound specific 13C isotopic analysis of individual sugars (CSIA) offers valuable information about the origin of single molecules. Previous investigations used gas or liquid chromatography coupled with isotope ratio mass spectroscopy (GC-IRMS; HPLC-IRMS) for CSIA of sugars however the former requires δ13C corrections due to the carbon added to the sugar (derivatization) while the later does not provide always adequate separations among monosaccharides. Here we used cation preparative chromatography (Ca2+, Pb2+ and Na+) with refractive index detection in order to produce pure monosaccharide targets for subsequent EA-IRMS analyses. Milli-Q water was used as eluant at a flow rate 0.6 ml min-1. In general, three successive purifications (Ca2+, Pb2+, Ca2+) were sufficient to produce pure compounds. Pure monosaccharides were compared with authentic monosaccharide standards using 1H NMR and/or mass spectroscopy. The detection limit of our technique was about 1µM/sugar with a precision of 10% (n=6). Blanks run with Milli-Q water after three successive purifications resulted in carbon content of 0.13 to 2.77 µgC per collected sugar. These values are much lower than the minimum required amount (5 µgC) of the EA-IRSMS system with a precision of ± 0.35 ‰. Application of our method to environmental samples resulted in δ13C values of glucose, fructose, and levoglucosan in the range of -24 to -26 ‰ (PM10 atmospheric particles), and -15‰ to -22 ‰ for arabinose, glucose, and xylose (marine high molecular dissolved organic matter). These results fall in the range of previous reported values for terrestrial and aquatic ecosystems.

  1. Sequencing of oligosaccharides using enzyme array digestion with electrochemical and fluorescent detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, M.; Lee, C.S.

    1997-12-31

    The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymesmore » to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.« less

  2. [Study on Monosaccharide Compositions of Polysaccharide in Dendrobium Stems of Different Resources by PMP-HPCE].

    PubMed

    Chen, Nai-dong; Meng, Yun-fei; Yao, Hou-jun; Cao, Cai-yun; Chen, Chen; Li, Jun

    2015-08-01

    To establish a PMP-HPCE method for comparing the monosaccharides of polysaccharide in tissue-cultured and wild Dedrobium huoshanese and Dedrobium moniliforme as well as wild Dedrobium henanese, in order to investigate the similarities of their bioactive components. The PMP-monosaccharides of polysaccharide from the five investigated Dedrobium samples were separated by HPCE on a fused silica capillary column(100 cm x 50 µm) at 25 °C with 350 mmol/L BAS (adjusted to pH 10 with 1.0 mol/L NaOH) as running buffer for 34 min. The applied voltage was 20 kV and the detection wavelength was set at 250 nm. Total six monosaccharides including xylose, glucose, mannose, galactose, galacturonic acid and ribose were detected in the five Dendrobiurms samples and the similarity coefficients between the ten batches of the same Dendrobium species were all above 0. 98,while remarkable dissimilarity were exhibited among species and different resources. PMP-HPCE technique combined with chemometrics is simple, convenient, precise, reproducible and proved to be an effective strategy for identifying the species and origins, especially in the quality assessment of Dendrobium stems.

  3. Fermentable oligosaccharide, disaccharide, monosaccharide and polyol content of foods commonly consumed by ethnic minority groups in the United Kingdom.

    PubMed

    Prichard, Rebeca; Rossi, Megan; Muir, Jane; Yao, Ck; Whelan, Kevin; Lomer, Miranda

    2016-06-01

    Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) is an effective management approach for functional bowel disorders; however, its application is limited by the paucity of food composition data available for ethnic minority groups. The aim was to identify and measure the FODMAP content of these commonly consumed foods. According to their perceived importance to clinical practise, the top 20 ranked foods underwent FODMAP analysis using validated analytical techniques (total fructans, Megazyme hexokinase (HK) assay; all others, high-performance liquid chromatography (HPLC) with evaporative light scattering detectors). Of the 20 foods analysed, five were identified as significant sources of at least one FODMAP. Fructans and galacto-oligosaccharides were the major FODMAPs in these foods, including channa dal (0.13 g/100 g; 0.36 g/100 g), fenugreek seeds (1.11 g/100 g; 1.27 g/100 g), guava (0.41 g/100 g; not detected), karela (not detected; 1.12 g/100 g) and tamarind (2.35 g/100 g; 0.02 g/100 g). Broadening the availability of FODMAP composition data will increase the cultural application of low FODMAP dietary advice.

  4. Neutral monosaccharides from a hypersaline tropical environment: Applications to the characterization of modern and ancient ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moers, M.E.C.; Larter, S.R.

    1993-07-01

    Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analyzed for carbohydrates (as neutral monosaccharides) to distinguish and characterize various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass (Halodule uninervis), and mangrove (Avicennia marine) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr BP. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose andmore » glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose, and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria (Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria (Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other [open quotes]minor[close quotes] saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms. 22 refs., 4 figs., 4 tabs.« less

  5. Use of electrospray ionization ion-trap tandem mass spectrometry and principal component analysis to directly distinguish monosaccharides.

    PubMed

    Xia, Bing; Zhou, Yan; Liu, Xin; Xiao, Juan; Liu, Qing; Gu, Yucheng; Ding, Lisheng

    2012-06-15

    Carbohydrates are good source of drugs and play important roles in metabolism processes and cellular interactions in organisms. Distinguishing monosaccharide isomers in saccharide derivates is an important and elementary work in investigating saccharides. It is important to develop a fast, simple and direct method for this purpose, which is described in this study. Stock solutions of monosaccharide with a concentration of 400 μM and sodium chloride at a concentration of 10 μM were made in water/methanol (50:50, v/v). The samples were subjected to electrospray ionization ion-trap tandem mass spectrometry (ESI-MS) and the detected [2M + Na - H(2)O](+) ions were further investigated by tandem mass spectrometry (MS/MS), followed by applying principal component analysis (PCA) on the obtained MS/MS data sets. The MS/MS spectra of the [2M + Na - H(2)O](+) ions at m/z 365 for hexoses and m/z 305 for pentoses yielded unambiguous fragment patterns, while rhamnose can be directly identified by its ESI-MS [M + Na](+) ion at m/z 187. PCA showed clustering of MS/MS data of identical monosaccharide samples obtained from different experiments. By using this method, the monosaccharide in daucosterol hydrolysate was successfully identified. A new strategy was developed for differentiation of the monosaccharides using ESI-MS/MS and PCA. In MS/MS spectra, the [2M + Na - H(2)O](+) ions yielded unambiguous distinction. PCA of the archived MS/MS data sets was applied to demonstrate the spatial resolution of the studied samples. This method presented a simple and reliable way for distinguishing monosaccharides by ESI-MS/MS. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Carbohydrates as indicators of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lazareva, E. V.; Romankevich, E. A.

    2012-05-01

    A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.

  7. Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy.

    PubMed

    Garozzo, D; Spina, E; Cozzolino, R; Cescutti, P; Fett, W F

    2000-01-12

    The introduction of size-exclusion chromatography (SEC) analysis of polysaccharides prior to MALDI mass spectroscopy accounts for the determination of the molecular mass of the repeating unit when neutral homopolymers are investigated. In the case of natural polysaccharides characterised by more complicated structural features (presence of non-carbohydrate substituents, charged groups, etc.), this mass value usually is in agreement with more than one sugar composition. Therefore, it is not sufficient to give the correct monosaccharidic composition of the polysaccharide investigated. To solve this problem, MALDI spectra were recorded on the permethylated sample and post-source decay experiments were performed on precursor ions. In this way, the composition (in terms of Hex, HexNAc, etc.), size and sequence of the repeating unit were determined.

  8. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta).

    PubMed

    Liu, Qin; Dang, Huijie; Chen, Zhijian; Wu, Junzheng; Chen, Yinhua; Chen, Songbi; Luo, Lijuan

    2018-03-26

    The sugar transporter ( STP ) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava ( Manihot esculenta ) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes ( MeSTP1 - 20 ) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast ( Saccharomyces cerevisiae ) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.

  9. Ultra-high performance supercritical fluid chromatography-mass spectrometry procedure for analysis of monosaccharides from plant gum binders.

    PubMed

    Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel

    2017-10-09

    The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area ratios of monosaccharides. The proposed procedure using UHPSFC/MS represents an interesting alternative which can compete with other chromatographic methods in the field of saccharide analysis in terms of speed, sensitivity and simplicity of workflow. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    PubMed

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  11. In vitro prebiotic effects of seaweed polysaccharides

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  12. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil

    PubMed Central

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426

  13. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides

    PubMed Central

    Ravcheev, Dmitry A.; Thiele, Ines

    2017-01-01

    The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions. PMID:28912798

  14. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2017-01-01

    The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.

  15. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry.

    PubMed

    Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying

    2018-01-01

    Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Monosaccharide composition of acidic gum exudates from Indian Acacia tortilis ssp. raddiana (Savi) Brenan.

    PubMed

    Lakhera, Ajeet Kumar; Kumar, Vineet

    2017-01-01

    Acacia tortilis ssp. raddiana (Savi) Brenan commonly known as Israeli Babool has contributed immensely for sand dunes management in Indian desert leading to wind erosion control and increased biological productivity. The species is extensively used in traditional medicine system for a number of therapeutic applications and as nutraceutical. The polysaccharide was isolated in 43.6% yield from gum exudates. The monosaccharides, L-arabinose, D-galactose D-glucose, L-rhamnose and D-mannose were determined in molar ratio of 78.1%, 18.64%, 0.60%, 1.71% and 0.74% respectively. The molar ratio of uronic acids was studied using diverse spectrophotometric methods and compared with GLC. The content of D-galacturonic acid and D-glucuronic was determined as 3.88% and 4.35% respectively by GLC. The results were compared with the spectrophotometric methods. The results using DMP as chromogenic reagent are closer to that obtained by GLC. Structural analysis of the polysaccharide may provide scientific basis for nutraceutical, pharmaceutical and biological applications of gum exudates from A. tortilis, which is extensively planted in India. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hexose Transport in Growing Petunia Pollen Tubes and Characterization of a Pollen-Specific, Putative Monosaccharide Transporter1

    PubMed Central

    Ylstra, Bauke; Garrido, Dolores; Busscher, Jacqueline; van Tunen, Arjen J.

    1998-01-01

    We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented. PMID:9733549

  18. A Laboratory Exercise in the Determination of Carbohydrate Structures.

    ERIC Educational Resources Information Center

    White, Bernard J.; Robyt, John F.

    1988-01-01

    Describes an experiment in which students are given a naturally occurring oligosaccharide as an unknown and are asked to determine both its monosaccharide composition and its structure. Discusses methods and experimental techniques including thin layer chromatography and the use of enzymes. (CW)

  19. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  20. Discrimination of the rare medicinal plant Dendrobium officinale based on naringenin, bibenzyl, and polysaccharides.

    PubMed

    Chen, Xiaomei; Wang, Fangfei; Wang, Yunqiang; Li, Xuelan; Wang, Airong; Wang, Chunlan; Guo, Shunxing

    2012-12-01

    The aim of this study was to establish a method for discriminating Dendrobium officinale from four of its close relatives Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum and Dendrobium devonianum based on chemical composition analysis. We analyzed 62 samples of 24 Dendrobium species. High performance liquid chromatography analysis confirmed that the four low molecular weight compounds 4',5,7-trihydroxyflavanone (naringenin), 3,4-dihydroxy-4',5-dime-thoxybibenzyl (DDB-2), 3',4-dihydroxy-3,5'-dimethoxybibenzyl (gigantol), and 4,4'-dihydroxy-3,3',5-trimethoxybibenzy (moscatilin), were common in the genus. The phenol-sulfuric acid method was used to quantify polysaccharides, and the monosaccharide composition of the polysaccharides was determined by gas chromatography. Stepwise discriminant analysis was used to differentiate among the five closely related species based on the chemical composition analysis. This proved to be a simple and accurate approach for discriminating among these species. The results also showed that the polysaccharide content, the amounts of the four low molecular weight compounds, and the mannose to glucose ratio, were important factors for species discriminant. Therefore, we propose that a chemical analysis based on quantification of naringenin, bibenzyl, and polysaccharides is effective for identifying D. officinale.

  1. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  2. Polysaccharide composition of raw and cooked chayote (Sechium edule Sw.) fruits and tuberous roots.

    PubMed

    Shiga, Tânia M; Peroni-Okita, Fernanda Helena Gonçalves; Carpita, Nicholas C; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2015-10-05

    Chayote is a multipurpose table vegetable widely consumed in Latin America countries. Chayote fruits, leaves and tuberous roots contain complex carbohydrates as dietary fiber and starch, vitamins and minerals. The complex polysaccharides (cell walls and starch) were analyzed in the black and green varieties of chayote fruits as well as in green chayote tuberous root before and after a controlled cooking process to assess changes in their composition and structure. The monosaccharide composition and linkage analysis indicated pectins homogalacturonans and rhamnogalacturonan I backbones constitute about 15-20% of the wall mass, but are heavily substituted with, up to 60% neutral arabinans, galactans, arabinogalactans. The remainder is composed of xyloglucan, glucomannans and galactoglucomannans. Chayote cell-wall polysaccharides are highly stable under normal cooking conditions, as confirmed by the optical microscopy of wall structure. We found also that tuberous roots constitute a valuable additional source of quality starch and fiber. Published by Elsevier Ltd.

  3. Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus

    PubMed Central

    2013-01-01

    Background Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. Results In this study, genes encoding putative enzymes from carbon metabolism were identified and their expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies. Conclusions The compost grown vegetative mycelium of A. bisporus consumes a wide variety of monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars was observed. This suggests that only hexoses or their conversion products are transported from the vegetative mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the vegetative mycelium. Clear correlations were found between expression of the genes and composition of carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different gene sets were expressed in these samples. PMID:24074284

  4. A preliminary study on the synthesis of monosaccharide palmitate

    NASA Astrophysics Data System (ADS)

    Othman, Nor Hamidah Abu; Jafri, Nur Hafifah Nahdirah; Salimon, Jumat

    2018-04-01

    The esterification reaction between palmitic acid and different monosaccharides using 1.5% sulfuric acid as the catalyst to produce monosachharide palmitate was studied. The highest percentage yield obtained was 20% from tripalmitate (TAG01) whereas the lowest percentage formed was 0.8% from glucose pentapalmitate (GPP01). Functional group analysis was conducted using ATR-FTIR spectroscopy. Infrared spectroscopy showed C=O ester stretching at 1735, 1697, 1732 and 1729 cm-1, C-O ester stretching at 1265, 1269, 1284 and 1265 while C-H sp3 stretching was observed at 2847-2914 cm-1 for tripalmitate (TAG), glucose pentapalmitate (GPP), xylitol pentapalmitate (XPP) and sorbitol hexapalmitate (SHP) with no observed -OH stretch after esterification to produce monosaccharide palmitate.

  5. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  6. Structural analysis of a homogeneous polysaccharide from Achatina fulica.

    PubMed

    Liu, Jie; Shang, Feineng; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua

    2017-05-01

    Edible snails have been widely used as a health food and medicine in many countries. In our study, a water-soluble polysaccharide (AF-1) was isolated and purified from Achatina fulica by papain enzymolysis, alcohol precipitation and strong anion exchange chromatography. Structureof the polysaccharide was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, high performance liquid chromatography, analysis of monosaccharide composition, methylation analysis, and nuclear magnetic resonance (NMR) spectroscopy ( 1 H, 13 C, COSY, TOCSY, NOESY, HSQC and HMBC). Chemical composition analysis indicated that AF-1 is composed of glucose (Glc) and its average molecular weight is 1710kDa. Structural analysis suggested that AF-1 is mainly consisted of a linear repeating backbone of (1→4) linked α-d-Glc p residues with one branch, α-d-Glc p, attached to the main chain by (1→6) glycosidic bonds at every five main-chain units. Further studies on biological activities of the polysaccharide are currently in progress. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Isolation and partial characterization of immunostimulating polysaccharides from Imperata cylindrica.

    PubMed

    Pinilla, V; Luu, B

    1999-08-01

    The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.

  8. Genistein Enhances or Reduces Glycosaminoglycan Quantity in a Cell Type-Specific Manner.

    PubMed

    Lan, Ying; Li, Xiulian; Liu, Xuebo; Hao, Cui; Song, Ni; Ren, Sumei; Wang, Wei; Feng, Ningchuan; Zhang, Lijuan

    2018-06-27

    Genistein is a natural isoflavone enriched in soybeans. It has beneficial effects for patients with mucopolysaccharidose type III through inhibiting glycosaminoglycan biosynthesis. However, other studies indicate that genistein does not always inhibit glycosaminoglycan biosynthesis. To understand the underlying molecular mechanisms, CHOK1, CHO3.1, CHO3.3, and HCT116 cells were treated with genistein and the monosaccharide compositions and quantity of all glycans from the cell lysate were measured after thorough acid hydrolysis followed by HPLC analysis. In addition, the glycosaminoglycan disaccharide compositions were obtained by stable isotope labeling coupled with LC/MS analysis. Genistein treatment reduced the amount of glycans but increased the amount of glycosaminoglycans in HCT116 cells. In contrast, genistein treatment reduced both glycan and glycosaminoglycan quantities in CHOK1, CHO3.1, and CHO3.3 cells in addition to differential changes in glycosaminoglycan disaccharide compositions. Genistein treatment reduced overall glycan quantity but glycosaminoglycan quantities were either increased or decreased in a cell type-dependent manner. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Purification, characterization and antioxidant activities in vitro and in vivo of the polysaccharides from Boletus edulis bull.

    PubMed

    Luo, Aoxue; Luo, Aoshuang; Huang, Jiandong; Fan, Yijun

    2012-07-05

    A water-soluble polysaccharide (BEBP) was extracted from Boletus edulis Bull using hot water extraction followed by ethanol precipitation. The polysaccharide BEBP was further purified by chromatography on a DEAE-cellulose column, giving three major polysaccharide fractions termed BEBP-1, BEBP-2 and BEBP-3. In the next experiment, the average molecular weight (Mw), IR and monosaccharide compositional analysis of the three polysaccharide fractions were determined. The evaluation of antioxidant activities both in vitro and in vivo suggested that BEBP-3 had good potential antioxidant activity, and should be explored as a novel potential antioxidant.

  10. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.

    PubMed

    Wang, Ying; Yuan, Bo; Ji, Yingchao; Li, Hong

    2013-09-12

    In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge to hydrolyze hemicellulose. The orthogonal experiment L₂₅(5(6)) was used to optimize such hydrolysis conditions. The total reducing sugar (TRS) was measured by the DNS method. To determine whether the oligosaccharide existed in the hydrolysis products, it was hydrolyzed by sulfuric acid for a second time following the same procedure as reported earlier. The monosaccharide compositions of the hydrolyzed sample were analyzed by high-performance liquid chromatography (HPLC) and Fourier transformed infrared spectroscopy (FTIR). The results showed that pH 2.81 of plasma acid, 100 °C and 50 min were assigned as an optimal hydrolysis condition by plasma acid. Under this condition, the hemicellulose was hydrolyzed completely to produce monosaccharides including xylose, glucose, and galactose with the mole ratio being 17:3:1. The yields of xylose, glucose, and galactose were 38.67%, 9.28% and 3.09%, respectively. Compared with the hemicellulose hydrolysis results by sulfuric acid, it is concluded that plasma acid is an environmental-friendly and efficient method to explore and hydrolyze the hemicellulose existed in biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Structural analysis and biological activity of a highly regular glycosaminoglycan from Achatina fulica.

    PubMed

    Liu, Jie; Zhou, Lutan; He, Zhicheng; Gao, Na; Shang, Feineng; Xu, Jianping; Li, Zi; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua

    2018-02-01

    Edible snails have been widely used as a health food and medicine in many countries. A unique glycosaminoglycan (AF-GAG) was purified from Achatina fulica. Its structure was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, analysis of monosaccharide composition, and 1D/2D nuclear magnetic resonance spectroscopy. Chemical composition analysis indicated that AF-GAG is composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) and its average molecular weight is 118kDa. Structural analysis clarified that the uronic acid unit in glycosaminoglycan (GAG) is the fully epimerized and the sequence of AF-GAG is →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. Although its structure with a uniform repeating disaccharide is similar to those of heparin and heparan sulfate, this GAG is structurally highly regular and homogeneous. Anticoagulant activity assays indicated that AF-GAG exhibits no anticoagulant activities, but considering its structural characteristic, other bioactivities such as heparanase inhibition may be worthy of further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass

    USDA-ARS?s Scientific Manuscript database

    This study was undertaken in order to isolate and compare three carbohydrate-rich fractions: Hemicellulose A (Hemi A), Hemicellulose B (Hemi B) and cellulose-rich residue (CRF) from sorghum bran (SBR), sorghum bagasse (SBA) and sorghum biomass (SBI). The monosaccharide composition of the purified He...

  13. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less

  14. Isolation and Composition Analysis of Bioactive Glycosaminoglycans from Whelk.

    PubMed

    Khurshid, Chrow; Pye, David Alexander

    2018-05-18

    Glycosaminoglycans (GAGs) are found covalently attached to proteins, which create conjugates known as proteoglycans. GAGs have remarkable biological activity as co-receptors for a variety of growth factors, cytokines, and chemokines. The present study identifies the key compositional differences between the GAGs isolated from whelk and mammalian GAGs. This polysaccharide represents a new, previously undescribed GAG with cytotoxic activity on cancer cells. Disaccharides were obtained by sample digestion with heparinases I, II, and III and chondroitinase ABC. The resistant oligosaccharides from whelk GAGs treated with heparinase I, II, and III and chondroitinase ABC were retained by the filter due to their larger size. Disaccharide analysis was performed using Glycan Reduction Isotope Labeling (GRIL LCQ-MS). The amounts of filter-retained fragments, as assessed by monosaccharides analysis, suggested that a proportion of the whelk GAG chains remained resistant to the enzymes used in the disaccharide analysis. Thus, the proportions of individual disaccharide produced in this analysis may not truly represent the overall proportions of disaccharide types within the intact whelk GAGs chain. However, they do serve as important descriptors for the classification and make-up of the anti-cancer GAGs chains. Furthermore, these data represent clear evidence of the compositional differences between whelk GAGs and commercial mammalian GAGs.

  15. Isolation and Composition Analysis of Bioactive Glycosaminoglycans from Whelk

    PubMed Central

    Khurshid, Chrow; Pye, David Alexander

    2018-01-01

    Glycosaminoglycans (GAGs) are found covalently attached to proteins, which create conjugates known as proteoglycans. GAGs have remarkable biological activity as co-receptors for a variety of growth factors, cytokines, and chemokines. The present study identifies the key compositional differences between the GAGs isolated from whelk and mammalian GAGs. This polysaccharide represents a new, previously undescribed GAG with cytotoxic activity on cancer cells. Disaccharides were obtained by sample digestion with heparinases I, II, and III and chondroitinase ABC. The resistant oligosaccharides from whelk GAGs treated with heparinase I, II, and III and chondroitinase ABC were retained by the filter due to their larger size. Disaccharide analysis was performed using Glycan Reduction Isotope Labeling (GRIL LCQ-MS). The amounts of filter-retained fragments, as assessed by monosaccharides analysis, suggested that a proportion of the whelk GAG chains remained resistant to the enzymes used in the disaccharide analysis. Thus, the proportions of individual disaccharide produced in this analysis may not truly represent the overall proportions of disaccharide types within the intact whelk GAGs chain. However, they do serve as important descriptors for the classification and make-up of the anti-cancer GAGs chains. Furthermore, these data represent clear evidence of the compositional differences between whelk GAGs and commercial mammalian GAGs. PMID:29783688

  16. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.

    PubMed

    Vanfossen, Amy L; Verhaart, Marcel R A; Kengen, Servé M W; Kelly, Robert M

    2009-12-01

    Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.

  17. Randomised clinical trial: Gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome

    USDA-ARS?s Scientific Manuscript database

    A low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet can ameliorate symptoms in adult irritable bowel syndrome (IBS) within 48 h. To determine the efficacy of a low FODMAP diet in childhood IBS and whether gut microbial composition and/or metabolic capacity ar...

  18. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  19. Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation.

    PubMed

    Baldwin, S A; Baldwin, J M; Lienhard, G E

    1982-08-03

    The human erythrocyte monosaccharide transporter has been purified through the use of the dialyzable detergent octyl glucoside. It was found that the transporter denatures in the detergent and that the rate of this process could be reduced by increasing the ratio of phospholipid to detergent. The transporter was obtained in higher yield and with a higher specific activity for cytochalasin B binding than has been previously reported. Scatchard plot analysis of cytochalasin B binding to the reconstituted preparations gave a dissociation constant of 1.5 X 10(-7) M, and there were found to be 15.3 nmol of sites/mg of protein. On the basis of a value of 46 000 for the molecular weight of the polypeptide, this specific activity corresponds to 0.70 site/polypeptide chain; and there are reasons to believe that the value of the stoichiometry may be one site per functional transporter polypeptide. The complete amino acid composition and the N- and C-terminal residues of the transporter have been determined. Both the intact transporter and transporter that had been partially depleted of carbohydrate by treatment with endo-beta-galactosidase were found to migrate anomalously upon sodium dodecyl sulfate--polyacrylamide gel electrophoresis, relative to the behavior of standard proteins.

  20. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant.

    PubMed

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying

    2012-05-01

    In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.

  1. Ammoxidation of Lignocellulosic Materials: Formation of Nonheterocyclic Nitrogenous Compounds from Monosaccharides

    PubMed Central

    2013-01-01

    Ammoxidized technical lignins are valuable soil-improving materials that share many similarities with native terrestrial humic substances. In contrast to lignins, the chemical fate of carbohydrates as typical minor constituents of technical lignins during the ammoxidation processes has not been thoroughly investigated. Recently, we reported the formation of N-heterocyclic, ecotoxic compounds (OECD test 201) from both monosaccharides (d-glucose, d-xylose) and polysaccharides (cellulose, xylan) under ammoxidation conditions and showed that monosaccharides are a source more critical than polysaccharides in this respect. GC/MS-derivatization analysis of the crude product mixtures revealed that ammoxidation of carbohydrates which resembles the conditions encountered in nonenzymatical browning of foodstuff affords also a multitude of nonheterocyclic nitrogenous compounds such as aminosugars, glycosylamines, ammonium salts of aldonic, deoxyaldonic, oxalic and carbaminic acids, urea, acetamide, α-hydroxyamides, and even minor amounts of α-amino acids. d-Glucose and d-xylose afforded largely similar product patterns which differed from each other only for those products that were formed under preservation of the chain integrity and stereoconfiguration of the respective monosaccharide. The kinetics and reaction pathways involved in the formation of the different classes of nitrogenous compounds under ammoxidation conditions are discussed. PMID:23967905

  2. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  3. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods.

    PubMed

    Sun, Xiaomei; Wang, Haohao; Han, Xiaofeng; Chen, Shangwei; Zhu, Song; Dai, Jun

    2014-12-19

    A fingerprint analysis method has been developed for characterization and discrimination of polysaccharides from different Ganoderma by high performance liquid chromatography (HPLC) coupled with chemometrics means. The polysaccharides were extracted under ultrasonic-assisted condition, and then partly hydrolyzed with trifluoroacetic acid. Monosaccharides and oligosaccharides in the hydrolyzates were subjected to pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and HPLC analysis, which will generate unique fingerprint information related to chemical composition and structure of polysaccharides. The peak data were imported to professional software in order to obtain standard fingerprint profiles and evaluate similarity of different samples. Meanwhile, the data were further processed by hierarchical cluster analysis and principal component analysis. Polysaccharides from different parts or species of Ganoderma or polysaccharides from the same parts of Ganoderma but from different geographical regions or different strains could be differentiated clearly. This fingerprint analysis method can be applied to identification and quality control of different Ganoderma and their products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biosynthesis of yeast glycoproteins. Processing of the oligosaccharides transferred from dolichol derivatives.

    PubMed

    Parodi, A J

    1979-10-25

    The oligosaccharides previously bound to dolichol diphosphate were isolated from Saccharomyces cerevisiae cells incubated with [U-14C]glucose. Five compounds were obtained that migrated with RGlucose of 0.100, 0.120, 0.145, 0.180, and 0.215 on paper chromatography. All of them contained mannose and 2 N-acetylhexosamine residues. The substances that migrated with the three lower RGlucose values had, in addition, glucose units. The structure of the oligosacchardies was very similar if not identical with that of the oligosaccharides isolated from the dolichol diphosphate derivatives synthesized "in vitro" by yeast or rat liver particulate preparations or "in vivo" by dog thyroid or rat liver slices as judged by their migration on paper chromatography, monosaccharide composition, and degradation compounds produced by alpha-mannosidase treatment or acetolysis. The oligosaccharides previously bound to asparagine residues in proteins were isolated from yeast cells which had been pulsed with [U-14C]glucose and chased with medium containing the unlabeled monosaccharide. The samples taken after very short pulses contained four oligosaccharides that migrated with RGlucose of 0.100, 0.120, 0.145, and 0.180 on paper chromatography. The first three compounds contained glucose, mannose, and 2 N-acetylhexosamine residues whereas the one that migrated with a RGlucose of 0.180 was devoid of the former monosaccharide. Samples taken after short chase periods revealed that the compounds that migrated with the lower RGlucose values gradually disappeared and were converted to the oligosaccharide with the higher RGlucose value was they lost their glucose residues. Similar analysis as those mentioned above showed that the structures of these compounds were similar to those of the dolichol diphosphate-bound oligosaccharides. Samples taken after longer chase periods revealed that the oligosaccharide that migrated with a RGlucose of 0.180 was subsequently either enlarged by the addition of more mannose residues or trimmed to smaller sizes.

  5. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods.

    PubMed

    Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong

    2015-11-01

    Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Quantification of Saccharides in Honey Samples Through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Using HgTe Nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung

    2014-07-01

    Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.

  7. Quantification of saccharides in honey samples through surface-assisted laser desorption/ionization mass spectrometry using HgTe nanostructures.

    PubMed

    Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung

    2014-07-01

    Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.

  8. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  9. Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production.

    PubMed

    Huang, Caoxing; He, Juan; Wang, Yan; Min, Douyong; Yong, Qiang

    2015-10-01

    Cooking additive pulping technique is used in kraft mill to increase delignification degree and pulp yield. In this work, cooking additives were firstly applied in the sodium hydroxide pretreatment for improving the bioconversion of bamboo residues to monosaccharides. Meanwhile, steam explosion and sulfuric acid pretreatments were also carried out on the sample to compare their impacts on monosaccharides production. Results indicated that associating anthraquinone with sodium hydroxide pretreatment showed the best performance in improving the original carbohydrates recovery, delignification, enzymatic saccharification, and monosaccharides production. After consecutive pretreatment and enzymatic saccharification process, 347.49 g, 307.48 g, 142.93 g, and 87.15 g of monosaccharides were released from 1000 g dry bamboo residues pretreated by sodium hydroxide associating with anthraquinone, sodium hydroxide, steam explosion and sulfuric acid, respectively. The results suggested that associating cooking additive with sodium hydroxide is an effective pretreatment for bamboo residues to enhance enzymatic saccharification for monosaccharides production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    NASA Astrophysics Data System (ADS)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  11. [Determination of monosaccharides in Sargassum hemiphyllum (Turner) C. Ag. polysaccharides by ion chromatography].

    PubMed

    Ou, Yunfu; Yin, Pinghe; Zhao, Ling

    2006-07-01

    Sargassum hemiphyllum polysaccharides (SHP) was extracted from dry Sargassum hemiphyllum (Turner) C. Ag. powder using 60 - 80 degrees C purified water and then hydrolyzed with 4.0 g/L trifluoroacetic acid at 80 degrees C. Without any derivatization reaction, the determination of monosaccharides in SHP was developed by anion-exchange chromatography with pulsed amperometric detection with an Au working electrode and an Ag/AgCl reference electrode. Monosaccharides were separated on a CarboPac PA10 anion-column (2 mm i. d. x 250 mm) by using isocratic elution consisting of 14 mmol/L sodium hydroxide at a flow rate of 0.20 mL/min. Six monosaccharides, xylose, galactose, arabinose, glucose, rhamnose and fructose, contained in SHP were separated and determined. Their contents in SHP were 2 200, 820, 98, 4 560, 358 and 740 mg/kg, respectively. The recoveries of the six monosaccharides were in the range 86.0% - 108.0%. The detection limits for these monosaccharides ranged from 5.6 to 89.6 microg/kg. The experimental results showed that SHP mainly consisted of xylose and glucose with smaller quantities of galactose, arabinose, rhamnose and fructose. This method is suitable for the determination of monosaccharides without any derivatization reaction at the level of microg/kg in dry algae with high sensitivity and good precision.

  12. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801.

    PubMed

    Rau, Udo; Kuenz, Anja; Wray, Victor; Nimtz, Manfred; Wrenger, Julika; Cicek, Hasan

    2009-01-01

    Trametes versicolor ATCC 200801 secretes 4.1 g L(-1) of exopolysaccharide (EPS) when synthetic minimal medium and low-shear bioreactor cultivation technique are used. Structural and compositional analyses by thin layer chromatography, gas chromatography-mass spectrometry, electrospray ionization tandem mass spectrometry, and nuclear magnetic resonance spectroscopy yielded predominantly glucose and small amounts of galactose, mannose, arabinose, and xylose. The main EPS is composed of beta-1,3/beta-1,6-linked D-glucose molecules which is identical with Schizophyllan but does not possess a triple helical arrangement as secondary structure. Two molar mass fractions were detected by size exclusion chromatography yielding weight-average molecular weights of 4,100 and 2.6 kDa. Protein content varies between 2-3.6% (w/w). The exopolysaccharide is different in the nature of the glycosidic linkage, composition of monosaccharides, protein content, and weight-average molecular weight compared to the well-known polysaccharopeptide (PSP) and polysaccharopeptide Krestin (PSK).

  13. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    PubMed

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A

    2015-03-18

    Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.

  15. Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis1[OA

    PubMed Central

    Wingenter, Karina; Schulz, Alexander; Wormit, Alexandra; Wic, Stefan; Trentmann, Oliver; Hoermiller, Imke I.; Heyer, Arnd G.; Marten, Irene; Hedrich, Rainer; Neuhaus, H. Ekkehard

    2010-01-01

    The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyllab-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO2 release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development. PMID:20709831

  16. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  17. Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo

    DTIC Science & Technology

    2002-06-10

    chain, the core polysaccharide , and the lipid A domain (Figure 1A). The hydrophilic O-specific chain is a polymer of repeating oligosaccharide units...necessary for protection from phagocytosis and complement-mediated lysis in vivo (9, 10). Linking the O-specific chain to lipid A is a core polysaccharide ...region that is relatively conserved among bacterial families on the basis of its monosaccharide composition. Among the common elements in the

  18. Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery.

    PubMed

    Sainio, Tuomo; Kallioinen, Mari; Nakari, Olli; Mänttäri, Mika

    2013-05-01

    Processing of hemicelluloses obtained with pressurized hot water extraction (PHWE) from Scots pine to monosaccharides and other chemicals was investigated experimentally. A process scheme consisting of ultrafiltration, acid hydrolysis, and chromatographic separation was proposed and evaluated. A two-stage ultrafiltration was found necessary for efficient fractionation of the wood extract. It was shown that the monosaccharides can be released from a concentrated hemicellulose fraction with sulfuric acid hydrolysis without a significant loss of yield due to decomposition of monosaccharides. Acid hydrolysate was successfully fractionated with ion exchange chromatography and the hydrolysis acid was recovered for reuse. The product fractions obtained include polyphenols and high molar mass hemicelluloses (from UF stage 1), arabinose (from UF stage 2), as well as acetic acid and a mixture of monosaccharides (xylose, galactose, mannose, glucose) from chromatography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana).

    PubMed

    Raju, T S; Jagadish, R L; Anjaneyalu, Y V

    2001-02-01

    The polysaccharide components present in the scape of Musa paradisiaca (banana) were fractionated into water-soluble (WSP), EDTA-soluble (EDTA-SP), alkali-soluble (ASP) and alkali-insoluble (AISP) polysaccharide fractions [Anjaneyalu, Jagadish and Raju (1997) Glycoconj. J. 14, 507-512]. The EDTA-SP was further fractionated by iso-amyl alcohol into EDTA-SP-A and EDTA-SP-B. The homogeneity of these two polysaccharides was established by repeated precipitation with iso-amyl alcohol, gel-filtration chromatography and sedimentation analysis. The polysaccharides were characterized by monosaccharide composition analysis, methylation linkage analysis, iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase, gold-electron microscopy and X-ray diffraction spectroscopy. Data from all of these studies suggest that EDTA-SP-A is a branched amylose-type alpha-D-glucan and that EDTA-SP-B is a highly branched amylopectin-type polymer. The nature of the branching patterns of these polysaccharides suggests that they are unique to M. paradisiaca.

  20. Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides.

    PubMed

    Cheng, Jing; He, Siyu; Wan, Qiang; Jing, Pu

    2018-03-01

    Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. An evaluation system for characterization of polysaccharides from the fruiting body of Hericium erinaceus and identification of its commercial product.

    PubMed

    Wu, Ding-Tao; Li, Wen-Zhi; Chen, Jun; Zhong, Qian-Xia; Ju, Yao-Jun; Zhao, Jing; Bzhelyansky, Anton; Li, Shao-Ping

    2015-06-25

    An evaluation system including colorimetric assay with iodine and potassium iodide, HPSEC-MALLS-RID analysis, GC-MS analysis, and saccharide mapping based on PACE analysis was proposed for the identification and discrimination of commercial product of Hericium erinaceus based on the chemical characters of polysaccharides in H. erinaceus fruiting body collected from different regions of China. The results showed that the molecular weights, the compositional monosaccharides and the glycosidic linkages of polysaccharides in H. erinaceus collected from different regions of China were similar, respectively. However, polysaccharides in the widely consumed product of H. erinaceus in China were significantly different from those of H. erinaceus fruiting body. The implications from these results were found to be beneficial to improve the quality control of polysaccharides from the H. erinaceus fruiting body, and suggest that the proposed evaluation system could be used as a routine approach for the quality control of polysaccharides in other edible and medicinal mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sources markers in aerosols, oceanic particles and sediments

    NASA Astrophysics Data System (ADS)

    Saliot, A.

    2009-02-01

    This review presents some diagnostic criteria used for identifying and quantifying terrestrial organic matter inputs to the ocean. Coupled to the isotopic composition of total organic carbon, the analysis of stable biomarkers permits to trace higher plant contributions in aerosols, dusts, sedimenting particles and dissolved phase in the water column and ultimately in recent and ancient sediments and soils. Some applications are presented, based on the analysis of n-alkyl compounds by a combination of gas chromatography and mass spectrometry (n-alkanes, n-alkanols, n-alkanoic acids and wax esters). Another approach has been developed using the analysis of macromolecular compounds present in higher plants. Abundances of the phenolic compounds from lignin, benzene carboxylic acids obtained during cupric oxide oxidation, Curie pyrolysis are used to characterise terrestrial organic matter sources and inputs. Finally due to the importance of biomass burning in continent-ocean transfers, biomarkers are presented in the polycyclic aromatic hydrocarbon class and for monosaccharide derivatives from the breakdown of cellulose.

  3. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    PubMed

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru

    2016-08-16

    Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using 1 H, 13 C, 1 H- 1 H DQF-COSY, 1 H- 13 C edited-HSQC, 1 H- 13 C CT-HMBC, and 1 H- 13 C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.

  5. Structural analysis of a sulfated galactan from the tunic of the ascidian Microcosmus exasperatus and its inhibitory effect of the intrinsic coagulation pathway.

    PubMed

    Restrepo-Espinosa, Diana C; Román, Yony; Colorado-Ríos, Jhonny; de Santana-Filho, Arquimedes Paixão; Sassaki, Guilherme Lanzi; Cipriani, Thales R; Martínez, Alejandro; Iacomini, Marcello; Pavão, Mauro S G

    2017-12-01

    Several bioactive sulfated galactans have been isolated from the tunic of different species of ascidians. The biological activity of this kind of polysaccharides has been related with the presence and position of sulfate groups, and by the chemical composition of this kind of polysaccharides. A sulfated galactan (1000RS) was isolated from the tunic of the Brazilian ascidia Microcosmus exasperatus through proteolytic digestion, ethanol precipitation, dialysis and freeze-thaw cycles. Homogeneity and molecular weight were estimated by using size exclusion chromatography. Monosaccharide composition and type of linkage were assessed by Gas chromatography coupled to mass spectrometry and the sulfate content was quantified through gelatin/BaCl 2 method. These experiments along with NMR and FTIR analysis allowed to claim that the galactan backbone is mainly composed of 4-linked α-l-Galp units. In addition, they permitted to establish that some of the galactose residues are sulfated at the 3-position. This sulfated polysaccharide, which has an average molecular mass of 439.5kDa, presents anticoagulant effect in a dose-dependent manner through the inhibition of the intrinsic coagulation pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microdetermination of Sucrose in Plasma with the Anthrone Reagent.

    DTIC Science & Technology

    1979-11-01

    polysaccharides . The initial attempts to use it for selective determinations of monosaccharides in a mixture, however, were frustrated by a mutual...disaccharides and polysaccharides are hydrolyzed to form monosaccharides . In addition, water is split off from the latter to form hydroxaldehyde...supernate were then concentrated to dryness at 80 C with a manifold evaporator after which endogenous monosaccharides were destroyed by the addition of

  7. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; OSAWA, Ro

    2014-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties. PMID:25625033

  8. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Osawa, Ro

    2015-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties.

  9. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine.

    PubMed

    Conde, Artur; Regalado, Ana; Rodrigues, Diana; Costa, J Miguel; Blumwald, Eduardo; Chaves, M Manuela; Gerós, Hernâni

    2015-02-01

    Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan V.

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoidmore » of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.« less

  11. Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.

    PubMed

    Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira

    2013-01-01

    Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.

  12. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye.

    PubMed

    Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-08-01

    Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chemical studies on the polysaccharides of Salicornia brachiata.

    PubMed

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity.

    PubMed

    Mzoughi, Zeineb; Chakroun, Ibtissem; Hamida, Sarra Ben; Rihouey, Christophe; Mansour, Hedi Ben; Le Cerf, Didier; Majdoub, Hatem

    2017-12-01

    The isolation, purification and ozone depolymerization of polysaccharides from Arthrocnemum indicum as well as the evaluation of their antiproliferative capacities were investigated. The ozone treatment for various reaction times (0, 15, 30, 45 and 60min) was employed as degradation method in order to attain lower molecular weight product with stronger antiproliferative property. According to FTIR, 1 H NMR and UV-vis analysis, the main chain of ozonolytic degraded polysaccharides could be preserved. The monosaccharide composition, which was determined via GC/MS analysis, showed that extracted polysaccharides were of type of arabinan-rich pectic polysaccharides. Macromolecular characteristics as well as intrinsic viscosity of the degraded polysaccharides were performed by size exclusion chromatography before and after ozone treatment. These experiments showed that intrinsic viscosity and molecular weight (Mn and Mw) of degraded samples decreased with increase in reaction time. Furthermore, preliminary antiproliferative tests indicated that degraded polysaccharide for 1h showed even better antiproliferative capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages.

    PubMed

    Li, Qiao-Zhen; Wu, Di; Zhou, Shuai; Liu, Yan-Fang; Li, Zheng-Peng; Feng, Jie; Yang, Yan

    2016-06-25

    HPB-3, a heteropolysaccharide, with a mean molecular weight of 1.5×10(4)Da, was obtained from the maturating-stage IV, V and VI fruiting body of Hericium erinaceus, exhibited higher macrophages stimulation activities, was able to upregulate the functional events mediated by activated macrophages, such as production of nitric oxide (NO). Monosaccharide composition analysis showed that HPB-3 comprised l-fucose, d-galactose and d-glucose in the ratio of 5.2:23.9:1. Its chemical structure was characterized by sugar and methylation analysis, along with (1)H and (13)C NMR spectroscopy, including (1)H-(1)H COSY, TOCSY, NOESY, HMQC and HMBC experiments. The results indicated that HPB-3 contained a-(1/6)-linked galactopyranosyl backbone, partially with a side chain composed of α-l-fucopyranose at the O-2 position. The predicted primary structure of the polysaccharide was established as below. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  17. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides.

    PubMed

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2018-01-01

    This article illustrates the basis and applications of methodologies for the analysis of simple and complex carbohydrates by means of CE. After a description of the most common and novel approaches useful for the analysis and characterization of carbohydrates, this review covers the recent advances in CE separation of monosaccharides, oligosaccharides, and polysaccharides. Various CE techniques are also illustrated for the study of carbohydrates derived from complex glyco-derivatives such as glycoproteins and glycolipids, essential for biopharmaceutical and glycoproteomics applications as well as for biomarker detection. Most glycans have no significant UV absorption, and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved electrophoretic profile. We also discuss the recent applications and separations by CE of derivatized simple and more complex carbohydrates with different chromophoric active tags. Overall, this review aims to give an overview of the most recent state-of-the-art techniques used in carbohydrate analysis by CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enzyme-Assisted Extraction Optimization, Characterization and Antioxidant Activity of Polysaccharides from Sea Cucumber Phyllophorus proteus.

    PubMed

    Qin, Yujing; Yuan, Qingxia; Zhang, Yuexing; Li, Jialu; Zhu, Xinjiao; Zhao, Lingling; Wen, Jing; Liu, Jikai; Zhao, Longyan; Zhao, Jinhua

    2018-03-06

    Enzyme-assisted extraction optimization, characterization and in vitro antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus (PPP) were investigated in the present study. The optimal extraction conditions with a yield of 6.44 ± 0.06% for PPP were determined as follows: Extraction time of 2.89 h, ratio of extraction solvent to raw material of 16.26 mL/g, extraction pH of 6.83, exraction temperature of 50 °C and papain concentration of 0.15%. Three purified fractions, PPP-1a, PPP-1b and PPP-2 with molecular weights of 369.60, 41.73 and 57.76 kDa, respectively, were obtained from PPP by chromatography of FPA98Cl and Sepharose CL-6B columns. Analysis of monosaccharide compositions showed that PPP-1a consisted of N -acetyl-galactosamine (GalNAc), galactose (Gal) and fucose (Fuc), PPP-1b of Fuc as the only monosaccharide and PPP-2 of glucuronic acid, GalNAc and Fuc. Sulfate contents of PPP, PPP-1a, PPP-1b and PPP-2 were determined to be 21.9%, 20.6%, 25.2% and 28.0% ( w / w ), respectively. PPP and PPP-1a had higher molecular weight and intrinsic viscosity than those of the PPP-1b and PPP-2. PPP, PPP-1a, PPP-1b and PPP-2 exhibited obvious activities of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide radical and ABTS radical in different extent, which suggested that the polysaccharides from Phyllophorus proteus may be novel agents having potential value for antioxidation.

  19. Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula.

    PubMed

    Xu, Siqi; Zhang, Yongjun; Jiang, Kan

    2016-09-14

    In this study, five different kinds of polysaccharides (AAP1, AAP2, AAP3, AAP4, and AAP5) were extracted from different varieties of Auricularia auricula through an alkali extraction process. Furthermore, the crude polysaccharides were deproteinized by the Sevag method. Auricularia auricula produced in the Shanxi province had the highest content of polysaccharide, 53.02%. The monosaccharide composition was determined by the GC method. Their antioxidant capacities in vitro were assessed by radical-scavenging capacity (DPPH, superoxide, and hydroxyl radicals), metal chelating ability and reducing-power methods. In addition, the evaluation of their antioxidant effects in vivo was performed using the C. elegans model. The yield of crude polysaccharides, monosaccharide composition and antioxidant activity of Auricularia auricula polysaccharides (AAPs) were different among samples from various sources. Among them, the strongest antioxidant activity was shown for AAP1, consisting of arabinose, xylose, 2-deoxy-d-glucose, mannose, glucose, and N-acetyl-d-glucosamine with the molar ratio of 1 : 0.44 : 0.33 : 1.67 : 1 : 0.17. It could scavenge free radicals, up-regulate stress-resistance-related enzymes including superoxide dismutase (SOD) by 70.04 ± 8.75% and CAT by 117.32 ± 8.06% and reduce the level of reactive oxygen species (ROS) in C. elegans under oxidative stress. The present results suggested that variety was an important factor that affects the antioxidant activity of A. auricula polysaccharides.

  20. Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling.

    PubMed

    Hsu, Kai-Di; Wu, Shu-Pei; Lin, Shin-Ping; Lum, Chi-Chin; Cheng, Kuan-Chen

    2017-10-01

    Extracellular polysaccharide (EPS) is one of the major bioactive ingredients contributing to the health benefits of Ganoderma spp. In this study, response surface methodology was applied to determine the optimal culture conditions for EPS production of Ganoderma formosanum. The optimum medium composition was found to be at initial pH 5.3, 49.2 g/L of glucose, and 4.9 g/L of yeast extract by implementing a three-factor-three-level Box-Behnken design. Under this condition, the predicted yield of EPS was up to 830.2 mg/L, which was 1.4-fold higher than the one from basic medium (604.5 mg/L). Furthermore, validating the experimental value of EPS production depicted a high correlation (100.4%) with the computational prediction response model. In addition, the percentage of β-glucan, a well-recognized bioactive polysaccharide, in EPS was 53±5.5%, which was higher than that from Ganoderma lucidum in a previous study. Moreover, results of monosaccharide composition analysis indicated that glucose was the major component of G. formosanum EPS, supporting a high β-glucan percentage in EPS. Taken together, this is the first study to investigate the influence of medium composition for G. formosanum EPS production as well as its β-glucan composition. Copyright © 2017. Published by Elsevier B.V.

  1. Structural characterization of pharmaceutical heparins prepared from different animal tissues.

    PubMed

    Fu, Li; Li, Guoyun; Yang, Bo; Onishi, Akihiro; Li, Lingyun; Sun, Peilong; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007-2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. Copyright © 2013 Wiley Periodicals, Inc.

  2. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10 4  Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Structure analysis and laxative effects of oligosaccharides isolated from bananas.

    PubMed

    Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming

    2012-10-01

    Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine.

  4. Resolving Structural Isomers of Monosaccharide Methyl Glycosides Using Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry

    PubMed Central

    Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.

    2013-01-01

    Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760

  5. Glucose: detection and analysis

    USDA-ARS?s Scientific Manuscript database

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  6. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.

  7. Thiazolidine peracetates: Novel carbohydrate derivatives that assign cis-2,3- from trans-2,3- monosaccharides by GC/MS analysis

    USDA-ARS?s Scientific Manuscript database

    A new type of carbohydrate derivative is described that is suitable for analysis by GC/MS. Reaction of free aldoses (pentoses or hexoses), or the component aldoses arising from acid hydrolysis of polysaccharides or oligosaccharides, with excess cysteamine hydrochloride in pyridine, results in the qu...

  8. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1.

    PubMed

    Yamaguchi, Fuminori; Takata, Maki; Kamitori, Kazuyo; Nonaka, Machiko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-02-01

    'Rare sugars' are defined as monosaccharides that exist in nature but are only present in limited quantities. The development of mass production method of rare sugars revealed some interesting physiological effects of these on animal cells, but the mechanisms have not been well studied. We examined the effect of D-allose on the proliferation of cancer cells and the underlying molecular mechanism of the action. The HuH-7 hepatocellular carcinoma cells were treated with various monosaccharides for 48 h and D-allose was shown to inhibit cell growth by 40% in a dose-dependent manner. D-allose induced G1 cell cycle arrest but not apoptosis. The microarray analysis revealed that D-allose significantly up-regulated thioredoxin interacting protein (TXNIP) gene expression, which is often suppressed in tumor cells and western blot analysis confirmed its increase at protein level. The overexpression of TXNIP also induced G1 cell cycle arrest. Analysis of cell cycle regulatory genes showed p27kip1, a key regulator of G1/S cell cycle transition, to be increased at the protein but not the transcriptional level. Protein interaction between TXNIP and jab1, and p27kip1 and jab1, was observed, suggesting stabilization of p27kip1 protein by the competitive inhibition of jab1-mediated nuclear export of p27kip1 by TXNIP. In addition, increased interaction and nuclear localization of TXNIP and p27kip1 were apparent after D-allose treatment. Our findings surprisingly suggest that D-allose, a simple monosaccharide, may act as a novel anticancer agent via unique TXNIP induction and p27kip1 protein stabilization.

  9. Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.

    PubMed

    Piller, Friedrich; Mongis, Aline; Piller, Véronique

    2015-01-01

    By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.

  10. Structural analysis of the asparagine-linked oligosaccharides of cholinesterases. N-linked carbohydrates of cholinesterases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, A.; Doctor, B.P.

    1995-12-31

    Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of themore » two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.« less

  11. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters. PMID:21073695

  12. Antioxidant activity and optimization of extraction of polysaccharide from the roots of Dipsacus asperoides.

    PubMed

    Tan, Li-Hong; Zhang, Dan; Yu, Bao; Zhao, Sheng-Ping; Wang, Jian-Wei; Yao, Ling; Cao, Wei-Guo

    2015-11-01

    Polysaccharide extraction from Dipsacus asperoides roots (DAP) was proved to possess strong antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-Azobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging activities, inhibiting β-carotene bleaching and strong reducing power. Cell assay demonstrated that the crude DAP possessed antioxidant activity and were effective against H2O2-induced L02 cells injury. Then, response surface methodology (RSM) was applied to optimize the ultrasonic extraction of DAP. The optimum variables given by central composite design (CCD) were as follows: ratio of water to raw material, 38.61mL/g; ultrasonic power, 308.68W; extraction time, 38.61min; and extraction temperature, 89°C. Under these conditions, the maximum yield of DAP obtained was 7.12±0.45%. Moreover, high performance liquid chromatography (HPLC) analysis suggested that the monosaccharide compositions of DAP contained primarily mannose, ribose, glucose, galactose, xylose and arabinose, with a molar ratio of 0.22:0.48:2.29:0.34:1.39:1.41. The results of the present study showed that DAP could be considered as potential sources of natural antioxidants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Polysaccharides from the South African medicinal plant Artemisia afra: Structure and activity studies.

    PubMed

    Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred

    2018-01-01

    Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Separation, purification and primary reverse cholesterol transport study of Cordyceps militaris polysaccharide].

    PubMed

    Guo, Shou-Dong; Cui, Ying-Jie; Wang, Ren-Zhong; Wang, Ren-Yuan; Wu, Wen-Xue; Ma, Teng

    2014-09-01

    The authors designed to separate, purify and determine the monosaccharide composition of the polysaccharide from Cordyceps militaris, and study its effect on reverse cholesterol transport in vivo by isotope tracing assay. Polysaccharides were separate and purify by ion exchange column Q-sepharose Fast Flow and size exclusion column Sephacryl S200HR; the molecular weight and monosaccharide composition of the polysaccharides were determined by high performance gel permeation chromatography and high performance liquid chromatography coming with pre-column derivation, respectively. Finally, three purified polysaccharides CMBW1, CMBW2 and CMYW1 were obtained, their total carbohydrate contents were 87%, 89%, 95%, respectively; their protein contents were 6.5%, 1.3%, 2.8%, respectively; their molecular weights were 772.1, 20.9, 13.2 kDa, respectively; CMBW1 was composed of mannose, glucosamine, rhamnose, glucuronic acid, glucose, galactose and arabinose with a molar ratio of 7.25: 0.17: 1.29: 0.23: 6.30: 11.08: 0.79; CMBW2 was composed of mannose, glucosamine, galactose and arabinose with a molar ratio of 2.40: 0.16: 2.92: 0.24; CMYW1 was composed of mannose, glucosamine, glucuronic acid and glucose with a molar ratio of 0.59: 0.57: 0.45: 25.61. Polysaccharide at 50 mg x kg(-1) could significantly improve the transport of 3H- cholesterol to blood and excretion from feces. All of the three purified polysaccharides CMBW1, CMBW2 and CMYW1 were heteropolysaccharide; and they could improve reverse cholesterol transport in vivo, the underlying mechanisms are being studied.

  15. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass.

    PubMed

    Feng, Junfeng; Hse, Chungyun; Yang, Zhongzhi; Wang, Kui; Jiang, Jianchun; Xu, Junming

    2017-11-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3g catalyst per 18g methanol and 2g bamboo at 160°C with 10min. Approximately 78-86wt% of the six biomass materials were converted into liquid products. After the stepwise extraction and precipitation process, the yields of monosaccharide derivatives and three phenolic compound fractions were 39-45% and 28-32%, respectively. Monosaccharides from holocellulose collected with a high purity of methyl glycosides were higher than 90%. Aromatic derivatives with different weight-molecular distributions were separated into three fractions with more than 80% phenolics. As their similar chemical properties within each fraction, platform chemicals have great commercial potential for producing high-quality chemicals and biofuels using mild upgrading conditions. Copyright © 2017. Published by Elsevier Ltd.

  16. Composition and antioxidant activities of four polysaccharides extracted from Herba Lophatheri.

    PubMed

    Ge, Qing; Mao, Jian-wei; Guo, Xiao-qing; Zhou, Yi-feng; Gong, Jing-yan; Mao, Shuang-rong

    2013-09-01

    Four polysaccharides (BLF80-A, BLF80-B, BLF80-C and BLF80-D) were isolated by hot-water extraction and purified from the leaves of Herba Lophatheri by DEAE-Sepharose fast flow. Their chemical and physical characteristics were determined and antioxidant activities were investigated on the basis of DPPH radical assay, hydroxyl radical assay and superoxide radical assay. The results showed that four polysaccharides exhibited antioxidant activities in a concentration-dependent manner, and the higher molecular weight, the stronger antioxidant activities of polysaccharides. Besides, the monosaccharide compositions of polysaccharides also influence their antioxidant activities. BLP80-D showed the strongest scavenging ability, followed by BLP80-C, BLP80-B and BLP80-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Chemical Characterization of Potentially Prebiotic Oligosaccharides in Brewed Coffee and Spent Coffee Grounds.

    PubMed

    Tian, Tian; Freeman, Samara; Corey, Mark; German, J Bruce; Barile, Daniela

    2017-04-05

    Oligosaccharides are indigestible carbohydrates widely present in mammalian milk and in some plants. Milk oligosaccharides are associated with positive health outcomes; however, oligosaccharides in coffee have not been extensively studied. We investigated the oligosaccharides and their monomeric composition in dark roasted coffee beans, brewed coffee, and spent coffee grounds. Oligosaccharides with a degree of polymerization ranging from 3 to 15, and their constituent monosaccharides, were characterized and quantified. The oligosaccharides identified were mainly hexoses (potentially galacto-oligosaccharides and manno-oligosaccharides) containing a heterogeneous mixture of glucose, arabinose, xylose, and rhamnose. The diversity of oligosaccharides composition found in these coffee samples suggests that they could have selective prebiotic activity toward specific bacterial strains able to deconstruct the glycosidic bonds and utilize them as a carbon source.

  18. Comparative study of Acacia nilotica exudate gum and acacia gum.

    PubMed

    Bhushette, Pravin R; Annapure, Uday S

    2017-09-01

    Over 900 species of Acacia trees are found on earth, most of them produce gums. Acacia nilotica (Babul tree) is one of the major gum-yielding acacia species found in he Indian subcontinent. A. nilotica gum was collected from Maharashtra, India and characterised for its proximate analysis, physicochemical, functional, rheological and thermal properties. These properties further were compared with commercially available Acacia gum (AG). The sugar composition of the gums indicated the presence of arabinose, galactose, and rhamnose in ANG and AG. FTIR spectrums revealed the typical trend of polysaccharides for both the gums, however, the difference was observed in fingerprint region. The rheological outcomes were derived from flow curve measurements of gums at different concentrations and temperatures. Investigations of the flow curves of both gums revealed the diminutive difference in viscosity profile. The concentration difference in the monosaccharides of polysaccharides and proximate analysis of gums could be the responsible for the difference in rheological and thermal properties of gums. However, ANG shows good resemblance with AG and can be substituted for numerous applications in food and pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  20. Qualitation and quantification of specific polysaccharides from Panax species using GC-MS, saccharide mapping and HPSEC-RID-MALLS.

    PubMed

    Cheong, Kit-Leong; Wu, Ding-Tao; Deng, Yong; Leong, Fong; Zhao, Jing; Zhang, Wen-Jie; Li, Shao-Ping

    2016-11-20

    The objective of this study was to qualify and quantify the specific polysaccharides in Panax spp. The analyses of specific polysaccharides were performed by using GC-MS, saccharide mapping and high performance size exclusion chromatography (HPSEC) coupled with multi angle laser light scattering (MALLS) and refractive index detector (RID). Results showed that compositional monosaccharides were the same in different species of Panax and composed of rhamnose, arabinose, galacturonic acid, mannose, glucose, and galactose. Saccharide mapping results showed that glycosides linkages, which existed in specific polysaccharides from Panax spp., were similar. Additionally, the content of specific polysaccharides of P. ginseng, P. notoginseng and P. quinquefolium were 17.9-20.5mg/g, 11.9-15.0mg/g, and 9.9-13.3mg/g, respectively. P. ginseng, P. notoginseng, and P. quinquefolium could be clustered into three groups using both hierarchical cluster analysis and principal component analysis. The results possessed great potential in characterization and content determination of specific polysaccharides in Panax spp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.

    PubMed

    Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M

    1985-01-01

    Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.

  2. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    PubMed Central

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  3. NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey.

    PubMed

    Schievano, Elisabetta; Tonoli, Marco; Rastrelli, Federico

    2017-12-19

    The knowledge of carbohydrate composition is greatly important to determine the properties of natural matrices such as foodstuff and food ingredients. However, because of the structural similarity and the multiple isomeric forms of carbohydrates in solution, their analysis is often a complex task. Here we propose an NMR analytical procedure based on highly selective chemical shift filters followed by TOCSY, which allows us to acquire specific background-free signals for each sugar. The method was tested on raw honey samples dissolved in water with no other pretreatment. In total, 22 sugars typically found in honey were quantified: 4 monosaccharides (glucose, fructose, mannose, rhamnose), 11 disaccharides (sucrose, trehalose, turanose, maltose, maltulose, palatinose, melibiose and melezitose, isomaltose, gentiobiose nigerose, and kojibiose), and 7 trisaccharides (raffinose, isomaltotriose, erlose, melezitose, maltotriose, panose, and 1-kestose). Satisfactory results in terms of limit of quantification (0.03-0.4 g/100g honey), precision (% RSD: 0.99-4.03), trueness (bias % 0.4-4.2), and recovery (97-104%) were obtained. An accurate control of the instrumental temperature and of the sample pH endows an optimal chemical shift reproducibility, making the procedure amenable to automation and suitable to routine analysis. While validated on honey, which is one of the most complex natural matrices in terms of saccharides composition, this innovative approach can be easily transferred to other natural matrices.

  4. Preparation, characterization and antioxidant activity of polysaccharide from spent Lentinus edodes substrate.

    PubMed

    Zhu, Hongji; Tian, Li; Zhang, Lei; Bi, Jingxiu; Song, Qianqian; Yang, Hui; Qiao, Jianjun

    2018-06-01

    This study explored the potential of spent Lentinus edodes substrate, a by-product of mushroom industries causing environmental pollution, serving as materials to produce antioxidant polysaccharide. The extraction process of spent Lentinus edodes substrate polysaccharide (SLSP) was optimized and the effects of drying methods on chemical composition, morphological property and antioxidant activity were investigated. Results showed that freeze-dried SLSP (SLSP-F) exhibited the best quality in terms of the polysaccharide yield (13.00%) and antioxidant activity. The EC 50 values of SLSP-F on DPPH, ABTS and superoxide anion radicals was 0.051mg/mL, 0.379mg/mL, 0.719mg/mL, respectively, which was significantly lower than that of freeze-dried Lentinus edodes polysaccharide (LP-F). After purification by Sephadex G-150, the purified SLSP-F (PSP) has a molecular weight of 16.77kDa. Compared with LP-F, PSP has more reducing sugars and uronic acids in chemical composition and higher contents of xylose, glucose and galactose in monosaccharide composition. FT-IR and NMR spectroscopy analysis revealed that PSP has both α and β glycosidic bonds and massive acetyl groups, which is different from LP-F mainly composed of 1, 3 linked α-D-Manp residue with some acetyl groups. The findings provided a reliable approach for the development of antioxidant polysaccharide from spent Lentinus edodes substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Thiazolidine peracetates: carbohydrate derivatives that readily assign cis-, trans-2,3- monosaccharides by GC/MS analysis

    USDA-ARS?s Scientific Manuscript database

    A novel group of carbohydrate derivatives is described that uniquely assign cis/trans-2,3 aldose stereoisomers at low nanomolar concentrations. Aldopentoses or aldohexoses, or component aldoses from hydrolysis of polysaccharides or oligosaccharides, react with cysteamine in pyridine to give quantita...

  6. Seed gum of Stryphnodendron barbatiman (Barbatimao)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reicher, F.; Leitner, S.C.S.; Fontana, J.D.

    1991-12-31

    Stryphnodendron barbatiman (barbatimao) is a native tree that is found throughout the {open_quotes}Cerrados,{close_quotes} a region of Central Brazil. Plant seeds, on water extraction, furnished 28 g% galactomannan (dry-weight basis), the monosaccharide composition of which (galactose to mannose ratio, 1.0:1.5) fits in the legume heteromannan group. This seed gum, after Sevag deproteinization, still retained 6 g% of associated protein and had a molecular weight of about 1.8 MD on gel filtration. A high intrinsic viscosity (1300 cP) was observed for the polysaccharide sample obtained after reflux of the crushed seeds in 80% aqueous methanol.

  7. Cell wall modifications of two Arabidopsis thaliana ecotypes, Col and Sha, in response to sub-optimal growth conditions: An integrative study.

    PubMed

    Duruflé, Harold; Hervé, Vincent; Ranocha, Philippe; Balliau, Thierry; Zivy, Michel; Chourré, Josiane; San Clemente, Hélène; Burlat, Vincent; Albenne, Cécile; Déjean, Sébastien; Jamet, Elisabeth; Dunand, Christophe

    2017-10-01

    With the global temperature change, plant adaptations are predicted, but little is known about the molecular mechanisms underlying them. Arabidopsis thaliana is a model plant adapted to various environmental conditions, in particular able to develop along an altitudinal gradient. Two ecotypes, Columbia (Col) growing at low altitude, and Shahdara (Sha) growing at 3400m, have been studied at optimal and sub-optimal growth temperature (22°C vs 15°C). Macro- and micro-phenotyping, cell wall monosaccharides analyses, cell wall proteomics, and transcriptomics have been performed in order to accomplish an integrative analysis. The analysis has been focused on cell walls (CWs) which are assumed to play roles in response to environmental changes. At 15°C, both ecotypes presented characteristic morphological traits of low temperature growth acclimation such as reduced rosette diameter, increased number of leaves, modifications of their CW composition and cuticle reinforcement. Altogether, the integrative analysis has allowed identifying several candidate genes/proteins possibly involved in the cell wall modifications observed during the temperature acclimation response. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural, functional and pH sensitive release characteristics of water-soluble polysaccharide from the seeds of Albizia lebbeck L.

    PubMed

    Kumar Varma, Chekuri Ashok; Jayaram Kumar, K

    2017-11-01

    Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterization of a novel antibacterial glycopeptide produced by Penicillium sp. M03.

    PubMed

    Yang, W H; Zhang, W C; Lu, X M; Jiang, G S; Gao, P J

    2009-04-01

    To isolate a novel antibiotic termed AF from fermentation broth of Penicillium sp. M03 and to examine its antimicrobial activity, biological properties and structure characteristics. Sephadex LH-20 and HPLC were used to purify AF from fermentation broth of Penicillium sp. M03. The antimicrobial activity of AF was evaluated with the agar diffusion test. Amino acid and monosaccharide composition of AF was analysed by a HITACHI 835 detector and HPLC assay, respectively. Matrix-assisted laser desorption time of flight mass spectrometry, FT-IR and (1)H nuclear magnetic resonance spectra analyses were performed to examine the initial structure of AF. Eighty milligrams of AF was isolated as white powder from 1-l Penicillium sp. M03 fermentation broth. It consists of five amino acid and two monosaccharide residues and the molecular weight of it was 1017, and it was stable to beta-lactamase, heat, acid and alkali. AF showed inhibitory activity to a wide range of bacteria, particularly to multidrug-resistant Staphylococcus aureus. AF was a novel antibacterial glycopeptide with a broad inhibitory spectrum to pathogenic bacteria including multidrug-resistant agents. Furthermore, it is difficult to generate bacteria resistant to AF. Characterization of AF made it a potential antibiotic to fight against antibiotic-resistant bacterial pathogens.

  10. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models.

    PubMed

    Lim, Sun Ha; Kim, Yaesil; Yun, Ki Na; Kim, Jin Young; Jang, Jung-Hee; Han, Mee-Jung; Lee, Jongwon

    2016-12-08

    Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.

  11. Chemical modification of citrus pectin: Structural, physical and rheologial implications.

    PubMed

    Fracasso, Aline Francielle; Perussello, Camila Augusto; Carpiné, Danielle; Petkowicz, Carmen Lúcia de Oliveira; Haminiuk, Charles Windson Isidoro

    2018-04-01

    The present study aimed to investigate the physical, structural and rheological modifications caused by the chemical modification process of citrus pectin. Therefore, three commercial citrus pectins with different degree of esterification were chemically modified by sequential alkali and acidic hydrolytic process to produce modified citrus pectins (MCP) with special properties. The molar mass (M w ), degree of esterification (DE), monosaccharide composition, 13 C NMR spectra, homogeneity, morphology (SEM) and rheological behavior of both native and modified citrus pectins (MCP) were investigated. The chemical modification reduced the acid uronic content (up to 28.3%) and molar mass (up to 29.98%), however, showed little influence on the degree of esterification of native pectins. Modified citrus pectins presented higher amounts of neutral monosaccharides, mainly galactose, arabinose and rhamnose, typical of the Ramnogalacturonana-I (RG-I) region. Rheological tests indicated that the native and modified citrus pectins presented pseudoplastic behavior, however, the MCP samples were less viscous, compared to the native ones. Modified samples presented better dissolution in water and less strong gels, with good stability during oscillatory shearing at 25°C. This study aims to better understand the implications that chemical modifications may impose on the structure of citrus pectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins.

    PubMed

    Anumula, K R; Du, P

    1999-11-15

    Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.

  13. Determination of monosaccharides and sugar alcohols in tissues from diabetic rats by high-performance liquid chromatography with pulsed amperometric detection.

    PubMed

    Tomiya, N; Suzuki, T; Awaya, J; Mizuno, K; Matsubara, A; Nakano, K; Kurono, M

    1992-10-01

    A sensitive and simple high-performance liquid chromatographic method has been developed to determine the concentration of monosaccharides and sugar alcohols in animal tissues. Five neutral monosaccharides (D-glucose, D-galactose, D-mannose, D-fructose, and D-ribose) and three neutral sugar alcohols (myo-inositol, glycerol, and D-sorbitol) predominate in the renal cortices and sciatic nerves of rats. These monosaccharides and sugar alcohols were extracted with distilled water, purified by deproteinization with ethanol, a Sep-Pak C18 cartridge, and columns of Dowex 50W-X8 and Amberlite CG-400, then separated on Ca2+ and Pb2+ cation-exchange columns, eluted with deionized distilled water at 80 degrees C, and detected using integrated pulsed amperometry. About 10 pmol of each sugar was detectable with a signal-to-noise ratio of 10:1. D-Glucose, D-fructose, D-sorbitol, and D-mannose were higher in both the renal and sciatic tissues of diabetic rats than in those of normal animals. D-Ribose and glycerol were higher in the renal cortex of diabetic animals.

  14. A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges.

    PubMed

    Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L

    2013-04-01

    An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.

  15. Characterization of polysaccharides with marked inhibitory effect on lipid accumulation in Pleurotus eryngii.

    PubMed

    Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling

    2013-09-12

    Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Optimum Extraction, Characterization, and Antioxidant Activities of Polysaccharides from Flowers of Dendrobium devonianum

    PubMed Central

    Wang, Donghui; Fan, Bei; Wang, Yan; Zhang, Lijing

    2018-01-01

    Response surface methodology (RSM) was employed to optimize the conditions for the ultrasonic-assisted extraction (UAE) of polysaccharides from the flowers of Dendrobium devonianum. The optimal conditions for the maximum yields of DDFPs are as follows: an extraction temperature of 63.13°C, an extraction time of 53.10 min, and a water-to-raw material ratio of 22.11 mL/g. Furthermore, three fractions (DDFPs30, DDFPs50, and DDFPs70) were prepared from Dendrobium devonianum flowers polysaccharides (DDFPs) by the stepwise ethanol precipitation method. The DDFPs50 exhibited the highest antioxidant activity compared to the other fractions. The molecular weight, polydispersity, and conformation of these fractions were also characterized. In particular, the monosaccharide composition analysis of the DDFPs indicates that mannose and glucose are the primary components, similar to those of the D. officinale plant. This study provides a rapid extraction technology and essential information for the production of DDFPs, which could be potentially used as healthcare food. PMID:29581723

  18. A sensitive and efficient method for determination of N-acetylhexosamines and N-acetylneuraminic acid in breast milk and milk-based products by high-performance liquid chromatography via UV detection and mass spectrometry identification.

    PubMed

    Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You

    2016-02-01

    A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  20. The effects of high fructose syrup.

    PubMed

    Moeller, Suzen M; Fryhofer, Sandra Adamson; Osbahr, Albert J; Robinowitz, Carolyn B

    2009-12-01

    High fructose corn syrup (HFCS) has become an increasingly common food ingredient in the last 40 years. However, there is concern that HFCS consumption increases the risk for obesity and other adverse health outcomes compared to other caloric sweeteners. The most commonly used types of HFCS (HFCS-42 and HFCS-55) are similar in composition to sucrose (table sugar), consisting of roughly equal amounts of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in disaccharide form in sucrose. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. The advantage to food manufacturers is that the free monosaccharides in HFCS provide better flavor enhancement, stability, freshness, texture, color, pourability, and consistency in foods in comparison to sucrose. Because the composition of HFCS and sucrose is so similar, particularly on absorption by the body, it appears unlikely that HFCS contributes more to obesity or other conditions than sucrose does. Nevertheless, few studies have evaluated the potentially differential effect of various sweeteners, particularly as they relate to health conditions such as obesity, which develop over relatively long periods of time. Improved nutrient databases are needed to analyze food consumption in epidemiologic studies, as are more strongly designed experimental studies, including those on the mechanism of action and relationship between fructose dose and response. At the present time, there is insufficient evidence to ban or otherwise restrict use of HFCS or other fructose-containing sweeteners in the food supply or to require the use of warning labels on products containing HFCS. Nevertheless, dietary advice to limit consumption of all added caloric sweeteners, including HFCS, is warranted.

  1. Cyclic polyalcohols: fingerprints to identify the botanical origin of natural woods used in wine aging.

    PubMed

    Alañón, M Elena; Díaz-Maroto, M Consuelo; Díaz-Maroto, Ignacio J; Vila-Lameiro, Pablo; Pérez-Coello, M Soledad

    2011-02-23

    Cyclic polyalcohol composition of 80 natural wood samples from different botanical species, with the majority of them used in the oenology industry for aging purposes, has been studied by gas chromatography-mass spectrometry (GC-MS) after its conversion into their trimethylsilyloxime derivatives. Each botanical species showed a different and specific cyclic polyalcohol profile. Oak wood samples were characterized by the richness in deoxyinositols, especially proto-quercitol. Meanwhile, other botanical species showed a very low content of cyclic polyalcohols. The qualitative and quantitative study of cyclic polyalcohols was a useful tool to characterize and differentiate woods of different botanical origin to guarantee the authenticity of chips used in the wine-aging process. Monosaccharide composition was also analyzed, showing some quantitative differences among species, but cyclic polyalcohols were the compounds that revealed the main differentiation power.

  2. Chemical Compositions and Macrophage Activation of Polysaccharides from Leon's Mane Culinary-Medicinal Mushroom Hericium erinaceus (Higher Basidiomycetes) in Different Maturation Stages.

    PubMed

    Li, Qiao-Zhen; Wu, Di; Chen, Xia; Zhou, Shuai; Liu, Yanfang; Yang, Yan; Cui, Fengjie

    2015-01-01

    We studied the effect of the maturation stage on the chemical compositions and macrophage activation activity of polysaccharides from the culinary-medicinal mushroom Hericium erinaceus. Results showed that total polysaccharides increased, whereas protein content decreased with the maturation stage development of fruiting body. Nine polysaccharide fractions, 3 from each of the maturity stages IV (small fungal spine stage), V (mid-fungal spine stage) and VI (mature), were prepared using the gradient ethanol precipitation method. The polysaccharide fraction HP4A isolated from the maturating-stage (stage IV) fruiting body had a significant difference from the fractions HP5A (stage V) and HP6A (stage VI) in the molecular weight distribution and monosaccharide compositions. Immunostimulating tests revealed that the polysaccharide fraction HP6 isolated from the mature stage (stage VI) fruiting body presented higher macrophage activation activity. Our findings provided important information for the harvest and use of H. erinaceus with higher qualities and functional benefits.

  3. 78 FR 33354 - Xanthan Gum From Austria: Final Determination of Sales at Less Than Fair Value

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...

  4. Immunological and biochemical analysis of glycosylated surface antigens and lipophosphoglycan of Tritrichomonas foetus.

    PubMed

    Singh, B N; BonDurant, R H; Campero, C M; Corbeil, L B

    2001-08-01

    Immunoaffinity-purified TF1.17 adhesin antigen was compared biochemically and antigenically to Tritrichomonas foetus (TF) lipophosphoglycan (LPG) and a soluble glycosylated antigen (SGA) released from T. foetus and implicated in pathogenesis and immunity. The monoclonal antibodies (Mabs TF1.15 and TF1.17) specific for a glycosylated TF1.17 antigen were previously shown to prevent adhesion of the T. foetus parasites to bovine vaginal epithelial cells and to mediate killing by bovine complement. SGA was isolated from T. foetus-conditioned buffer and purified by octyl-Sepharose hydrophobic column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SGA showed a major SGA1 component (approximately 190 kDa) and a minor SGA2 component (50-70 kDa), which migrated close to TF-LPG and TF1.17. The carbohydrate and lipid compositional analyses of affinity-purified TF1.17 and SGA2 by high-performance liquid chromatography (HPLC) and gas-liquid chromatography revealed the presence of monosaccharides and fatty acids as found in TF-LPG. All antigens contained terminal fucose as determined by alpha-fucosidase digestion followed by HPLC. ELISA and western blots were used to further characterize these glycosylated antigens and to analyze their relationships. The Mabs TF1.15 and TF1.17 reacted very strongly to TF-LPG and SGA2. as well as TF1.17 antigen, indicating that these molecules share common epitopes. These Mabs did not react with the SGA1 component either in ELISA and western blot analyses. Also, the monosaccharide composition of SGA1 was very different from the other three antigen, suggesting SGA1 was different from LPG, SGA2 and TF1.17. Although LPG reacted with Mabs to native TF1.17 antigen, LPG did not induce an immune response in cattle with the same route and adjuvant used to produce strong antibody responses to the native antigen. The latter response suggests that the tightly bound peptide present in the immunoaffinity-purified antigen is necessary for induction of a response to (an) epitope(s) in TF-LPG and TF1.17. Furthermore, vaginal fluid from T. foetus-infected heifers and serum from a cow with a T. foetus-associated pyometra recognized both TF1.17 and TF-LPG in western blots. These results suggest that T. foetus LPG and SGA2 are related to TF1.17 antigen, which was previously shown to play an important role in the pathogenesis and host response in bovine trichomoniasis.

  5. Effect of aging on lignin content, composition and enzymatic saccharification in Corymbia hybrids and parental taxa between years 9 and 12

    DOE PAGES

    Healey, Adam L.; Lupoi, Jason S.; Lee, David J.; ...

    2016-07-02

    Corymbia (a eucalypt) is an important forestry genus and a potential lignocellulosic bioenergy feedstock. The composition of the lignocellulosic cell wall significantly impacts pretreatment efficiency and conversion to biofuel but is variable and changes with age. In this study, we estimated Klason lignin content, composition, and monosaccharide (glucose and xylose) release after enzymatic saccharification of untreated and hydrothermally pretreated biomass from Corymbia parental species Corymbia torelliana (CT), Corymbia citriodora subsp. variegata (spotted gum; CCV), and interspecific F1 hybrids (CT x CCV) at ages 9 and 12 years from planting. Analysis of lignin composition derived from syringyl/guaiacyl monolignols (S/G) found significantmore » differences among taxa, with CT S/G ratios (2.2 and 2.0) being significantly lower than CCV (2.6 and 2.3) or hybrids (2.5 and 2.3) at ages 9 and 12 respectively. In general, enzymatic saccharification yields from untreated biomass were significantly different among taxa, with CT (113 and 75 mg g -1) and hybrids (108 and 81 mg g -1) yielding significantly higher glucose from untreated biomass than CCV (82 and 56 mg g -1) at ages 9 and 12 respectively. Comparison of traits within taxa between ages 9 and 12 found S/G ratios and glucose yields from untreated biomass were significantly lower in CT, CCV and hybrid taxa. As a result, the formation of lignocellulosic cell walls is complex, influenced by genetics and age of material, requiring optimization of rotation age for biofuel production and other industrial processes.« less

  6. Effect of aging on lignin content, composition and enzymatic saccharification in Corymbia hybrids and parental taxa between years 9 and 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healey, Adam L.; Lupoi, Jason S.; Lee, David J.

    Corymbia (a eucalypt) is an important forestry genus and a potential lignocellulosic bioenergy feedstock. The composition of the lignocellulosic cell wall significantly impacts pretreatment efficiency and conversion to biofuel but is variable and changes with age. In this study, we estimated Klason lignin content, composition, and monosaccharide (glucose and xylose) release after enzymatic saccharification of untreated and hydrothermally pretreated biomass from Corymbia parental species Corymbia torelliana (CT), Corymbia citriodora subsp. variegata (spotted gum; CCV), and interspecific F1 hybrids (CT x CCV) at ages 9 and 12 years from planting. Analysis of lignin composition derived from syringyl/guaiacyl monolignols (S/G) found significantmore » differences among taxa, with CT S/G ratios (2.2 and 2.0) being significantly lower than CCV (2.6 and 2.3) or hybrids (2.5 and 2.3) at ages 9 and 12 respectively. In general, enzymatic saccharification yields from untreated biomass were significantly different among taxa, with CT (113 and 75 mg g -1) and hybrids (108 and 81 mg g -1) yielding significantly higher glucose from untreated biomass than CCV (82 and 56 mg g -1) at ages 9 and 12 respectively. Comparison of traits within taxa between ages 9 and 12 found S/G ratios and glucose yields from untreated biomass were significantly lower in CT, CCV and hybrid taxa. As a result, the formation of lignocellulosic cell walls is complex, influenced by genetics and age of material, requiring optimization of rotation age for biofuel production and other industrial processes.« less

  7. Characterization and Anti-Inflammatory Potential of an Exopolysaccharide from Submerged Mycelial Culture of Schizophyllum commune

    PubMed Central

    Du, Bin; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2017-01-01

    Background and Purpose: Mushroom polysaccharides have attracted attention in food and pharmacology fields because of their many biological activities. The structure characterization and anti-inflammatory activity of exopolysaccharide from Schizophyllum commune were evaluated in present study. Methods: An exopolysaccharide from a submerged mycelial fermentation of S. commune was obtained using DEAE-52 cellulose and Sephadex G-150 chromatography. The molecular weight (MW), monosaccharide compositions, chemical compositions, methylation analysis, circular dichroism studies, Fourier transform infrared spectroscopy, nuclear magnetic resonance (NMR) spectra, scanning electron microscopy (SEM), and atomic force microscopy were investigated. Results: It was a homogeneous protein-bound heteropolysaccharide with MW of 2,900 kDa. The exopolysaccharide contained a β-(1→3) glycosidic backbone, (1→4)- and (1→6)- glycosidic side chain, and high amount of glucose. The anti-inflammatory activity of exopolysaccharide was assessed by inhibiting the production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and 5- lipoxygenase (5-LOX) from macrophages. This exopolysaccharide significantly (p < 0.05) inhibited lipopolysaccharides-induced iNOS expression levels in the cells in a dose-dependent manner. Conclusion: It indicated significant anti-inflammatory effects, which showed that exopolysaccharide might be exploited as an effective anti-inflammatory agent for application in NO-related disorders such as inflammation and cancer. PMID:28555107

  8. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds.

    PubMed

    Zheng, Quan; Ren, Daoyuan; Yang, Nana; Yang, Xingbin

    2016-10-01

    Artemisia sphaerocephala Krasch seeds polysaccharides have been reported to have a variety of important biological activities. However, effective extraction of Artemisia sphaerocephala Krasch seeds polysaccharides is still an unsolved issue. In this study, the orthogonal rotatable central composite design was employed to optimize ultrasound-assisted extraction conditions of Artemisia sphaerocephala Krasch seeds polysaccharides. Based on a single-factor analysis method, ultrasonic power, extraction time, solid-liquid ratio and extraction temperature were shown to significantly affect the yield of polysaccharides extracted from the A. sphaerocephala Krasch seeds. The optimal conditions for extraction of Artemisia sphaerocephala Krasch seeds polysaccharides were determined as following: ultrasonic power 243W, extraction time 125min, solid-liquid ratio 64:1 and extraction temperature 64°C, where the experimental yield was 14.78%, which was well matched with the predicted value of 14.81%. Furthermore, ASKP was identified as a typical heteropolysaccharide with d-galacturonic acid (38.8%) d-galactose (20.2%) and d-xylose (15.5%) being the main constitutive monosaccharides. Moreover, Artemisia sphaerocephala Krasch seeds polysaccharides exhibited high total reducing power and considerable scavenging activities on DPPH, hydroxyl and superoxide radicals, in a concentration-dependent manner in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    PubMed Central

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a molar ratio of 223:48:1. Although starch was also found, its content was less than 10%. This result indicated that the major polysaccharides in D. officinale stems were non-starch polysaccharides, which might be mannan polysaccharides. The polysaccharides formed granules and were stored in plastids similar to starch grains, were localized in D. officinale stems by semi-thin and ultrathin sections. CELLULOSE SYNTHASE-LIKE A (CSLA) family members encode mannan synthases that catalyze the formation of mannan polysaccharides. To determine whether the CSLA gene from D. officinale was responsible for the synthesis of mannan polysaccharides, 35S:DoCSLA6 transgenic lines were generated and characterized. Our results suggest that the CSLA family genes from D. officinale play an important role in the biosynthesis of mannan polysaccharides. PMID:28261235

  10. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  11. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE PAGES

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...

    2015-04-23

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  12. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular moieties correlated to variability in the temperature response of organic matter decomposition, as assessed by Q10. Thus, 2D NMR methods, and their combination with multivariate analysis, can greatly improve analysis of litter and SOM composition, thereby facilitating elucidation of their roles in biogeochemical and ecological processes that are so critical to foresee associated feedback mechanisms on SOM turnover as a result of global environmental change.

  13. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    PubMed

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  14. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    PubMed

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  15. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    PubMed

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. O-Fucose Monosaccharide of Drosophila Notch Has a Temperature-sensitive Function and Cooperates with O-Glucose Glycan in Notch Transport and Notch Signaling Activation*

    PubMed Central

    Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O.; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji

    2015-01-01

    Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions. PMID:25378397

  17. 78 FR 13379 - Xanthan Gum from Austria and China; Scheduling of the Final Phase of an Antidumping Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...

  18. 78 FR 2251 - Xanthan Gum From Austria: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... limited to, sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation... consists of a backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)- P-DGlucuronic acid-(1,2) - a-D- Mannose monosaccharide units. The...

  19. Large Scale Green Synthesis of 1,2,4-Butanetriol

    DTIC Science & Technology

    2007-03-31

    processing Corn fiber was pretreated by AFEX and the resultant glucan was enzymatically converted to monosaccharide . Saccharification of the cellulose...After removing the residual solids from the hydrolyzate solution, solubilized hemicellulose and monosaccharides were measured in solution, where the...resulting hemicellulose was 62% polysachharide by mass. The component polysaccharide content of the hemicellulose was 35% xylan, 18% arabinan, 6

  20. Wound Healing: Biochemical Pathways and in vivo Studies.

    DTIC Science & Technology

    1980-02-01

    glycosaminoglycans (mucopolysaccharides) and glycoproteins (proteins with covalently bound hetero- polysaccharide chains). The matrix portion of the collagen unit is...the monosaccharides to the more complex mucopolysaccharides and glycoproteins and their role in the production and structure of collagen is evolving...glucosamine, and hexoses--glucose, galac- tose, and mannose. The monosaccharide pattern was similar in the wound tissue of the three species. These

  1. Na/sup +/-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells. [Chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmich, G.A.; Randles, J.

    1975-01-01

    A monosaccharide transport system in addition to the active Na/sup +/-dependent system characteristic of the brush border surface of vertebrate intestinal tissue has been identified in isolated chick intestinal epithelial cells. The newly described system differs in several characteristics from the Na/sup +/-dependent process, including function in the absence of Na/sup +/; a high sensitivity to phloretin, relative insensitivity to phlorizin; different substrate specificity; and a very high K/sub T/ and V/sub max/. The system apparently functions only in a facilitated diffusion manner so that it serves to move monosaccharide across the cell membrane down its chemical gradient. An appreciablemore » fraction of total sugar efflux occurs via the Na/sup +/-independent carrier from cells which have accumulated sugar to a steady state. Phloretin selectively blocks this efflux so that a normal steady-state sugar gradient of seven- to eightfold is transformed to a new steady-state gradient which is greater than 14-fold. Locus of the new system is tentatively ascribed to the serosal cell surface where it would serve for monosaccharide transfer between enterocyte and lamina propria of the villus. (auth)« less

  2. Protective effects of cyanidin-3-rutinoside against monosaccharides-induced protein glycation and oxidation.

    PubMed

    Thilavech, Thavaree; Ngamukote, Sathaporn; Abeywardena, Mahinda; Adisakwattana, Sirichai

    2015-04-01

    Cyanidin-3-rutinoside (C3R), a naturally occurring anthocyanin, is present in various fruits and vegetables as a colorant. C3R has been well characterized and demonstrated a number of biological activities attributed to its antioxidant properties. The present study compared the effectiveness of C3R against monosaccharide-induced protein glycation and oxidation in vitro using bovine serum albumin (BSA).The results demonstrated that C3R (0.125-1.00 mM) inhibited the formation of fluorescent AGEs in ribose-glycated BSA (2-52%), fructose-glycated BSA (81-93%), glucose-glycated BSA (30-74%) and galactose-glycated BSA (6-79%).Correspondingly, C3R (1.00 mM) decreased the level of N(ɛ)-(carboxymethyl) lysine (56-86%) in monosaccharide-induced glycation in BSA. C3R also reduced the level of fructosamine, β-amyloid cross structure, protein carbonyl content as well as the depletion of thiol in BSA/monosaccharide system. In summary, C3R might offer a new promising antiglycation agent for the prevention of diabetic complications by inhibiting AGE formation and oxidation-dependent protein damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in Polar Front and Sub-Antarctic Zones indicated that ribose seems to be a labile sugar, rapidly degraded especially in Polar Front Zone whereas it was below the detection limit in Sub-Antarctic zone where a high bacterial activity was recorded in surface waters. Our results also showed that the relative abundance of deoxysugars (fucose + rhamnose) increased overtime in Sub-Antarctic Zone (deoxyinitial = 18%, deoxyfinal = 23%) and Polar Front Zone (deoxyinitial = 6%, deoxyfinal = 21%) indicating that these sugars are preserved during organic matter decomposition.

  4. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    PubMed

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15:0, ai15:0 and 18:1ω7c which likely resulted from production of these bacterial fatty acids during bacterial reworking of the organic matter. Differences between loss rate constants for individual monosaccharides were not significant. An exception was ribose that was produced and lost relatively rapidly, which may be related to ribose being an important component of RNA. Losses of bulk 13C and 15N were closely coupled despite partly being present in different biochemicals and partly being derived from different microbial sources, indicating no selective preservation of either C or N during organic matter diagenesis.

  6. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  7. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera.

    PubMed

    Tao, Zhi-Peng; Sun, Le-Chang; Qiu, Xu-Jian; Cai, Qiu-Feng; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2016-07-01

    In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides. A cellulase was purified from the hepatopancreas of abalone by ammonium sulfate precipitation and two-steps column chromatography. The molecular weight of the cellulase was 45 kDa on SDS-PAGE. Peptide mass fingerprinting analysis yielded 103 amino acid residues, which were identical to cellulases from other species of abalone. Substrate specificity analysis indicated that the cellulase is an endo-1,4-β-glucanase. Hydrolysis of seaweed Porphyra haitanensis polysaccharides by the enzyme produced oligosaccharides with degree of polymerisation of two to four, whose monosaccharide composition was 58% galactose, 4% glucose and 38% xylose. The oligosaccharides revealed 2,2'-diphenyl-1-picrylhydrazyl free radical as well as hydrogen peroxide scavenging activity. It is feasible and meaningful to utilise cellulase from the viscera of abalone for preparation of functional oligosaccharides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. A comb-like branched β-D-glucan produced by a Cordyceps sinensis fungus and its protective effect against cyclophosphamide-induced immunosuppression in mice.

    PubMed

    Hu, Ting; Jiang, Chenbo; Huang, Qilin; Sun, Fengyuan

    2016-05-20

    An exopolysaccharide (EPS) was fractionated from fermentation media of a Cordyceps sinensis fungus (Cs-HK1) by ethanol precipitation at 2/5 volume ratio of ethanol/media. Its structural characteristics were elucidated by FT-IR, GC, GC-MS, 1D and 2D NMR combined with periodate oxidation, Smith degradation, partial acid hydrolysis, and methylation analysis. Furthermore, the immunomodulatory activity of EPS was evaluated by the model of cyclophosphamide-induced immunosuppression. The results from monosaccharide composition and partial acid hydrolysis indicated that EPS almost consisted of glucose excluding a trace amount of mannose. GC-MS and NMR analysis further confirmed EPS had a linear backbone of (1→3)-β-D-glucopyranosyl residues with a single (1→6)-β-D-glucopyranosyl side-branching unit for every three β-D-glucopyranosyl residues, showing a comb-like β-D-glucan with short and intensive branches, which was responsible for high viscosity. Moreover, EPS could significantly enhance immune organs and stimulate the release of major cytokines TNF-α and INF-γ, suggesting that EPS exhibited protective effect in immunocompromised mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale.

    PubMed

    Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan

    2016-08-01

    In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro.

    PubMed

    de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C

    2013-08-01

    The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P < 0.05) hydrolyzed monosaccharide concentrations. The SCFsd blends had intermediate to high amounts of monosaccharides released as a result of in vitro hydrolytic digestion. The SCFsd:pullulan blends were more digestible in vitro (approximately 91%; P < 0.05) than SCFsd:fructose or SCFsd:sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P < 0.05). The SCF:pullulan:sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in decreased glycemic and insulinemic responses compared with the maltodextrin control (P < 0.05) using a canine model. The addition of pullulan reduced the glycemic response compared with maltodextrin at all concentrations, but only 50:50 SCFsd:pullulan resulted in a reduction of the glycemic response compared with SCFsd alone (P < 0.05). The addition of fructose and sorbitol in the blends had the greatest impact on glycemic and insulinemic responses, even at concentrations as low as 5% of the blends. Overall, SCF and their blends may prove beneficial as components of low glycemic foodstuffs.

  11. Development of Vaccines to Prevent Wound Infections Due to Anerobic Bacteria

    DTIC Science & Technology

    1981-09-01

    lot variability of the monosaccharide constituents 4 IV. Safety and toxicity testing of Lot 1 of polysaccharide antigens from B. fragilis strains 9343...the polysaccharide into monosac- charides followed by conversion of these to alditol acetates demonstrates several interesting monosaccharides present...rats with the capsular polysaccharide of B. fragilis iniuces protection to subsequent challenge with this organism. We have prpviously shown that in

  12. Pectinase hydrolysis of Dendrobium huoshanense polysaccharide and its effect on protein nonenzymatic glycation.

    PubMed

    Zha, Xue-Qiang; Li, Xiao-Long; Zhang, Hai-Lin; Cui, Shao-Hua; Liu, Jian; Wang, Jun-Hui; Pan, Li-Hua; Luo, Jian-Ping

    2013-10-01

    The aim of this study was to investigate the inhibitory effects of molecular weight alteration of Dendrobium huoshanense polysaccharide on protein nonenzymatic glycation. For this purpose, one homogeneous active polysaccharide DHPD1 with molecular weight 3.2 kDa was extracted from D. huoshanense. GC analysis showed that DHPD1 was mainly composed of glucose, arabinose, galactose in a molar ratio of 0.023:1.023:0.021 with a trace of mannose and xylose. In order to get DHPD1-derived fragments with different molecular weight, response surface methodology was employed to optimize the enzymatic degradation conditions. The maximum reducing sugar production (0.399 mg/mL) was obtained under an optimal condition including pectinase dosage 126 U/mL, reaction pH 4.46 and reaction temperature 48 °C. By applying this condition, three DHPD1-derived fragments with different molecular weights were obtained through changing the hydrolysis time. Infrared spectroscopy analysis indicated that the backbone structure of DHPD1 was not destroyed by pectinase hydrolysis. Monosaccharide composition analysis showed that pectinase preferred to liberate glucose from DHPD1. The inhibitory action of DHPD1 on protein nonenzymatic glycation reduced with the decrease of molecular weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Qualitative and quantitative analysis of specific polysaccharides in Dendrobium huoshanense by using saccharide mapping and chromatographic methods.

    PubMed

    Deng, Yong; Chen, Ling-Xiao; Han, Bang-Xing; Wu, Ding-Tao; Cheong, Kit-Leong; Chen, Nai-Fu; Zhao, Jing; Li, Shao-Ping

    2016-09-10

    Qualitative and quantitative analysis of specific polysaccharides from ten batches of Dendrobium huoshanense were performed using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector (HPSEC-MALLS-RID), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) and saccharide mapping based on polysaccharides analysis by using carbohydrate gel electrophoresis (PACE) and high performance thin layer chromatography (HPTLC). Results showed that molecular weights, the radius of gyrations, and contents of specific polysaccharides in D. huoshanense were ranging from 1.16×10(5) to 2.17×10(5)Da, 38.8 to 52.1nm, and 9.9% to 19.9%, respectively. Furthermore, the main monosaccharide compositions were Man and Glc. Indeed, the main glycosidic linkages were β-1,4-Manp and β-1,4-Glcp, and substituted with acetyl groups at O-2 and O-3 of 1,4-linked Manp. Moreover, results showed that PACE and HPTLC fingerprints of partial acidic and enzymatic hydrolysates of specific polysaccharides were similar, which are helpful to better understand the specific polysaccharides in D. huoshanense and beneficial to improve their quality control. These approaches could also be routinely used for quality control of polysaccharides in other medicinal plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms.

    PubMed

    Su, Chun-Han; Lai, Min-Nan; Lin, Ching-Chuan; Ng, Lean-Teik

    2016-05-01

    Mushroom polysaccharides have been known to possess various pharmacological activities. However, information on their chemical and biological differences between mushrooms remains limited. In this study, we aimed to examine the differences in physicochemical characteristics of polysaccharides prepared from Antrodia cinnamomea (AC-P), Coriolus versicolor (CV-P), Grifola frondosa (GF-P), Ganoderma lucidum (GL-P), and Phellinus linteus (PL-P), followed by evaluating their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Results showed that under similar conditions of preparation, the monosaccharide composition of polysaccharides varied between different mushrooms, and glucose was the predominant monosaccharide, followed by galactose and mannose. AC-P and GF-P contained the highest amount of (1,3;1,6)-β-D-glucans. The degree of branching of (1,3;1,6)-β-D-glucans in all polysaccharides ranged from 0.21 to 0.26, with the exception of GF-P (0.38). The molecular weights of different polysaccharides showed diverse distributions; AC-P, CV-P, and GF-P contained two major macromolecular populations (< 30 and >200 kDa) and possessed triple-helix conformation, whereas GL-P (10.2 kDa) and PL-P (15.5 kDa) only had a low molecular weight population without triple-helix structure. These polysaccharides showed different inhibitory potency on NO production in LPS-stimulated RAW264.7 cells.

  15. Characterization and in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates.

    PubMed

    Thanzami, K; Malsawmtluangi, C; Lalhlenmawia, H; Seelan, T Veenus; Palanisamy, Selvamani; Kandasamy, Ruckmani; Pachuau, Lalduhsanga

    2015-09-01

    The objective of the present study is to characterize the physicochemical properties and to determine the in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates collected from Northeast India. The total carbohydrate, uronic acid and protein contents, monosaccharide composition and the molecular weight distribution of the purified gum was determined. The powder flow property and preliminary compressibility test were performed on the dried gum exudates. Fourier transform infrared spectroscopy (FTIR) study was performed to analyze the functional groups present in the structure. Differential scanning calorimetry (DSC) and thermogravimetry (TGA/DTA) analyses were performed to study the thermal stability of the gum. The antioxidant properties of the gum were evaluated by determining 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl scavenging activities and reducing power. The total carbohydrate and protein contents of the gum were found to be 75.17±3.21% and 2.60±1.05% respectively. The viscosity of 2% aqueous solution of the gum exhibited non-Newtonian type of flow showing pH dependent swelling. Arabinose and galactose were found to be the main monosaccharides present in the gum exudates and the molecular weight distribution of the gum was also found to be polydispersed. Results from DPPH, hydroxyl scavenging and reducing power studies showed the gum possesses antioxidant properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-07-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.

  17. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-01-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud-Ocean Study (ASCOS) in August 2008, particulate and dissolved organic matter (POM, DOM) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  18. Biological Sciences Division 1991 Programs

    DTIC Science & Technology

    1991-08-01

    missing offending polysaccharides and 2) identify monosaccharide peaks in gas chromatography that we know are not holdfast- derived and can ignore. 3-On...ACCOMPLISHMENTS: 1. The polysaccharidic component of the extracellular slime of Flexibacter maritimus is predominantly a glucose polymer. In collaboration...are due to the presence of polypeptide(s), not polysaccharide as predicted. W.H. Schwarz (John Hopkins) has performed rheological analysis of this

  19. Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains

    PubMed Central

    Merino, Susana; de Mendoza, Elena; Canals, Rocío; Tomás, Juan M.

    2015-01-01

    The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens. PMID:26082990

  20. Mandelalides A-D, cytotoxic macrolides from a new Lissoclinum species of South African tunicate.

    PubMed

    Sikorska, Justyna; Hau, Andrew M; Anklin, Clemens; Parker-Nance, Shirley; Davies-Coleman, Michael T; Ishmael, Jane E; McPhail, Kerry L

    2012-07-20

    Mandelalides A-D are variously glycosylated, unusual polyketide macrolides isolated from a new species of Lissoclinum ascidian collected from South Africa, Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela Metropole. Their planar structures were elucidated on submilligram samples by comprehensive analysis of 1D and 2D NMR data, supported by mass spectrometry. The assignment of relative configuration was accomplished by consideration of homonuclear and heteronuclear coupling constants in tandem with ROESY data. The absolute configuration was assigned for mandelalide A after chiral GC-MS analysis of the hydrolyzed monosaccharide (2-O-methyl-α-L-rhamnose) and consideration of ROESY correlations between the monosaccharide and aglycone in the intact natural product. The resultant absolute configuration of the mandelalide A macrolide was extrapolated to propose the absolute configurations of mandelalides B-D. Remarkably, mandelalide B contained the C-4' epimeric 2-O-methyl-6-dehydro-α-L-talose. Mandelalides A and B showed potent cytotoxicity to human NCI-H460 lung cancer cells (IC(50), 12 and 44 nM, respectively) and mouse Neuro-2A neuroblastoma cells (IC(50), 29 and 84 nM, respectively).

  1. Analysis of N-acetylaminosugars by CE: a comparative derivatization study.

    PubMed

    Rustighi, Isabella; Campa, Cristiana; Rossi, Marco; Semeraro, Sabrina; Vetere, Amedeo; Gamini, Amelia

    2009-08-01

    N-linked or O-linked glycans derived from glycoprotein processing carry, an N-acetylglucosamine or an N-acetylgalactosamine respectively, at their reducing termini. The presence of the N-acetylamino group on C-2 of reducing sugar residues has been reported to hamper the derivatization reaction with a chromophore at the anomeric centre. In this paper N-acetyllactosamine, N-acetylglucosamine, N-acetylgalactosamine and several other neutral monosaccharides are coupled to three different dyes (4-aminobenzonitrile, 2-aminopyridine, 2-aminobenzoic acid (2-AA)) by reductive amination and analysed by CE with UV detection. The 2-AA derivatives showed the lowest concentration detection limits, varying approximately in the 2-3 muM range for the saccharides tested including the N-acetamido ones. The possibility to separate and detect with the same sensitivity ten 2-AA-labelled monosaccharides mainly found in mammalian or plant glycoproteins in a single CE run is highlighted. The analysis has been carried out in less than 25 min using the borate-complexation method in CZE mode. The influence of the strength of the acid used as catalyst in the chemical modification of the sugars with 2-AA is also shortly addressed.

  2. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic.

    PubMed

    Peng, Tianyuan; Wooke, Zachary; Pohl, Nicola L B

    2018-03-22

    Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Stereospecific generation and analysis of α- and β-hemiacetals of monosaccharides in gas phase.

    PubMed

    Shioiri, Yuki; Suzuki, Katsuhiko; Daikoku, Shusaku; Kurimoto, Ayako; Ito, Yukishige; Kanie, Osamu

    2013-12-15

    A series of Boc-protected 4-aminobutyl α- and β-glycosides of commonly found neutral monosaccharides were synthesized. The sodium adducted ions of these individual molecules were used in producing corresponding α- and β-anomers of hemiacetal species under collision-induced dissociation (CID) conditions. The Boc group was successfully removed under CID conditions producing 4-aminobutyl glycosides, which were then used as the precursors. An intramolecular attack of the aglyconic nitrogen atom onto C-1 position of aglycon assisted to leave hemiacetal ion species without affecting anomeric configurations. In this manner, stereospecific syntheses of sugar hemiacetals were first achieved in gas phase. The dissociation of sodium cation from a series of these hemiacetals was further studied according to energy-resolved mass spectrometry. In this study, it was found that all the sugar hemiacetals could be distinguished even if they have same m/z values. Furthermore, the order of affinity of Na(+) toward the hemiacetals was determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Analyte-Size-Dependent Ionization and Quantification of Monosaccharides in Human Plasma Using Cation-Exchanged Smectite Layers.

    PubMed

    Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya

    2015-08-04

    Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.

  5. The Utilization of Sugars and Other Substances by Drosophila,

    DTIC Science & Technology

    1948-03-01

    many compounds, including sugars, polysaccharides , polyhydric alcohols, aliphatic acids, etc. 2. In equivalent solutions, ’the order of usefulness of...span’between flies fed on disaccharides and their constituent monosaccharides . 4’. Doubtful sugars can usually be resolved into toxic, reprl- lent...The molaritie.s of the sugar solutions were varied so as to equate the monosaccharides and disaccharides. The longevity of flies fed on di- and

  6. Studies of Biosilicification; The Role of Proteins, Carbohydrates and Model Compounds in Structure Control

    DTIC Science & Technology

    2005-12-31

    No. carbons Pore volume data. Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. To...interwoven polysaccharide chains embedded in a gel matrix of galacturonic acid rich polysaccharides connected by calcium bridges. This network also...picomolar levels). Also, it allows the determination of intact monosaccharides without pre or post column derivatisation, decreasing the time of

  7. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass

    Treesearch

    Junfeng Feng; Chungyun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3 g catalyst per 18 g methanol and 2 g bamboo at 160 °C with 10 min. Approximately 78–86 wt%...

  8. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa).

    PubMed

    Sungur, Tolga; Aslim, Belma; Karaaslan, Cagtay; Aktas, Busra

    2017-10-01

    Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼10 8  CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by which L. gasseri strains result in strain specific anti-proliferative activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An inventory of factors that affect polysaccharide production by Phaeocystis globosa

    NASA Astrophysics Data System (ADS)

    van Rijssel, M.; Janse, I.; Noordkamp, D. J. B.; Gieskes, W. W. C.

    2000-08-01

    Phaeocystis material contains polysaccharides that are built from at least eight different monosaccharides. Differences have been reported between the carbohydrate composition of different Phaeocystis species, and also between samples taken from Phaeocystis globosa blooms in different areas. In order to elucidate factors that could play a role in determining variation in carbohydrate composition and production, a number of Phaeocystis globosa strains were studied under laboratory conditions. Although there was a clear distinction of a northern and a southern cluster in the Phaeocystis globosa strains based on RAPD analysis, the differences in the composition of the mucopolysaccharides were relatively small. The contribution of glucose, however, ranged from 7-85% of total sugars. A strain that was cultured in seawaters of diverse origin produced polysaccharides of a different composition, suggesting the effect of environmental factors. The presence of bacteria affected neither the amount, nor the composition of the carbohydrates that were produced by Phaeocystis globosa. Glucose is part of both the intracellular polysaccharide pool and of the mucopolysaccharides in the colony matrix. Using specific digestion of the intracellular chrysolaminaran by laminarinase, the distribution of polysaccharides over different pools could be assessed. During growth of an axenic, mucus-producing strain, the portion of glucose present as chrysolaminaran appeared to increase. The polyglucose that was not digested by laminarinase remains unidentified. This study shows that environmental factors rather than strain differences determine differences in the sugar composition of Phaeocystis globosa, especially with respect to the glucose content of the material. A difference in the contribution of glucose could be correlated to the portion of cells in the culture that are not in the colonies. Our study emphasises that for studying polysaccharide dynamics in Phaeocystis globosa it is important to be able to discriminate between the different polysaccharide pools. Preliminary results of an enzymatic approach were promising

  10. The Effect of Inorganic Particles on Metabolism by Marine Bacteria.

    DTIC Science & Technology

    1982-05-01

    Wright, 1974; 1978). Glucose is the dominant monosaccharide in seawater I (Mopper et al., 1980). It is found in seawater at concentrations ranging from... monosaccharides in seawater (Stumm and Morgan, 1981). However, concentrations of specific amino acids are lower than those reported for glucose (Lee and Bada...Fletcher, 1979B; this study). However there is also an active process involved in attachment; this is the secretion of polysaccharide holdfast material

  11. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.

    2014-07-08

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  12. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  13. Importance of sulfate groups for the macrophage-stimulating activities of ascophyllan isolated from the brown alga Ascophyllum nodosum.

    PubMed

    Jiang, Zedong; Ueno, Mikinori; Nishiguchi, Tomoki; Abu, Ryogo; Isaka, Shogo; Okimura, Takasi; Yamaguchi, Kenichi; Oda, Tatsuya

    2013-10-18

    To investigate the role of sulfate groups on the macrophage-stimulating activities of ascophyllan, we prepared desulfated ascophyllan, and its effects on RAW264.7 cells were compared with native ascophyllan. The chemical structural analysis revealed that nearly 21% of sulfate groups of ascophyllan were removed by desulfation reaction, while no significant changes in the molecular mass and monosaccharide composition occurred after desulfation. NO- and cytokine- (TNF-α and G-CSF) inducing activities of the desulfated ascophyllan on RAW264.7 cells were significantly decreased as compared to native ascophyllan. Furthermore, the activity of desulfated ascophyllan to induce reactive oxygen species (ROS) generation from RAW264.7 cells decreased to almost negligible level. Our results suggest that the level of sulfate groups of ascophyllan is an important structural element responsible for the macrophage-stimulating activities. Probably, even the limited removal of sulfate residues sensitive to desulfation reaction may result in significant decrease in the bioactivities of ascophyllan. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    PubMed

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  15. Physicochemical characteristics and antioxidant activity of Prunus cerasoides D. Don gum exudates.

    PubMed

    Malsawmtluangi, C; Thanzami, K; Lalhlenmawia, H; Selvan, Veenus; Palanisamy, Selvamani; Kandasamy, Ruckmani; Pachuau, Lalduhsanga

    2014-08-01

    The physicochemical properties and antioxidant activity of Prunus cerasoides D. Don gum exudates was investigated in this study. The total carbohydrate and protein content were found to be 73.72±2.44% and 2.33±1.25%, respectively. Analysis of monosaccharide composition by HPLC-RI system after acid hydrolysis of the gum showed the presence of arabinose, galactose, glucose, rhamnose and xylose. The molecular weight of the gum was also found to be 5.55×10(5)Da. FTIR and DSC studies showed characteristics typical of a natural polysaccharide. The viscosity of 2% aqueous solution of the gum exhibited non-Newtonian type of flow and the gum was also found to show pH dependent swelling. Determination of the angle of repose, Carr's index and Hausner ratio indicate the gum possess fairly good powder flow property. The antioxidant properties of the gum were evaluated by determining DPPH and hydroxyl scavenging activities, reducing power and total phenolic contents which showed the gum possess antioxidant property. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf.

    PubMed

    Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon

    2016-06-01

    Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots.

    PubMed

    Serrato, Rodrigo V; Balsanelli, Eduardo; Sassaki, Guilherme L; Carlson, Russell W; Muszynski, Artur; Monteiro, Rose A; Pedrosa, Fábio O; Souza, Emanuel M; Iacomini, Marcello

    2012-11-01

    Lipid-A was isolated by mild acid hydrolysis from lipopolysaccharides extracted from cells of Herbaspirillum seropedicae, strain SMR1, and from two mutants deficient in the biosynthesis of rhamnose (rmlB⁻ and rmlC⁻). Structural analyzes were carried out using MALDI-TOF and derivatization by per-O-trimethylsilylation followed by GC-MS in order to determine monosaccharide and fatty acid composition. De-O-acylation was also performed to determine the presence of N-linked fatty acids. Lipid-A from H. seropedicae SMR1 showed a major structure comprising 2-amino-2-deoxy-glucopyranose-(1→6)-2-amino-2-deoxy-glucopyranose phosphorylated at C4' and C1 positions, each carrying a unit of 4-amino-4-deoxy-arabinose. C2 and C2' positions were substituted by amide-linked 3-hydroxy-dodecanoic acids. Both rhamnose-defective mutants showed similar structure for their lipid-A moieties, except for the lack of 4-amino-4-deoxy-arabinose units attached to phosphoryl groups. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis.

    PubMed

    Xu, Nuo; Ren, Zhenzhen; Zhang, Jianjun; Song, Xinling; Gao, Zheng; Jing, Huijuan; Li, Shangshang; Wang, Shouxian; Jia, Le

    2017-02-01

    The aims of this work were designed to investigate the hepatoprotective and antioxidant effects of acidic- and alkali-extractable mycelia zinc polysaccharides (AcMZPS, AlMZPS) from Pleurotus eryngii var. tuoliensis on high-fat-high-cholesterol emulsion-induced hyperlipidemic mice. The in vivo experiments demonstrated that both AcMZPS and AlMZPS had potential hepatoprotective effects by significantly decreasing the levels of LDL-C, VLDL-C, TC, TG, ALT, AST, ALP, MDA and LPO, and remarkably increasing the HDL-C, SOD, GSH-Px, and CAT in serum lipid/liver homogenate, respectively. In addition, four polysaccharide fractions of AcMZPS-1, AcMZPS-2, AlMZPS-1, and AlMZPS-2, purified from AcMZPS and AlMZPS using DEAE chromatography, respectively, were subjected to monosaccharide composition analysis and valuated for the in vitro antioxidant activity. The results obtained in present study suggested that AcMZPS, AlMZPS and their purified fractions could be used as functional foods and natural drugs in preventing the hyperlipidemia and non-alcoholic fatty liver. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons.

    PubMed

    Wood, Jennifer A; Tan, Hwei-Ting; Collins, Helen M; Yap, Kuok; Khor, Shi Fang; Lim, Wai Li; Xing, Xiaohui; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B; Tucker, Matthew R

    2018-03-13

    Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  20. Analysis of Prebiotic Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.

    Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.

  1. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette

    NASA Astrophysics Data System (ADS)

    Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader

    2013-09-01

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j

  2. Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage.

    PubMed

    Kyriacou, Marios C; Soteriou, Georgios A; Rouphael, Youssef; Siomos, Anastasios S; Gerasopoulos, Dimitrios

    2016-05-01

    The configuration of watermelon fruit quality was analysed in a multi-factorial approach accounting for the effects of grafting, harvest maturity and postharvest storage. Diploid, seeded, hybrid cv. Pegasus, cultivated as scion on interspecific hybrid squash rootstock TZ148 and as non-grafted control, was stored at 25 °C following sequential harvests from the onset of ripening to over-maturity. Delayed rootstock-mediated climax in pulp lycopene and chroma was observed, while both were heightened by postharvest storage when harvest preceded full maturity. Pulp firmness was increased by 46.5% on TZ148, while postharvest decrease in firmness was non-significant. Non-grafted fruits attained their peak in pulp carbohydrate content earlier during ripening. Monosaccharide content declined and sucrose content increased both preharvest and postharvest; overall sugar content declined by 4.3% during storage. Pulp acidity decreased steadily with ripening but was moderately increased by grafting. Citrulline content increased by 12.5% on TZ148; moreover, it climaxed with ripening and declined with storage only in grafted fruit. Grafting enhances pulp texture and bioactive composition. Potential suppression of sugar content as a result of grafting is minimized at full commercial maturity. Brief postharvest ambient storage enhances pulp lycopene and chroma, especially in early-picked fruit, notwithstanding the depletion of monosaccharides and citrulline and a limited deterioration of texture. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Variations in the proportion of glycolytic/non-glycolytic energy substrates modulate sperm membrane integrity and function in diluted boar samples stored at 15-17 degrees C.

    PubMed

    Medrano, A; Peña, A; Rigau, T; Rodrìguez-Gil, J E

    2005-10-01

    In this work the role of energy substrates in the maintenance of boar-sperm survival during storage at 15-17 degrees C was tested. For this purpose, boar spermatozoa were stored at 15-17 degrees C in several defined media with separate combinations of a monosaccharide, glucose and a non-monosaccharide, either citrate or lactate, energy substrates. Our results indicate that the medium containing the highest concentration of glucose together with low lactate levels was the most suitable to maintain sperm quality for 168 h at 15-17 degrees C. This was confirmed after observation of the results of the percentages of viability and altered acrosomes, the osmotic resistance test, the hyperosmotic resistance test and the rhythm of L-lactate production. The survival ability of boar sperm was greater in this experimental medium than in the standard Beltsville Thawing Solution extender, which contains only glucose as an energy substrate, although at a concentration far higher than that of all the tested experimental media. Our results indicate that the exact composition, more than the pure quantity of energy substrates, is a very important modulatory factor which affects survival ability of boar sperm in refrigeration. Thus, the exact combination of several energy substrates would have to be taken into account when optimizing the design of commercial extenders to store boar spermatozoa at 15-17 degrees C.

  4. Characterization of the Metabolic Flux and Apoptotic Effects of O-Hydroxyl- and N-Acyl-Modified N-Acetylmannosamine Analogs in Jurkat Cells*

    DTIC Science & Technology

    2004-04-30

    a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid...12, 13), a linear polysaccharide composed of entirely of -2,8-linked sialic acid, which is implicated in the complex neural processes (14), synaptic...acetylated monosaccharides (22–25). In a previous study, we demonstrated that various acetylated ManNAc analogs are used with up to 900-fold increased

  5. Exploring the relative reactivities of the hydroxyl groups of monosaccharides by molecular modeling and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Box, V. G. S.; Evans-Lora, T.

    2000-01-01

    The molecular modeling program STR3DI.EXE, and its molecular mechanics module, QVBMM, were used to simulate, and evaluate, the stereo-electronic effects in the mono-alkoxides of the 4,6- O-ethylideneglycopyranosides of allose, mannose, galactose and glucose. This study has confirmed the ability of these molecular modeling tools to predict the regiochemistry and reactivity of these sugar derivatives, and holds considerable implications for unraveling the chemistry of the rare monosaccharides.

  6. Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457.

    PubMed

    Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar

    2008-08-01

    Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457 is reported. Construction of the tetrasaccharide as its 4-methoxyphenyl glycoside was achieved by condensation of less abundant monosaccharide units such as, D-galactofuranose, N-acetyl-D-galactosamine and N-acetylneuraminic acid. The synthetic strategy consists of the preparation of suitably protected required monosaccharide intermediates from the commercially available reducing sugars and high yielding glycosylation reactions.

  7. University Research Initiative Program for Combat Readiness, Annual Report for the Period June 1, 1997 - June 30, 1998

    DTIC Science & Technology

    1998-05-01

    polysaccharides ) can be interpreted by matching to these chemical markers. Differentiation of the aldohexose monosaccharides or determination of simple...experiments involving qualitative and quantitative analysis of monomeric carbohydrate content in bacterial polysaccharides by Py-GC/MS has been...residues in the group-specific polysaccharide of group B streptococci8 and differentiation of B. anthracis strains by a pyrolysis product from its

  8. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.

    PubMed

    Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin

    2015-01-01

    Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Structural elucidation of anti-metastatic rhamnogalacturonan II from the pectinase digest of citrus peels (Citrus unshiu).

    PubMed

    Park, Hye-Ryung; Park, Su Beom; Hong, Hee-Do; Suh, Hyung Joo; Shin, Kwang-Soon

    2017-01-01

    The aim of this study was to characterize a polysaccharide found in citrus peels with an anti-metastatic property. CPE-II was purified by the pectinase digestion of citrus peels. During in vivo lung metastasis of Colon26-M3.1, administration of 10μg of CPE-II per mouse showed 81.3% inhibition of metastasis. CPE-II consists of 15 different monosaccharides and 22 different glycosyl linkages, characteristic of rhamnogalacturonan II (RG-II). The primary structure was elucidated based on sugar composition, methylation analysis, oligosaccharide analysis, and sequencing using GC, GC-MS, LC-MS, and ESI-MS/MS analyses. Sequential degradation using partial acid hydrolysis indicated that CPE-II contained Rhap-(1→5)-Kdo, Araf-(1→5)-Dha, an AceA-containing nonasaccharide, and an uronic acid-rich oligosaccharide in addition to an α-(1→4)-galacturono-oligosaccharide main chain. The molecular weight of CPE-II was observed to decrease from 9 to 5kDa at a pH value of <2.0, as observed by HPSEC. Thus, we propose that the anti-metastatic CPE-II is primarily present as an RG-II dimer. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation.

    PubMed

    Zhang, Hai-Lin; Cui, Shao-Hua; Zha, Xue-Qiang; Bansal, Vibha; Xue, Lei; Li, Xiao-Long; Hao, Ran; Pan, Li-Hua; Luo, Jian-Ping

    2014-06-15

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from jellyfish skin (JSP). The optimum parameters were found to be raw material to water ratio 1:7.5 (w/v), extraction temperature 100°C and extraction time 4h. Under these conditions, the JSP yield reached 1.007 mg/g. Papain (15 U/mL) in combination with Sevag reagent was beneficial in removing proteins from JSP. After precipitation with ethanol at final concentration of 40%, 60% and 80% in turn, three polysaccharide fractions of JSP1, JSP2 and JSP3 were obtained from JSP, respectively. The three fractions exhibited different physicochemical properties with respect to molecular weight distribution, monosaccharide composition, infrared absorption spectra, and glycosyl bond composition. In addition, JSP3 showed strong inhibitory effects on oxidized low-density lipoprotein (oxLDL) induced conversion of macrophages into foam cells, which possibly attributed to the down-regulation of some atherogenesis-related gene expressions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Physicochemical, functional and rheological investigation of Soymida febrifuga exudate gum.

    PubMed

    Bhushette, Pravin R; Annapure, Uday S

    2018-05-01

    Acacia gum is a well-known and most used exudate gum. High solubility with low viscosity is one of the best property of this gum. Many studies were conducted to find out a substitute for acacia gum but very few gum had shown properties as good as acacia gum. The exudates collected from Soymida febrifuga also shows high solubility with low viscosity as acacia gum. Purified Soymida febrifuga gum (SFG) was characterised for physicochemical, functional, rheological and thermal properties. The FTIR spectra of SFG revealed a typical trend of polysaccharides. The monosaccharide composition of the gums indicated the presence arabinose, galactose, and ribose. Element composition of SFG shows resemblance with AG. However, the molecular weight of SFG is less than the AG. The rheological outcome was derived from flow curve measurements of gum at different concentrations and temperatures. Alikeness was observed in Viscosity profile of both the gums. SFG shows semblance with AG and can be use in food and pharmaceutical industry. Copyright © 2018. Published by Elsevier B.V.

  12. Purification, structural characterization and anticoagulant properties of fucosylated chondroitin sulfate isolated from Holothuria mexicana.

    PubMed

    Mou, Jiaojiao; Wang, Cong; Li, Wenjing; Yang, Jie

    2017-05-01

    A novel fucosylated chondroitin sulfate (HmG) was isolated from sea cucumber Holothuria mexicana, the structure of which was characterized by monosaccharide composition, disaccharide composition, IR, 1 H and 13 C NMR spectrum, additionally with two dimensional NMR spectrum of degraded HmG (DHmG). The backbone of HmG was identified as chondroitin 6-O sulfate, while the major O-4 sulfated fucose branches linked to O-3 position of glucuronic acid in almost every disaccharide unit. The anticoagulant activities of HmG and DHmG were assessed and compared with heparin and low molecular weight heparin. The results indicated that HmG and DHmG both could significantly prolong the activated partial thrombo-plastin time, and the properties were well related to its molecular weight. DHmG showed similar anticoagulant properties to low molecular weight heparin with less bleeding risks, making it a safer anticoagulant drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall.

    PubMed

    Dongowski, G; Sembries, S

    2001-09-01

    The action of three different commercial enzyme combinations on apple cell wall material has been examined in a model system under conditions of mash and pomace treatment by using an alcohol-insoluble substance prepared from apples. A part of the total dietary fiber, for example, galacturonan (pectin), appeared in the soluble fraction after enzymatic mash treatment. The soluble fraction increased intensely during pomace treatment. Furthermore, enzyme actions caused a change in the water-binding capacity of residues as well as changes in the monosaccharide composition and in the molecular weight distribution of saccharides in filtrates (soluble parts). The extent of decomposition of cell wall material and the increase of soluble oligomeric and/or polymeric dietary fiber components are caused by both the composition (pectinases, cellulases, and hemicellulases) and the activities of the enzyme preparations. The model experiments allow an insight into the reactions occurring during enzyme action on the plant cell wall, for example, during apple juice production using pectolytic and cellulolytic enzyme preparations.

  14. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis of a sugar-organometallic compound 1,1‧-difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhao, Shanyu; Cooper, Daniel C.; Xu, Haixun; Zhu, Pinghua; Suggs, J. William

    2013-01-01

    In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1‧-dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1‧-difurfurylferrocene 3. 1,1‧-Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the α-Fe2O3 or Fe3O4 nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  16. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae.

    PubMed

    Yin, Huifang; Bultema, Jelle B; Dijkhuizen, Lubbert; van Leeuwen, Sander S

    2017-06-15

    β-Galactosidase enzymes are used in the dairy industry to convert lactose into galactooligosaccharides (GOS) that are added to infant formula to mimic the molecular sizes and prebiotic functions of human milk oligosaccharides. Here we report a detailed analysis of the clearly different GOS profiles of the commercial β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Also the GOS yields of these enzymes differed, varying from 48.3% (B. circulans) to 34.9% (K. lactis), and 19.5% (A. oryzae). Their incubation with lactose plus the monosaccharides Gal or Glc resulted in altered GOS profiles. Experiments with 13 C 6 labelled Gal and Glc showed that both monosaccharides act as acceptor substrates in the transgalactosylation reactions. The data shows that the lactose isomers β-d-Galp-(1→2)-d-Glcp, β-d-Galp-(1→3)-d-Glcp and β-d-Galp-(1→6)-d-Glcp are formed from acceptor reactions with free Glc and not by rearrangement of Glc in the active site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. WURCS 2.0 Update To Encapsulate Ambiguous Carbohydrate Structures.

    PubMed

    Matsubara, Masaaki; Aoki-Kinoshita, Kiyoko F; Aoki, Nobuyuki P; Yamada, Issaku; Narimatsu, Hisashi

    2017-04-24

    Accurate representation of structural ambiguity is important for storing carbohydrate structures containing varying levels of ambiguity in the literature and databases. Although many representations for carbohydrates have been developed in the past, a generalized but discrete representation format did not exist. We had previously developed the Web3 Unique Representation of Carbohydrate Structures (WURCS) in an attempt to define a generalizable and unique linear representation for carbohydrate structures. However, it lacked sufficient rules to uniquely describe ambiguous structures. In this work, we updated WURCS to handle such ambiguous monosaccharide structures. In particular, to handle structural ambiguity around (potential) carbonyl groups incidental to the carbohydrate analysis, we defined a representation of backbone carbons containing atomic-level ambiguity. As a result, we show that WURCS 2.0 can represent a wider variety of carbohydrate structures containing ambiguous monosaccharides, such as those whose ring closure is undefined or whose anomeric information is only known. This new format provides a representation of carbohydrates that was not possible before, and it is currently being used by the International Glycan Structure Repository GlyTouCan.

  18. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar.

    PubMed

    Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan

    2016-03-01

    Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccharide Sensing-Interface

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak

    2007-01-01

    We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.

  20. The biosynthesis of polysaccharides. Incorporation of d-[1-14C]glucose and d-[6-14C]glucose into plum-leaf polysaccharides

    PubMed Central

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252

  1. The role of Monosaccharide Transport Proteins in carbohydrate assimilation, distribution, metabolism and homeostasis

    PubMed Central

    Cura, Anthony J.; Carruthers, Anthony

    2012-01-01

    The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol and dehydroascorbic acid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into 3 classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been co-opted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 (HMIT1) is a proton/myoinositol co-transporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption, distribution, cellular transport and metabolism and recovery/retention. Glucose transport and metabolism have co-evolved in mammals to support cerebral glucose utilization. PMID:22943001

  2. Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina

    PubMed Central

    Sartori, Caroline J.; Miranda, Isabel; Quilhó, Teresa; Mori, Fábio Akira; Pereira, Helena

    2017-01-01

    The bark of Anadenanthera peregrina (L.) Speg and Anadenanthera colubrina (Vell.) Brenan were characterized in relation to anatomical and chemical features. The barks were similar and included a thin conducting phloem, a largely dilated and sclerified non-conducting phloem, and a rhyridome with periderms with thin phellem interspersed by cortical tissues. Only small differences between species were observed that cannot be used alone for taxonomic purposes. The summative chemical composition of A. peregrina and A. colubrina was respectively: 8.2% and 7.7% ash; 28.8% and 29.3% extractives; 2.4% and 2.6% suberin; and 18.9% lignin. The monosaccharide composition showed the predominance of glucose (on average 82% of total neutral sugars) and of xylose (9%). The ethanol-water extracts of A. peregrina and A. colubrina barks included a high content of phenolics, respectively: total phenolics 583 and 682 mg GAE/g extract; 148 and 445 mg CE/g extract; tannins 587 and 98 mg CE/g extract. The antioxidant activity was 238 and 269 mg Trolox/g extract. The barks of the Anadenanthera species are a potential source of polar extractives that will represent an important valorization and therefore contribute to improve the overall economic potential and sustainability of A. peregrina and A. colubrina PMID:29281656

  3. Pathogenicity of Exopolysaccharide-Producing Actinomyces oris Isolated from an Apical Abscess Lesion

    DTIC Science & Technology

    2013-01-01

    sugars with man- nose constituting 77.5% of the polysaccharides . Strain K20 induced persistent abscesses in mice lasting at least 5 days at a... polysaccharides (EPSs) could contribute to their survival and the development of persistent infections in the human body (Costerton et al. 1999). For example...High-performance liquid chromatography (HPLC) analysis of EPSs Neutral monosaccharides were released from purified EPS (5 mg) by hydrolysis in a

  4. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE PAGES

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; ...

    2018-04-16

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.

  5. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.

  6. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Qualitative and quantitative characterization of secondary metabolites and carbohydrates in Bai-Hu-Tang using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector.

    PubMed

    Zhong, Wei-Fang; Tong, Wing-Sum; Zhou, Shan-Shan; Yip, Ka-Man; Li, Song-Lin; Zhao, Zhong-Zhen; Xu, Jun; Chen, Hu-Biao

    2017-10-01

    Bai-Hu-Tang (BHT), a classic traditional Chinese medicine (TCM) formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao), Anemarrhenae Rhizoma (Zhimu), Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao), and nonglutinous rice (Jingmi). The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas. Copyright © 2017. Published by Elsevier B.V.

  8. Production and characterization of genetically modified human IL-11 variants.

    PubMed

    Sano, Emiko; Takei, Toshiaki; Ueda, Takuya; Tsumoto, Kouhei

    2017-02-01

    Interleukin-11 (IL-11) has been expected as a drug on severe thrombocytopenia caused by myelo-suppressive chemotherapy. Whereas, development of IL-11 inhibitor is also expected for a treatment against IL-11 related cancer progression. Here, we will demonstrate the creation of various kinds of genetically modified hIL-11s. Modified vectors were constructed by introducing N- or O-glycosylation site on the region of hIL-11 that does not belong to the core α-helical motif based on the predicted secondary structure. N-terminal (N: between 22 to 23 aa), the first loop (M1:70 to 71 aa), the second loop (M2:114-115 aa), the third loop (M3:160-161 aa) and C-terminal (C: 200- aa) were selected for modification. A large scale production system was established and the characteristics of modified hIL-11s were evaluated. The structure was analyzed by amino acid sequence and composition analysis and CD-spectra. Glycan was assessed by monosaccharide composition analysis. Growth promoting activity and biological stability were analyzed by proliferation of T1165 cells. N-terminal modified proteins were well glycosylated and produced. Growth activity of 3NN with NASNASNAS sequence on N-terminal was about tenfold higher than wild type (WT). Structural and biological stabilities of 3NN were also better than WT and residence time in mouse blood was longer than WT. M1 variants lacked growth activity though they are well glycosylated and secondary structure is very stable. Both of 3NN and OM1 with AAATPAPG on M1 associated with hIL-11R strongly. These results indicate N-terminal and M1 variants will be expected for practical use as potent agonists or antagonists of hIL-11. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Size resolved airborne particulate polysaccharides in summer high Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-04-01

    Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that the presence of biogenic polysaccharides, due to their surface active and hygroscopic nature, could play a potential role as cloud condensation nuclei in the pristine high Arctic.

  10. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-12-01

    Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble bursting at the air-sea interface. We speculate that the occurrence of atmospheric surface-active polymer gels with their hydrophilic and hydrophobic segments, promoting cloud droplet activation, could play a potential role as cloud condensation nuclei in the pristine high Arctic.

  11. Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus.

    PubMed

    Zhang, Bing-Zhao; Inngjerdingen, Kari T; Zou, Yuan-Feng; Rise, Frode; Michaelsen, Terje E; Yan, Pei-Sheng; Paulsen, Berit S

    2014-11-15

    Exo-polysaccharides were purified and characterized from the fermentation broth of Hypsizigus marmoreus, a popular edible mushroom consumed in Asia. Among them, B-I-I and B-II-I exhibited potent complement fixating activity, meanwhile, B-N-I, B-I-I, B-II-I and B-II-II exhibited significant macrophage stimulating activity. Molecular weights of the four exo-polysaccharides were determined to be 6.3, 120, 150 and 11 kDa respectively. Molecular characterisation showed that B-N-I is basically an α-1→4 glucan, with branches on C6; B-I-I is a heavily branched α-mannan with 1→2 linked main chain. B-II-I and B-II-II, have a backbone of rhamno-galacturonan with 1→2 linked l-rhamnose interspersed with 1→4 linked galacturonic acid. Structure-activity relationship analysis indicated that monosaccharide compositions, molecular weight, certain structural units (rhamno-galacturonan type I and arabinogalactan type II) are the principal factors responsible for potent complement fixating and macrophage-stimulating activities. Their immunomodulating activities may, at least partly, explain the health benefits of the mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae.

    PubMed

    Wang, Xiaoli; Zhang, Yifei; Liu, Zhikai; Zhao, Mingqin; Liu, Pengfei

    2017-10-31

    In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions-CPP1, CPP2, and CPP3, (CPPs)-were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.

  13. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus.

    PubMed

    Hou, Yiling; Ding, Xiang; Hou, Wanru

    2015-05-01

    Oligosaccharide are carbohydrate molecules, comprising repeating units joined together by glycosidic bonds. In recent years, an increasing number of oligosaccharides have been reported to exhibit various biological activities, including antitumor, immune-stimulation and antioxidation effects. In the present study, crude water‑soluble oligosaccharides were extracted from the fruiting bodies of Hericium erinaceus with water and then successively purified by diethylaminoethyl‑cellulose 52 and Sephadex G‑100 column chromatography, yielding one major oligosaccharide fraction: Hericium erinaceus oligosaccharide (HEO‑A). The structural features of HEO‑A were investigated by a combination of monosaccharide component analysis by thin layer chromatography, infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy and high‑performance gel permeation chromatography. The results indicated that HEO‑A was composed of D‑xylose and D‑glucose, and the average molecular size was ~1,877 Da. The antioxidant activity of HEO‑A was evaluated using three biochemical methods to determine the scavenging activity of HEO‑A on 1,1‑diphenyl‑2‑picrylhydrazyl, hydrogen peroxide and 2,2'‑azino‑bis(3‑ethylbenzthiazoline‑6‑sufonic acid) diammonium radicals. The results indicated that HEO‑A may serve as an effective healthcare food and source of natural antioxidant compounds.

  14. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    PubMed

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

  16. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS.

    PubMed

    Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo

    2016-04-20

    A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya bean-nodulating bacterium isolated from an arid region of China.

    PubMed Central

    Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Ruiz-Sainz, J E; Buendía-Clavería, A M; Ollero, F J; Yang, S S; Gil-Serrano, A M

    2001-01-01

    We have determined the structure of a polysaccharide from strain B33, a fast-growing bacterium that forms nitrogen-fixing nodules with Asiatic and American soya bean cultivars. On the basis of monosaccharide analysis, methylation analysis, one-dimensional 1H- and 13C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the repeating unit -->6)-4-O-methyl-alpha-D-Glcp-(1-->4)-3-O-methyl-beta-D-GlcpA-(1--> (where GlcpA is glucopyranuronic acid and Glcp is glucopyranose). Strain B33 produces a K-antigen polysaccharide repeating unit that does not have the structural motif sugar-Kdx [where Kdx is 3-deoxy-D-manno-2-octulosonic acid (Kdo) or a Kdo-related acid] proposed for different Sinorhizobium fredii strains, all of them being effective with Asiatic soya bean cultivars but unable to form nitrogen-fixing nodules with American soya bean cultivars. Instead, it resembles the K-antigen of S. fredii strain HH303 (rhamnose, galacturonic acid)n, which is also effective with both groups of soya bean cultivars. Only the capsular polysaccharide from strains B33 and HH303 have monosaccharide components that are also present in the surface polysaccharide of Bradyrhizobium elkanii strains, which consists of a 4-O-methyl-D-glucurono-L-rhamnan. PMID:11439101

  19. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue.

    PubMed

    Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing

    2015-11-05

    Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites.

    PubMed

    Naseri-Nosar, Mahdi; Ziora, Zyta Maria

    2018-06-01

    Wound dressings are designed to support the wound bed and protect it from the factors that may delay or impede its healing such as contaminations and moisture-loss, thereby facilitating and accelerating the healing process. The materials used to prepare wound dressings include natural and synthetic polymers, as well as their combinations, in the forms of films, sponges and hydrogels. Polysaccharides are naturally-occurring polymers that have been extensively used as wound dressing materials. Homopolysaccharides are a class of polysaccharides consist of only one type of monosaccharide. The current review intends to overview the studies in which wound dressings from naturally-occurring polymers, based on homopolysaccharides, were prepared and evaluated. Homopolysaccharides such as cellulose, chitosan, chitin, pullulan, starch and β-glucan were considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Antioxidant and hepatoprotective activities of polysaccharides from Anoectochilus roxburghii.

    PubMed

    Zeng, Biyu; Su, Minghua; Chen, Qingxi; Chang, Qiang; Wang, Wei; Li, Huihua

    2016-11-20

    The physicochemical properties (molecular weights and monosaccharide compositions), antioxidant and hepatoprotective activities of polysaccharides (ARPPs: ARPP30, ARPP60 and ARPP80) isolated from Anoectochilus roxburghii were investigated. ARPP80 exhibited relatively strong antioxidant activities in a concentration-dependent manner. In mice subjected to carbon tetrachloride-induced hepatotoxicity, ARPP80 pretreatment significantly (p<0.01) reduced the levels of aspartate and alanine amino transferases and malonyldialdehyde, prominently (p<0.01) restored the levels of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione in serum or liver homogenate. These hepatoprotective effects were comparable to those of the standard drug silymarin at the same dose (200mg/kg). The study clearly demonstrated that ARPPs, especially ARPP80, might be suitable as functional foods or hepatoprotective drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification of Poly-N-Acetyllactosamine-Carrying Glycoproteins from HL-60 Human Promyelocytic Leukemia Cells Using a Site-Specific Glycome Analysis Method, Glyco-RIDGE

    NASA Astrophysics Data System (ADS)

    Togayachi, Akira; Tomioka, Azusa; Fujita, Mika; Sukegawa, Masako; Noro, Erika; Takakura, Daisuke; Miyazaki, Michiyo; Shikanai, Toshihide; Narimatsu, Hisashi; Kaji, Hiroyuki

    2018-04-01

    To elucidate the relationship between the protein function and the diversity and heterogeneity of glycans conjugated to the protein, glycosylation sites, glycan variation, and glycan proportions at each site of the glycoprotein must be analyzed. Glycopeptide-based structural analysis technology using mass spectrometry has been developed; however, complicated analyses of complex spectra obtained by multistage fragmentation are necessary, and sensitivity and throughput of the analyses are low. Therefore, we developed a liquid chromatography/mass spectrometry (MS)-based glycopeptide analysis method to reveal the site-specific glycome (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile, Glyco-RIDGE). This method used accurate masses and retention times of glycopeptides, without requiring MS2, and could be applied to complex mixtures. To increase the number of identified peptide, fractionation of sample glycopeptides for reduction of sample complexity is required. Therefore, in this study, glycopeptides were fractionated into four fractions by hydrophilic interaction chromatography, and each fraction was analyzed using the Glyco-RIDGE method. As a result, many glycopeptides having long glycans were enriched in the highest hydrophilic fraction. Based on the monosaccharide composition, these glycans were thought to be poly-N-acetyllactosamine (polylactosamine [pLN]), and 31 pLN-carrier proteins were identified in HL-60 cells. Gene ontology enrichment analysis revealed that pLN carriers included many molecules related to signal transduction, receptors, and cell adhesion. Thus, these findings provided important insights into the analysis of the glycoproteome using our novel Glyco-RIDGE method. [Figure not available: see fulltext.

  3. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette

    PubMed Central

    Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan

    2013-01-01

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. PMID:23934399

  4. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette.

    PubMed

    Vilozny, Boaz; Wollenberg, Alexander L; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader

    2013-10-07

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.

  5. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  6. Izumoring: a novel and complete strategy for bioproduction of rare sugars.

    PubMed

    Granström, Tom Birger; Takata, Goro; Tokuda, Masaaki; Izumori, Ken

    2004-01-01

    Starch, whey or hemicellulosic waste can be used as a raw material for the industrial production of rare sugars. D-glucose from starch, whey and hemicellulose, D-galactose from whey, and D-xylose from hemicellulose are the main starting monosaccharides for production of rare sugars. We can produce all monosaccharides; tetroses, pentoses and hexoses, from these raw materials. This is achieved by using D-tagatose 3-epimerase, aldose isomerase, aldose reductase, and oxidoreductase enzymes or whole cells as biocatalysts. Bioproduction strategies for all rare sugars are illustrated using ring form structures given the name Izumoring.

  7. Structure and Antitumor and Immunomodulatory Activities of a Water-Soluble Polysaccharide from Dimocarpus longan Pulp

    PubMed Central

    Meng, Fa-Yan; Ning, Yuan-Ling; Qi, Jia; He, Zhou; Jie, Jiang; Lin, Juan-Juan; Huang, Yan-Jun; Li, Fu-Sen; Li, Xue-Hua

    2014-01-01

    A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of →4)-α-d-Glcp-(1→4)-α-d-GalpA-(1→4)-α-d-Glcp-(1→4)-β-d-Glcp-(1→ units with poly saccharide side chains composed of →2)-β-d-Fruf-(1→2)-l-sorbose-(1→ attached to the O-6 position of the α-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity. PMID:24663085

  8. Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl₄-induced hepatic injury in mice.

    PubMed

    Huang, Jiafu; Ou, Yixin; Yew, Tai Wai David; Liu, Jingna; Leng, Bo; Lin, Zhichao; Su, Yi; Zhuang, Yuanhong; Lin, Jiaofen; Li, Xiumin; Xue, Yu; Pan, Yutian

    2016-01-01

    During the industrial production of canned mushroom (Agaricus bisporus), a large quantity of wastewater is produced. In this study, the wastewater generated during the canning of mushroom was analyzed. From this wastewater, four polysaccharide components (Abnp1001, Abnp1002, Abap1001, and Abap1002) with hepatic-protective activity were isolated by ultrafiltration, DEAE cellulose-52 chromatography and Sephadex G-200 size-exclusion chromatography. Results of ultraviolet spectra analysis and molecular weight determination showed that Abnp1001, Abnp1002, Abap1001 and Abap1002 were uniform with average molecular weights of 336, 12.8, 330 and 15.8kDa, respectively. The monosaccharide composition analysis using gas chromatography (GC) showed that the four fractions were heteropolysaccharides and mainly composed of glucose. Fourier transform-infrared (FT-IR) analysis showed that the isolated fractions were all composed of β-glycoside linkages. Additionally, the potential hepatoprotective activities of these polysaccharides against CCl4-induced hepatic injury in mice were studied. Notably, Abnp1002 and Abap1002 could lower the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations in serum in a dose dependent manner and reduce the hepatocellular degeneration and necrosis, as well as inflammatory infiltration. These results indicate that these two polysaccharides had protective effects on acute hepatic injury induced by CCl4 in mice and suggest that the polysaccharides extracted from A. bisporus industrial wastewater might have potential in therapeutics of acute hepatic injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Gut microbial functional maturation and succession during human early life.

    PubMed

    Cerdó, Tomás; Ruiz, Alicia; Acuña, Inmaculada; Jáuregui, Ruy; Jehmlich, Nico; Haange, Sven-Bastian; von Bergen, Martin; Suárez, Antonio; Campoy, Cristina

    2018-04-24

    The evolutional trajectory of gut microbial colonization from birth has been shown to prime for health later in life. Here, we combined cultivation-independent 16S rRNA gene sequencing and metaproteomics to investigate the functional maturation of gut microbiota in faecal samples from full-term healthy infants collected at 6 and 18 months of age. Phylogenetic analysis of the metaproteomes showed that Bifidobacterium provided the highest number of distinct protein groups. Considerable divergences between taxa abundance and protein phylogeny were observed at all taxonomic ranks. Age had a profound effect on early microbiota where compositional and functional diversity of less dissimilar communities increased with time. Comparisons of the relative abundances of proteins revealed the transition of taxon-associated saccharolytic and fermentation strategies from milk and mucin-derived monosaccharide catabolism feeding acetate/propanoate synthesis to complex food-derived hexoses fuelling butanoate production. Furthermore, co-occurrence network analysis uncovered two anti-correlated modules of functional taxa. A low-connected Bifidobacteriaceae-centred guild of facultative anaerobes was succeeded by a rich club of obligate anaerobes densely interconnected around Lachnospiraceae, underpinning their pivotal roles in microbial ecosystem assemblies. Our findings establish a framework to visualize whole microbial community metabolism and ecosystem succession dynamics, proposing opportunities for microbiota-targeted health-promoting strategies early in life. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    PubMed

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vibrational Raman optical activity of ketose monosaccharides

    NASA Astrophysics Data System (ADS)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  12. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates

    DOE PAGES

    Van Wychen, Stefanie; Long, William; Black, Stuart K.; ...

    2016-11-24

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.

  13. Structure of bacterial lipopolysaccharides.

    PubMed

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  14. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Long, William; Black, Stuart K.

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.

  15. Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans.

    PubMed

    Stepan, Herwig; Bleckmann, Christina; Geyer, Hildegard; Geyer, Rudolf; Staudacher, Erika

    2010-07-02

    The N- and O-glycans of Arianta arbustorum, Achatina fulica, Arion lusitanicus and Planorbarius corneus were analysed for their monosaccharide pattern by reversed-phase HPLC after labelling with 2-aminobenzoic acid or 3-methyl-1-phenyl-2-pyrazolin-5-one and by gas chromatography-mass spectrometry. Glucosamine, galactosamine, mannose, galactose, glucose, fucose and xylose were identified. Furthermore, three different methylated sugars were detected: 3-O-methyl-mannose and 3-O-methyl-galactose were confirmed to be a common snail feature; 4-O-methyl-galactose was detected for the first time in snails. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Inhibitors incorporating zinc-binding groups target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the causative agent of African sleeping sickness.

    PubMed

    Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D

    2012-03-01

    Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.

  17. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes.

    PubMed

    Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A

    2017-09-13

    The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.

  18. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    PubMed

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus.

    PubMed

    Zhao, Huajie; Li, Shangshang; Zhang, Jianjun; Che, Gen; Zhou, Meng; Liu, Min; Zhang, Chen; Xu, Nuo; Lin, Lin; Liu, Yu; Jia, Le

    2016-10-20

    Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analysis of Sulfate Patterns in Glycosaminoglycan Oligosaccharides by MSn Coupled to Infrared Ion Spectroscopy: the Case of GalNAc4S and GalNAc6S

    NASA Astrophysics Data System (ADS)

    Renois-Predelus, G.; Schindler, B.; Compagnon, I.

    2018-04-01

    We report distinctive spectroscopic fingerprints of the monosaccharide standards GalNAc4S and GalNAc6S by coupling mass spectrometry and ion spectroscopy in the 3-μm range. The disaccharide standards CSA and CSC are used to demonstrate the applicability of a novel approach for the analysis of sulfate position in GalNAc-containing glycosaminoglycans. This approach was then used for the analysis of a sample containing CSA and CSC disaccharides. Finally, we discuss the generalization of the coupling of mass spectrometry with ion spectroscopy for the structural analysis of glycosaminoglycans on a tetrasaccharide from dermatan sulfate source. [Figure not available: see fulltext.

  1. Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats.

    PubMed

    Goss, M J; Nunes, M L O; Machado, I D; Merlin, L; Macedo, N B; Silva, A M O; Bresolin, T M B; Santin, J R

    2018-06-01

    The increase in fructose consumption in the last decades has an important correlation with the growth of overweight population. Fructose is a monosaccharide found in fruits, vegetables and honey, however, it is widely used in processed food and beverages such as sweeteners. This monosaccharide is metabolized in the liver, so it can produce glucose, lactate, triglycerides, free fatty acids and uric acid, which are responsible for negative effects on the liver and extrahepatic tissues. One effect of the high consumption of fructose is the resistance to Insulin, which appears to be an important issue in the development of metabolic abnormalities observed in animals that were subjected to a high fructose diet. The population and, consequently, the market search for natural sources to manage metabolic abnormalities is increasing, but, adequate scientific proof still is necessary. The Passiflora edulis peel flour (PEPF) is a byproduct of the juice industry, and, represents an important source of fiber and bioactive compounds. The present study investigates the PEPF supplementation (30%) effects on insulin sensitivity, adiposity and metabolic parameters in young rats that were given beverages enriched with 10% of fructose for 8 weeks. Fructose intake induced insulin resistance, increased serum triglycerides levels, growth of fat deposits in the liver and widening of the diameter of adipocytes. In contrast, the group that received PEPF did not present such abnormalities, which could be related to the presence of fiber or bioactive compounds (phenolics compounds, e.g., caffeic acid and isoorientin) in its composition, as identified by analytical methods. Thus, for the first time, it has been demonstrated that PEPF supplementation prevents insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Unique N-Glycan Moieties of the 66-kDa Cell Wall Glycoprotein from the Red Microalga Porphyridium sp.

    PubMed Central

    Levy-Ontman, Oshrat; Arad, Shoshana (Malis); Harvey, David J.; Parsons, Thomas B.; Fairbanks, Antony; Tekoah, Yoram

    2011-01-01

    We report here the structural determination of the N-linked glycans in the 66-kDa glycoprotein, part of the unique sulfated complex cell wall polysaccharide of the red microalga Porphyridium sp. Structures were elucidated by a combination of normal phase/reverse phase HPLC, positive ion MALDI-TOF MS, negative ion electrospray ionization, and MS/MS. The sugar moieties of the glycoprotein consisted of at least four fractions of N-linked glycans, each composed of the same four monosaccharides, GlcNAc, Man, 6-O-MeMan, and Xyl, with compositions Man8–9Xyl1–2Me3GlcNAc2. The present study is the first report of N-glycans with the terminal Xyl attached to the 6-mannose branch of the 6-antenna and to the 3-oxygen of the penultimate (core) GlcNAc. Another novel finding was that all four glycans contain three O-methylmannose residues in positions that have never been reported before. Although it is known that some lower organisms are able to methylate terminal monosaccharides in glycans, the present study on Porphyridium sp. is the first describing an organism that is able to methylate non-terminal mannose residues. This study will thus contribute to understanding of N-glycosylation in algae and might shed light on the evolutionary development from prokaryotes to multicellular organisms. It also may contribute to our understanding of the red algae polysaccharide formation. The additional importance of this research lies in its potential for biotechnological applications, especially in evaluating the use of microalgae as cell factories for the production of therapeutic proteins. PMID:21515680

  3. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    PubMed Central

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  4. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components.

    PubMed

    Zhang, Yan; Shi, Junling; Gao, Zhenhong; Yangwu, Ruiming; Jiang, Huanshi; Che, Jinxin; Liu, Yanlin

    2015-06-01

    Phomopsis sp. XP-8 is an endophytic fungus that has the ability to produce pinoresinol diglucoside (PDG) in vitro and thus has potential application for the biosynthesis of PDG independent of plants. When cultivated in mung bean medium, PDG production was significantly improved and pinoresinol monoglucoside (PMG) and pinoresinol (Pin) were also found in the culture medium. In this experiment, starch, protein, and polysaccharides were isolated from mung beans and separately used as the sole substrate in order to explore the mechanism of fermentation and identify the major substrates that attributed to the biotransformation of PDG, PMG, and Pin. The production of PDG, PMG, and Pin was monitored using high-performance liquid chromatography (HPLC) and confirmed using HPLC-MS. Activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) were analyzed and tracked during the cultivation. The reaction system contained the compounds isolated from mung bean in the designed amount. Accumulation of phenylalanine, cinnamic acid, p-coumaric acid, PDG, PMG, and Pin and the activities of PAL, C4H, and 4CL were measured during the bioconversion. PMG was found only when mung bean polysaccharide was analyzed, while production of PDG and Pin were found when both polysaccharide and starch were analyzed. After examining the monosaccharide composition of the mung bean polysaccharide and the effect of the different monosaccharides had on the production of PMG, PDG, and Pin, galactose in mung bean polysaccharide proved to be the major factor that stimulates the production of PMG.

  5. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.

  6. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.

  7. Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1, serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS

    PubMed Central

    Jahouh, Farid; Saksena, Rina; Kováč, Pavol; Banoub, Joseph

    2012-01-01

    In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein. PMID:22791257

  8. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties.

    PubMed

    Hesarinejad, M A; Razavi, Seyed M A; Koocheki, A

    2015-11-01

    The objective of this study was to investigate the effect of various temperatures (25-65°C) on some dilute solution properties of Alyssum homolocarpum seed gum (AHSG) as a novel potential source of hydrocolloid. Monosaccharide composition, FTIR analysis and molecular parameters were determined to provide more structural information. The results indicated that AHSG had a low molecular weight (3.66×10(5)Da), medium intrinsic viscosity (18.34dl/g) at 25°C, relatively flexible chain with a chain flexibility parameter of 618.54, and activation energy of 0.51×10(7)J/kgmol. With rise in temperature from 25 to 55°C, the intrinsic viscosity decreased as well as coil radius and volume of AHSG. The shape factor of AHSG macromolecule was spherical at all temperatures. The electrostatic interaction and particle size of AHSG solution were -25.81mV (at neutral pH) and 225.36nm, respectively. The results revealed that AHSG had high total sugar content (85.33%), small amount of uronic acids (5.63%) and it is likely a galactan-type polysaccharide. The FTIR spectra showed that AHSG behaved like a typical polyelectrolyte because of the presence of carboxyl and hydroxyl groups. Copyright © 2015. Published by Elsevier B.V.

  9. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit.

    PubMed

    Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria

    2018-06-01

    Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Occurrence of myo-inositol and alkyl-substituted polysaccharide in the prey-trapping mucilage of Drosera capensis

    NASA Astrophysics Data System (ADS)

    Kokubun, Tetsuo

    2017-10-01

    The chemical composition of the exudate mucilage droplets of the carnivorous plant Drosera capensis was investigated using nuclear magnetic resonance spectroscopy. The mucilage was found to contain beside a very large molecular weight polysaccharide a significant amount of myo-inositol. It appears that myo-inositol escaped detection due to the commonly applied methodology on the chemical analysis of plant mucilage, such as dialysis, precipitation of polysaccharide component with alcohol, acid hydrolysis and detection of the resultant monosaccharide (aldose) units. The possible functions of myo-inositol in the mucilage droplets and the fate after being washed off from the leaf tentacles are proposed. On the polysaccharide component, the presence of methyl ester and alkyl chain-like moieties could be confirmed. These lipophilic moieties may provide the prey-trapping mucilage with the unique adhesive property onto the hydrophobic insect body parts, as well as onto the nature's well-known superhydrophobic surfaces such as the leaves of the sacred lotus plants. A re-evaluation of the mineral components of the mucilage, reported 40 years ago, is presented from the viewpoints of the current result and plants' natural habitat. A case for re-examination of the well-studied plant mucilaginous materials is made in light of the new findings.

  11. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification

    PubMed Central

    Qu, Lianghuan; Wu, Chunyan; Zhang, Fei; Wu, Yangyang; Fang, Chuanying; Jin, Cheng; Liu, Xianqing; Luo, Jie

    2016-01-01

    Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin’s function in regional cell extension/division in a zone-dependent manner. PMID:27497286

  12. Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction.

    PubMed

    Liu, Yu-Jie; Mo, Xue-Lin; Tang, Xiao-Zhang; Li, Jiang-Hua; Hu, Mei-Bian; Yan, Dan; Peng, Wei; Wu, Chun-Jie

    2017-06-09

    In this study, the ultrasound-assisted extraction of polysaccharides (PSA) from Pinelliae Rhizoma Praeparatum Cum Alumine (PRPCA) was optimized by response surface methodology (RSM). The structural characteristics of PSA were analyzed by UV-vis spectroscopy, infrared spectroscopy, scanning electron microscopy, high performance gel permeation chromatography and high performance liquid chromatography, respectively. In addition, antioxidant and antimicrobial activities of PSA were studied by different in vitro assays. Results indicated that the optimal extraction conditions were as follows: the ratio of water to raw of 30 mL/g, extraction time of 46.50 min, ultrasonic temperature of 72.00 °C, and ultrasonic power of 230 W. Under these conditions, the obtained PSA yield (13.21 ± 0.37%) was closely agreed with the predicted yield by the model. The average molecular weights of the PSA were estimated to be 5.34 × 10³ and 6.27 × 10⁵ Da. Monosaccharide composition analysis indicated that PSA consisted of mannose, galactose uronic acid, glucose, galactose, arabinose with a molar ratio of 1.83:0.55:75.75:1.94:0.45. Furthermore, PSA exhibited moderate antioxidant and antibacterial activities in vitro. Collectively, this study provides a promising strategy to obtain bioactive polysaccharides from processed products of herbal medicines.

  13. Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus snicus.

    PubMed

    Liping, Sun; Xuejiao, Su; Yongliang, Zhuang

    2016-11-01

    Boletus snicus (BS) is one of the commercially important mushroom species. Two polysaccharides (BSP-1b and BSP-2b) were extracted and purified from the body of BS by DEAE-cellulose and Sephadex G-100 column chromatography. The average of molecular weight of BSP-1b and BSP-2b were 59.21kDa and 128.74kDa. BSP-1b is a heteropolysaccharide with a large number of glucose and a small amount of mannose, glucosamine hydrochloride and arabinose. The monosaccharide compositions of BSP-2b contain mannose, glucuronic acid, glucosamine hydrochloride, glucose, galactose, arabinose with the molar ratio of 10.70:6.95:12.05:12.57:1.83:1.00. The FTIR spectra and NMR analysis demonstrated that BSP-1b and BSP-2b existed pyranose ring structure and BSP-2b had high content of uronic acid. The antiglycation activities of BSP-1b and BSP-2b were investigated. The results showed BSP-1b and BSP-2b had high inhibitory effects on glycation and exhibited dose-dependent responses. BSP-2b showed stronger antiglycation activity than BSP-1b. This study indicated that the BSP-2b could effectively inhibit the formation of advanced glycation end-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modification of Pectin and Hemicellulose Polysaccharides in Relation to Aril Breakdown of Harvested Longan Fruit

    PubMed Central

    Wang, Duoduo; Zhang, Haiyan; Wu, Fuwang; Li, Taotao; Liang, Yuxiang; Duan, Xuewu

    2013-01-01

    To investigate the modification of cell wall polysaccharides in relation to aril breakdown in harvested longan fruit, three pectin fractions (WSP, water soluble pectin; CSP, CDTA-soluble pectin; ASP, alkali soluble pectin) and one hemicellulose fraction (4 M KOH-SHC, 4 M KOH-soluble hemicellulose) were extracted, and their contents, monosaccharide compositions and molecular weights were evaluated. As aril breakdown intensified, CSP content increased while ASP and 4 M KOH-SHC contents decreased, suggesting the solubilization and conversion of cell wall components. Furthermore, the molar percentage of arabinose (Ara), as the main component of the side-chains, decreased largely in CSP and ASP while that of rhamnose (Rha), as branch point for the attachment of neutral sugar side chains, increased during aril breakdown. Analysis of (Ara + Gal)/Rha ratio showed that the depolymerization of CSP and ASP happened predominantly in side-chains formed of Ara residues. For 4 M KOH-SHC, more backbones were depolymerized during aril breakdown. Moreover, it was found that the molecular weights of CSP, ASP and 4 M KOH-SHC polysaccharides tended to decrease as aril breakdown intensified. These results suggest that both enhanced depolymerization and structural modifications of polysaccharides in the CSP, ASP and 4 M KOH-SHC fractions might be responsible for aril breakdown of harvested longan fruit. PMID:24287911

  15. Structure and haemostatic effects of generic versions of enoxaparin available for clinical use in Brazil: similarity to the original drug.

    PubMed

    Glauser, Bianca F; Vairo, Bruno C; Oliveira, Stephan-Nicollas M C G; Cinelli, Leonardo P; Pereira, Mariana S; Mourão, Paulo A S

    2012-02-01

    Patent protection for enoxaparin has expired. Generic preparations are developed and approved for clinical use in different countries. However, there is still skepticism about the possibility of making an exact copy of the original drug due to the complex processes involved in generating low-molecular-weight heparins. We have undertaken a careful analysis of generic versions of enoxaparin available for clinical use in Brazil. Thirty-three batches of active ingredient and 70 of the final pharmaceutical product were obtained from six different suppliers. They were analysed for their chemical composition, molecular size distribution, in vitro anticoagulant activity and pharmacological effects on animal models of experimental thrombosis and bleeding. Clearly, the generic versions of enoxaparin available for clinical use in Brazil are similar to the original drug. Only three out of 33 batches of active ingredient from one supplier showed differences in molecular size distribution, resulting from a low percentage of tetrasaccharide or the presence of a minor component eluted as monosaccharide. Three out of 70 batches of the final pharmaceutical products contained lower amounts of the active ingredient than that declared by the suppliers. Our results suggest that the generic versions of enoxaparin are a viable therapeutic option, but their use requires strict regulations to ensure accurate standards.

  16. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates.

    PubMed

    Van Wychen, Stefanie; Long, William; Black, Stuart K; Laurens, Lieve M L

    2017-02-01

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. The MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 μg mL -1 without interference from other algae acidic hydrolyzate components. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    USGS Publications Warehouse

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  18. In vitro Antioxidant of a Water-Soluble Polysaccharide from Dendrobium fimhriatum Hook.var.oculatum Hook

    PubMed Central

    Luo, Aoxue; Fan, Yijun

    2011-01-01

    A water-soluble crude polysaccharide (DFHP) obtained from the aqueous extracts of the stem of Dendrobium fimhriatum Hook.var.oculatum Hook through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 209.3 kDa. Monosaccharide analysis revealed that DFHP was composed of mannose, glucose and galactose in a content ratio of 37.52%; 43.16%; 19.32%. The investigation of antioxidant activity in vitro showed that DFHP is a potential antioxidant. PMID:21747725

  19. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  20. Ontogenetic changes in helminth membrane function.

    PubMed

    Arme, C

    1988-01-01

    During their life-cycle many parasites experience a wide range of environments including free living and those provided by a variety of intermediate and final hosts. The nutritional requirements of parasites are met by physiological processes adapted to exploit the physicochemical characteristics provided by different hosts. In helminth parasites these adaptations are frequently expressed on the tegumentary surface. As an example of adaptations within the Trematoda, the control of monosaccharide transport in Proterometra sp. is described. Environmental sodium, although not directly involved in the uptake process, nevertheless regulates the expression of transport capabilities. In the Cestoda, the uptake of monosaccharides and amino acids is described for Hymenolepis diminuta. The metacestode of this tapeworm inhabits the blood system of an arthropod, and the adult the gut of a mammal. There are quantitative and qualitative differences in the amino acids and monosaccharides in these two environments and these are reflected in the transport mechanisms exhibited by the two forms of the life-cycle. In Echinococcus granulosus the transfer of amino acids, sugars and macromolecules across the membranes of hydatid cysts and protoscoleces is described. The major difference between these two stages in the life-cycle relates to the ability of hydatid cysts to absorb macromolecules, whereas protoscoleces are impermeable to these compounds. The potential for future work is emphasized.

  1. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

  2. Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction

    NASA Astrophysics Data System (ADS)

    Wilson, Iain B. H.

    Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.

  3. Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells

    PubMed Central

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation. PMID:20424595

  4. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-04-27

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.

  5. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.

    PubMed

    Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram

    2017-11-01

    Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MS n spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Composition and Antioxidant Activity of Water-Soluble Polysaccharides from Tuber indicum

    PubMed Central

    Luo, Qiang; Zhang, Jie; Yan, Liang; Tang, Yuanlin; Ding, Xiang; Yang, Zhirong

    2011-01-01

    Abstract Crude water-soluble Chinese truffle Tuber indicum polysaccharide (TIP) was extracted from the fruiting bodies with water and then successively purified by DEAE–cellulose 52 and Sephadex G-100 column chromatography, yielding two major polysaccharide fractions: TIP1-1 and TIP2-1. High-performance gel permeation chromatography analysis showed that the average molecular sizes of TIP1-1 and TIP2-1 were approximately 1.75×104 Da and 5.73×103 Da, respectively. Monosaccharide component analysis by gas chromatography indicated that TIP1-1 was composed of mannose, glucose, galactose, and rhamannose in the respective molar ratio of 3.93:1.24:0.75:1.26 and that TIP2-1 contained mannose, glucose, and arabinose in the respective molar ratio of 5.27:1.44:0.43. The antioxidant activity analyses revealed that TIP1-1 and TIP2-1 possessed considerable antioxidant activity. Compared with TIP1-1, which has a higher molecular weight and contains no uronic acid, TIP2-1 exhibited a protective effect on PC12 cells injured by H2O2 and a higher scavenging activity against free radicals. The relative effects of the lower molecular size, the presence of uronic acid, and the antioxidant activity of TIP2-1 appear to be significant. Accordingly, the Chinese truffle T. indicum might serve as an effective antioxidative healthcare food and source of natural antioxidants. PMID:21877953

  7. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  8. The Replacement of Monosaccharide by Mannitol or Sorbitol in the Freezing Extender Enhances Cryosurvival of Ram Spermatozoa.

    PubMed

    Wu, Guo Quan; Lv, Chun Rong; Jiang, Yan Ting; Wang, Si Yu; Shao, Qing Yong; Hong, Qiong Hua; Quan, Guo Bo

    2016-10-01

    In this study, the protective effects of monosaccharides (glucose and fructose) and sugar alcohols (mannitol, sorbitol, and xylitol) on frozen ram spermatozoa were evaluated and compared. The motility, moving velocity, and hypoosmotic swelling capability of spermatozoa frozen with monosaccharide or sugar alcohol were measured using a computer-assisted spermatozoa analyzer system. The acrosome status, membrane integrity, distribution of phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed using fluorescence staining and flow cytometry. The results indicated that similar to glucose or fructose, the presence of sugar alcohol in the freezing extender cannot significantly improve the motility and moving velocity of ram spermatozoa equilibrated at 5°C. In terms of motility, pathway velocity, curve velocity, hypoosmotic swelling capability, acrosome and membrane integrity, and MMP, the inclusion of mannitol or sorbitol in the extender can significantly improve the quality of frozen-thawed ram spermatozoa compared to glucose or fructose. However, the effects of mannitol or sorbitol on linear velocity and PS distribution of frozen-thawed spermatozoa were similar to those of the monosaccharides (p > 0.05). In addition, the ability of xylitol to protect acrosome and maintain MMP in frozen-thawed spermatozoa was significantly higher compared with glucose or fructose (p < 0.05), although it could not improve the other evaluated parameters. Finally, there is no significant difference existing between mannitol and sorbitol with respect to the above evaluated parameters. In conclusion, the replacement of glucose or fructose by mannitol or sorbitol in a freezing extender can improve the postthaw quality of ram spermatozoa under specific freezing conditions. Moreover, the protective effects of mannitol and sorbitol on frozen-thawed ram spermatozoa are superior to that of xylitol. However, in the presence of sugar alcohols, the cryoinjury on spermatozoa membrane is still serious. In the future, the question of protecting the membrane of frozen-thawed spermatozoa needs further research.

  9. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    PubMed

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  10. Effect of Inulin on the Viability of L. plantarum during Storage and In Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices.

    PubMed

    Valero-Cases, Estefanía; Frutos, María José

    2017-06-01

    The prebiotic effect of different concentrations of inulin (0, 1 and 2%) on the growth and survival of Lactobacillus plantarum (LP) CECT 220 in blended carrot and orange juices was investigated after 24 h of fermentation, during 30 days of storage at 4 °C and through the phases of gastrointestinal digestion after different storage periods. Microbiological and chemical determinations were also carried out in all juices. The lactic fermentation increased the shelf life of the fermented juices with inulin. The hygienic-sanitary quality in fermented juices was better than the control juices. During storage, the inulin improved the viability of LP and the monosaccharide concentration remained higher with respect to the juice without inulin (40% lower). At 30 days, the fermented juices with 2% inulin after in vitro digestion presented the highest survival of L. plantarum.

  11. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    NASA Astrophysics Data System (ADS)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  12. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas.

    PubMed

    Wu, Shengjun; Huang, Xiaolian

    2017-02-01

    Oligosaccharides were prepared from Crassostrea gigas by hydrolysis of polysaccharide in C. gigas with peroxide oxygen (H2O2). The hydrolysates were cleared of protein, filtered, ultrafiltered and precipitated with absolute ethanol to give C. gigas oligosaccharides (CGOs). Factors affecting CGO yields, i.e., reaction time, temperature, and H2O2 concentration, were optimised as follows: 2.96h reaction time, 84.71°C reaction temperature, and 2.46% H2O2 concentration. Under these conditions, the maximum yield of CGOs reached 10.61%. The CGOs were then partially characterised by Fourier transform infrared spectroscopy, UV spectroscopy, monosaccharide composition, and antioxidant activities. Results indicate that CGOs possessed strong hydroxyl radical activity, 2,2-diphenyl-β-picrylhydrazyl-radical-scavenging activity and reducing capacity at a concentration of 100μg/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Preparation of the oligosaccharides derived from Flammulina velutipes and their antioxidant activities.

    PubMed

    Xia, Zhenqiang

    2015-03-15

    The oligosaccharides were prepared from Flammulina velutipes by hydrolysis of F. velutipes polysaccharides with hydrogen peroxide (H2O2). The yields of F. velutipes derived oligosaccharides (FVOs) were monitored during the hydrolysis process. FVOs yields were affected by three factors, i.e. reaction temperature, H2O2 concentration, and time, which were optimized by using an orthogonal design experiments as follows: reaction temperature 70°C, H2O2 concentration 3%, and reaction time 6h. Under these optimum conditions, the maximal yield of the oligosaccharides reached 17.10%, which was higher than that of hot water extraction method. The oligosaccharides were partially characterized by Fourier transform infrared spectrum, monosaccharide composition, and antioxidant activity. The results indicate that the oligosaccharides derived from F. velutipes showed strong hydroxyl radical activity and reducing capacity at the concentration of 100 μg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation.

    PubMed

    Gibson, Brian R; Boulton, Chris A; Box, Wendy G; Graham, Neil S; Lawrence, Stephen J; Linforth, Robert S T; Smart, Katherine A

    2008-08-01

    The fermentable carbohydrate composition of wort and the manner in which it is utilized by yeast during brewery fermentation have a direct influence on fermentation efficiency and quality of the final product. In this study the response of a brewing yeast strain to changes in wort fermentable carbohydrate concentration and composition during full-scale (3275 hl) brewery fermentation was investigated by measuring transcriptome changes with the aid of oligonucleotide-based DNA arrays. Up to 74% of the detectable genes showed a significant (p

  15. Low-Temperature Blanching as a Tool to Modulate the Structure of Pectin in Blueberry Purees.

    PubMed

    Chevalier, Laura M; Rioux, Laurie-Eve; Angers, Paul; Turgeon, Sylvie L

    2017-09-01

    Blueberry composition was characterized for 6 cultivars. It contains a good amount of dietary fiber (10% to 20%) and pectin (4% to 7%) whose degree of methylation (DM) is sensitive to food processing. A low temperature blanching (LTB: 60 °C/1 h) was applied on blueberry purees to decrease pectin DM, in order to modulate puree properties and functionalities (that is, viscosity and stability), and to enhance pectin affinity toward other components within food matrices. Fiber content, viscosity, pectin solubility, DM, and monosaccharide composition were determined for both pasteurized, and LTB+pasteurized blueberry purees. The results showed that neither the amount of fiber, nor the viscosity were affected by LTB, indicating that this treatment did not result in any significant pectin depolymerization and degradation. LTB caused a decrease both in pectin DM from 58-67% to 45-47% and in the amount of water-soluble pectin fraction, the latter remaining the major fraction of total pectin at 52% to 57%. A LTB is a simple and mild process to produce blueberry purees with mostly soluble and low-methylated pectin in order to extend functionality and opportunities for interactions with other food ingredients. © 2017 Institute of Food Technologists®.

  16. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    PubMed

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-08-10

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  17. Structural diversity of alkali-soluble polysaccharides from the fruit cell walls of tucumã (Astrocaryum aculeatum), a commelinid monocotyledon from the family Arecaceae.

    PubMed

    Cantu-Jungles, Thaisa Moro; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2017-09-01

    The polysaccharide compositions of primary and secondary cell walls of members of the family Arecaceae in the commelinid clade of monocotyledonous plants have previously been found to be distinguishable from other commelinid families, and to be more similar to those of non-commelinids. However, few studies have been conducted. We aimed to extract and characterize the main cell-wall polysaccharides in the fruit pulp of tucumã (Astrocaryum aculeatum), a member of Arecaceae family. Hemicellulosic polysaccharides extracted by alkali from the fruit pulp were present in greater proportions (6.4% yield) than water-extracted ones (3.0% yield). Thus, the former was analyzed using monosaccharide composition, methylation, molecular weight determination and 13 C-NMR data. The tucumã alkaline extract presented a highly ramified acidic galactoarabinoxylan (53.7%), a linear (1 → 5)-linked α-L-arabinan (27.8%), a low branched glucuronoxylan (14.1%) and small portions of a xyloglucan (4.4%). The major polysaccharide found in A. aculeatum (acidic galactoarabinoxylan) is similar to those found in other commelinid plants such as grasses and cereals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  19. Glucose and D-Allulose contained medium to support the growth of lactic acid bacteria

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Pramono, Y. B.; Sari, D. I.; Pangestika, W.

    2018-01-01

    Monosaccharide has been known as support agent for the growth of lactic acid bacteria. However the combination among monosaccharides for supporting the living of bacteria has not been understood well. This research was done for analyzing the combination glucose and D-allulose for the growth of Lactobacillus acidophilus and Streptococcus thermophillus. The NaCl medium containing glucose and D-allulose was used to analyse the growth of bacteria. The study showed that glucose and D-allulose have been detected as supportive agent to L. acidophilus and S. thermophillus specifically. As conclusion, glucose and D-allulose supported the growth of lactic acid bacteria equally. This finding might provide the beneficial information for industry to utilize D-allulose as well as glucose.

  20. Extraction and characterization of pectins from primary cell walls of edible açaí (Euterpe oleraceae) berries, fruits of a monocotyledon palm.

    PubMed

    Cantu-Jungles, Thaisa Moro; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2017-02-20

    Açaí berries (Euterpe oleracea) are greatly consumed in Brazil and exported to other countries as a nutritional supplement, due to health benefits attributed to its consumption. However, the complete chemical structure of bioactive polysaccharides was not fully elucidated yet. In this work, we characterize pectic polysaccharides from açaí berries through monosaccharide composition, HPSEC, methylation and 13 C and 1 H/ 13 C HSQC-DEPT-NMR analyses. A highly methoxylated homogalacturonan with a DM of 88% and Mw of 22kDa together with small amounts of a mannoglucan were found. Moreover, a type II arabinogalactan (Mw=45kDa) containing a backbone with high portions of 6-O-linked and 3,6-O-linked Galp chains rather than 3-O-linked Galp was also isolated and structurally characterized. The type II arabinogalactan was found as a side chain of a type I rhamnogalacturonan. These findings contribute to correlate the fine chemical structure with the previously reported action of açaí polysaccharides on innate immune response. Moreover, from the taxonomic point of view, the results bring new information about polysaccharide composition of primary cell walls of palms (Arecaceae), that despite being commelinid monocots, have a distinct cell wall composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Where and What Is Pristine Marine Aerosol?

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter, 48:v-x, doi10.1080/02786826.2013.879979, 2014a. Frossard, A.A., L.M. Russell, M.S. Long, S.M. Burrows, S.M. Elliot, T.S. Bates, and P.K. Quinn, "Sources and Composition of Submicron Organic Mass in Marine Aerosol Particles," Journal of Geophysical Research - Atmospheres, submitted 2014b.

  2. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea

    2016-12-01

    The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the larger ones favor the formation of vitreous states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Component analysis and free radicals scavenging activity of Cicer arietinum L. husk pectin.

    PubMed

    Urias-Orona, Vania; Huerta-Oros, Joselina; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Gardea, Alfonso A

    2010-10-11

    A pectin (CAP) was extracted from the husk of Cicer arietinum L. Monosaccharide analysis of CAP revealed the dominance of galacturonic acid and smaller amounts of galactose, arabinose, rhamnose, glucose, xylose and mannose. Viscosimetric analysis showed that the intrinsic viscosity ([η]) and the molecular weight (MW) of CAP were 296 mL/g and 105 kDa, respectively. The degree of esterification (DE = 10%) was determined by FTIR spectroscopy. CAP exhibited a dose-dependent free radical scavenging activity, as shown by its DPPH radical inhibition. At 1.0 mg/mL CAP exhibited a scavenging rate of 29% on DPPH radicals. The evaluation of antioxidant activity suggested that CAP had good potential for DPPH radical scavenging activity and should be explored as a novel potential antioxidant.

  4. FTIR characterization of Mexican honey and its adulteration with sugar syrups by using chemometric methods

    NASA Astrophysics Data System (ADS)

    Rios-Corripio, M. A.; Rios-Leal, E.; Rojas-López, M.; Delgado-Macuil, R.

    2011-01-01

    A chemometric analysis of adulteration of Mexican honey by sugar syrups such as corn syrup and cane sugar syrup was realized. Fourier transform infrared spectroscopy (FTIR) was used to measure the absorption of a group of bee honey samples from central region of Mexico. Principal component analysis (PCA) was used to process FTIR spectra to determine the adulteration of bee honey. In addition to that, the content of individual sugars from honey samples: glucose, fructose, sucrose and monosaccharides was determined by using PLS-FTIR analysis validated by HPLC measurements. This analytical methodology which is based in infrared spectroscopy and chemometry can be an alternative technique to characterize and also to determine the purity and authenticity of nutritional products as bee honey and other natural products.

  5. Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro

    2013-06-01

    Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.

  6. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    PubMed

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Monosaccharide transport into hemocytes of a sipunculan worm Themiste dyscrita

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingermann, R.L.; Hall, R.E.; Bissonnette, J.M.

    1985-07-01

    The hemerythrin-containing blood cells, or hemocytes, of the sipunculan worm Themiste dyscrita were found to have a stereospecific and nonconcentrative monosaccharide transport system. The transport system transferred both D-glucose and 3-O-methyl-D-glucose (3-OMG), and transport into cells by this system was rapid, reaching 50% equilibrium in approximately 20 s at 10 degrees C with an initial concentration gradient of 0.1 mM; the contribution to total uptake by simple diffusion was very small. 3-OMG uptake showed saturation kinetics with a low half-saturation constant (Km less than or equal to 0.1 mM). The uptake of labeled 3-OMG by the hemocytes was strongly inhibitedmore » by unlabeled 3-OMG, 2-deoxy-D-glucose, alpha- and beta-D-glucose, D-galactose, and D-mannose. It was moderately inhibited by D-xylose, only slightly by alpha-methyl-D-glucoside and D-fructose, and uninhibited by sucrose, L-glucose, or D-sorbitol. Phloretin was more potent than phloridzin in blocking entry of 3-OMG. Cytochalasin B did not bind tightly to the T. dyscrita transporter and was not a potent inhibitor of transport; it half-maximally inhibited 3-OMG transport at 0.1 mM. Therefore, despite some differences the data suggest functional similarities in the mechanism of monosaccharide transport into blood cells of mammals and this invertebrate.« less

  8. The sugar transporter inventory of tomato: genome-wide identification and expression analysis.

    PubMed

    Reuscher, Stefan; Akiyama, Masahito; Yasuda, Tomohide; Makino, Haruko; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2014-06-01

    The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Grachev, Alexey A; Chizhov, Alexander O; Nifantiev, Nikolay E

    2016-01-01

    3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  11. A promptly approach from monosaccharides of biomass to oligosaccharides via sharp-quenching thermo conversion (SQTC).

    PubMed

    Liu, Xiao; Wei, Weiqi; Wu, Shubin; Lei, Ming; Liu, Ying

    2018-06-01

    In this study, a novel and facile approach of conversion monosaccharides (glucose and xylose) to oligosaccharides (Cello-oligosaccharides and Xylo-oligosaccharides) was demonstrated. The approach did not introduce any chemical reagent and the preparation process could be environmentally friendly. Identification and quantification by ion chromatography (IC) and high performance liquid chromatography (HPLC) showed that the yields of COS and XOS reached to 44.62% (38 s) and 47.09% (30 s) respectively at 500 °C reaction temperature coupled with sharp-quenching method. Structural characterization indicated that such oligosaccharides showed a degree of polymerization (DP) with 2-6, and the units mainly linked by β-(1 → 4)-glycosidic bond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Translational and rotational dynamics of monosaccharide solutions.

    PubMed

    Lelong, Gérald; Howells, W Spencer; Brady, John W; Talón, César; Price, David L; Saboungi, Marie-Louise

    2009-10-01

    Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.

  13. Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.

    PubMed

    Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam

    2013-10-01

    Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine.

  14. GLYDE-II: The GLYcan data exchange format

    PubMed Central

    Ranzinger, Rene; Kochut, Krys J.; Miller, John A.; Eavenson, Matthew; Lütteke, Thomas; York, William S.

    2017-01-01

    Summary The GLYcan Data Exchange (GLYDE) standard has been developed for the representation of the chemical structures of monosaccharides, glycans and glycoconjugates using a connection table formalism formatted in XML. This format allows structures, including those that do not exist in any database, to be unambiguously represented and shared by diverse computational tools. GLYDE implements a partonomy model based on human language along with rules that provide consistent structural representations, including a robust namespace for specifying monosaccharides. This approach facilitates the reuse of data processing software at the level of granularity that is most appropriate for extraction of the desired information. GLYDE-II has already been used as a key element of several glycoinformatics tools. The philosophical and technical underpinnings of GLYDE-II and recent implementation of its enhanced features are described. PMID:28955652

  15. Accurate Quantification of Laminarin in Marine Organic Matter with Enzymes from Marine Microbes.

    PubMed

    Becker, Stefan; Scheffel, André; Polz, Martin F; Hehemann, Jan-Hendrik

    2017-05-01

    Marine algae produce a variety of glycans, which fulfill diverse biological functions and fuel the carbon and energy demands of heterotrophic microbes. A common approach to analysis of marine organic matter uses acid to hydrolyze the glycans into measurable monosaccharides. The monosaccharides may be derived from different glycans that are built with the same monosaccharides, however, and this approach does not distinguish between glycans in natural samples. Here we use enzymes to digest selectively and thereby quantify laminarin in particulate organic matter. Environmental metaproteome data revealed carbohydrate-active enzymes from marine flavobacteria as tools for selective hydrolysis of the algal β-glucan laminarin. The enzymes digested laminarin into glucose and oligosaccharides, which we measured with standard methods to establish the amounts of laminarin in the samples. We cloned, expressed, purified, and characterized three new glycoside hydrolases (GHs) of Formosa bacteria: two are endo-β-1,3-glucanases, of the GH16 and GH17 families, and the other is a GH30 exo-β-1,6-glucanase. Formosa sp. nov strain Hel1_33_131 GH30 (FbGH30) removed the β-1,6-glucose side chains, and Formosa agariphila GH17A (FaGH17A) and FaGH16A hydrolyzed the β-1,3-glucose backbone of laminarin. Specificity profiling with a library of glucan oligosaccharides and polysaccharides revealed that FaGH17A and FbGH30 were highly specific enzymes, while FaGH16A also hydrolyzed mixed-linked glucans with β-1,4-glucose. Therefore, we chose the more specific FaGH17A and FbGH30 to quantify laminarin in two cultured diatoms, namely, Thalassiosira weissflogii and Thalassiosira pseudonana , and in seawater samples from the North Sea and the Arctic Ocean. Combined, these results demonstrate the potential of enzymes for faster, stereospecific, and sequence-specific analysis of select glycans in marine organic matter. IMPORTANCE Marine algae synthesize substantial amounts of the glucose polymer laminarin for energy and carbon storage. Its concentrations, rates of production by autotrophic organisms, and rates of digestion by heterotrophic organisms remain unknown. Here we present a method based on enzymes that hydrolyze laminarin and enable its quantification even in crude substrate mixtures, without purification. Compared to the commonly used acid hydrolysis, the enzymatic method presented here is faster and stereospecific and selectively cleaves laminarin in mixtures of glycans, releasing only glucose and oligosaccharides, which can be easily quantified with reducing sugar assays. Copyright © 2017 American Society for Microbiology.

  16. 21 CFR 145.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... hydrolysis of any edible starch. The solids of glucose sirup contain not less than 40 percent by weight of...

  17. Glucosamine Sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  18. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification.

    PubMed

    Qu, Lianghuan; Wu, Chunyan; Zhang, Fei; Wu, Yangyang; Fang, Chuanying; Jin, Cheng; Liu, Xianqing; Luo, Jie

    2016-10-01

    Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin's function in regional cell extension/division in a zone-dependent manner. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700 μg/ml and the maximum anticancer activity of 62.89% was recorded at 200 μg/ml; whereas, the lowest of 9.87% was observed at 25 μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis.

    PubMed

    Mei, Yuxia; Zhu, Hai; Hu, Qiming; Liu, Yangyang; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2015-06-25

    Two novel polysaccharides termed PLPS-1 and PLPS-2 were isolated from mycelia of cultured Phellinus linteus by hot water extraction, purified by DEAE-52 cellulose and Sephadex G-100 column chromatography, and structurally characterized by FTIR and NMR spectroscopy, GC-MS, periodate oxidation/Smith degradation, and methylation analysis. The monosaccharide compositions of PLPS-1 (MW 2.5×10(5)Da) and PLPS-2 (MW 2.8×10(4)Da) were respectively Glc, Ara, Fuc, Gal, and Xyl in molar ratio 21.964:1.336:1.182:1:1, and Glc, Gal, Man, Ara, Fuc, Xyl in molar ratio 14.368:2.594:1.956:1.552:1.466:1; i.e., both were heteropolysaccharides. The backbone of PLPS-1 consisted primarily of repeating α-d-Glc(1→4)-α-d-Glc(1→6) units, while that of PLPS-2 consisted of α-(1→3)-d-Glc and α-(1→6)-d-Glc. The side branches were also different in their carbohydrate components. In in vitro antitumor assays, PLPS-1 displayed strong anti-proliferative effect against S-180 sarcoma cells through apoptosis, whereas PLPS-2 had no such effect. The difference in antitumor activity between the two PLPS evidently results from their structural differences. PLPS-1 has potential as a novel anticancer agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds.

    PubMed

    Dourado, Fernando; Madureira, Pedro; Carvalho, Vera; Coelho, Ricardo; Coimbra, Manuel A; Vilanova, Manuel; Mota, Manuel; Gama, Francisco M

    2004-10-20

    The structure and bioactivity of a polysaccharide extracted and purified from a 4M KOH + H3BO3 solution from Prunus dulcis seed cell wall material was studied. Anion-exchange chromatography of the crude extract yielded two sugar-rich fractions: one neutral (A), the other acidic (E). These fractions contain a very similar monosaccharide composition: 5:2:1 for arabinose, uronic acids and xylose, respectively, rhamnose and galactose being present in smaller amounts. As estimated by size-exclusion chromatography, the acidic fraction had an apparent molecular mass of 762 kDa. Methylation analysis (from the crude and fractions A and E), suggests that the polysaccharide is an arabinan-rich pectin. In all cases, the polysaccharides bear the same type of structural Ara moieties with highly branched arabinan-rich pectic polysaccharides. The average relative proportions of the arabinosyl linkages is 3:2:1:1 for T-Araf:(1-->5)-Araf:(1-->3,5)-Araf:(1-->2,3,5)-Araf. The crude polysaccharide extract and fractions A and E induced a murine lymphocyte stimulatory effect, as evaluated by the in vitro and in vivo expression of lymphocyte activation markers and spleen mononuclear cells culture proliferation. The lymphocyte stimulatory effect was stronger on B- than on T-cells. No evidence of cytotoxic effects induced by the polysaccharide fractions was found.

  2. Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels.

    PubMed

    Nguyen, Hong Phuong; Jeong, Ho Young; Jeon, Seung Ho; Kim, Donghyuk; Lee, Chanhui

    2017-01-01

    Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Qualitative and Quantitative Analysis of Carbohydrate Modification on Glycoproteins from Seeds of Ginkgo biloba.

    PubMed

    Wang, Ting; Hu, Xiao-Chun; Cai, Zhi-Peng; Voglmeir, Josef; Liu, Li

    2017-09-06

    Recent progress in the relationship between carbohydrate cross-reactive determinants (CCDs) and allergic response highlights the importance of carbohydrate moieties in the innate immune system. Previous research pointed out that the protein allergen in Ginkgo biloba seeds is glycosylated, and the oligosaccharides conjugated to these proteins might also contribute to the allergy. The aim of this study was to analyze carbohydrate moieties, especially N-linked glycans, of glycoproteins from Ginkgo seeds originating from different places for detailed structures, to enable further research on the role played by N-glycans in Ginkgo-caused allergy. Results of monosaccharide composition and immunoblotting assays indicated the existence of N-glycans. Detailed structural elucidation of the N-glycans was further carried out by means of hydrophilic interaction ultraperformance liquid chromatography (HILIC-UPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 14 out of 16 structures detected by UPLC were confirmed by MALDI-TOF-MS and tandem mass spectrometry, among which complex-type N-glycans bearing Lewis A determinants and high-mannose-type N-glycans were identified from Ginkgo seeds for the first time. Precise quantification of N-glycans was performed by use of an external standard, and both the absolute amount of each N-glycan and the percentage of different types of N-glycan showed significant diversity among the samples without any pattern of geographic variation.

  4. Optimization of Mycelia Selenium Polysaccharide Extraction from Agrocybe cylindracea SL-02 and Assessment of their Antioxidant and Anti-Ageing Activities

    PubMed Central

    Che, Gen; Zhou, Meng; Gao, Zheng; Li, Shangshang; Ren, Zhenzhen; Hao, Long; Liu, Yu; Jia, Le

    2016-01-01

    The aim of the present study was to optimize the purification of mycelia selenium polysaccharides (MSPS) from Agrocybe cylindracea SL-02 and characterize their in vitro antioxidant and in vivo anti-ageing activities. The Box-Behnken experimental design (BBD) was evaluated, which showed that the optimum conditions included an extraction temperature of 94.99°C, a pH of 9 and a precipitation temperature of 12°C, and the predicted yield was 11.036 ± 0.31%. The in vitro antioxidant assay demonstrated that MSPS had potential effects on scavenging and enhanced the reducing power of reactive oxygen species. The in vivo anti-ageing evaluation showed that MSPS significantly reduced the malonaldehyde (MDA) contents and total cholesterol (CHOL) levels, and remarkably improved the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in mice in response to D-galactose-induced ageing. Furthermore, the characteristic analysis of MSPS indicated a selenium content of 1.76 ± 0.10 mg/g at a concentration of 6 μg/mL in liquid media and a monosaccharide composition of rhamnose, arabinose, mannose, glucose and galactose at a molar ratio of 29:3:1:18.8:2.7. These results suggest that MSPS might be suitable for functional foods and natural drugs on preventing the ageing progress induced by toxic chemicals. PMID:27532123

  5. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi.

    PubMed

    Zhao, Chengcheng; Li, Xia; Miao, Jing; Jing, Songsong; Li, Xuejiao; Huang, Luqi; Gao, Wenyuan

    2017-09-01

    The rhizoma of Dioscorea hemsleyi (DH) has been used as a treatment of diabetes in China for hundreds of years. Polysaccharides in DH were extracted by using ultrasonic-assisted extraction (UAE), cold water extraction (CWE), warm water extraction (WWE) and hot water extraction (HWE), separately. Then the different characterizations of four DH polysaccharide (DHP) samples were analyzed by high-performance liquid chromatography (HPLC), high-performance Gel permeation chromatography (HGPC), ultraviolet-visible spectroscopy(UV), fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Their activities in vitro of DHP were compared. Experimental results showed that HWE had the highest yield and large molecular weight. CWE had the highest uronic acid yield and little molecular weight, and its DPPH, AGI and AAI activity were the best. The molecular weight of UAE was small, and its RP and FRAP activity were the best. Four DHP samples had differences in the surface topography, while they all had the typical IR spectra characteristic of polysaccharides. According the correlation analysis, it showed that the more uronic acid and the lower molecular weight was, the higher the antioxidant activity was. The high content of monosaccharide composition of Xyl, Ara, GlcA and GalA, and little molecular weight have good effect on antidiabetic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W

    PubMed Central

    Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah

    2008-01-01

    Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421

  7. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    PubMed Central

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties. PMID:25414708

  8. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    PubMed

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  9. Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves.

    PubMed

    Boudjeko, Thaddée; Megnekou, Rosette; Woguia, Alice Louise; Kegne, Francine Mediesse; Ngomoyogoli, Judith Emery Kanemoto; Tchapoum, Christiane Danielle Nounga; Koum, Olga

    2015-12-09

    Many plant polysaccharides have shown high antioxidant and immunostimulating properties and can be explored as novel molecules with biological properties that can potentially improve immune function. The objective of this work was to characterize soluble and cell wall polysaccharides isolated from the stem bark of Allanblackia floribunda and Chromolaena odorata leaves and to evaluate their antioxidant and immunomodulatory properties. Three polysaccharide fractions: soluble polysaccharides (PoS), pectins (Pec) and hemicelluloses (Hem) were extracted from A. floribunda stem bark and C. odorata leaves. These samples were analysed for their proteins, phenolic compounds and total sugar contents. The monosaccharide composition was determined by gas chromatography and arabinogalactan proteins content in PoS was evaluated by rocket electrophoresis. The in vitro antioxidant activities were evaluated by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis-3-éthylbenzylthiazoline-6-sulphonic acid (ABTS) radical scavenging assays and ferrous ions chelating activity. Immunomodulatory activities were performed on the peripheral blood mononuclear cells (PBMCs) using proliferation and enzyme linked immunospot (ELISPOT) method to determine the production of an interferon-gamma. The characterization of the various fractions showed varied metabolites in each plant. In PoS fractions, Ara and Gal were the major monosaccharides found, indicating that arabinogalactans are the primary macromolecules. Hem fractions contained predominantly Xyl and GalA for A. floribunda and Xyl (upto 80 %) for and C. odorata. A. floribunda Hem fraction and C. odorata PoS fraction showed significant DPPH and ABTS radical scavenging activities and immunostimulatory activity via stimulation of PBMC and production of IFN-γ in a dose-dependent manner. The results obtained from this study support the ethnomedicinal use of the stem bark of A. floribunda and leaves of C. odorata. Further research is necessary to have supporting evidence that the antioxidative and immunomodulative activities of these fractions are really connected to the polysaccharides and not polyphenols.

  10. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues.

    PubMed

    O'Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H; Fry, Stephen C

    2015-08-01

    During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). 'Pectins' and 'hemicelluloses', operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, 'U', was characterized by (1)H/(13)C-nuclear magnetic resonance spectroscopy and also enzymically. 'U' was identified as 3-O-methyl-D-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in 'higher' charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of 'higher' charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3-MeGal in charophytes and lycophytes but not in the 'intervening' bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-d-galactose residues

    PubMed Central

    O’Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H.; Fry, Stephen C.

    2015-01-01

    Background and Aims During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Methods Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). ‘Pectins’ and ‘hemicelluloses’, operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, ‘U’, was characterized by 1H/13C-nuclear magnetic resonance spectroscopy and also enzymically. Key Results ‘U’ was identified as 3-O-methyl-d-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in ‘higher’ charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of ‘higher’ charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Conclusions Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3-MeGal in charophytes and lycophytes but not in the ‘intervening’ bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades. PMID:26113633

  12. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.

    PubMed

    Chen, Da; Harris, Philip J; Sims, Ian M; Zujovic, Zoran; Melton, Laurence D

    2017-06-15

    Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na 2 CO 3 , 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na 2 CO 3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.

  13. Phosphate Dependence of Monosaccharide Transport in Nocardia

    PubMed Central

    Cerbón, Jorge; Ortigoza-Ferado, Jorge

    1968-01-01

    Uptake of the monosaccharides d-glucose and d-mannose by Nocardia asteroides and N. brasiliensis is dependent on the presence of an adequate phosphate concentration in the environment. When phosphate is replaced by solutions of sodium chloride or potassium chloride of identical ionic strength, there is no sugar uptake. In the presence of iso-osmolar concentrations of sodium arsenate, there is, however, sugar uptake activation. When nonmetabolizable 3-O-methyl d-glucose is used, most of the sugar taken up can be shown to be in the cell at a concentration never exceeding that of the external medium. Phosphate, or arsenate, seems to be essential for the actual migration of the sugar through the cell envelope. The transport of the nonmetabolizable 3-O-methyl glucose also requires phosphate, and the transport seems to be of a type that does not require energy. PMID:5640377

  14. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts.

    PubMed

    Ferreira, Joana P A; Miranda, Isabel; Sousa, Vicelina B; Pereira, Helena

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine.

  15. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts

    PubMed Central

    2018-01-01

    The bark from Quercus faginea mature trees from two sites was chemically characterized for the first time. The barks showed the following composition: ash 14.6%, total extractives 13.2%, suberin 2.9% and lignin 28.2%. The polysaccharides were composed mainly of glucose and xylose (50.3% and 35.1% of all monosaccharides respectively) with 4.8% of uronic acids. The suberin composition was: ω-hydroxyacids 46.3% of total compounds, ɑ,ω-alkanoic diacids 22.3%, alkanoic acids 5.9%, alkanols 6.7% and aromatics 6.9% (ferulic acid 4.0%). Polar extracts (ethanol-water) had a high phenolic content of 630.3 mg of gallic acid equivalents (GAE)/g of extract, condensed tannins 220.7 mg of catechin equivalents (CE)/g extract, and flavonoids 207.7 mg CE/g of extract. The antioxidant activity was very high corresponding to 1567 mg Trolox equivalents/g of extract, and an IC50 of 2.63 μg extract/ml. The lipophilic extracts were constituted mainly by glycerol and its derivatives (12.3% of all compounds), alkanoic acids (27.8%), sterols (11.5%) and triterpenes (17.8%). In view of an integrated valorization, Quercus faginea barks are interesting sources of polar compounds including phenols and polyphenols with possible interesting bioactivities, while the sterols and triterpenes contained in the lipophilic extracts are also valuable bioactive compounds or chemical intermediates for specific high-value market niches, such as cosmetics, pharmaceuticals and biomedicine. PMID:29763441

  16. GxySBA ABC Transporter of Agrobacterium tumefaciens and Its Role in Sugar Utilization and vir Gene Expression

    PubMed Central

    Zhao, Jinlei

    2014-01-01

    Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625

  17. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production.

    PubMed

    Mosier, Nathan S; Hendrickson, Richard; Brewer, Mark; Ho, Nancy; Sedlak, Miroslav; Dreshel, Richard; Welch, Gary; Dien, Bruce S; Aden, Andy; Ladisch, Michael R

    2005-05-01

    The pretreatment of cellulose in corn fiber by liquid hot water at 160 degrees C and a pH above 4.0 dissolved 50% of the fiber in 20 min. The pretreatment also enabled the subsequent complete enzymatic hydrolysis of the remaining polysaccharides to monosaccharides. The carbohydrates dissolved by the pretreatment were 80% soluble oligosaccharides and 20% monosaccharides with <1% of the carbohydrates lost to degradation products. Only a minimal amount of protein was dissolved, thus enriching the protein content of the undissolved material. Replication of laboratory results in an industrial trial at 43 gallons per minute (163 L/min) of fiber slurry with a residence time of 20 min illustrates the utility and practicality of this approach for pretreating corn fiber. The added costs owing to pretreatment, fiber, and hydrolysis are equivalent to less than 0.84 dollars/gal of ethanol produced from the fiber. Minimizing monosaccharide formation during pretreatment minimized the formation of degradation products; hence, the resulting sugars were readily fermentable to ethanol by the recombinant hexose and by pentose-fermenting Saccharomyces cerevisiae 424A(LNH-ST) and ethanologenic Escherichia coli at yields >90% of theoretical based on the starting fiber. This cooperative effort and first successful trial opens the door for examining the robustness of the pretreatment system under extended run conditions as well as pretreatment of other cellulose-containing materials using water at controlled pH.

  18. Possibility as monosaccharide laxative of rare sugar alcohols.

    PubMed

    Oosaka, Kazumasa

    2009-05-01

    Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation.

  19. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides

    PubMed Central

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1–35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation. PMID:27681920

  20. Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum.

    PubMed

    Xiao, Rui; Yang, Xi; Li, Mi; Li, Xiang; Wei, Yanzhang; Cao, Min; Ragauskas, Arthur; Thies, Mark; Ding, Junhuan; Zheng, Yi

    2018-09-01

    This paper was the first to study extracellular polymeric substances (EPSs) of Thraustochytrium striatum on composition, structure and bioactivities. Two strains of T. striatum including original (ori) and high-biomass (mut) strains (induced by high-nitrogen stress) were compared. The EPSs from both strains mainly contained polysaccharide (41-64%, w/w, dry basis) and protein (25-40%, w/w, dry basis), which was shown by the morphology study with an AFM. The monosaccharide profile of the EPS polysaccharide was consisted of glucose, galactose, arabinose, and trace amount of xylose. Glucose and arabinose took up to 82-90% (w/w, dry basis) of the total polysaccharide. The structure and functional groups of EPSs were determined by FTIR and NMR. The NMR results revealed that the major structural linkages of the polysaccharides of both ori and mut EPSs were 1 → 6-β-glucan and 1 → 4-α-galactan branched with l-α-arabinose. The EPSs were found to have anti-tumor activities against mouse melanoma B16-F0, human prostate carcinoma DU145, human cervical carcinoma HeLa, and human lung carcinoma A549. The EPSs also showed antioxidant and anti-inflammatory activities and antibacterial activity against Pseudomonas aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE PAGES

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; ...

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.« less

  2. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    PubMed

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.

  3. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose. PMID:25790428

  4. Structural analysis of glycoproteins: building N-linked glycans with Coot.

    PubMed

    Emsley, Paul; Crispin, Max

    2018-04-01

    Coot is a graphics application that is used to build or manipulate macromolecular models; its particular forte is manipulation of the model at the residue level. The model-building tools of Coot have been combined and extended to assist or automate the building of N-linked glycans. The model is built by the addition of monosaccharides, placed by variation of internal coordinates. The subsequent model is refined by real-space refinement, which is stabilized with modified and additional restraints. It is hoped that these enhanced building tools will help to reduce building errors of N-linked glycans and improve our knowledge of the structures of glycoproteins.

  5. Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility.

    PubMed

    Qing, Qing; Zhou, Linlin; Guo, Qi; Gao, Xiaohang; Zhang, Yan; He, Yucai; Zhang, Yue

    2017-06-01

    An efficient strategy was developed in current work for biochemical conversion of carbohydrates of corn stover into monosaccharides. Corn stover was first presoaked in mild alkaline solution (1% Na 2 S) under 40°C for 4h, after which about 35.3% of the lignin was successfully removed while the specific surface area was notably enlarged. Then the presoaked solids were subjected to organosolv pretreatment that employed 20% methanol with an addition of 0.2% HCl as catalyst at 160°C for 20min, and the maximum total sugar yield of the pretreated corn stover achieved was 98.6%. The intact structure of corn stover was disrupted by this two-step process, which resulted in a porous but crystalline structure of the regenerated solids that were mainly composed of cellulose. The enlarged specific surface area and increased accessibility made the regenerated solids highly digestible by a moderate enzyme loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide.

    PubMed

    Nakamura, Michiko; Miura, Sayaka; Takagaki, Akiko; Nanjo, Fumio

    2017-05-01

    Crude tea polysaccharide (crude TPS) was prepared from instant green tea by ethanol precipitation followed by ultrafiltration membrane treatment and its effects on blood lipid, liver lipid, and fecal lipid levels were examined with Sprague-Dawley rats fed a high-fat diet. Although crude TPS showed no effects on the serum lipid levels, it suppressed the liver lipid accumulation and increased the fecal excretion of dietary fat. Then, the structural features of crude TPS were investigated. After separation of crude TPS by DEAE-cellulose and gel-filtration column chromatography, two kinds of neutral tea polysaccharides (NTPS-LP and NTPS-HH) and an acidic polysaccharide (ATPS-MH) were obtained. According to monosaccharide composition, methylation, and NMR analyses, NTPS-LP, NPTS-HH, and ATPS-MH were presumed to be starch, arabinogalactan with β-1,3-linked galactosyl backbone blanched at position 6 and with 1,5-linked arabinofuranosyl residues, and α-1,4-linked galacturonic acid backbone with arabinogalactan region, respectively.

  7. Hydrolysates of lignocellulosic materials for biohydrogen production

    PubMed Central

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-01-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized. [BMB Reports 2013; 46(5): 244-251] PMID:23710634

  8. Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis

    PubMed Central

    Wu, Ding-Tao; Lv, Guang-Ping; Zheng, Jian; Li, Qian; Ma, Shuang-Cheng; Li, Shao-Ping; Zhao, Jing

    2016-01-01

    Natural Cordyceps collected in Bhutan has been widely used as natural Cordyceps sinensis, an official species of Cordyceps used as Chinese medicines, around the world in recent years. However, whether Cordyceps from Bhutan could be really used as natural C. sinensis remains unknown. Therefore, DNA sequence, bioactive components including nucleosides and polysaccharides in twelve batches of Cordyceps from Bhutan were firstly investigated, and compared with natural C. sinensis. Results showed that the fungus of Cordyceps from Bhutan was C. sinensis and the host insect belonged to Hepialidae sp. In addition, nucleosides and their bases such as guanine, guanosine, hypoxanthine, uridine, inosine, thymidine, adenine, and adenosine, as well as compositional monosaccharides, partial acid or enzymatic hydrolysates, molecular weights and contents of polysaccharides in Cordyceps from Bhutan were all similar to those of natural C. sinensis. All data suggest that Cordyceps from Bhutan is a rational alternative of natural C. sinensis, which is beneficial for the improvement of their performance in health and medicinal food areas. PMID:27874103

  9. Chemical characteristics and anti-proliferation activities of Ganoderma tsugae polysaccharides.

    PubMed

    Chien, Rao-Chi; Yen, Ming-Tsung; Tseng, Yu-Hsiu; Mau, Jeng-Leun

    2015-09-05

    Polysaccharides were extracted by hot-water and hot-alkali from four forms of Ganoderma tsugae including mature and baby Ling chih, mycelium and filtrate. Different profiles of proximate composition and monosaccharide constituents, and element contents were found in the extracted polysaccharides from different extractions and different forms. The molecular weight distributions of polysaccharides were 2.8×10(4)-6.5×10(5)Da and their infrared spectra were comparable. The hot-alkali extracted polysaccharides exhibited better anti-proliferation on IMR32 cells than the hot-water extracted polysaccharides, which were in turn more effective than the hot-water extracts. Besides, most hot-water extracts and both extracted polysaccharides exhibited an anti-proliferation effect on Hep G2 cells. However, the hot-water extracts showed less effective in anti-proliferation of IMR32 and Hep G2 cells. Based on the anti-tumor effects, both polysaccharides could be prepared for use in the formulation of nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cordyceps collected from Bhutan, an appropriate alternative of Cordyceps sinensis.

    PubMed

    Wu, Ding-Tao; Lv, Guang-Ping; Zheng, Jian; Li, Qian; Ma, Shuang-Cheng; Li, Shao-Ping; Zhao, Jing

    2016-11-22

    Natural Cordyceps collected in Bhutan has been widely used as natural Cordyceps sinensis, an official species of Cordyceps used as Chinese medicines, around the world in recent years. However, whether Cordyceps from Bhutan could be really used as natural C. sinensis remains unknown. Therefore, DNA sequence, bioactive components including nucleosides and polysaccharides in twelve batches of Cordyceps from Bhutan were firstly investigated, and compared with natural C. sinensis. Results showed that the fungus of Cordyceps from Bhutan was C. sinensis and the host insect belonged to Hepialidae sp. In addition, nucleosides and their bases such as guanine, guanosine, hypoxanthine, uridine, inosine, thymidine, adenine, and adenosine, as well as compositional monosaccharides, partial acid or enzymatic hydrolysates, molecular weights and contents of polysaccharides in Cordyceps from Bhutan were all similar to those of natural C. sinensis. All data suggest that Cordyceps from Bhutan is a rational alternative of natural C. sinensis, which is beneficial for the improvement of their performance in health and medicinal food areas.

  11. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.

    PubMed

    Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen

    2013-05-21

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.

  12. Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent.

    PubMed

    Houser, Josef; Komarek, Jan; Cioci, Gianluca; Varrot, Annabelle; Imberty, Anne; Wimmerova, Michaela

    2015-03-01

    The Aspergillus fumigatus lectin AFL was recently described as a new member of the AAL lectin family. As a lectin from an opportunistic pathogen, it might play an important role in the interaction of the pathogen with the human host. A detailed study of structures of AFL complexed with several monosaccharides and oligosaccharides, including blood-group epitopes, was combined with affinity data from SPR and discussed in the context of previous findings. Its six binding sites are non-equivalent, and owing to minor differences in amino-acid composition they exhibit a marked difference in specific ligand recognition. AFL displays a high affinity in the micromolar range towards oligosaccharides which were detected in plants and also those bound on the human epithelia. All of these results indicate AFL to be a complex member of the lectin family and a challenging target for future medical research and, owing to its binding properties, a potentially useful tool in specific biotechnological applications.

  13. Structure Characterization and Immunomodulating Effects of Polysaccharides Isolated from Dendrobium officinale.

    PubMed

    Wei, Wei; Feng, Lei; Bao, Wan-Rong; Ma, Dik-Lung; Leung, Chung-Hang; Nie, Shao-Ping; Han, Quan-Bin

    2016-02-03

    A crude polysaccharide fraction (cDOP) has been determined to be the characteristic marker of Dendrobium officinale, an expensive tea material in Asia, but its chemistry and bioactivity have not been studied. In work reported here, cDOP was destarched (DOP, 90% yield) and separated into two subfraction polysaccharides, DOPa and DOPb, which were characterized by monosaccharide composition and methylation analyses and spectral analyses (FT-IR and (1)H and (13)C NMR). Both are composed of mannose and glucose at similar ratios and have a similar structure with a backbone of 1,4-linked β-D-mannopyranosyl and β-D-glucopyranosyl residues. Significant differences were observed only in their molecular weights. Bioassay using mouse macrophage cell line RAW264.7 indicated that DOP and its two subfractions enhance cell proliferation, TNF-α secretion, and phagocytosis in a dose-dependent manner. They also induced the proliferation of lymphocytes alone and with mitogens. DOPa and DOPb are thus proven to be major, active polysaccharide markers of D. officinale.

  14. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization.

    PubMed

    Santana, Hugo; Cereijo, Carolina R; Teles, Valérya C; Nascimento, Rodrigo C; Fernandes, Maiara S; Brunale, Patrícia; Campanha, Raquel C; Soares, Itânia P; Silva, Flávia C P; Sabaini, Priscila S; Siqueira, Félix G; Brasil, Bruno S A F

    2017-03-01

    Sugarcane ethanol is produced at large scale generating wastes that could be used for microalgae biomass production in a biorefinery strategy. In this study, forty microalgae strains were screened for growth in sugarcane vinasse at different concentrations. Two microalgae strains, Micractinium sp. Embrapa|LBA32 and C. biconvexa Embrapa|LBA40, presented vigorous growth in a light-dependent manner even in undiluted vinasse under non-axenic conditions. Microalgae strains presented higher biomass productivity in vinasse-based media compared to standard Bold's Basal Medium in cultures performed using 15L airlift flat plate photobioreactors. Chemical composition analyses showed that proteins and carbohydrates comprise the major fractions of algal biomass. Glucose was the main monosaccharide detected, ranging from 46% to 76% of the total carbohydrates content according to the strain and culture media used. This research highlights the potential of using residues derived from ethanol plants to cultivate microalgae for the production of energy and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose.

    PubMed

    Han, Jin; Hang, Feng; Guo, Benheng; Liu, Zhenmin; You, Chunpin; Wu, Zhengjun

    2014-11-04

    The characteristics of the growth of Leuconostoc mesenteroides BD1710 and the synthesis of dextran in tomato juice supplemented with 15% sucrose were assayed. L. mesenteroides BD1710 could synthesize approximately 32 g L(-1) dextran in the tomato-juice-sucrose medium when cultured at 28 °C for 48 h, which was on the same level as the dextran yield in a chemically defined medium. The viscosity of the cultured tomato-juice-sucrose medium with various dextran contents was also measured. The results of the monosaccharide composition, molecular-weight distribution, Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance spectra (NMR) showed that the polysaccharide synthesized by L. mesenteroides BD1710 in the tomato-juice-sucrose medium was dextran with a peak molecular weight of 6.35 × 10(5)Da, a linear backbone composed of consecutive α-(1 → 6)-linked d-glucopyranosyl units and approximately 6% α-(1 → 3) branches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    PubMed

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Automated glycan assembly of xyloglucan oligosaccharides.

    PubMed

    Dallabernardina, Pietro; Schuhmacher, Frank; Seeberger, Peter H; Pfrengle, Fabian

    2016-01-07

    We report the automated glycan assembly of oligosaccharide fragments related to the hemicellulose xyloglucan (XG). Iterative addition of monosaccharide and disaccharide building blocks to a solid support provided seven cellulose and xyloglucan fragments including XXGG- and XXXG-type oligosaccharides.

  18. Corn fiber, cobs and stover: enzyme-aided saccharification and co-fermentation after dilute acid pretreatment.

    PubMed

    Van Eylen, David; van Dongen, Femke; Kabel, Mirjam; de Bont, Jan

    2011-05-01

    Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.

    PubMed

    Sharma, S K; Gautam, N

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.

  20. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    PubMed Central

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  1. Effect of monosaccharide sugars on LH-induced differentiation and sugar transport facilitator (SLC2A) expression in sheep theca cells in vitro.

    PubMed

    Campbell, B K; Kendall, N R; Onions, V; Guo, L; Scaramuzzi, R J

    2014-03-01

    The aim of the present study was to investigate the effects of glucose, galactose and fructose on the LH-induced differentiation and mRNA expression of sugar transport facilitators (SLC2A) by sheep thecal cells derived from small antral follicles cultured under serum-free conditions for 6 days. The dose and type of monosaccharide had a significant effect on LH-induced androstenedione production by theca cells and there was a significant interaction (P<0.001). Glucose and galactose were used with equal efficiency so that cell numbers and androstenedione production at the end of the culture were comparable. Pharmacological doses of glucose (16.7 mM) inhibited steroidogenesis (P<0.05). Cell numbers and androstenedione production by cells cultured with fructose were lower than for cells cultured with either glucose or galactose (P<0.001). None of the monosaccharides resulted in the production of lactate. Expression of SLC2A1, SLC2A4 and SLC2A8, but not SLC2A5, mRNA was detected in fresh and cultured theca cells. Large doses (16.7 mM) of glucose and fructose, but not galactose, suppressed (P<0.05) SLC2A expression. The results show that glucose and galactose, but not fructose, are readily metabolised via oxidative pathways to support LH-induced differentiation of sheep theca cells. Further work is required to determine the mechanisms resulting in these differences in relation to the established effects of nutrition on reproductive function.

  2. Leaf-cutter ant fungus gardens are biphasic mixed microbial bioreactors that convert plant biomass to polyols with biotechnological applications.

    PubMed

    Somera, Alexandre F; Lima, Adriel M; Dos Santos-Neto, Álvaro J; Lanças, Fernando M; Bacci, Maurício

    2015-07-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Selective Methods for C-X Activation in Carbohydrates

    DTIC Science & Technology

    2013-01-01

    system, the major products observed for the hydrosilylation of monosaccharides were n-hexane, 2- and 3-methylpentane. Glucose hydrosilylation could... polysaccharide cellulose reacting faster than unprotected glucose. Complete hydrosilylation of methyl cellulose yielded a similar mixture of alkane products

  4. Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity

    PubMed Central

    2013-01-01

    Background Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic line B14 to evaluate how overexpression of the β-1,3-glucanase gene influences the quantity, quality and composition of flax fibres, which are the main product obtained from flax straw. Results Overproduction of β-1,3-glucanase did not affect the quantity of the fibre obtained from the flax straw and did not significantly alter the essential mechanical characteristics of the retted fibres. However, changes in the contents of the major components of the cell wall (cellulose, hemicellulose, pectin and lignin) were revealed. Overexpression of the β-1,3-glucanase gene resulted in higher cellulose, hemicellulose and pectin contents and a lower lignin content in the fibres. Increases in the uronic acid content in particular fractions (with the exception of the 1 M KOH-soluble fraction of hemicelluloses) and changes in the sugar composition of the cell wall were detected in the fibres of the transgenic flax when compared to the contents for the control plants. The callose content was lower in the fibres of the transgenic flax. Additionally, the analysis of phenolic compound contents in five fractions of the cell wall revealed important changes, which were reflected in the antioxidant potential of these fractions. Conclusion Overexpression of the β-1,3-glucanase gene has a significant influence on the biochemical composition of flax fibres. The constitutive overproduction of β-1,3-glucanase causes a decrease in the callose content, and the resulting excess glucose serves as a substrate for the production of other polysaccharides. The monosaccharide excess redirects the phenolic compounds to bind with polysaccharides instead of to partake in lignin synthesis. The mechanical properties of the transgenic fibres are strengthened by their improved biochemical composition, and the increased antioxidant potential of the fibres supports the potential use of transgenic flax fibres for biomedical applications. PMID:23394294

  5. Nanoparticles as strengthening agents in polymer systems

    NASA Astrophysics Data System (ADS)

    Shahid, Naureen

    2005-11-01

    Carboxylate-substituted alumina nanoparticles are produced solvent free using mechanical shear. The general nature of this method has been demonstrated for L-lysine-, stearate, and p-hydroxybenzoate-derived materials. The reaction rate and particle size is controlled by a combination of temperature and shear rate. The nanoparticles are spectroscopically equivalent to those reported from aqueous syntheses, however, the average particle size can be decreased and the particle size distribution narrowed depending on the reaction conditions. Lysine and p-hydroxybenzoato alumoxanes have been introduced in carbon fiber reinforced epoxide resin composites. Different preparation conditions have been studied to obtain composite with enhanced performances that are ideal for the motor sports and aerospace industries. A new composite material has been fabricated utilizing surface-modified carboxylate alumoxane nanoparticles and the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA). For this study, composites were prepared using various functional groups including: a surfactant alumoxane to enhance nanoparticle dispersion into the polymer; an activated-alumoxane to enhance nanoparticle interaction with the polymer matrix; a mixed alumoxane containing both activated and surfactant groups. Nanocomposites prepared with all types of alumoxane, as well as blank polymer resin and unmodified boehmite, underwent mechanical testing and were characterized by SEM and microprobe analysis. A nanocomposite composed of mixed alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited increased flexural modulus compared to polymer resin alone, and a significant enhancement over both the activated and surfacted alumoxanes. Boric acid is used as the cross-linking agent in oil well drilling industry even though the efficacy of the borate ion, [B(OH)4]- , as a cross-linking agent is poor. The reaction product of boric acid and the polysaccharide guaran (the major component of guar gum) has been investigated by 11B NMR spectroscopy. By comparison with the 11B NMR of boric acid and phenyl boronic acid complexes of 1,2-diols [HOCMe2CMe2OH, cis-C6H 10(OH)2, trans-C6H10(OH) 2, o-C6H4(OH)2], 1,3-diols (neol-H2), monosaccharides (L-fucose, mannose and galactose) and disaccharides (celloboise and sucrose) it is found that the guaran polymer is cross-linked via a borate complex of two 1,2-diols both forming chelate 5-membered ring cycles, this contrasts with previous proposals. (Abstract shortened by UMI.)

  6. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

  7. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk.

    PubMed

    Di, Wei; Zhang, Lanwei; Wang, Shumei; Yi, Huaxi; Han, Xue; Fan, Rongbo; Zhang, Yingchun

    2017-09-01

    Two high molecular weight fractions (LW1 and LW2) of exopolysaccharides (EPSs) produced by Lactobacillus casei SB27 were isolated from yak milk obtained from the Gansu Tibetan area of China. GC-MS, FTIR spectroscopy, methylation analysis and FE-SEM analysis were performed to elucidate the physicochemical characterization of these two fractions, and their in vitro antitumour activities were also evaluated. The molecular weights (Mws) of LW1 and LW2 as determined by HPGPC were 25.10 and 12.34kDa, respectively. Monosaccharide composition analysis revealed that LW1 and LW2 were mainly composed of galactose (52.4% and 57.4%, mol%) and glucose (29.1% and 22.2%, mol%), respectively. Methylation results showed that the main chain of LW1 likely involves (1→4)-linked Galp and (1→4)-linked Glcp with its side chains being (1→4,6)-linked Galp through the O-6 position connected to the backbone, whereas the main chain of LW2 likely involves (1→4)-linked Galp and (1→4)-linked Glcp with its side chains being (1→3)-Galp through the O-6 position of (1→3,6)-Galp linked to the main chain. Evaluation of the microcosmic morphology, as revealed by FE-SEM analysis of the two EPS fractions, showed a sheet-like appearance with a folded surface and a compact structure. The results from in vitro antitumour tests indicated that both LW1 and LW2 could significantly inhibit the proliferation of HT-29 colorectal cancer cells and up-regulated the expressions of Bad, Bax, Caspase-3 and -8 genes. Finally, TEM images revealed the apoptotic morphological changes of HT-29 cells induced by LW1 and LW2. Our results suggested that LW1 and LW2 possess potential not only for use in functional food products but also as a source of natural antitumour drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Organic molecules in the polar ice: from chemical analysis to environmental proxies

    NASA Astrophysics Data System (ADS)

    Barbante, Carlo; Zennaro, Piero; Giorio, Chiara; Kehrwald, Natalie; Benton, Alisa K.; Wolff, Eric W.; Kalberer, Markus; Kirchgeorg, Torben; Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea

    2015-04-01

    The molecular and isotopic compositions of organic matter buried in ice contains information that helps reconstruct past environmental conditions, evaluate histories of climate change, and assess impacts of humans on ecosystems. In recent years novel analytical techniques were developed to quantify molecular compounds in ice cores. As an example, biomass burning markers, including monosaccharide anhydrides, lightweight carboxylic acids, lignin and resin pyrolysis products, black carbon, and charcoal records help in reconstructing past fire activity across seasonal to millennial time scales. Terrestrial biomarkers, such as plant waxes (e.g. long-chain n-alkanes) are also a promising paleo vegetation proxy in ice core studies. Polycyclic aromatic hydrocarbons are ubiquitous pollutants recently detected in ice cores. These hydrocarbons primarily originate from incomplete combustion of organic matter and fossil fuels (e.g. diesel engines, domestic heating, industrial combustion) and therefore can be tracers of past combustion activities. In order to be suitable for paloeclimate purposes, organic molecular markers detected in ice cores should include the following important features. Markers have to be stable under oxidizing atmospheric conditions, and ideally should not react with hydroxyl radicals, during their transport to polar regions. Organic markers must be released in large amounts in order to be detected at remote distances from the sources. Proxies must be specific, in order to differentiate them from other markers with multiple sources. The extraction of glaciochemical information from ice cores is challenging due to the low concentrations of some impurities, thereby demanding rigorous control of external contamination sources and sensitive analytical techniques. Here, we review the analysis and use of organic molecules in ice as proxies of important environmental and climatic processes.

  9. High molecular weight glucan of the culinary medicinal mushroom Agaricus bisporus is an alpha-glucan that forms complexes with low molecular weight galactan.

    PubMed

    Smiderle, Fhernanda R; Sassaki, Guilherme L; van Arkel, Jeroen; Iacomini, Marcello; Wichers, Harry J; Van Griensven, Leo J L D

    2010-08-25

    An alpha-glucan was isolated from the culinary medicinal mushroom A. bisporus by hot water extraction, ethanol precipitation and DEAE-cellulose chromatography. The resulting material showed a single HMW peak excluded from a Sephadex G50 column that could completely be degraded by alpha-amylase treatment. After heating in 1% SDS a small additional peak of low MW eluted from the G50 column. The monosaccharide composition of the main peak was evaluated by HPLC, and was found to consist of a majority of glucose (97.6%), and a minor proportion of galactose (2.4%). Methylation analysis and degradation by alpha-amylase indicated the presence of an alpha-glucan with a main chain consisting of (1(R)4)-linked units, substituted at O-6 by alpha-D-glucopyranose single-units in the relation 1:8. Mono- (13C-, 1H-NMR) and bidimensional [1H (obs.),13C-HSQC] spectroscopy analysis confirmed the alpha-configuration of the Glcp residues by low frequency resonances of C-1 at delta 100.6, 100.2, and 98.8 ppm and H-1 high field ones at delta 5.06, 5.11, and 4.74 ppm. The DEPT-13C-NMR allowed assigning the non-substituted and O-substituted -CH(2) signals at delta 60.3/60.8 and 66.2 ppm, respectively. Other assignments were attributed to C-2, C-3, C-4, C-5 and C-6 of the non-reducing ends at delta 71.8; 72.8; 70.0; 71.3 and 60.3/60.8 ppm, respectively. The minor proportion of galactose that was demonstrated was probably derived from a complex between the alpha-glucan and a low molecular weight galactan.

  10. Ultrasound-assisted extraction, characterization, and antioxidant activity in vitro and in vivo of polysaccharides from Chestnut rose (Rosa roxburghii tratt) fruit.

    PubMed

    Chen, Guangjing; Kan, Jianquan

    2018-03-01

    In this study, the response surface methodology was utilized to determine optimum conditions for extracting the polysaccharides from Rosa roxburghii Tratt fruit (RRTPs) using ultrasonic-assisted extraction, and the characterization and antioxidant activities of the RRTPs were discussed. RRTPs yield was 6.59 ± 1.34%, which was well consistent with the predicted value of 6.716%, under the following optimum conditions: ratio of water to raw material 40.18 mL/g, extraction temperature 78.8 °C, ultrasonic power 148 W, and extraction time 32.8 min. The monosaccharide composition analysis indicated that RRTPs were composed of mannose (Man), rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), glucose (Glc), galactose (Gal), arabinose (Ara) and xylose (Xyl). The molecular weight distribution analysis showed that RRTPs had four main components with molecular weights of 332.56, 183.96, 11.92 and 5.95 kDa, respectively. In vitro antioxidant studies revealed RRTPs exhibited significant antioxidant potential on hydroxyl, superoxide and DPPH radicals. In addition, antioxidant assays in vivo demonstrated that RRTPs can significantly increase the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and total antioxidant capacity (TAOC) to some extent, as well as decrease the level of malondialdehyde (MDA) in both serum and liver of d-Gal aging-induced mice. These data suggested that RRTPs could be a potential candidate of natural antioxidants for applications in functional food, pharmaceuticals or cosmetic industries. In summary, this work provided an effective method for the exploitation and utilization of value-added R. roxburghii Tratt fruit which would be useful to fully utilize this resource.

  11. Structural features and complement-fixing activity of pectin from three Brassica oleracea varieties: white cabbage, kale, and red kale.

    PubMed

    Samuelsen, Anne Berit; Westereng, Bjørge; Yousif, Osman; Holtekjølen, Ann Katrin; Michaelsen, Terje E; Knutsen, Svein H

    2007-02-01

    Leaves of different cabbage species are used both as food and as wound healing remedies in traditional medicine. This supposed wound healing activity might be connected to presence of immunomodulating water soluble polysaccharides. To study this, three different cabbage varieties, white cabbage (W), kale (K), and red kale (RK), were pretreated with 80% ethanol and then extracted with water at 50 degrees C and 100 degrees C for isolation of polysaccharide-containing fractions. The fractions were analyzed for monosaccharide composition, glycosidic linkages, Mw distribution, protein content, and phenolic compounds and then tested for complement-fixing activity. All fractions contained pectin type polysaccharides with linkages corresponding to homogalacturonan and hairy regions. Those extracted at 50 degrees C contained higher amounts of neutral side chains and were more active in the complement-fixation test than those extracted at 100 degrees C. The fractions can be ranged by decreasing activity: K-50 > RK-50 > W-50 approximately = K-100 > RK100 approximately = W-100. Studies on structure-activity relationships (SAR) employing multivariate statistical analysis strongly suggest that the magnitude of the measured activity is influenced by the content of certain side chains in the polymers. High activity correlates to large neutral side chains with high amounts of (1-->6)- and (1-->3,6)-linked Gal and low amounts of (1-->4)-linked GalA but not on molecular weight distribution of the polymers.

  12. Effect of ultrasonic treatment on immunological activities of polysaccharides from adlay.

    PubMed

    Yao, Yang; Zhu, Yingying; Gao, Yue; Ren, Guixing

    2015-09-01

    Alkali-extractable polysaccharides from the seed of adlay and their two polysaccharide sub-fractions (AAP-1 and AAP-2) were isolated and purified by anion-exchange and gel filtration chromatography. Ultrasonic treatment was put in place to obtain AAP-1' and AAP-2'. Average molecular weights (Mws) of AAP-1, AAP-1', AAP-2, and AAP-2' were 94.2 kDa, 63.1 kDa, 82.3 kDa, and 60.4 kDa, respectively. Monosaccharides composition analysis indicated that AAP-1 and AAP-1' were composed of Rha, Ara, Glc, and Gal in a molar ratio of 1.1:0.4:0.7:0.5 and 1.4:1.6:0.4:0.7. AAP-2 and AAP-2' were composed of Xyl, Rha, Gal and Glc in a molar percent of 0.4:1.4:1.6:0.5 and 0.3:1.6:1.1:0.7. In vitro study showed that AAP-1, AAP-1', AAP-2, and AAP-2' were all able to encourage the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in concentrations determines manner. AAP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic polysaccharides isolated in our study have immune potentiation effects on macrophages and should serve as a beneficial health food. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product.

    PubMed

    Thornton, D J; Khan, N; Mehrotra, R; Howard, M; Veerman, E; Packer, N H; Sheehan, J K

    1999-03-01

    The MG1 population of mucins was isolated from human whole salivas by gel chromatography followed by isopycnic density gradient centrifugation. The reduced and alkylated MG1 mucins, separated by anion exchange chromatography, were of similar size (radius of gyration 55-64 nm) and molecular weight (2.5-2.9 x 10(6) Da). Two differently-charged populations of MG1 subunits were observed which showed different reactivity with monoclonal antibodies to glycan epitopes. Monosaccharide and amino acid compositional analyses indicated that the MG1 subunits had similar glycan structures on the same polypeptide. An antiserum recognizing the MUC5B mucin was reactive across the entire distribution, whereas antisera raised against the MUC2 and MUC5AC mucins showed no reactivity. Western blots of agarose gel electrophoresis of fractions across the anion exchange distribution indicated that the polypeptide underlying the mucins was the product of the MUC5B gene. Amino acid analysis and peptide mapping performed on the fragments produced by trypsin digestion of the two MG1 populations yielded data similar to that obtained for MUC5B mucin subunits prepared from respiratory mucus (Thornton et al., 1997) and confirmed that the MUC5B gene product was the predominant mucin polypeptide present. Isolation of the MG1 mucins from the secretions of the individual salivary glands (palatal, sublingual, and submandibular) indicate that the palatal gland is the source of the highly charged population of the MUC5B mucin.

  14. A critical examination of the evidence relating high fructose corn syrup and weight gain.

    PubMed

    Forshee, Richard A; Storey, Maureen L; Allison, David B; Glinsmann, Walter H; Hein, Gayle L; Lineback, David R; Miller, Sanford A; Nicklas, Theresa A; Weaver, Gary A; White, John S

    2007-01-01

    The use of high fructose corn syrup (HFCS) has increased over the past several decades in the United States while overweight and obesity rates have risen dramatically. Some scientists hypothesize that HFCS consumption has uniquely contributed to the increasing mean body mass index (BMI) of the U.S. population. The Center for Food, Nutrition, and Agriculture Policy convened an expert panel to discuss the published scientific literature examining the relationship between consumption of HFCS or "soft drinks" (proxy for HFCS) and weight gain. The authors conducted original analysis to address certain gaps in the literature. Evidence from ecological studies linking HFCS consumption with rising BMI rates is unreliable. Evidence from epidemiologic studies and randomized controlled trials is inconclusive. Studies analyzing the differences between HFCS and sucrose consumption and their contributions to weight gain do not exist. HFCS and sucrose have similar monosaccharide compositions and sweetness values. The fructose:glucose (F:G) ratio in the U.S. food supply has not appreciably changed since the introduction of HFCS in the 1960s. It is unclear why HFCS would affect satiety or absorption and metabolism of fructose any differently than would sucrose. Based on the currently available evidence, the expert panel concluded that HFCS does not appear to contribute to overweight and obesity any differently than do other energy sources. Research recommendations were made to improve our understanding of the association of HFCS and weight gain.

  15. Bacterial dye-decolorizing peroxidases: biochemical properties and biotechnological opportunities

    EPA Science Inventory

    In biorefineries, processing biomass begins with separating lignin from cellulose and hemicellulose. The latter two are depolymerized to give monosaccharides (e.g. glucose and xylose), which can be converted to fuels or chemicals. In contrast, lignin presents a challenging target...

  16. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions.

    PubMed

    Raffo, María D; Ponce, Nora M A; Sozzi, Gabriel O; Vicente, Ariel R; Stortz, Carlos A

    2011-11-23

    Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.

  17. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  18. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; ...

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  19. Sources and composition of submicron organic mass in marine aerosol particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  20. Sources and composition of submicron organic mass in marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater organic mass hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production.

  1. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum

    PubMed Central

    Koroney, Abdoul Salam; Plasson, Carole; Pawlak, Barbara; Sidikou, Ramatou; Driouich, Azeddine; Menu-Bouaouiche, Laurence; Vicré-Gibouin, Maïté

    2016-01-01

    Background and aims Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. Methods In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy. The monosaccharide composition of the secreted exudates was determined by gas chromatography of trimethylsilyl methylglycoside derivatives. The effects of root exudates and secreted arabinogalactan proteins on bacterial growth were investigated using in vitro bioassays. Key Results Root exudate from S. tuberosum was highly enriched in galactose-containing molecules including arabinogalactan proteins as major components. Treatment of the root with an elicitor derived from Pectobacterium atrosepticum, a soil-borne pathogen of potato, altered the composition of the exudates and arabinogalactan proteins. We found that the growth of the bacterium in vitro was differentially affected by exudates from elicited and non-elicited roots (i.e. inhibition versus stimulation). Conclusions Taken together, these findings indicate that galactose-containing polymers of potato root exudates play a central role in root–microbe interactions. PMID:27390353

  2. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Space Biology and Aerospace Medicine, Number 3, 1977

    DTIC Science & Technology

    1977-07-07

    of synthesis of hexosamines in skeletal muscle and the heart. Under these conditions, the increase in acid muco- polysaccharides of skeletal...the 95 form of monosaccharides and disaccharides. Accumulation of ascorbic acid follows the same patterns as were noted in levels thereof. /I

  4. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  5. 21 CFR 145.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... of inverted or partly inverted, refined or partly refined sucrose, the solids of which contain not... sweetness. (f) The term sugar means refined sucrose. (g) The terms edible organic acid and edible organic...

  6. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  7. 21 CFR 145.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... of inverted or partly inverted, refined or partly refined sucrose, the solids of which contain not... sweetness. (f) The term sugar means refined sucrose. (g) The terms edible organic acid and edible organic...

  8. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  9. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  10. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    PubMed

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  11. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting.

    PubMed

    Xing, Rongrong; Wang, Shuangshou; Bie, Zijun; He, Hui; Liu, Zhen

    2017-05-01

    Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.

  12. A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution.

    PubMed

    Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye ("SQ-BA") is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λ(ex) = 630 nm, λ(em) = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 10(2.80), 10(2.08) and 10(0.86) M(-1) were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I-S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions.

  13. A Long-Wavelength Fluorescent Squarylium Cyanine Dye Possessing Boronic Acid for Sensing Monosaccharides and Glycoproteins with High Enhancement in Aqueous Solution

    PubMed Central

    Saito, Shingo; Massie, Tara L.; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L.

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye (“SQ-BA”) is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λex = 630 nm, λem = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 102.80, 102.08 and 100.86 M−1 were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I–S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions. PMID:22778592

  14. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies.

    PubMed

    Varjú, Péter; Farkas, Nelli; Hegyi, Péter; Garami, András; Szabó, Imre; Illés, Anita; Solymár, Margit; Vincze, Áron; Balaskó, Márta; Pár, Gabriella; Bajor, Judit; Szűcs, Ákos; Huszár, Orsolya; Pécsi, Dániel; Czimmer, József

    2017-01-01

    Irritable bowel syndrome (IBS) and functional digestive tract disorders, e.g. functional bloating, carbohydrate maldigestion and intolerances, are very common disorders frequently causing significant symptoms that challenge health care systems. A low Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols (FODMAP) diet is one of the possible therapeutic approaches for decreasing abdominal symptoms and improving quality of life. We aimed to meta-analyze data on the therapeutic effect of a low-FODMAP diet on symptoms of IBS and quality of life and compare its effectiveness to a regular, standard IBS diet with high FODMAP content, using a common scoring system, the IBS Symptom Severity Score (IBS-SSS). A systematic literature search was conducted in PubMed, EMBASE and the Cochrane Library as well as in the references in a recent meta-analysis. Adult patients diagnosed with IBS according to the Rome II, Rome III, Rome IV or NICE criteria were included in the analysis. Mean differences with 95% confidence intervals were calculated from studies that contained means, standard deviation (SD) or mean differences and SD of differences and p-values. A random effect model was used because of the heterogeneity (Q test (χ2) and I2 indicator). A p-value of less than 0.05 was chosen to indicate a significant difference. The literature search yielded 902 publications, but only 10 were eligible for our meta-analysis. Both regular and low-FODMAP diets proved to be effective in IBS, but post-diet IBS-SSS values were significantly lower (p = 0.002) in the low-FODMAP group. The low-FODMAP diet showed a correlation with the improvement of general symptoms (by IBS-SSS) in patients with IBS. This meta-analysis provides high-grade evidence of an improved general symptom score among patients with irritable bowel syndrome who have maintained a low-FODMAP diet compared to those on a traditional IBS diet, therefore showing its superiority to regular IBS dietary therapy. These data suggest that a low-FODMAP diet with dietitian control can be a candidate for first-line therapeutic modality in IBS. Because of a lack of data, well-planned randomized controlled studies are needed to ascertain the correlation between improvement of separate key IBS symptoms and the effect of a low-FODMAP diet.

  15. Feasibility of removing furfurals from sugar solutions using activated biochars made from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic feedstocks are often prepared for ethanol fermentation by treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and possibly cellulose into soluble carbohydrates. The acid catalyzed reaction scheme is sequential whereby released monosaccharides are further ...

  16. Fructose and high fructose corn syrup

    USDA-ARS?s Scientific Manuscript database

    Fructose, a monosaccharide, is naturally present in fruits, vegetables and honey, usually accompanied by other sugars including glucose and the disaccharide sucrose. It is also found as a component of sweeteners used in many processed food products, usually as sucrose or high fructose corn syrup (HF...

  17. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)

    USDA-ARS?s Scientific Manuscript database

    Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...

  18. Characterisation and molecular association of Nigerian and Sudanese Acacia gum exudates

    USDA-ARS?s Scientific Manuscript database

    The chemical and physicochemical characteristics of gum exudate samples harvested from mature trees of Acacia senegal at two specific locations in Nigeria have been investigated together with gum samples harvested from Acacia senegal and Acacia seyal originating from Sudan. The monosaccharide sugar ...

  19. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment.

    PubMed

    Chamorro, S; Viveros, A; Alvarez, I; Vega, E; Brenes, A

    2012-07-15

    Grape seed extract and grape pomace are rich sources of polyphenols. The aim of this study was to evaluate the release of polyphenols, the solubilisation of carbohydrate, and the antioxidant capacity of these grape by-products after enzymatic reaction with carbohydrases (cellulolytic and pectinolytic activities) and tannase for 24h. The use of tannase in these by-products, and pectinase in grape pomace changed the galloylated form of catechin to its free form, releasing gallic acid and increasing the antioxidant activity. In grape pomace, cellulase treatment was not efficient for phenolic release and antioxidant activity improvement. The addition of carbohydrases to grape pomace, either alone or in combination, degraded the cell wall polysaccharides, increasing the content of monosaccharides. These results provide relevant data about the potential of pectinase, tannase and combinations of enzymes on the release of polyphenols and monosaccharides from grape by-products, improving the antioxidant capacity and the nutritional value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications.

    PubMed

    Hashimoto, Wataru; Kawai, Shigeyuki; Murata, Kousaku

    2010-01-01

    Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically. © 2010 Landes Bioscience

  1. High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation.

    PubMed

    Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong

    2016-10-01

    The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  3. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides.

    PubMed

    Bramono, Sandhi Eko; Lam, Yuen Sean; Ong, Say Leong; He, Jianzhong

    2011-10-01

    A unique mesophilic Clostridium species strain BOH3 is obtained in this study, which is capable of fermenting monosaccharides to produce butanol and hydrolyzing polysaccharides to produce hydrogen (H(2)) and volatile fatty acids (VFAs). From 30 g/L of glucose and xylose each, batch culture BOH3 was able to produce 4.67 and 4.63 g/L of butanol. Enhancement treatments by increasing the inoculated cells improved butanol production to 7.05 and 7.41 g/L, respectively. Hydrogen production (2.47 and 1.93 mmol) was observed when cellulose and xylan (10 g/L each) were used, suggesting that strain BOH3 possesses xylanolytic and cellulolytic capabilities. These unique features reveal the strain's novelty as most wild-type solventogenic strains have not been reported to have such properties. Therefore, culture BOH3 is promising in generating butanol and hydrogen from renewable feedstock. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Formation and ecotoxicity of N-heterocyclic compounds on ammoxidation of mono- and polysaccharides.

    PubMed

    Klinger, Karl Michael; Liebner, Falk; Fritz, Ines; Potthast, Antje; Rosenau, Thomas

    2013-09-25

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).

  5. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides

    NASA Astrophysics Data System (ADS)

    Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees

    2017-01-01

    Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.

  6. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing

    NASA Astrophysics Data System (ADS)

    Both, P.; Green, A. P.; Gray, C. J.; Šardzík, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R. A.; Widmalm, G.; Flitsch, S. L.; Eyers, C. E.

    2014-01-01

    Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-α-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry (IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.

  7. Chemical signals of fish skin for the attachment response of Acanthostomum brauni cercariae.

    PubMed

    Haas, W; de Nuñez, M O

    1988-01-01

    The chemical signals of the skin surface of fish, which stimulate the attachment responses of Acanthostomum brauni cercariae, were identified by offering chemicals and fish-skin extracts in agarose substrates to the cercariae. Smaller molecules such as amino acids, fatty acids, monosaccharides, electrolytes, urea, and carbonate solutions did not stimulate attachments, but hyaluronic acid had some effects. Bovine submaxillary glycoproteins had a strong stimulating activity that disappeared after neuraminidase digestion. The stimulating components of the skin surface of fish were hydrophilic substances with molecular weights of more than 10,000. They were sensitive to neuraminidase digestion but not to hyaluronidase digestion and thus can be identified as glycoproteins. A. brauni cercariae respond only to the complete glycoprotein molecules and not to their monosaccharide components. The known attachment triggers of other cercariae are small molecules. Large glycoproteins as host signals for A. brauni cercariae may be an adaptation to muddy habitats, where various substances with low molecular weights may interfere with the host identification.

  8. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals

    PubMed Central

    Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.

    2013-01-01

    Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119

  9. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species

    PubMed Central

    Sharma, S. K.; Gautam, N.

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938

  10. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob

    2016-08-01

    Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.

  11. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    PubMed Central

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-01-01

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity. PMID:27916796

  12. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds.

    PubMed

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-11-28

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis , Ulva lactuca L., Gracilaria lemaneiformis , and Durvillaea antarctica , respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box-Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight ( M W ) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight ( M W ) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays-2,2-azino -bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power-and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity.

  13. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    PubMed Central

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524

  14. Hypoglycemic Effect of Chinese Yam (Dioscorea opposita rhizoma) Polysaccharide in Different Structure and Molecular Weight.

    PubMed

    Li, Qian; Li, Wenzhi; Gao, Qunyu; Zou, Yuxiao

    2017-10-01

    Three new Chinese yam polysaccharides (namely HSY, huaishanyao in Chinese) were isolated using the methods of boiled water extraction and stepwise ethanolic precipitation, combined with the tangential flow ultrafiltration membrane system. Their molecular weights were determined by high performance gel permeation chromatography. Three type yam polysaccharides in different molecular weight were isolated: HSY-I (>50 kDa), HSY-II (10 to 50 kDa), HSY-III (<10 kDa). The monosaccharide and glycosidic bond links composition were analyzed with GC and Smith degradation. The structure characteristics were further discussed combined with infrared spectrophotometry. Dexamethasone-induced insulin resistance glucose/lipid metabolism diabetic mice model was established to evaluate the hypoglycemic effect of different concentration of HSY and different molecular weights polysaccharide HSY-I, HSY-II, and HSY-III. The results indicated that the HSY polysaccharide mixture, HSY-I and HSY-II had hypoglycemic effect. Three polysaccharides from Chinese yam tuber were isolated in this study. Their structures were characterized and hypoglycemic effects were evaluated. The result clearly identified the benefits of this plant as a healthy functional food. © 2017 Institute of Food Technologists®.

  15. Synthesis of Stachyobifiose Using Bifidobacterial α-Galactosidase Purified from Recombinant Escherichia coli.

    PubMed

    Oh, So Young; Youn, So Youn; Park, Myeong Soo; Baek, Nam In; Ji, Geun Eog

    2018-02-07

    The prebiotic effects of GOS (galactooligosaccharides) are known to depend on the glycosidic linkages, degree of polymerization (DP), and the monosaccharide composition. In this study, a novel form of α-GOS with a potentially improved prebiotic effect was synthesized using bifidobacterial α-galactosidase (α-Gal) purified from recombinant Escherichia coli. The carbohydrate produced was identified as α-d-galactopyranosyl-(1→6)-O-α-d-glucopyranosyl-(1→2)-[α-d-galactopyranosyl-(1→6)-O-β-d-fructofuranoside] and was termed stachyobifiose. Among 17 nonprobiotics, 16 nonprobiotics showed lower growth on stachyobifiose than β-GOS. In contrast, among the 16 probiotics, 6 probiotics showed higher growth on stachyobifiose than β-GOS. When compared with raffinose, stachyobifiose was used less by nonprobiotics than raffinose. Moreover, compared with stachyose, stachyobifiose was used less by Escherichia coli, Enterobacter cloacae, and Clostridium butyricum. The average amounts of total short-chain fatty acids (SCFA) produced were in the order of stachyobifiose > stachyose > raffinose > β-GOS. Taken together, stachyobifiose is expected to contribute to beneficial changes of gut microbiota.

  16. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity.

    PubMed

    Alzorqi, Ibrahim; Sudheer, Surya; Lu, Ting-Jang; Manickam, Sivakumar

    2017-03-01

    Ganoderma mushroom cultivated recently in Malaysia to produce chemically different nutritional fibers has attracted the attention of the local market. The extraction methods, molecular weight and degree of branching of (1-3; 1-6)-β-d-glucan polysaccharides is of prime importance to determine its antioxidant bioactivity. Therefore three extraction methods i.e. hot water extraction (HWE), soxhlet extraction (SE) and ultrasound assisted extraction (US) were employed to study the total content of (1-3; 1-6)-β-d-glucans, degree of branching, structural characteristics, monosaccharides composition, as well as the total yield of polysaccharides that could be obtained from the artificially cultivated Ganoderma. The physical characteristics by HPAEC-PAD, HPGPC and FTIR, as well as the antioxidant in vitro assays of DPPH scavenging activity and ferric reducing power (FRAP) indicated that (1-3; 1-6)-β-d-glucans of Malaysian mushroom have better antioxidant activity, higher molecular weight and optimal degree of branching when extracted by US in comparison with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of Lentinus edodes β-glucan influencing the in vitro starch digestibility of wheat starch gel.

    PubMed

    Zhuang, Haining; Chen, Zhongqiu; Feng, Tao; Yang, Yan; Zhang, Jingsong; Liu, Guodong; Li, Zhaofeng; Ye, Ran

    2017-06-01

    Lentinus edodes β-glucan (abbreviated LEBG) was prepared from fruiting bodies of Lentinus edodes. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of LEBG were measured to be 1.868×10 6 g/mol and 1.007, respectively. In addition, the monosaccharide composition of LEBG was composed of arabinose, galactose, glucose, xylose, mannose with a molar ratio of 5:11:18:644:16. After adding LEBG, both G' and G″ of starch gel increased. This is mainly because the connecting points between the molecular chains of LEBG and starch formed so that gel network structures were enhanced. The peak temperature in the heat flow diagram shifted to a higher temperature and the peak area of the endothermic enthalpy increased. Furthermore, LEBG can significantly inhibit starch hydrolysis. The predicted glycemic index (pGI) values were reduced when starch was replaced with LEBG at 20% (w/w). It might indicate that LEBG was suitable to develop low GI noodle or bread. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    PubMed

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Production of dissolved organic carbon enriched in deoxy sugars representing an additional sink for biological C drawdown in the Amazon River plume

    NASA Astrophysics Data System (ADS)

    Meador, Travis B.; Aluwihare, Lihini I.

    2014-10-01

    In North Atlantic waters impacted by discharges from the Amazon and Orinoco Rivers, where planktonic diatom-diazotroph associations (DDA) were active, we observed that an average (± standard deviation) of 61 ± 12% of the biological drawdown of dissolved inorganic carbon (DIC) was partitioned into the accumulating total organic carbon pool, representing a flux of up to 9 ± 4 Tg C yr-1. This drawdown corresponded with chemical alteration of ultrafiltered dissolved organic matter (UDOM), including increases in stable C isotopic composition (δ13C) and C:N. The dissolved carbohydrate component of UDOM also increased with biological DIC drawdown and diatom-associated diazotroph (i.e., Richelia) abundance. New carbohydrates could be distinguished by distinctively high relative abundances of deoxy sugars (up to 55% of monosaccharides), which may promote aggregate formation and enhance vertical carbon export. The identified production of non-Redfieldian, C-enriched UDOM thus suggests a mechanism to explain enhanced C sequestration associated with DDA N2 fixation, which may be widespread in mesohaline environments.

  20. Purification, characterisation and protective effects of polysaccharides from alfalfa on hepatocytes.

    PubMed

    Wang, Shaopu; Dong, Xiaofang; Ma, Hao; Cui, Yaoming; Tong, Jianming

    2014-11-04

    The objective of this study was to determine the preliminary characteristics and protective effects of alfalfa polysaccharides (APS) on hepatocytes in vitro. The crude APS was purified by DEAE-cellulose and Sephadex G-100 chromatography, resulting in the four purified fractions: APS-1, APS-2, APS-3 and APS-4. The results indicated that APS-3 had higher carbohydrate and uronic acid contents and that APS-4 had a more complicated monosaccharide composition compared to the other purified fractions. The average molecular weights of APS-1, APS-2, APS-3 and APS-4 were 48,536, 6,221, 66,559 and 13,076 Da, respectively. Furthermore, APS (crude and its purified fractions) restored the activities of antioxidant enzymes and increased the total antioxidant capacity of hepatocytes subjected to H2O2-induced oxidative stress. Furthermore, APS treatment counteracted the increases in lactic dehydrogenase and malonaldehyde in the culture supernatant. These results clearly demonstrate that APS possesses a protective effect against oxidative injury in hepatocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Antitumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia.

    PubMed

    Ruijun, Wang; Shi, Wang; Yijun, Xia; Mengwuliji, Tu; Lijuan, Zhang; Yumin, Wang

    2015-01-01

    A water-soluble polysaccharide, named as JRP1, was extracted and fractioned from the epicarp of immature fruit of Juglans mandshurica Maxim. The determination of the monosaccharide composition in JRP1 with gas chromatography (GC) showed that JRP1 was composed of Gal (43.1%), Glu (23.6%), Ara (16.2%), Rha (9.8%) and Fru (7.3%). The results in vitro showed that 25, 50 and 100 μg/mL of JRP1 could present a significant inhibition on the growth of S180 cells, and furthermore, a significant improvement on the proliferation ability of lymphocytes and the phagocytic activity of macrophages. The results in vivo showed that compared with those in the control group, the inhibition rates of different doses of JRP1 on S180 cells in the tumor-bearing mice were 35.3%, 40.6% and 48.1%, respectively, and serum immune cytokine levels such as IL-2, TNF-α and IFN-γ were significantly improved. Our results confirm that JRP1 has the activities of effective antitumor and immunomodulatory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions.

    PubMed

    Yan, Jing-Kun; Ding, Zhi-Chao; Gao, Xianli; Wang, Yao-Yao; Yang, Yan; Wu, Di; Zhang, He-Nan

    2018-08-01

    In this study, hot water, 0.9% NaCl, citric acid, and 1.25 M NaOH/0.05% NaBH 4 were separately used for the extraction of water-soluble H. erinaceus polysaccharides (HEPs; HEP-W, HEP-S, HEP-C, and HEP-A) from the fruit body of Hericium erinaceus. The physicochemical properties and biological activities were then investigated and compared. Results showed that the extraction solvents exhibited significant effects on the extraction yields, molecular weights, monosaccharide compositions, preliminary structural characteristics, microstructures of HEPs and on their contents, such as neutral sugar, uronic acid, protein, and β-(1 → 3)-glucan. In vitro antioxidant activity assays indicated that HEP-C extracted with citric acid solution showed stronger scavenging abilities on hydroxyl and DPPH radicals and antioxidant capacities than HEP-W and HEP-S. Moreover, HEP-C exhibited the strongest inhibitory effects on α-glycosidase and α-amylase activities. Therefore, HEP-C extracted with citric acid can be developed as a potential bioactive ingredient for applications in food, medicine, and cosmetics industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Biochemical characterization of uronate dehydrogenases from three Pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans

    USDA-ARS?s Scientific Manuscript database

    Enzyme catalysts will be vital in the development of synthetic biology approaches for converting pectinic monosaccharides from citrus and beet processing waste streams to value-added materials. We describe here the biophysical and mechanistic characterization of uronate dehydrogenases from a wide va...

  4. LEVOGLUCOSAN, A TRACER FOR CELLULOSE IN BIOMASS BURNING AND ATMOSPHERIC PARTICLES. (R823990)

    EPA Science Inventory

    Abstract

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation wa...

  5. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

    Treesearch

    Gionata Scalcinati; Jose´ Manuel Otero; Jennifer R.H. Van Vleet; Thomas W. Jeffries; Lisbeth Olsson; Jens Nielsen

    2012-01-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as , to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research...

  6. European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science,

    DTIC Science & Technology

    1988-02-01

    monosaccharides and stated that genetic stability of certain for the preparation of isotopically la- recombinant microoraanisms is one of the beled sugars...hydrocarbons and polyethylene glycol (PEG)/ polysaccharide hydrocarbon derivatives) in the aqueous and PEG/salt. The polysaccharide may be phase. The solvent

  7. Vaccination of High-Risk Breast Cancer Patients with Carbohydrate Mimicking Peptides

    DTIC Science & Technology

    2007-05-01

    and Wheat germ Agglutin (WGA) while mimotope 106 only reacts with WGA. These lectins see terminal monosaccharides . To demonstrate that autoimmunity...Westerink MAJ, Giardina PC, Apicella MA, Kieber-Emmons T. Pep- tide mimicry of the meningococcal group C capsular polysaccharide . Proc Natl Acad Sci

  8. Gel coating of edible Brasenia schreberi leaves lowers plasma cholesterol in hamsters (abstract)

    USDA-ARS?s Scientific Manuscript database

    The young leaves of B. schreberi are coated with gelatinous water-insoluble mucilage. This mucilage is a polysaccharide composed of galactose, mannose, fucose and other monosaccharides. Since some carbohydrate gels are hypocholesterolemic, we evaluated the cholesterol lowering properties in male h...

  9. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.

    PubMed

    Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup

    2009-01-01

    Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

  10. Complete Hexose Isomer Identification with Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagy, Gabe; Pohl, Nicola L. B.

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  11. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus.

    PubMed

    Meng, Qingran; Li, Yinghao; Xiao, Tiancun; Zhang, Lianfu; Xu, Dan

    2017-12-01

    A water-soluble polysaccharide fraction (DJP-2) isolated from Diaphragma juglandis was successfully purified by ion-exchange chromatography (DEAE-cellulose) and gel-permeation chromatography (Sephadex G-100). The weight-average molecular weight (Mw) and number-average molecular weight (Mn) of DJP-2 were 4.95 and 3.99kDa, respectively. Monosaccharide component analysis indicated that DJP-2 comprised arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 0.27:0.55:1:0.14:0.08. The evaluation of the antioxidant and antibacterial activities of polysaccharides from Diaphragma juglandis fructus indicated that they could be explored as promising natural antioxidant and bacteriostatic agents in the food and pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish.

    PubMed

    Li, Qiang-Ming; Wang, Jing-Fei; Zha, Xue-Qiang; Pan, Li-Hua; Zhang, Hai-Lin; Luo, Jian-Ping

    2017-03-01

    A new polysaccharide (JSP-11) with a molecular weight of 1.25×10 6 Da was extracted and purified from jellyfish. Monosaccharide analysis showed that JSP-11 was composed of mannose, galactose and glucuronic acid with a molar ratio of 2.18:1.00:1.94. According to the analysis of fourier transform-infrared spectroscopy, methylation analysis, and NMR spectroscopy, JSP-11 was determined to contain a linear backbone which consisted of (1→3,6)-linked β-d-Manp and (1→6)-linked β-d-Galp. The branch of (1→)-linked α-d-GlcpA was attached to the C-3 position of (1→3,6)-linked β-d-Manp in the backbone. The immunomodulatory assay exhibited that JSP-11 could significantly enhance the viability of RAW 264.7 macrophage cells, and promote the release of NO, TNF-α, and IL-1β via activating NF-κB, MAPKs and PI3K/Akt signal pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    PubMed

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  14. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    PubMed Central

    2012-01-01

    Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn). Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%). Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value. PMID:23062269

  15. The total chemical synthesis of the monoglycosylated GM2 ganglioside activator using a novel cysteine surrogate.

    PubMed

    Sato, Kohei; Kitakaze, Keisuke; Nakamura, Takahiro; Naruse, Naoto; Aihara, Keisuke; Shigenaga, Akira; Inokuma, Tsubasa; Tsuji, Daisuke; Itoh, Kohji; Otaka, Akira

    2015-06-21

    We describe a novel peptide ligation/desulfurization strategy using a β-mercapto-N-glycosylated asparagine derivative. The newly developed procedure was successfully applied to the total chemical synthesis of the GM2 ganglioside activator protein bearing a monosaccharide on the native glycosylation site.

  16. DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM

    EPA Science Inventory

    The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...

  17. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    EPA Science Inventory

    Abstract

    Monosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  18. Electron Impact Ion Fragmentation Pathways of Peracetylated C-glycoside Ketones Derived from Cyclic 1,3-diketones

    USDA-ARS?s Scientific Manuscript database

    Monosaccharide C-glycoside ketones have been prepared by aqueous-based Knoevenagel condensation of isotopically-labeled and unlabeled aldoses with cyclic diketones, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and 1,3-cyclohexanedione (1,3-CHD). The reaction products and their corresponding acetyla...

  19. USSR Report, Chemistry.

    DTIC Science & Technology

    1987-05-11

    ensure solubilization of 90% of the polysaccharides , was attained at -60°C with 6 h of digestion in the frozen state by 2.5% H2SO4. Below -600C...decomposition of the monosaccharides was accelerated, and above -40°C, the process was ineffective. Growth of Candida scottii on hydrolysate diluted to

  20. 7-Day Biodefense: Engineered Nanoparticle for Virus Elimination by Opsonization (ENVELOP)

    DTIC Science & Technology

    2013-12-10

    spectrum for LSTc, specifically the identity of the four distinct monosaccharides and the presence of 2→6 sialic acid at stoichimetric levels. 7-Day...A. Previous studies definitively demonstrated that cell surface heparan sulfate, a complex highly charged polysaccharide , plays an important role in

  1. Potential Explosive Hazards from Hydrogen Sulfide Production in Ship Ballast and Sewage Tanks.

    DTIC Science & Technology

    1998-12-01

    support growth. Anaerobic degradation of the organic components of sewage follows a number of stages. Firstly, the proteins, polysaccharides and fats...present are converted to long chain fatty acids, peptides, amino acids, glycerol and monosaccharide . The second stage involves the production of a

  2. Small Sites in the Central Hueco Bolson: A Final Report on Project 90-11

    DTIC Science & Technology

    1998-01-01

    raw starch, being composed of polysaccharides , is incompletely digest- ed. However, with applications of heat and moisture over time, these...complex sugars break down into monosaccharides that are more readily absorbed by the body. The critical variable is the exposure of the starch to heat

  3. Nutrient transporter gene expression in poultry, livestock and fish

    USDA-ARS?s Scientific Manuscript database

    The absorption of nutrients such as amino acids, peptides, monosaccharides and minerals by cells and tissues is mediated by a series of membrane bound transporters that are members of the solute carrier (SLC) gene family. These transporters regulate the influx and efflux of nutrients in a wide vari...

  4. Structural elucidation of rhamnogalacturonans from flaxseed hulls.

    PubMed

    Qian, Ke-Ying; Cui, Steve W; Nikiforuk, John; Goff, H Douglas

    2012-11-15

    The structure of acidic fraction gum (AFG) from flaxseed hulls was elucidated by methylation analysis and 1D/2D NMR spectroscopy. This acidic fraction was separated from water-soluble flaxseed gum using anion-exchange chromatography. AFG consisted of a rhamnogalacturonan-I (RG-I) backbone that features diglycosyl repeating units, →2)-α-l-Rhap-(1→4)-α-d-GalpA-(1→. Rhamnosyl residues (38.2%) were the most abundant neutral sugar component. It was present mainly as unbranched (16.5%) and branched (19.5%) →2)-α-l-Rhap-(1→ at O-3. Most of its branches were terminated by monosaccharides, α/β-d-Galp-(1→ (19.6%), α-l-Fucp-(1→ (4.5%) or β-d-Xylp-(1→ (3.1%). However, when this branching site was occasionally appended with →4)-α-d-GalpA-(1→ or →2)-α-l-Rhap-(1→, side chains may consist of rhamnogalacturonan-I (RG-I), homorhamnan (HR) or a mixture of both. AFG was highly branched as indicated by its high degree of branching (0.55). A possible structure of AFG was proposed: (HR, RG-I, and HG refer to homorhamnan, rhamnogalacturonan-I, and homogalacturonan, respectively. The locations of HR, RG-I, and HG are interchangeable; (m+n)/(n+i)≈1.5. The substitution rate of R(1) is ∼54%. R(1) is mostly monosaccharide (α/β-d-Galp-(1→, α-l-Fucp-(1→ or β-d-Xylp-(1→). R(1) may also occasionally be a longer side chain with more than two residues beginning with →4)-α-GalpA-(1→ or →2)-α-l-Rhap-(1→, wherein the side-chain structure may be similar to part of the main chain.). Copyright © 2012. Published by Elsevier Ltd.

  5. Ultrasound-assisted extraction of polysaccharides from Artemisia selengensis Turcz and its antioxidant and anticancer activities.

    PubMed

    Wang, Juan; Lu, He Dong; Muḥammad, Umair; Han, Jin Zhi; Wei, Zhao Hui; Lu, Zhao Xin; Bie, Xiao Mei; Lu, Feng Xia

    2016-02-01

    Artemisia selengensis Turcz (AST) is a perennial herb with therapeutic and economic applications in China. The effects of ultrasound-assisted extraction (UAE) parameters upon extraction yield (EY%), antioxidant and antitumor activities of the polysaccharides extracts were studied by using a factorial design and response surface methodology. The optimal conditions determined were as: ultrasonic power 146 W, extraction time 14.5 min. and extraction temperature 60 °C. The average molecular weights of two homogeneous polysaccharides (APS1 and APS2) purified by DEAE cellulose-52 and Sephadex G-100 column chromatography were 125.4 and 184.1 kDa, respectively. Monosaccharide analysis showed that APS1 and APS2 were composed of five common monomers i.e., galactose, mannose, arabinose, xylose and rhamnose and one different monomer glucose and galacturonic acid respectively, with a most abundant part in molar % of APS1 and APS2 were glucose (83.01 %) and galacturonic acid (48.87 %) while least were xylose (0.80 %) and mannose (1.73 %) respectively. The antioxidant properties were determined by evaluating DPPH, hydroxyl radical scavenging activity and reducing power which indicated both APS1 and APS2 showed strong scavenging activities and anticancer activities on HT-29, BGC823 and antitumor activity on HepG-2. As UAE improved the polysaccharides yield than CSE, meanwhile, no significant difference of polysaccharides chemical compositions. Therefore, the present study suggests that the consumption of AST leaves may beneficial for the treatment of many diseases.

  6. Structure Characterization of Honey-Processed Astragalus Polysaccharides and Its Anti-Inflammatory Activity In Vitro.

    PubMed

    Liao, Jingzhu; Li, Chanyi; Huang, Jing; Liu, Wuping; Chen, Hongce; Liao, Shuangye; Chen, Hongyuan; Rui, Wen

    2018-01-15

    Honey-processed Astragalus is a dosage form of Radix Astragalus mixed with honey by a traditional Chinese medicine processing method which strengthens the tonic effect. Astragalus polysaccharide (APS), perform its immunomodulatory effects by relying on the tonic effect of Radix Astragalus , therefore, the improved pharmacological activity of honey-processed Astragalus polysaccharide (HAPS) might be due to structural changes during processing. The molecular weights of HAPS and APS were 1,695,788 Da, 2,047,756 Da, respectively, as determined by high performance gel filtration chromatography combined with evaporative light scattering detection (HPGFC-ELSD). The monosaccharide composition was determined by ultra-performance liquid chromatogram quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF-MS) after pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP). The results showed that the essential components were mannose, glucose, xylose, arabinose, glucuronic acid and rhamnose, is molar ratios of 0.06:28.34:0.58:0.24:0.33:0.21 and 0.27:12.83:1.63:0.71:1.04:0.56, respectively. FT-IR and NMR analysis of HAPS results showed the presence of uronic acid and acetyl groups. The anti-inflammatory activities of HAPS were more effective than those of APS according to the NO contents and the expression of IFN-γ, IL-1β, IL-22 and TNF-α in lipopolysaccharide (LPS)-induced RAW264.7 cells. This findings suggest that the anti-inflammatory and bioactivity improvement might be associated with molecular structure changes, bearing on the potential immunomodulatory action.

  7. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands.

    PubMed

    Mittelbach, Moritz; Yurkov, Andrey M; Nocentini, Daniele; Nepi, Massimo; Weigend, Maximilian; Begerow, Dominik

    2015-02-01

    Studies on the diversity of yeasts in floral nectar were first carried out in the late 19th century. A narrow group of fermenting, osmophilous ascomycetes were regarded as exclusive specialists able to populate this unique and species poor environment. More recently, it became apparent that microorganisms might play an important role in the process of plant pollination. Despite the importance of these nectar dwelling yeasts, knowledge of the factors that drive their diversity and species composition is scarce. In this study, we linked the frequencies of yeast species in floral nectars from various host plants on the Canary Islands to nectar traits and flower visitors. We estimated the structuring impact of pollination syndromes (nectar volume, sugar concentration and sugar composition) on yeast diversity.The observed total yeast diversity was consistent with former studies, however, the present survey yielded additional basidiomycetous yeasts in unexpectedly high numbers. Our results show these basidiomycetes are significantly associated with ornithophilous flowers. Specialized ascomycetes inhabit sucrose-dominant nectars, but are surprisingly rare in nectar dominated by monosaccharides. There are two conclusions from this study: (i) a shift of floral visitors towards ornithophily alters the likelihood of yeast inoculation in flowers, and (ii) low concentrated hexose-dominant nectar promotes colonization of flowers by basidiomycetes. In the studied floral system, basidiomycete yeasts are acknowledged as regular members of nectar. This challenges the current understanding that nectar is an ecological niche solely occupied by ascomycetous yeasts.

  8. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity.

    PubMed

    Wang, Huizhu; Li, Yan; Ren, Zhihui; Cong, Zhongcheng; Chen, Mengjie; Shi, Lin; Han, Xu; Pei, Jin

    2018-06-01

    An extraction assay applying microwave-assisted enzymatic treatment for polysaccharides in Rosa roxburghii was developed using response surface methodology. The process parameters were optimized using Plackett-Burman (PB) design and central composite design to enhance the Rosa roxburghii polysaccharide extraction yield. Specific conditions (microwave power, 575W; microwave time, 18min; liquid-to-material ratio, 13.5:1mL/g; and enzyme dose, 6.5g/mL) generated an experimental yield of 36.21±0.62%, which closely agreed with the predicted value of 35.75%. Purification with a DEAE-52 cellulose column generated two fractions, PR-1 (from 6.2×10 3 to 7.4KDa) and PR-2 (from 559.8 to 106.6KDa). Subsequently, the antioxidant activity and α-d-glucosidase inhibitory activity of the two polysaccharide fractions were assessed; PR-1 exhibited stronger antioxidant activity and α-d-glucosidase inhibitory activity than PR-2. Finally, the monosaccharide composition of PR-1 was determined by HPLC using a 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization method. The result showed that PR-1 contained mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose and fucose with molar percentages of 2.1%, 0.54%, 2.1%, 0.26%, 1.5%, 22.7%, 24.0%, 26.4%, 19.6% and 0.89%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.

    PubMed

    Ceyhan, Nur; Ozdemir, Guven

    2008-01-01

    The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and characterized biochemically by classic and commercial systems. These were species of Pseudomonas, Burkholderia, Aeromonas, Pasteurella, Pantoea, Alcaligenes and Sphingomonas. EPS of these species were obtained by propan-2-ol precipitation and centrifugation from bacterial cultures in media enriched with glucose, sucrose or galactose. EPS yields were of 1.68-4.95 g l(-1). These EPS materials were characterized for total sugar and protein contents. Their total sugar content ranged from 24 to 56% (g sugar g(-1) EPS), and their total protein content ranged from 10 to 28% (g protein g(-1) EPS). The monosaccharide compositions of EPS were determined by HPLC. Generally, these compositions were enriched in galactose and glucose, with lesser amounts of mannose, rhamnose, fructose and arabinose. All bacteria were investigated in terms of EPS degradation. Eight of the bacteria were able to utilize EPS from Burkholderia cepacia, seven of the bacteria were able to utilize EPS from Pseudomonas sp. and Sphingomonas paucimobilis. The greatest viscosity reduction of B. cepacia was obtained with Pseudomonas sp. The results show that the bacteria in this study are able to degrade EPS from biofilms in cooling towers.

  10. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage

    PubMed Central

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5’-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5’-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage. PMID:16865772

  11. Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus.

    PubMed

    Xu, Xiangqun; Quan, Lili; Shen, Mengwei

    2015-01-01

    Polysaccharides are important secondary metabolites from the medicinal mushroom Inonotus obliquus. Various fatty acids, surfactants and organic solvents as cell membrane-reorganizing chemicals were investigated for their stimulatory effects on the growth of fungal mycelium and production of exopolysaccharides (EPS) and endopolysaccharides (IPS) by submerged fermentation of I. obliquus. After evaluation of 14 chemicals, oleic acid, Tween 80, and TritonX-100 were chosen for optimization of addition concentration and addition time. Among the three chemicals, 0.1% (v/v) Tween 80 gave maximum production of mycelial biomass, EPS, IPS1, and IPS2 with a increase of 16.6, 81.6, 37.7 and 18.1%, respectively, when supplemented at the early growth phase (24h after inoculation). These EPS, IPS1, and IPS2 had significantly (p<0.05) stronger scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals than those from the control medium. IPS1 from Tween 80-containing medium was the most effective antioxidant, with an estimated IC50 value of 0.74mg/mL. This might be attributed to that the EPS and IPS from the Tween 80-containing medium had significantly (p<0.05) higher content of sugar and glucose among the six monosaccharide compositions than those from the control. The simultaneously enhanced accumulation of bioactive EPS and IPS of cultured I. obliquus supplemented with Tween 80 was evident. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage.

    PubMed

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-07-21

    To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  13. Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Zhang, Qingli; Yang, Bao; Brashears, Mindy M; Yu, Zhimin; Zhao, Mouming; Liu, Ning; Li, Yinjuan

    2014-05-01

    A lot of interesting research has been undertaken to enhance the yield of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB). The objective of this study was to determine the influence of casein hydrolysates (CH) with molecular weight less than 3 kDa on cell viability, EPS synthesis and the enzyme activity involved in EPS synthesis during the co-culturing of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in MRS broth for 72 h at 37 ± 0.1 °C. The highest EPS yield (150.1 mg L⁻¹) was obtained on CH prepared with papain (CHP) at 48 h. At 24 h, EPS were composed of galactose, glucose and rhamnose in a molar ratio of 1.0:2.4:1.5. The monosaccharide composition changed with extension of the fermentation time. The activities of α-phosphoglucomutase, uridine 5'-diphosphate (UDP)-glucose pyrophosphorylase and UDP-galactose 4-epimerase were associated with EPS synthesis. Moreover, the activities of β-phosphoglucomutase and deoxythymadine 5'-diphosphate (dTDP)-glucose pyrophosphorylase involved in rhamnose synthesis were very low at the exponential growth phase and could not be detected during other given periods. The influence of different CH (<3 kDa) on LAB viability, EPS production, EPS monomeric composition and activity levels of key metabolic enzymes was distinct. Besides, their influence was related to the distribution of amino acids. © 2013 Society of Chemical Industry.

  14. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.

    PubMed

    Basanta, María F; de Escalada Plá, Marina F; Stortz, Carlos A; Rojas, Ana M

    2013-01-30

    The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    USDA-ARS?s Scientific Manuscript database

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...

  16. Interferon Inducers against Infectious Diseases

    DTIC Science & Technology

    1990-07-13

    22 7. Induction of IFN in Micoe by IC-(PLL- monosaccharides ............................... *23 8. ICL- CDS04...seeking to replace both PLL and CM by modifying the PLL with engrafted polysaccharides . 2. Background A number of candidates have been developed in this...expanders, or being closely related to such. These include gelatin, anionically-modified gelatin, oarboxymethyl polysaocharides, sulfated polysaccharides

  17. The Role of the Primitive Relaxation in the Dynamics of Aqueous Mixtures, Nano-confined Water and Hydrated Proteins

    DTIC Science & Technology

    2010-01-01

    and polysaccharides ) and some hydrophilic macromolecular systems, including biopolymers (from polypeptides to several proteins) [r008, r009, r010...investigated and here presented are the monosaccharide 2-Deoxy-D- ribose, mixed with 32% wt. fraction of water, and the heptamer of polypropylene glycol, with

  18. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.

    PubMed

    Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e ) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.

  19. Glycomics: revealing the dynamic ecology and evolution of sugar molecules.

    PubMed

    Springer, Stevan A; Gagneux, Pascal

    2016-03-01

    Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides.

    PubMed

    Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees

    2017-01-15

    Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides

    PubMed Central

    2013-01-01

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16–30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4–160.5 mg/g of educt) and polysaccharides (140 °C: 5.52–16.03 mg/g of educt). PMID:23967874

  2. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies.

    PubMed

    Li, Jingbo; Zhou, Pengfei; Liu, Hongmei; Xiong, Chunjiang; Lin, Jianghai; Xiao, Wenjuan; Gong, Yingxue; Liu, Zehuan

    2014-03-01

    Sugarcane bagasse (SCB) resulting from different pretreatments was hydrolyzed by enzyme cocktails based on replacement of cellulase (Celluclast 1.5 L:Novozym 188=1FPU:4pNPGU) by xylanase or pectinase at different proportions. Lignin content of NaOH pretreated SCB and hemicellulose content of H2SO4 pretreated SCB were the lowest. NaOH pretreatment showed the best for monosaccharide production among the four pretreatments. Synergism was apparently observed between cellulase and xylanase for monosaccharide production from steam exploded SCB (SESB), NaOH, and H2O2 pretreated SCB. No synergism was observed between cellulase and pectinase for producing glucose. Additionally, no synergism was present when H2SO4 pretreated SCB was used. Replacement of 20% of the cellulase by xylanase enhanced the glucose yield by 6.6%, 8.8%, and 9.5% from SESB, NaOH, and H2O2 pretreated SCB, respectively. Degree of synergism between cellulase and xylanase had positive relationship with xylan content and was affected by hydrolysis time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread.

    PubMed

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-10-04

    Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56%  reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO 2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.

  4. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.

    PubMed

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R

    2017-10-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.

  5. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    PubMed

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  6. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to relate signal patterns in the 2D spectra and intensities of identifiable molecular moieties to variability in the temperature response of organic matter decomposition, as assessed by Q10. In conclusion, the characterization of SOM composition at the molecular level by solution-state 2D NMR spectroscopy is highly promising; it offers unprecedented possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

  7. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d- galacturonic acid from pectin

    DOE PAGES

    Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E.; ...

    2016-05-13

    We identified the d-galacturonic acid (GA)-responsive transcriptional activator GaaR of the saprotrophic fungus, Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression analysis showed that GaaR is required for the expression of genes necessary to release GA from PGA and more complex pectins, to transport GA into the cell, and to induce the GA catabolic pathway. Residual growth of ΔgaaR on complex pectins is likely due to the expression of pectinases acting on rhamnogalacturonan and subsequent metabolism of the monosaccharides othermore » than GA.« less

  8. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  9. [Sugar content in non-alcoholic beverages and dietary recemmendations for children and adolescents].

    PubMed

    Bilek, Maciej; Rybakowa, Maria

    2015-01-01

    Increase the intake of sugars among the inhabitants of developed countries is related to, among others, increasing consumption of non-alcoholic beverages, for which the relationship with the epidemic of obesity, particularly among children and adolescents, has been proven. The most frequently cited are non-alcoholic beverages, sweetened glucose-fructose syrup, ie. colas, tonics, ice teas, lemonades. Fruit drinks, fruit juices and nectars are commonly cited as a healthy alternative to non-alcoholic beverages and, however, we do not pay attention to the high content of sugars in these products. Determine the content of sugars in non-alcohollic beverages popular among children and adolescents. 80 non-alcoholic beverages such as cola, tonic, lemonade, ice tea, flavored waters, fruit juices, fruit nectars and fruit drinks. Evaluation of the content of monosaccharides and sucrose was performed by high performance liquid chromatography method (HPLC). In the tested non-alcohollic beverages, monosaccharides ie. glucose and fructose and the disaccharide sucrose were detected in different proportions. The product with the lowest content of the total sugars content was flavored water with lemon flavor based on the mineral water (2.72 g/100 ml). In the group of fruit juices, fruit nectars and fruit drinks highest sugars content have been reported (12.94 g/100 ml for aronia nectar and 12.76 g/100ml for the juice of pomegranate and grapes). Significant monosaccharides and sucrose content in the tested non-alcohollic beverages tends to claim that their manufacturers should be obliged to place warnings on the labels addressed to patients suffering from disorders of carbohydrate metabolism. Educational programs for children and adolescents with diabetes should include information about the content of a large amount of sugars in fruit products: fruit juices, fruit drinks and fruit nectar. © Polish Society for Pediatric Endocrinology and Diabetology.

  10. [Trofosides A and B and other cytostatic steroid-derived compounds from the Far East starfish Trofodiscus über].

    PubMed

    Levina, E V; Kalinovskiĭ, A I; Andriiashchenko, P V; Menzorova, N I; Dmitrenok, P S

    2007-01-01

    Three new polar steroids identified as trofoside A, (20R,24S)-24-O-(3-O-methyl-beta-D-xylopyranosyl)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfoxy-(20R,24S)-5alpha-cholestane-3beta,6beta,8,15alpha,24-pentaol sodium salt, were isolated from Trofodiscus uber starfish extracts collected in the Sea of Okhotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3beta,6alpha,8,15beta-tetrahydroxy-5alpha-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius (C(min)) and terminating the cell division at the stage of the first division (C(min) embr.), as well as the concentrations causing 50% immobilization of sperm cells (ImC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono- and double chained glycosides with the monosaccharide fragment at C3 and C24 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.

  11. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides

    PubMed Central

    Sukumaran, Sunil K.; Yee, Karen K.; Iwata, Shusuke; Kotha, Ramana; Quezada-Calvillo, Roberto; Nichols, Buford L.; Mohan, Sankar; Pinto, B. Mario; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F.

    2016-01-01

    The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K+ (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal “brush border” disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways. PMID:27162343

  12. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies

    PubMed Central

    Varjú, Péter; Farkas, Nelli; Hegyi, Péter; Garami, András; Szabó, Imre; Illés, Anita; Solymár, Margit; Vincze, Áron; Balaskó, Márta; Pár, Gabriella; Bajor, Judit; Szűcs, Ákos; Huszár, Orsolya; Pécsi, Dániel

    2017-01-01

    Background Irritable bowel syndrome (IBS) and functional digestive tract disorders, e.g. functional bloating, carbohydrate maldigestion and intolerances, are very common disorders frequently causing significant symptoms that challenge health care systems. A low Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols (FODMAP) diet is one of the possible therapeutic approaches for decreasing abdominal symptoms and improving quality of life. Objectives We aimed to meta-analyze data on the therapeutic effect of a low-FODMAP diet on symptoms of IBS and quality of life and compare its effectiveness to a regular, standard IBS diet with high FODMAP content, using a common scoring system, the IBS Symptom Severity Score (IBS-SSS). Methods A systematic literature search was conducted in PubMed, EMBASE and the Cochrane Library as well as in the references in a recent meta-analysis. Adult patients diagnosed with IBS according to the Rome II, Rome III, Rome IV or NICE criteria were included in the analysis. Statistical methods Mean differences with 95% confidence intervals were calculated from studies that contained means, standard deviation (SD) or mean differences and SD of differences and p-values. A random effect model was used because of the heterogeneity (Q test (χ2) and I2 indicator). A p-value of less than 0.05 was chosen to indicate a significant difference. Results The literature search yielded 902 publications, but only 10 were eligible for our meta-analysis. Both regular and low-FODMAP diets proved to be effective in IBS, but post-diet IBS-SSS values were significantly lower (p = 0.002) in the low-FODMAP group. The low-FODMAP diet showed a correlation with the improvement of general symptoms (by IBS-SSS) in patients with IBS. Conclusions This meta-analysis provides high-grade evidence of an improved general symptom score among patients with irritable bowel syndrome who have maintained a low-FODMAP diet compared to those on a traditional IBS diet, therefore showing its superiority to regular IBS dietary therapy. These data suggest that a low-FODMAP diet with dietitian control can be a candidate for first-line therapeutic modality in IBS. Because of a lack of data, well-planned randomized controlled studies are needed to ascertain the correlation between improvement of separate key IBS symptoms and the effect of a low-FODMAP diet. PMID:28806407

  13. Synthesis of 3-aminopropyl glycoside of branched β-(1 → 3)-d-glucooctaoside.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Nifantiev, Nikolay E

    2016-12-21

    The synthesis was described of branched glucooctaoside bearing the β-(1 → 3)-glucotrioside side chain at O-6 of the second (from the reducing end) monosaccharide unit of the linear β-(1 → 3)-glucopentaoside core. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Determination of sugars in honey by liquid chromatography

    PubMed Central

    Kamal, Mohammad A.; Klein, Peter

    2010-01-01

    Honey is a rich conventional natural resource of sweetness and energy for human beings. A protocol for the determination of two important monosaccharide sugars (fructose and glucose) in honey was established in the current study by using normal phase partition liquid chromatography and 1–5% combined working standard of glucose, fructose and sucrose. PMID:23961099

  15. MOLECULAR STRUCTURAL FACTORS IN COMPETITIVE INHIBITION OF SUGAR TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeFevre, P.G.

    1959-07-10

    The high potency of phloretin as a competitive inhibitor of the human red cell's monosaccharide transport system is not shared by any of several molecular fragments of phloretin, but is duplicated in certain artificial estrogens resembling phloretin in respect to the spacing between terminal phenolic---OH groups. Related molecules which are slightly less extendible are comparatively inactive. (auth)

  16. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands.

  17. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    PubMed Central

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  18. Purification, characterization, antioxidant and anticancer activities of novel polysaccharides extracted from Bachu mushroom.

    PubMed

    Zeng, Di; Zhu, Siming

    2018-02-01

    Two novel polysaccharide fractions (HLP1-1 and HLP2-1) were purified from crude polysaccharides of Helvella leucopus by using DEAE-52 column (2.6cm×20cm) and Sephadex G-150 column (1.6×60cm). The characterization, antioxidant and anticancer activities of HLP1-1 and HLP2-1 were investigated. The GPC results showed that HLP1-1 and HLP2-1 had similar molecular weight (21,382Da and 23,063Da, respectively). Tertiary structure analyses indicated that HLP2-1 had triple-helical conformation, but HLP1-1 not. The monosaccharide compositions of HLP1-1 included rhamnose, glucosamine and mannose at a molar ratio of 11.8:1:78.6, and HLP2-1 included of rhamnose, glucosamine, glucose and mannose at a molar ratio of 4.2:1:18.1:27.3. Both HLP1-1 and HLP2-1 showed a certain antioxidant activity, and HLP2-1 showed stronger antioxidant activities than HLP1-1. Both HLP1-1 and HLP2-1 exhibited a relatively inhibition on HepG2. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antioxidant dietary fibre recovery from Brazilian Pinot noir grape pomace.

    PubMed

    Beres, Carolina; Simas-Tosin, Fernanda F; Cabezudo, Ignacio; Freitas, Suely P; Iacomini, Marcello; Mellinger-Silva, Caroline; Cabral, Lourdes M C

    2016-06-15

    Brazilian grape pomace was extracted in hot water, and a factorial experiment was used to evaluate polysaccharide recovery. The dependent variables were the temperature, particle size and solute:solvent ratio. Polysaccharide yields varied from 3% to 10%, and the highest sugar content was observed when extraction was carried out at 100 °C from finely sized particles (⩽249 μm) in a 1:12 solute:solvent ratio. The monosaccharide composition of extracts obtained from flours were, on average, Rha:Ara:Xyl:Man:Gal:Glc:GalA in a 3:32:2:13:11:20:19 M ratio, with varying Glc:GalA ratios. (13)C NMR and HSQC spectra confirmed the presence of pectic- and glucose-based polysaccharides in the extracts. Phenolic compounds were found after pomace extraction, and catechin, gallic acid and epicatechin were the principal compounds identified. The extracts also had ABTS radical scavenging capacity (from 8.00 to 46.60 mMol Trolox/100 g pomace). These findings indicate that these grape pomace flours are rich in antioxidant dietary fibre and have a potential use as food ingredients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Antifreeze glycopeptide diastereomers.

    PubMed

    Nagel, Lilly; Budke, Carsten; Dreyer, Axel; Koop, Thomas; Sewald, Norbert

    2012-01-01

    Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4-55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments.

Top