Sample records for monosaccharides

  1. Existence of the sugar-bisulfite adducts and its inhibiting effect on degradation of monosaccharide in acid system.

    PubMed

    Shi, Yan

    2014-02-01

    Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.

  2. Analysis of compositional monosaccharides in fungus polysaccharides by capillary zone electrophoresis.

    PubMed

    Hu, Yuanyuan; Wang, Tong; Yang, Xingbin; Zhao, Yan

    2014-02-15

    A rapid analytical method of capillary zone electrophoresis (CZE) was established for the simultaneous separation and determination of 10 monosaccharides (aldoses and uronic acids). The monosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP), and subsequently separated using an uncoated capillary (50 μm i.d. × 58.5 cm) and detected by UV at 245 nm with pH 11.0, 175 mM borate buffer at voltage 20 kV and capillary temperature 25 °C by CZE. The 10 PMP-labeled monosaccharides were rapidly baseline separated within 20 min. The optimized CZE method was successfully applied to the simultaneous separation and identification of the monosaccharide composition in Termitomyces albuminosus polysaccharides (TAPs) and Panus giganteus polysaccharides (PGPs). The quantitative recovery of the component monosaccharides in the fungus polysaccharides was in the range of 92.0-101.0% and the CV value was lower than 3.5%. The results demonstrate that the proposed CZE method is precise and practical for the monosaccharide analysis of fungus polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    PubMed

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  4. Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production.

    PubMed

    Huang, Caoxing; He, Juan; Wang, Yan; Min, Douyong; Yong, Qiang

    2015-10-01

    Cooking additive pulping technique is used in kraft mill to increase delignification degree and pulp yield. In this work, cooking additives were firstly applied in the sodium hydroxide pretreatment for improving the bioconversion of bamboo residues to monosaccharides. Meanwhile, steam explosion and sulfuric acid pretreatments were also carried out on the sample to compare their impacts on monosaccharides production. Results indicated that associating anthraquinone with sodium hydroxide pretreatment showed the best performance in improving the original carbohydrates recovery, delignification, enzymatic saccharification, and monosaccharides production. After consecutive pretreatment and enzymatic saccharification process, 347.49 g, 307.48 g, 142.93 g, and 87.15 g of monosaccharides were released from 1000 g dry bamboo residues pretreated by sodium hydroxide associating with anthraquinone, sodium hydroxide, steam explosion and sulfuric acid, respectively. The results suggested that associating cooking additive with sodium hydroxide is an effective pretreatment for bamboo residues to enhance enzymatic saccharification for monosaccharides production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    NASA Astrophysics Data System (ADS)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  6. Neutral monosaccharides from a hypersaline tropical environment: Applications to the characterization of modern and ancient ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moers, M.E.C.; Larter, S.R.

    1993-07-01

    Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analyzed for carbohydrates (as neutral monosaccharides) to distinguish and characterize various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass (Halodule uninervis), and mangrove (Avicennia marine) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr BP. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose andmore » glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose, and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria (Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria (Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other [open quotes]minor[close quotes] saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms. 22 refs., 4 figs., 4 tabs.« less

  7. [Determination of monosaccharides in Sargassum hemiphyllum (Turner) C. Ag. polysaccharides by ion chromatography].

    PubMed

    Ou, Yunfu; Yin, Pinghe; Zhao, Ling

    2006-07-01

    Sargassum hemiphyllum polysaccharides (SHP) was extracted from dry Sargassum hemiphyllum (Turner) C. Ag. powder using 60 - 80 degrees C purified water and then hydrolyzed with 4.0 g/L trifluoroacetic acid at 80 degrees C. Without any derivatization reaction, the determination of monosaccharides in SHP was developed by anion-exchange chromatography with pulsed amperometric detection with an Au working electrode and an Ag/AgCl reference electrode. Monosaccharides were separated on a CarboPac PA10 anion-column (2 mm i. d. x 250 mm) by using isocratic elution consisting of 14 mmol/L sodium hydroxide at a flow rate of 0.20 mL/min. Six monosaccharides, xylose, galactose, arabinose, glucose, rhamnose and fructose, contained in SHP were separated and determined. Their contents in SHP were 2 200, 820, 98, 4 560, 358 and 740 mg/kg, respectively. The recoveries of the six monosaccharides were in the range 86.0% - 108.0%. The detection limits for these monosaccharides ranged from 5.6 to 89.6 microg/kg. The experimental results showed that SHP mainly consisted of xylose and glucose with smaller quantities of galactose, arabinose, rhamnose and fructose. This method is suitable for the determination of monosaccharides without any derivatization reaction at the level of microg/kg in dry algae with high sensitivity and good precision.

  8. A comparative study of monosaccharide composition analysis as a carbohydrate test for biopharmaceuticals.

    PubMed

    Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide

    2011-05-01

    The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  9. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  10. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry.

    PubMed

    Wu, Xiaodan; Jiang, Wei; Lu, Jiajia; Yu, Ying; Wu, Bin

    2014-02-15

    Sargassum fusiforme (hijiki) is the well-known edible algae, whose polysaccharides have been proved to possess interesting bioactivities like antitumor, antioxidant, antimicrobial and immunomodulatory activities. A facile and sensitive method based on high-performance liquid chromatography method of pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) coupled with electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been established for the analysis of the monosaccharide composition of polysaccharides in S. fusiforme. Monosaccharides have been converted into PMP-labelled derivatives with aqueous ammonia as a catalyst at 70 °C for 30 min. The optimisation of the pre-column derivatization process was studied. The LODs of the monosaccharides were in the range from 0.01 to 0.02 nmol. PMP-labelled mixture of monosaccharides has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimised conditions. The mobile phase of elution system was chosen as acetonitrile (solvent A) and 20mM aqueous ammonium acetate (solvent B) (pH 3.0) with Zorbax XDB-C18 column at 30 °C for the separation of the monosaccharide derivatives. Identification of the monosaccharides composition was carried out by analysis with mass spectral behaviour and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone (PMP) labelled monosaccharides. All PMP-labelled derivatives display high chemical stabilities, whose regular MS fragmentation is specific for reducing labelled sugars. The result showed that the S. fusiforme polysaccharide consisted of mannose, glucose, galactose, xylose, fucose and glucuronic acid or galacturonic acid, or both uronic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery.

    PubMed

    Sainio, Tuomo; Kallioinen, Mari; Nakari, Olli; Mänttäri, Mika

    2013-05-01

    Processing of hemicelluloses obtained with pressurized hot water extraction (PHWE) from Scots pine to monosaccharides and other chemicals was investigated experimentally. A process scheme consisting of ultrafiltration, acid hydrolysis, and chromatographic separation was proposed and evaluated. A two-stage ultrafiltration was found necessary for efficient fractionation of the wood extract. It was shown that the monosaccharides can be released from a concentrated hemicellulose fraction with sulfuric acid hydrolysis without a significant loss of yield due to decomposition of monosaccharides. Acid hydrolysate was successfully fractionated with ion exchange chromatography and the hydrolysis acid was recovered for reuse. The product fractions obtained include polyphenols and high molar mass hemicelluloses (from UF stage 1), arabinose (from UF stage 2), as well as acetic acid and a mixture of monosaccharides (xylose, galactose, mannose, glucose) from chromatography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation.

    PubMed

    Wang, Qiong; Wang, Feng; Xu, Zhenghong; Ding, Zhongyang

    2017-06-13

    Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.

  13. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    PubMed

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microdetermination of Sucrose in Plasma with the Anthrone Reagent.

    DTIC Science & Technology

    1979-11-01

    polysaccharides . The initial attempts to use it for selective determinations of monosaccharides in a mixture, however, were frustrated by a mutual...disaccharides and polysaccharides are hydrolyzed to form monosaccharides . In addition, water is split off from the latter to form hydroxaldehyde...supernate were then concentrated to dryness at 80 C with a manifold evaporator after which endogenous monosaccharides were destroyed by the addition of

  15. Neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides by high performance liquid chromatography.

    PubMed

    Yan, Jun; Shi, Songshan; Wang, Hongwei; Liu, Ruimin; Li, Ning; Chen, Yonglin; Wang, Shunchun

    2016-01-20

    A novel analytical method for neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides was developed using hydrophilic interaction liquid chromatography coupled to a charged aerosol detector. The effects of column type, additives, pH and column temperature on retention and separation were evaluated. Additionally, the method could distinguish potential impurities in samples, including chloride, sulfate and sodium, from sugars. The results of validation demonstrated that this method had good linearity (R(2) ≥ 0.9981), high precision (relative standard deviation ≤ 4.43%), and adequate accuracy (94.02-103.37% recovery) and sensitivity (detection limit: 15-40 ng). Finally, the monosaccharide compositions of the polysaccharide from Eclipta prostrasta L. and stachyose were successfully profiled through this method. This report represents the first time that all of these common monosaccharides could be well-separated and determined simultaneously by high performance liquid chromatography without additional derivatization. This newly developed method is convenient, efficient and reliable for monosaccharide analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hexose Transport in Growing Petunia Pollen Tubes and Characterization of a Pollen-Specific, Putative Monosaccharide Transporter1

    PubMed Central

    Ylstra, Bauke; Garrido, Dolores; Busscher, Jacqueline; van Tunen, Arjen J.

    1998-01-01

    We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented. PMID:9733549

  17. Glycoconjugates and methods

    DOEpatents

    Bertozzi, Carolyn C [Albany, CA; Yarema, Kevin J [Albany, CA; Mahal, Lara K [Berkeley, CA

    2008-04-01

    Methods for making the functionalized glycoconjugates include (a) contacting a cell with a first monosaccharide, and (b) incubating the cell under conditions whereby the cell (i) internalizes the first monosaccharide, (ii) biochemically processes the first monosaccharide into a second saccharide, (iii) conjugates the saccharide to a carrier to form a glycoconjugate, and (iv) extracellularly expresses the glycoconjugate to form an extracellular glycoconjugate comprising a selectively reactive functional group. Methods for forming products at a cell further comprise contacting the functional group of the extracellularly expressed glycoconjugate with an agent which selectively reacts with the functional group to form a product. Subject compositions include cyto-compatible monosaccharides comprising a nitrogen or ether linked functional group selectively reactive at a cell surface and compositions and cells comprising such saccharides.

  18. Use of electrospray ionization ion-trap tandem mass spectrometry and principal component analysis to directly distinguish monosaccharides.

    PubMed

    Xia, Bing; Zhou, Yan; Liu, Xin; Xiao, Juan; Liu, Qing; Gu, Yucheng; Ding, Lisheng

    2012-06-15

    Carbohydrates are good source of drugs and play important roles in metabolism processes and cellular interactions in organisms. Distinguishing monosaccharide isomers in saccharide derivates is an important and elementary work in investigating saccharides. It is important to develop a fast, simple and direct method for this purpose, which is described in this study. Stock solutions of monosaccharide with a concentration of 400 μM and sodium chloride at a concentration of 10 μM were made in water/methanol (50:50, v/v). The samples were subjected to electrospray ionization ion-trap tandem mass spectrometry (ESI-MS) and the detected [2M + Na - H(2)O](+) ions were further investigated by tandem mass spectrometry (MS/MS), followed by applying principal component analysis (PCA) on the obtained MS/MS data sets. The MS/MS spectra of the [2M + Na - H(2)O](+) ions at m/z 365 for hexoses and m/z 305 for pentoses yielded unambiguous fragment patterns, while rhamnose can be directly identified by its ESI-MS [M + Na](+) ion at m/z 187. PCA showed clustering of MS/MS data of identical monosaccharide samples obtained from different experiments. By using this method, the monosaccharide in daucosterol hydrolysate was successfully identified. A new strategy was developed for differentiation of the monosaccharides using ESI-MS/MS and PCA. In MS/MS spectra, the [2M + Na - H(2)O](+) ions yielded unambiguous distinction. PCA of the archived MS/MS data sets was applied to demonstrate the spatial resolution of the studied samples. This method presented a simple and reliable way for distinguishing monosaccharides by ESI-MS/MS. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.

    PubMed

    Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira

    2013-01-01

    Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.

  20. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye.

    PubMed

    Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-08-01

    Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides

    PubMed Central

    Ravcheev, Dmitry A.; Thiele, Ines

    2017-01-01

    The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions. PMID:28912798

  2. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2017-01-01

    The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.

  3. 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates.

    PubMed

    Cai, Zhi Peng; Hagan, Andrew Kevin; Wang, Mao Mao; Flitsch, Sabine Lahja; Liu, Li; Voglmeir, Josef

    2014-05-20

    We herein report the use of 1,3-di(2-pyridyl)-1,3-propanedione (DPPD) as a fluorogenic labeling reagent for sugars. Reaction of DPPD with the anomeric carbon affords a fluorescent 2-pyridylfuran (2-PF) moiety that permits the sensitive HPLC-based detection of monosaccharides. 2-PF-labeled monosaccharides can be easily separated and analyzed from mixtures thereof, and the reported protocol compares favorably with established labeling reagents such as 2-aminobenzoic acid (2-AA) and 1-phenyl-3-methyl-5-pyrazolone (PMP), ultimately allowing subfemtomole detection of the galactose-derived product. Furthermore, we demonstrate the application of DPPD in the labeling of monosaccharides in complex biological matrices such as blood and milk samples. We envisage that DPPD will prove to be an excellent choice of labeling reagent in monosaccharide and carbohydrate analysis.

  4. Resolving Structural Isomers of Monosaccharide Methyl Glycosides Using Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry

    PubMed Central

    Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.

    2013-01-01

    Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760

  5. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands the molecular toolbox for direct glycan imaging in plants, from three to eight glycan analogs, which enables more extensive future studies of spatiotemporal glycan dynamics in a wide variety of plant tissues and species. We also show, for the first time in metabolic labeling and imaging of plant glycans, the potential of two copper-free click chemistry methods that are bio-orthogonal and lead to more uniform labeling. These improved labeling methods can be generalized and extended to already existing and future click chemistry-enabled monosaccharide analogs in Arabidopsis.

  6. Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.

    PubMed

    Piller, Friedrich; Mongis, Aline; Piller, Véronique

    2015-01-01

    By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.

  7. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation.

    PubMed

    Gómez-Fernández, José; Gómez-Izquierdo, Emilio; Tomás, Cristina; Mocé, Eva; de Mercado, Eduardo

    2012-07-01

    The aim of the present study was to evaluate the cryoprotectant effect of different non-permeating sugars for boar sperm. Pooled semen from three boars was used for the experiments. In the first experiment, the sperm quality of boar sperm cryopreserved with an egg-yolk based extender supplemented with different monosaccharides (glucose, galactose or fructose) was compared to a control cryopreserved in lactose-egg yolk extender. In the second experiment, the effect of five disaccharides (lactose, sucrose, lactulose, trehalose or melibiose) on boar sperm cryosurvival was studied. Several sperm quality parameters were assessed by flow cytometry in samples incubated for 30 and 150 min at 37°C after thawing: percentages of sperm with intact plasma membrane (SIPM), sperm presenting high plasma membrane fluidity (HPMF), sperm with intracellular reactive oxygen substances production (IROSP) and apoptotic sperm (AS). In addition, the percentages of total motile (TMS) and progressively motile sperm (PMS) were assessed at the same incubation times with a computer-assisted sperm analysis system. Freezing extenders supplemented with each of the monosaccharide presented smaller cryoprotective effect than the control extender supplemented with lactose (P<0.05). However, from the three monosaccharides tested, glucose provided the best sperm quality after freezing-thawing. With respect to the disaccharides studied, samples frozen with the extender supplemented with lactulose exhibited in general the lowest sperm quality, except for the percentage of capacitated sperm, which was highest (P<0.05) in the samples cryopreserved with the trehalose extender. Our results suggest that disaccharides have higher cryoprotective effect than monosaccharides, although the monosaccharide composition of the disaccharides is also important, since the best results were obtained with those disaccharides presenting glucose in their composition. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.

    PubMed

    Vanfossen, Amy L; Verhaart, Marcel R A; Kengen, Servé M W; Kelly, Robert M

    2009-12-01

    Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.

  9. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta).

    PubMed

    Liu, Qin; Dang, Huijie; Chen, Zhijian; Wu, Junzheng; Chen, Yinhua; Chen, Songbi; Luo, Lijuan

    2018-03-26

    The sugar transporter ( STP ) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava ( Manihot esculenta ) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes ( MeSTP1 - 20 ) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast ( Saccharomyces cerevisiae ) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.

  10. Nickel-catalyzed proton-deuterium exchange (HDX) procedures for glycosidic linkage analysis of complex carbohydrates

    USDA-ARS?s Scientific Manuscript database

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...

  11. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes.

    PubMed

    Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang

    2015-11-20

    We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass.

    PubMed

    Feng, Junfeng; Hse, Chungyun; Yang, Zhongzhi; Wang, Kui; Jiang, Jianchun; Xu, Junming

    2017-11-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3g catalyst per 18g methanol and 2g bamboo at 160°C with 10min. Approximately 78-86wt% of the six biomass materials were converted into liquid products. After the stepwise extraction and precipitation process, the yields of monosaccharide derivatives and three phenolic compound fractions were 39-45% and 28-32%, respectively. Monosaccharides from holocellulose collected with a high purity of methyl glycosides were higher than 90%. Aromatic derivatives with different weight-molecular distributions were separated into three fractions with more than 80% phenolics. As their similar chemical properties within each fraction, platform chemicals have great commercial potential for producing high-quality chemicals and biofuels using mild upgrading conditions. Copyright © 2017. Published by Elsevier Ltd.

  13. Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.

    PubMed

    Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M

    1985-01-01

    Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.

  14. The name of the -ose: An editorial on carbohydrate nomenclature

    USDA-ARS?s Scientific Manuscript database

    What’s in a name? The term "sugar" is usually applied to the monosaccharides, disaccharides, and lower oligosaccharides, although "carbohydrate" ("hydrate de carbone") was originally used only for monosaccharides, because their composition can be expressed as Cn(H2O)n. Historically, sugars were name...

  15. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.

    PubMed

    Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C

    2008-01-01

    The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).

  16. A preliminary study on the synthesis of monosaccharide palmitate

    NASA Astrophysics Data System (ADS)

    Othman, Nor Hamidah Abu; Jafri, Nur Hafifah Nahdirah; Salimon, Jumat

    2018-04-01

    The esterification reaction between palmitic acid and different monosaccharides using 1.5% sulfuric acid as the catalyst to produce monosachharide palmitate was studied. The highest percentage yield obtained was 20% from tripalmitate (TAG01) whereas the lowest percentage formed was 0.8% from glucose pentapalmitate (GPP01). Functional group analysis was conducted using ATR-FTIR spectroscopy. Infrared spectroscopy showed C=O ester stretching at 1735, 1697, 1732 and 1729 cm-1, C-O ester stretching at 1265, 1269, 1284 and 1265 while C-H sp3 stretching was observed at 2847-2914 cm-1 for tripalmitate (TAG), glucose pentapalmitate (GPP), xylitol pentapalmitate (XPP) and sorbitol hexapalmitate (SHP) with no observed -OH stretch after esterification to produce monosaccharide palmitate.

  17. Determination of monosaccharides and sugar alcohols in tissues from diabetic rats by high-performance liquid chromatography with pulsed amperometric detection.

    PubMed

    Tomiya, N; Suzuki, T; Awaya, J; Mizuno, K; Matsubara, A; Nakano, K; Kurono, M

    1992-10-01

    A sensitive and simple high-performance liquid chromatographic method has been developed to determine the concentration of monosaccharides and sugar alcohols in animal tissues. Five neutral monosaccharides (D-glucose, D-galactose, D-mannose, D-fructose, and D-ribose) and three neutral sugar alcohols (myo-inositol, glycerol, and D-sorbitol) predominate in the renal cortices and sciatic nerves of rats. These monosaccharides and sugar alcohols were extracted with distilled water, purified by deproteinization with ethanol, a Sep-Pak C18 cartridge, and columns of Dowex 50W-X8 and Amberlite CG-400, then separated on Ca2+ and Pb2+ cation-exchange columns, eluted with deionized distilled water at 80 degrees C, and detected using integrated pulsed amperometry. About 10 pmol of each sugar was detectable with a signal-to-noise ratio of 10:1. D-Glucose, D-fructose, D-sorbitol, and D-mannose were higher in both the renal and sciatic tissues of diabetic rats than in those of normal animals. D-Ribose and glycerol were higher in the renal cortex of diabetic animals.

  18. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica).

    PubMed

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J

    2008-12-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.

  19. 78 FR 33354 - Xanthan Gum From Austria: Final Determination of Sales at Less Than Fair Value

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...

  20. Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by UPLC-UV/MS method

    USDA-ARS?s Scientific Manuscript database

    In natural product chemistry, it is often crucial to determine sugar composition as well as the absolute configuration of each monosaccharide in glycosides. An ultra-performance liquid chromatography method using both photodiode array (PDA) and mass spectrometry detectors (UPLC-UV/MS) was developed....

  1. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    PubMed

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. O-Fucose Monosaccharide of Drosophila Notch Has a Temperature-sensitive Function and Cooperates with O-Glucose Glycan in Notch Transport and Notch Signaling Activation*

    PubMed Central

    Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O.; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji

    2015-01-01

    Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions. PMID:25378397

  3. 78 FR 13379 - Xanthan Gum from Austria and China; Scheduling of the Final Phase of an Antidumping Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...

  4. Interferon Inducers Against Infectious Diseases.

    DTIC Science & Technology

    1991-06-15

    mouse there was little, if any, difference. b. PLL- Monosaccharide Grafts. The PLL-dextran grafts described above contain long polysaccharide chains...engrafted polysaccharides . Our research has resulted in the demonstration that effective IFN inducers can be formulated without using...Action of IC-(PLL-dextran) .............. 7. Induction of IFN in Mice by IC-(PLL- monosaccharides ). I 8. ICL-SCDS04; Compositions and IFN Titers

  5. 78 FR 2251 - Xanthan Gum From Austria: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... limited to, sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation... consists of a backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)- P-DGlucuronic acid-(1,2) - a-D- Mannose monosaccharide units. The...

  6. Large Scale Green Synthesis of 1,2,4-Butanetriol

    DTIC Science & Technology

    2007-03-31

    processing Corn fiber was pretreated by AFEX and the resultant glucan was enzymatically converted to monosaccharide . Saccharification of the cellulose...After removing the residual solids from the hydrolyzate solution, solubilized hemicellulose and monosaccharides were measured in solution, where the...resulting hemicellulose was 62% polysachharide by mass. The component polysaccharide content of the hemicellulose was 35% xylan, 18% arabinan, 6

  7. Wound Healing: Biochemical Pathways and in vivo Studies.

    DTIC Science & Technology

    1980-02-01

    glycosaminoglycans (mucopolysaccharides) and glycoproteins (proteins with covalently bound hetero- polysaccharide chains). The matrix portion of the collagen unit is...the monosaccharides to the more complex mucopolysaccharides and glycoproteins and their role in the production and structure of collagen is evolving...glucosamine, and hexoses--glucose, galac- tose, and mannose. The monosaccharide pattern was similar in the wound tissue of the three species. These

  8. Na/sup +/-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells. [Chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmich, G.A.; Randles, J.

    1975-01-01

    A monosaccharide transport system in addition to the active Na/sup +/-dependent system characteristic of the brush border surface of vertebrate intestinal tissue has been identified in isolated chick intestinal epithelial cells. The newly described system differs in several characteristics from the Na/sup +/-dependent process, including function in the absence of Na/sup +/; a high sensitivity to phloretin, relative insensitivity to phlorizin; different substrate specificity; and a very high K/sub T/ and V/sub max/. The system apparently functions only in a facilitated diffusion manner so that it serves to move monosaccharide across the cell membrane down its chemical gradient. An appreciablemore » fraction of total sugar efflux occurs via the Na/sup +/-independent carrier from cells which have accumulated sugar to a steady state. Phloretin selectively blocks this efflux so that a normal steady-state sugar gradient of seven- to eightfold is transformed to a new steady-state gradient which is greater than 14-fold. Locus of the new system is tentatively ascribed to the serosal cell surface where it would serve for monosaccharide transfer between enterocyte and lamina propria of the villus. (auth)« less

  9. Ammoxidation of Lignocellulosic Materials: Formation of Nonheterocyclic Nitrogenous Compounds from Monosaccharides

    PubMed Central

    2013-01-01

    Ammoxidized technical lignins are valuable soil-improving materials that share many similarities with native terrestrial humic substances. In contrast to lignins, the chemical fate of carbohydrates as typical minor constituents of technical lignins during the ammoxidation processes has not been thoroughly investigated. Recently, we reported the formation of N-heterocyclic, ecotoxic compounds (OECD test 201) from both monosaccharides (d-glucose, d-xylose) and polysaccharides (cellulose, xylan) under ammoxidation conditions and showed that monosaccharides are a source more critical than polysaccharides in this respect. GC/MS-derivatization analysis of the crude product mixtures revealed that ammoxidation of carbohydrates which resembles the conditions encountered in nonenzymatical browning of foodstuff affords also a multitude of nonheterocyclic nitrogenous compounds such as aminosugars, glycosylamines, ammonium salts of aldonic, deoxyaldonic, oxalic and carbaminic acids, urea, acetamide, α-hydroxyamides, and even minor amounts of α-amino acids. d-Glucose and d-xylose afforded largely similar product patterns which differed from each other only for those products that were formed under preservation of the chain integrity and stereoconfiguration of the respective monosaccharide. The kinetics and reaction pathways involved in the formation of the different classes of nitrogenous compounds under ammoxidation conditions are discussed. PMID:23967905

  10. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica)

    PubMed Central

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young

    2009-01-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878

  11. Protective effects of cyanidin-3-rutinoside against monosaccharides-induced protein glycation and oxidation.

    PubMed

    Thilavech, Thavaree; Ngamukote, Sathaporn; Abeywardena, Mahinda; Adisakwattana, Sirichai

    2015-04-01

    Cyanidin-3-rutinoside (C3R), a naturally occurring anthocyanin, is present in various fruits and vegetables as a colorant. C3R has been well characterized and demonstrated a number of biological activities attributed to its antioxidant properties. The present study compared the effectiveness of C3R against monosaccharide-induced protein glycation and oxidation in vitro using bovine serum albumin (BSA).The results demonstrated that C3R (0.125-1.00 mM) inhibited the formation of fluorescent AGEs in ribose-glycated BSA (2-52%), fructose-glycated BSA (81-93%), glucose-glycated BSA (30-74%) and galactose-glycated BSA (6-79%).Correspondingly, C3R (1.00 mM) decreased the level of N(ɛ)-(carboxymethyl) lysine (56-86%) in monosaccharide-induced glycation in BSA. C3R also reduced the level of fructosamine, β-amyloid cross structure, protein carbonyl content as well as the depletion of thiol in BSA/monosaccharide system. In summary, C3R might offer a new promising antiglycation agent for the prevention of diabetic complications by inhibiting AGE formation and oxidation-dependent protein damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. [Study on Monosaccharide Compositions of Polysaccharide in Dendrobium Stems of Different Resources by PMP-HPCE].

    PubMed

    Chen, Nai-dong; Meng, Yun-fei; Yao, Hou-jun; Cao, Cai-yun; Chen, Chen; Li, Jun

    2015-08-01

    To establish a PMP-HPCE method for comparing the monosaccharides of polysaccharide in tissue-cultured and wild Dedrobium huoshanese and Dedrobium moniliforme as well as wild Dedrobium henanese, in order to investigate the similarities of their bioactive components. The PMP-monosaccharides of polysaccharide from the five investigated Dedrobium samples were separated by HPCE on a fused silica capillary column(100 cm x 50 µm) at 25 °C with 350 mmol/L BAS (adjusted to pH 10 with 1.0 mol/L NaOH) as running buffer for 34 min. The applied voltage was 20 kV and the detection wavelength was set at 250 nm. Total six monosaccharides including xylose, glucose, mannose, galactose, galacturonic acid and ribose were detected in the five Dendrobiurms samples and the similarity coefficients between the ten batches of the same Dendrobium species were all above 0. 98,while remarkable dissimilarity were exhibited among species and different resources. PMP-HPCE technique combined with chemometrics is simple, convenient, precise, reproducible and proved to be an effective strategy for identifying the species and origins, especially in the quality assessment of Dendrobium stems.

  13. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro.

    PubMed

    de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C

    2013-08-01

    The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P < 0.05) hydrolyzed monosaccharide concentrations. The SCFsd blends had intermediate to high amounts of monosaccharides released as a result of in vitro hydrolytic digestion. The SCFsd:pullulan blends were more digestible in vitro (approximately 91%; P < 0.05) than SCFsd:fructose or SCFsd:sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P < 0.05). The SCF:pullulan:sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in decreased glycemic and insulinemic responses compared with the maltodextrin control (P < 0.05) using a canine model. The addition of pullulan reduced the glycemic response compared with maltodextrin at all concentrations, but only 50:50 SCFsd:pullulan resulted in a reduction of the glycemic response compared with SCFsd alone (P < 0.05). The addition of fructose and sorbitol in the blends had the greatest impact on glycemic and insulinemic responses, even at concentrations as low as 5% of the blends. Overall, SCF and their blends may prove beneficial as components of low glycemic foodstuffs.

  14. Development of Vaccines to Prevent Wound Infections Due to Anerobic Bacteria

    DTIC Science & Technology

    1981-09-01

    lot variability of the monosaccharide constituents 4 IV. Safety and toxicity testing of Lot 1 of polysaccharide antigens from B. fragilis strains 9343...the polysaccharide into monosac- charides followed by conversion of these to alditol acetates demonstrates several interesting monosaccharides present...rats with the capsular polysaccharide of B. fragilis iniuces protection to subsequent challenge with this organism. We have prpviously shown that in

  15. Ultra-high performance supercritical fluid chromatography-mass spectrometry procedure for analysis of monosaccharides from plant gum binders.

    PubMed

    Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel

    2017-10-09

    The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area ratios of monosaccharides. The proposed procedure using UHPSFC/MS represents an interesting alternative which can compete with other chromatographic methods in the field of saccharide analysis in terms of speed, sensitivity and simplicity of workflow. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis1[OA

    PubMed Central

    Wingenter, Karina; Schulz, Alexander; Wormit, Alexandra; Wic, Stefan; Trentmann, Oliver; Hoermiller, Imke I.; Heyer, Arnd G.; Marten, Irene; Hedrich, Rainer; Neuhaus, H. Ekkehard

    2010-01-01

    The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyllab-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO2 release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development. PMID:20709831

  17. The Utilization of Sugars and Other Substances by Drosophila,

    DTIC Science & Technology

    1948-03-01

    many compounds, including sugars, polysaccharides , polyhydric alcohols, aliphatic acids, etc. 2. In equivalent solutions, ’the order of usefulness of...span’between flies fed on disaccharides and their constituent monosaccharides . 4’. Doubtful sugars can usually be resolved into toxic, reprl- lent...The molaritie.s of the sugar solutions were varied so as to equate the monosaccharides and disaccharides. The longevity of flies fed on di- and

  18. Studies of Biosilicification; The Role of Proteins, Carbohydrates and Model Compounds in Structure Control

    DTIC Science & Technology

    2005-12-31

    No. carbons Pore volume data. Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. To...interwoven polysaccharide chains embedded in a gel matrix of galacturonic acid rich polysaccharides connected by calcium bridges. This network also...picomolar levels). Also, it allows the determination of intact monosaccharides without pre or post column derivatisation, decreasing the time of

  19. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass

    Treesearch

    Junfeng Feng; Chungyun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3 g catalyst per 18 g methanol and 2 g bamboo at 160 °C with 10 min. Approximately 78–86 wt%...

  20. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry.

    PubMed

    Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying

    2018-01-01

    Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs, South China

    NASA Astrophysics Data System (ADS)

    Duan, Dandan; Zhang, Dainan; Yang, Yu; Wang, Jingfu; Chen, Jing'an; Ran, Yong

    2017-09-01

    Neutral monosaccharides, algal organic matter (AOM), and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO) range from 0.51 to 6.4 mg g-1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g-1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C/N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.

  2. Quantification of Saccharides in Honey Samples Through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Using HgTe Nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung

    2014-07-01

    Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.

  3. Quantification of saccharides in honey samples through surface-assisted laser desorption/ionization mass spectrometry using HgTe nanostructures.

    PubMed

    Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung

    2014-07-01

    Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.

  4. The Effect of Inorganic Particles on Metabolism by Marine Bacteria.

    DTIC Science & Technology

    1982-05-01

    Wright, 1974; 1978). Glucose is the dominant monosaccharide in seawater I (Mopper et al., 1980). It is found in seawater at concentrations ranging from... monosaccharides in seawater (Stumm and Morgan, 1981). However, concentrations of specific amino acids are lower than those reported for glucose (Lee and Bada...Fletcher, 1979B; this study). However there is also an active process involved in attachment; this is the secretion of polysaccharide holdfast material

  5. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.

    2014-07-08

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  6. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  7. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette

    NASA Astrophysics Data System (ADS)

    Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader

    2013-09-01

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j

  8. Characterization of the Metabolic Flux and Apoptotic Effects of O-Hydroxyl- and N-Acyl-Modified N-Acetylmannosamine Analogs in Jurkat Cells*

    DTIC Science & Technology

    2004-04-30

    a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid...12, 13), a linear polysaccharide composed of entirely of -2,8-linked sialic acid, which is implicated in the complex neural processes (14), synaptic...acetylated monosaccharides (22–25). In a previous study, we demonstrated that various acetylated ManNAc analogs are used with up to 900-fold increased

  9. Exploring the relative reactivities of the hydroxyl groups of monosaccharides by molecular modeling and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Box, V. G. S.; Evans-Lora, T.

    2000-01-01

    The molecular modeling program STR3DI.EXE, and its molecular mechanics module, QVBMM, were used to simulate, and evaluate, the stereo-electronic effects in the mono-alkoxides of the 4,6- O-ethylideneglycopyranosides of allose, mannose, galactose and glucose. This study has confirmed the ability of these molecular modeling tools to predict the regiochemistry and reactivity of these sugar derivatives, and holds considerable implications for unraveling the chemistry of the rare monosaccharides.

  10. Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457.

    PubMed

    Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar

    2008-08-01

    Concise chemical synthesis of a tetrasaccharide repeating unit of the O-antigen of Hafnia alvei 10457 is reported. Construction of the tetrasaccharide as its 4-methoxyphenyl glycoside was achieved by condensation of less abundant monosaccharide units such as, D-galactofuranose, N-acetyl-D-galactosamine and N-acetylneuraminic acid. The synthetic strategy consists of the preparation of suitably protected required monosaccharide intermediates from the commercially available reducing sugars and high yielding glycosylation reactions.

  11. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccharide Sensing-Interface

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak

    2007-01-01

    We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.

  12. The biosynthesis of polysaccharides. Incorporation of d-[1-14C]glucose and d-[6-14C]glucose into plum-leaf polysaccharides

    PubMed Central

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252

  13. Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: Measurement and analysis in the context of excluded volume theory.

    PubMed

    Beg, Ilyas; Minton, Allen P; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2018-06-01

    The thermal stability of apo α-lactalbumin (α-LA) and lysozyme was measured in the presence of mixtures of glucose, fructose, and galactose. Mixtures of these monosaccharides in the appropriate stoichiometric ratio were found to have a greater stabilizing effect on each of the two proteins than equal weight/volume concentrations of di- tri- and tetrasaccharides with identical subunit composition (sucrose, trehalose, raffinose, and stachyose). The excluded volume model for the effect of a single saccharide on the stability of a protein previously proposed by Beg et al. [Biochemistry 54 (2015) 3594] was extended to treat the case of saccharide mixtures. The extended model predicts quantitatively the stabilizing effect of all monosaccharide mixtures on α-LA and lysozyme reported here, as well as previously published results obtained for ribonuclease A [Biophys. Chem. 138 (2008) 120] to within experimental uncertainty. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The role of Monosaccharide Transport Proteins in carbohydrate assimilation, distribution, metabolism and homeostasis

    PubMed Central

    Cura, Anthony J.; Carruthers, Anthony

    2012-01-01

    The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol and dehydroascorbic acid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into 3 classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been co-opted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 (HMIT1) is a proton/myoinositol co-transporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption, distribution, cellular transport and metabolism and recovery/retention. Glucose transport and metabolism have co-evolved in mammals to support cerebral glucose utilization. PMID:22943001

  15. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE PAGES

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; ...

    2018-04-16

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.

  16. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.

  17. Isolation and partial characterization of immunostimulating polysaccharides from Imperata cylindrica.

    PubMed

    Pinilla, V; Luu, B

    1999-08-01

    The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.

  18. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  19. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    PubMed

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

  1. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  2. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS.

    PubMed

    Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo

    2016-04-20

    A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette

    PubMed Central

    Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan

    2013-01-01

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. PMID:23934399

  5. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette.

    PubMed

    Vilozny, Boaz; Wollenberg, Alexander L; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader

    2013-10-07

    Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.

  6. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  7. Izumoring: a novel and complete strategy for bioproduction of rare sugars.

    PubMed

    Granström, Tom Birger; Takata, Goro; Tokuda, Masaaki; Izumori, Ken

    2004-01-01

    Starch, whey or hemicellulosic waste can be used as a raw material for the industrial production of rare sugars. D-glucose from starch, whey and hemicellulose, D-galactose from whey, and D-xylose from hemicellulose are the main starting monosaccharides for production of rare sugars. We can produce all monosaccharides; tetroses, pentoses and hexoses, from these raw materials. This is achieved by using D-tagatose 3-epimerase, aldose isomerase, aldose reductase, and oxidoreductase enzymes or whole cells as biocatalysts. Bioproduction strategies for all rare sugars are illustrated using ring form structures given the name Izumoring.

  8. Vibrational Raman optical activity of ketose monosaccharides

    NASA Astrophysics Data System (ADS)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  9. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates

    DOE PAGES

    Van Wychen, Stefanie; Long, William; Black, Stuart K.; ...

    2016-11-24

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.

  10. Structure of bacterial lipopolysaccharides.

    PubMed

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  11. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Long, William; Black, Stuart K.

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.

  12. Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans.

    PubMed

    Stepan, Herwig; Bleckmann, Christina; Geyer, Hildegard; Geyer, Rudolf; Staudacher, Erika

    2010-07-02

    The N- and O-glycans of Arianta arbustorum, Achatina fulica, Arion lusitanicus and Planorbarius corneus were analysed for their monosaccharide pattern by reversed-phase HPLC after labelling with 2-aminobenzoic acid or 3-methyl-1-phenyl-2-pyrazolin-5-one and by gas chromatography-mass spectrometry. Glucosamine, galactosamine, mannose, galactose, glucose, fucose and xylose were identified. Furthermore, three different methylated sugars were detected: 3-O-methyl-mannose and 3-O-methyl-galactose were confirmed to be a common snail feature; 4-O-methyl-galactose was detected for the first time in snails. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.

    PubMed

    Wang, Ying; Yuan, Bo; Ji, Yingchao; Li, Hong

    2013-09-12

    In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge to hydrolyze hemicellulose. The orthogonal experiment L₂₅(5(6)) was used to optimize such hydrolysis conditions. The total reducing sugar (TRS) was measured by the DNS method. To determine whether the oligosaccharide existed in the hydrolysis products, it was hydrolyzed by sulfuric acid for a second time following the same procedure as reported earlier. The monosaccharide compositions of the hydrolyzed sample were analyzed by high-performance liquid chromatography (HPLC) and Fourier transformed infrared spectroscopy (FTIR). The results showed that pH 2.81 of plasma acid, 100 °C and 50 min were assigned as an optimal hydrolysis condition by plasma acid. Under this condition, the hemicellulose was hydrolyzed completely to produce monosaccharides including xylose, glucose, and galactose with the mole ratio being 17:3:1. The yields of xylose, glucose, and galactose were 38.67%, 9.28% and 3.09%, respectively. Compared with the hemicellulose hydrolysis results by sulfuric acid, it is concluded that plasma acid is an environmental-friendly and efficient method to explore and hydrolyze the hemicellulose existed in biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Inhibitors incorporating zinc-binding groups target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the causative agent of African sleeping sickness.

    PubMed

    Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D

    2012-03-01

    Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.

  15. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes.

    PubMed

    Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A

    2017-09-13

    The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.

  16. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice.

    PubMed

    Wang, Xiao-Yin; Yin, Jun-Yi; Nie, Shao-Ping; Xie, Ming-Yong

    2018-02-01

    Hericium erinaceus was extracted with boiling water to obtain the crude polysaccharide (HECP) and refined polysaccharide (HERP). HERP was further purified using gradual ethanol precipitation to obtain five sub-fractions. Their physicochemical properties were evaluated, including chemical components, monosaccharide composition and molecular weight. Meanwhile, the effect of HERP on colonic health of mice was investigated by oral administration at dosages of 100, 200 and 400mg/kg of body weight (mg/kgbw), comparing with that of HECP. Results showed that the gradual ethanol precipitation could remarkably increase polysaccharide purity. HERP, HECP and the five purified fractions had different monosaccharide compositions, while the main monosaccharides were Glc and Gal. They all showed similar structure with amorphous appearance. Short-chain fatty acids productions in colonic and cecum contents, and feces of mice were increased in polysaccharide treated groups. Mice administrated with HERP at 400mg/kgbw showed significant reductions in pH values while obvious increases in moisture amounts. This study suggests that gradual ethanol precipitation is available for purification of polysaccharide from Hericium erinaceus and the extracted polysaccharide could improve colonic health. Copyright © 2017. Published by Elsevier B.V.

  17. MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates.

    PubMed

    Van Wychen, Stefanie; Long, William; Black, Stuart K; Laurens, Lieve M L

    2017-02-01

    A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. The MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 μg mL -1 without interference from other algae acidic hydrolyzate components. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  19. Ontogenetic changes in helminth membrane function.

    PubMed

    Arme, C

    1988-01-01

    During their life-cycle many parasites experience a wide range of environments including free living and those provided by a variety of intermediate and final hosts. The nutritional requirements of parasites are met by physiological processes adapted to exploit the physicochemical characteristics provided by different hosts. In helminth parasites these adaptations are frequently expressed on the tegumentary surface. As an example of adaptations within the Trematoda, the control of monosaccharide transport in Proterometra sp. is described. Environmental sodium, although not directly involved in the uptake process, nevertheless regulates the expression of transport capabilities. In the Cestoda, the uptake of monosaccharides and amino acids is described for Hymenolepis diminuta. The metacestode of this tapeworm inhabits the blood system of an arthropod, and the adult the gut of a mammal. There are quantitative and qualitative differences in the amino acids and monosaccharides in these two environments and these are reflected in the transport mechanisms exhibited by the two forms of the life-cycle. In Echinococcus granulosus the transfer of amino acids, sugars and macromolecules across the membranes of hydatid cysts and protoscoleces is described. The major difference between these two stages in the life-cycle relates to the ability of hydatid cysts to absorb macromolecules, whereas protoscoleces are impermeable to these compounds. The potential for future work is emphasized.

  20. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

  1. Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction

    NASA Astrophysics Data System (ADS)

    Wilson, Iain B. H.

    Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.

  2. A sensitive and efficient method for determination of N-acetylhexosamines and N-acetylneuraminic acid in breast milk and milk-based products by high-performance liquid chromatography via UV detection and mass spectrometry identification.

    PubMed

    Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You

    2016-02-01

    A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Replacement of Monosaccharide by Mannitol or Sorbitol in the Freezing Extender Enhances Cryosurvival of Ram Spermatozoa.

    PubMed

    Wu, Guo Quan; Lv, Chun Rong; Jiang, Yan Ting; Wang, Si Yu; Shao, Qing Yong; Hong, Qiong Hua; Quan, Guo Bo

    2016-10-01

    In this study, the protective effects of monosaccharides (glucose and fructose) and sugar alcohols (mannitol, sorbitol, and xylitol) on frozen ram spermatozoa were evaluated and compared. The motility, moving velocity, and hypoosmotic swelling capability of spermatozoa frozen with monosaccharide or sugar alcohol were measured using a computer-assisted spermatozoa analyzer system. The acrosome status, membrane integrity, distribution of phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed using fluorescence staining and flow cytometry. The results indicated that similar to glucose or fructose, the presence of sugar alcohol in the freezing extender cannot significantly improve the motility and moving velocity of ram spermatozoa equilibrated at 5°C. In terms of motility, pathway velocity, curve velocity, hypoosmotic swelling capability, acrosome and membrane integrity, and MMP, the inclusion of mannitol or sorbitol in the extender can significantly improve the quality of frozen-thawed ram spermatozoa compared to glucose or fructose. However, the effects of mannitol or sorbitol on linear velocity and PS distribution of frozen-thawed spermatozoa were similar to those of the monosaccharides (p > 0.05). In addition, the ability of xylitol to protect acrosome and maintain MMP in frozen-thawed spermatozoa was significantly higher compared with glucose or fructose (p < 0.05), although it could not improve the other evaluated parameters. Finally, there is no significant difference existing between mannitol and sorbitol with respect to the above evaluated parameters. In conclusion, the replacement of glucose or fructose by mannitol or sorbitol in a freezing extender can improve the postthaw quality of ram spermatozoa under specific freezing conditions. Moreover, the protective effects of mannitol and sorbitol on frozen-thawed ram spermatozoa are superior to that of xylitol. However, in the presence of sugar alcohols, the cryoinjury on spermatozoa membrane is still serious. In the future, the question of protecting the membrane of frozen-thawed spermatozoa needs further research.

  4. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  5. THE CHANGE IN CARBOHYDRATE COMPOSITION WITHIN THE STORAGE ORGANS OF PLANTS UNDER THE EFFECT OF GAMMA IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sal'kova, E.G.

    1963-04-11

    Onion bulbs, garlic bulbs, and apples were subjected to gamma radiation, and the changes in carbohydrate content were determined at 5 days and 2 months after irradiation. No accumulation of sugars could be detected in the onion or garlic buibs up to a dose of 60,000 r. The content of monosaccharides decreased from 1.75% of the dry weight for the controls to 1.15% on the 5th day after irradiation of the onion bulbs with a dose of 30,000 r. No break-down of polysaccharides due to irradiation could be observed in the onion or garlic. No change in the monosaccharide contentmore » of irradiated onion bulbs could be detected by chromatographic analysis. The apples were irradiated with a dose of 40,000 r which caused ripening of the fruit, and with a dose of 200,000 to 400,000 r, which sterilized the fruit. On irradiating apples with a dose of 40,000 r, the monosaccharide content decreased, while the starch content increased. The sucrose content fell to zero at a dose of 400,000 r. After storage for a month, the monosaccharide content in the irradiated apples was less than that in the unirradiated apples. A chromatographic analysis showed that the content of galactic acid was increased in the irradiated apples due to the break-down of pectin-like materials. The maltose and lactose contents were much lower, while the contents of fructose and glucose were higher after irradiation than before irradiation of the apples. The data show that irradiation has an effect on the carbohydrate content of plants that varies from plant to plant. The reasons for the differences in stability of the various carbohydrate components in different plants are not known at present. (TTT)« less

  6. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15:0, ai15:0 and 18:1ω7c which likely resulted from production of these bacterial fatty acids during bacterial reworking of the organic matter. Differences between loss rate constants for individual monosaccharides were not significant. An exception was ribose that was produced and lost relatively rapidly, which may be related to ribose being an important component of RNA. Losses of bulk 13C and 15N were closely coupled despite partly being present in different biochemicals and partly being derived from different microbial sources, indicating no selective preservation of either C or N during organic matter diagenesis.

  7. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  8. Glucose and D-Allulose contained medium to support the growth of lactic acid bacteria

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Pramono, Y. B.; Sari, D. I.; Pangestika, W.

    2018-01-01

    Monosaccharide has been known as support agent for the growth of lactic acid bacteria. However the combination among monosaccharides for supporting the living of bacteria has not been understood well. This research was done for analyzing the combination glucose and D-allulose for the growth of Lactobacillus acidophilus and Streptococcus thermophillus. The NaCl medium containing glucose and D-allulose was used to analyse the growth of bacteria. The study showed that glucose and D-allulose have been detected as supportive agent to L. acidophilus and S. thermophillus specifically. As conclusion, glucose and D-allulose supported the growth of lactic acid bacteria equally. This finding might provide the beneficial information for industry to utilize D-allulose as well as glucose.

  9. The effect of growth medium on B. anthracis Sterne spore carbohydrate content.

    PubMed

    Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro

    2013-06-01

    Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.

  11. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    PubMed

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Monosaccharide transport into hemocytes of a sipunculan worm Themiste dyscrita

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingermann, R.L.; Hall, R.E.; Bissonnette, J.M.

    1985-07-01

    The hemerythrin-containing blood cells, or hemocytes, of the sipunculan worm Themiste dyscrita were found to have a stereospecific and nonconcentrative monosaccharide transport system. The transport system transferred both D-glucose and 3-O-methyl-D-glucose (3-OMG), and transport into cells by this system was rapid, reaching 50% equilibrium in approximately 20 s at 10 degrees C with an initial concentration gradient of 0.1 mM; the contribution to total uptake by simple diffusion was very small. 3-OMG uptake showed saturation kinetics with a low half-saturation constant (Km less than or equal to 0.1 mM). The uptake of labeled 3-OMG by the hemocytes was strongly inhibitedmore » by unlabeled 3-OMG, 2-deoxy-D-glucose, alpha- and beta-D-glucose, D-galactose, and D-mannose. It was moderately inhibited by D-xylose, only slightly by alpha-methyl-D-glucoside and D-fructose, and uninhibited by sucrose, L-glucose, or D-sorbitol. Phloretin was more potent than phloridzin in blocking entry of 3-OMG. Cytochalasin B did not bind tightly to the T. dyscrita transporter and was not a potent inhibitor of transport; it half-maximally inhibited 3-OMG transport at 0.1 mM. Therefore, despite some differences the data suggest functional similarities in the mechanism of monosaccharide transport into blood cells of mammals and this invertebrate.« less

  13. Sequencing of oligosaccharides using enzyme array digestion with electrochemical and fluorescent detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, M.; Lee, C.S.

    1997-12-31

    The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymesmore » to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.« less

  14. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content.

    PubMed

    Haas, Isabel Cristina da Silva; Toaldo, Isabela Maia; de Gois, Jefferson Santos; Borges, Daniel L G; Petkowicz, Carmen Lúcia de Oliveira; Bordignon-Luiz, Marilde T

    2016-12-01

    Grape and grape derivatives contain a variety of antioxidants that have gain increasing interest for functional foods applications. The chemical composition of grapes is mainly related to grape variety and cultivation factors, and each grape constituent exhib its unique characteristics regarding its bioactive properties. This study investigated the chemical composition and the effect of drying on the bioactive content of the non-pomace constituent obtained in the processing of organic and conventional grape juices from V. labrusca L. The non-pomace samples were analyzed for polyphenols, monosaccharides, antioxidant activity and elemental composition and the effect of drying on the bioactive composition was evaluated in samples subjected to lyophilization and drying with air circulation. The analyses revealed high concentrations of proanthocyanidins, flavanols and anthocyanins, and high antioxidant capacity of the organic and conventional samples. The drying processes reduced significantly (P < 0.05) the total phenolic content that ranged from 13.23 to 36.36 g/kg. Glucose, xylose, and mannose were the predominant monosaccharides, whereas K, Ca and Mg were the most abundant minerals. Variations in the chemical composition of organic and conventional samples were associated with cultivation factors. Nevertheless, this non-pomace constituent is a promising source of nutrients and polyphenols with bioactive potential.

  15. Analysis of the oligosaccharide composition in wort samples by capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Szilágyi, Tamás Gábor; Vecseri, Beáta Hegyesné; Kiss, Zsuzsanna; Hajba, László; Guttman, András

    2018-08-01

    Determination of the oligosaccharide composition in different wort samples is important to monitor their change during the brewing process with different yeast types. In our work, the concentration of fermentable and non-fermentable sugars were monitored by capillary electrophoresis to observe the effect of two different types of yeasts, Saccharomyces pastorianus and Saccharomycodes ludwigii. The former first ferments the monosaccharides, then the higher sugar oligomers, such as maltose and maltotriose, to ethanol, while the latter fully ferments the monosaccharides, but ferments only very low percentages of the oligosaccharides. Therefore, breweries use Saccharomycodes ludwigii to produce beers with low alcohol content. The CE-LIF traces of the wort samples represented unique oligosaccharide signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Grachev, Alexey A; Chizhov, Alexander O; Nifantiev, Nikolay E

    2016-01-01

    3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  18. A promptly approach from monosaccharides of biomass to oligosaccharides via sharp-quenching thermo conversion (SQTC).

    PubMed

    Liu, Xiao; Wei, Weiqi; Wu, Shubin; Lei, Ming; Liu, Ying

    2018-06-01

    In this study, a novel and facile approach of conversion monosaccharides (glucose and xylose) to oligosaccharides (Cello-oligosaccharides and Xylo-oligosaccharides) was demonstrated. The approach did not introduce any chemical reagent and the preparation process could be environmentally friendly. Identification and quantification by ion chromatography (IC) and high performance liquid chromatography (HPLC) showed that the yields of COS and XOS reached to 44.62% (38 s) and 47.09% (30 s) respectively at 500 °C reaction temperature coupled with sharp-quenching method. Structural characterization indicated that such oligosaccharides showed a degree of polymerization (DP) with 2-6, and the units mainly linked by β-(1 → 4)-glycosidic bond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Translational and rotational dynamics of monosaccharide solutions.

    PubMed

    Lelong, Gérald; Howells, W Spencer; Brady, John W; Talón, César; Price, David L; Saboungi, Marie-Louise

    2009-10-01

    Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.

  20. Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.

    PubMed

    Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam

    2013-10-01

    Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine.

  1. GLYDE-II: The GLYcan data exchange format

    PubMed Central

    Ranzinger, Rene; Kochut, Krys J.; Miller, John A.; Eavenson, Matthew; Lütteke, Thomas; York, William S.

    2017-01-01

    Summary The GLYcan Data Exchange (GLYDE) standard has been developed for the representation of the chemical structures of monosaccharides, glycans and glycoconjugates using a connection table formalism formatted in XML. This format allows structures, including those that do not exist in any database, to be unambiguously represented and shared by diverse computational tools. GLYDE implements a partonomy model based on human language along with rules that provide consistent structural representations, including a robust namespace for specifying monosaccharides. This approach facilitates the reuse of data processing software at the level of granularity that is most appropriate for extraction of the desired information. GLYDE-II has already been used as a key element of several glycoinformatics tools. The philosophical and technical underpinnings of GLYDE-II and recent implementation of its enhanced features are described. PMID:28955652

  2. 21 CFR 145.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... hydrolysis of any edible starch. The solids of glucose sirup contain not less than 40 percent by weight of...

  3. Glucosamine Sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  4. Preparative chromatography for specific δ13C isotopic analysis of individual carbohydrates in environmental samples

    NASA Astrophysics Data System (ADS)

    Nouara, Amel; Panagiotopoulos, Christos; Balesdent, Jérôme; Sempéré, Richard

    2017-04-01

    Carbohydrates are among the most abundant organic molecules on the Earth and are present in all geochemical systems. Despite their high abundance in the environment, very few studies assessed their origin using molecular carbohydrate isotopic analyses. In contrast with bulk stable isotope analysis (BSIA), which gives the isotopic signature of the entire sample without any specification about its chemical composition, compound specific 13C isotopic analysis of individual sugars (CSIA) offers valuable information about the origin of single molecules. Previous investigations used gas or liquid chromatography coupled with isotope ratio mass spectroscopy (GC-IRMS; HPLC-IRMS) for CSIA of sugars however the former requires δ13C corrections due to the carbon added to the sugar (derivatization) while the later does not provide always adequate separations among monosaccharides. Here we used cation preparative chromatography (Ca2+, Pb2+ and Na+) with refractive index detection in order to produce pure monosaccharide targets for subsequent EA-IRMS analyses. Milli-Q water was used as eluant at a flow rate 0.6 ml min-1. In general, three successive purifications (Ca2+, Pb2+, Ca2+) were sufficient to produce pure compounds. Pure monosaccharides were compared with authentic monosaccharide standards using 1H NMR and/or mass spectroscopy. The detection limit of our technique was about 1µM/sugar with a precision of 10% (n=6). Blanks run with Milli-Q water after three successive purifications resulted in carbon content of 0.13 to 2.77 µgC per collected sugar. These values are much lower than the minimum required amount (5 µgC) of the EA-IRSMS system with a precision of ± 0.35 ‰. Application of our method to environmental samples resulted in δ13C values of glucose, fructose, and levoglucosan in the range of -24 to -26 ‰ (PM10 atmospheric particles), and -15‰ to -22 ‰ for arabinose, glucose, and xylose (marine high molecular dissolved organic matter). These results fall in the range of previous reported values for terrestrial and aquatic ecosystems.

  5. Phosphate Dependence of Monosaccharide Transport in Nocardia

    PubMed Central

    Cerbón, Jorge; Ortigoza-Ferado, Jorge

    1968-01-01

    Uptake of the monosaccharides d-glucose and d-mannose by Nocardia asteroides and N. brasiliensis is dependent on the presence of an adequate phosphate concentration in the environment. When phosphate is replaced by solutions of sodium chloride or potassium chloride of identical ionic strength, there is no sugar uptake. In the presence of iso-osmolar concentrations of sodium arsenate, there is, however, sugar uptake activation. When nonmetabolizable 3-O-methyl d-glucose is used, most of the sugar taken up can be shown to be in the cell at a concentration never exceeding that of the external medium. Phosphate, or arsenate, seems to be essential for the actual migration of the sugar through the cell envelope. The transport of the nonmetabolizable 3-O-methyl glucose also requires phosphate, and the transport seems to be of a type that does not require energy. PMID:5640377

  6. GxySBA ABC Transporter of Agrobacterium tumefaciens and Its Role in Sugar Utilization and vir Gene Expression

    PubMed Central

    Zhao, Jinlei

    2014-01-01

    Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625

  7. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production.

    PubMed

    Mosier, Nathan S; Hendrickson, Richard; Brewer, Mark; Ho, Nancy; Sedlak, Miroslav; Dreshel, Richard; Welch, Gary; Dien, Bruce S; Aden, Andy; Ladisch, Michael R

    2005-05-01

    The pretreatment of cellulose in corn fiber by liquid hot water at 160 degrees C and a pH above 4.0 dissolved 50% of the fiber in 20 min. The pretreatment also enabled the subsequent complete enzymatic hydrolysis of the remaining polysaccharides to monosaccharides. The carbohydrates dissolved by the pretreatment were 80% soluble oligosaccharides and 20% monosaccharides with <1% of the carbohydrates lost to degradation products. Only a minimal amount of protein was dissolved, thus enriching the protein content of the undissolved material. Replication of laboratory results in an industrial trial at 43 gallons per minute (163 L/min) of fiber slurry with a residence time of 20 min illustrates the utility and practicality of this approach for pretreating corn fiber. The added costs owing to pretreatment, fiber, and hydrolysis are equivalent to less than 0.84 dollars/gal of ethanol produced from the fiber. Minimizing monosaccharide formation during pretreatment minimized the formation of degradation products; hence, the resulting sugars were readily fermentable to ethanol by the recombinant hexose and by pentose-fermenting Saccharomyces cerevisiae 424A(LNH-ST) and ethanologenic Escherichia coli at yields >90% of theoretical based on the starting fiber. This cooperative effort and first successful trial opens the door for examining the robustness of the pretreatment system under extended run conditions as well as pretreatment of other cellulose-containing materials using water at controlled pH.

  8. Possibility as monosaccharide laxative of rare sugar alcohols.

    PubMed

    Oosaka, Kazumasa

    2009-05-01

    Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation.

  9. Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus

    PubMed Central

    2013-01-01

    Background Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. Results In this study, genes encoding putative enzymes from carbon metabolism were identified and their expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies. Conclusions The compost grown vegetative mycelium of A. bisporus consumes a wide variety of monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars was observed. This suggests that only hexoses or their conversion products are transported from the vegetative mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the vegetative mycelium. Clear correlations were found between expression of the genes and composition of carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different gene sets were expressed in these samples. PMID:24074284

  10. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  11. Automated glycan assembly of xyloglucan oligosaccharides.

    PubMed

    Dallabernardina, Pietro; Schuhmacher, Frank; Seeberger, Peter H; Pfrengle, Fabian

    2016-01-07

    We report the automated glycan assembly of oligosaccharide fragments related to the hemicellulose xyloglucan (XG). Iterative addition of monosaccharide and disaccharide building blocks to a solid support provided seven cellulose and xyloglucan fragments including XXGG- and XXXG-type oligosaccharides.

  12. In vitro prebiotic effects of seaweed polysaccharides

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  13. Corn fiber, cobs and stover: enzyme-aided saccharification and co-fermentation after dilute acid pretreatment.

    PubMed

    Van Eylen, David; van Dongen, Femke; Kabel, Mirjam; de Bont, Jan

    2011-05-01

    Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    PubMed

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  16. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media

    NASA Astrophysics Data System (ADS)

    Chiantore, Oscar; Riedo, Chiara; Scalarone, Dominique

    2009-07-01

    Plant gums are complex polysaccharides used in the field of cultural heritage especially as binding media. Classification of polysaccharides may be achieved on the basis of monosaccharides composition after cleavage of glycosidic bond. Characterization of plant gums in works of art is complicated by the necessity of to use a method minimally invasive and requiring a small mount of sample. Pyrolisys is an useful method to obtain polysaccharides decomposition and generally pyrolysis products can be identified by the use of gas chromatography-mass spectrometry. This paper describes a method where two plant gums, arabic and tragacanth, were pyrolized in presence of silylating agents (HMDS e BSTFA alone and with TMCS as catalyst) using an on-line Py-GC/MS apparatus. Some characteristic trimethylsilyl derivatives of monosaccharides were identified on the basis of mass spectra. The presence of characteristic pyrolysis products of sugars allows to distinguish the two gums.

  17. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.

    PubMed

    Sharma, S K; Gautam, N

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.

  18. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    PubMed Central

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  19. Effect of monosaccharide sugars on LH-induced differentiation and sugar transport facilitator (SLC2A) expression in sheep theca cells in vitro.

    PubMed

    Campbell, B K; Kendall, N R; Onions, V; Guo, L; Scaramuzzi, R J

    2014-03-01

    The aim of the present study was to investigate the effects of glucose, galactose and fructose on the LH-induced differentiation and mRNA expression of sugar transport facilitators (SLC2A) by sheep thecal cells derived from small antral follicles cultured under serum-free conditions for 6 days. The dose and type of monosaccharide had a significant effect on LH-induced androstenedione production by theca cells and there was a significant interaction (P<0.001). Glucose and galactose were used with equal efficiency so that cell numbers and androstenedione production at the end of the culture were comparable. Pharmacological doses of glucose (16.7 mM) inhibited steroidogenesis (P<0.05). Cell numbers and androstenedione production by cells cultured with fructose were lower than for cells cultured with either glucose or galactose (P<0.001). None of the monosaccharides resulted in the production of lactate. Expression of SLC2A1, SLC2A4 and SLC2A8, but not SLC2A5, mRNA was detected in fresh and cultured theca cells. Large doses (16.7 mM) of glucose and fructose, but not galactose, suppressed (P<0.05) SLC2A expression. The results show that glucose and galactose, but not fructose, are readily metabolised via oxidative pathways to support LH-induced differentiation of sheep theca cells. Further work is required to determine the mechanisms resulting in these differences in relation to the established effects of nutrition on reproductive function.

  20. Leaf-cutter ant fungus gardens are biphasic mixed microbial bioreactors that convert plant biomass to polyols with biotechnological applications.

    PubMed

    Somera, Alexandre F; Lima, Adriel M; Dos Santos-Neto, Álvaro J; Lanças, Fernando M; Bacci, Maurício

    2015-07-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.

  2. Selective Methods for C-X Activation in Carbohydrates

    DTIC Science & Technology

    2013-01-01

    system, the major products observed for the hydrosilylation of monosaccharides were n-hexane, 2- and 3-methylpentane. Glucose hydrosilylation could... polysaccharide cellulose reacting faster than unprotected glucose. Complete hydrosilylation of methyl cellulose yielded a similar mixture of alkane products

  3. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters. PMID:21073695

  4. Bacterial dye-decolorizing peroxidases: biochemical properties and biotechnological opportunities

    EPA Science Inventory

    In biorefineries, processing biomass begins with separating lignin from cellulose and hemicellulose. The latter two are depolymerized to give monosaccharides (e.g. glucose and xylose), which can be converted to fuels or chemicals. In contrast, lignin presents a challenging target...

  5. Space Biology and Aerospace Medicine, Number 3, 1977

    DTIC Science & Technology

    1977-07-07

    of synthesis of hexosamines in skeletal muscle and the heart. Under these conditions, the increase in acid muco- polysaccharides of skeletal...the 95 form of monosaccharides and disaccharides. Accumulation of ascorbic acid follows the same patterns as were noted in levels thereof. /I

  6. A Laboratory Exercise in the Determination of Carbohydrate Structures.

    ERIC Educational Resources Information Center

    White, Bernard J.; Robyt, John F.

    1988-01-01

    Describes an experiment in which students are given a naturally occurring oligosaccharide as an unknown and are asked to determine both its monosaccharide composition and its structure. Discusses methods and experimental techniques including thin layer chromatography and the use of enzymes. (CW)

  7. Glucose: detection and analysis

    USDA-ARS?s Scientific Manuscript database

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  8. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  9. 21 CFR 145.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... of inverted or partly inverted, refined or partly refined sucrose, the solids of which contain not... sweetness. (f) The term sugar means refined sucrose. (g) The terms edible organic acid and edible organic...

  10. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  11. 21 CFR 145.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from hydrolyzed starch... of inverted or partly inverted, refined or partly refined sucrose, the solids of which contain not... sweetness. (f) The term sugar means refined sucrose. (g) The terms edible organic acid and edible organic...

  12. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  13. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dextrose. (b) The term dextrose means the hydrated or anhydrous, refined monosaccharide obtained from... means an aqueous solution of inverted or partly inverted, refined or partly refined sucrose, the solids... flavorless, except for sweetness. (f) The term sugar means refined sucrose. (g) Compliance means the...

  14. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    PubMed

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  15. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    PubMed

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  16. [Analysis of monosaccharides and uronic acids in polysaccharides by pre-column derivatization with p-aminobenzoic acid and high performance liquid chromatography].

    PubMed

    Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua

    2007-01-01

    An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.

  17. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting.

    PubMed

    Xing, Rongrong; Wang, Shuangshou; Bie, Zijun; He, Hui; Liu, Zhen

    2017-05-01

    Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.

  18. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1.

    PubMed

    Yamaguchi, Fuminori; Takata, Maki; Kamitori, Kazuyo; Nonaka, Machiko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-02-01

    'Rare sugars' are defined as monosaccharides that exist in nature but are only present in limited quantities. The development of mass production method of rare sugars revealed some interesting physiological effects of these on animal cells, but the mechanisms have not been well studied. We examined the effect of D-allose on the proliferation of cancer cells and the underlying molecular mechanism of the action. The HuH-7 hepatocellular carcinoma cells were treated with various monosaccharides for 48 h and D-allose was shown to inhibit cell growth by 40% in a dose-dependent manner. D-allose induced G1 cell cycle arrest but not apoptosis. The microarray analysis revealed that D-allose significantly up-regulated thioredoxin interacting protein (TXNIP) gene expression, which is often suppressed in tumor cells and western blot analysis confirmed its increase at protein level. The overexpression of TXNIP also induced G1 cell cycle arrest. Analysis of cell cycle regulatory genes showed p27kip1, a key regulator of G1/S cell cycle transition, to be increased at the protein but not the transcriptional level. Protein interaction between TXNIP and jab1, and p27kip1 and jab1, was observed, suggesting stabilization of p27kip1 protein by the competitive inhibition of jab1-mediated nuclear export of p27kip1 by TXNIP. In addition, increased interaction and nuclear localization of TXNIP and p27kip1 were apparent after D-allose treatment. Our findings surprisingly suggest that D-allose, a simple monosaccharide, may act as a novel anticancer agent via unique TXNIP induction and p27kip1 protein stabilization.

  19. A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution.

    PubMed

    Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye ("SQ-BA") is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λ(ex) = 630 nm, λ(em) = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 10(2.80), 10(2.08) and 10(0.86) M(-1) were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I-S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions.

  20. A Long-Wavelength Fluorescent Squarylium Cyanine Dye Possessing Boronic Acid for Sensing Monosaccharides and Glycoproteins with High Enhancement in Aqueous Solution

    PubMed Central

    Saito, Shingo; Massie, Tara L.; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L.

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye (“SQ-BA”) is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λex = 630 nm, λem = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 102.80, 102.08 and 100.86 M−1 were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I–S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions. PMID:22778592

  1. Feasibility of removing furfurals from sugar solutions using activated biochars made from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic feedstocks are often prepared for ethanol fermentation by treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and possibly cellulose into soluble carbohydrates. The acid catalyzed reaction scheme is sequential whereby released monosaccharides are further ...

  2. Fructose and high fructose corn syrup

    USDA-ARS?s Scientific Manuscript database

    Fructose, a monosaccharide, is naturally present in fruits, vegetables and honey, usually accompanied by other sugars including glucose and the disaccharide sucrose. It is also found as a component of sweeteners used in many processed food products, usually as sucrose or high fructose corn syrup (HF...

  3. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)

    USDA-ARS?s Scientific Manuscript database

    Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...

  4. Characterisation and molecular association of Nigerian and Sudanese Acacia gum exudates

    USDA-ARS?s Scientific Manuscript database

    The chemical and physicochemical characteristics of gum exudate samples harvested from mature trees of Acacia senegal at two specific locations in Nigeria have been investigated together with gum samples harvested from Acacia senegal and Acacia seyal originating from Sudan. The monosaccharide sugar ...

  5. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment.

    PubMed

    Chamorro, S; Viveros, A; Alvarez, I; Vega, E; Brenes, A

    2012-07-15

    Grape seed extract and grape pomace are rich sources of polyphenols. The aim of this study was to evaluate the release of polyphenols, the solubilisation of carbohydrate, and the antioxidant capacity of these grape by-products after enzymatic reaction with carbohydrases (cellulolytic and pectinolytic activities) and tannase for 24h. The use of tannase in these by-products, and pectinase in grape pomace changed the galloylated form of catechin to its free form, releasing gallic acid and increasing the antioxidant activity. In grape pomace, cellulase treatment was not efficient for phenolic release and antioxidant activity improvement. The addition of carbohydrases to grape pomace, either alone or in combination, degraded the cell wall polysaccharides, increasing the content of monosaccharides. These results provide relevant data about the potential of pectinase, tannase and combinations of enzymes on the release of polyphenols and monosaccharides from grape by-products, improving the antioxidant capacity and the nutritional value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications.

    PubMed

    Hashimoto, Wataru; Kawai, Shigeyuki; Murata, Kousaku

    2010-01-01

    Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically. © 2010 Landes Bioscience

  7. High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation.

    PubMed

    Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong

    2016-10-01

    The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic.

    PubMed

    Peng, Tianyuan; Wooke, Zachary; Pohl, Nicola L B

    2018-03-22

    Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  10. Stereospecific generation and analysis of α- and β-hemiacetals of monosaccharides in gas phase.

    PubMed

    Shioiri, Yuki; Suzuki, Katsuhiko; Daikoku, Shusaku; Kurimoto, Ayako; Ito, Yukishige; Kanie, Osamu

    2013-12-15

    A series of Boc-protected 4-aminobutyl α- and β-glycosides of commonly found neutral monosaccharides were synthesized. The sodium adducted ions of these individual molecules were used in producing corresponding α- and β-anomers of hemiacetal species under collision-induced dissociation (CID) conditions. The Boc group was successfully removed under CID conditions producing 4-aminobutyl glycosides, which were then used as the precursors. An intramolecular attack of the aglyconic nitrogen atom onto C-1 position of aglycon assisted to leave hemiacetal ion species without affecting anomeric configurations. In this manner, stereospecific syntheses of sugar hemiacetals were first achieved in gas phase. The dissociation of sodium cation from a series of these hemiacetals was further studied according to energy-resolved mass spectrometry. In this study, it was found that all the sugar hemiacetals could be distinguished even if they have same m/z values. Furthermore, the order of affinity of Na(+) toward the hemiacetals was determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Arabinan-rich pectic polysaccharides from buriti (Mauritia flexuosa): an Amazonian edible palm fruit.

    PubMed

    Cantu-Jungles, Thaisa Moro; Almeida, Carolina Pierobom de; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2015-05-20

    Primary cell wall polysaccharides from aqueous extract of buriti fruit pulp (Mauritia flexuosa, an exotic tropical palm) were isolated and characterized. After freeze-thaw and α-amylase treatments, extracted polysaccharides were purified by sequential ultrafiltration through membranes. Two homogeneous fractions were obtained, SBW-100R and SBW-30R (Mw of 126 kDa and 20 kDa, respectively). Monosaccharide composition, methylation and (13)C NMR analysis showed that fraction SBW-100R contained a (1 → 5)-linked arabinan, branched at O-3 and O-2 positions, linked to a type I rhamnogalacturonan. Low amounts of these polymers were also present in fraction SBW-30R according to (13)C NMR analysis and monosaccharide composition. However, a high methyl esterified homogalacturonan (HG) was present in higher proportions. These results reinforce previous findings present in literature data which indicate that pectic polysaccharides are found in high amounts in primary cell walls of palms, which are commelinid monocotyledons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation.

    PubMed

    Li, Jing-En; Wang, Wen-Jun; Zheng, Guo-Dong; Li, Lin-Yan

    2017-02-01

    Four new polysaccharides (GPP-20, GPP-40, GPP-60 and GPP-80) were fractionated from Gynura procumbens leaves by 20%, 40%, 60% and 80% (v/v) ethanol, successively. Their physicochemical properties including the contents of neutral sugar, uronic acid and protein, as well as the monosaccharide composition were determined. In addition, the antioxidant activities of them were investigated via the reducing power assay and scavenging capacities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and hydroxyl free radicals, respectively. The results indicated that apart from neutral sugar, they all contained uronic acids and proteins in their structures, which were further proved by the UV-vis and FT-IR spectra. Monosaccharide composition analysis implied that they all belonged to heteropolysaccharides consisted of arabinose, galactose, glucose, xylose and galacturonic acid with different types and ratios. What's more, GPP-20, GPP-40 and GPP-80 always exhibited better antioxidant activities than GPP-60 among these three antioxidant assays in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides.

    PubMed

    Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola

    2018-01-01

    This article illustrates the basis and applications of methodologies for the analysis of simple and complex carbohydrates by means of CE. After a description of the most common and novel approaches useful for the analysis and characterization of carbohydrates, this review covers the recent advances in CE separation of monosaccharides, oligosaccharides, and polysaccharides. Various CE techniques are also illustrated for the study of carbohydrates derived from complex glyco-derivatives such as glycoproteins and glycolipids, essential for biopharmaceutical and glycoproteomics applications as well as for biomarker detection. Most glycans have no significant UV absorption, and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved electrophoretic profile. We also discuss the recent applications and separations by CE of derivatized simple and more complex carbohydrates with different chromophoric active tags. Overall, this review aims to give an overview of the most recent state-of-the-art techniques used in carbohydrate analysis by CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides.

    PubMed

    Bramono, Sandhi Eko; Lam, Yuen Sean; Ong, Say Leong; He, Jianzhong

    2011-10-01

    A unique mesophilic Clostridium species strain BOH3 is obtained in this study, which is capable of fermenting monosaccharides to produce butanol and hydrolyzing polysaccharides to produce hydrogen (H(2)) and volatile fatty acids (VFAs). From 30 g/L of glucose and xylose each, batch culture BOH3 was able to produce 4.67 and 4.63 g/L of butanol. Enhancement treatments by increasing the inoculated cells improved butanol production to 7.05 and 7.41 g/L, respectively. Hydrogen production (2.47 and 1.93 mmol) was observed when cellulose and xylan (10 g/L each) were used, suggesting that strain BOH3 possesses xylanolytic and cellulolytic capabilities. These unique features reveal the strain's novelty as most wild-type solventogenic strains have not been reported to have such properties. Therefore, culture BOH3 is promising in generating butanol and hydrogen from renewable feedstock. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Formation and ecotoxicity of N-heterocyclic compounds on ammoxidation of mono- and polysaccharides.

    PubMed

    Klinger, Karl Michael; Liebner, Falk; Fritz, Ines; Potthast, Antje; Rosenau, Thomas

    2013-09-25

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).

  16. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides

    NASA Astrophysics Data System (ADS)

    Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees

    2017-01-01

    Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.

  17. Analyte-Size-Dependent Ionization and Quantification of Monosaccharides in Human Plasma Using Cation-Exchanged Smectite Layers.

    PubMed

    Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya

    2015-08-04

    Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.

  18. Structural analysis of the asparagine-linked oligosaccharides of cholinesterases. N-linked carbohydrates of cholinesterases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, A.; Doctor, B.P.

    1995-12-31

    Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of themore » two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.« less

  19. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing

    NASA Astrophysics Data System (ADS)

    Both, P.; Green, A. P.; Gray, C. J.; Šardzík, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R. A.; Widmalm, G.; Flitsch, S. L.; Eyers, C. E.

    2014-01-01

    Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-α-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry (IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.

  20. Chemical signals of fish skin for the attachment response of Acanthostomum brauni cercariae.

    PubMed

    Haas, W; de Nuñez, M O

    1988-01-01

    The chemical signals of the skin surface of fish, which stimulate the attachment responses of Acanthostomum brauni cercariae, were identified by offering chemicals and fish-skin extracts in agarose substrates to the cercariae. Smaller molecules such as amino acids, fatty acids, monosaccharides, electrolytes, urea, and carbonate solutions did not stimulate attachments, but hyaluronic acid had some effects. Bovine submaxillary glycoproteins had a strong stimulating activity that disappeared after neuraminidase digestion. The stimulating components of the skin surface of fish were hydrophilic substances with molecular weights of more than 10,000. They were sensitive to neuraminidase digestion but not to hyaluronidase digestion and thus can be identified as glycoproteins. A. brauni cercariae respond only to the complete glycoprotein molecules and not to their monosaccharide components. The known attachment triggers of other cercariae are small molecules. Large glycoproteins as host signals for A. brauni cercariae may be an adaptation to muddy habitats, where various substances with low molecular weights may interfere with the host identification.

  1. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals

    PubMed Central

    Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.

    2013-01-01

    Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119

  2. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species

    PubMed Central

    Sharma, S. K.; Gautam, N.

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938

  3. Composition of Fatty Acids and Carbohydrates in Leptospira1

    PubMed Central

    Kondo, Eiko; Ueta, Nobuo

    1972-01-01

    The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167

  4. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob

    2016-08-01

    Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.

  5. Biochemical characterization of uronate dehydrogenases from three Pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans

    USDA-ARS?s Scientific Manuscript database

    Enzyme catalysts will be vital in the development of synthetic biology approaches for converting pectinic monosaccharides from citrus and beet processing waste streams to value-added materials. We describe here the biophysical and mechanistic characterization of uronate dehydrogenases from a wide va...

  6. LEVOGLUCOSAN, A TRACER FOR CELLULOSE IN BIOMASS BURNING AND ATMOSPHERIC PARTICLES. (R823990)

    EPA Science Inventory

    Abstract

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation wa...

  7. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

    Treesearch

    Gionata Scalcinati; Jose´ Manuel Otero; Jennifer R.H. Van Vleet; Thomas W. Jeffries; Lisbeth Olsson; Jens Nielsen

    2012-01-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as , to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research...

  8. European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science,

    DTIC Science & Technology

    1988-02-01

    monosaccharides and stated that genetic stability of certain for the preparation of isotopically la- recombinant microoraanisms is one of the beled sugars...hydrocarbons and polyethylene glycol (PEG)/ polysaccharide hydrocarbon derivatives) in the aqueous and PEG/salt. The polysaccharide may be phase. The solvent

  9. Vaccination of High-Risk Breast Cancer Patients with Carbohydrate Mimicking Peptides

    DTIC Science & Technology

    2007-05-01

    and Wheat germ Agglutin (WGA) while mimotope 106 only reacts with WGA. These lectins see terminal monosaccharides . To demonstrate that autoimmunity...Westerink MAJ, Giardina PC, Apicella MA, Kieber-Emmons T. Pep- tide mimicry of the meningococcal group C capsular polysaccharide . Proc Natl Acad Sci

  10. Gel coating of edible Brasenia schreberi leaves lowers plasma cholesterol in hamsters (abstract)

    USDA-ARS?s Scientific Manuscript database

    The young leaves of B. schreberi are coated with gelatinous water-insoluble mucilage. This mucilage is a polysaccharide composed of galactose, mannose, fucose and other monosaccharides. Since some carbohydrate gels are hypocholesterolemic, we evaluated the cholesterol lowering properties in male h...

  11. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  12. The total chemical synthesis of the monoglycosylated GM2 ganglioside activator using a novel cysteine surrogate.

    PubMed

    Sato, Kohei; Kitakaze, Keisuke; Nakamura, Takahiro; Naruse, Naoto; Aihara, Keisuke; Shigenaga, Akira; Inokuma, Tsubasa; Tsuji, Daisuke; Itoh, Kohji; Otaka, Akira

    2015-06-21

    We describe a novel peptide ligation/desulfurization strategy using a β-mercapto-N-glycosylated asparagine derivative. The newly developed procedure was successfully applied to the total chemical synthesis of the GM2 ganglioside activator protein bearing a monosaccharide on the native glycosylation site.

  13. Thiazolidine peracetates: carbohydrate derivatives that readily assign cis-, trans-2,3- monosaccharides by GC/MS analysis

    USDA-ARS?s Scientific Manuscript database

    A novel group of carbohydrate derivatives is described that uniquely assign cis/trans-2,3 aldose stereoisomers at low nanomolar concentrations. Aldopentoses or aldohexoses, or component aldoses from hydrolysis of polysaccharides or oligosaccharides, react with cysteamine in pyridine to give quantita...

  14. DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM

    EPA Science Inventory

    The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...

  15. MOLECULAR TRACERS FOR SMOKE FROM CHARRING/BURNING OF CHITIN BIOPOLYMER. (R823990)

    EPA Science Inventory

    Abstract

    Monosaccharide derivatives from the breakdown of cellulose are the major organic components of smoke particles emitted to the atmosphere from biomass burning. In urban areas a related biopolymer, chitin, may contribute markers to smoke from grilling/charring o...

  16. Electron Impact Ion Fragmentation Pathways of Peracetylated C-glycoside Ketones Derived from Cyclic 1,3-diketones

    USDA-ARS?s Scientific Manuscript database

    Monosaccharide C-glycoside ketones have been prepared by aqueous-based Knoevenagel condensation of isotopically-labeled and unlabeled aldoses with cyclic diketones, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and 1,3-cyclohexanedione (1,3-CHD). The reaction products and their corresponding acetyla...

  17. Protein Glycosylation in Archaea: A Post-Translational Modification to Enhance Extremophilic Protein Stability

    DTIC Science & Technology

    2010-01-15

    Analysis of the chemical composition of the Asn-linked polysaccharides decorating many archaeal proteins has revealed the use of a wider variety of sugar...reminiscent of the eukaryal glycan-charged lipid, linked to a variety of monosaccharides , including glucose, mannose, and N-acetylglucosamine (GlcNAc

  18. USSR Report, Chemistry.

    DTIC Science & Technology

    1987-05-11

    ensure solubilization of 90% of the polysaccharides , was attained at -60°C with 6 h of digestion in the frozen state by 2.5% H2SO4. Below -600C...decomposition of the monosaccharides was accelerated, and above -40°C, the process was ineffective. Growth of Candida scottii on hydrolysate diluted to

  19. 7-Day Biodefense: Engineered Nanoparticle for Virus Elimination by Opsonization (ENVELOP)

    DTIC Science & Technology

    2013-12-10

    spectrum for LSTc, specifically the identity of the four distinct monosaccharides and the presence of 2→6 sialic acid at stoichimetric levels. 7-Day...A. Previous studies definitively demonstrated that cell surface heparan sulfate, a complex highly charged polysaccharide , plays an important role in

  20. Potential Explosive Hazards from Hydrogen Sulfide Production in Ship Ballast and Sewage Tanks.

    DTIC Science & Technology

    1998-12-01

    support growth. Anaerobic degradation of the organic components of sewage follows a number of stages. Firstly, the proteins, polysaccharides and fats...present are converted to long chain fatty acids, peptides, amino acids, glycerol and monosaccharide . The second stage involves the production of a

  1. Small Sites in the Central Hueco Bolson: A Final Report on Project 90-11

    DTIC Science & Technology

    1998-01-01

    raw starch, being composed of polysaccharides , is incompletely digest- ed. However, with applications of heat and moisture over time, these...complex sugars break down into monosaccharides that are more readily absorbed by the body. The critical variable is the exposure of the starch to heat

  2. Nutrient transporter gene expression in poultry, livestock and fish

    USDA-ARS?s Scientific Manuscript database

    The absorption of nutrients such as amino acids, peptides, monosaccharides and minerals by cells and tissues is mediated by a series of membrane bound transporters that are members of the solute carrier (SLC) gene family. These transporters regulate the influx and efflux of nutrients in a wide vari...

  3. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    USDA-ARS?s Scientific Manuscript database

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...

  4. Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass

    USDA-ARS?s Scientific Manuscript database

    This study was undertaken in order to isolate and compare three carbohydrate-rich fractions: Hemicellulose A (Hemi A), Hemicellulose B (Hemi B) and cellulose-rich residue (CRF) from sorghum bran (SBR), sorghum bagasse (SBA) and sorghum biomass (SBI). The monosaccharide composition of the purified He...

  5. Interferon Inducers against Infectious Diseases

    DTIC Science & Technology

    1990-07-13

    22 7. Induction of IFN in Micoe by IC-(PLL- monosaccharides ............................... *23 8. ICL- CDS04...seeking to replace both PLL and CM by modifying the PLL with engrafted polysaccharides . 2. Background A number of candidates have been developed in this...expanders, or being closely related to such. These include gelatin, anionically-modified gelatin, oarboxymethyl polysaocharides, sulfated polysaccharides

  6. The Role of the Primitive Relaxation in the Dynamics of Aqueous Mixtures, Nano-confined Water and Hydrated Proteins

    DTIC Science & Technology

    2010-01-01

    and polysaccharides ) and some hydrophilic macromolecular systems, including biopolymers (from polypeptides to several proteins) [r008, r009, r010...investigated and here presented are the monosaccharide 2-Deoxy-D- ribose, mixed with 32% wt. fraction of water, and the heptamer of polypropylene glycol, with

  7. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae.

    PubMed

    Yin, Huifang; Bultema, Jelle B; Dijkhuizen, Lubbert; van Leeuwen, Sander S

    2017-06-15

    β-Galactosidase enzymes are used in the dairy industry to convert lactose into galactooligosaccharides (GOS) that are added to infant formula to mimic the molecular sizes and prebiotic functions of human milk oligosaccharides. Here we report a detailed analysis of the clearly different GOS profiles of the commercial β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Also the GOS yields of these enzymes differed, varying from 48.3% (B. circulans) to 34.9% (K. lactis), and 19.5% (A. oryzae). Their incubation with lactose plus the monosaccharides Gal or Glc resulted in altered GOS profiles. Experiments with 13 C 6 labelled Gal and Glc showed that both monosaccharides act as acceptor substrates in the transgalactosylation reactions. The data shows that the lactose isomers β-d-Galp-(1→2)-d-Glcp, β-d-Galp-(1→3)-d-Glcp and β-d-Galp-(1→6)-d-Glcp are formed from acceptor reactions with free Glc and not by rearrangement of Glc in the active site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Monosaccharide composition of acidic gum exudates from Indian Acacia tortilis ssp. raddiana (Savi) Brenan.

    PubMed

    Lakhera, Ajeet Kumar; Kumar, Vineet

    2017-01-01

    Acacia tortilis ssp. raddiana (Savi) Brenan commonly known as Israeli Babool has contributed immensely for sand dunes management in Indian desert leading to wind erosion control and increased biological productivity. The species is extensively used in traditional medicine system for a number of therapeutic applications and as nutraceutical. The polysaccharide was isolated in 43.6% yield from gum exudates. The monosaccharides, L-arabinose, D-galactose D-glucose, L-rhamnose and D-mannose were determined in molar ratio of 78.1%, 18.64%, 0.60%, 1.71% and 0.74% respectively. The molar ratio of uronic acids was studied using diverse spectrophotometric methods and compared with GLC. The content of D-galacturonic acid and D-glucuronic was determined as 3.88% and 4.35% respectively by GLC. The results were compared with the spectrophotometric methods. The results using DMP as chromogenic reagent are closer to that obtained by GLC. Structural analysis of the polysaccharide may provide scientific basis for nutraceutical, pharmaceutical and biological applications of gum exudates from A. tortilis, which is extensively planted in India. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.

    PubMed

    Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e ) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.

  10. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less

  11. Glycomics: revealing the dynamic ecology and evolution of sugar molecules.

    PubMed

    Springer, Stevan A; Gagneux, Pascal

    2016-03-01

    Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides.

    PubMed

    Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees

    2017-01-15

    Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides

    PubMed Central

    2013-01-01

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16–30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4–160.5 mg/g of educt) and polysaccharides (140 °C: 5.52–16.03 mg/g of educt). PMID:23967874

  14. Development of SPE for recovery of polysaccharides and its application to the determination of monosaccharides composition of the polysaccharide sample of a lactobacillus KLB 58.

    PubMed

    Baik, Yoon Suk; Cheong, Won Jo

    2007-07-01

    A new SPE cartridge has been prepared in this study to purify polysaccharides of high molecular weights. A porous nonpolar styrene-divinylbenzene copolymer phase (Hamilton PRP-1) was used to make the new cartridge. The cartridge was conditioned with methanol, water, and ACN in sequence, and the sample dissolved in a small amount of water was loaded. Impurities of low molecular weights were removed first by elution of 80:20 or 90:10 v/v% ACN/water, and polysaccharides were quantitatively recovered by elution of 50:50 v/v% ACN/water or pure water. The recovery of pure dextran 10000 was 90-95%. The SPE method was applied to purification of the polysaccharide sample of KLB58, a new lactobacillus discovered in Korea. The purified KLB 58 sample (weight recovery after SPE purification; 60%) was hydrolyzed for analysis of composition of monosaccharides. The hydrolysate was found to be composed primarily of fructose, glucose, galactose, rhamnose, mannose with small amounts of fucose and ribose.

  15. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies.

    PubMed

    Li, Jingbo; Zhou, Pengfei; Liu, Hongmei; Xiong, Chunjiang; Lin, Jianghai; Xiao, Wenjuan; Gong, Yingxue; Liu, Zehuan

    2014-03-01

    Sugarcane bagasse (SCB) resulting from different pretreatments was hydrolyzed by enzyme cocktails based on replacement of cellulase (Celluclast 1.5 L:Novozym 188=1FPU:4pNPGU) by xylanase or pectinase at different proportions. Lignin content of NaOH pretreated SCB and hemicellulose content of H2SO4 pretreated SCB were the lowest. NaOH pretreatment showed the best for monosaccharide production among the four pretreatments. Synergism was apparently observed between cellulase and xylanase for monosaccharide production from steam exploded SCB (SESB), NaOH, and H2O2 pretreated SCB. No synergism was observed between cellulase and pectinase for producing glucose. Additionally, no synergism was present when H2SO4 pretreated SCB was used. Replacement of 20% of the cellulase by xylanase enhanced the glucose yield by 6.6%, 8.8%, and 9.5% from SESB, NaOH, and H2O2 pretreated SCB, respectively. Degree of synergism between cellulase and xylanase had positive relationship with xylan content and was affected by hydrolysis time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. WURCS 2.0 Update To Encapsulate Ambiguous Carbohydrate Structures.

    PubMed

    Matsubara, Masaaki; Aoki-Kinoshita, Kiyoko F; Aoki, Nobuyuki P; Yamada, Issaku; Narimatsu, Hisashi

    2017-04-24

    Accurate representation of structural ambiguity is important for storing carbohydrate structures containing varying levels of ambiguity in the literature and databases. Although many representations for carbohydrates have been developed in the past, a generalized but discrete representation format did not exist. We had previously developed the Web3 Unique Representation of Carbohydrate Structures (WURCS) in an attempt to define a generalizable and unique linear representation for carbohydrate structures. However, it lacked sufficient rules to uniquely describe ambiguous structures. In this work, we updated WURCS to handle such ambiguous monosaccharide structures. In particular, to handle structural ambiguity around (potential) carbonyl groups incidental to the carbohydrate analysis, we defined a representation of backbone carbons containing atomic-level ambiguity. As a result, we show that WURCS 2.0 can represent a wider variety of carbohydrate structures containing ambiguous monosaccharides, such as those whose ring closure is undefined or whose anomeric information is only known. This new format provides a representation of carbohydrates that was not possible before, and it is currently being used by the International Glycan Structure Repository GlyTouCan.

  17. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread.

    PubMed

    Struyf, Nore; Laurent, Jitka; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-10-04

    Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56%  reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO 2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.

  18. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar.

    PubMed

    Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan

    2016-03-01

    Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.

    PubMed

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R

    2017-10-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.

  20. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    PubMed

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  1. Biosynthesis of yeast glycoproteins. Processing of the oligosaccharides transferred from dolichol derivatives.

    PubMed

    Parodi, A J

    1979-10-25

    The oligosaccharides previously bound to dolichol diphosphate were isolated from Saccharomyces cerevisiae cells incubated with [U-14C]glucose. Five compounds were obtained that migrated with RGlucose of 0.100, 0.120, 0.145, 0.180, and 0.215 on paper chromatography. All of them contained mannose and 2 N-acetylhexosamine residues. The substances that migrated with the three lower RGlucose values had, in addition, glucose units. The structure of the oligosacchardies was very similar if not identical with that of the oligosaccharides isolated from the dolichol diphosphate derivatives synthesized "in vitro" by yeast or rat liver particulate preparations or "in vivo" by dog thyroid or rat liver slices as judged by their migration on paper chromatography, monosaccharide composition, and degradation compounds produced by alpha-mannosidase treatment or acetolysis. The oligosaccharides previously bound to asparagine residues in proteins were isolated from yeast cells which had been pulsed with [U-14C]glucose and chased with medium containing the unlabeled monosaccharide. The samples taken after very short pulses contained four oligosaccharides that migrated with RGlucose of 0.100, 0.120, 0.145, and 0.180 on paper chromatography. The first three compounds contained glucose, mannose, and 2 N-acetylhexosamine residues whereas the one that migrated with a RGlucose of 0.180 was devoid of the former monosaccharide. Samples taken after short chase periods revealed that the compounds that migrated with the lower RGlucose values gradually disappeared and were converted to the oligosaccharide with the higher RGlucose value was they lost their glucose residues. Similar analysis as those mentioned above showed that the structures of these compounds were similar to those of the dolichol diphosphate-bound oligosaccharides. Samples taken after longer chase periods revealed that the oligosaccharide that migrated with a RGlucose of 0.180 was subsequently either enlarged by the addition of more mannose residues or trimmed to smaller sizes.

  2. [Sugar content in non-alcoholic beverages and dietary recemmendations for children and adolescents].

    PubMed

    Bilek, Maciej; Rybakowa, Maria

    2015-01-01

    Increase the intake of sugars among the inhabitants of developed countries is related to, among others, increasing consumption of non-alcoholic beverages, for which the relationship with the epidemic of obesity, particularly among children and adolescents, has been proven. The most frequently cited are non-alcoholic beverages, sweetened glucose-fructose syrup, ie. colas, tonics, ice teas, lemonades. Fruit drinks, fruit juices and nectars are commonly cited as a healthy alternative to non-alcoholic beverages and, however, we do not pay attention to the high content of sugars in these products. Determine the content of sugars in non-alcohollic beverages popular among children and adolescents. 80 non-alcoholic beverages such as cola, tonic, lemonade, ice tea, flavored waters, fruit juices, fruit nectars and fruit drinks. Evaluation of the content of monosaccharides and sucrose was performed by high performance liquid chromatography method (HPLC). In the tested non-alcohollic beverages, monosaccharides ie. glucose and fructose and the disaccharide sucrose were detected in different proportions. The product with the lowest content of the total sugars content was flavored water with lemon flavor based on the mineral water (2.72 g/100 ml). In the group of fruit juices, fruit nectars and fruit drinks highest sugars content have been reported (12.94 g/100 ml for aronia nectar and 12.76 g/100ml for the juice of pomegranate and grapes). Significant monosaccharides and sucrose content in the tested non-alcohollic beverages tends to claim that their manufacturers should be obliged to place warnings on the labels addressed to patients suffering from disorders of carbohydrate metabolism. Educational programs for children and adolescents with diabetes should include information about the content of a large amount of sugars in fruit products: fruit juices, fruit drinks and fruit nectar. © Polish Society for Pediatric Endocrinology and Diabetology.

  3. [Trofosides A and B and other cytostatic steroid-derived compounds from the Far East starfish Trofodiscus über].

    PubMed

    Levina, E V; Kalinovskiĭ, A I; Andriiashchenko, P V; Menzorova, N I; Dmitrenok, P S

    2007-01-01

    Three new polar steroids identified as trofoside A, (20R,24S)-24-O-(3-O-methyl-beta-D-xylopyranosyl)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfoxy-(20R,24S)-5alpha-cholestane-3beta,6beta,8,15alpha,24-pentaol sodium salt, were isolated from Trofodiscus uber starfish extracts collected in the Sea of Okhotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3beta,6alpha,8,15beta-tetrahydroxy-5alpha-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius (C(min)) and terminating the cell division at the stage of the first division (C(min) embr.), as well as the concentrations causing 50% immobilization of sperm cells (ImC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono- and double chained glycosides with the monosaccharide fragment at C3 and C24 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.

  4. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides

    PubMed Central

    Sukumaran, Sunil K.; Yee, Karen K.; Iwata, Shusuke; Kotha, Ramana; Quezada-Calvillo, Roberto; Nichols, Buford L.; Mohan, Sankar; Pinto, B. Mario; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F.

    2016-01-01

    The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K+ (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal “brush border” disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways. PMID:27162343

  5. Synthesis of 3-aminopropyl glycoside of branched β-(1 → 3)-d-glucooctaoside.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Nifantiev, Nikolay E

    2016-12-21

    The synthesis was described of branched glucooctaoside bearing the β-(1 → 3)-glucotrioside side chain at O-6 of the second (from the reducing end) monosaccharide unit of the linear β-(1 → 3)-glucopentaoside core. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thiazolidine peracetates: Novel carbohydrate derivatives that assign cis-2,3- from trans-2,3- monosaccharides by GC/MS analysis

    USDA-ARS?s Scientific Manuscript database

    A new type of carbohydrate derivative is described that is suitable for analysis by GC/MS. Reaction of free aldoses (pentoses or hexoses), or the component aldoses arising from acid hydrolysis of polysaccharides or oligosaccharides, with excess cysteamine hydrochloride in pyridine, results in the qu...

  7. Determination of sugars in honey by liquid chromatography

    PubMed Central

    Kamal, Mohammad A.; Klein, Peter

    2010-01-01

    Honey is a rich conventional natural resource of sweetness and energy for human beings. A protocol for the determination of two important monosaccharide sugars (fructose and glucose) in honey was established in the current study by using normal phase partition liquid chromatography and 1–5% combined working standard of glucose, fructose and sucrose. PMID:23961099

  8. MOLECULAR STRUCTURAL FACTORS IN COMPETITIVE INHIBITION OF SUGAR TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeFevre, P.G.

    1959-07-10

    The high potency of phloretin as a competitive inhibitor of the human red cell's monosaccharide transport system is not shared by any of several molecular fragments of phloretin, but is duplicated in certain artificial estrogens resembling phloretin in respect to the spacing between terminal phenolic---OH groups. Related molecules which are slightly less extendible are comparatively inactive. (auth)

  9. Randomised clinical trial: Gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome

    USDA-ARS?s Scientific Manuscript database

    A low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet can ameliorate symptoms in adult irritable bowel syndrome (IBS) within 48 h. To determine the efficacy of a low FODMAP diet in childhood IBS and whether gut microbial composition and/or metabolic capacity ar...

  10. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    PubMed

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  11. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  12. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil

    PubMed Central

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426

  13. Biological Sciences Division 1991 Programs

    DTIC Science & Technology

    1991-08-01

    missing offending polysaccharides and 2) identify monosaccharide peaks in gas chromatography that we know are not holdfast- derived and can ignore. 3-On...ACCOMPLISHMENTS: 1. The polysaccharidic component of the extracellular slime of Flexibacter maritimus is predominantly a glucose polymer. In collaboration...are due to the presence of polypeptide(s), not polysaccharide as predicted. W.H. Schwarz (John Hopkins) has performed rheological analysis of this

  14. Recent Development in Spectroscopic and Chemical Characterization of Cellulose

    DTIC Science & Technology

    2005-01-01

    specific to the reducing end groups of the polysaccharides , confirmed the parallel alignment of molecular chains within the microfibrils in native...they include primary, secondary, and tertiary structures. And indeed, crystallographic studies of the monosaccharides and of related structures...Two approaches were adopted for this purpose. The first was based on examining the Raman spectra of polysaccharide polymers and oligomers that

  15. Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava

    Treesearch

    Diane Dietrich; Barbara Illman; Casey Crooks

    2013-01-01

    The aim of this study is determine the relative sensitivity of a panel of seven polyhydroxyalkanoate producing bacteria to a panel of seven lignocellulosic-derived fermentation inhibitors representing aliphatic acids, furans and phenolics. A further aim was to measure the polyhydroxybutyrate production of select organisms on lignocellulosic-derived monosaccharides...

  16. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen

    PubMed Central

    Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel

    2013-01-01

    The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination. PMID:23827999

  17. A simple and rapid microplate assay for glycoprotein-processing glycosidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, M.S.; Zwolshen, J.H.; Harry, B.S.

    1989-08-15

    A simple and convenient microplate assay for glycosidases involved in the glycoprotein-processing reactions is described. The assay is based on specific binding of high-mannose-type oligosaccharide substrates to concanavalin A-Sepharose, while monosaccharides liberated by enzymatic hydrolysis do not bind to concanavalin A-Sepharose. By the use of radiolabeled substrates (( 3H)glucose for glucosidases and (3H)mannose for mannosidases), the radioactivity in the liberated monosaccharides can be determined as a measure of the enzymatic activity. This principle was employed earlier for developing assays for glycosidases previously reported. These authors have reported the separation of substrate from the product by concanavalin A-Sepharose column chromatography. Thismore » procedure is handicapped by the fact that it cannot be used for a large number of samples and is time consuming. We have simplified this procedure and adapted it to the use of a microplate (96-well plate). This would help in processing a large number of samples in a short time. In this report we show that the assay is comparable to the column assay previously reported. It is linear with time and enzyme concentration and shows expected kinetics with castanospermine, a known inhibitor of alpha-glucosidase I.« less

  18. Hydrothermal conversion of N-acetyl-d-glucosamine to 5-hydroxymethylfurfural using ionic liquid as a recycled catalyst in a water-dimethyl sulfoxide mixture.

    PubMed

    Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen

    2017-04-10

    Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Probing sialoglycans on fetal bovine fetuin with azido-sugars using glycosyltransferases.

    PubMed

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D

    2016-04-01

    Sialic acids are negatively charged sugar residues commonly found on the terminal positions of most glycoproteins. They play important roles in the stability and solubility of these proteins. Due to their unique positioning, they also frequently act as receptors for various ligands, and therefore are involved in numerous cell-cell and cell-pathogen interactions. Here, using in vitro incorporation of clickable monosaccharides with various glycosyltransferases, we probed the sialoglycans on fetal bovine fetuin. The incorporated monosaccharides were detected with chemiluminescence via click chemistry in a format of western blotting. The results indicate that the non-reducing end Gal residues on both N- and O-glycans are fully sialylated, but the peptide-linked GalNAc residues in O-glycans are not. The presence of sialyl core-1 glycan was repeatedly confirmed by probing with α-2,3-sialyltransferases, N-acetylgalactosaminide α-2,6-sialyltransferases and a β-1,6-N-acetylglucosaminyltransferase that is specific for core-1 glycan. The results also suggest the presence of a minute amount of sialyl Tn antigen on the protein. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  1. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  2. Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP).

    PubMed

    Liu, Jun; Zou, Yang; Guan, Wanyi; Zhai, Yafei; Xue, Mengyang; Jin, Lan; Zhao, Xueer; Dong, Junkai; Wang, Wenjun; Shen, Jie; Wang, Peng George; Chen, Min

    2013-07-01

    Nucleotide sugars are activated forms of monosaccharides and key intermediates of carbohydrate metabolism in all organisms. The availability of structurally diverse nucleotide sugars is particularly important for the characterization of glycosyltransferases. Given that limited methods are available for preparation of nucleotide sugars, especially their useful non-natural derivatives, we introduced herein an efficient one-step three-enzyme catalytic system for the synthesis of nucleotide sugars from monosaccharides. In this study, a promiscuous UDP-sugar pyrophosphorylase (USP) from Arabidopsis thaliana (AtUSP) was used with a galactokinase from Streptococcus pneumoniae TIGR4 (SpGalK) and an inorganic pyrophosphatase (PPase) to effectively synthesize four UDP-sugars. AtUSP has better tolerance for C4-derivatives of Gal-1-P compared to UDP-glucose pyrophosphorylase from S. pneumoniae TIGR4 (SpGalU). Besides, the nucleotide substrate specificity and kinetic parameters of AtUSP were systematically studied. AtUSP exhibited considerable activity toward UTP, dUTP and dTTP, the yield of which was 87%, 85% and 84%, respectively. These results provide abundant information for better understanding of the relationship between substrate specificity and structural features of AtUSP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains

    PubMed Central

    Merino, Susana; de Mendoza, Elena; Canals, Rocío; Tomás, Juan M.

    2015-01-01

    The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens. PMID:26082990

  4. Evidence for Apoplasmic Phloem Unloading in Developing Apple Fruit1

    PubMed Central

    Zhang, Ling-Yun; Peng, Yi-Ben; Pelleschi-Travier, Sandrine; Fan, Ying; Lu, Yan-Fen; Lu, Ying-Min; Gao, Xiu-Ping; Shen, Yuan-Yue; Delrot, Serge; Zhang, Da-Peng

    2004-01-01

    The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H+-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process. PMID:15122035

  5. Mandelalides A-D, cytotoxic macrolides from a new Lissoclinum species of South African tunicate.

    PubMed

    Sikorska, Justyna; Hau, Andrew M; Anklin, Clemens; Parker-Nance, Shirley; Davies-Coleman, Michael T; Ishmael, Jane E; McPhail, Kerry L

    2012-07-20

    Mandelalides A-D are variously glycosylated, unusual polyketide macrolides isolated from a new species of Lissoclinum ascidian collected from South Africa, Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela Metropole. Their planar structures were elucidated on submilligram samples by comprehensive analysis of 1D and 2D NMR data, supported by mass spectrometry. The assignment of relative configuration was accomplished by consideration of homonuclear and heteronuclear coupling constants in tandem with ROESY data. The absolute configuration was assigned for mandelalide A after chiral GC-MS analysis of the hydrolyzed monosaccharide (2-O-methyl-α-L-rhamnose) and consideration of ROESY correlations between the monosaccharide and aglycone in the intact natural product. The resultant absolute configuration of the mandelalide A macrolide was extrapolated to propose the absolute configurations of mandelalides B-D. Remarkably, mandelalide B contained the C-4' epimeric 2-O-methyl-6-dehydro-α-L-talose. Mandelalides A and B showed potent cytotoxicity to human NCI-H460 lung cancer cells (IC(50), 12 and 44 nM, respectively) and mouse Neuro-2A neuroblastoma cells (IC(50), 29 and 84 nM, respectively).

  6. Nickel-Catalyzed Proton-Deuterium Exchange (HDX) Procedures for Glycosidic Linkage Analysis of Complex Carbohydrates.

    PubMed

    Price, Neil P J; Hartman, Trina M; Vermillion, Karl E

    2015-07-21

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step.

  7. Analysis of N-acetylaminosugars by CE: a comparative derivatization study.

    PubMed

    Rustighi, Isabella; Campa, Cristiana; Rossi, Marco; Semeraro, Sabrina; Vetere, Amedeo; Gamini, Amelia

    2009-08-01

    N-linked or O-linked glycans derived from glycoprotein processing carry, an N-acetylglucosamine or an N-acetylgalactosamine respectively, at their reducing termini. The presence of the N-acetylamino group on C-2 of reducing sugar residues has been reported to hamper the derivatization reaction with a chromophore at the anomeric centre. In this paper N-acetyllactosamine, N-acetylglucosamine, N-acetylgalactosamine and several other neutral monosaccharides are coupled to three different dyes (4-aminobenzonitrile, 2-aminopyridine, 2-aminobenzoic acid (2-AA)) by reductive amination and analysed by CE with UV detection. The 2-AA derivatives showed the lowest concentration detection limits, varying approximately in the 2-3 muM range for the saccharides tested including the N-acetamido ones. The possibility to separate and detect with the same sensitivity ten 2-AA-labelled monosaccharides mainly found in mammalian or plant glycoproteins in a single CE run is highlighted. The analysis has been carried out in less than 25 min using the borate-complexation method in CZE mode. The influence of the strength of the acid used as catalyst in the chemical modification of the sugars with 2-AA is also shortly addressed.

  8. Analysis of Prebiotic Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.

    Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.

  9. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    Treesearch

    Bruce S. Dien; Junyong Zhu; Patricia J. Slininger; Cletus P. Kurtzman; Bryan R. Moser; Patricia J. O' Bryan; Roland Gleisner; Michael A. Cotta

    2016-01-01

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils (SCO) using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrolyzing using commercial cellulases. A new SPORL process that uses pH...

  10. Symposium on Dissertations on Chemical Oceanography, March 5-9, 1984. Abstracts.

    DTIC Science & Technology

    1984-03-09

    polysaccharides ; to determine their chemical structures by the application of various chemical and physical methods; and, finally, to clarity the distri...conducted to determine linkage types of monosaccharide constituents of oligo- and poly- saccharides from seawater samples. The following results were...coastal water. Mono-, oligo- and polysaccharides accounted for 7-9%, lb-26 , and ;1- 43% of the dissolved carbohydrates, respectively. The polysaccharide

  11. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1985-02-13

    characterizing the geometry of the main polysaccharide chain were close to 180°, indicating that the C-C and C-0 bonds of adjacent monosaccharide moieties...Containing Copolymers With Streptococcus Pneumoniae Type 3 Capsular Polysaccharide Specificity (A. Ya. Chernyak, et al.; BIOORGANICHESKAYA KHIMIYA, No... Polysaccharides (N.■ F. Yankina, et al.; BIOORGANICHESKAYA KHIMIYA, No 10, Oct 84) .. 26 LASER EFFECTS Effects of Laser irradiation on Inflammation and

  12. Process for purifying lignocellulosic feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Matthew; Matthes, Megan; Nelson, Thomas

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  13. Evaluation of FODMAP Carbohydrates Content in Selected Foods in the United States.

    PubMed

    Chumpitazi, Bruno P; Lim, Jongbin; McMeans, Ann R; Shulman, Robert J; Hamaker, Bruce R

    2018-04-26

    We analyzed the fermentable oligosaccharide, disaccharide, monosaccharide, and polyols (FODMAP) content of several foods potentially low in FODMAP which are commonly consumed by children. We determined that several processed foods (eg, gluten-free baked products) had unlabeled FODMAP content. Determining FODMAP content within foods distributed in the US may support educational and dietary interventions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea

    2016-12-01

    The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the larger ones favor the formation of vitreous states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ferrier sulfamidoglycosylation of glycals catalyzed by nitrosonium tetrafluoroborate: towards new carbonic anhydrase glycoinhibitors.

    PubMed

    Ombouma, Joanna; Vullo, Daniela; Supuran, Claudiu T; Winum, Jean-Yves

    2014-11-15

    Ferrier sulfamidoglycosylation of glycals catalyzed by nitrosonium tetrafluoroborate allowed the preparation of hydroxysulfamide glycosides in good yields with a good α stereoselectivity. A variety of mono-saccharide derivatives was synthesized using this new methodology leading to selective and powerful glycoinhibitors of the tumor associated carbonic anhydrases (CA, EC 4.2.1.1) isoforms CA IX and CA XII. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. On-the-Move Nutrient Delivery System Performance Characteristics

    DTIC Science & Technology

    2008-09-01

    types - ranging from simple sugar (monosaccharide fructose or disaccharide sucrose) to more complex sugars (short length maltodextrin (Grain...characteristics of the NOS Position Chest Chest Chest Pressure, Flow Rate, Glucose Conc in Sip-to-Sip Estimated CHO mm Hg Setting Time, s Volume, ml...on the drink produced (Table 2). When the top of the concentrate bag was level with the bite valve, the drink had an estimated carbohydrate

  17. Adhesive Property of Bacteria and Its Relationship to Microbial Spoilage of Shrimp.

    DTIC Science & Technology

    1983-01-04

    that it may be either homopolymers or complex heteropolymers, made up of varying monosaccharides . However, neutral hexoses, 6-deoxyhexoses, polyols...a surface, surrounds itself with addi- tional exopolysaccharide and then replicates within this environment. This protective polysaccharide shell... polysaccharide adhesions produced by S. mutans to be alpha 1,3 and alpha 1,6 branched glucans produced by a group of glucosyltransferaces. 6 Hamada and

  18. University Research Initiative Program for Combat Readiness, Annual Report for the Period June 1, 1997 - June 30, 1998

    DTIC Science & Technology

    1998-05-01

    polysaccharides ) can be interpreted by matching to these chemical markers. Differentiation of the aldohexose monosaccharides or determination of simple...experiments involving qualitative and quantitative analysis of monomeric carbohydrate content in bacterial polysaccharides by Py-GC/MS has been...residues in the group-specific polysaccharide of group B streptococci8 and differentiation of B. anthracis strains by a pyrolysis product from its

  19. Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1, serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS

    PubMed Central

    Jahouh, Farid; Saksena, Rina; Kováč, Pavol; Banoub, Joseph

    2012-01-01

    In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein. PMID:22791257

  20. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    PubMed Central

    Xu, Ren-Bo; Yang, Xin; Wang, Jing; Zhao, Hai-Tian; Lu, Wei-Hong; Cui, Jie; Cheng, Cui-Lin; Zou, Pan; Huang, Wei-Wei; Wang, Pu; Li, Wen-Jing; Hu, Xing-Long

    2012-01-01

    The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine. PMID:23203063

  1. Characterization of a novel antibacterial glycopeptide produced by Penicillium sp. M03.

    PubMed

    Yang, W H; Zhang, W C; Lu, X M; Jiang, G S; Gao, P J

    2009-04-01

    To isolate a novel antibiotic termed AF from fermentation broth of Penicillium sp. M03 and to examine its antimicrobial activity, biological properties and structure characteristics. Sephadex LH-20 and HPLC were used to purify AF from fermentation broth of Penicillium sp. M03. The antimicrobial activity of AF was evaluated with the agar diffusion test. Amino acid and monosaccharide composition of AF was analysed by a HITACHI 835 detector and HPLC assay, respectively. Matrix-assisted laser desorption time of flight mass spectrometry, FT-IR and (1)H nuclear magnetic resonance spectra analyses were performed to examine the initial structure of AF. Eighty milligrams of AF was isolated as white powder from 1-l Penicillium sp. M03 fermentation broth. It consists of five amino acid and two monosaccharide residues and the molecular weight of it was 1017, and it was stable to beta-lactamase, heat, acid and alkali. AF showed inhibitory activity to a wide range of bacteria, particularly to multidrug-resistant Staphylococcus aureus. AF was a novel antibacterial glycopeptide with a broad inhibitory spectrum to pathogenic bacteria including multidrug-resistant agents. Furthermore, it is difficult to generate bacteria resistant to AF. Characterization of AF made it a potential antibiotic to fight against antibiotic-resistant bacterial pathogens.

  2. Beta-propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium.

    PubMed

    Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne

    2006-04-14

    The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.

  3. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  4. Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation.

    PubMed

    Baldwin, S A; Baldwin, J M; Lienhard, G E

    1982-08-03

    The human erythrocyte monosaccharide transporter has been purified through the use of the dialyzable detergent octyl glucoside. It was found that the transporter denatures in the detergent and that the rate of this process could be reduced by increasing the ratio of phospholipid to detergent. The transporter was obtained in higher yield and with a higher specific activity for cytochalasin B binding than has been previously reported. Scatchard plot analysis of cytochalasin B binding to the reconstituted preparations gave a dissociation constant of 1.5 X 10(-7) M, and there were found to be 15.3 nmol of sites/mg of protein. On the basis of a value of 46 000 for the molecular weight of the polypeptide, this specific activity corresponds to 0.70 site/polypeptide chain; and there are reasons to believe that the value of the stoichiometry may be one site per functional transporter polypeptide. The complete amino acid composition and the N- and C-terminal residues of the transporter have been determined. Both the intact transporter and transporter that had been partially depleted of carbohydrate by treatment with endo-beta-galactosidase were found to migrate anomalously upon sodium dodecyl sulfate--polyacrylamide gel electrophoresis, relative to the behavior of standard proteins.

  5. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.

    PubMed

    Sukwong, Pailin; Ra, Chae Hun; Sunwoo, In Yung; Tantratian, Sumate; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-03-23

    This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H 2 SO 4 , and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.

  6. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant.

    PubMed

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying

    2012-05-01

    In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.

  7. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models.

    PubMed

    Lim, Sun Ha; Kim, Yaesil; Yun, Ki Na; Kim, Jin Young; Jang, Jung-Hee; Han, Mee-Jung; Lee, Jongwon

    2016-12-08

    Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.

  8. Distributions of dissolved monosaccharides and polysaccharides in the surface microlayer and surface water of the Jiaozhou Bay and its adjacent area

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Ping; Yang, Gui-Peng; Lu, Xiao-Lan; Ding, Hai-Bing; Zhang, Hong-Hai

    2013-07-01

    Sea surface microlayer (SML) samples and corresponding bulk surface water (SW) samples were collected in the Jiaozhou Bay and its adjacent area in July and November 2008. The average concentrations of dissolved monosaccharides (MCHO) and polysaccharides (PCHO) revealed similar temporal variability, with higher concentrations during the green-tide period (in July) than during the non-green-tide period (in November). Average enrichment factors (EF) of MCHO and PCHO, defined as the ratio of the concentration in the SML to that in the SW, were 1.3 and 1.4 in July, respectively, while those values in November were 1.9 and 1.6. Our data also showed that the concentrations of MCHO and PCHO in the SML were strongly correlated with those in the SW, indicating that most of the organic materials in the SML came from the SW. The total dissolved carbohydrate concentrations (TDCHO) in the bulk surface water were closely correlated with salinity during the cruises (July: r=-0.580, n=18, P=0.01; November: r=-0.679, n=26, P<0.001), suggesting that riverine input had an important effect on the distribution of TDCHO in surface seawater of the study area.

  9. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.

    PubMed

    Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin

    2015-01-01

    Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants.

    PubMed

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B; Rieger, Leonie; Frenger, Marc S; Marschall, André; Franke, Rochus B; Pattathil, Sivakumar; Voll, Lars M

    2017-01-01

    Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.

  11. High monomeric sugar yields from enzymatic hydrolysis of soybean meal and effects of mild heat pretreatments with chelators.

    PubMed

    Islam, S M Mahfuzul; Loman, Abdullah A; Ju, Lu-Kwang

    2018-05-01

    Defatted soybean meal has 30-35% oligo-/polymeric carbohydrates and approximately 50% proteins. Enzymatic carbohydrate monomerization enables easy separation to enrich protein content, reduces indigestibility concerns, and facilitates use of carbohydrate as fermentation feedstock. Among soybean carbohydrates, pectin and glucan are more recalcitrant to hydrolyze. To destabilize Ca 2+ -bridged junctures in pectin, effects of 3 chelators ethylenediaminetetraacetic acid (EDTA), sodium hexametaphosphate (HMP) and citric acid under 2-h 90 °C pretreatments were investigated here. Citric acid was the most effective while EDTA decreased enzymatic hydrolysis. In a 3-factor 2-level factorial study, heat (90 °C, 2 h) and citric acid (10 g/L) pretreatments and cellulase supplementation (10 FPU/g) were found to increase yields of all monosaccharides, to 86.8 ± 5.2% glucose, 98.1 ± 1.6% xylose, 87.5 ± 5.2% galactose, 83.6 ± 1.6% arabinose, and 91.4 ± 3.1% fructose + mannose. The largest percentage improvements were for arabinose (382%), mannose (113%) and glucose (51%). Achieving high monosaccharide yields greatly increases value of soybean carbohydrate as fermentation feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.

    PubMed

    Yu, Hai; Chen, Xi

    2016-03-14

    Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.

  13. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  14. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates

    PubMed Central

    Yu, Hai; Chen, Xi

    2016-01-01

    Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with the glycosyltransferases in one pot for efficient production of target glycans from simple monosaccharides and accpetors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitate the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modificiation (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequential for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of glycosyltransferasese define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. The Perspective summariezes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed. PMID:26881499

  15. Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees

    PubMed Central

    Thursfield, Lucy

    2017-01-01

    Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose) increased maximum cell density, while a common floral phytochemical (caffeic acid) with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides. PMID:28503378

  16. Chemical modification of citrus pectin: Structural, physical and rheologial implications.

    PubMed

    Fracasso, Aline Francielle; Perussello, Camila Augusto; Carpiné, Danielle; Petkowicz, Carmen Lúcia de Oliveira; Haminiuk, Charles Windson Isidoro

    2018-04-01

    The present study aimed to investigate the physical, structural and rheological modifications caused by the chemical modification process of citrus pectin. Therefore, three commercial citrus pectins with different degree of esterification were chemically modified by sequential alkali and acidic hydrolytic process to produce modified citrus pectins (MCP) with special properties. The molar mass (M w ), degree of esterification (DE), monosaccharide composition, 13 C NMR spectra, homogeneity, morphology (SEM) and rheological behavior of both native and modified citrus pectins (MCP) were investigated. The chemical modification reduced the acid uronic content (up to 28.3%) and molar mass (up to 29.98%), however, showed little influence on the degree of esterification of native pectins. Modified citrus pectins presented higher amounts of neutral monosaccharides, mainly galactose, arabinose and rhamnose, typical of the Ramnogalacturonana-I (RG-I) region. Rheological tests indicated that the native and modified citrus pectins presented pseudoplastic behavior, however, the MCP samples were less viscous, compared to the native ones. Modified samples presented better dissolution in water and less strong gels, with good stability during oscillatory shearing at 25°C. This study aims to better understand the implications that chemical modifications may impose on the structure of citrus pectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins.

    PubMed

    Anumula, K R; Du, P

    1999-11-15

    Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.

  18. Fermentable oligosaccharide, disaccharide, monosaccharide and polyol content of foods commonly consumed by ethnic minority groups in the United Kingdom.

    PubMed

    Prichard, Rebeca; Rossi, Megan; Muir, Jane; Yao, Ck; Whelan, Kevin; Lomer, Miranda

    2016-06-01

    Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) is an effective management approach for functional bowel disorders; however, its application is limited by the paucity of food composition data available for ethnic minority groups. The aim was to identify and measure the FODMAP content of these commonly consumed foods. According to their perceived importance to clinical practise, the top 20 ranked foods underwent FODMAP analysis using validated analytical techniques (total fructans, Megazyme hexokinase (HK) assay; all others, high-performance liquid chromatography (HPLC) with evaporative light scattering detectors). Of the 20 foods analysed, five were identified as significant sources of at least one FODMAP. Fructans and galacto-oligosaccharides were the major FODMAPs in these foods, including channa dal (0.13 g/100 g; 0.36 g/100 g), fenugreek seeds (1.11 g/100 g; 1.27 g/100 g), guava (0.41 g/100 g; not detected), karela (not detected; 1.12 g/100 g) and tamarind (2.35 g/100 g; 0.02 g/100 g). Broadening the availability of FODMAP composition data will increase the cultural application of low FODMAP dietary advice.

  19. Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo

    DTIC Science & Technology

    2002-06-10

    chain, the core polysaccharide , and the lipid A domain (Figure 1A). The hydrophilic O-specific chain is a polymer of repeating oligosaccharide units...necessary for protection from phagocytosis and complement-mediated lysis in vivo (9, 10). Linking the O-specific chain to lipid A is a core polysaccharide ...region that is relatively conserved among bacterial families on the basis of its monosaccharide composition. Among the common elements in the

  20. Oral Administration of N-Acetyl-D-Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    DTIC Science & Technology

    2007-03-01

    deoxygalactose and galactose, respectively. Relatively less mITLN-1 was eluted by these monosaccharides . The oligomeric Hu/Mo chimeric ITLN-1 had...Abeygunawardana, C., Bush, C. A. and Cisar, J. O. (1991) Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR...Hoogerhout, P. and van Boom, J. H. (1988) (1-5)-linked beta-D-galactofuranosides are immunodominant in extracellular polysaccharides of

  1. Development of Vaccines to Prevent Wound Infections due to Anaerobic Bacteria

    DTIC Science & Technology

    1982-08-01

    monosaccharides are common to both. To define further these interestir.g results, we studied cross-protection of these two polysaccharides in the B. fragilis...and abscess formation. We have found that vmmunization of rats with a purified capsular polysaccharide (CP) of a B. fragilis ýtrain protects against...which protection is afforded to animals after immunization "with the capsular polysaccharide (CP) of B. fragilis. The decision to proceed along these

  2. Pathogenicity of Exopolysaccharide-Producing Actinomyces oris Isolated from an Apical Abscess Lesion

    DTIC Science & Technology

    2013-01-01

    sugars with man- nose constituting 77.5% of the polysaccharides . Strain K20 induced persistent abscesses in mice lasting at least 5 days at a... polysaccharides (EPSs) could contribute to their survival and the development of persistent infections in the human body (Costerton et al. 1999). For example...High-performance liquid chromatography (HPLC) analysis of EPSs Neutral monosaccharides were released from purified EPS (5 mg) by hydrolysis in a

  3. Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography.

    PubMed

    Lodi, Gabriele; Pellegrini, Laura Annamaria; Aliverti, Alessandro; Rivas Torres, Beatriz; Bernardi, Marco; Morbidelli, Massimo; Storti, Giuseppe

    2017-05-05

    The production of sugars from lignocellulosic biomass is the key to a sustainable, renewable chemical industry. Glucose, xylose and other monosaccharides can be easily produced by hydrolyzing cellulose and hemicellulose, the primary polysaccharides in biomass. However, the hydrolysis of biomass generates byproducts that, together with the mineral acid normally added in the hydrolysis step, have to be removed before the downstream conversion processes. In this work, the recovery of monosaccharides from lignocellulosic hydrolysates by means of Ion Exclusion Chromatography (IEC) has been studied. The analyzed process relies on new pretreatment and hydrolysis steps, involving the neutralization of the hydrolysate with sodium hydroxide. The adsorption behavior of the main components involved in the separation has been experimentally investigated. Pulse tests at the high loading encountered in preparative conditions have been performed for a selected group of model components found in the hydrolysates. For all the electrolytes, the retention volume fraction was always between the interparticle porosity and the total column porosity, confirming that ion exclusion was the dominant retention mechanism. On the other hand, sugars eluted before the total column porosity, indicating partial steric exclusion from the resin pores. This observation was then confirmed by size-exclusion experiments with polyethylene glycol standards, from which the distribution coefficient of the studied sugars has been determined. The comparison between the elution profiles of the same sugars in pure form and as a mixture present in the hydrolysate showed differences in both peak shape and retention times. Therefore, an investigation of the influence of the main electrolytes contained in the hydrolysates on sugars adsorption has been performed through the pulse on a plateau method. The electrolytes were found to enhance the sugars retention by promoting their adsorption onto the resin. However, this effect was not sufficient to explain the observed differences, which were effectively explained in terms of viscous fingering, due to the high viscosity differences between the eluent and the sample. A previously developed model for IEC has been updated to take into account all the observed phenomena and applied to simulate the experimental results. The proposed model was in good agreement with the batch-column elution profiles both for the pure components and for the actual hydrolysate, allowing a quantitative description of the separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Topiramate for Abnormal Eating Behaviour in Frontotemporal Dementia

    PubMed Central

    Singam, Colin; Walterfang, Mark; Mocellin, Ramon; Evans, Andrew; Velakoulis, Dennis

    2013-01-01

    Topiramate is a sulfamate-substituted monosaccharide anticonvulsant that is associated with anorexia and weight loss and has been used to treat binge eating disorder and bulimia nervosa. This report describes a man with frontotemporal dementia, behavioural variant, associated with abnormal eating behaviour which appeared to respond to topiramate. We review the physiological basis of abnormal eating behaviour in frontotemporal dementia and explore possible mechanisms of action by which topiramate may modify eating behaviour in this condition. PMID:23548883

  5. Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents

    DTIC Science & Technology

    2009-09-01

    linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into

  6. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    DOEpatents

    Zhao, Haibo [The Woodlands, TX; Holladay, Johnathan E [Kennewick, WA; Zhang, Zongchao C [Norwood, NJ

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  7. Automated Glycan Assembly of Oligosaccharides Related to Arabinogalactan Proteins.

    PubMed

    Bartetzko, Max P; Schuhmacher, Frank; Hahm, Heung Sik; Seeberger, Peter H; Pfrengle, Fabian

    2015-09-04

    Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology.

  8. Evaluation of the Flavor Contribution of Products of the Maillard Reaction

    DTIC Science & Technology

    the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.

  9. The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation

    PubMed Central

    Akimitsu, Kazuya

    2013-01-01

    Only d-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to d-allose. d-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-d-allose, a structural derivative of d-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding d-allose kinase to increase d-allose 6-phosphate synthesis were more sensitive to d-allose, but E. coli AlsI encoding d-allose 6-phosphate isomerase expression to decrease d-allose 6-phosphate reduced sensitivity. A d-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, d-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of d-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of d-allose to d-allose 6-phosphate, and treatment with d-allose might prove to be useful for reducing disease development in rice. PMID:24014866

  10. Mannose and fructose metabolism in red blood cells during cold storage in SAGM.

    PubMed

    Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard

    2017-11-01

    Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.

  11. The sugar transporter inventory of tomato: genome-wide identification and expression analysis.

    PubMed

    Reuscher, Stefan; Akiyama, Masahito; Yasuda, Tomohide; Makino, Haruko; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2014-06-01

    The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods.

    PubMed

    Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong

    2015-11-01

    Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; OSAWA, Ro

    2014-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties. PMID:25625033

  14. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms.

    PubMed

    Su, Chun-Han; Lai, Min-Nan; Lin, Ching-Chuan; Ng, Lean-Teik

    2016-05-01

    Mushroom polysaccharides have been known to possess various pharmacological activities. However, information on their chemical and biological differences between mushrooms remains limited. In this study, we aimed to examine the differences in physicochemical characteristics of polysaccharides prepared from Antrodia cinnamomea (AC-P), Coriolus versicolor (CV-P), Grifola frondosa (GF-P), Ganoderma lucidum (GL-P), and Phellinus linteus (PL-P), followed by evaluating their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Results showed that under similar conditions of preparation, the monosaccharide composition of polysaccharides varied between different mushrooms, and glucose was the predominant monosaccharide, followed by galactose and mannose. AC-P and GF-P contained the highest amount of (1,3;1,6)-β-D-glucans. The degree of branching of (1,3;1,6)-β-D-glucans in all polysaccharides ranged from 0.21 to 0.26, with the exception of GF-P (0.38). The molecular weights of different polysaccharides showed diverse distributions; AC-P, CV-P, and GF-P contained two major macromolecular populations (< 30 and >200 kDa) and possessed triple-helix conformation, whereas GL-P (10.2 kDa) and PL-P (15.5 kDa) only had a low molecular weight population without triple-helix structure. These polysaccharides showed different inhibitory potency on NO production in LPS-stimulated RAW264.7 cells.

  15. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  16. Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya bean-nodulating bacterium isolated from an arid region of China.

    PubMed Central

    Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Ruiz-Sainz, J E; Buendía-Clavería, A M; Ollero, F J; Yang, S S; Gil-Serrano, A M

    2001-01-01

    We have determined the structure of a polysaccharide from strain B33, a fast-growing bacterium that forms nitrogen-fixing nodules with Asiatic and American soya bean cultivars. On the basis of monosaccharide analysis, methylation analysis, one-dimensional 1H- and 13C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the repeating unit -->6)-4-O-methyl-alpha-D-Glcp-(1-->4)-3-O-methyl-beta-D-GlcpA-(1--> (where GlcpA is glucopyranuronic acid and Glcp is glucopyranose). Strain B33 produces a K-antigen polysaccharide repeating unit that does not have the structural motif sugar-Kdx [where Kdx is 3-deoxy-D-manno-2-octulosonic acid (Kdo) or a Kdo-related acid] proposed for different Sinorhizobium fredii strains, all of them being effective with Asiatic soya bean cultivars but unable to form nitrogen-fixing nodules with American soya bean cultivars. Instead, it resembles the K-antigen of S. fredii strain HH303 (rhamnose, galacturonic acid)n, which is also effective with both groups of soya bean cultivars. Only the capsular polysaccharide from strains B33 and HH303 have monosaccharide components that are also present in the surface polysaccharide of Bradyrhizobium elkanii strains, which consists of a 4-O-methyl-D-glucurono-L-rhamnan. PMID:11439101

  17. Polysaccharides from Sargassum thunbergii: Monthly variations and anti-complement and anti-tumour activities.

    PubMed

    Jin, Weihua; Liu, Ge; Zhong, Weihong; Sun, Chaomin; Zhang, Quanbin

    2017-12-01

    Monthly variations of polysaccharides from Sargassum thunbergii and their anti-complement and anti-tumour activities were investigated. It was observed that an increase in fucose and total sugar contents occurred during the growth period (from early April to mid-June), accompanied by a decrease in molar ratios of other monosaccharides to fucose. The highest yields were obtained from early July to early September, which was in accordance with the significant increase in molar ratio of glucose to fucose and decrease in molar ratio of other monosaccharides to fucose. And the above results suggested that S. Thunbergii synthesized large amount of laminaran, the storage substance of brown algae, during the senescence period. However, sulfate contents were relatively stable in the life cycle of S. thunbergii. These results suggested that S. thunbergii synthesized complex sulfated heteropolysacchairdes during inactive period, while during other periods, it synthesized more sulfated galactofucan. All polysaccharides showed anti-complement activity, suggesting that the harvesting time did not influence the anti-complement activities. In the anti-tumour assay in vitro, the polysaccharides taken during the senescence period had much lower anti-tumour activity, suggesting that fucoidan, but not laminaran, determined the anti-tumour activities. Therefore, polysaccharides from S. thunbergii might have great potential in anti-complement and anti-tumour application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characterization and in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates.

    PubMed

    Thanzami, K; Malsawmtluangi, C; Lalhlenmawia, H; Seelan, T Veenus; Palanisamy, Selvamani; Kandasamy, Ruckmani; Pachuau, Lalduhsanga

    2015-09-01

    The objective of the present study is to characterize the physicochemical properties and to determine the in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates collected from Northeast India. The total carbohydrate, uronic acid and protein contents, monosaccharide composition and the molecular weight distribution of the purified gum was determined. The powder flow property and preliminary compressibility test were performed on the dried gum exudates. Fourier transform infrared spectroscopy (FTIR) study was performed to analyze the functional groups present in the structure. Differential scanning calorimetry (DSC) and thermogravimetry (TGA/DTA) analyses were performed to study the thermal stability of the gum. The antioxidant properties of the gum were evaluated by determining 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl scavenging activities and reducing power. The total carbohydrate and protein contents of the gum were found to be 75.17±3.21% and 2.60±1.05% respectively. The viscosity of 2% aqueous solution of the gum exhibited non-Newtonian type of flow showing pH dependent swelling. Arabinose and galactose were found to be the main monosaccharides present in the gum exudates and the molecular weight distribution of the gum was also found to be polydispersed. Results from DPPH, hydroxyl scavenging and reducing power studies showed the gum possesses antioxidant properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants

    PubMed Central

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar

    2017-01-01

    Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541

  20. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium.

    PubMed

    Egan, Muireann; Motherway, Mary O'Connell; Kilcoyne, Michelle; Kane, Marian; Joshi, Lokesh; Ventura, Marco; van Sinderen, Douwe

    2014-11-25

    Bifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010. B. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype. This study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.

  1. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Osawa, Ro

    2015-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties.

  2. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.

    2013-04-03

    Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmedmore » with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.« less

  3. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation.

    PubMed

    Kano, Akihito; Fukumoto, Takeshi; Ohtani, Kouhei; Yoshihara, Akihide; Ohara, Toshiaki; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ohkouchi, Takeo; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Gomi, Kenji; Akimitsu, Kazuya

    2013-11-01

    Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.

  4. Identification and determination of 3-deoxyglucosone and glucosone in carbohydrate-rich foods.

    PubMed

    Ruiz-Matute, Ana I; Castro Vazquez, Lucía; Hernández-Hernández, Oswaldo; Sanz, María L; Martínez-Castro, Isabel

    2015-09-01

    α-Dicarbonyl compounds (α-DCs) such as 3-deoxyglucosone (3-DG) and glucosone are markers of both Maillard and degradation reactions of sugars and also of certain enzymatic processes. However, quantitation of these compounds is not straightforward when more abundant carbohydrates are present in real samples. Therefore in this work a GC/MS method was developed to separate monosaccharides, 3-DG and glucosone and applied to analyze them in carbohydrate-rich food products. Difructose anhydrides (DFAs), known markers of sugar degradation, were also determined. The effect of time and temperature in the production and storage of these compounds was also evaluated. Under optimized conditions, good separation between monosaccharides and α-DCs was achieved. Must syrups showed the highest concentrations of 3-DG and glucosone (average values 9.2 and 5.8 mg g(-1) respectively). Coffee substitutes based on carob, chicory and blends showed the highest content of DFAs. Heating and storage assays proved that production of 3-DG was influenced by temperature, while glucosone was more affected by storage time. The proposed method allows the rapid quantitation of 3-DG and glucosone along with carbohydrates and DFAs in different food products, which is essential to determine their degradation level. Moreover, the α-DC content in several foods is reported for the first time. © 2014 Society of Chemical Industry.

  5. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.

  6. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.

  7. [Effects of the monosaccharide derivative 8RN-DAGal on the putative P-type calcium channel expressed in Xenopus oocytes].

    PubMed

    Fournier, F; Charpentier, G; Lahyani, A; Bruner, J; Czternasty, G; Marlot, D; Ronco, G; Villa, P; Brule, G

    1993-01-01

    P-type calcium channels are expressed in Xenopus oocytes after injection of rat cerebellar mRNA. The FTX and omega-Aga-IVa toxins extracted from Agelenopsis aperta venom are known to inhibit the activity of this channel. The present results demonstrate that 8RN-DAGal is also a antagonist of P-type calcium channels. The inhibition of the current, obtained with Ba2+, as charge carrier, is voltage dependent.

  8. Synthesis of 3-aminopropyl β-(1 → 6)-d-glucotetraoside and its biotinylated derivative.

    PubMed

    Yashunsky, Dmitry V; Karelin, Alexander A; Tsvetkov, Yury E; Nifantiev, Nikolay E

    2018-01-02

    3-Aminopropyl β-(1 → 6)-d-glucotetraoside has been synthesized from 3-benzyloxycarbonylaminopropanol and 6-O-acetyl-2,3,4-tri-O-benzoyl-d-glucopyranosyl trichloroacetimidate by successive attachment of one monosaccharide unit in total yield of 22%. Free aminopropyl glycoside was converted into a biotin derivative that can be used for controlled immobilization of the oligosaccharide on streptavidin-coated ELISA plates and for tracing carbohydrate binding molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.

    PubMed

    Thayer, Desiree A; Wong, Chi-Huey

    2006-09-18

    Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.

  10. Binding of New Methylene Blue to Endotoxins and Its Effects on the Endotoxin Activity Studied By Double Diffusion and Limulus Amebocyte Lysate Assays

    DTIC Science & Technology

    1989-05-30

    bacteria. Its structure (Figure 1-I) contains O-antigen polysaccharide , core polysaccharide and lipid A (Rietschel et al., 1984; Luderitz et al., 1982...The O-antigen polysaccharide is composed of repeating oligosaccharide, specific to the species and the strain of the bacteria; the core polysaccharide ...consists of 11 or less monosaccharide units including three 2-keto-3-deoxyoctonate (KDO), and is more conserved structurally than the O-antigen

  11. Pyrrolic tripodal receptors for carbohydrates. Role of functional groups and binding geometry on carbohydrate recognition.

    PubMed

    Cacciarini, Martina; Nativi, Cristina; Norcini, Martina; Staderini, Samuele; Francesconi, Oscar; Roelens, Stefano

    2011-02-21

    The contribution from several H-bonding groups and the impact of geometric requirements on the binding ability of benzene-based tripodal receptors toward carbohydrates have been investigated by measuring the affinity of a set of structures toward octyl β-D-glucopyranoside, selected as a representative monosaccharide. The results reported in the present study demonstrate that a judicious choice of correct geometry and appropriate functional groups is critical to achieve the complementary hydrogen bonding interactions required for an effective carbohydrate recognition.

  12. The study of dielectric relaxation in aqueous carbohydrates solutions using time domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Hudge, Pravin G.; Lokhande, Milind P.; Kumbharkhane, Ashok C.

    2012-09-01

    Complex permittivity spectra of aqueous solutions of monosaccharide ( d-glucose) and disaccharides ( d-sucrose) in the frequency range from 10 MHz to 30 GHz at various concentrations and temperatures have been determined using time domain reflectometry technique. The complex dielectric permittivity spectrum of d-glucose and d-sucrose in water shows Cole-Davidson type behaviour. Dielectric constant (ɛ0) and relaxation time (τ), Kirkwood correlation factor, activation enthalpy and entropy parameters have been determined.

  13. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    PubMed

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region.

    PubMed

    Brown, Darin J; Stefan, Sarah E; Berden, Giel; Steill, Jeffrey D; Oomens, Jos; Eyler, John R; Bendiak, Brad

    2011-11-08

    All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain configuration of the anions in the gas phase, based on the observation of a significant carbonyl absorption band near 1710 cm(-1). The abundance of the open-chain configuration of the aldohexose anions was approximately 1000-fold or greater than that of the neutral sugars in aqueous solution. This provides an explanation as to why it has not been possible to discriminate the anomeric configuration of aldohexose anions in the gas phase when derived from the non-reducing sugar of a disaccharide. Evidence from photodissociation spectra also indicates that the different aldohexoses yield product ions with maximal abundances at different wavelengths, and that the carbonyl stretch region is useful for differentiation of sugar stereochemistries. Quantum-chemical calculations indicate relatively low energy barriers to intramolecular proton transfer between hydroxyl groups and adjacent alkoxy sites located on open-chain sugar anions, suggesting that an ensemble of alkoxy charge locations contributes to their observed photodissociation spectra. Ring opening of monosaccharide anions and interconversion among configurations is an inherent property of the ions themselves and occurs in vacuo independent of solvent participation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Protein Glycosylation in Helicobacter pylori: Beyond the Flagellins?

    PubMed Central

    Hopf, Patrick S.; Ford, Rachel S.; Zebian, Najwa; Merkx-Jacques, Alexandra; Vijayakumar, Somalinga; Ratnayake, Dinath; Hayworth, Jacqueline; Creuzenet, Carole

    2011-01-01

    Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori. PMID:21984942

  16. Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage.

    PubMed

    Kyriacou, Marios C; Soteriou, Georgios A; Rouphael, Youssef; Siomos, Anastasios S; Gerasopoulos, Dimitrios

    2016-05-01

    The configuration of watermelon fruit quality was analysed in a multi-factorial approach accounting for the effects of grafting, harvest maturity and postharvest storage. Diploid, seeded, hybrid cv. Pegasus, cultivated as scion on interspecific hybrid squash rootstock TZ148 and as non-grafted control, was stored at 25 °C following sequential harvests from the onset of ripening to over-maturity. Delayed rootstock-mediated climax in pulp lycopene and chroma was observed, while both were heightened by postharvest storage when harvest preceded full maturity. Pulp firmness was increased by 46.5% on TZ148, while postharvest decrease in firmness was non-significant. Non-grafted fruits attained their peak in pulp carbohydrate content earlier during ripening. Monosaccharide content declined and sucrose content increased both preharvest and postharvest; overall sugar content declined by 4.3% during storage. Pulp acidity decreased steadily with ripening but was moderately increased by grafting. Citrulline content increased by 12.5% on TZ148; moreover, it climaxed with ripening and declined with storage only in grafted fruit. Grafting enhances pulp texture and bioactive composition. Potential suppression of sugar content as a result of grafting is minimized at full commercial maturity. Brief postharvest ambient storage enhances pulp lycopene and chroma, especially in early-picked fruit, notwithstanding the depletion of monosaccharides and citrulline and a limited deterioration of texture. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Comparison of Anti-Obesity Effect between Two Types of Syrup Containing Rare Sugars in Wistar Rats.

    PubMed

    Ochiai, Masaru; Misaki, Kohei; Yamada, Takako; Iida, Tetsuo; Okuma, Kazuhiro; Matsuo, Tatsuhiro

    2017-01-01

    D-Allulose-containing rare sugar sweeteners have been categorized into two types, rare sugar syrup (RSS), consisting of 4 rare monosaccharides, and modified glucose syrup (MGS), rich in D-allulose, which was previously referred to D-psicose. The anti-obesity effect of RSS and D-allulose has been already clarified, but that of rare monosaccharides other than D-allulose in RSS has not yet been well understood. Here, we investigated and compared the anti-obesity effect of RSS and MGS in rats. Male Wistar rats were divided into 4 dietary groups: a high-sucrose control diet group (S), a high-fructose corn syrup diet group (HFCS), an RSS diet group (RSS), and an MGS diet group (MGS). RSS significantly suppressed abdominal adipose tissue weight and total body fat accumulation in comparison to sucrose. On the other hand, MGS reduced body weight gain, but not abdominal fat accumulation, relative to sucrose. The weight of the liver and kidneys was significantly higher in the RSS and MGS groups than in the S and HFCS groups, but serum biochemical parameters and hepatic lipids contents were not significantly different among the groups. The present study shows that two types of D-allulose-containing rare sugar sweeteners can suppress body fat accumulation or weight gain in a different manner and that RSS could be used as more effective sweeteners in place of sucrose and HFCS to maintain healthy body weight.

  18. Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula.

    PubMed

    Xu, Siqi; Zhang, Yongjun; Jiang, Kan

    2016-09-14

    In this study, five different kinds of polysaccharides (AAP1, AAP2, AAP3, AAP4, and AAP5) were extracted from different varieties of Auricularia auricula through an alkali extraction process. Furthermore, the crude polysaccharides were deproteinized by the Sevag method. Auricularia auricula produced in the Shanxi province had the highest content of polysaccharide, 53.02%. The monosaccharide composition was determined by the GC method. Their antioxidant capacities in vitro were assessed by radical-scavenging capacity (DPPH, superoxide, and hydroxyl radicals), metal chelating ability and reducing-power methods. In addition, the evaluation of their antioxidant effects in vivo was performed using the C. elegans model. The yield of crude polysaccharides, monosaccharide composition and antioxidant activity of Auricularia auricula polysaccharides (AAPs) were different among samples from various sources. Among them, the strongest antioxidant activity was shown for AAP1, consisting of arabinose, xylose, 2-deoxy-d-glucose, mannose, glucose, and N-acetyl-d-glucosamine with the molar ratio of 1 : 0.44 : 0.33 : 1.67 : 1 : 0.17. It could scavenge free radicals, up-regulate stress-resistance-related enzymes including superoxide dismutase (SOD) by 70.04 ± 8.75% and CAT by 117.32 ± 8.06% and reduce the level of reactive oxygen species (ROS) in C. elegans under oxidative stress. The present results suggested that variety was an important factor that affects the antioxidant activity of A. auricula polysaccharides.

  19. Variations in the proportion of glycolytic/non-glycolytic energy substrates modulate sperm membrane integrity and function in diluted boar samples stored at 15-17 degrees C.

    PubMed

    Medrano, A; Peña, A; Rigau, T; Rodrìguez-Gil, J E

    2005-10-01

    In this work the role of energy substrates in the maintenance of boar-sperm survival during storage at 15-17 degrees C was tested. For this purpose, boar spermatozoa were stored at 15-17 degrees C in several defined media with separate combinations of a monosaccharide, glucose and a non-monosaccharide, either citrate or lactate, energy substrates. Our results indicate that the medium containing the highest concentration of glucose together with low lactate levels was the most suitable to maintain sperm quality for 168 h at 15-17 degrees C. This was confirmed after observation of the results of the percentages of viability and altered acrosomes, the osmotic resistance test, the hyperosmotic resistance test and the rhythm of L-lactate production. The survival ability of boar sperm was greater in this experimental medium than in the standard Beltsville Thawing Solution extender, which contains only glucose as an energy substrate, although at a concentration far higher than that of all the tested experimental media. Our results indicate that the exact composition, more than the pure quantity of energy substrates, is a very important modulatory factor which affects survival ability of boar sperm in refrigeration. Thus, the exact combination of several energy substrates would have to be taken into account when optimizing the design of commercial extenders to store boar spermatozoa at 15-17 degrees C.

  20. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doores, Katie J.; Fulton, Zara; Hong, Vu

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12,more » their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.« less

  1. Accurate Quantification of Laminarin in Marine Organic Matter with Enzymes from Marine Microbes.

    PubMed

    Becker, Stefan; Scheffel, André; Polz, Martin F; Hehemann, Jan-Hendrik

    2017-05-01

    Marine algae produce a variety of glycans, which fulfill diverse biological functions and fuel the carbon and energy demands of heterotrophic microbes. A common approach to analysis of marine organic matter uses acid to hydrolyze the glycans into measurable monosaccharides. The monosaccharides may be derived from different glycans that are built with the same monosaccharides, however, and this approach does not distinguish between glycans in natural samples. Here we use enzymes to digest selectively and thereby quantify laminarin in particulate organic matter. Environmental metaproteome data revealed carbohydrate-active enzymes from marine flavobacteria as tools for selective hydrolysis of the algal β-glucan laminarin. The enzymes digested laminarin into glucose and oligosaccharides, which we measured with standard methods to establish the amounts of laminarin in the samples. We cloned, expressed, purified, and characterized three new glycoside hydrolases (GHs) of Formosa bacteria: two are endo-β-1,3-glucanases, of the GH16 and GH17 families, and the other is a GH30 exo-β-1,6-glucanase. Formosa sp. nov strain Hel1_33_131 GH30 (FbGH30) removed the β-1,6-glucose side chains, and Formosa agariphila GH17A (FaGH17A) and FaGH16A hydrolyzed the β-1,3-glucose backbone of laminarin. Specificity profiling with a library of glucan oligosaccharides and polysaccharides revealed that FaGH17A and FbGH30 were highly specific enzymes, while FaGH16A also hydrolyzed mixed-linked glucans with β-1,4-glucose. Therefore, we chose the more specific FaGH17A and FbGH30 to quantify laminarin in two cultured diatoms, namely, Thalassiosira weissflogii and Thalassiosira pseudonana , and in seawater samples from the North Sea and the Arctic Ocean. Combined, these results demonstrate the potential of enzymes for faster, stereospecific, and sequence-specific analysis of select glycans in marine organic matter. IMPORTANCE Marine algae synthesize substantial amounts of the glucose polymer laminarin for energy and carbon storage. Its concentrations, rates of production by autotrophic organisms, and rates of digestion by heterotrophic organisms remain unknown. Here we present a method based on enzymes that hydrolyze laminarin and enable its quantification even in crude substrate mixtures, without purification. Compared to the commonly used acid hydrolysis, the enzymatic method presented here is faster and stereospecific and selectively cleaves laminarin in mixtures of glycans, releasing only glucose and oligosaccharides, which can be easily quantified with reducing sugar assays. Copyright © 2017 American Society for Microbiology.

  2. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in Polar Front and Sub-Antarctic Zones indicated that ribose seems to be a labile sugar, rapidly degraded especially in Polar Front Zone whereas it was below the detection limit in Sub-Antarctic zone where a high bacterial activity was recorded in surface waters. Our results also showed that the relative abundance of deoxysugars (fucose + rhamnose) increased overtime in Sub-Antarctic Zone (deoxyinitial = 18%, deoxyfinal = 23%) and Polar Front Zone (deoxyinitial = 6%, deoxyfinal = 21%) indicating that these sugars are preserved during organic matter decomposition.

  3. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    USGS Publications Warehouse

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  4. Food avoidance in athletes: FODMAP foods on the list.

    PubMed

    Lis, Dana; Ahuja, Kiran D K; Stellingwerff, Trent; Kitic, Cecilia M; Fell, James

    2016-09-01

    We surveyed 910 athletes to assess behaviours towards self-selected food/ingredient avoidance to minimize gastrointestinal distress. Fifty-five percent eliminated at least 1 high fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) food/category, with up to 82.6% reporting symptom improvement. In athletes indicating that high FODMAP foods trigger gastrointestinal symptoms, lactose (86.5%) was most frequently eliminated, followed by galactooligosaccharides (23.9%), fructose (23.0%), fructans (6.2%), and polyols (5.4%). Athletes avoid predominantly lactose and to a lesser extent other high FODMAP foods to reduce gastrointestinal distress.

  5. Glycofunctionalization of Poly(lactic- co-glycolic acid) Polymers: Building Blocks for the Generation of Defined Sugar-Coated Nanoparticles.

    PubMed

    Palmioli, Alessandro; La Ferla, Barbara

    2018-06-15

    A set of poly(lactic- co-glycolic acid) polymers functionalized with different monosaccharides as well as glycodendrimers and surface-decorated nanoparticles (NPs) were synthesized and characterized. The functionalization of the polymer was carried out through amide bond formation with amino-modified sugar monomers and through a biocompatible chemoselective method exploiting the reducing end of a free sugar. The assemblage of the NPs adopting a nanoprecipitation method was straightforward and allowed the preparation of sugars/sugar dendrimer coated NPs.

  6. Mini review on fructose metabolism.

    PubMed

    Akram, M; Hamid, Abdul

    2013-01-01

    Fructose is a monosaccharide and reducing sugar. It is present in sucrose and honey. Researchers around the world have come together in a just-published study that offers new ideas about how fructose consumption results in obesity and metabolic syndrome, which can lead to diabetes. In this review, we discuss that how fructose causes fatty liver, obesity and insulin resistance. We also discuss the effects of consumption of high fructose corn syrup, dietary fructose, fructose-induced changes in metabolism.: © 2013 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  7. AuBr3-catalyzed azidation of per-O-acetylated and per-O-benzoylated sugars.

    PubMed

    Rajput, Jayashree; Hotha, Srinivas; Vangala, Madhuri

    2018-01-01

    Herein we report, for the first time, the successful anomeric azidation of per- O -acetylated and per- O -benzoylated sugars by catalytic amounts of oxophilic AuBr 3 in good to excellent yields. The method is applicable to a wide range of easily accessible per- O -acetylated and per- O -benzoylated sugars. While reaction with per- O -acetylated and per- O -benzoylated monosaccharides was complete within 1-3 h at room temperature, the per- O -benzoylated disaccharides needed 2-3 h of heating at 55 °C.

  8. In vitro Antioxidant of a Water-Soluble Polysaccharide from Dendrobium fimhriatum Hook.var.oculatum Hook

    PubMed Central

    Luo, Aoxue; Fan, Yijun

    2011-01-01

    A water-soluble crude polysaccharide (DFHP) obtained from the aqueous extracts of the stem of Dendrobium fimhriatum Hook.var.oculatum Hook through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 209.3 kDa. Monosaccharide analysis revealed that DFHP was composed of mannose, glucose and galactose in a content ratio of 37.52%; 43.16%; 19.32%. The investigation of antioxidant activity in vitro showed that DFHP is a potential antioxidant. PMID:21747725

  9. Chemoselective Cleavage of p-Methoxybenzyl and 2-Naphthylmethyl Ethers Using a Catalytic Amount of HCl in Hexafluoro-2-propanol.

    PubMed

    Volbeda, Anne Geert; Kistemaker, Hans A V; Overkleeft, Herman S; van der Marel, Gijsbert A; Filippov, Dmitri V; Codée, Jeroen D C

    2015-09-04

    A new, fast, mild and chemoselective deprotection method to cleave p-methoxybenzyl and 2-naphthylmethyl ethers using catalytic amounts of hydrochloric acid in a 1:1 mixture of hexafluoro-2-propanol (HFIP) and methylene chloride (DCM) is described. The scope of the methodology becomes apparent from 14 examples of orthogonally protected monosaccharides that are subjected to HCl/HFIP treatment. The applicability of the HCl/HFIP method is illustrated by the synthesis of a sulfated β-mannuronic acid disaccharide.

  10. Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans

    PubMed Central

    De Castro, Cristina; Molinaro, Antonio; Piacente, Francesco; Gurnon, James R.; Sturiale, Luisa; Palmigiano, Angelo; Lanzetta, Rosa; Parrilli, Michelangelo; Garozzo, Domenico; Tonetti, Michela G.; Van Etten, James L.

    2013-01-01

    The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms. PMID:23918378

  11. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    PubMed

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. [Separation, purification and primary reverse cholesterol transport study of Cordyceps militaris polysaccharide].

    PubMed

    Guo, Shou-Dong; Cui, Ying-Jie; Wang, Ren-Zhong; Wang, Ren-Yuan; Wu, Wen-Xue; Ma, Teng

    2014-09-01

    The authors designed to separate, purify and determine the monosaccharide composition of the polysaccharide from Cordyceps militaris, and study its effect on reverse cholesterol transport in vivo by isotope tracing assay. Polysaccharides were separate and purify by ion exchange column Q-sepharose Fast Flow and size exclusion column Sephacryl S200HR; the molecular weight and monosaccharide composition of the polysaccharides were determined by high performance gel permeation chromatography and high performance liquid chromatography coming with pre-column derivation, respectively. Finally, three purified polysaccharides CMBW1, CMBW2 and CMYW1 were obtained, their total carbohydrate contents were 87%, 89%, 95%, respectively; their protein contents were 6.5%, 1.3%, 2.8%, respectively; their molecular weights were 772.1, 20.9, 13.2 kDa, respectively; CMBW1 was composed of mannose, glucosamine, rhamnose, glucuronic acid, glucose, galactose and arabinose with a molar ratio of 7.25: 0.17: 1.29: 0.23: 6.30: 11.08: 0.79; CMBW2 was composed of mannose, glucosamine, galactose and arabinose with a molar ratio of 2.40: 0.16: 2.92: 0.24; CMYW1 was composed of mannose, glucosamine, glucuronic acid and glucose with a molar ratio of 0.59: 0.57: 0.45: 25.61. Polysaccharide at 50 mg x kg(-1) could significantly improve the transport of 3H- cholesterol to blood and excretion from feces. All of the three purified polysaccharides CMBW1, CMBW2 and CMYW1 were heteropolysaccharide; and they could improve reverse cholesterol transport in vivo, the underlying mechanisms are being studied.

  13. Enzyme-Assisted Extraction Optimization, Characterization and Antioxidant Activity of Polysaccharides from Sea Cucumber Phyllophorus proteus.

    PubMed

    Qin, Yujing; Yuan, Qingxia; Zhang, Yuexing; Li, Jialu; Zhu, Xinjiao; Zhao, Lingling; Wen, Jing; Liu, Jikai; Zhao, Longyan; Zhao, Jinhua

    2018-03-06

    Enzyme-assisted extraction optimization, characterization and in vitro antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus (PPP) were investigated in the present study. The optimal extraction conditions with a yield of 6.44 ± 0.06% for PPP were determined as follows: Extraction time of 2.89 h, ratio of extraction solvent to raw material of 16.26 mL/g, extraction pH of 6.83, exraction temperature of 50 °C and papain concentration of 0.15%. Three purified fractions, PPP-1a, PPP-1b and PPP-2 with molecular weights of 369.60, 41.73 and 57.76 kDa, respectively, were obtained from PPP by chromatography of FPA98Cl and Sepharose CL-6B columns. Analysis of monosaccharide compositions showed that PPP-1a consisted of N -acetyl-galactosamine (GalNAc), galactose (Gal) and fucose (Fuc), PPP-1b of Fuc as the only monosaccharide and PPP-2 of glucuronic acid, GalNAc and Fuc. Sulfate contents of PPP, PPP-1a, PPP-1b and PPP-2 were determined to be 21.9%, 20.6%, 25.2% and 28.0% ( w / w ), respectively. PPP and PPP-1a had higher molecular weight and intrinsic viscosity than those of the PPP-1b and PPP-2. PPP, PPP-1a, PPP-1b and PPP-2 exhibited obvious activities of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide radical and ABTS radical in different extent, which suggested that the polysaccharides from Phyllophorus proteus may be novel agents having potential value for antioxidation.

  14. Clinical Research Strategies for Fructose Metabolism12

    PubMed Central

    Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma

    2014-01-01

    Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471

  15. Influence of Polarization on Carbohydrate Hydration: A Comparative Study Using Additive and Polarizable Force Fields.

    PubMed

    Pandey, Poonam; Mallajosyula, Sairam S

    2016-07-14

    Carbohydrates are known to closely modulate their surrounding solvent structures and influence solvation dynamics. Spectroscopic investigations studying far-IR regions (below 1000 cm(-1)) have observed spectral shifts in the libration band (around 600 cm(-1)) of water in the presence of monosaccharides and polysaccharides. In this paper, we use molecular dynamics simulations to gain atomistic insight into carbohydrate-water interactions and to specifically highlight the differences between additive (nonpolarizable) and polarizable simulations. A total of six monosaccharide systems, α and β anomers of glucose, galactose, and mannose, were studied using additive and polarizable Chemistry at HARvard Macromolecular Mechanics (CHARMM) carbohydrate force fields. Solvents were modeled using three additive water models TIP3P, TIP4P, and TIP5P in additive simulations and polarizable water model SWM4 in polarizable simulations. The presence of carbohydrate has a significant effect on the microscopic water structure, with the effects being pronounced for proximal water molecules. Notably, disruption of the tetrahedral arrangement of proximal water molecules was observed due to the formation of strong carbohydrate-water hydrogen bonds in both additive and polarizable simulations. However, the inclusion of polarization resulted in significant water-bridge occupancies, improved ordered water structures (tetrahedral order parameter), and longer carbohydrate-water H-bond correlations as compared to those for additive simulations. Additionally, polarizable simulations also allowed the calculation of power spectra from the dipole-dipole autocorrelation function, which corresponds to the IR spectra. From the power spectra, we could identify spectral signatures differentiating the proximal and bulk water structures, which could not be captured from additive simulations.

  16. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature.

    PubMed

    Chen, Rachel

    2015-01-01

    A key characteristic of current biomass technology is the requirement for complete hydrolysis of cellulose and hemicellulose, which stems from the inability of microbial strains to use partially hydrolyzed cellulose, or cellodextrin. The complete hydrolysis paradigm has been practiced over the past 4 decades with major enzyme companies perfecting their cellulase mix for maximal yield of monosaccharides, with corresponding efforts in strain development focus almost solely on the conversion of monosaccharides, not cellodextrin, to products. While still in its nascent infancy, a new paradigm requiring only partial hydrolysis has begun to take hold, promising a shift in the biomass technology at its fundamental core. The new paradigm has the potential to reduce the requirement for cellulase enzymes in the hydrolysis step and provides new strategies for metabolic engineers, synthetic biologists and alike in engineering fermenting organisms. Several recent publications reveal that microorganisms engineered to metabolize cellodextrins, rather than monomer glucose, can reap significant energy gains in both uptake and subsequent phosphorylation. These energetic benefits can in turn be directed for enhanced robustness and increased productivity of a bioprocess. Furthermore, the new cellodextrin metabolism endows the biocatalyst the ability to evade catabolite repression, a cellular regulatory mechanism that is hampering rapid conversion of biomass sugars to products. Together, the new paradigm offers significant advantages over the old and promises to overcome several critical barriers in biomass technology. More research, however, is needed to realize these promises, especially in discovery and engineering of cellodextrin transporters, in developing a cost-effective method for cellodextrin generation, and in better integration of cellodextrin metabolism to endogenous glycolysis.

  17. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    PubMed Central

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  18. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  19. High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release.

    PubMed

    Gagnon, Susannah M L; Legg, Max S G; Sindhuwinata, Nora; Letts, James A; Johal, Asha R; Schuman, Brock; Borisova, Svetlana N; Palcic, Monica M; Peters, Thomas; Evans, Stephen V

    2017-10-01

    The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-β-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-β-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-β-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the β-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Monosaccharides as Scaffolds for the Synthesis of Novel Compounds

    NASA Astrophysics Data System (ADS)

    Murphy, Paul V.; Velasco-Torrijos, Trinidad

    This chapter focuses on monosaccharides and scaffolds their derivatives as scaffolds for the synthesis of primarily bioactive compounds. Such carbohydrate derivatives have been designed to modulate mainly protein-protein and peptide-protein interactions although modulators of carbohydrate-protein and carbohydrate-nucleic acid interactions have also been of interest. The multiple hydroxyl groups that are present on saccharides have made pyranose, furanose and iminosugars ideal templates or scaffolds to which recognition or pharmacophoric groups can be grafted to generate novel compounds for medicinal chemistry. The synthesis of compounds for evaluations require strategies for regioselective reactions of saccharide hydroxyl groups and use of orthogonally stable protecting groups. Syntheses have been carried out on the solid phase and in solution. Also the use of uronic acids, amino sugars and sugar amino acids has facilitated the synthesis of peptidomimetics and prospecting libraries as they enable, through presence of amino or carboxylic acid groups, chemoselective approaches to be employed in solution and on solid phase. Sugar amino acids are readily incorporated, as peptide isosteres, to generate sugar-peptide hybrids or for the synthesis of novel carbopeptoids . The synthesis of new cyclic compounds, derived in part from saccharides, and their application as scaffolds is an emerging area and recent examples include spirocyclic compounds, benzodiazepine-saccharide hybrids and macrolide-saccharide hybrids. Potent bioactive saccharide derivatives have been identified that include enzyme inhibitors , somatostatin receptor ligands, integrin ligands, anti-viral compounds, shiga toxin inhibitors and cell growth inhibitors. Some saccharide derivatives have demonstrated improved cellular permeability when compared with peptides and are in clinical trials.

  1. Metabolic Control of Tobacco Pollination by Sugars and Invertases1

    PubMed Central

    Goetz, Marc; Hirsche, Jörg; Bauerfeind, Martin Andreas; González, María-Cruz; Hyun, Tae Kyung; Eom, Seung Hee; Chriqui, Dominique; Engelke, Thomas; Großkinsky, Dominik K.; Roitsch, Thomas

    2017-01-01

    Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates. PMID:27923989

  2. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    PubMed

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Seed gum of Stryphnodendron barbatiman (Barbatimao)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reicher, F.; Leitner, S.C.S.; Fontana, J.D.

    1991-12-31

    Stryphnodendron barbatiman (barbatimao) is a native tree that is found throughout the {open_quotes}Cerrados,{close_quotes} a region of Central Brazil. Plant seeds, on water extraction, furnished 28 g% galactomannan (dry-weight basis), the monosaccharide composition of which (galactose to mannose ratio, 1.0:1.5) fits in the legume heteromannan group. This seed gum, after Sevag deproteinization, still retained 6 g% of associated protein and had a molecular weight of about 1.8 MD on gel filtration. A high intrinsic viscosity (1300 cP) was observed for the polysaccharide sample obtained after reflux of the crushed seeds in 80% aqueous methanol.

  4. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  5. Current studies on biological tagatose production using L-arabinose isomerase: a review and future perspective.

    PubMed

    Kim, Pil

    2004-08-01

    D-Tagatose is a hexoketose monosaccharide sweetener, which is an isomer of D-galactose and is rarely found in nature. Recently, there has been industrial interest in D-tagatose as a low-calorie sugar-substituting sweetener. This article describes the properties and metabolism of tagatose as well as its commercial importance. The comparison between the biological tagatose production and the chemical production was reviewed based on the example of the glucose isomerization into fructose. The industrial problems facing its commercial application is described and evolving potential solutions are suggested.

  6. Identification of the products of the cleavage of the galactans of red seaweeds in the form of pyridylamino derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usov, A.I.; Dobkina, I.M.

    1986-06-01

    It has been shown that pyridylamino derivatives are convenient for the identification of various products of the galactans of red algae. Reductive amination with 2-aminopyridine and sodium thiohydroborate has been investigated for the case of several monosaccharides that are common components of the polysaccharide fractions of red seaweeds and also for carrabiose, agarobiose, and oligosaccharides of the neoagarobiose series. Various forms of chromatography and high-voltage paper electrophoresis were used to separate the pyridylamino derivatives, and NMR spectroscopy and mass spectroscopy of the full acetates for structural characterization.

  7. Novel analytical approach to a multi-sugar whole gut permeability assay.

    PubMed

    van Wijck, Kim; van Eijk, Hans M H; Buurman, Wim A; Dejong, Cornelis H C; Lenaerts, Kaatje

    2011-09-15

    Many pathophysiological conditions are associated with increased gastrointestinal permeability, reflecting an elevated risk of endotoxaemia, inflammation, and sepsis. Permeability tests are increasingly used in clinical practice to obtain information on gastrointestinal functioning, but tests are often restricted to the small intestine, and require large oral sugar doses. Therefore, a novel multi-sugar assay was developed, allowing assessment of whole gut permeability changes in urinary and plasma samples collected at regular intervals from 10 healthy volunteers at baseline and after intake of monosaccharides (rhamnose and erythritol) and disaccharides (sucrose, lactulose, and sucralose). Samples were analyzed by isocratic cation-exchange LC-MS. Sample preparation and detection conditions were optimized. After centrifugation, chromatographic separation was achieved on an IOA-1000 column set at 30°C. Column effluent was mixed with ammonia for sugar-ammonium adduct formation. The lower limit of detection was 0.05 μmol/L for disaccharides and 0.1 μmol/L for monosaccharides. Linearity for each probe was between 1 and 1000 μmol/L (R(2): 0.9987-0.9999). Coefficients of variation were <5% in urine, and <9% in plasma. Recovery data were within the 90% to 110% range at all spiked concentrations. This highly sensitive novel LC-MS approach resulted in a significant decrease of the detection limit for all sugar probes, allowing a 5-fold reduction of the commonly used lactulose dose and the addition of sugar probes to also assess the gastroduodenal and colon permeability. In combination with its extended application in plasma, these features make the novel assay a promising tool in the assessment of site-specific changes in gastrointestinal permeability in clinical practice. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity.

    PubMed Central

    Dean, P M; Matthews, E K; Sakamoto, Y

    1975-01-01

    1. The effects of monosaccharides, glycolytic intermediates, metabolic inhibitors and anxia, have been studied on the membrane electrical activity of mouse pancreatic islet cells in vitro using a single intracellular micro-electrode for both voltage recording and current injection. 2. In addition to D-glucose (28mM), D-mannose (16-6mM), and L-leucin (10mM), the substances D-glyceraldehyde (11mM), and acetoacetate (20 mM), induced action potentials in islet cells but other glucos analogues and metabolic intermediates including L-glucose dod not. 3. Mannoheptulose 20 mM), but not D-galactose or 2-deoxy-D-glucose, antagonized the electrical activity induced in islet cells by D-glucose, 28mM. Prior treatment of the cells with mannoheptulose caused them to hyperpolarize and completely prevented the appearance of electrical activity on subsequent exposure to D-glucose. 4. Electrical activity induced by D0glucose 28mM, was progressively inhibited by phloridzin, 10mM, if the cells were exposed to D-glucose and inhibitor simultaneously, and abolished on pretreatment with inhibitor for 30-60 min. Phloridzin also caused depolarization of the islet cells which was independent of extracellular glucose. 5. Anoxia completely blocked the electrical activity induced by glucose but not that evoked by D-glyceraldehyde, L-leucine, tolbutamide or glibenclamide. 6. Iodoacetic acid, 5 mM, rapidly blocked glucose-induced electrical activity whilst that elicited by tolbutamide was relatively resistant to inhibition. 7. The nature and possible location of the glucoreceptor in pancreatic islet cells is discussed in relation to the origin and functional significance of glucose-induced electrical activity and insulin secretion. PMID:1095722

  9. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    PubMed Central

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties. PMID:25414708

  10. Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats.

    PubMed

    Goss, M J; Nunes, M L O; Machado, I D; Merlin, L; Macedo, N B; Silva, A M O; Bresolin, T M B; Santin, J R

    2018-06-01

    The increase in fructose consumption in the last decades has an important correlation with the growth of overweight population. Fructose is a monosaccharide found in fruits, vegetables and honey, however, it is widely used in processed food and beverages such as sweeteners. This monosaccharide is metabolized in the liver, so it can produce glucose, lactate, triglycerides, free fatty acids and uric acid, which are responsible for negative effects on the liver and extrahepatic tissues. One effect of the high consumption of fructose is the resistance to Insulin, which appears to be an important issue in the development of metabolic abnormalities observed in animals that were subjected to a high fructose diet. The population and, consequently, the market search for natural sources to manage metabolic abnormalities is increasing, but, adequate scientific proof still is necessary. The Passiflora edulis peel flour (PEPF) is a byproduct of the juice industry, and, represents an important source of fiber and bioactive compounds. The present study investigates the PEPF supplementation (30%) effects on insulin sensitivity, adiposity and metabolic parameters in young rats that were given beverages enriched with 10% of fructose for 8 weeks. Fructose intake induced insulin resistance, increased serum triglycerides levels, growth of fat deposits in the liver and widening of the diameter of adipocytes. In contrast, the group that received PEPF did not present such abnormalities, which could be related to the presence of fiber or bioactive compounds (phenolics compounds, e.g., caffeic acid and isoorientin) in its composition, as identified by analytical methods. Thus, for the first time, it has been demonstrated that PEPF supplementation prevents insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilli, S.; Garnett, J.L.

    In a study of the mechanism of radiation-induced reactions with cellulose, the radiation chemistry of a number of simple crystalline sugars and polysaccharides was investigated. All solid sugars were irradiated in both air and vacuum to total doses of 10/sup 7/ and 10/sup 8/ rad in a Co/sup 60/ source at 1.25 megarad/hr. Examination of the gaseous products showed that irradiated cellobiose yields a relatively high hydrogen content, while amylose and amylopectin (amorphous) at doses of 10/sup 8/ rads show the presence of no water vapor. The same gases were also reported to result from the irradiation of crystalline glucose.more » In the solid state, the majority of the saccharides showed marked color changes following irradiation. The se colors, which were unchanged after 2 yr, varied from bright yellow with amylose, amylopectin, and glucose to dark brown with sucrose. Melibiose, lyxose, and fucose showed no change. Aqueous solutions of the irradiated materials were distinctly acid (pH 3-5). Paper chromatographic examination of the aqueous carbohydrate solutions showed no differences for the carbohydrates irradiated in air or vacuum. In marked contrast to the monosaccharides, the radiation stability of disaccharides was relatively poor. Each of the disaccharides tested yielded a large number of degradation products of which the component monosaccharides predominated. With the irradiated polysaccharides (amylose, amylopectin, and cellulose) characteristic chromatographic behavior in all solvents was a trail of reducing material often running to the end of the sheet. In the chromatography of all three compounds, only a faint spot corresponding to glucose was observed. Data are tabulated for the gas yields (H/sub 2/, CH/sub 4/, H/sub 2/O, CO, CO/sub 2/) and Rf values of the products from the irradiation of amylose, amylopectin, cellulose, trehalose, cellobiose, maltose, sucrose, lactose, and melibiose. (BBB)« less

  12. Polysaccharides from the South African medicinal plant Artemisia afra: Structure and activity studies.

    PubMed

    Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred

    2018-01-01

    Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise

    PubMed Central

    Trommelen, Jorn; Fuchs, Cas J.; Beelen, Milou; Lenaerts, Kaatje; Jeukendrup, Asker E.; Cermak, Naomi M.; van Loon, Luc J. C.

    2017-01-01

    Peak exogenous carbohydrate oxidation rates typically reach ~1 g·min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL·kg−1·min−1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g·min−1 of glucose (GLU), 1.2 g·min−1 glucose + 0.6 g·min−1 fructose (GLU + FRU), 0.6 g·min−1 glucose + 1.2 g·min−1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g·min−1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g·min−1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g·min−1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g·min−1) with glucose (1.2 g·min−1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. PMID:28230742

  14. Fructose and Sucrose Intake Increase Exogenous  Carbohydrate Oxidation during Exercise.

    PubMed

    Trommelen, Jorn; Fuchs, Cas J; Beelen, Milou; Lenaerts, Kaatje; Jeukendrup, Asker E; Cermak, Naomi M; van Loon, Luc J C

    2017-02-20

    Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min-1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL∙kg-1∙min-1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g∙min-1 of glucose (GLU), 1.2 g∙min-1 glucose + 0.6 g∙min-1 fructose (GLU + FRU), 0.6 g∙min-1 glucose + 1.2 g∙min-1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g∙min-1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g∙min-1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g∙min-1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g∙min-1) with glucose (1.2 g∙min-1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists.

  15. Unique N-Glycan Moieties of the 66-kDa Cell Wall Glycoprotein from the Red Microalga Porphyridium sp.

    PubMed Central

    Levy-Ontman, Oshrat; Arad, Shoshana (Malis); Harvey, David J.; Parsons, Thomas B.; Fairbanks, Antony; Tekoah, Yoram

    2011-01-01

    We report here the structural determination of the N-linked glycans in the 66-kDa glycoprotein, part of the unique sulfated complex cell wall polysaccharide of the red microalga Porphyridium sp. Structures were elucidated by a combination of normal phase/reverse phase HPLC, positive ion MALDI-TOF MS, negative ion electrospray ionization, and MS/MS. The sugar moieties of the glycoprotein consisted of at least four fractions of N-linked glycans, each composed of the same four monosaccharides, GlcNAc, Man, 6-O-MeMan, and Xyl, with compositions Man8–9Xyl1–2Me3GlcNAc2. The present study is the first report of N-glycans with the terminal Xyl attached to the 6-mannose branch of the 6-antenna and to the 3-oxygen of the penultimate (core) GlcNAc. Another novel finding was that all four glycans contain three O-methylmannose residues in positions that have never been reported before. Although it is known that some lower organisms are able to methylate terminal monosaccharides in glycans, the present study on Porphyridium sp. is the first describing an organism that is able to methylate non-terminal mannose residues. This study will thus contribute to understanding of N-glycosylation in algae and might shed light on the evolutionary development from prokaryotes to multicellular organisms. It also may contribute to our understanding of the red algae polysaccharide formation. The additional importance of this research lies in its potential for biotechnological applications, especially in evaluating the use of microalgae as cell factories for the production of therapeutic proteins. PMID:21515680

  16. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels

    NASA Astrophysics Data System (ADS)

    Pielesz, A.

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants.

  17. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    PubMed Central

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  18. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    PubMed

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  19. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components.

    PubMed

    Zhang, Yan; Shi, Junling; Gao, Zhenhong; Yangwu, Ruiming; Jiang, Huanshi; Che, Jinxin; Liu, Yanlin

    2015-06-01

    Phomopsis sp. XP-8 is an endophytic fungus that has the ability to produce pinoresinol diglucoside (PDG) in vitro and thus has potential application for the biosynthesis of PDG independent of plants. When cultivated in mung bean medium, PDG production was significantly improved and pinoresinol monoglucoside (PMG) and pinoresinol (Pin) were also found in the culture medium. In this experiment, starch, protein, and polysaccharides were isolated from mung beans and separately used as the sole substrate in order to explore the mechanism of fermentation and identify the major substrates that attributed to the biotransformation of PDG, PMG, and Pin. The production of PDG, PMG, and Pin was monitored using high-performance liquid chromatography (HPLC) and confirmed using HPLC-MS. Activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) were analyzed and tracked during the cultivation. The reaction system contained the compounds isolated from mung bean in the designed amount. Accumulation of phenylalanine, cinnamic acid, p-coumaric acid, PDG, PMG, and Pin and the activities of PAL, C4H, and 4CL were measured during the bioconversion. PMG was found only when mung bean polysaccharide was analyzed, while production of PDG and Pin were found when both polysaccharide and starch were analyzed. After examining the monosaccharide composition of the mung bean polysaccharide and the effect of the different monosaccharides had on the production of PMG, PDG, and Pin, galactose in mung bean polysaccharide proved to be the major factor that stimulates the production of PMG.

  20. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels.

    PubMed

    Pielesz, A

    2012-07-01

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Structural elucidation of rhamnogalacturonans from flaxseed hulls.

    PubMed

    Qian, Ke-Ying; Cui, Steve W; Nikiforuk, John; Goff, H Douglas

    2012-11-15

    The structure of acidic fraction gum (AFG) from flaxseed hulls was elucidated by methylation analysis and 1D/2D NMR spectroscopy. This acidic fraction was separated from water-soluble flaxseed gum using anion-exchange chromatography. AFG consisted of a rhamnogalacturonan-I (RG-I) backbone that features diglycosyl repeating units, →2)-α-l-Rhap-(1→4)-α-d-GalpA-(1→. Rhamnosyl residues (38.2%) were the most abundant neutral sugar component. It was present mainly as unbranched (16.5%) and branched (19.5%) →2)-α-l-Rhap-(1→ at O-3. Most of its branches were terminated by monosaccharides, α/β-d-Galp-(1→ (19.6%), α-l-Fucp-(1→ (4.5%) or β-d-Xylp-(1→ (3.1%). However, when this branching site was occasionally appended with →4)-α-d-GalpA-(1→ or →2)-α-l-Rhap-(1→, side chains may consist of rhamnogalacturonan-I (RG-I), homorhamnan (HR) or a mixture of both. AFG was highly branched as indicated by its high degree of branching (0.55). A possible structure of AFG was proposed: (HR, RG-I, and HG refer to homorhamnan, rhamnogalacturonan-I, and homogalacturonan, respectively. The locations of HR, RG-I, and HG are interchangeable; (m+n)/(n+i)≈1.5. The substitution rate of R(1) is ∼54%. R(1) is mostly monosaccharide (α/β-d-Galp-(1→, α-l-Fucp-(1→ or β-d-Xylp-(1→). R(1) may also occasionally be a longer side chain with more than two residues beginning with →4)-α-GalpA-(1→ or →2)-α-l-Rhap-(1→, wherein the side-chain structure may be similar to part of the main chain.). Copyright © 2012. Published by Elsevier Ltd.

  2. The effects of high fructose syrup.

    PubMed

    Moeller, Suzen M; Fryhofer, Sandra Adamson; Osbahr, Albert J; Robinowitz, Carolyn B

    2009-12-01

    High fructose corn syrup (HFCS) has become an increasingly common food ingredient in the last 40 years. However, there is concern that HFCS consumption increases the risk for obesity and other adverse health outcomes compared to other caloric sweeteners. The most commonly used types of HFCS (HFCS-42 and HFCS-55) are similar in composition to sucrose (table sugar), consisting of roughly equal amounts of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in disaccharide form in sucrose. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. The advantage to food manufacturers is that the free monosaccharides in HFCS provide better flavor enhancement, stability, freshness, texture, color, pourability, and consistency in foods in comparison to sucrose. Because the composition of HFCS and sucrose is so similar, particularly on absorption by the body, it appears unlikely that HFCS contributes more to obesity or other conditions than sucrose does. Nevertheless, few studies have evaluated the potentially differential effect of various sweeteners, particularly as they relate to health conditions such as obesity, which develop over relatively long periods of time. Improved nutrient databases are needed to analyze food consumption in epidemiologic studies, as are more strongly designed experimental studies, including those on the mechanism of action and relationship between fructose dose and response. At the present time, there is insufficient evidence to ban or otherwise restrict use of HFCS or other fructose-containing sweeteners in the food supply or to require the use of warning labels on products containing HFCS. Nevertheless, dietary advice to limit consumption of all added caloric sweeteners, including HFCS, is warranted.

  3. Content and Vacuole/Extravacuole Distribution of Neutral Sugars, Free Amino Acids, and Anthocyanin in Protoplasts 1

    PubMed Central

    Wagner, George J.

    1979-01-01

    Neutral sugar, free amino acid, and anthocyanin levels and vacuole/extravacuole distribution were determined for Hippeastrum and Tulipa petal and Tulipa leaf protoplasts. Glucose and fructose, the predominant neutral monosaccharides observed, were primarily vacuolar in location. Glutamine, the predominant free amino acid found, was primarily extravacuolar. γ-Methyleneglutamate was identified as a major constituent of Tulipa protoplasts. Qualitative characterization of Hippeastrum petal and vacuole organic acids indicated the presence of oxalic, malic, citric, and isocitric acids. Data are presented which indicate that vacuoles obtained by gentle osmotic shock of protoplasts in dibasic phosphate have good purity and retain their contents. Images PMID:16660921

  4. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    PubMed

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  5. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes

    PubMed Central

    DiNicolantonio, James J; Bhutani, Jaikrit; O'Keefe, James H

    2015-01-01

    α-Glucosidase inhibitors (AGIs) are a class of oral glucose-lowering drugs used exclusively for treatment or prevention of type 2 diabetes mellitus. AGIs act by altering the intestinal absorption of carbohydrates through inhibition of their conversion into simple sugars (monosaccharides) and thus decrease the bioavailability of carbohydrates in the body, significantly lowering blood glucose levels. The three AGIs used in clinical practice are acarbose, voglibose and miglitol. This review will focus on the cardiovascular properties of acarbose. The current available data suggest that AGIs (particularly acarbose) may be safe and effective for the treatment of prediabetes and diabetes. PMID:26512331

  6. Structural analysis of glycoproteins: building N-linked glycans with Coot.

    PubMed

    Emsley, Paul; Crispin, Max

    2018-04-01

    Coot is a graphics application that is used to build or manipulate macromolecular models; its particular forte is manipulation of the model at the residue level. The model-building tools of Coot have been combined and extended to assist or automate the building of N-linked glycans. The model is built by the addition of monosaccharides, placed by variation of internal coordinates. The subsequent model is refined by real-space refinement, which is stabilized with modified and additional restraints. It is hoped that these enhanced building tools will help to reduce building errors of N-linked glycans and improve our knowledge of the structures of glycoproteins.

  7. Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles.

    PubMed

    Feast, George C; Lepitre, Thomas; Tran, Nhiem; Conn, Charlotte E; Hutt, Oliver E; Mulet, Xavier; Drummond, Calum J; Savage, G Paul

    2017-03-01

    The lyotropic phase behaviour of a library of sugar-based amphiphiles was investigated using high-throughput small-angle X-ray scattering (SAXS). Double unsaturated-chain monosaccharide amphiphiles formed inverse hexagonal and cubic micellar (Fd3m) lyotropic phases under excess water conditions. A galactose-oleyl amphiphile from the library was subsequently formulated into hexosome nanoparticles, which have potential uses as drug delivery vehicles. The nanoparticles were shown to be stable at elevated temperatures and non-cytotoxic up to at least 200μgmL -1 . Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Diet and Inflammatory Bowel Disease

    PubMed Central

    Knight-Sepulveda, Karina; Kais, Susan; Santaolalla, Rebeca

    2015-01-01

    Patients with inflammatory bowel disease (IBD) are increasingly becoming interested in nonpharmacologic approaches to managing their disease. One of the most frequently asked questions of IBD patients is what they should eat. The role of diet has become very important in the prevention and treatment of IBD. Although there is a general lack of rigorous scientific evidence that demonstrates which diet is best for certain patients, several diets—such as the low-fermentable oligosaccharide, disaccharide, monosaccharide, and polyol diet; the specific carbohydrate diet; the anti-inflammatory diet; and the Paleolithic diet—have become popular. This article discusses the diets commonly recommended to IBD patients and reviews the supporting data. PMID:27118948

  9. Diet and Inflammatory Bowel Disease.

    PubMed

    Knight-Sepulveda, Karina; Kais, Susan; Santaolalla, Rebeca; Abreu, Maria T

    2015-08-01

    Patients with inflammatory bowel disease (IBD) are increasingly becoming interested in nonpharmacologic approaches to managing their disease. One of the most frequently asked questions of IBD patients is what they should eat. The role of diet has become very important in the prevention and treatment of IBD. Although there is a general lack of rigorous scientific evidence that demonstrates which diet is best for certain patients, several diets-such as the low-fermentable oligosaccharide, disaccharide, monosaccharide, and polyol diet; the specific carbohydrate diet; the anti-inflammatory diet; and the Paleolithic diet-have become popular. This article discusses the diets commonly recommended to IBD patients and reviews the supporting data.

  10. Synthetic Polymers from Readily Available Monosaccharides

    NASA Astrophysics Data System (ADS)

    Galbis, J. A.; García-Martín, M. G.

    The low degradability of petroleum-based polymers and the massive use of these materials constitute a serious problem because of the environmental pollution that they can cause. Thus, sustained efforts have been extensively devoted to produce new polymers based on natural renewing resources and with higher degradability. Of the different natural sources, carbohydrates stand out as highly convenient raw materials because they are inexpensive, readily available, and provide great stereochemical diversity. New polymers, analogous to the more accredited technical polymers, but based on chiral monomers, have been synthesized from natural and available sugars. This chapter describes the potential of sugar-based monomers as precursors to a wide variety of macromolecular materials.

  11. Purification, characterization and antioxidant activities in vitro and in vivo of the polysaccharides from Boletus edulis bull.

    PubMed

    Luo, Aoxue; Luo, Aoshuang; Huang, Jiandong; Fan, Yijun

    2012-07-05

    A water-soluble polysaccharide (BEBP) was extracted from Boletus edulis Bull using hot water extraction followed by ethanol precipitation. The polysaccharide BEBP was further purified by chromatography on a DEAE-cellulose column, giving three major polysaccharide fractions termed BEBP-1, BEBP-2 and BEBP-3. In the next experiment, the average molecular weight (Mw), IR and monosaccharide compositional analysis of the three polysaccharide fractions were determined. The evaluation of antioxidant activities both in vitro and in vivo suggested that BEBP-3 had good potential antioxidant activity, and should be explored as a novel potential antioxidant.

  12. Structural studies of O-polysaccharide isolated from Cronobacter sakazakii Sequence Type 12 from a case of neonatal necrotizing enterocolitis.

    PubMed

    Marszewska, Kinga; Czerwicka, Małgorzata; Forsythe, Stephen J; Ossowska, Karolina; Dziadziuszko, Halina; Kaczyński, Zbigniew

    2015-04-30

    The O-polysaccharide (OPS) of Cronobacter sakazakii NTU 696 (Sequence Type 12) from a case of neonatal necrotizing enterocolitis was isolated from the polysaccharide fraction obtained after lipopolysaccharide (LPS) hydrolysis. Purified OPS was analyzed by NMR spectroscopy ((1)H, COSY, TOCSY, NOESY, HSQC, HSQC-TOCSY and HMBC experiments) and chemical methods. Obtained monosaccharide derivatives analyzed by gas chromatography and gas chromatography-mass spectrometry allowed the identification of six sugar components. Performed experiments enabled to establish a structure of the OPS repeating unit of C. sakazakii NTU 696, as: [structure: see text]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synthesis of 4-amino-5-H-2,3-dihydroisothiazole-1,1-dioxide ring systems on sugar templates via carbanion-mediated sulfonamide intramolecular cyclization reactions (CSIC protocols) of glyco-alpha-sulfonamidonitriles.

    PubMed

    Domínguez, Laura; van Nhien, Albert Nguyen; Tomassi, Cyrille; Len, Christophe; Postel, Denis; Marco-Contelles, José

    2004-02-06

    The carbanion-mediated sulfonate intramolecular cyclizations (CSIC protocols) of glyco-alpha-sulfonamidonitriles derived from readily available monosaccharides have been extensively investigated using potassium carbonate, cesium carbonate, n-BuLi, and LDA as bases. As a result, a series of enantiomerically pure spiro(4-amino-5-H-2,3-dihydroisothiazole-1,1-dioxide) derivatives have been prepared efficiently and isolated in good yield. The synthesis of these new bicyclic systems is key to accessing a novel range of aza analogues of TSAO nucleosides (ATSAOs).

  14. Triterpenoid Saponins from Anemone rivularis var. Flore-Minore and Their Anti-Proliferative Activity on HSC-T6 Cells.

    PubMed

    Wang, Xiao-Yang; Gao, Hui; Xie, Xiao-Jie; Jurhiin, Jirimubatu; Zhang, Mu-Zi-He; Zhou, Yan-Ping; Liu, Rui; Ning, Meng; Han, Jin; Tang, Hai-Feng

    2018-02-23

    Five previously undescribed triterpenoid saponins ( 1 - 5 ), along with eight known ones ( 6 - 13 ), were isolated from the whole plants of Anemone rivularis var. flore-minore . Their structures were clarified by extensive spectroscopic data and chemical evidence. For the first time, the lupane-type saponins ( 3 and 12 ) were reported from the Anemone genus. The anti-proliferative activity of all isolated saponins was evaluated on hepatic stellate cells (HSC-T6). Saponins 12 and 13 , which possess more monosaccharides than the others, displayed potent anti-proliferative activity, with IC 50 values of 18.21 and 15.56 μM, respectively.

  15. Enzymatic approaches to rare sugar production.

    PubMed

    Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    Rare sugars have recently attracted much attention because of their potential applications in the food, nutraceutical, and pharmaceutical industries. A systematic strategy for enzymatic production of rare sugars, named Izumoring, was developed >10years ago. The strategy consists of aldose-ketose isomerization, ketose C-3 epimerization, and monosaccharide oxidation-reduction. Recent development of the Izumoring strategy is reviewed herein, especially the genetic approaches to the improvement of rare sugar-producing enzymes and the applications of target-oriented bioconversion. In addition, novel non-Izumoring enzymatic approaches are also summarized, including enzymatic condensation, phosphorylation-dephosphorylation cascade reaction, aldose epimerization, ulosonic acid decarboxylation, and biosynthesis of rare disaccharides. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Square sugars: challenges and synthetic strategies.

    PubMed

    Hazelard, Damien; Compain, Philippe

    2017-05-10

    Square sugars (4-membered ring carbohydrate mimetics) are at the intersection of several important topics concerning the recent emergence, in medicinal chemistry, of glycomimetic drugs and small ring systems. Monosaccharide mimetics containing oxetane, azetidine, thiethane or cyclobutane rings present a number of synthetic challenges that are a powerful driving force for innovation in organic synthesis. In addition to the inherent issues associated with 4-membered rings, the high density of functional groups and asymmetric centres found in glycomimetics further complicates the matter and requires efficient stereoselective methodologies. The purpose of this review is to present an overview of the elegant strategies that have been developed to synthesize the different types of square sugars.

  17. A perspective on the primary and three-dimensional structures of carbohydrates.

    PubMed

    Widmalm, Göran

    2013-08-30

    Carbohydrates, in more biologically oriented areas referred to as glycans, constitute one of the four groups of biomolecules. The glycans, often present as glycoproteins or glycolipids, form highly complex structures. In mammals ten monosaccharides are utilized in building glycoconjugates in the form of oligo- (up to about a dozen monomers) and polysaccharides. Subsequent modifications and additions create a large number of different compounds. In bacteria, more than a hundred monosaccharides have been reported to be constituents of lipopolysaccharides, capsular polysaccharides, and exopolysaccharides. Thus, the number of polysaccharide structures possible to create is huge. NMR spectroscopy plays an essential part in elucidating the primary structure, that is, monosaccharide identity and ring size, anomeric configuration, linkage position, and sequence, of the sugar residues. The structural studies may also employ computational approaches for NMR chemical shift predictions (CASPER program). Once the components and sequence of sugar residues have been unraveled, the three-dimensional arrangement of the sugar residues relative to each other (conformation), their flexibility (transitions between and populations of conformational states), together with the dynamics (timescales) should be addressed. To shed light on these aspects we have utilized a combination of experimental liquid state NMR techniques together with molecular dynamics simulations. For the latter a molecular mechanics force field such as our CHARMM-based PARM22/SU01 has been used. The experimental NMR parameters acquired are typically (1)H,(1)H cross-relaxation rates (related to NOEs), (3)JCH and (3)JCCtrans-glycosidic coupling constants and (1)H,(13)C- and (1)H,(1)H-residual dipolar couplings. At a glycosidic linkage two torsion angles ϕ and ψ are defined and for 6-substituted residues also the ω torsion angle is required. Major conformers can be identified for which highly populated states are present. Thus, in many cases a well-defined albeit not rigid structure can be identified. However, on longer timescales, oligosaccharides must be considered as highly flexible molecules since also anti-conformations have been shown to exist with H-C-O-C torsion angles of ∼180°, compared to syn-conformations in which the protons at the carbon atoms forming the glycosidic linkage are in close proximity. The accessible conformational space governs possible interactions with proteins and both minor changes and significant alterations occur for the oligosaccharides in these interaction processes. Transferred NOE NMR experiments give information on the conformation of the glycan ligand when bound to the proteins whereas saturation transfer difference NMR experiments report on the carbohydrate part in contact with the protein. It is anticipated that the subtle differences in conformational preferences for glycan structures facilitate a means to regulate biochemical processes in different environments. Further developments in the analysis of glycan structure and in particular its role in interactions with other molecules, will lead to clarifications of the importance of structure in biochemical regulation processes essential to health and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Glycolaldehyde Formation via the Dimerization of the Formyl Radical

    NASA Astrophysics Data System (ADS)

    Woods, Paul M.; Slater, Ben; Raza, Zamaan; Viti, Serena; Brown, Wendy A.; Burke, Daren J.

    2013-11-01

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  19. Studies on the constituents of seeds of Pachyrrhizus erosus and their anti herpes simplex virus (HSV) activities.

    PubMed

    Phrutivorapongkul, Ampai; Lipipun, Vimolmas; Ruangrungsi, Nijsiri; Watanabe, Toshiko; Ishikawa, Tsutomu

    2002-04-01

    Studies on the chemical constituents of the seeds of Pachyrrhizus erosus (Leguminosae) resulted in the isolation of nine known components: five rotenoids [dolineone (3), pachyrrhizone (5), 12a-hydroxydolineone (7), 12a-hydroxypachyrrhizone (9), and 12a-hydroxyrotenone (2)], two isoflavonoids [neotenone (4) and dehydroneotenone (8)], one phenylfuranocoumarin [pachyrrhizine (6)], and a monosaccharide (dulcitol). The full 1H- and 13C-NMR assignments for the isolated products except a sugar, including revision of previous assignments in the literature, are reported. Moderate anti herpes simplex virus (HSV) activity was observed in 12a-hydroxydolineone (7) and 12a-hydroxypachyrrhizone (9) among the isolated products.

  20. Metabolomic Analyses of Blood Plasma after Oral Administration of D-Glucosamine Hydrochloride to Dogs

    PubMed Central

    Osaki, Tomohiro; Azuma, Kazuo; Kurozumi, Seiji; Takamori, Yoshimori; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Minami, Saburo

    2012-01-01

    D-Glucosamine hydrochloride (GlcN∙HCl) is an endogenous amino monosaccharide synthesized from glucose that is useful in the treatment of joint diseases in both humans and animals. The aim of this study was to examine amino acid metabolism in dogs after oral administration of GlcN∙HCl. Accelerated fumarate respiration and elevated plasma levels of lactic acid and alanine were observed after administration. These results suggest that oral administration of GlcN∙HCl induces anaerobic respiration and starvation in cells, and we hypothesize that these conditions promote cartilage regeneration. Further studies are required to evaluate the expression of transforming growth factor-beta (TGF-β). PMID:23015778

  1. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    PubMed

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  2. Logical hypothesis: Low FODMAP diet to prevent diverticulitis

    PubMed Central

    Uno, Yoshiharu; van Velkinburgh, Jennifer C

    2016-01-01

    Despite little evidence for the therapeutic benefits of a high-fiber diet for diverticulitis, it is commonly recommended as part of the clinical management. The ongoing uncertainty of the cause(s) of diverticulitis confounds attempts to determine the validity of this therapy. However, the features of a high-fiber diet represent a logical contradiction for colon diverticulitis. Considering that Bernoulli’s principle, by which enlarged diameter of the lumen leads to increased pressure and decreased fluid velocity, might contribute to development of the diverticulum. Thus, theoretically, prevention of high pressure in the colon would be important and adoption of a low FODMAP diet (consisting of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) may help prevent recurrence of diverticulitis. PMID:27867683

  3. Hierarchical SAPO‐34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates

    PubMed Central

    Miletto, Ivana; Ivaldi, Chiara; Paul, Geo; Chapman, Stephanie; Marchese, Leonardo; Raja, Robert

    2018-01-01

    Abstract In a distinct, bottom‐up synthetic methodology, monosaccharides (fructose and glucose) and disaccharides (sucrose) have been used as mesoporogens to template hierarchical SAPO‐34 catalysts. Detailed materials characterization, which includes solid‐state magic angle spinning NMR and probe‐based FTIR, reveals that, although the mesopore dimensions are modified by the identity of the sugar template, the desirable acid characteristics of the microporous framework are retained. When the activity of the hierarchical SAPO‐34 catalysts was evaluated in the industrially relevant Beckmann rearrangement, under liquid‐phase conditions, the enhanced mass‐transport properties of sucrose‐templated hierarchical SAPO‐34 were found to deliver a superior yield of ϵ‐caprolactam. PMID:29686961

  4. Lectins: production and practical applications

    PubMed Central

    2010-01-01

    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754

  5. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  6. Thiol-ene mediated neoglycosylation of collagen patches: a preliminary study.

    PubMed

    Russo, Laura; Battocchio, Chiara; Secchi, Valeria; Magnano, Elena; Nappini, Silvia; Taraballi, Francesca; Gabrielli, Luca; Comelli, Francesca; Papagni, Antonio; Costa, Barbara; Polzonetti, Giovanni; Nicotra, Francesco; Natalello, Antonino; Doglia, Silvia M; Cipolla, Laura

    2014-02-11

    Despite the relevance of carbohydrates as cues in eliciting specific biological responses, the covalent surface modification of collagen-based matrices with small carbohydrate epitopes has been scarcely investigated. We report thereby the development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol-ene approach, between alkene-derived monosaccharides and the thiol-functionalized material surface. Synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), Fourier transform-infrared (FT-IR), and enzyme-linked lectin assay (ELLA) confirmed the effectiveness of the collagen neoglycosylation. Preliminary biological evaluation in osteoarthritic models is reported. The proposed methodology can be extended to any thiolated surface for the development of smart biomaterials for innovative approaches in regenerative medicine.

  7. Carbohydrates as indicators of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lazareva, E. V.; Romankevich, E. A.

    2012-05-01

    A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.

  8. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    PubMed

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  9. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine.

    PubMed

    Conde, Artur; Regalado, Ana; Rodrigues, Diana; Costa, J Miguel; Blumwald, Eduardo; Chaves, M Manuela; Gerós, Hernâni

    2015-02-01

    Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-07-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.

  11. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-01-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud-Ocean Study (ASCOS) in August 2008, particulate and dissolved organic matter (POM, DOM) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  12. Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells

    PubMed Central

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation. PMID:20424595

  13. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-04-27

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.

  14. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.

    PubMed

    Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram

    2017-11-01

    Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MS n spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity.

    PubMed

    Mazzio, Elizabeth; Soliman, Karam F A

    2003-01-01

    1-Methyl-4-phenylpyridinium (MPP+) is a mitochondrial Complex I inhibitor and is frequently used to investigate the pathological degeneration of neurons associated with Parkinson's disease (PD). In vitro, extracellular concentration of glucose is one of the most critical factors in establishing the vulnerability of neurons to MPP+ toxicity. While glucose is the primary energy fuel for the brain, central nervous system (CNS) neurons can also take up and utilize other metabolic intermediates for energy. In this study, we compared various monosaccharides, disaccharides, nutritive/non-nutritive sugar alcohols, glycolytic and gluconeogenic metabolic intermediates for their cytoprotection against MPP+ in murine brain neuroblastoma cells. Several monosaccharides were effective against MMP+ (500 microM) including glucose, fructose and mannose, which restored cell viability to 109 +/- 5%, 70 +/- 5%, 99 +/- 3% of live controls, respectively. Slight protective effects were observed in the presence of 3-phosphoglyceric acid and glucose-6-phosphate; however, no protective effects were exhibited by galactose, sucrose, sorbitol, mannitol, glycerol or various gluconeogenic and ketogenic amino acids. On the other hand, fructose 1,6 bisphosphate and gluconeogenic energy intermediates [pyruvic acid, malic acid and phospho(enol)pyruvate (PEP)] were neuroprotective against MPP+. The gluconeogenic intermediates elevated intracellular levels of ATP and reduced propidium iodide (PI) nucleic acid staining to live controls, but did not alter the MPP(+)-induced loss of mitochondrial O2 consumption. These data indicate that malic acid, pyruvic acid and PEP contribute to anaerobic substrate level phosphorylation. The use of hydrazine sulfate to impede gluconeogenesis through PEP carboxykinase (PEPCK) inhibition heightened the protective effects of energy substrates possibly due to attenuated ATP demands from pyruvate carboxylase (PC) activity and pyruvate mitochondrial transport. It was concluded from these studies that several metabolic intermediates are effective in fueling anaerobic glycolysis during mitochondrial inhibition by MPP+.

  16. Conformational Study of DNA Sugars: from the Gas Phase to Solution

    NASA Astrophysics Data System (ADS)

    Uriarte, Iciar; Vallejo-López, Montserrat; Cocinero, Emilio J.; Corzana, Francisco; Davis, Benjamin G.

    2017-06-01

    Sugars are versatile molecules that play a variety of roles in the organism. For example, they are important in energy storage processes or as structural scaffolds. Here, we focus on the monosaccharide present in DNA by addressing the conformational and puckering properties in the gas phase of α- and β-methyl-2-deoxy-ribofuranoside and α- and β-methyl-2-deoxy-ribopiranoside. Other sugars have been previously studied in the gas phase The work presented here stems from a combination of chemical synthesis, ultrafast vaporization methods, supersonic expansions, microwave spectroscopy (both chirped-pulsed and Balle-Flygare cavity-based spectrometers) and NMR spectroscopy. Previous studies in the gas phase had been performed on 2-deoxyribose, but only piranose forms were detected. However, thanks to the combination of these techniques, we have isolated and characterized for the first time the conformational landscape of the sugar present in DNA in its biologically relevant furanose form. Our gas phase study serves as a probe of the conformational preferences of these biomolecules under isolation conditions. Thanks to the NMR experiments, we can characterize the favored conformations in solution and extract the role of the solvent in the structure and puckering of the monosaccharides. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J.-U. Grabow, J. A. Fernández, F. Castaño, Angew. Chem. Int. Edit. 2012, 51, 3119. P. Écija, I. Uriarte, L. Spada, B. G. Davis, W. Caminati, F. J. Basterretxea, A. Lesarri, E. J. Cocinero, Chem. Commun. 2016, 52, 6241. I. Peña, E. J. Cocinero, C. Cabezas, A. Lesarri, S. Mata, P. Écija, A. M. Daly, Á. Cimas, C. Bermúdez, F. J. Basterretxea, S. Blanco, J. A. Fernández, J. C. López, F. Castaño, J. L. Alonso, Angew. Chem. Int. Edit. 2013, 52, 11840.

  17. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE PAGES

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; ...

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.« less

  18. Compared to Sucrose, Previous Consumption of Fructose and Glucose Monosaccharides Reduces Survival and Fitness of Female Mice123

    PubMed Central

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-01-01

    Background: Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar—high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). Objectives: We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. Methods: We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays—seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Results: Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. Conclusion: This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. PMID:25733457

  19. Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy

    PubMed Central

    Niethamer, Terren K.; Yardeni, Tal; Leoyklang, Petcharat; Ciccone, Carla; Astiz-Martinez, Adrian; Jacobs, Katherine; Dorward, Heidi M.; Zerfas, Patricia M.; Gahl, William A.; Huizing, Marjan

    2012-01-01

    GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2 g/kg/day for 12 weeks), Neu5Ac (2g/kg/day for 12 weeks), or ManN (2g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation. PMID:23122659

  20. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    PubMed

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.

  1. Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves.

    PubMed

    Boudjeko, Thaddée; Megnekou, Rosette; Woguia, Alice Louise; Kegne, Francine Mediesse; Ngomoyogoli, Judith Emery Kanemoto; Tchapoum, Christiane Danielle Nounga; Koum, Olga

    2015-12-09

    Many plant polysaccharides have shown high antioxidant and immunostimulating properties and can be explored as novel molecules with biological properties that can potentially improve immune function. The objective of this work was to characterize soluble and cell wall polysaccharides isolated from the stem bark of Allanblackia floribunda and Chromolaena odorata leaves and to evaluate their antioxidant and immunomodulatory properties. Three polysaccharide fractions: soluble polysaccharides (PoS), pectins (Pec) and hemicelluloses (Hem) were extracted from A. floribunda stem bark and C. odorata leaves. These samples were analysed for their proteins, phenolic compounds and total sugar contents. The monosaccharide composition was determined by gas chromatography and arabinogalactan proteins content in PoS was evaluated by rocket electrophoresis. The in vitro antioxidant activities were evaluated by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis-3-éthylbenzylthiazoline-6-sulphonic acid (ABTS) radical scavenging assays and ferrous ions chelating activity. Immunomodulatory activities were performed on the peripheral blood mononuclear cells (PBMCs) using proliferation and enzyme linked immunospot (ELISPOT) method to determine the production of an interferon-gamma. The characterization of the various fractions showed varied metabolites in each plant. In PoS fractions, Ara and Gal were the major monosaccharides found, indicating that arabinogalactans are the primary macromolecules. Hem fractions contained predominantly Xyl and GalA for A. floribunda and Xyl (upto 80 %) for and C. odorata. A. floribunda Hem fraction and C. odorata PoS fraction showed significant DPPH and ABTS radical scavenging activities and immunostimulatory activity via stimulation of PBMC and production of IFN-γ in a dose-dependent manner. The results obtained from this study support the ethnomedicinal use of the stem bark of A. floribunda and leaves of C. odorata. Further research is necessary to have supporting evidence that the antioxidative and immunomodulative activities of these fractions are really connected to the polysaccharides and not polyphenols.

  2. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose. PMID:25790428

  3. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues.

    PubMed

    O'Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H; Fry, Stephen C

    2015-08-01

    During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). 'Pectins' and 'hemicelluloses', operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, 'U', was characterized by (1)H/(13)C-nuclear magnetic resonance spectroscopy and also enzymically. 'U' was identified as 3-O-methyl-D-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in 'higher' charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of 'higher' charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3-MeGal in charophytes and lycophytes but not in the 'intervening' bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-d-galactose residues

    PubMed Central

    O’Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H.; Fry, Stephen C.

    2015-01-01

    Background and Aims During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Methods Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). ‘Pectins’ and ‘hemicelluloses’, operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, ‘U’, was characterized by 1H/13C-nuclear magnetic resonance spectroscopy and also enzymically. Key Results ‘U’ was identified as 3-O-methyl-d-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in ‘higher’ charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of ‘higher’ charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Conclusions Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3-MeGal in charophytes and lycophytes but not in the ‘intervening’ bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades. PMID:26113633

  5. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice.

    PubMed

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-03-01

    Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar-high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays-seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. © 2015 American Society for Nutrition.

  6. Hydration index--a better parameter for explaining small molecule hydration in inhibition of ice recrystallization.

    PubMed

    Tam, Roger Y; Ferreira, Sandra S; Czechura, Pawel; Chaytor, Jennifer L; Ben, Robert N

    2008-12-24

    Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its respective hydration number reported in the literature. A hydration number reflects the number of tightly bound water molecules to the carbohydrate and is a function of carbohydrate stereochemistry. It was discovered that using the absolute hydration number of a carbohydrate does not allow one to accurately predict its ability to inhibit ice recrystallization. Consequently, we have defined a hydration index in which the hydration number is divided by the molar volume of the carbohydrate. This new parameter not only takes into account the number of water molecules tightly bound to a carbohydrate but also the size or volume of a particular solute and ultimately the concentration of hydrated water molecules. The hydration index of both mono- and disaccharides correlates well with experimentally measured RI activity. C-Linked derivatives of the monosaccharides appear to have RI activity comparable to that of their O-linked saccharides but a more thorough investigation is required. The relationship between carbohydrate concentration and RI activity was shown to be noncolligative and a 0.022 M solution of D-galactose (1) and C-linked galactose derivative (10) inhibited recrystallization as well as a 3% DMSO solution. The carbohydrates examined in this study did not possess any thermal hysteresis activity (selective depression of freezing point relative to melting point) or dynamic ice shaping. As such, we propose that they are inhibiting recrystallization at the interface between bulk water and the quasi liquid layer (a semiordered interface between ice and bulk water) by disrupting the preordering of water.

  7. Thermodynamical and excess thermoacoustical study on some monosaccharide (glucose) with enzyme amylase in aqueous media at 298.15 K

    NASA Astrophysics Data System (ADS)

    Nithiyanantham, S.; Palaniappan, L.

    2011-03-01

    Ultrasonic velocity (U), density (ρ) and viscosity (η) measurements have been carried out in three ternary mixtures of glucose with amylase in aqueous medium at 298.15 K. The experimental data have been used to calculate some derived parameters such as acoustical impedance (Z), relative association (RA), Rao's constant (R), Wada's constant (W), relaxation time (τ), relaxation amplitude (α/f2), relaxation strength (r), and some excess thermodynamical properties like excess adiabatic compressibility (βE), excess free length (LfE) excess free volume (VfE), excess internal pressure (πiE) and excess acoustical impedance (ZE). The above parameters have been evaluated and discussed in light of molecular interactions in the mixture.

  8. Complete Hexose Isomer Identification with Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagy, Gabe; Pohl, Nicola L. B.

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  9. Synthesis of a sugar-organometallic compound 1,1‧-difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhao, Shanyu; Cooper, Daniel C.; Xu, Haixun; Zhu, Pinghua; Suggs, J. William

    2013-01-01

    In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1‧-dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1‧-difurfurylferrocene 3. 1,1‧-Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the α-Fe2O3 or Fe3O4 nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  10. The Kinetics of Selective Biological Transport

    PubMed Central

    Miller, D. M.

    1968-01-01

    The simplest biological transport system so far extensively investigated is that of monosaccharides in human erythrocytes. Despite its simplicity there is still considerable doubt and divergence of opinion concerning its mechanism. Some confusion may arise as a result of the comparison of diverse data obtained by different workers using a variety of experimental techniques. To minimize this problem, an attempt is made here to repeat, under standard conditions and with as much care as possible, five of the more definitive types of experiments previously performed on this system. It is hoped that the result of this effort is an internally consistent set of data with which the quantitative predictions of various proposed mechanisms may be compared as a primary criterion for their acceptability. PMID:5696215

  11. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus.

    PubMed

    Meng, Qingran; Li, Yinghao; Xiao, Tiancun; Zhang, Lianfu; Xu, Dan

    2017-12-01

    A water-soluble polysaccharide fraction (DJP-2) isolated from Diaphragma juglandis was successfully purified by ion-exchange chromatography (DEAE-cellulose) and gel-permeation chromatography (Sephadex G-100). The weight-average molecular weight (Mw) and number-average molecular weight (Mn) of DJP-2 were 4.95 and 3.99kDa, respectively. Monosaccharide component analysis indicated that DJP-2 comprised arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 0.27:0.55:1:0.14:0.08. The evaluation of the antioxidant and antibacterial activities of polysaccharides from Diaphragma juglandis fructus indicated that they could be explored as promising natural antioxidant and bacteriostatic agents in the food and pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy.

    PubMed

    Grondin, Julie M; Langelaan, David N; Smith, Steven P

    2017-01-01

    Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1 H- 15 N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d ) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.

  13. Methacrylated monosaccharides as the modifiers for carbochain polymers: Synthesis, mechanical/thermal properties and biodegradability of hybrids

    NASA Astrophysics Data System (ADS)

    Yakushev, P.; Bershtein, V.; Bukowska-Śluz, I.; Sobiesiak, M.; Gawdzik, B.

    2016-05-01

    Methacrylated derivatives of glucose (MGLU) and galactose (MGAL) were synthesized by the procedure described by Vogel, and their copolymers with methyl methacrylate (MMA) and MMA/N-vinyl pyrrolidone (MMA/NVP) (1:1) mixture were obtained with the aim to modify some properties of carbochain polymers, in particular to generate their biodegradability. These hybrids of synthetic and natural products, with 10, 20 or 30 wt. % modifiers, were characterized by DMA and TGA methods and in the biodegradation tests. Increasing Tg values by 20-30°C was registered in all cases whereas thermal stability was improved only for PMMA due to modification. On the contrary, only for hybrids based on hygroscopic MMA/NVP copolymer the essential biodegradability could be generated.

  14. Analysis of Sulfate Patterns in Glycosaminoglycan Oligosaccharides by MSn Coupled to Infrared Ion Spectroscopy: the Case of GalNAc4S and GalNAc6S

    NASA Astrophysics Data System (ADS)

    Renois-Predelus, G.; Schindler, B.; Compagnon, I.

    2018-04-01

    We report distinctive spectroscopic fingerprints of the monosaccharide standards GalNAc4S and GalNAc6S by coupling mass spectrometry and ion spectroscopy in the 3-μm range. The disaccharide standards CSA and CSC are used to demonstrate the applicability of a novel approach for the analysis of sulfate position in GalNAc-containing glycosaminoglycans. This approach was then used for the analysis of a sample containing CSA and CSC disaccharides. Finally, we discuss the generalization of the coupling of mass spectrometry with ion spectroscopy for the structural analysis of glycosaminoglycans on a tetrasaccharide from dermatan sulfate source. [Figure not available: see fulltext.

  15. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue.

    PubMed

    Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing

    2015-11-05

    Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d- galacturonic acid from pectin

    DOE PAGES

    Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E.; ...

    2016-05-13

    We identified the d-galacturonic acid (GA)-responsive transcriptional activator GaaR of the saprotrophic fungus, Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression analysis showed that GaaR is required for the expression of genes necessary to release GA from PGA and more complex pectins, to transport GA into the cell, and to induce the GA catabolic pathway. Residual growth of ΔgaaR on complex pectins is likely due to the expression of pectinases acting on rhamnogalacturonan and subsequent metabolism of the monosaccharides othermore » than GA.« less

  17. Bacterial dye-decolorizing peroxidases: biochemical ...

    EPA Pesticide Factsheets

    In biorefineries, processing biomass begins with separating lignin from cellulose and hemicellulose. The latter two are depolymerized to give monosaccharides (e.g. glucose and xylose), which can be converted to fuels or chemicals. In contrast, lignin presents a challenging target for further processing due to its inherent heterogeneity and recalcitrance. Therefore, it has only been used in low-value applications. For example, lignin is burnt to recover energy in cellulosic ethanol production. Valorization of lignin is critical for biorefineries as it may generate high revenue. Lignin is the obvious candidate to provide renewable aromatic chemicals. As long as it can be depolymerized, the phenylpropane units can be converted into useful phenolic chemicals, which are currently derived from fossil fuels. This is a survey of an emerging group of enzymes that may have applications in lignin valorization.

  18. Endoglycosidase and glycoamidase release of N-linked oligosaccharides.

    PubMed

    Freeze, Hudson H; Kranz, Christian

    2006-09-01

    Nearly all proteins entering the lumen of the endoplasmic reticulum (ER) become glycosylated en route to a cellular organelle, the plasma membrane, or the extracellular space. Many glycans can be attached to proteins, but the most common are the N-linked oligosaccharides. These chains are added very soon after a protein enters the ER, but they undergo extensive remodeling (processing), especially in the Golgi. Processing changes the sensitivity of the N-glycan to enzymes that cleave entire sugar chains or individual monosaccharides, which also changes the migration of the protein on SDS gels. These changes can be used to indicate when a protein has passed a particular subcellular location. This unit details some of the methods used to track a protein as it traffics from the ER to the Golgi toward its final location.

  19. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    PubMed

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Component analysis and free radicals scavenging activity of Cicer arietinum L. husk pectin.

    PubMed

    Urias-Orona, Vania; Huerta-Oros, Joselina; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Gardea, Alfonso A

    2010-10-11

    A pectin (CAP) was extracted from the husk of Cicer arietinum L. Monosaccharide analysis of CAP revealed the dominance of galacturonic acid and smaller amounts of galactose, arabinose, rhamnose, glucose, xylose and mannose. Viscosimetric analysis showed that the intrinsic viscosity ([η]) and the molecular weight (MW) of CAP were 296 mL/g and 105 kDa, respectively. The degree of esterification (DE = 10%) was determined by FTIR spectroscopy. CAP exhibited a dose-dependent free radical scavenging activity, as shown by its DPPH radical inhibition. At 1.0 mg/mL CAP exhibited a scavenging rate of 29% on DPPH radicals. The evaluation of antioxidant activity suggested that CAP had good potential for DPPH radical scavenging activity and should be explored as a novel potential antioxidant.

  1. Differential effects of triterpene glycosides, frondoside A and cucumarioside A2-2 isolated from sea cucumbers on caspase activation and apoptosis of human leukemia cells.

    PubMed

    Jin, Jun-O; Shastina, Valeria V; Shin, Sung-Won; Xu, Qi; Park, Joo-In; Rasskazov, Valery A; Avilov, Sergey A; Fedorov, Sergey N; Stonik, Valentin A; Kwak, Jong-Young

    2009-02-18

    Frondoside A is a pentaoside having an acetyl moiety at the aglycon ring and xylose as a third monosaccharide residue. Cucumarioside A(2)-2 is a pentaoside having glucose as a third monosaccahride unit. We compared the effects of frondoside A and A(2)-2 for cell death-inducing capability with close attention paid to structure-activity relationships. Both frondoside A and A(2)-2 strongly induced apoptosis of leukemic cells. Frondoside A-induced apoptosis was more potent and rapid than A(2)-2-induced apoptosis. A(2)-2-induced but not frondoside A-induced apoptosis was caspase-dependent. This suggests that holothurians may induce apoptosis of leukemic cells caspase-dependently or -independently, depending on the holothurian structure.

  2. Tautomers of Gas-Phase Erythrose and Their Interconversion Reactions: Insights from High-Level ab Initio Study.

    PubMed

    Szczepaniak, Marek; Moc, Jerzy

    2015-11-05

    D-Erythrose is a C4 monosaccharide with a biological and potential astrobiological relevance. We have investigated low-energy structures of d-erythrose and their interconversion in the gas phase with the highest-level calculations up-to-date. We have identified a number of structurally distinct furanose and open-chain isomers and predicted α ↔ α and β ↔ β furanose interconversion pathways involving the O-H rotamers. We have estimated relative Gibbs free energies of the erythrose species based on the CCSD(T)/aug-cc-pVTZ electronic energies and MP2/aug-cc-pVTZ vibrational frequencies. By using natural bond orbital theory we have also quantified a stabilization of erythrose conformers and interconversion transition states by intramolecular H-bonds.

  3. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis.

    PubMed

    Chen, Bo-Yang; Zhao, Bao-Cheng; Li, Ming-Fei; Liu, Qiu-Yun; Sun, Run-Cang

    2017-02-01

    The aim of the research was to evaluate the effect of combined treatments on fermentable sugar production from rapeseed straw. An optimum condition was found to be the combination of hydrothermal pretreatment at 180°C for 45min and post-treatment by 2% NaOH at 100°C for 2h, which was based on the quantity of monosaccharides released during enzymatic hydrolysis. As compared with the raw material without treatment, the combination of hydrothermal pretreatment and alkali post-treatment resulted in a significant increase of the saccharification rate by 5.9times. This process potentially turned rapeseed straw into value added products in accordance with the biorefinery concept. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds.

    PubMed

    Fernández-Bolaños, Juan; Rodríguez, Guillermo; Gómez, Esther; Guillén, Rafael; Jiménez, Ana; Heredia, Antonia; Rodríguez, Rocío

    2004-09-22

    A process for the value addition of solid waste from two-phase olive oil extraction or "alperujo" that includes a hydrothermal treatment has been suggested. In this treatment an autohydrolysis process occurs and the solid olive byproduct is partially solubilized. From this water-soluble fraction can be obtained besides the antioxidant hydroxytyrosol several other compounds of high added value. In this paper three different samples of alperujo were characterized and subjected to a hydrothermal treatment with and without acid catalyst. The main soluble compounds after the hydrolysis were represented by monosaccharides xylose, arabinose, and glucose; oligosaccharides, mannitol and products of sugar destruction. Oligosaccharides were separated by size exclusion chromatography. It was possible to get highly purified mannitol by applying a simple purification method.

  5. Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications.

    PubMed

    Jayamuthunagai, J; Gautam, P; Srisowmeya, G; Chakravarthy, M

    2017-11-02

    D-tagatose is a naturally existing rare monosaccharide having prebiotic properties. Minimal absorption, low metabolizing energy, and unique clinical properties are the characteristics of D-tagatose. D-tagatose gained international attention by matching the purpose of alternate sweeteners that is much needed for the control of diabetes among world population. Recent efforts in understanding tagatose bioconversion have generated essential information regarding its production and application. This article reviews the evolution of D-tagatose as an important rare sugar by appreciable improvements in production results and its significant applications resulted of its unique physical, chemical, biological, and clinical properties thus considering it an appropriate product for requisite improvements in technical viability. Based on current knowledge and technology projections, the commercialization of D-tagatose rare sugar as food additive is close to reality.

  6. Influence of Biomass Pretreatment Process Time on Furfural Extraction from Birch Wood

    NASA Astrophysics Data System (ADS)

    Brazdausks, Prans; Puke, Maris; Vedernikovs, Nikolajs; Kruma, Irena

    2013-12-01

    Furfural is a biomass derived-chemical that can be used to replace petrochemicals. In this study, dilute sulphuric acid hydrolysis was used for hemicelluloses secession from birch wood. The reaction was investigated at different biomass treatment times (10-90 min, increasing it by 10 min). We found that the greatest amount of furfural 1.4-2.6%, which is 9.7-17.7% from theoretical possible yield, was formed in the first 30 min of the beginning of birch wood pentoses monosaccharide dehydration, but the greatest yield of furfural 10.3%, which is 70.0% from the theoretical yield, can be obtained after 90 min. Given that furfural yield generally does not exceed 50% from the theoretical amount, the result can be considered as very good.

  7. Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy.

    PubMed

    Garozzo, D; Spina, E; Cozzolino, R; Cescutti, P; Fett, W F

    2000-01-12

    The introduction of size-exclusion chromatography (SEC) analysis of polysaccharides prior to MALDI mass spectroscopy accounts for the determination of the molecular mass of the repeating unit when neutral homopolymers are investigated. In the case of natural polysaccharides characterised by more complicated structural features (presence of non-carbohydrate substituents, charged groups, etc.), this mass value usually is in agreement with more than one sugar composition. Therefore, it is not sufficient to give the correct monosaccharidic composition of the polysaccharide investigated. To solve this problem, MALDI spectra were recorded on the permethylated sample and post-source decay experiments were performed on precursor ions. In this way, the composition (in terms of Hex, HexNAc, etc.), size and sequence of the repeating unit were determined.

  8. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites.

    PubMed

    Naseri-Nosar, Mahdi; Ziora, Zyta Maria

    2018-06-01

    Wound dressings are designed to support the wound bed and protect it from the factors that may delay or impede its healing such as contaminations and moisture-loss, thereby facilitating and accelerating the healing process. The materials used to prepare wound dressings include natural and synthetic polymers, as well as their combinations, in the forms of films, sponges and hydrogels. Polysaccharides are naturally-occurring polymers that have been extensively used as wound dressing materials. Homopolysaccharides are a class of polysaccharides consist of only one type of monosaccharide. The current review intends to overview the studies in which wound dressings from naturally-occurring polymers, based on homopolysaccharides, were prepared and evaluated. Homopolysaccharides such as cellulose, chitosan, chitin, pullulan, starch and β-glucan were considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Composition and antioxidant activities of four polysaccharides extracted from Herba Lophatheri.

    PubMed

    Ge, Qing; Mao, Jian-wei; Guo, Xiao-qing; Zhou, Yi-feng; Gong, Jing-yan; Mao, Shuang-rong

    2013-09-01

    Four polysaccharides (BLF80-A, BLF80-B, BLF80-C and BLF80-D) were isolated by hot-water extraction and purified from the leaves of Herba Lophatheri by DEAE-Sepharose fast flow. Their chemical and physical characteristics were determined and antioxidant activities were investigated on the basis of DPPH radical assay, hydroxyl radical assay and superoxide radical assay. The results showed that four polysaccharides exhibited antioxidant activities in a concentration-dependent manner, and the higher molecular weight, the stronger antioxidant activities of polysaccharides. Besides, the monosaccharide compositions of polysaccharides also influence their antioxidant activities. BLP80-D showed the strongest scavenging ability, followed by BLP80-C, BLP80-B and BLP80-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides

    NASA Astrophysics Data System (ADS)

    Bouquillon, Sandrine; Muzart, Jacques; Pinel, Catherine; Rataboul, Franck

    The telomerization of butadiene with alcohols is an elegant way to synthesize ethers with minimal environmental impact since this reaction is 100% atom efficient. Besides telomerization of butadiene with methanol and water that is industrially developed, the modification of polyols is still under development. Recently, a series of new substrates has been involved in this reaction, including diols, pure or crude glycerol, protected or unprotected monosaccharides, as well as polysaccharides. This opens up the formation of new products having specific physicochemical properties. We will describe recent advances in this field, focusing on the reaction of renewable products and more specifically on saccharides. The efficient catalytic systems as well as the optimized reaction conditions will be described and some physicochemical properties of the products will be reported.

  12. Direct demonstration of the lectin activity of gp90MEL, a lymphocyte homing receptor

    PubMed Central

    1990-01-01

    Considerable evidence implicates gp90MEL as a lymphocyte homing receptor mediating lymphocyte attachment to high endothelial venules of lymph nodes in mouse. The protein appears to function as a calcium- dependent, lectin-like receptor as inferred primarily by the ability of specific carbohydrates to block its function and by the presence of a calcium-type lectin domain in its primary sequence. An ELISA assay is described which provides the first demonstration that the isolated protein has lectin activity and allows a further definition of its carbohydrate specificity. In addition to the monosaccharides mannose-6- phosphate and fructose-1-phosphate, ligand activity is shown for the sulfated glycolipid, sulfatide, and for two sulfated fucose-containing polysaccharides (fucoidin and egg jelly coat) from nonmammalian sources. PMID:2202735

  13. Antioxidant and hepatoprotective activities of polysaccharides from Anoectochilus roxburghii.

    PubMed

    Zeng, Biyu; Su, Minghua; Chen, Qingxi; Chang, Qiang; Wang, Wei; Li, Huihua

    2016-11-20

    The physicochemical properties (molecular weights and monosaccharide compositions), antioxidant and hepatoprotective activities of polysaccharides (ARPPs: ARPP30, ARPP60 and ARPP80) isolated from Anoectochilus roxburghii were investigated. ARPP80 exhibited relatively strong antioxidant activities in a concentration-dependent manner. In mice subjected to carbon tetrachloride-induced hepatotoxicity, ARPP80 pretreatment significantly (p<0.01) reduced the levels of aspartate and alanine amino transferases and malonyldialdehyde, prominently (p<0.01) restored the levels of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione in serum or liver homogenate. These hepatoprotective effects were comparable to those of the standard drug silymarin at the same dose (200mg/kg). The study clearly demonstrated that ARPPs, especially ARPP80, might be suitable as functional foods or hepatoprotective drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages

    NASA Astrophysics Data System (ADS)

    Hahm, Heung Sik; Hurevich, Mattan; Seeberger, Peter H.

    2016-09-01

    Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans-glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis-glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides.

  15. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    PubMed

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical Characterization of Potentially Prebiotic Oligosaccharides in Brewed Coffee and Spent Coffee Grounds.

    PubMed

    Tian, Tian; Freeman, Samara; Corey, Mark; German, J Bruce; Barile, Daniela

    2017-04-05

    Oligosaccharides are indigestible carbohydrates widely present in mammalian milk and in some plants. Milk oligosaccharides are associated with positive health outcomes; however, oligosaccharides in coffee have not been extensively studied. We investigated the oligosaccharides and their monomeric composition in dark roasted coffee beans, brewed coffee, and spent coffee grounds. Oligosaccharides with a degree of polymerization ranging from 3 to 15, and their constituent monosaccharides, were characterized and quantified. The oligosaccharides identified were mainly hexoses (potentially galacto-oligosaccharides and manno-oligosaccharides) containing a heterogeneous mixture of glucose, arabinose, xylose, and rhamnose. The diversity of oligosaccharides composition found in these coffee samples suggests that they could have selective prebiotic activity toward specific bacterial strains able to deconstruct the glycosidic bonds and utilize them as a carbon source.

  17. Polysaccharide‐Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside

    PubMed Central

    Miao, Tianxin; Wang, Junqing; Zeng, Yun; Chen, Xiaoyuan

    2018-01-01

    Abstract Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide‐based drug delivery systems. PMID:29721408

  18. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  19. FTIR characterization of Mexican honey and its adulteration with sugar syrups by using chemometric methods

    NASA Astrophysics Data System (ADS)

    Rios-Corripio, M. A.; Rios-Leal, E.; Rojas-López, M.; Delgado-Macuil, R.

    2011-01-01

    A chemometric analysis of adulteration of Mexican honey by sugar syrups such as corn syrup and cane sugar syrup was realized. Fourier transform infrared spectroscopy (FTIR) was used to measure the absorption of a group of bee honey samples from central region of Mexico. Principal component analysis (PCA) was used to process FTIR spectra to determine the adulteration of bee honey. In addition to that, the content of individual sugars from honey samples: glucose, fructose, sucrose and monosaccharides was determined by using PLS-FTIR analysis validated by HPLC measurements. This analytical methodology which is based in infrared spectroscopy and chemometry can be an alternative technique to characterize and also to determine the purity and authenticity of nutritional products as bee honey and other natural products.

  20. Structural analysis of a type 1 ribosome inactivating protein reveals multiple L-asparagine-N-acetyl-D-glucosamine monosaccharide modifications: Implications for cytotoxicity

    PubMed Central

    HOGG, TANIS; MENDEL, JAMESON T.; LAVEZO, JONATHAN L.

    2015-01-01

    Pokeweed antiviral protein (PAP) belongs to the family of type I ribosome-inactivating proteins (RIPs): Ribotoxins, which function by depurinating the sarcin-ricin loop of ribosomal RNA. In addition to its antibacterial and antifungal properties, PAP has shown promise in antiviral and targeted tumor therapy owing to its ability to depurinate viral RNA and eukaryotic rRNA. Several PAP genes are differentially expressed across pokeweed tissues, with natively isolated seed forms of PAP exhibiting the greatest cytotoxicity. To help elucidate the molecular basis of increased cytotoxicity of PAP isoenzymes from seeds, the present study used protein sequencing, mass spectroscopy and X-ray crystallography to determine the complete covalent structure and 1.7 Å X-ray crystal structure of PAP-S1aci isolated from seeds of Asian pokeweed (Phytolacca acinosa). PAP-S1aci shares ~95% sequence identity with PAP-S1 from P. americana and contains the signature catalytic residues of the RIP superfamily, corresponding to Tyr72, Tyr122, Glu175 and Arg178 in PAP-S1aci. A rare proline substitution (Pro174) was identified in the active site of PAP-S1aci, which has no effect on catalytic Glu175 positioning or overall active-site topology, yet appears to come at the expense of strained main-chain geometry at the pre-proline residue Val173. Notably, a rare type of N-glycosylation was detected consisting of N-acetyl-D-glucosamine monosaccharide residues linked to Asn10, Asn44 and Asn255 of PAP-S1aci. Of note, our modeling studies suggested that the ribosome depurination activity of seed PAPs would be adversely affected by the N-glycosylation of Asn44 and Asn255 with larger and more typical oligosaccharide chains, as they would shield the rRNA-binding sites on the protein. These results, coupled with evidence gathered from the literature, suggest that this type of minimal N-glycosylation in seed PAPs and other type I seed RIPs may serve to enhance cytotoxicity by exploiting receptor-mediated uptake pathways of seed predators while preserving ribosome affinity and rRNA recognition. PMID:26238506

  1. Ensiling and hydrothermal pretreatment of grass: consequences for enzymatic biomass conversion and total monosaccharide yields

    PubMed Central

    2014-01-01

    Background Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased the solubilization of dry matter (DM) during HTT and gave increased glucan content, but lower lignin in the insoluble fiber fraction. Ensiling improved glucose yields in the enzymatic hydrolysis of the washed solid fiber fraction at the lower HTT temperatures. At 170°C glucose yield improved from 17 to 24 (w/w)% (45 to 57% cellulose convertibility), and at 180°C glucose yield improved from 22 to 29 (w/w)% (54 to 69% cellulose convertibility). Direct HTT of grass at 190°C gave the same high glucose yield as for grass silage (35 (w/w)% (77% cellulose convertibility)) and improved xylan yields (27% xylan convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass and grass silage at both 170 and 180°C, but at 190°C the overall sugar yield was better for HTT of dry grass. Conclusions This study unequivocally establishes that ensiling of grass as a biomass pretreatment method comes with a loss of WSC. The loss of WSC by ensiling is not necessarily compensated for by providing a lower temperature requirement for HTT for high enzymatic monosaccharide release. However, ensiling can be an advantageous storage method prior to grass processing. PMID:25024743

  2. A Diet Low in Fermentable Oligo-, Di-, and Monosaccharides and Polyols Improves Quality of Life and Reduces Activity Impairment in Patients With Irritable Bowel Syndrome and Diarrhea.

    PubMed

    Eswaran, Shanti; Chey, William D; Jackson, Kenya; Pillai, Sivaram; Chey, Samuel W; Han-Markey, Theresa

    2017-12-01

    We investigated the effects of a diet low in fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) vs traditional dietary recommendations on health-related quality of life (QOL), anxiety and depression, work productivity, and sleep quality in patients with irritable bowel syndrome and diarrhea (IBS-D). We conducted a prospective, single-center, single-blind trial of 92 adult patients with IBS-D (65 women; median age, 42.6 years) randomly assigned to groups placed on a diet low in FODMAPs or a modified diet recommended by the National Institute for Health and Care Excellence (mNICE) for 4 weeks. IBS-associated QOL (IBS-QOL), psychosocial distress (based on the Hospital Anxiety and Depression Scale), work productivity (based on the Work Productivity and Activity Impairment), and sleep quality were assessed before and after diet periods. Eighty-four patients completed the study (45 in the low-FODMAP group and 39 in the mNICE group). At 4 weeks, patients on the diet low in FODMAPs had a larger mean increase in IBS-QOL score than did patients on the mNICE diet (15.0 vs 5.0; 95% CI, -17.4 to -4.3). A significantly higher proportion of patients in the low-FODMAP diet group had a meaningful clinical response, based on IBS-QOL score, than in the mNICE group (52% vs 21%; 95% CI, -0.52 to -0.08). Anxiety scores decreased in the low-FODMAP diet group compared with the mNICE group (95% CI, 0.46-2.80). Activity impairment was significantly reduced with the low-FODMAP diet (-22.89) compared with the mNICE diet (-9.44; 95% CI, 2.72-24.20). In a randomized, controlled trial, a diet low in FODMAPs led to significantly greater improvements in health-related QOL, anxiety, and activity impairment compared with a diet based on traditional recommendations for patients with IBS-D. ClinicalTrials.gov, number NCT01624610. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    PubMed Central

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-01-01

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity. PMID:27916796

  4. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds.

    PubMed

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-11-28

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis , Ulva lactuca L., Gracilaria lemaneiformis , and Durvillaea antarctica , respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box-Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight ( M W ) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight ( M W ) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays-2,2-azino -bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power-and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity.

  5. Characterization of Physical Structure from Measurements of Sound Velocity in Aqueous Solutions of Various Saccharides and Alditols.

    NASA Astrophysics Data System (ADS)

    Smith, David Eugene

    Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for solutions of mixtures of these sugars at concentrations to 0.9m could be calculated with accuracy. Each sugar contributed independently to structure of solution and sound velocity values. At solute concentrations greater than 0.9m, there appeared to be some interaction among mixed solute molecules in solution.

  6. Size resolved airborne particulate polysaccharides in summer high Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-04-01

    Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that the presence of biogenic polysaccharides, due to their surface active and hygroscopic nature, could play a potential role as cloud condensation nuclei in the pristine high Arctic.

  7. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-12-01

    Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble bursting at the air-sea interface. We speculate that the occurrence of atmospheric surface-active polymer gels with their hydrophilic and hydrophobic segments, promoting cloud droplet activation, could play a potential role as cloud condensation nuclei in the pristine high Arctic.

  8. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa).

    PubMed

    Sungur, Tolga; Aslim, Belma; Karaaslan, Cagtay; Aktas, Busra

    2017-10-01

    Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼10 8  CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by which L. gasseri strains result in strain specific anti-proliferative activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Identification of a novel heteroglycan-interacting protein, HIP 1.3, from Arabidopsis thaliana.

    PubMed

    Fettke, Joerg; Nunes-Nesi, Adriano; Fernie, Alisdair R; Steup, Martin

    2011-08-15

    Plastidial degradation of transitory starch yields mainly maltose and glucose. Following the export into the cytosol, maltose acts as donor for a glucosyl transfer to cytosolic heteroglycans as mediated by a cytosolic transglucosidase (DPE2; EC 2.4.1.25) and the second glucosyl residue is liberated as glucose. The cytosolic phosphorylase (Pho2/PHS2; EC 2.4.1.1) also interacts with heteroglycans using the same intramolecular sites as DPE2. Thus, the two glucosyl transferases interconnect the cytosolic pools of glucose and glucose 1-phosphate. Due to the complex monosaccharide pattern, other heteroglycan-interacting proteins (HIPs) are expected to exist. Identification of those proteins was approached by using two types of affinity chromatography. Heteroglycans from leaves of Arabidopsis thaliana (Col-0) covalently bound to Sepharose served as ligands that were reacted with a complex mixture of buffer-soluble proteins from Arabidopsis leaves. Binding proteins were eluted by sodium chloride. For identification, SDS-PAGE, tryptic digestion and MALDI-TOF analyses were applied. A strongly interacting polypeptide (approximately 40kDa; designated as HIP1.3) was observed as product of locus At1g09340. Arabidopsis mutants deficient in HIP1.3 were reduced in growth and contained heteroglycans displaying an altered monosaccharide pattern. Wild type plants express HIP1.3 most strongly in leaves. As revealed by immuno fluorescence, HIP1.3 is located in the cytosol of mesophyll cells but mostly associated with the cytosolic surface of the chloroplast envelope membranes. In an HIP1.3-deficient mutant the immunosignal was undetectable. Metabolic profiles from leaves of this mutant and wild type plants as well were determined by GC-MS. As compared to the wild type control, more than ten metabolites, such as ascorbic acid, fructose, fructose bisphosphate, glucose, glycine, were elevated in darkness but decreased in the light. Although the biochemical function of HIP1.3 has not yet been elucidated, it is likely to possess an important function in the central carbon metabolism of higher plants. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    PubMed

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate.

    PubMed

    Chen, Hanchi; Liu, Shijie

    2015-09-01

    Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller's grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-D-xylopyranose and α-L-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis.

  12. Effects of sugar functional groups, hydrophobicity, and fluorination on carbohydrate-DNA stacking interactions in water.

    PubMed

    Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C

    2014-03-21

    Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.

  13. Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type

    NASA Astrophysics Data System (ADS)

    Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V.

    2005-12-01

    Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. Type O individuals have α-fucose(1→2)galactose disaccharides [O(H) structures] on their cell surfaces while in type A or B individuals, the O antigen is capped by the addition of an α- N -acetylgalactosamine or α-galactose residue, respectively. The addition of these monosaccharides is catalyzed by glycosyltransferase A (GTA) or glycosyltransferase B (GTB). These are homologous enzymes differing by only 4 amino acids out of 354 that change the specificity from GTA to GTB. In this review the chemistry of the blood group ABO system and the role of GTA, GTB, and the four critical amino acids in determining blood group status are discussed. See JCE Featured Molecules .

  14. IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates.

    PubMed

    Schindler, B; Barnes, L; Gray, C J; Chambert, S; Flitsch, S L; Oomens, J; Daniel, R; Allouche, A R; Compagnon, I

    2017-03-16

    IR spectroscopy of gas-phase ions is proposed to resolve positional isomers of sulfated carbohydrates. Mass spectrometric fingerprints and gas-phase vibrational spectra in the near and mid-IR regions were obtained for sulfated monosaccharides, yielding unambiguous signatures of sulfated isomers. We report the first systematic exploration of the biologically relevant but notoriously challenging deprotonated state in the near IR region. Remarkably, anions displayed very atypical vibrational profiles, which challenge the well-established DFT (Density Functionnal Theory) modeling. The proposed approach was used to elucidate the sulfate patterns in glycosaminoglycans, a ubiquitous class of mammalian carbohydrates, which is regarded as a major challenge in carbohydrate structural analysis. Isomeric glycosaminoglycan disaccharides from heparin and chondroitin sources were resolved, highlighting the potential of infrared multiple photon dissociation spectroscopy as a novel structural tool for carbohydrates.

  15. Developmental changes in the distribution of cecal lectin-binding sites of Balb-c mice.

    PubMed

    Doehrn, S; Breipohl, W; Lierse, W; Romaniuk, K; Young, W

    1992-01-01

    The existence of lectin-binding sites was investigated in the cecum of Balb-c mice at seven developmental stages ranging from 18 days post conception (p.c.) to 8 weeks after birth. Nine horseradish-peroxidase-conjugated lectins (concanavalin A, Triticum vulgaris, Dolichus biflorus, Helix pomatia, Arachis hypogaea, Glycine maximus, Lotus tetragonolobus, Ulex europaeus, Limulus polyphemus) were applied to 5- to 7-microns thin paraffin sections of Bouin-fixed tissue. After DAB staining the sections were evaluated by light microscopy. It was shown that each lectin exhibits a unique developmental pattern. The adult binding patterns were established at the age of 3-4 weeks with only minor changes occurring thereafter. Considerable differences in binding patterns occurred not only between lectins of different groups but also between lectins with the same nominal monosaccharide specificity.

  16. Inhibition of Pseudomonas aeruginosa adhesion to fibronectin by PA-IL and monosaccharides: involvement of a lectin-like process.

    PubMed

    Rebiere-Huët, Julie; Di Martino, Patrick; Hulen, Christian

    2004-05-01

    Pseudomonas aeruginosa adherence to fibronectin has been shown to be important to bacterial colonization and infection. To better understand the mechanisms involved in this interaction, the role of the carbohydrate moiety of the fibronectin molecule in P. aeruginosa adhesion was studied. Strain NK 125 502 adhered to immobilized fibronectin with an adherence index of 4.8 x 10(5) CFU/ micro g. Periodic oxidation of fibronectin markedly reduced the adhesion of P. aeruginosa, while a neuraminidase treatment increased bacteria adhesion. N-Acetylgalactosamine, N-acetylglucosamine, sialic acid, and also lectin PA-IL worked as efficient inhibitors in adhesion assays: 59%, 70.7%, 100%, and 60% of inhibition, respectively. We have demonstrated here the involvement of a lectin-like process in the interaction of P. aeruginosa NK 125 502 with immobilized fibronectin.

  17. Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction

    NASA Astrophysics Data System (ADS)

    Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.

    2018-04-01

    Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.

  18. Biosynthesis of rare hexoses using microorganisms and related enzymes

    PubMed Central

    Li, Zijie; Gao, Yahui; Nakanishi, Hideki

    2013-01-01

    Summary Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited synthetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. New systems and robust catalysts resulting from advancements in genomics and bioengineering are also discussed. PMID:24367410

  19. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus.

    PubMed

    Zhao, Huajie; Li, Shangshang; Zhang, Jianjun; Che, Gen; Zhou, Meng; Liu, Min; Zhang, Chen; Xu, Nuo; Lin, Lin; Liu, Yu; Jia, Le

    2016-10-20

    Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Origin of the blueshift of water molecules at interfaces of hydrophilic cyclic compounds

    PubMed Central

    Tomobe, Katsufumi; Yamamoto, Eiji; Kojić, Dušan; Sato, Yohei; Yasui, Masato; Yasuoka, Kenji

    2017-01-01

    Water molecules at interfaces of materials exhibit enigmatic properties. A variety of spectroscopic studies have observed a high-frequency motion in these water molecules, represented by a blueshift, at both hydrophobic and hydrophilic interfaces. However, the molecular mechanism behind this blueshift has remained unclear. Using Raman spectroscopy and ab initio molecular dynamics simulations, we reveal the molecular mechanism of the blueshift of water molecules around six monosaccharide isomers. In the first hydration shell, we found weak hydrogen-bonded water molecules that cannot have a stable tetrahedral water network. In the water molecules, the vibrational state of the OH bond oriented toward the bulk solvent strongly contributes to the observed blueshift. Our work suggests that the blueshift in various solutions originates from the vibrational motions of these observed water molecules. PMID:29282448

  1. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  2. A little sugar goes a long way: The cell biology of O-GlcNAc

    PubMed Central

    2015-01-01

    Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport. PMID:25825515

  3. Development of a chemical strategy to produce rare aldohexoses from ketohexoses using 2-aminopyridine.

    PubMed

    Hasehira, Kayo; Miyanishi, Nobumitsu; Sumiyoshi, Wataru; Hirabayashi, Jun; Nakakita, Shin-ichi

    2011-12-13

    Rare sugars are monosaccharides that are found in relatively low abundance in nature. Herein, we describe a strategy for producing rare aldohexoses from ketohexoses using the classical Lobry de Bruyn-Alberda van Ekenstein transformation. Upon Schiff-base formation of keto sugars, a fluorescence-labeling reagent, 2-aminopyridine (2-AP), was used. While acting as a base catalyst, 2-AP efficiently promoted the ketose-to-aldose transformation, and acting as a Schiff-base reagent, it effectively froze the ketose-aldose equilibrium. We could also separate a mixture of Sor, Gul, and Ido in their Schiff-base forms using a normal-phase HPLC separation system. Although Gul and Ido represent the most unstable aldohexoses, our method provides a practical way to rapidly obtain these rare aldohexoses as needed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biosynthesis of rare hexoses using microorganisms and related enzymes.

    PubMed

    Li, Zijie; Gao, Yahui; Nakanishi, Hideki; Gao, Xiaodong; Cai, Li

    2013-11-12

    Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited synthetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. New systems and robust catalysts resulting from advancements in genomics and bioengineering are also discussed.

  5. Enzymes for the biocatalytic production of rare sugars.

    PubMed

    Beerens, Koen; Desmet, Tom; Soetaert, Wim

    2012-06-01

    Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., L: -nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto-aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.

  6. Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp.

    PubMed

    Yu, Zuochen; Zhu, Benwei; Wang, Wenxia; Tan, Haidong; Yin, Heng

    2018-06-01

    A new oligoalginate lyase encoding gene, designed oal17A, was cloned from marine bacterium Vibrio sp. W13, and then expressed in Escherichia coli. The recombinant Oal17A was purified by NTA-Ni resin with maximal activity at 30°C and pH7.0. Oal17A exhibited broad substrate specificity, and preferred to degrade alginate than polyM or polyG into monosaccharide acid. The specific activity of Oal17A toward alginate, polyM and polyG was 21.14U/mg, 12.31U/mg and 7.43U/mg, respectively. With features of high-level expression and broad substrate specificity, Oal17A would be a potential tool for alginate monomer production process of alginate utilizing for biofuels and bioethanol production. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/multi-wavelength anomalous dispersion phasing.

    PubMed

    Suzuki, Tatsuya; Makyio, Hisayoshi; Ando, Hiromune; Komura, Naoko; Menjo, Masanori; Yamada, Yusuke; Imamura, Akihiro; Ishida, Hideharu; Wakatsuki, Soichi; Kato, Ryuichi; Kiso, Makoto

    2014-04-01

    Seleno-lactoses have been successfully synthesized as candidates for mimicking carbohydrate ligands for human galectin-9 N-terminal carbohydrate recognition domain (NCRD). Selenium was introduced into the mono- or di-saccharides using p-methylselenobenzoic anhydride (Tol2Se) as a novel selenating reagent. The TolSe-substituted monosaccharides were converted into selenoglycosyl donors or acceptors, which were reacted with coupling partners to afford seleno-lactoses. The seleno-lactoses were converted to the target compounds. The structure of human galectin-9 NCRD co-crystallized with 6-MeSe-lactose was determined with single/multi-wavelength anomalous dispersion (SAD/MAD) phasing and was similar to that of the co-crystal with natural lactose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity

    PubMed Central

    Wydra, Robert J.; Rychahou, Piotr G.; Evers, B. Mark; Anderson, Kimberly W.; Dziubla, Thomas D.; Hilt, J. Zach

    2015-01-01

    Monosaccharide coated iron oxide nanoparticles were developed to selectively target colon cancer cell lines for magnetically mediated energy delivery therapy. The nanoparticles were prepared using a coupling reaction to attach the glucose functional group to the iron oxide core, and functionality was confirmed with physicochemical characterization techniques. The targeted nanoparticles were internalized into CT26 cells at a greater extent than non-targeted nanoparticles, and the nanoparticles were shown to be localized within lysosomes. Cells with internalized nanoparticles were exposed to an AMF to determine the potential to delivery therapy. Cellular ROS generation and apoptotic cell death was enhanced with field exposure. The nanoparticle coatings inhibit the Fenton-like surface generation of ROS suggesting a thermal or mechanical effect is more likely the source of the intracellular effect. PMID:26143604

  9. Cyclic polyalcohols: fingerprints to identify the botanical origin of natural woods used in wine aging.

    PubMed

    Alañón, M Elena; Díaz-Maroto, M Consuelo; Díaz-Maroto, Ignacio J; Vila-Lameiro, Pablo; Pérez-Coello, M Soledad

    2011-02-23

    Cyclic polyalcohol composition of 80 natural wood samples from different botanical species, with the majority of them used in the oenology industry for aging purposes, has been studied by gas chromatography-mass spectrometry (GC-MS) after its conversion into their trimethylsilyloxime derivatives. Each botanical species showed a different and specific cyclic polyalcohol profile. Oak wood samples were characterized by the richness in deoxyinositols, especially proto-quercitol. Meanwhile, other botanical species showed a very low content of cyclic polyalcohols. The qualitative and quantitative study of cyclic polyalcohols was a useful tool to characterize and differentiate woods of different botanical origin to guarantee the authenticity of chips used in the wine-aging process. Monosaccharide composition was also analyzed, showing some quantitative differences among species, but cyclic polyalcohols were the compounds that revealed the main differentiation power.

  10. New insights in IBS-like disorders: Pandora's box has been opened; a review.

    PubMed

    Borghini, Raffaele; Donato, Giuseppe; Alvaro, Domenico; Picarelli, Antonio

    2017-01-01

    The most complained gastrointestinal symptoms are chronic diarrhea, bloating and abdominal pain. Once malignancies and inflammatory bowel diseases are excluded, irritable bowel syndrome (IBS) and the so called "IBS-like disorders" should be taken into account. The relationship between IBS as defined by Rome IV criteria and these clinical conditions is sometimes obscure, since many IBS patients identify food as a possible trigger for their symptoms. Here, we discuss IBS and the most common IBS-like disorders (celiac disease, non-celiac gluten sensitivity, fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), lactose intolerance, small intestinal bacterial overgrowth (SIBO), α-amylase/trypsin inhibitor (ATIs), nickel allergic contact mucositis), focusing on epidemiologic, clinical, diagnostic and therapeutic aspects. Given the lack of specificity of symptoms, clinical investigation will be facilitated by awareness of these disorders as well as new specific diagnostic tools.

  11. A new approach to explore the binding space of polysaccharide-based ligands: selectin antagonists.

    PubMed

    Calosso, Mickael; Charpentier, Daniel; Vaillancourt, Marc; Bencheqroun, Mohammed; St-Pierre, Gabrielle; Wilkes, Brian C; Guindon, Yvan

    2012-12-13

    The discovery of molecules that interfere with the binding of a ligand to a receptor remains a topic of great interest in medicinal chemistry. Herein, we report that a monosaccharide unit of a polysaccharide ligand can be replaced advantageously by a conformationally locked acyclic molecular entity. A cyclic component of the selectin ligand Sialyl Lewis(x), GlcNAc, is replaced by an acyclic tether, tartaric esters, which link two saccharide units. The conformational bias of this acyclic tether originates from the minimization of intramolecular dipole-dipole interaction and the gauche effect. The evaluation of the binding of these derivatives to P-selectin was measured by surface plasmon resonance spectroscopy. The results obtained in our pilot study suggest that the discovery of tunable tethers could facilitate the exploration of the carbohydrate recognition domain of various receptors.

  12. Food regulations: low FODMAP labeling and communication goals.

    PubMed

    Méance, Séverine; Giordano, Josy; Chuang, Emil; Schneider, Heinrich

    2017-03-01

    There is growing clinical evidence in support of a diet for irritable bowel syndrome (IBS) that is low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP). This low FODMAP diet is gaining acceptance globally among clinicians and IBS sufferers alike. However, there is disparity concerning the success rates of the FODMAP diet between patients, which can be attributed to differences in the recommended diet itself and to adherence issues. To address the differences in the diet, a generally accepted science-based definition of the analytical criteria for low FODMAP products suitable for a low FODMAP diet should be developed. To address the adherence challenge, regulators should permit manufacturers of low FODMAP products to communicate the benefits of a low FODMAP diet on product labels and promotional material which will facilitate people with IBS' selection and use low FODMAP foods. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  13. Incorporation of carbohydrate residues into peroxidase isoenzymes in horseradish roots.

    PubMed

    Lew, J Y; Shannon, L M

    1973-11-01

    Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-(14)C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-(3)H and mannose-U-(14)C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of (14)C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems.

  14. Incorporation of Carbohydrate Residues into Peroxidase Isoenzymes in Horseradish Roots

    PubMed Central

    Lew, Jow Y.; Shannon, Leland M.

    1973-01-01

    Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-14C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-3H and mannose-U-14C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of 14C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems. PMID:16658584

  15. Commercial Hype Versus Reality: Our Current Scientific Understanding of Gluten and Athletic Performance.

    PubMed

    Lis, Dana M; Fell, James W; Ahuja, Kiran D K; Kitic, Cecilia M; Stellingwerff, Trent

    2016-01-01

    Recent explosion in the prevalence of gluten-free athletes, exacerbated by unsubstantiated commercial health claims, has led to some professional athletes touting gluten-free diet as the secret to their success. Forty-one percent of athletes report adhering to a gluten-free diet (GFD), which is four-fold higher than the population-based clinical requirements. Many nonceliac athletes believe that gluten avoidance improves gastrointestinal well-being, reduces inflammation, and provides an ergogenic edge, despite the fact that limited data yet exist to support any of these benefits. There are several plausible associations between endurance-based exercise and gastrointestinal permeability whereby a GFD may be beneficial. However, the implications of confounding factors, including the risks of unnecessary dietary restriction, financial burden, food availability, psychosocial implications, alterations in short-chain carbohydrates (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols), and other wheat constituents emphasize the need for further evaluation.

  16. N-Acetylglucosamine: Production and Applications

    PubMed Central

    Chen, Jeen-Kuan; Shen, Chia-Rui; Liu, Chao-Lin

    2010-01-01

    N-Acetylglucosamine (GlcNAc) is a monosaccharide that usually polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin, the second most abundant carbohydrate after cellulose. In addition to serving as a component of this homogeneous polysaccharide, GlcNAc is also a basic component of hyaluronic acid and keratin sulfate on the cell surface. In this review, we discuss the industrial production of GlcNAc, using chitin as a substrate, by chemical, enzymatic and biotransformation methods. Also, newly developed methods to obtain GlcNAc using glucose as a substrate in genetically modified microorganisms are introduced. Moreover, GlcNAc has generated interest not only as an underutilized resource but also as a new functional material with high potential in various fields. Here we also take a closer look at the current applications of GlcNAc, and several new and cutting edge approaches in this fascinating area are thoroughly discussed. PMID:20948902

  17. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    PubMed

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  18. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.

    PubMed

    Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup

    2009-01-01

    Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

  19. Talaromyces emersonii thermostable enzyme systems and their applications in wheat baking systems.

    PubMed

    Waters, Deborah M; Murray, Patrick G; Ryan, Liam A; Arendt, Elke K; Tuohy, Maria G

    2010-06-23

    In this study, novel extracellular thermozymes were produced by the thermophilic fungus Talaromyces emersonii (IMI 392299) on low-cost carbon inducers. This paper reports the cocktail characterization, substrate hydrolysis studies, and their application in baking. Relevant enzymes were optimally active at pH 4.5-5.0 and 70 degrees C. Model studies confirmed production of significant levels of yeast monosaccharide sugars during cereal flour hydrolysis. The "thermozyme cocktails" are thermostable secreted T. emersonii enzyme blends. In baking trials, these thermozyme cocktails showed significant improvements in bread quality with respect to hardness, staling, and loaf volume (p < 0.5). Thermozyme cocktail B- treated loaf volume was 23.2% greater than the control and 49.5% softer. Staling analysis showed that bread treated with cocktail B was 41.7% softer than the control. This is the first report of T. emersonii thermozymes positively influencing bread quality.

  20. A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts.

    PubMed

    Sharma, Manisha; Patel, Satya Narayan; Lata, Kusum; Singh, Umesh; Krishania, Meena; Sangwan, Rajender S; Singh, Sudhir P

    2016-11-01

    In this work, the sugar industry by-product cane molasses was investigated as feedstock for acceptor reactions by dextransucrase from Leuconostoc mesenteroides MTCC 10508, leading to the biosynthesis of oligosaccharides. The starch industry corn fiber residue was used as a source for acceptor molecules, maltose, in the reaction. Production of approximately 124g oligosaccharides (DP3-DP6) per kg of fresh molasses was achieved. Further, cane molasses based medium was demonstrated as a sole carbon source for L. mesenteroides growth and dextransucrase production. d-Fructose released by dextransucrase activity as processing by-product was transformed into the functional monosaccharide with zero caloric value, d-psicose, by inducing its epimerization. Quantitative analysis approximated 37g d-psicose per kg of fresh molasses. Thus, the study established a novel approach of integrated bioprocessing of cane molasses into prebiotic and functional food additives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. CHANGES IN FLAVONOIDS INDUCED BY $gamma$-RAY IRRADIATION (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, T.; Kinpyo, T.

    1960-07-01

    Ethanol or pyridine solutions of five flavonoids, i.e., myricetin, quercetin, quercitrin, rutin, and hesperidin, were irradiated with gamma -rays (source Co/sup 60/). Results show that the decomposition of flavonoids increased with the increase of the total-dose gamma rays (0.5 to 770 k. r.) and that glycosides such as quercitrin and rutin were more stable than aglycons, such as myricetin or quercetin. It was found that monosaccharides and aglycons, which are the components of glycosides, were formed by gamma -ray decomposition of glycosides, such as quercitrin, rutin, or hesperidin, and that by the decomposition of aglycons such as myricetin or quercetinmore » an unknown substance (showing its peak at 297 m mu in ultraviolet absorption spectra) was formed. Infrared absorption spectra of the substances produced by radiolysis from the above-mentioned flavonoids were compared with those of the flavonoids. (auth)« less

  2. An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96

    PubMed Central

    Nagar, Rupa; Rao, Alka

    2017-01-01

    Abstract Glycosyltransferases are essential tools for in vitro glycoengineering. Bacteria harbor an unexplored variety of protein glycosyltransferases. Here, we describe a peptide glycosyltransferase (EntS) encoded by ORF0417 of Enterococcus faecalis TX0104. EntS di-glycosylates linear peptide of enterocin 96 – a known antibacterial, in vitro. It is capable of transferring as well as extending the glycan onto the peptide in an iterative sequential dissociative manner. It can catalyze multiple linkages: Glc/Gal(-O)Ser/Thr, Glc/Gal(-S)Cys and Glc/Gal(β)Glc/Gal(-O/S)Ser/Thr/Cys, in one pot. Using EntS generated glycovariants of enterocin 96 peptide, size and identity of the glycan are found to influence bioactivity of the peptide. The study identifies EntS as an enzyme worth pursuing, for in vitro peptide glycoengineering. PMID:28498962

  3. O-Antigens of Escherichia coli Strains O81 and HS3-104 Are Structurally and Genetically Related, Except O-Antigen Glucosylation in E. coli HS3-104.

    PubMed

    Zdorovenko, E L; Wang, Y; Shashkov, A S; Chen, T; Ovchinnikova, O G; Liu, B; Golomidova, A K; Babenko, V V; Letarov, A V; Knirel, Y A

    2018-05-01

    Glycerophosphate-containing O-specific polysaccharides (OPSs) were obtained by mild acidic degradation of lipopolysaccharides isolated from Escherichia coli type strain O81 and E. coli strain HS3-104 from horse feces. The structures of both OPSs and of the oligosaccharide derived from the strain O81 OPS by treatment with 48% HF were studied by monosaccharide analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. Both OPSs had similar structures and differed only in the presence of a side-chain glucose residue in the strain HS3-104 OPS. The genes and the organization of the O-antigen biosynthesis gene cluster in both strains are almost identical with the exception of the gtr gene cluster responsible for glucosylations in the strain HS3-104, which is located elsewhere in the genome.

  4. Effect of Inulin on the Viability of L. plantarum during Storage and In Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices.

    PubMed

    Valero-Cases, Estefanía; Frutos, María José

    2017-06-01

    The prebiotic effect of different concentrations of inulin (0, 1 and 2%) on the growth and survival of Lactobacillus plantarum (LP) CECT 220 in blended carrot and orange juices was investigated after 24 h of fermentation, during 30 days of storage at 4 °C and through the phases of gastrointestinal digestion after different storage periods. Microbiological and chemical determinations were also carried out in all juices. The lactic fermentation increased the shelf life of the fermented juices with inulin. The hygienic-sanitary quality in fermented juices was better than the control juices. During storage, the inulin improved the viability of LP and the monosaccharide concentration remained higher with respect to the juice without inulin (40% lower). At 30 days, the fermented juices with 2% inulin after in vitro digestion presented the highest survival of L. plantarum.

  5. Susceptibility of anthocyanins to ex vivo degradation in human saliva

    PubMed Central

    Kamonpatana, Kom; Giusti, M. Mónica; Chitchumroonchokchai, Chureeporn; MorenoCruz, Maria; Riedl, Ken M.; Kumar, Purnima; Failla, Mark L.

    2013-01-01

    Some fruits and their anthocyanin-rich extracts have been reported to exhibit chemopreventive activity in the oral cavity. Insights regarding oral metabolism of anthocyanins remain limited. Anthocyanin-rich extracts from blueberry, chokeberry, black raspberry, red grape, and strawberry were incubated ex vivo with human saliva from 14 healthy subjects. All anthocyanins were partially degraded in saliva. Degradation of chokeberry anthocyanins in saliva was temperature dependent and decreased by heating saliva to 80 °C and after removal of cells. Glycosides of delphinidin and petunidin were more susceptible to degradation than those of cyanidin, pelargonidin, peonidin and malvidin in both intact and artificial saliva. Stability of di- and tri-saccharide conjugates of anthocyanidins slightly, but significantly, exceeded that of monosaccharide compounds. Ex vivo degradation of anthocyanins in saliva was significantly decreased after oral rinsing with antibacterial chlorhexidine. These results suggest that anthocyanin degradation in the mouth is structure-dependent and largely mediated by oral microbiota. PMID:22868153

  6. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere.

    PubMed

    Hennion, Nils; Durand, Mickael; Vriet, Cécile; Doidy, Joan; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2018-04-28

    In plants, root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars towards these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, SUT/SUC and SWEET) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors. This article is protected by copyright. All rights reserved.

  7. Green methods of lignocellulose pretreatment for biorefinery development.

    PubMed

    Capolupo, Laura; Faraco, Vincenza

    2016-11-01

    Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.

  8. Understanding D-Ribose and Mitochondrial Function.

    PubMed

    Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D

    2018-01-01

    Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.

  9. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Yaoi, Katsuro

    2015-11-01

    A putative glycoside hydrolase family 43 β-xylosidase/α-arabinofuranosidase (CoXyl43) that promotes plant biomass saccharification was isolated via functional screening of a compost microbial metagenomic library and characterized. CoXyl43 promoted the saccharification of plant biomasses, including xylans (xylan and arabinoxylan), rice straw, and Erianthus, by degrading xylooligosaccharide residues to monosaccharide residues. The recombinant CoXyl43 protein exhibited both β-xylosidase and α-arabinofuranosidase activities for chromogenic substrates, with optimal activity at pH 7.5 and 55 °C. Both of these activities were inactivated by ethanol, dimethylsulfoxide, and zinc and copper ions but were activated by manganese ions. Only the β-xylosidase activity of recombinant CoXyl43 was enhanced in the presence of calcium ions. These results indicate that CoXyl43 exhibits unique enzymatic properties useful for biomass saccharification.

  10. Structural characterization of pharmaceutical heparins prepared from different animal tissues.

    PubMed

    Fu, Li; Li, Guoyun; Yang, Bo; Onishi, Akihiro; Li, Lingyun; Sun, Peilong; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007-2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. Copyright © 2013 Wiley Periodicals, Inc.

  11. Non Celiac Gluten Sensitivity.

    PubMed

    Bardella, Maria Teresa; Elli, Luca; Ferretti, Francesca

    2016-12-01

    A new syndrome responding to gluten-free diet and defined non-celiac gluten sensitivity entered the spectrum of gluten-related disorders, together with celiac disease and wheat allergy. However, its definition, prevalence, diagnosis, pathogenesis, treatment, and follow up are still controversial. The purpose of the review is to summarize the evidence and problems emerging from the current literature. Direct implication of gluten in the onset of symptoms is often unproved as a low fermentable oligo-, di- and mono-saccharides and polyols diet or other components of cereals as wheat amylase trypsin inhibitor could be similarly involved. To date, no specific biomarkers or histological abnormalities confirm diagnosis, and only the self-reported response to gluten-free diet as well as a positive double blind placebo-gluten challenge characterizes these non-celiac, non-wheat allergic patients. Critical revision of published studies can offer practical indications in approaching this clinical topic and useful suggestions to standardize scientific researches.

  12. Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus.

    PubMed

    He, Pengfei; Zhang, Anqiang; Zhou, Saijing; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2016-11-03

    A water-soluble polysaccharide containing 3-O-methyl galactose (PCP60W) was isolated from fruiting bodies of Pleurotus citrinopileatus and purified by anion-exchange and gel column chromatography. This polysaccharide has an average molecular weight of 2.74 × 10 4  Da and its structure was elucidated using monosaccharide composition and methylation analysis combined with one- and two-dimensional (COSY, TOCSY, NOESY, HMQC and HMBC) NMR spectroscopy. PCP60W was shown to be a linear partially 3-O-methylated α-galactopyranan comprised of 6-linked galactose, 6-linked 3-O-methyl galactose and 4-linked glucose in a ratio of 3.0:1.0:0.6. This work provides additional evidence for the view that 3-O-methyl galactose is common to the genus Pleurotus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Genome Sequences of Apibacter spp., Gut Symbionts of Asian Honey Bees

    PubMed Central

    Kwong, Waldan K; Steele, Margaret I; Moran, Nancy A

    2018-01-01

    Abstract Honey bees have distinct gut microbiomes consisting almost entirely of several host-specific bacterial species. We present the genomes of three strains of Apibacter spp., bacteria of the Bacteroidetes phylum that are endemic to Asian honey bee species (Apis dorsata and Apis cerana). The Apibacter strains have similar metabolic abilities to each other and to Apibacter mensalis, a species isolated from a bumble bee. They use microaerobic respiration and fermentation to catabolize a limited set of monosaccharides and dicarboxylic acids. All strains are capable of gliding motility and encode a type IX secretion system. Two strains and A. mensalis have type VI secretion systems, and all strains encode Rhs or VgrG proteins used in intercellular interactions. The characteristics of Apibacter spp. are consistent with adaptions to life in a gut environment; however, the factors responsible for host-specificity and mutualistic interactions remain to be uncovered. PMID:29635372

  14. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter.

    PubMed

    Han, Lei; Zhu, Yongping; Liu, Min; Zhou, Ye; Lu, Guangyuan; Lan, Lan; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2017-09-19

    Sugar Will Eventually be Exported Transporters (SWEETs) are recently identified sugar transporters that can discriminate and transport di- or monosaccharides across a membrane following the concentration gradient. SWEETs play key roles in plant biological processes, such as pollen nutrition, nectar secretion, seed filling, and phloem loading. SWEET13 from Arabidopsis thaliana (AtSWEET13) is an important sucrose transporter in pollen development. Here, we report the 2.8-Å resolution crystal structure of AtSWEET13 in the inward-facing conformation with a substrate analog, 2'-deoxycytidine 5'-monophosphate, bound in the central cavity. In addition, based on the results of an in-cell transport activity assay and single-molecule Förster resonance energy transfer analysis, we suggest a mechanism for substrate selectivity based on the size of the substrate-binding pocket. Furthermore, AtSWEET13 appears to form a higher order structure presumably related to its function.

  15. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    PubMed

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction.

    PubMed

    Brands, C M; Alink, G M; van Boekel, M A; Jongen, W M

    2000-06-01

    The formation of mutagens after the heating of sugar-casein model systems at 120 degrees C was examined by the Ames test, using Salmonella typhimurium strain TA100. Several sugars (glucose, fructose, galactose, tagatose, lactose, and lactulose) were compared in their mutagenicities. Mutagenicity could be fully ascribed to Maillard reaction products and strongly varied with the kind of sugar. The differences in mutagenicity among the sugar-casein systems were caused by a difference in reaction rate and a difference in reaction mechanism. Sugars with a comparable reaction mechanism (glucose and galactose) showed a higher mutagenic activity corresponding with a higher Maillard reactivity. Disaccharides showed no mutagenic activity (lactose) or a lower mutagenic activity (lactulose) than their corresponding monosaccharides. Ketose sugars (fructose and tagatose) showed a remarkably higher mutagenicity compared with their aldose isomers (glucose and galactose), which was due to a difference in reaction mechanism.

  17. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.).

    PubMed

    López-Molina, Dorotea; Navarro-Martínez, María Dolores; Rojas Melgarejo, Francisco; Hiner, Alexander N P; Chazarra, Soledad; Rodríguez-López, José Neptuno

    2005-06-01

    A high molecular weight inulin has been prepared from artichoke (Cynara scolymus L.) agroindustrial wastes using environmentally benign aqueous extraction procedures. Physico-chemical analysis of the properties of artichoke inulin was carried out. Its average degree of polymerization was 46, which is higher than for Jerusalem artichoke, chicory, and dahlia inulins. GC-MS confirmed that the main constituent monosaccharide in artichoke inulin was fructose and its degradation by inulinase indicated that it contained the expected beta-2,1-fructan bonds. The FT-IR spectrum was identical to that of chicory inulin. These data indicate that artichoke inulin will be suitable for use in a wide range of food applications. The health-promoting prebiotic effects of artichoke inulin were demonstrated in an extensive microbiological study showing a long lasting bifidogenic effect on Bifidobacterium bifidum ATCC 29521 cultures and also in mixed cultures of colonic bacteria.

  18. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation.

    PubMed

    Peter, Sonia R; Peru, Kerry M; Fahlman, Brian; McMartin, Dena W; Headley, John V

    2015-01-01

    As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.

  19. Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling

    NASA Astrophysics Data System (ADS)

    Im, Jongone; Biswas, Sovan; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-12-01

    Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which a hydroxy group at C-1 takes different orientations) and each pair of sugars can form different epimers (isomers around the stereocentres connecting the sugars). This leads to a vast combinatorial complexity, intractable to mass spectrometry and requiring large amounts of sample for NMR characterization. Combining measurements of collision cross section with mass spectrometry (IM-MS) helps, but many isomers are still difficult to separate. Here, we show that recognition tunnelling (RT) can classify many anomers and epimers via the current fluctuations they produce when captured in a tunnel junction functionalized with recognition molecules. Most importantly, RT is a nanoscale technique utilizing sub-picomole quantities of analyte. If integrated into a nanopore, RT would provide a unique approach to sequencing linear polysaccharides.

  20. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    NASA Astrophysics Data System (ADS)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

Top