Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
NASA Astrophysics Data System (ADS)
Sharma, Sanjib
2017-08-01
Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzidakis, Stylianos; Greulich, Christopher
A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.
Analytic continuation of quantum Monte Carlo data by stochastic analytical inference.
Fuchs, Sebastian; Pruschke, Thomas; Jarrell, Mark
2010-05-01
We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Piburn, Jesse O; McManamay, Ryan A
2017-01-01
Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.
Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?
Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend
2011-10-11
In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.
Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment
NASA Astrophysics Data System (ADS)
Ritsch, E.; Atlas Collaboration
2014-06-01
The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.
Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope ofmore » a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.« less
pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis
NASA Astrophysics Data System (ADS)
White, J.; Brakefield, L. K.
2015-12-01
The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.
Monte Carlo capabilities of the SCALE code system
Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...
2014-09-12
SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less
Path integral Monte Carlo ground state approach: formalism, implementation, and applications
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2017-11-01
Monte Carlo techniques have played an important role in understanding strongly correlated systems across many areas of physics, covering a wide range of energy and length scales. Among the many Monte Carlo methods applicable to quantum mechanical systems, the path integral Monte Carlo approach with its variants has been employed widely. Since semi-classical or classical approaches will not be discussed in this review, path integral based approaches can for our purposes be divided into two categories: approaches applicable to quantum mechanical systems at zero temperature and approaches applicable to quantum mechanical systems at finite temperature. While these two approaches are related to each other, the underlying formulation and aspects of the algorithm differ. This paper reviews the path integral Monte Carlo ground state (PIGS) approach, which solves the time-independent Schrödinger equation. Specifically, the PIGS approach allows for the determination of expectation values with respect to eigen states of the few- or many-body Schrödinger equation provided the system Hamiltonian is known. The theoretical framework behind the PIGS algorithm, implementation details, and sample applications for fermionic systems are presented.
NASA Astrophysics Data System (ADS)
Alexander, Andrew William
Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and optimization algorithms are demonstrated. We investigated the clinical significance of MERT on spinal irradiation, breast boost irradiation, and a head and neck sarcoma cancer site using several parameters to analyze the treatment plans. Finally, we investigated the idea of mixed beam photon and electron treatment planning. Photon optimization treatment planning tools were included within the MERT planning toolkit for the purpose of mixed beam optimization. In conclusion, this thesis work has resulted in the development of an advanced framework for photon and electron Monte Carlo treatment planning studies and the development of an inverse planning system for photon, electron or mixed beam radiotherapy (MBRT). The justification and validation of this work is found within the results of the planning studies, which have demonstrated dosimetric advantages to using MERT or MBRT in comparison to clinical treatment alternatives.
A stochastic hybrid systems based framework for modeling dependent failure processes
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313
A stochastic hybrid systems based framework for modeling dependent failure processes.
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.
Remarks on a financial inverse problem by means of Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Cuomo, Salvatore; Di Somma, Vittorio; Sica, Federica
2017-10-01
Estimating the price of a barrier option is a typical inverse problem. In this paper we present a numerical and statistical framework for a market with risk-free interest rate and a risk asset, described by a Geometric Brownian Motion (GBM). After approximating the risk asset with a numerical method, we find the final option price by following an approach based on sequential Monte Carlo methods. All theoretical results are applied to the case of an option whose underlying is a real stock.
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias
2015-01-01
Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.
NASA Astrophysics Data System (ADS)
Moslehi, M.; de Barros, F.; Rajagopal, R.
2014-12-01
Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.
Hey, Jody; Nielsen, Rasmus
2007-01-01
In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231
Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr
2012-01-01
Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian
2013-08-21
The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
2009-07-01
simulation. The pilot described in this paper used this two-step approach within a Define, Measure, Analyze, Improve, and Control ( DMAIC ) framework to...networks, BBN, Monte Carlo simulation, DMAIC , Six Sigma, business case 15. NUMBER OF PAGES 35 16. PRICE CODE 17. SECURITY CLASSIFICATION OF
Kilinc, Deniz; Demir, Alper
2017-08-01
The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
NASA Astrophysics Data System (ADS)
Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim
2018-06-01
Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.
Theoretical Grounds for the Propagation of Uncertainties in Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Saracco, Paolo; Pia, Maria Grazia; Batic, Matej
2014-04-01
We introduce a theoretical framework for the calculation of uncertainties affecting observables produced by Monte Carlo particle transport, which derive from uncertainties in physical parameters input into simulation. The theoretical developments are complemented by a heuristic application, which illustrates the method of calculation in a streamlined simulation environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu
2015-05-15
Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimatedmore » field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm{sup 2} were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.« less
Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen
2015-05-01
To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.
Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco
2014-01-01
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652
Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Giorgos, E-mail: garab@math.uoc.gr; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Plechac, Petr, E-mail: plechac@math.udel.edu
2012-10-01
We present a mathematical framework for constructing and analyzing parallel algorithms for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. Rather than focusing on constructing exactly the stochastic trajectories, our approach relies on approximating the evolution of observables, such as density, coverage, correlations and so on. More specifically, we develop a spatial domain decomposition of the Markov operator (generator) that describes the evolution of all observables according to the kinetic Monte Carlo algorithm. This domain decompositionmore » corresponds to a decomposition of the Markov generator into a hierarchy of operators and can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized variants; these schemes, (a) are partially asynchronous on each fractional step time-window, and (b) are characterized by their communication schedule between processors. The proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules. We carry out a detailed benchmarking of the parallel KMC schemes using available exact solutions, for example, in Ising-type systems and we demonstrate the capabilities of the method to simulate complex spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods.« less
A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
ERIC Educational Resources Information Center
Edwards, Michael C.
2010-01-01
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...
2017-10-17
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
On the use of Bayesian Monte-Carlo in evaluation of nuclear data
NASA Astrophysics Data System (ADS)
De Saint Jean, Cyrille; Archier, Pascal; Privas, Edwin; Noguere, Gilles
2017-09-01
As model parameters, necessary ingredients of theoretical models, are not always predicted by theory, a formal mathematical framework associated to the evaluation work is needed to obtain the best set of parameters (resonance parameters, optical models, fission barrier, average width, multigroup cross sections) with Bayesian statistical inference by comparing theory to experiment. The formal rule related to this methodology is to estimate the posterior density probability function of a set of parameters by solving an equation of the following type: pdf(posterior) ˜ pdf(prior) × a likelihood function. A fitting procedure can be seen as an estimation of the posterior density probability of a set of parameters (referred as x→?) knowing a prior information on these parameters and a likelihood which gives the probability density function of observing a data set knowing x→?. To solve this problem, two major paths could be taken: add approximations and hypothesis and obtain an equation to be solved numerically (minimum of a cost function or Generalized least Square method, referred as GLS) or use Monte-Carlo sampling of all prior distributions and estimate the final posterior distribution. Monte Carlo methods are natural solution for Bayesian inference problems. They avoid approximations (existing in traditional adjustment procedure based on chi-square minimization) and propose alternative in the choice of probability density distribution for priors and likelihoods. This paper will propose the use of what we are calling Bayesian Monte Carlo (referred as BMC in the rest of the manuscript) in the whole energy range from thermal, resonance and continuum range for all nuclear reaction models at these energies. Algorithms will be presented based on Monte-Carlo sampling and Markov chain. The objectives of BMC are to propose a reference calculation for validating the GLS calculations and approximations, to test probability density distributions effects and to provide the framework of finding global minimum if several local minimums exist. Application to resolved resonance, unresolved resonance and continuum evaluation as well as multigroup cross section data assimilation will be presented.
Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.
2014-07-01
Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.
ERIC Educational Resources Information Center
Kwok, Oi-man; West, Stephen G.; Green, Samuel B.
2007-01-01
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
William Salas; Steve Hagen
2013-01-01
This presentation will provide an overview of an approach for quantifying uncertainty in spatial estimates of carbon emission from land use change. We generate uncertainty bounds around our final emissions estimate using a randomized, Monte Carlo (MC)-style sampling technique. This approach allows us to combine uncertainty from different sources without making...
Development of a multi-modal Monte-Carlo radiation treatment planning system combined with PHITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumada, Hiroaki; Nakamura, Takemi; Komeda, Masao
A new multi-modal Monte-Carlo radiation treatment planning system is under development at Japan Atomic Energy Agency. This system (developing code: JCDS-FX) builds on fundamental technologies of JCDS. JCDS was developed by JAEA to perform treatment planning of boron neutron capture therapy (BNCT) which is being conducted at JRR-4 in JAEA. JCDS has many advantages based on practical accomplishments for actual clinical trials of BNCT at JRR-4, the advantages have been taken over to JCDS-FX. One of the features of JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multipurpose particle Monte-Carlo transport code, thus applicationmore » of PHITS enables to evaluate doses for not only BNCT but also several radiotherapies like proton therapy. To verify calculation accuracy of JCDS-FX with PHITS for BNCT, treatment planning of an actual BNCT conducted at JRR-4 was performed retrospectively. The verification results demonstrated the new system was applicable to BNCT clinical trials in practical use. In framework of R and D for laser-driven proton therapy, we begin study for application of JCDS-FX combined with PHITS to proton therapy in addition to BNCT. Several features and performances of the new multimodal Monte-Carlo radiotherapy planning system are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
Comparative and Predictive Multimedia Assessments Using Monte Carlo Uncertainty Analyses
NASA Astrophysics Data System (ADS)
Whelan, G.
2002-05-01
Multiple-pathway frameworks (sometimes referred to as multimedia models) provide a platform for combining medium-specific environmental models and databases, such that they can be utilized in a more holistic assessment of contaminant fate and transport in the environment. These frameworks provide a relatively seamless transfer of information from one model to the next and from databases to models. Within these frameworks, multiple models are linked, resulting in models that consume information from upstream models and produce information to be consumed by downstream models. The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is an example, which allows users to link their models to other models and databases. FRAMES is an icon-driven, site-layout platform that is an open-architecture, object-oriented system that interacts with environmental databases; helps the user construct a Conceptual Site Model that is real-world based; allows the user to choose the most appropriate models to solve simulation requirements; solves the standard risk paradigm of release transport and fate; and exposure/risk assessments to people and ecology; and presents graphical packages for analyzing results. FRAMES is specifically designed allow users to link their own models into a system, which contains models developed by others. This paper will present the use of FRAMES to evaluate potential human health exposures using real site data and realistic assumptions from sources, through the vadose and saturated zones, to exposure and risk assessment at three real-world sites, using the Multimedia Environmental Pollutant Assessment System (MEPAS), which is a multimedia model contained within FRAMES. These real-world examples use predictive and comparative approaches coupled with a Monte Carlo analysis. A predictive analysis is where models are calibrated to monitored site data, prior to the assessment, and a comparative analysis is where models are not calibrated but based solely on literature or judgement and is usually used to compare alternatives. In many cases, a combination is employed where the model is calibrated to a portion of the data (e.g., to determine hydrodynamics), then used to compare alternatives. Three subsurface-based multimedia examples are presented, increasing in complexity. The first presents the application of a predictive, deterministic assessment; the second presents a predictive and comparative, Monte Carlo analysis; and the third presents a comparative, multi-dimensional Monte Carlo analysis. Endpoints are typically presented in terms of concentration, hazard, risk, and dose, and because the vadose zone model typically represents a connection between a source and the aquifer, it does not generally represent the final medium in a multimedia risk assessment.
MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer
2007-02-01
developed practical methods for heterogeneity correction for MRI - based dose calculations (Chen et al 2007). 6) We will use existing Monte Carlo ... Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system, Phys. Med. Biol., 45:2483-95 (2000) Ma...accuracy and consistency for MR based IMRT treatment planning for prostate cancer. A short paper entitled “ Monte Carlo dose verification of MR image based
Chin, P W; Spezi, E; Lewis, D G
2003-08-21
A software solution has been developed to carry out Monte Carlo simulations of portal dosimetry using the BEAMnrc/DOSXYZnrc code at oblique gantry angles. The solution is based on an integrated phantom, whereby the effect of incident beam obliquity was included using geometric transformations. Geometric transformations are accurate within +/- 1 mm and +/- 1 degrees with respect to exact values calculated using trigonometry. An application in portal image prediction of an inhomogeneous phantom demonstrated good agreement with measured data, where the root-mean-square of the difference was under 2% within the field. Thus, we achieved a dose model framework capable of handling arbitrary gantry angles, voxel-by-voxel phantom description and realistic particle transport throughout the geometry.
A hybrid parallel framework for the cellular Potts model simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yi; He, Kejing; Dong, Shoubin
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approachmore » achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou Yu, E-mail: yzou@Princeton.ED; Kavousanakis, Michail E., E-mail: mkavousa@Princeton.ED; Kevrekidis, Ioannis G., E-mail: yannis@Princeton.ED
2010-07-20
The study of particle coagulation and sintering processes is important in a variety of research studies ranging from cell fusion and dust motion to aerosol formation applications. These processes are traditionally simulated using either Monte-Carlo methods or integro-differential equations for particle number density functions. In this paper, we present a computational technique for cases where we believe that accurate closed evolution equations for a finite number of moments of the density function exist in principle, but are not explicitly available. The so-called equation-free computational framework is then employed to numerically obtain the solution of these unavailable closed moment equations bymore » exploiting (through intelligent design of computational experiments) the corresponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method by accelerating the computation of evolving moments of uni- and bivariate particle coagulation and sintering through short simulation bursts of a constant-number Monte-Carlo scheme.« less
A Monte Carlo model for 3D grain evolution during welding
NASA Astrophysics Data System (ADS)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-09-01
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.
Correlated uncertainties in Monte Carlo reaction rate calculations
NASA Astrophysics Data System (ADS)
Longland, Richard
2017-07-01
Context. Monte Carlo methods have enabled nuclear reaction rates from uncertain inputs to be presented in a statistically meaningful manner. However, these uncertainties are currently computed assuming no correlations between the physical quantities that enter those calculations. This is not always an appropriate assumption. Astrophysically important reactions are often dominated by resonances, whose properties are normalized to a well-known reference resonance. This insight provides a basis from which to develop a flexible framework for including correlations in Monte Carlo reaction rate calculations. Aims: The aim of this work is to develop and test a method for including correlations in Monte Carlo reaction rate calculations when the input has been normalized to a common reference. Methods: A mathematical framework is developed for including correlations between input parameters in Monte Carlo reaction rate calculations. The magnitude of those correlations is calculated from the uncertainties typically reported in experimental papers, where full correlation information is not available. The method is applied to four illustrative examples: a fictional 3-resonance reaction, 27Al(p, γ)28Si, 23Na(p, α)20Ne, and 23Na(α, p)26Mg. Results: Reaction rates at low temperatures that are dominated by a few isolated resonances are found to minimally impacted by correlation effects. However, reaction rates determined from many overlapping resonances can be significantly affected. Uncertainties in the 23Na(α, p)26Mg reaction, for example, increase by up to a factor of 5. This highlights the need to take correlation effects into account in reaction rate calculations, and provides insight into which cases are expected to be most affected by them. The impact of correlation effects on nucleosynthesis is also investigated.
QCDLoop: A comprehensive framework for one-loop scalar integrals
NASA Astrophysics Data System (ADS)
Carrazza, Stefano; Ellis, R. Keith; Zanderighi, Giulia
2016-12-01
We present a new release of the QCDLoop library based on a modern object-oriented framework. We discuss the available new features such as the extension to the complex masses, the possibility to perform computations in double and quadruple precision simultaneously, and useful caching mechanisms to improve the computational speed. We benchmark the performance of the new library, and provide practical examples of phenomenological implementations by interfacing this new library to Monte Carlo programs.
Dorazio, R.M.; Johnson, F.A.
2003-01-01
Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.
Thomas B. Lynch; Rodney E. Will; Rider Reynolds
2013-01-01
Preliminary results are given for development of an eastern redcedar (Juniperus virginiana) cubic-volume equation based on measurements of redcedar sample tree stem volume using dendrometry with Monte Carlo integration. Monte Carlo integration techniques can be used to provide unbiased estimates of stem cubic-foot volume based on upper stem diameter...
NASA Astrophysics Data System (ADS)
Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.
2011-12-01
Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently than traditional MCMC.
High-Throughput Characterization of Porous Materials Using Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihan; Martin, Richard L.; Rübel, Oliver
We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CHmore » $$_{4}$$ and CO$$_{2}$$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.« less
New Approaches and Applications for Monte Carlo Perturbation Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
NASA Astrophysics Data System (ADS)
Mimasu, Ken; Sanz, Verónica; Williams, Ciaran
2016-08-01
We present predictions for the associated production of a Higgs boson at NLO+PS accuracy, including the effect of anomalous interactions between the Higgs and gauge bosons. We present our results in different frameworks, one in which the interaction vertex between the Higgs boson and Standard Model W and Z bosons is parameterized in terms of general Lorentz structures, and one in which Electroweak symmetry breaking is manifestly linear and the resulting operators arise through a six-dimensional effective field theory framework. We present analytic calculations of the Standard Model and Beyond the Standard Model contributions, and discuss the phenomenological impact of the higher order pieces. Our results are implemented in the NLO Monte Carlo program MCFM, and interfaced to shower Monte Carlos through the Powheg box framework.
Study of multi-dimensional radiative energy transfer in molecular gases
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, S. N.
1993-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.
Yoo, Brian; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Jusufi, Arben; Maginn, Edward J
2017-09-26
We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10 -5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C 10 E 4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce
Pratx, Guillem; Xing, Lei
2011-01-01
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916
A Monte Carlo Simulation of Brownian Motion in the Freshman Laboratory
ERIC Educational Resources Information Center
Anger, C. D.; Prescott, J. R.
1970-01-01
Describes a dry- lab" experiment for the college freshman laboratory, in which the essential features of Browian motion are given principles, using the Monte Carlo technique. Calculations principles, using the Monte Carlo technique. Calculations are carried out by a computation sheme based on computer language. Bibliography. (LC)
MCMC multilocus lod scores: application of a new approach.
George, Andrew W; Wijsman, Ellen M; Thompson, Elizabeth A
2005-01-01
On extended pedigrees with extensive missing data, the calculation of multilocus likelihoods for linkage analysis is often beyond the computational bounds of exact methods. Growing interest therefore surrounds the implementation of Monte Carlo estimation methods. In this paper, we demonstrate the speed and accuracy of a new Markov chain Monte Carlo method for the estimation of linkage likelihoods through an analysis of real data from a study of early-onset Alzheimer's disease. For those data sets where comparison with exact analysis is possible, we achieved up to a 100-fold increase in speed. Our approach is implemented in the program lm_bayes within the framework of the freely available MORGAN 2.6 package for Monte Carlo genetic analysis (http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml).
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
Cross-platform validation and analysis environment for particle physics
NASA Astrophysics Data System (ADS)
Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.
2017-11-01
A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.
NASA Astrophysics Data System (ADS)
Incerti, S.; Suerfu, B.; Xu, J.; Ivantchenko, V.; Mantero, A.; Brown, J. M. C.; Bernal, M. A.; Francis, Z.; Karamitros, M.; Tran, H. N.
2016-04-01
A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.
Characterizing Quality Factor of Niobium Resonators Using a Markov Chain Monte Carlo Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu Thakur, Ritoban; Tang, Qing Yang; McGeehan, Ryan
The next generation of radiation detectors in high precision Cosmology, Astronomy, and particle-astrophysics experiments will rely heavily on superconducting microwave resonators and kinetic inductance devices. Understanding the physics of energy loss in these devices, in particular at low temperatures and powers, is vital. We present a comprehensive analysis framework, using Markov Chain Monte Carlo methods, to characterize loss due to two-level system in concert with quasi-particle dynamics in thin-film Nb resonators in the GHz range.
Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates
NASA Astrophysics Data System (ADS)
Ashton, G.; Prix, R.
2018-05-01
Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.
Light-Nuclei Spectra from Chiral Dynamics
NASA Astrophysics Data System (ADS)
Piarulli, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Lovato, A.; Lusk, Ewing; Marcucci, L. E.; Pieper, Steven C.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.
2018-02-01
In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A =4 - 12 , accurate to ≤2 % of the binding energy, in very satisfactory agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando
2015-07-27
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystalmore » droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando
2015-07-28
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystalmore » droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.« less
NASA Astrophysics Data System (ADS)
Prabhu Verleker, Akshay; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M.
2015-03-01
The purpose of this study is to develop an alternate empirical approach to estimate near-infra-red (NIR) photon propagation and quantify optically induced drug release in brain metastasis, without relying on computationally expensive Monte Carlo techniques (gold standard). Targeted drug delivery with optically induced drug release is a noninvasive means to treat cancers and metastasis. This study is part of a larger project to treat brain metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced drug release. The empirical model was developed using a weighted approach to estimate photon scattering in tissues and calibrated using a GPU based 3D Monte Carlo. The empirical model was developed and tested against Monte Carlo in optical brain phantoms for pencil beams (width 1mm) and broad beams (width 10mm). The empirical algorithm was tested against the Monte Carlo for different albedos along with diffusion equation and in simulated brain phantoms resembling white-matter (μs'=8.25mm-1, μa=0.005mm-1) and gray-matter (μs'=2.45mm-1, μa=0.035mm-1) at wavelength 800nm. The goodness of fit between the two models was determined using coefficient of determination (R-squared analysis). Preliminary results show the Empirical algorithm matches Monte Carlo simulated fluence over a wide range of albedo (0.7 to 0.99), while the diffusion equation fails for lower albedo. The photon fluence generated by empirical code matched the Monte Carlo in homogeneous phantoms (R2=0.99). While GPU based Monte Carlo achieved 300X acceleration compared to earlier CPU based models, the empirical code is 700X faster than the Monte Carlo for a typical super-Gaussian laser beam.
A Hybrid Monte Carlo importance sampling of rare events in Turbulence and in Turbulent Models
NASA Astrophysics Data System (ADS)
Margazoglou, Georgios; Biferale, Luca; Grauer, Rainer; Jansen, Karl; Mesterhazy, David; Rosenow, Tillmann; Tripiccione, Raffaele
2017-11-01
Extreme and rare events is a challenging topic in the field of turbulence. Trying to investigate those instances through the use of traditional numerical tools turns to be a notorious task, as they fail to systematically sample the fluctuations around them. On the other hand, we propose that an importance sampling Monte Carlo method can selectively highlight extreme events in remote areas of the phase space and induce their occurrence. We present a brand new computational approach, based on the path integral formulation of stochastic dynamics, and employ an accelerated Hybrid Monte Carlo (HMC) algorithm for this purpose. Through the paradigm of stochastic one-dimensional Burgers' equation, subjected to a random noise that is white-in-time and power-law correlated in Fourier space, we will prove our concept and benchmark our results with standard CFD methods. Furthermore, we will present our first results of constrained sampling around saddle-point instanton configurations (optimal fluctuations). The research leading to these results has received funding from the EU Horizon 2020 research and innovation programme under Grant Agreement No. 642069, and from the EU Seventh Framework Programme (FP7/2007-2013) under ERC Grant Agreement No. 339032.
A Monte Carlo model for 3D grain evolution during welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less
A Monte Carlo model for 3D grain evolution during welding
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-08-04
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less
NASA Astrophysics Data System (ADS)
Kalmykov, N. N.; Ostapchenko, S. S.; Werner, K.
An extensive air shower (EAS) calculation scheme based on cascade equations and some EAS characteristics for energies 1014 -1017 eV are presented. The universal hadronic interaction model NEXUS is employed to provide the necessary data concerning hadron-air collisions. The influence of model assumptions on the longitudinal EAS development is discussed in the framework of the NEXUS and QGSJET models. Applied to EAS simulations, perspectives of combined Monte Carlo and numerical methods are considered.
Cross-platform validation and analysis environment for particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.
A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for onlinemore » validation of Monte Carlo event samples through a web interface.« less
Incerti, S.; Suerfu, B.; Xu, J.; ...
2016-02-16
We report that a revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research andmore » other low energy physics fields.« less
NASA Astrophysics Data System (ADS)
Leetmaa, Mikael; Skorodumova, Natalia V.
2015-11-01
We here present a revised version, v1.1, of the KMCLib general framework for kinetic Monte-Carlo (KMC) simulations. The generation of random numbers in KMCLib now relies on the C++11 standard library implementation, and support has been added for the user to choose from a set of C++11 implemented random number generators. The Mersenne-twister, the 24 and 48 bit RANLUX and a 'minimal-standard' PRNG are supported. We have also included the possibility to use true random numbers via the C++11 std::random_device generator. This release also includes technical updates to support the use of an extended range of operating systems and compilers.
Self-evolving atomistic kinetic Monte Carlo simulations of defects in materials
Xu, Haixuan; Beland, Laurent K.; Stoller, Roger E.; ...
2015-01-29
The recent development of on-the-fly atomistic kinetic Monte Carlo methods has led to an increased amount attention on the methods and their corresponding capabilities and applications. In this review, the framework and current status of Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) are discussed. SEAKMC particularly focuses on defect interaction and evolution with atomistic details without assuming potential defect migration/interaction mechanisms and energies. The strength and limitation of using an active volume, the key concept introduced in SEAKMC, are discussed. Potential criteria for characterizing an active volume are discussed and the influence of active volume size on saddle point energies ismore » illustrated. A procedure starting with a small active volume followed by larger active volumes was found to possess higher efficiency. Applications of SEAKMC, ranging from point defect diffusion, to complex interstitial cluster evolution, to helium interaction with tungsten surfaces, are summarized. A comparison of SEAKMC with molecular dynamics and conventional object kinetic Monte Carlo is demonstrated. Overall, SEAKMC is found to be complimentary to conventional molecular dynamics, especially when the harmonic approximation of transition state theory is accurate. However it is capable of reaching longer time scales than molecular dynamics and it can be used to systematically increase the accuracy of other methods such as object kinetic Monte Carlo. Furthermore, the challenges and potential development directions are also outlined.« less
NASA Astrophysics Data System (ADS)
Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef
2018-04-01
In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy efficiency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evidential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing experiment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte Carlo simulations and global sensitivity analysis are used to assess the information content of the data to reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from observations. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data, without any explicit full model inversion. We demonstrate the methodology in field conditions and validate the framework using independent measurements.
TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, T; Bush, K
Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identifymore » the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.« less
Light-Nuclei Spectra from Chiral Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piarulli, M.; Baroni, A.; Girlanda, L.
In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less
Light-Nuclei Spectra from Chiral Dynamics
Piarulli, M.; Baroni, A.; Girlanda, L.; ...
2018-02-01
In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less
Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M
2018-07-01
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
Monte Carlo generators for studies of the 3D structure of the nucleon
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
LMC: Logarithmantic Monte Carlo
NASA Astrophysics Data System (ADS)
Mantz, Adam B.
2017-06-01
LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).
A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam
NASA Astrophysics Data System (ADS)
Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun
2018-04-01
The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.
Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation.
Garcia, Alejandro L; Wagner, Wolfgang
2003-11-01
In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.
2015-09-01
direction, so if the simulation domain is set to be a certain size, then that presents a hard ceiling on the thickness of a film that may be grown in...FFA, Los J, Cuppen HM, Bennema P, Meekes H. MONTY: Monte Carlo crystal growth on any crystal structure in any crystallographic orientation...mhoffman.github.io/kmos/. 23. Kiravittaya S, Schmidt OG. Quantum-dot crystal defects. Applied Physics Letters. 2008;93:173109. 24. Leetmaa M
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.
Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F
2015-02-01
The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
NASA Astrophysics Data System (ADS)
Zoller, Christian; Hohmann, Ansgar; Ertl, Thomas; Kienle, Alwin
2017-07-01
The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media [1]. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important [1, 2]. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards can be used as well as other computing devices. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. This Monte Carlo software can be used for many applications. In this work the transmission spectrum of a tooth and the color reconstruction of a virtual object are shown, using results from the Monte Carlo software.
NASA Astrophysics Data System (ADS)
Usta, Metin; Tufan, Mustafa Çağatay; Aydın, Güral; Bozkurt, Ahmet
2018-07-01
In this study, we have performed the calculations stopping power, depth dose, and range verification for proton beams using dielectric and Bethe-Bloch theories and FLUKA, Geant4 and MCNPX Monte Carlo codes. In the framework, as analytical studies, Drude model was applied for dielectric theory and effective charge approach with Roothaan-Hartree-Fock charge densities was used in Bethe theory. In the simulations different setup parameters were selected to evaluate the performance of three distinct Monte Carlo codes. The lung and breast tissues were investigated are considered to be related to the most common types of cancer throughout the world. The results were compared with each other and the available data in literature. In addition, the obtained results were verified with prompt gamma range data. In both stopping power values and depth-dose distributions, it was found that the Monte Carlo values give better results compared with the analytical ones while the results that agree best with ICRU data in terms of stopping power are those of the effective charge approach between the analytical methods and of the FLUKA code among the MC packages. In the depth dose distributions of the examined tissues, although the Bragg curves for Monte Carlo almost overlap, the analytical ones show significant deviations that become more pronounce with increasing energy. Verifications with the results of prompt gamma photons were attempted for 100-200 MeV protons which are regarded important for proton therapy. The analytical results are within 2%-5% and the Monte Carlo values are within 0%-2% as compared with those of the prompt gammas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2014-01-01
This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is an extension of the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for more than a decade to very effectively improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or reaction rate at a specific location. The basis of this method is the development ofmore » an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain more uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented and demonstrated within the MAVRIC sequence of SCALE and the ADVANTG/MCNP framework. Application of the method to representative, real-world problems, including calculation of dose rate and energy dependent flux throughout the problem space, dose rates in specific areas, and energy spectra at multiple detectors, is presented and discussed. Results of the FW-CADIS method and other recently developed global variance reduction approaches are also compared, and the FW-CADIS method outperformed the other methods in all cases considered.« less
How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.
Lecca, Paola
2018-01-01
We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, J; PLA 302 Hospital, Beijing; Xu, S
2016-06-15
Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combinedmore » 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11275105). Thanks for the support from Accuray Corp.« less
Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny
2011-01-01
Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
exocartographer: Constraining surface maps orbital parameters of exoplanets
NASA Astrophysics Data System (ADS)
Farr, Ben; Farr, Will M.; Cowan, Nicolas B.; Haggard, Hal M.; Robinson, Tyler
2018-05-01
exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.
Fixed forced detection for fast SPECT Monte-Carlo simulation
NASA Astrophysics Data System (ADS)
Cajgfinger, T.; Rit, S.; Létang, J. M.; Halty, A.; Sarrut, D.
2018-03-01
Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.
Fixed forced detection for fast SPECT Monte-Carlo simulation.
Cajgfinger, T; Rit, S; Létang, J M; Halty, A; Sarrut, D
2018-03-02
Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less
Recommender engine for continuous-time quantum Monte Carlo methods
NASA Astrophysics Data System (ADS)
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
Sechopoulos, Ioannis; Ali, Elsayed S M; Badal, Andreu; Badano, Aldo; Boone, John M; Kyprianou, Iacovos S; Mainegra-Hing, Ernesto; McMillan, Kyle L; McNitt-Gray, Michael F; Rogers, D W O; Samei, Ehsan; Turner, Adam C
2015-10-01
The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type and degree of validation required depends on the goals of the research project, but, typically, such validation involves either comparison of simulation results to physical measurements or to previously published results obtained with established Monte Carlo codes. The former is complicated due to nuances of experimental conditions and uncertainty, while the latter is challenging due to typical graphical presentation and lack of simulation details in previous publications. In addition, entering the field of Monte Carlo simulations in general involves a steep learning curve. It is not a simple task to learn how to program and interpret a Monte Carlo simulation, even when using one of the publicly available code packages. This Task Group report provides a common reference for benchmarking Monte Carlo simulations across a range of Monte Carlo codes and simulation scenarios. In the report, all simulation conditions are provided for six different Monte Carlo simulation cases that involve common x-ray based imaging research areas. The results obtained for the six cases using four publicly available Monte Carlo software packages are included in tabular form. In addition to a full description of all simulation conditions and results, a discussion and comparison of results among the Monte Carlo packages and the lessons learned during the compilation of these results are included. This abridged version of the report includes only an introductory description of the six cases and a brief example of the results of one of the cases. This work provides an investigator the necessary information to benchmark his/her Monte Carlo simulation software against the reference cases included here before performing his/her own novel research. In addition, an investigator entering the field of Monte Carlo simulations can use these descriptions and results as a self-teaching tool to ensure that he/she is able to perform a specific simulation correctly. Finally, educators can assign these cases as learning projects as part of course objectives or training programs.
Monte Carlo-based Reconstruction in Water Cherenkov Detectors using Chroma
NASA Astrophysics Data System (ADS)
Seibert, Stanley; Latorre, Anthony
2012-03-01
We demonstrate the feasibility of event reconstruction---including position, direction, energy and particle identification---in water Cherenkov detectors with a purely Monte Carlo-based method. Using a fast optical Monte Carlo package we have written, called Chroma, in combination with several variance reduction techniques, we can estimate the value of a likelihood function for an arbitrary event hypothesis. The likelihood can then be maximized over the parameter space of interest using a form of gradient descent designed for stochastic functions. Although slower than more traditional reconstruction algorithms, this completely Monte Carlo-based technique is universal and can be applied to a detector of any size or shape, which is a major advantage during the design phase of an experiment. As a specific example, we focus on reconstruction results from a simulation of the 200 kiloton water Cherenkov far detector option for LBNE.
Surface entropy of liquids via a direct Monte Carlo approach - Application to liquid Si
NASA Technical Reports Server (NTRS)
Wang, Z. Q.; Stroud, D.
1990-01-01
Two methods are presented for a direct Monte Carlo evaluation of the surface entropy S(s) of a liquid interacting by specified, volume-independent potentials. The first method is based on an application of the approach of Ferrenberg and Swendsen (1988, 1989) to Monte Carlo simulations at two different temperatures; it gives much more reliable results for S(s) in liquid Si than previous calculations based on numerical differentiation. The second method expresses the surface entropy directly as a canonical average at fixed temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Samrat; Tipireddy, Ramakrishna; Oster, Matthew R.
Securing cyber-systems on a continual basis against a multitude of adverse events is a challenging undertaking. Game-theoretic approaches, that model actions of strategic decision-makers, are increasingly being applied to address cybersecurity resource allocation challenges. Such game-based models account for multiple player actions and represent cyber attacker payoffs mostly as point utility estimates. Since a cyber-attacker’s payoff generation mechanism is largely unknown, appropriate representation and propagation of uncertainty is a critical task. In this paper we expand on prior work and focus on operationalizing the probabilistic uncertainty quantification framework, for a notional cyber system, through: 1) representation of uncertain attacker andmore » system-related modeling variables as probability distributions and mathematical intervals, and 2) exploration of uncertainty propagation techniques including two-phase Monte Carlo sampling and probability bounds analysis.« less
POWER ANALYSIS FOR COMPLEX MEDIATIONAL DESIGNS USING MONTE CARLO METHODS
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2013-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex mediational models. The approach is based on the well known technique of generating a large number of samples in a Monte Carlo study, and estimating power as the percentage of cases in which an estimate of interest is significantly different from zero. Examples of power calculation for commonly used mediational models are provided. Power analyses for the single mediator, multiple mediators, three-path mediation, mediation with latent variables, moderated mediation, and mediation in longitudinal designs are described. Annotated sample syntax for Mplus is appended and tabled values of required sample sizes are shown for some models. PMID:23935262
Focusing effect of bent GaAs crystals for γ-ray Laue lenses: Monte Carlo and experimental results
NASA Astrophysics Data System (ADS)
Virgilli, E.; Frontera, F.; Rosati, P.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Stephen, J. B.; Caroli, E.; Auricchio, N.; Basili, A.; Silvestri, S.
2016-02-01
We report on results of observation of the focusing effect from the planes (220) of Gallium Arsenide (GaAs) crystals. We have compared the experimental results with the Monte Carlo simulations of the focusing capability of GaAs tiles performed with a dedicated ray-tracer. The GaAs tiles were bent using a lapping process developed at the cnr/imem - Parma (Italy) in the framework of the laue project, funded by ASI, dedicated to build a broad band Laue lens prototype for astrophysical applications in the hard X-/soft γ-ray energy range (80-600 keV). We present and discuss the results obtained from their characterization, mainly in terms of focusing capability. Bent crystals will significantly increase the signal to noise ratio of a telescope based on a Laue lens, consequently leading to an unprecedented enhancement of sensitivity with respect to the present non focusing instrumentation.
Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching
NASA Astrophysics Data System (ADS)
Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu
2017-09-01
This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.
Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature
NASA Astrophysics Data System (ADS)
Tisovský, Tomáš; Vít, Tomáš
Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
An unbiased Hessian representation for Monte Carlo PDFs.
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.
NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.
2004-12-01
In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.
Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Roberti, Laura
1998-01-01
The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.
NASA Astrophysics Data System (ADS)
Le Foll, S.; André, F.; Delmas, A.; Bouilly, J. M.; Aspa, Y.
2012-06-01
A backward Monte Carlo method for modelling the spectral directional emittance of fibrous media has been developed. It uses Mie theory to calculate the radiative properties of single fibres, modelled as infinite cylinders, and the complex refractive index is computed by a Drude-Lorenz model for the dielectric function. The absorption and scattering coefficient are homogenised over several fibres, but the scattering phase function of a single one is used to determine the scattering direction of energy inside the medium. Sensitivity analysis based on several Monte Carlo results has been performed to estimate coefficients for a Multi-Linear Model (MLM) specifically developed for inverse analysis of experimental data. This model concurs with the Monte Carlo method and is highly computationally efficient. In contrast, the surface emissivity model, which assumes an opaque medium, shows poor agreement with the reference Monte Carlo calculations.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.
2008-02-01
Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.
Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel
2012-09-25
Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.
2012-01-01
Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.
Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.
Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo
Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...
2017-08-26
Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.
dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver
NASA Astrophysics Data System (ADS)
White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.
2018-03-01
dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.
Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Abbaszadeh, Peyman; Moradkhani, Hamid; Yan, Hongxiang
2018-01-01
Particle Filters (PFs) have received increasing attention by researchers from different disciplines including the hydro-geosciences, as an effective tool to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation using the PFs in hydrology has evolved since 2005 from the PF-SIR (sampling importance resampling) to PF-MCMC (Markov Chain Monte Carlo), and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and MCMC, the so-called EPFM. In this framework, the prior distribution undergoes an evolutionary process based on the designed mutation and crossover operators of GA. The merit of this approach is that the particles move to an appropriate position by using the GA optimization and then the number of effective particles is increased by means of MCMC, whereby the particle degeneracy is avoided and the particle diversity is improved. In this study, the usefulness and effectiveness of the proposed EPFM is investigated by applying the technique on a conceptual and highly nonlinear hydrologic model over four river basins located in different climate and geographical regions of the United States. Both synthetic and real case studies demonstrate that the EPFM improves both the state and parameter estimation more effectively and reliably as compared with the PF-MCMC.
NASA Astrophysics Data System (ADS)
Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli
2018-04-01
Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.
Simulation-Based Model Checking for Nondeterministic Systems and Rare Events
2016-03-24
year, we have investigated AO* search and Monte Carlo Tree Search algorithms to complement and enhance CMU’s SMCMDP. 1 Final Report, March 14... tree , so we can use it to find the probability of reachability for a property in PRISM’s Probabilistic LTL. By finding the maximum probability of...savings, particularly when handling very large models. 2.3 Monte Carlo Tree Search The Monte Carlo sampling process in SMCMDP can take a long time to
Discrepancy-based error estimates for Quasi-Monte Carlo III. Error distributions and central limits
NASA Astrophysics Data System (ADS)
Hoogland, Jiri; Kleiss, Ronald
1997-04-01
In Quasi-Monte Carlo integration, the integration error is believed to be generally smaller than in classical Monte Carlo with the same number of integration points. Using an appropriate definition of an ensemble of quasi-random point sets, we derive various results on the probability distribution of the integration error, which can be compared to the standard Central Limit Theorem for normal stochastic sampling. In many cases, a Gaussian error distribution is obtained.
NASA Astrophysics Data System (ADS)
Lai, Siyan; Xu, Ying; Shao, Bo; Guo, Menghan; Lin, Xiaola
2017-04-01
In this paper we study on Monte Carlo method for solving systems of linear algebraic equations (SLAE) based on shared memory. Former research demostrated that GPU can effectively speed up the computations of this issue. Our purpose is to optimize Monte Carlo method simulation on GPUmemoryachritecture specifically. Random numbers are organized to storein shared memory, which aims to accelerate the parallel algorithm. Bank conflicts can be avoided by our Collaborative Thread Arrays(CTA)scheme. The results of experiments show that the shared memory based strategy can speed up the computaions over than 3X at most.
NASA Astrophysics Data System (ADS)
Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.
2010-09-01
The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.
Monte Carlo-based searching as a tool to study carbohydrate structure
USDA-ARS?s Scientific Manuscript database
A torsion angle-based Monte-Carlo searching routine was developed and applied to several carbohydrate modeling problems. The routine was developed as a Unix shell script that calls several programs, which allows it to be interfaced with multiple potential functions and various functions for evaluat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, H; Jeon, H; Nam, J
Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.
1992-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.
Using Functional Languages and Declarative Programming to analyze ROOT data: LINQtoROOT
NASA Astrophysics Data System (ADS)
Watts, Gordon
2015-05-01
Modern high energy physics analysis is complex. It typically requires multiple passes over different datasets, and is often held together with a series of scripts and programs. For example, one has to first reweight the jet energy spectrum in Monte Carlo to match data before plots of any other jet related variable can be made. This requires a pass over the Monte Carlo and the Data to derive the reweighting, and then another pass over the Monte Carlo to plot the variables the analyser is really interested in. With most modern ROOT based tools this requires separate analysis loops for each pass, and script files to glue to the results of the two analysis loops together. A framework has been developed that uses the functional and declarative features of the C# language and its Language Integrated Query (LINQ) extensions to declare the analysis. The framework uses language tools to convert the analysis into C++ and runs ROOT or PROOF as a backend to get the results. This gives the analyser the full power of an object-oriented programming language to put together the analysis and at the same time the speed of C++ for the analysis loop. The tool allows one to incorporate C++ algorithms written for ROOT by others. A by-product of the design is the ability to cache results between runs, dramatically reducing the cost of adding one-more-plot and also to keep a complete record associated with each plot for data preservation reasons. The code is mature enough to have been used in ATLAS analyses. The package is open source and available on the open source site CodePlex.
Enhancing Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Abbaszadeh, P.; Yan, H.
2016-12-01
Particle Filters (PFs) have received increasing attention by the researchers from different disciplines in hydro-geosciences as an effective method to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation by means of data assimilation in hydrology and geoscience has evolved since 2005 from SIR-PF to PF-MCMC and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC. In this framework, the posterior distribution undergoes an evolutionary process to update an ensemble of prior states that more closely resemble realistic posterior probability distribution. The premise of this approach is that the particles move to optimal position using the GA optimization coupled with MCMC increasing the number of effective particles, hence the particle degeneracy is avoided while the particle diversity is improved. The proposed algorithm is applied on a conceptual and highly nonlinear hydrologic model and the effectiveness, robustness and reliability of the method in jointly estimating the states and parameters and also reducing the uncertainty is demonstrated for few river basins across the United States.
Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, D.; Asai, M.; Brink, P.L.
There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature,more » focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.« less
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
NASA Astrophysics Data System (ADS)
Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris
2015-07-01
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less
Guo, Changning; Doub, William H; Kauffman, John F
2010-08-01
Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Multiple-time-stepping generalized hybrid Monte Carlo methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escribano, Bruno, E-mail: bescribano@bcamath.org; Akhmatskaya, Elena; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC).more » The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.« less
NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
NASA Astrophysics Data System (ADS)
Bury, Marcin; Van Haevermaet, Hans; Van Hameren, Andreas; Van Mechelen, Pierre; Kutak, Krzysztof; Serino, Mirko
2018-05-01
We present calculations of single inclusive jet transverse momentum and energy spectra at forward rapidity (5.2 < y < 6.6) in proton-lead collisions with √{sNN } = 5.02 TeV. The predictions are obtained with the KaTie Monte Carlo event generator, which allows to calculate interactions within the High Energy Factorisation framework. The tree-level matrix element results are subsequently interfaced with the CASCADE Monte Carlo event generator to account for hadronisation. The effects of the saturation of the gluon density, leading to suppression of the cross section, are investigated.
GE781: a Monte Carlo package for fixed target experiments
NASA Astrophysics Data System (ADS)
Davidenko, G.; Funk, M. A.; Kim, V.; Kuropatkin, N.; Kurshetsov, V.; Molchanov, V.; Rud, S.; Stutte, L.; Verebryusov, V.; Zukanovich Funchal, R.
The Monte Carlo package for the fixed target experiment B781 at Fermilab, a third generation charmed baryon experiment, is described. This package is based on GEANT 3.21, ADAMO database and DAFT input/output routines.
Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.
2011-01-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276
Liu, Y; Zheng, Y
2012-06-01
Accurate determination of proton dosimetric effect for tissue heterogeneity is critical in proton therapy. Proton beams have finite range and consequently tissue heterogeneity plays a more critical role in proton therapy. The purpose of this study is to investigate the tissue heterogeneity effect in proton dosimetry based on anatomical-based Monte Carlo simulation using animal tissues. Animal tissues including a pig head and beef bulk were used in this study. Both pig head and beef were scanned using a GE CT scanner with 1.25 mm slice thickness. A treatment plan was created, using the CMS XiO treatment planning system (TPS) with a single proton spread-out-Bragg-peak beam (SOBP). Radiochromic films were placed at the distal falloff region. Image guidance was used to align the phantom before proton beams were delivered according to the treatment plan. The same two CT sets were converted to Monte Carlo simulation model. The Monte Carlo simulated dose calculations with/without tissue omposition were compared to TPS calculations and measurements. Based on the preliminary comparison, at the center of SOBP plane, the Monte Carlo simulation dose without tissue composition agreed generally well with TPS calculation. In the distal falloff region, the dose difference was large, and about 2 mm isodose line shift was observed with the consideration of tissue composition. The detailed comparison of dose distributions between Monte Carlo simulation, TPS calculations and measurements is underway. Accurate proton dose calculations are challenging in proton treatment planning for heterogeneous tissues. Tissue heterogeneity and tissue composition may lead to isodose line shifts up to a few millimeters in the distal falloff region. By simulating detailed particle transport and energy deposition, Monte Carlo simulations provide a verification method in proton dose calculation where inhomogeneous tissues are present. © 2012 American Association of Physicists in Medicine.
Monte Carlo verification of radiotherapy treatments with CloudMC.
Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José
2018-06-27
A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.
Collision of Physics and Software in the Monte Carlo Application Toolkit (MCATK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweezy, Jeremy Ed
2016-01-21
The topic is presented in a series of slides organized as follows: MCATK overview, development strategy, available algorithms, problem modeling (sources, geometry, data, tallies), parallelism, miscellaneous tools/features, example MCATK application, recent areas of research, and summary and future work. MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library with continuous energy neutron and photon transport. Designed to build specialized applications and to provide new functionality in existing general-purpose Monte Carlo codes like MCNP, it reads ACE formatted nuclear data generated by NJOY. The motivation behind MCATK was to reduce costs. MCATK physics involves continuous energy neutron & gammamore » transport with multi-temperature treatment, static eigenvalue (k eff and α) algorithms, time-dependent algorithm, and fission chain algorithms. MCATK geometry includes mesh geometries and solid body geometries. MCATK provides verified, unit-test Monte Carlo components, flexibility in Monte Carlo application development, and numerous tools such as geometry and cross section plotters.« less
SU-G-TeP4-04: An Automated Monte Carlo Based QA Framework for Pencil Beam Scanning Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Jee, K; Clasie, B
2016-06-15
Purpose: Prior to treating new PBS field, multiple (three) patient-field-specific QA measurements are performed: two 2D dose distributions at shallow depth (M1) and at the tumor depth (M2) with treatment hardware at zero gantry angle; one 2D dose distribution at iso-center (M3) without patient specific devices at the planned gantry angle. This patient-specific QA could be simplified by the use of MC model. The results of MC model commissioning for a spot-scanning system and the fully automated TOPAS/MC-based QA framework will be presented. Methods: We have developed in-house MC interface to access a TPS (Astroid) database from a computer clustermore » remotely. Once a plan is identified, the interface downloads information for the MC simulations, such as patient images, apertures points, and fluence maps and initiates calculations in both the patient and QA geometries. The resulting calculations are further analyzed to evaluate the TPS dose accuracy and the PBS delivery. Results: The Monte Carlo model of our system was validated within 2.0 % accuracy over the whole range of the dose distribution (proximal/shallow part, as well as target dose part) due to the location of the measurements. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. Conclusion: As M1 depths range typically from 1 cm to 4 cm from the phantom surface, The Monte Carlo model of our system was validated within +− 2.0 % in absolute dose level over a whole treatment range. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. This work was supported by NIH/NCI under CA U19 21239.« less
Asteroid mass estimation with Markov-chain Monte Carlo
NASA Astrophysics Data System (ADS)
Siltala, L.; Granvik, M.
2017-09-01
We have developed a new Markov-chain Monte Carlo-based algorithm for asteroid mass estimation based on mutual encounters and tested it for several different asteroids. Our results are in line with previous literature values but suggest that uncertainties of prior estimates may be misleading as a consequence of using linearized methods.
To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...
Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy
NASA Astrophysics Data System (ADS)
Donzelli, Mattia; Bräuer-Krisch, Elke; Oelfke, Uwe; Wilkens, Jan J.; Bartzsch, Stefan
2018-02-01
Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.
Deng, Yong; Luo, Zhaoyang; Jiang, Xu; Xie, Wenhao; Luo, Qingming
2015-07-01
We propose a method based on a decoupled fluorescence Monte Carlo model for constructing fluorescence Jacobians to enable accurate quantification of fluorescence targets within turbid media. The effectiveness of the proposed method is validated using two cylindrical phantoms enclosing fluorescent targets within homogeneous and heterogeneous background media. The results demonstrate that our method can recover relative concentrations of the fluorescent targets with higher accuracy than the perturbation fluorescence Monte Carlo method. This suggests that our method is suitable for quantitative fluorescence diffuse optical tomography, especially for in vivo imaging of fluorophore targets for diagnosis of different diseases and abnormalities.
Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2018-01-01
This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.
Selective O 2 sorption at ambient temperatures via node distortions in Sc-MIL-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.
2016-04-14
In this study, oxygen selectivity in metal-organic frameworks (MOFs) at exceptionally high temperatures originally predicted by Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) modeling is now confirmed by synthesis, sorption metal center access, in particular Sc and Fe. Based on DFT M-O 2 binding energies, we chose the large pored MIL-100 framework for metal center access, in particular Sc and Fe. Both resulted in preferential O 2 and N 2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258 K, 298 K and 313 K).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6
2013-01-15
Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support the dose perturbations demonstrated by Monte Carlo and Acuros XB data. Conclusions: Acuros XB is shown to perform as well as Monte Carlo methods and better than existing clinical algorithms for dose calculations involving high-density volumes.« less
The X-43A Six Degree of Freedom Monte Carlo Analysis
NASA Technical Reports Server (NTRS)
Baumann, Ethan; Bahm, Catherine; Strovers, Brian; Beck, Roger
2008-01-01
This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A inflight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented.
The X-43A Six Degree of Freedom Monte Carlo Analysis
NASA Technical Reports Server (NTRS)
Baumann, Ethan; Bahm, Catherine; Strovers, Brian; Beck, Roger; Richard, Michael
2007-01-01
This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A in-flight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented.
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, A; Zbijewski, W; Bolch, W
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods,more » are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail, with all necessary data on material composition, source, geometry, scoring and other parameters provided. The results of these simulations when performed with the four most common publicly available Monte Carlo packages are also provided in tabular form. The Task Group 195 Report will be useful for researchers needing to validate their Monte Carlo work, and for trainees needing to learn Monte Carlo simulation methods. In this symposium we will review the recent advancements in highperformance computing hardware enabling the reduction in computational resources needed for Monte Carlo simulations in medical imaging. We will review variance reduction techniques commonly applied in Monte Carlo simulations of medical imaging systems and present implementation strategies for efficient combination of these techniques with GPU acceleration. Trade-offs involved in Monte Carlo acceleration by means of denoising and “sparse sampling” will be discussed. A method for rapid scatter correction in cone-beam CT (<5 min/scan) will be presented as an illustration of the simulation speeds achievable with optimized Monte Carlo simulations. We will also discuss the development, availability, and capability of the various combinations of computational phantoms for Monte Carlo simulation of medical imaging systems. Finally, we will review some examples of experimental validation of Monte Carlo simulations and will present the AAPM Task Group 195 Report. Learning Objectives: Describe the advances in hardware available for performing Monte Carlo simulations in high performance computing environments. Explain variance reduction, denoising and sparse sampling techniques available for reduction of computational time needed for Monte Carlo simulations of medical imaging. List and compare the computational anthropomorphic phantoms currently available for more accurate assessment of medical imaging parameters in Monte Carlo simulations. Describe experimental methods used for validation of Monte Carlo simulations in medical imaging. Describe the AAPM Task Group 195 Report and its use for validation and teaching of Monte Carlo simulations in medical imaging.« less
Monte Carlo simulation: Its status and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtha, J.A.
1997-04-01
Monte Carlo simulation is a statistics-based analysis tool that yields probability-vs.-value relationships for key parameters, including oil and gas reserves, capital exposure, and various economic yardsticks, such as net present value (NPV) and return on investment (ROI). Monte Carlo simulation is a part of risk analysis and is sometimes performed in conjunction with or as an alternative to decision [tree] analysis. The objectives are (1) to define Monte Carlo simulation in a more general context of risk and decision analysis; (2) to provide some specific applications, which can be interrelated; (3) to respond to some of the criticisms; (4) tomore » offer some cautions about abuses of the method and recommend how to avoid the pitfalls; and (5) to predict what the future has in store.« less
Monte Carlo Simulations of Microchannel Plate Based, Fast-Gated X-Ray Imagers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu., M., Kruschwitz, C.
2011-02-01
This is a chapter in a book titled Applications of Monte Carlo Method in Science and Engineering Edited by: Shaul Mordechai ISBN 978-953-307-691-1, Hard cover, 950 pages Publisher: InTech Publication date: February 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco
Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order tomore » define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.« less
Spectroscopic characterization of low dose rate brachytherapy sources
NASA Astrophysics Data System (ADS)
Beach, Stephen M.
The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these analogs. Several dosimetrically-relevant water-equivalent plastics were also investigated for their transmission properties within a liquid water environment, as well as in air. The framework for the accurate spectrometry of LDR sources is established as a result of this dissertation work. In addition to the measurement and analysis methods, this work presents the basic measured spectroscopic characteristics of each LDR seed currently in use in the clinic today.
Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution
NASA Astrophysics Data System (ADS)
Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline
2006-09-01
Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.
Proton Upset Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.T.; Murphy, J.
SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.
Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Cameron Russell; Mckigney, Edward Allen
The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.
Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces
NASA Astrophysics Data System (ADS)
Goujon, Florent; Bêche, Bruno; Malfreyt, Patrice; Ghoufi, Aziz
2018-03-01
In this work, we implement for the first time the radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. The efficiency of this method is then evaluated through the calculation of surface tension and coexisting properties. We show that the inclusion of tail corrections during the course of the Monte Carlo simulation impacts the coexisting and the interfacial properties. We establish that the long range corrections to the surface tension are the same order of magnitude as those obtained from planar interface. We show that the slab-based tail method does not amend the localization of the Gibbs equimolar dividing surface. Additionally, a non-monotonic behavior of surface tension is exhibited as a function of the radius of the equimolar dividing surface.
Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsoulakis, Markos
2014-08-09
Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our keymore » accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.« less
CosmoSIS: A system for MC parameter estimation
Bridle, S.; Dodelson, S.; Jennings, E.; ...
2015-12-23
CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could bemore » used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. Furthermore, it also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.« less
McNally, Kevin; Cotton, Richard; Cocker, John; Jones, Kate; Bartels, Mike; Rick, David; Price, Paul; Loizou, George
2012-01-01
There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure. PMID:22719759
Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods
NASA Astrophysics Data System (ADS)
Lai, Bo-Lun; Sheu, Rong-Jiun
2017-09-01
Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.
ME(SSY)**2: Monte Carlo Code for Star Cluster Simulations
NASA Astrophysics Data System (ADS)
Freitag, Marc Dewi
2013-02-01
ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems." This code simulates the long term evolution of spherical clusters of stars; it was devised specifically to treat dense galactic nuclei. It is based on the pioneering Monte Carlo scheme proposed by Hénon in the 70's and includes all relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ldots). It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations. The current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php).
NASA Astrophysics Data System (ADS)
Duan, Lian; Makita, Shuichi; Yamanari, Masahiro; Lim, Yiheng; Yasuno, Yoshiaki
2011-08-01
A Monte-Carlo-based phase retardation estimator is developed to correct the systematic error in phase retardation measurement by polarization sensitive optical coherence tomography (PS-OCT). Recent research has revealed that the phase retardation measured by PS-OCT has a distribution that is neither symmetric nor centered at the true value. Hence, a standard mean estimator gives us erroneous estimations of phase retardation, and it degrades the performance of PS-OCT for quantitative assessment. In this paper, the noise property in phase retardation is investigated in detail by Monte-Carlo simulation and experiments. A distribution transform function is designed to eliminate the systematic error by using the result of the Monte-Carlo simulation. This distribution transformation is followed by a mean estimator. This process provides a significantly better estimation of phase retardation than a standard mean estimator. This method is validated both by numerical simulations and experiments. The application of this method to in vitro and in vivo biological samples is also demonstrated.
Hunt, J G; Watchman, C J; Bolch, W E
2007-01-01
Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D microCT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo--VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques.
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
NASA Astrophysics Data System (ADS)
Schön, Thomas B.; Svensson, Andreas; Murray, Lawrence; Lindsten, Fredrik
2018-05-01
Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods-the particle Metropolis-Hastings algorithm-which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the "true solution" under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods-including particle Metropolis-Hastings-to a large group of users without requiring them to know all the underlying mathematical details.
Track-before-detect labeled multi-bernoulli particle filter with label switching
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Angel F.
2016-10-01
This paper presents a multitarget tracking particle filter (PF) for general track-before-detect measurement models. The PF is presented in the random finite set framework and uses a labelled multi-Bernoulli approximation. We also present a label switching improvement algorithm based on Markov chain Monte Carlo that is expected to increase filter performance if targets get in close proximity for a sufficiently long time. The PF is tested in two challenging numerical examples.
NASA Astrophysics Data System (ADS)
Joshi, Kaushik; Chaudhuri, Santanu
2016-10-01
Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner-Preston (GP) zones in dilute Al-Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson-Mehl-Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuseppe Palmiotti
In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.
NASA Astrophysics Data System (ADS)
Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten
2007-06-01
Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.
Relation Between Pore Size and the Compressibility of a Confined Fluid
Gor, Gennady Y.; Siderius, Daniel W.; Rasmussen, Christopher J.; Krekelberg, William P.; Shen, Vincent K.; Bernstein, Noam
2015-01-01
When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here we report a simple relation between the pore size and isothermal compressibility of argon confined in these pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments. PMID:26590541
Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins
NASA Astrophysics Data System (ADS)
Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.
2013-02-01
We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.
Particle-Based Simulations of Microscopic Thermal Properties of Confined Systems
2014-11-01
velocity versus electric field in gallium arsenide (GaAs) computed with the original CMC table structure (squares) at temperature T=150K, and the new...computer-aided design Cellular Monte Carlo Ensemble Monte Carlo gallium arsenide Heat Transport Equation DARPA Defense Advanced Research Projects
Physical Principle for Generation of Randomness
NASA Technical Reports Server (NTRS)
Zak, Michail
2009-01-01
A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)
Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.
2016-10-21
In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
NASA Astrophysics Data System (ADS)
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
NASA Astrophysics Data System (ADS)
Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.
2006-02-01
Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.
NASA Technical Reports Server (NTRS)
Karakoylu, E.; Franz, B.
2016-01-01
First attempt at quantifying uncertainties in ocean remote sensing reflectance satellite measurements. Based on 1000 iterations of Monte Carlo. Data source is a SeaWiFS 4-day composite, 2003. The uncertainty is for remote sensing reflectance (Rrs) at 443 nm.
MC3: Multi-core Markov-chain Monte Carlo code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan
2016-10-01
MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.
The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.
2014-09-15
The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less
Monte Carlo Simulation for Perusal and Practice.
ERIC Educational Resources Information Center
Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.
The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…
(U) Introduction to Monte Carlo Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hungerford, Aimee L.
2017-03-20
Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Ellis; Derek Gaston; Benoit Forget
In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less
NASA Astrophysics Data System (ADS)
Hansen, T. M.; Cordua, K. S.
2017-12-01
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.
Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).
Yang, Owen; Choi, Bernard
2013-01-01
To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
Parameter Uncertainty Analysis Using Monte Carlo Simulations for a Regional-Scale Groundwater Model
NASA Astrophysics Data System (ADS)
Zhang, Y.; Pohlmann, K.
2016-12-01
Regional-scale grid-based groundwater models for flow and transport often contain multiple types of parameters that can intensify the challenge of parameter uncertainty analysis. We propose a Monte Carlo approach to systematically quantify the influence of various types of model parameters on groundwater flux and contaminant travel times. The Monte Carlo simulations were conducted based on the steady-state conversion of the original transient model, which was then combined with the PEST sensitivity analysis tool SENSAN and particle tracking software MODPATH. Results identified hydrogeologic units whose hydraulic conductivity can significantly affect groundwater flux, and thirteen out of 173 model parameters that can cause large variation in travel times for contaminant particles originating from given source zones.
NASA Astrophysics Data System (ADS)
Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.
2015-03-01
We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.
Multi-particle phase space integration with arbitrary set of singularities in CompHEP
NASA Astrophysics Data System (ADS)
Kovalenko, D. N.; Pukhov, A. E.
1997-02-01
We describe an algorithm of multi-particle phase space integration for collision and decay processes realized in CompHEP package version 3.2. In the framework of this algorithm it is possible to regularize an arbitrary set of singularities caused by virtual particle propagators. The algorithm is based on the method of the recursive representation of kinematics and on the multichannel Monte Carlo approach. CompHEP package is available by WWW: http://theory.npi.msu.su/pukhov/comphep.html
A theoretical framework to predict the most likely ion path in particle imaging.
Collins-Fekete, Charles-Antoine; Volz, Lennart; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2017-03-07
In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.
Off-diagonal expansion quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Jiang, Yi-fan; Chen, Chang-shui; Liu, Xiao-mei; Liu, Rong-ting; Liu, Song-hao
2015-04-01
To explore the characteristics of light propagation along the Pericardium Meridian and its surrounding areas at human wrist by using optical experiment and Monte Carlo method. An experiment was carried out to obtain the distribution of diffuse light on Pericardium Meridian line and its surrounding areas at the wrist, and then a simplified model based on the anatomical structure was proposed to simulate the light transportation within the same area by using Monte Carlo method. The experimental results showed strong accordance with the Monte Carlo simulation that the light propagation along the Pericardium Meridian had an advantage over its surrounding areas at the wrist. The advantage of light transport along Pericardium Merdian line was related to components and structure of tissue, also the anatomical structure of the area that the Pericardium Meridian line runs.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.
Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Dufek, Jan
2014-06-01
This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.
NASA Astrophysics Data System (ADS)
Gbedo, Yémalin Gabin; Mangin-Brinet, Mariane
2017-07-01
We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2 minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus offering additional insight into the rich field of PDFs determination. After a basic introduction to these techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian) Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be applied to the extraction of PDFs and of their uncertainties.
Monte Carlo tests of the ELIPGRID-PC algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, J.R.
1995-04-01
The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangularmore » sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.« less
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553
Two proposed convergence criteria for Monte Carlo solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Pederson, S.P.; Booth, T.E.
1992-01-01
The central limit theorem (CLT) can be applied to a Monte Carlo solution if two requirements are satisfied: (1) The random variable has a finite mean and a finite variance; and (2) the number N of independent observations grows large. When these two conditions are satisfied, a confidence interval (CI) based on the normal distribution with a specified coverage probability can be formed. The first requirement is generally satisfied by the knowledge of the Monte Carlo tally being used. The Monte Carlo practitioner has a limited number of marginal methods to assess the fulfillment of the second requirement, such asmore » statistical error reduction proportional to 1/[radical]N with error magnitude guidelines. Two proposed methods are discussed in this paper to assist in deciding if N is large enough: estimating the relative variance of the variance (VOV) and examining the empirical history score probability density function (pdf).« less
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
NASA Astrophysics Data System (ADS)
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
NASA Astrophysics Data System (ADS)
Caporali, E.; Chiarello, V.; Galeati, G.
2014-12-01
Peak discharges estimates for a given return period are of primary importance in engineering practice for risk assessment and hydraulic structure design. Different statistical methods are chosen here for the assessment of flood frequency curve: one indirect technique based on the extreme rainfall event analysis, the Peak Over Threshold (POT) model and the Annual Maxima approach as direct techniques using river discharge data. In the framework of the indirect method, a Monte Carlo simulation approach is adopted to determine a derived frequency distribution of peak runoff using a probabilistic formulation of the SCS-CN method as stochastic rainfall-runoff model. A Monte Carlo simulation is used to generate a sample of different runoff events from different stochastic combination of rainfall depth, storm duration, and initial loss inputs. The distribution of the rainfall storm events is assumed to follow the GP law whose parameters are estimated through GEV's parameters of annual maximum data. The evaluation of the initial abstraction ratio is investigated since it is one of the most questionable assumption in the SCS-CN model and plays a key role in river basin characterized by high-permeability soils, mainly governed by infiltration excess mechanism. In order to take into account the uncertainty of the model parameters, this modified approach, that is able to revise and re-evaluate the original value of the initial abstraction ratio, is implemented. In the POT model the choice of the threshold has been an essential issue, mainly based on a compromise between bias and variance. The Generalized Extreme Value (GEV) distribution fitted to the annual maxima discharges is therefore compared with the Pareto distributed peaks to check the suitability of the frequency of occurrence representation. The methodology is applied to a large dam in the Serchio river basin, located in the Tuscany Region. The application has shown as Monte Carlo simulation technique can be a useful tool to provide more robust estimation of the results obtained by direct statistical methods.
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
The NOvA software testing framework
NASA Astrophysics Data System (ADS)
Tamsett, M.; C Group
2015-12-01
The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study vε appearance in a vμ beam. NOvA has already produced more than one million Monte Carlo and detector generated files amounting to more than 1 PB in size. This data is divided between a number of parallel streams such as far and near detector beam spills, cosmic ray backgrounds, a number of data-driven triggers and over 20 different Monte Carlo configurations. Each of these data streams must be processed through the appropriate steps of the rapidly evolving, multi-tiered, interdependent NOvA software framework. In total there are greater than 12 individual software tiers, each of which performs a different function and can be configured differently depending on the input stream. In order to regularly test and validate that all of these software stages are working correctly NOvA has designed a powerful, modular testing framework that enables detailed validation and benchmarking to be performed in a fast, efficient and accessible way with minimal expert knowledge. The core of this system is a novel series of python modules which wrap, monitor and handle the underlying C++ software framework and then report the results to a slick front-end web-based interface. This interface utilises modern, cross-platform, visualisation libraries to render the test results in a meaningful way. They are fast and flexible, allowing for the easy addition of new tests and datasets. In total upwards of 14 individual streams are regularly tested amounting to over 70 individual software processes, producing over 25 GB of output files. The rigour enforced through this flexible testing framework enables NOvA to rapidly verify configurations, results and software and thus ensure that data is available for physics analysis in a timely and robust manner.
NASA Astrophysics Data System (ADS)
Gugsa, Solomon A.; Davies, Angela
2005-08-01
Characterizing an aspheric micro lens is critical for understanding the performance and providing feedback to the manufacturing. We describe a method to find the best-fit conic of an aspheric micro lens using a least squares minimization and Monte Carlo analysis. Our analysis is based on scanning white light interferometry measurements, and we compare the standard rapid technique where a single measurement is taken of the apex of the lens to the more time-consuming stitching technique where more surface area is measured. Both are corrected for tip/tilt based on a planar fit to the substrate. Four major parameters and their uncertainties are estimated from the measurement and a chi-square minimization is carried out to determine the best-fit conic constant. The four parameters are the base radius of curvature, the aperture of the lens, the lens center, and the sag of the lens. A probability distribution is chosen for each of the four parameters based on the measurement uncertainties and a Monte Carlo process is used to iterate the minimization process. Eleven measurements were taken and data is also chosen randomly from the group during the Monte Carlo simulation to capture the measurement repeatability. A distribution of best-fit conic constants results, where the mean is a good estimate of the best-fit conic and the distribution width represents the combined measurement uncertainty. We also compare the Monte Carlo process for the stitched data and the not stitched data. Our analysis allows us to analyze the residual surface error in terms of Zernike polynomials and determine uncertainty estimates for each coefficient.
A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems
NASA Astrophysics Data System (ADS)
Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.
2009-12-01
Interest in the study of structural and energetic properties of highly quantum clusters, such as inert gas clusters has motivated the development of a hardware-accelerated framework for Quantum Monte Carlo simulations. In the Quantum Monte Carlo method, the properties of a system of atoms, such as the ground-state energies, are averaged over a number of iterations. Our framework is aimed at accelerating the computations in each iteration of the QMC application by offloading the calculation of properties, namely energy and trial wave function, onto reconfigurable hardware. This gives a user the capability to run simulations for a large number of iterations, thereby reducing the statistical uncertainty in the properties, and for larger clusters. This framework is designed to run on the Cray XD1 high performance reconfigurable computing platform, which exploits the coarse-grained parallelism of the processor along with the fine-grained parallelism of the reconfigurable computing devices available in the form of field-programmable gate arrays. In this paper, we illustrate the functioning of the framework, which can be used to calculate the energies for a model cluster of helium atoms. In addition, we present the capabilities of the framework that allow the user to vary the chemical identities of the simulated atoms. Program summaryProgram title: Hardware Accelerated Quantum Monte Carlo (HAQMC) Catalogue identifier: AEEP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 691 537 No. of bytes in distributed program, including test data, etc.: 5 031 226 Distribution format: tar.gz Programming language: C/C++ for the QMC application, VHDL and Xilinx 8.1 ISE/EDK tools for FPGA design and development Computer: Cray XD1 consisting of a dual-core, dualprocessor AMD Opteron 2.2 GHz with a Xilinx Virtex-4 (V4LX160) or Xilinx Virtex-II Pro (XC2VP50) FPGA per node. We use the compute node with the Xilinx Virtex-4 FPGA Operating system: Red Hat Enterprise Linux OS Has the code been vectorised or parallelized?: Yes Classification: 6.1 Nature of problem: Quantum Monte Carlo is a practical method to solve the Schrödinger equation for large many-body systems and obtain the ground-state properties of such systems. This method involves the sampling of a number of configurations of atoms and averaging the properties of the configurations over a number of iterations. We are interested in applying the QMC method to obtain the energy and other properties of highly quantum clusters, such as inert gas clusters. Solution method: The proposed framework provides a combined hardware-software approach, in which the QMC simulation is performed on the host processor, with the computationally intensive functions such as energy and trial wave function computations mapped onto the field-programmable gate array (FPGA) logic device attached as a co-processor to the host processor. We perform the QMC simulation for a number of iterations as in the case of our original software QMC approach, to reduce the statistical uncertainty of the results. However, our proposed HAQMC framework accelerates each iteration of the simulation, by significantly reducing the time taken to calculate the ground-state properties of the configurations of atoms, thereby accelerating the overall QMC simulation. We provide a generic interpolation framework that can be extended to study a variety of pure and doped atomic clusters, irrespective of the chemical identities of the atoms. For the FPGA implementation of the properties, we use a two-region approach for accurately computing the properties over the entire domain, employ deep pipelines and fixed-point for all our calculations guaranteeing the accuracy required for our simulation.
A Monte Carlo Approach for Adaptive Testing with Content Constraints
ERIC Educational Resources Information Center
Belov, Dmitry I.; Armstrong, Ronald D.; Weissman, Alexander
2008-01-01
This article presents a new algorithm for computerized adaptive testing (CAT) when content constraints are present. The algorithm is based on shadow CAT methodology to meet content constraints but applies Monte Carlo methods and provides the following advantages over shadow CAT: (a) lower maximum item exposure rates, (b) higher utilization of the…
Estimating Uncertainty in N2O Emissions from US Cropland Soils
USDA-ARS?s Scientific Manuscript database
A Monte Carlo analysis was combined with an empirically-based approach to quantify uncertainties in soil N2O emissions from US croplands estimated with the DAYCENT simulation model. Only a subset of croplands was simulated in the Monte Carlo analysis which was used to infer uncertainties across the ...
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çatlı, Serap, E-mail: serapcatli@hotmail.com; Tanır, Güneş
2013-10-01
The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the presentmore » study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.« less
Badal, Andreu; Badano, Aldo
2009-11-01
It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
A New Monte Carlo Method for Estimating Marginal Likelihoods.
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O
2018-06-01
Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.
Towards predicting the encoding capability of MR fingerprinting sequences.
Sommer, K; Amthor, T; Doneva, M; Koken, P; Meineke, J; Börnert, P
2017-09-01
Sequence optimization and appropriate sequence selection is still an unmet need in magnetic resonance fingerprinting (MRF). The main challenge in MRF sequence design is the lack of an appropriate measure of the sequence's encoding capability. To find such a measure, three different candidates for judging the encoding capability have been investigated: local and global dot-product-based measures judging dictionary entry similarity as well as a Monte Carlo method that evaluates the noise propagation properties of an MRF sequence. Consistency of these measures for different sequence lengths as well as the capability to predict actual sequence performance in both phantom and in vivo measurements was analyzed. While the dot-product-based measures yielded inconsistent results for different sequence lengths, the Monte Carlo method was in a good agreement with phantom experiments. In particular, the Monte Carlo method could accurately predict the performance of different flip angle patterns in actual measurements. The proposed Monte Carlo method provides an appropriate measure of MRF sequence encoding capability and may be used for sequence optimization. Copyright © 2017 Elsevier Inc. All rights reserved.
Humeniuk, Stephan; Büchler, Hans Peter
2017-12-08
We present a method for computing the full probability distribution function of quadratic observables such as particle number or magnetization for the Fermi-Hubbard model within the framework of determinantal quantum Monte Carlo calculations. Especially in cold atom experiments with single-site resolution, such a full counting statistics can be obtained from repeated projective measurements. We demonstrate that the full counting statistics can provide important information on the size of preformed pairs. Furthermore, we compute the full counting statistics of the staggered magnetization in the repulsive Hubbard model at half filling and find excellent agreement with recent experimental results. We show that current experiments are capable of probing the difference between the Hubbard model and the limiting Heisenberg model.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Study of the CP-violating effects with gg → Η → τ{sup +}τ{sup –} process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, N. L., E-mail: nbelyaev@cern.ch; Konoplich, R. V.
Study of the gg → Η → τ{sup +}τ{sup –} process was performed at Monte Carlo level within the framework of searching for CP-violating effects. The sensitivity of chosen observables to CP-parity of the Higgs boson was demonstrated for hadronic 1-prong τ decays (τ{sup ±} → π{sup ±}, ρ{sup ±}). Monte Carlo samples for the gg → Η → τ{sup +}τ{sup -} process were generated including the parton hadronisation to final state particles. This generation was performed for the Standard Model Higgs boson, the pseudoscalar Higgs boson, the Z → τ{sup +}τ{sup –} background, and mixed CP-states of the Higgsmore » boson.« less
NASA Astrophysics Data System (ADS)
Kirillin, M. Yu; Priezzhev, A. V.; Hast, J.; Myllylä, Risto
2006-02-01
Signals of an optical coherence tomograph from paper samples are calculated by the Monte Carlo method before and after the action of different immersion liquids such as ethanol, glycerol, benzyl alcohol, and 1-pentanol. It is shown within the framework of the model used that all these liquids reduce the contrast of the inhomogeneity image in upper layers of the samples, considerably improving, however, the visibility of lower layers, allowing the localisation of the rear boundary of a medium being probed, which is important for precision contactless measuring a paper sheet thickness, for example, during the manufacturing process. The results of calculations are in well agreement with experimental data.
Dynamic Event Tree advancements and control logic improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego
The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2018-01-01
The goal of this study is to develop a generalized source model (GSM) for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology. PMID:28079526
Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.
Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe
2015-07-07
The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.
Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy
NASA Astrophysics Data System (ADS)
Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe
2015-07-01
The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
NASA Astrophysics Data System (ADS)
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2017-03-01
The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
Satake, S; Park, J-K; Sugama, H; Kanno, R
2011-07-29
Neoclassical toroidal viscosities (NTVs) in tokamaks are investigated using a δf Monte Carlo simulation, and are successfully verified with a combined analytic theory over a wide range of collisionality. A Monte Carlo simulation has been required in the study of NTV since the complexities in guiding-center orbits of particles and their collisions cannot be fully investigated by any means of analytic theories alone. Results yielded the details of the complex NTV dependency on particle precessions and collisions, which were predicted roughly in a combined analytic theory. Both numerical and analytic methods can be utilized and extended based on these successful verifications.
Comparing the landcapes of common retroviral insertion sites across tumor models
NASA Astrophysics Data System (ADS)
Weishaupt, Holger; Čančer, Matko; Engström, Cristopher; Silvestrov, Sergei; Swartling, Fredrik J.
2017-01-01
Retroviral tagging represents an important technique, which allows researchers to screen for candidate cancer genes. The technique is based on the integration of retroviral sequences into the genome of a host organism, which might then lead to the artificial inhibition or expression of proximal genetic elements. The identification of potential cancer genes in this framework involves the detection of genomic regions (common insertion sites; CIS) which contain a number of such viral integration sites that is greater than expected by chance. During the last two decades, a number of different methods have been discussed for the identification of such loci and the respective techniques have been applied to a variety of different retroviruses and/or tumor models. We have previously established a retrovirus driven brain tumor model and reported the CISs which were found based on a Monte Carlo statistics derived detection paradigm. In this study, we consider a recently proposed alternative graph theory based method for identifying CISs and compare the resulting CIS landscape in our brain tumor dataset to those obtained when using the Monte Carlo approach. Finally, we also employ the graph-based method to compare the CIS landscape in our brain tumor model with those of other published retroviral tumor models.
A probabilistic model framework for evaluating year-to-year variation in crop productivity
NASA Astrophysics Data System (ADS)
Yokozawa, M.; Iizumi, T.; Tao, F.
2008-12-01
Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The framework proposed here provides us information on uncertainties, possibilities and limitations on future improvements in crop model as well.
NASA Astrophysics Data System (ADS)
Dieudonne, Cyril; Dumonteil, Eric; Malvagi, Fausto; M'Backé Diop, Cheikh
2014-06-01
For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this paper we present a methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time the implementation of this method in the TRIPOLI-4® code will be discussed, as well as the precise calculation scheme a meme to bring important speed-up of the depletion calculation. Finally, this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes.
Optimization of the Monte Carlo code for modeling of photon migration in tissue.
Zołek, Norbert S; Liebert, Adam; Maniewski, Roman
2006-10-01
The Monte Carlo method is frequently used to simulate light transport in turbid media because of its simplicity and flexibility, allowing to analyze complicated geometrical structures. Monte Carlo simulations are, however, time consuming because of the necessity to track the paths of individual photons. The time consuming computation is mainly associated with the calculation of the logarithmic and trigonometric functions as well as the generation of pseudo-random numbers. In this paper, the Monte Carlo algorithm was developed and optimized, by approximation of the logarithmic and trigonometric functions. The approximations were based on polynomial and rational functions, and the errors of these approximations are less than 1% of the values of the original functions. The proposed algorithm was verified by simulations of the time-resolved reflectance at several source-detector separations. The results of the calculation using the approximated algorithm were compared with those of the Monte Carlo simulations obtained with an exact computation of the logarithm and trigonometric functions as well as with the solution of the diffusion equation. The errors of the moments of the simulated distributions of times of flight of photons (total number of photons, mean time of flight and variance) are less than 2% for a range of optical properties, typical of living tissues. The proposed approximated algorithm allows to speed up the Monte Carlo simulations by a factor of 4. The developed code can be used on parallel machines, allowing for further acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
Recent advances and future prospects for Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B
2010-01-01
The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less
THE MOVEMENT OF OIL UNDER NON-BREAKING WAVES
The combined effects of wave kinematics, turbulent diffusion, and buoyancy on the transport of oil droplets at sea were investigated in this work using random walk techniques in a Monte Carlo framework. Six hundred oil particles were placed at the water surface and tracked for 5...
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iandola, F N; O'Brien, M J; Procassini, R J
2010-11-29
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improvesmore » usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.« less
APS undulator and wiggler sources: Monte-Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.L.; Lai, B.; Viccaro, P.J.
1992-02-01
Standard insertion devices will be provided to each sector by the Advanced Photon Source. It is important to define the radiation characteristics of these general purpose devices. In this document,results of Monte-Carlo simulation are presented. These results, based on the SHADOW program, include the APS Undulator A (UA), Wiggler A (WA), and Wiggler B (WB).
Propagating probability distributions of stand variables using sequential Monte Carlo methods
Jeffrey H. Gove
2009-01-01
A general probabilistic approach to stand yield estimation is developed based on sequential Monte Carlo filters, also known as particle filters. The essential steps in the development of the sampling importance resampling (SIR) particle filter are presented. The SIR filter is then applied to simulated and observed data showing how the 'predictor - corrector'...
USDA-ARS?s Scientific Manuscript database
A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...
Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system
NASA Astrophysics Data System (ADS)
Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald
2005-03-01
The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR can only be properly accounted for by image-based, patient-specific treatment planning, as has been common in external beam radiation therapy for many years. MINERVA offers 3D Monte Carlo-based MTR treatment planning as its first integrated operational capability. The new MINERVA system will ultimately incorporate capabilities for a comprehensive list of radiation therapies. In progress are modules for external beam photon-electron therapy and boron neutron capture therapy (BNCT). Brachytherapy and proton therapy are planned. Through the open application programming interface (API), other groups can add their own modules and share them with the community.
Jones, Hayley E; Hickman, Matthew; Kasprzyk-Hordern, Barbara; Welton, Nicky J; Baker, David R; Ades, A E
2014-07-15
Concentrations of metabolites of illicit drugs in sewage water can be measured with great accuracy and precision, thanks to the development of sensitive and robust analytical methods. Based on assumptions about factors including the excretion profile of the parent drug, routes of administration and the number of individuals using the wastewater system, the level of consumption of a drug can be estimated from such measured concentrations. When presenting results from these 'back-calculations', the multiple sources of uncertainty are often discussed, but are not usually explicitly taken into account in the estimation process. In this paper we demonstrate how these calculations can be placed in a more formal statistical framework by assuming a distribution for each parameter involved, based on a review of the evidence underpinning it. Using a Monte Carlo simulations approach, it is then straightforward to propagate uncertainty in each parameter through the back-calculations, producing a distribution for instead of a single estimate of daily or average consumption. This can be summarised for example by a median and credible interval. To demonstrate this approach, we estimate cocaine consumption in a large urban UK population, using measured concentrations of two of its metabolites, benzoylecgonine and norbenzoylecgonine. We also demonstrate a more sophisticated analysis, implemented within a Bayesian statistical framework using Markov chain Monte Carlo simulation. Our model allows the two metabolites to simultaneously inform estimates of daily cocaine consumption and explicitly allows for variability between days. After accounting for this variability, the resulting credible interval for average daily consumption is appropriately wider, representing additional uncertainty. We discuss possibilities for extensions to the model, and whether analysis of wastewater samples has potential to contribute to a prevalence model for illicit drug use. Copyright © 2014. Published by Elsevier B.V.
Jones, Hayley E.; Hickman, Matthew; Kasprzyk-Hordern, Barbara; Welton, Nicky J.; Baker, David R.; Ades, A.E.
2014-01-01
Concentrations of metabolites of illicit drugs in sewage water can be measured with great accuracy and precision, thanks to the development of sensitive and robust analytical methods. Based on assumptions about factors including the excretion profile of the parent drug, routes of administration and the number of individuals using the wastewater system, the level of consumption of a drug can be estimated from such measured concentrations. When presenting results from these ‘back-calculations’, the multiple sources of uncertainty are often discussed, but are not usually explicitly taken into account in the estimation process. In this paper we demonstrate how these calculations can be placed in a more formal statistical framework by assuming a distribution for each parameter involved, based on a review of the evidence underpinning it. Using a Monte Carlo simulations approach, it is then straightforward to propagate uncertainty in each parameter through the back-calculations, producing a distribution for instead of a single estimate of daily or average consumption. This can be summarised for example by a median and credible interval. To demonstrate this approach, we estimate cocaine consumption in a large urban UK population, using measured concentrations of two of its metabolites, benzoylecgonine and norbenzoylecgonine. We also demonstrate a more sophisticated analysis, implemented within a Bayesian statistical framework using Markov chain Monte Carlo simulation. Our model allows the two metabolites to simultaneously inform estimates of daily cocaine consumption and explicitly allows for variability between days. After accounting for this variability, the resulting credible interval for average daily consumption is appropriately wider, representing additional uncertainty. We discuss possibilities for extensions to the model, and whether analysis of wastewater samples has potential to contribute to a prevalence model for illicit drug use. PMID:24636801
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Hlil, E. K.
2018-05-01
Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate the electronic and magnetic properties of the Fe4N compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between Fe(I) and Fe(II) in Fe4N compound. We have used the obtained data from abinitio calculations as an input in Monte Carlo simulation to calculate the magnetic properties of this compounds such as the ground state phase diagrams, total and partial magnetization of Fe(I) and Fe(II) as well as the transition temperatures are computed. The variation of magnetization with the crystal field are also studied. The magnetic hysteresis cycle of the same Fe4N compound are determined for different values of temperatures and crystal field values. The two-step hysteresis loop are evidenced, which is typical for Fe4N structure. The ferromagnetic and superparamagnetic phase is observed as well.
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
NASA Astrophysics Data System (ADS)
Lam, Brenda H. S.; Yang, Steven S. L.; Chau, Y. C.
2018-02-01
A multi-purpose detector based calibration system for luminous intensity, illuminance and luminance has been developed at the Government of the Hong Kong Special Administrative Region, Standards and Calibration Laboratory (SCL). In this paper, the measurement system and methods are described. The measurement models and contributory uncertainties were validated using the Guide to the Expression of Uncertainty in Measurement (GUM) framework and Supplement 1 to the GUM - Propagation of distributions using a Monte Carlo method in accordance with the JCGM 100:2008 and JCGM 101:2008 at the intended precision level.
2013-07-01
also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32 B. MCNP PHYSICS OPTIONS ......................................................................................... 33 C. HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Rangaraj, D
2016-06-15
Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI systemmore » were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.« less
NASA Astrophysics Data System (ADS)
Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried
2017-02-01
We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.
A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy
NASA Astrophysics Data System (ADS)
Schablitzki, T.; Rogal, J.; Drautz, R.
2017-06-01
Atomistic simulations of thermal desorption spectra for effusion from bulk materials to characterize binding or trapping sites are a challenging task as large system sizes as well as extended time scales are required. Here, we introduce an approach where we combine kinetic Monte Carlo with an analytic approximation of the superbasins within the framework of absorbing Markov chains. We apply our approach to the effusion of hydrogen from BCC iron, where the diffusion within bulk grains is coarse grained using absorbing Markov chains, which provide an exact solution of the dynamics within a superbasin. Our analytic approximation to the superbasin is transferable with respect to grain size and elliptical shapes and can be applied in simulations with constant temperature as well as constant heating rate. The resulting thermal desorption spectra are in close agreement with direct kinetic Monte Carlo simulations, but the calculations are computationally much more efficient. Our approach is thus applicable to much larger system sizes and provides a first step towards an atomistic understanding of the influence of structural features on the position and shape of peaks in thermal desorption spectra. This article is part of the themed issue 'The challenges of hydrogen and metals'.
NASA Astrophysics Data System (ADS)
Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.
2018-06-01
The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc < 30 K) in LaCr2Si2C. Other parameters are also computed as: the magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.
Fixed-node quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Anderson, James B.
Quantum Monte Carlo methods cannot at present provide exact solutions of the Schrödinger equation for systems with more than a few electrons. But, quantum Monte Carlo calculations can provide very low energy, highly accurate solutions for many systems ranging up to several hundred electrons. These systems include atoms such as Be and Fe, molecules such as H2O, CH4, and HF, and condensed materials such as solid N2 and solid silicon. The quantum Monte Carlo predictions of their energies and structures may not be `exact', but they are the best available. Most of the Monte Carlo calculations for these systems have been carried out using approximately correct fixed nodal hypersurfaces and they have come to be known as `fixed-node quantum Monte Carlo' calculations. In this paper we review these `fixed node' calculations and the accuracies they yield.
Vectorized Monte Carlo methods for reactor lattice analysis
NASA Technical Reports Server (NTRS)
Brown, F. B.
1984-01-01
Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.
Data decomposition of Monte Carlo particle transport simulations via tally servers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less
Multi-fidelity methods for uncertainty quantification in transport problems
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.
2016-12-01
We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.
Prompt Radiation Protection Factors
2018-02-01
dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat
ERIC Educational Resources Information Center
Carver, Andrew B.
2013-01-01
Equity Indexed Annuities (EIAs) are controversial financial products because the payoffs to investors are based on formulas that are supposedly too complex for average investors to understand. This brief describes how Monte Carlo simulation can provide insight into the true risk and return of an EIA. This approach can be used as a project…
Exact and Monte carlo resampling procedures for the Wilcoxon-Mann-Whitney and Kruskal-Wallis tests.
Berry, K J; Mielke, P W
2000-12-01
Exact and Monte Carlo resampling FORTRAN programs are described for the Wilcoxon-Mann-Whitney rank sum test and the Kruskal-Wallis one-way analysis of variance for ranks test. The program algorithms compensate for tied values and do not depend on asymptotic approximations for probability values, unlike most algorithms contained in PC-based statistical software packages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, Andreu; Badano, Aldo
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less
Mitchell, J. T.; Perepelitsa, D. V.; Tannenbaum, M. J.; ...
2016-05-23
Here, several methods of generating three constituent quarks in a nucleon are evaluated which explicitly maintain the nucleon's center of mass and desired radial distribution and can be used within Monte Carlo Glauber frameworks. The geometric models provided by each method are used to generate distributions over the number of constituent quark participants ( N qp) in p+p,d+Au, and Au+Au collisions. The results are compared with each other and to a previous result of N qp calculations, without this explicit constraint, used in measurements of √S NN = 200 GeV p+p,d+Au, and Au+Au collisions at the BNL Relativistic Heavy Ionmore » Collider.« less
NASA Astrophysics Data System (ADS)
Feraoun, A.; Zaim, A.; Kerouad, M.
2016-09-01
By using the Quantum Monte Carlo simulation; the electric properties of a nanowire, consisting of a ferroelectric core of spin-1/2 surrounded by a ferroelectric shell of spin-1/2 with ferro- or anti-ferroelectric interfacial coupling have been studied within the framework of the Transverse Ising Model (TIM). We have examined the effects of the shell coupling Js, the interfacial coupling JInt, the transverse field Ω, and the temperature T on the hysteresis behavior and on the electric properties of the system. The remanent polarization and the coercive field as a function of the transverse field and the temperature are examined. A number of characteristic behavior have been found such as the appearance of triple hysteresis loops for appropriate values of the system parameters.
Validation of the Monte Carlo simulator GATE for indium-111 imaging.
Assié, K; Gardin, I; Véra, P; Buvat, I
2005-07-07
Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.
Monte Carlo modeling of spatial coherence: free-space diffraction
Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.
2008-01-01
We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335
Visual improvement for bad handwriting based on Monte-Carlo method
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2014-03-01
A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.
Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Cheong, R. Y.; Gabda, D.
2017-09-01
Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.
Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
NASA Astrophysics Data System (ADS)
Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan
2017-11-01
We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
SU-F-T-507: Modeling Cerenkov Emissions From Medical Linear Accelerators: A Monte Carlo Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrock, Z; Oldham, M; Adamson, J
2016-06-15
Purpose: Cerenkov emissions are a natural byproduct of MV radiotherapy but are typically ignored as inconsequential. However, Cerenkov photons may be useful for activation of drugs such as psoralen. Here, we investigate Cerenkov radiation from common radiotherapy beams using Monte Carlo simulations. Methods: GAMOS, a GEANT4-based framework for Monte Carlo simulations, was used to model 6 and 18MV photon beams from a Varian medical linac. Simulations were run to track Cerenkov production from these beams when irradiating a 50cm radius sphere of water. Electron contamination was neglected. 2 million primary photon histories were run for each energy, and values scoredmore » included integral dose and total track length of Cerenkov photons between 100 and 400 nm wavelength. By lowering process energy thresholds, simulations included low energy Bremsstrahlung photons to ensure comprehensive evaluation of UV production in the medium. Results: For the same number of primary photons, UV Cerenkov production for 18MV was greater than 6MV by a factor of 3.72 as determined by total track length. The total integral dose was a factor of 2.31 greater for the 18MV beam. Bremsstrahlung photons were a negligibly small component of photons in the wavelength range of interest, comprising 0.02% of such photons. Conclusion: Cerenkov emissions in water are 1.6x greater for 18MV than 6MV for the same integral dose. Future work will expand the analysis to include optical properties of tissues, and to investigate strategies to maximize Cerenkov emission per unit dose for MV radiotherapy.« less
A Monte Carlo simulation of advanced HIV disease: application to prevention of CMV infection.
Paltiel, A D; Scharfstein, J A; Seage, G R; Losina, E; Goldie, S J; Weinstein, M C; Craven, D E; Freedberg, K A
1998-01-01
Disagreement exists among decision makers regarding the allocation of limited HIV patient care resources and, specifically, the comparative value of preventing opportunistic infections in late-stage disease. A Monte Carlo simulation framework was used to evaluate a state-transition model of the natural history of HIV illness in patients with CD4 counts below 300/mm3 and to project the costs and consequences of alternative strategies for preventing AIDS-related complications. The authors describe the model and demonstrate how it may be employed to assess the cost-effectiveness of oral ganciclovir for prevention of cytomegalovirus (CMV) infection. Ganciclovir prophylaxis confers an estimated additional 0.7 quality-adjusted month of life at a net cost of $10,700, implying an incremental cost-effectiveness ratio of roughly $173,000 per quality-adjusted life year gained. Sensitivity analysis reveals that this baseline result is stable over a wide range of input data estimates, including quality of life and drug efficacy, but it is sensitive to CMV incidence and drug price assumptions. The Monte Carlo simulation framework offers decision makers a powerful and flexible tool for evaluating choices in the realm of chronic disease patient care. The authors have used it to assess HIV-related treatment options and continue to refine it to reflect advances in defining the pathogenesis and treatment of AIDS. Compared with alternative interventions, CMV prophylaxis does not appear to be a cost-effective use of scarce HIV clinical care funds. However, targeted prevention in patients identified to be at higher risk for CMV-related disease may warrant consideration.
NASA Astrophysics Data System (ADS)
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Power, H.
2017-01-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen–Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error. PMID:28878974
Chen, Jin; Venugopal, Vivek; Intes, Xavier
2011-01-01
Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610
Triple collinear emissions in parton showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höche, Stefan; Prestel, Stefan
2017-10-01
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.
A Monte Carlo method using octree structure in photon and electron transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, K.; Maeda, S.
Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that withmore » electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J
Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less
Mishra, Harshit; Karmakar, Subhankar; Kumar, Rakesh; Singh, Jitendra
2017-07-01
Landfilling is a cost-effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long-term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses. © 2016 Society for Risk Analysis.
Thomas B. Lynch; Jeffrey H. Gove
2014-01-01
The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...
Quantum Gibbs ensemble Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fantoni, Riccardo, E-mail: rfantoni@ts.infn.it; Moroni, Saverio, E-mail: moroni@democritos.it
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
NASA Astrophysics Data System (ADS)
Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.
2013-03-01
Time-domain near-infrared spectroscopy (TD-NIRS) offers the ability to measure the absolute baseline optical properties of a tissue. Specifically, for brain imaging, the robust assessment of cerebral blood volume and oxygenation based on measurement of cerebral hemoglobin concentrations is essential for reliable cross-sectional and longitudinal studies. In adult heads, these baseline measurements are complicated by the presence of thick extra-cerebral tissue (scalp, skull, CSF). A simple semi-infinite homogeneous model of the head has proven to have limited use because of the large errors it introduces in the recovered brain absorption. Analytical solutions for layered media have shown improved performance on Monte-Carlo simulated data and layered phantom experiments, but their validity on real adult head data has never been demonstrated. With the advance of fast Monte Carlo approaches based on GPU computation, numerical methods to solve the radiative transfer equation become viable alternatives to analytical solutions of the diffusion equation. Monte Carlo approaches provide the additional advantage to be adaptable to any geometry, in particular more realistic head models. The goals of the present study were twofold: (1) to implement a fast and flexible Monte Carlo-based fitting routine to retrieve the brain optical properties; (2) to characterize the performances of this fitting method on realistic adult head data. We generated time-resolved data at various locations over the head, and fitted them with different models of light propagation: the homogeneous analytical model, and Monte Carlo simulations for three head models: a two-layer slab, the true subject's anatomy, and that of a generic atlas head. We found that the homogeneous model introduced a median 20 to 25% error on the recovered brain absorption, with large variations over the range of true optical properties. The two-layer slab model only improved moderately the results over the homogeneous one. On the other hand, using a generic atlas head registered to the subject's head surface decreased the error by a factor of 2. When the information is available, using the true subject anatomy offers the best performance.
Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K
2008-07-01
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.
Delving Into Dissipative Quantum Dynamics: From Approximate to Numerically Exact Approaches
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ta
In this thesis, I explore dissipative quantum dynamics of several prototypical model systems via various approaches, ranging from approximate to numerically exact schemes. In particular, in the realm of the approximate I explore the accuracy of Pade-resummed master equations and the fewest switches surface hopping (FSSH) algorithm for the spin-boson model, and non-crossing approximations (NCA) for the Anderson-Holstein model. Next, I develop new and exact Monte Carlo approaches and test them on the spin-boson model. I propose well-defined criteria for assessing the accuracy of Pade-resummed quantum master equations, which correctly demarcate the regions of parameter space where the Pade approximation is reliable. I continue the investigation of spin-boson dynamics by benchmark comparisons of the semiclassical FSSH algorithm to exact dynamics over a wide range of parameters. Despite small deviations from golden-rule scaling in the Marcus regime, standard surface hopping algorithm is found to be accurate over a large portion of parameter space. The inclusion of decoherence corrections via the augmented FSSH algorithm improves the accuracy of dynamical behavior compared to exact simulations, but the effects are generally not dramatic for the cases I consider. Next, I introduce new methods for numerically exact real-time simulation based on real-time diagrammatic Quantum Monte Carlo (dQMC) and the inchworm algorithm. These methods optimally recycle Monte Carlo information from earlier times to greatly suppress the dynamical sign problem. In the context of the spin-boson model, I formulate the inchworm expansion in two distinct ways: the first with respect to an expansion in the system-bath coupling and the second as an expansion in the diabatic coupling. In addition, a cumulant version of the inchworm Monte Carlo method is motivated by the latter expansion, which allows for further suppression of the growth of the sign error. I provide a comprehensive comparison of the performance of the inchworm Monte Carlo algorithms to other exact methodologies as well as a discussion of the relative advantages and disadvantages of each. Finally, I investigate the dynamical interplay between the electron-electron interaction and the electron-phonon coupling within the Anderson-Holstein model via two complementary NCAs: the first is constructed around the weak-coupling limit and the second around the polaron limit. The influence of phonons on spectral and transport properties is explored in equilibrium, for non-equilibrium steady state and for transient dynamics after a quench. I find the two NCAs disagree in nontrivial ways, indicating that more reliable approaches to the problem are needed. The complementary frameworks used here pave the way for numerically exact methods based on inchworm dQMC algorithms capable of treating open systems simultaneously coupled to multiple fermionic and bosonic baths.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter A.; Stewart, Gordon; Lackner, Matthew
Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, whichmore » is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.« less
Tennant, Marc; Kruger, Estie
2013-02-01
This study developed a Monte Carlo simulation approach to examining the prevalence and incidence of dental decay using Australian children as a test environment. Monte Carlo simulation has been used for a half a century in particle physics (and elsewhere); put simply, it is the probability for various population-level outcomes seeded randomly to drive the production of individual level data. A total of five runs of the simulation model for all 275,000 12-year-olds in Australia were completed based on 2005-2006 data. Measured on average decayed/missing/filled teeth (DMFT) and DMFT of highest 10% of sample (Sic10) the runs did not differ from each other by more than 2% and the outcome was within 5% of the reported sampled population data. The simulations rested on the population probabilities that are known to be strongly linked to dental decay, namely, socio-economic status and Indigenous heritage. Testing the simulated population found DMFT of all cases where DMFT<>0 was 2.3 (n = 128,609) and DMFT for Indigenous cases only was 1.9 (n = 13,749). In the simulation population the Sic25 was 3.3 (n = 68,750). Monte Carlo simulations were created in particle physics as a computational mathematical approach to unknown individual-level effects by resting a simulation on known population-level probabilities. In this study a Monte Carlo simulation approach to childhood dental decay was built, tested and validated. © 2013 FDI World Dental Federation.
LCG MCDB—a knowledgebase of Monte-Carlo simulated events
NASA Astrophysics Data System (ADS)
Belov, S.; Dudko, L.; Galkin, E.; Gusev, A.; Pokorski, W.; Sherstnev, A.
2008-02-01
In this paper we report on LCG Monte-Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC Collaborations by experts. In many cases, the modern Monte-Carlo simulation of physical processes requires expert knowledge in Monte-Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project. Program summaryProgram title: LCG Monte-Carlo Data Base Catalogue identifier: ADZX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 30 129 No. of bytes in distributed program, including test data, etc.: 216 943 Distribution format: tar.gz Programming language: Perl Computer: CPU: Intel Pentium 4, RAM: 1 Gb, HDD: 100 Gb Operating system: Scientific Linux CERN 3/4 RAM: 1 073 741 824 bytes (1 Gb) Classification: 9 External routines:perl >= 5.8.5; Perl modules DBD-mysql >= 2.9004, File::Basename, GD::SecurityImage, GD::SecurityImage::AC, Linux::Statistics, XML::LibXML > 1.6, XML::SAX, XML::NamespaceSupport; Apache HTTP Server >= 2.0.59; mod auth external >= 2.2.9; edg-utils-system RPM package; gd >= 2.0.28; rpm package CASTOR-client >= 2.1.2-4; arc-server (optional) Nature of problem: Often, different groups of experimentalists prepare similar samples of particle collision events or turn to the same group of authors of Monte-Carlo (MC) generators to prepare the events. For example, the same MC samples of Standard Model (SM) processes can be employed for the investigations either in the SM analyses (as a signal) or in searches for new phenomena in Beyond Standard Model analyses (as a background). If the samples are made available publicly and equipped with corresponding and comprehensive documentation, it can speed up cross checks of the samples themselves and physical models applied. Some event samples require a lot of computing resources for preparation. So, a central storage of the samples prevents possible waste of researcher time and computing resources, which can be used to prepare the same events many times. Solution method: Creation of a special knowledgebase (MCDB) designed to keep event samples for the LHC experimental and phenomenological community. The knowledgebase is realized as a separate web-server ( http://mcdb.cern.ch). All event samples are kept on types at CERN. Documentation describing the events is the main contents of MCDB. Users can browse the knowledgebase, read and comment articles (documentation), and download event samples. Authors can upload new event samples, create new articles, and edit own articles. Restrictions: The software is adopted to solve the problems, described in the article and there are no any additional restrictions. Unusual features: The software provides a framework to store and document large files with flexible authentication and authorization system. Different external storages with large capacity can be used to keep the files. The WEB Content Management System provides all of the necessary interfaces for the authors of the files, end-users and administrators. Running time: Real time operations. References: [1] The main LCG MCDB server, http://mcdb.cern.ch/. [2] P. Bartalini, L. Dudko, A. Kryukov, I.V. Selyuzhenkov, A. Sherstnev, A. Vologdin, LCG Monte-Carlo data base, hep-ph/0404241. [3] J.P. Baud, B. Couturier, C. Curran, J.D. Durand, E. Knezo, S. Occhetti, O. Barring, CASTOR: status and evolution, cs.oh/0305047.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.
Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).
Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J
2017-06-08
Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).
Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.
2017-05-17
Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).
Power Analysis for Complex Mediational Designs Using Monte Carlo Methods
ERIC Educational Resources Information Center
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2010-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex…
A framework for simulating map error in ecosystem models
Sean P. Healey; Shawn P. Urbanski; Paul L. Patterson; Chris Garrard
2014-01-01
The temporal depth and spatial breadth of observations from platforms such as Landsat provide unique perspective on ecosystem dynamics, but the integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential map errors in broader...
Development of accelerated Raman and fluorescent Monte Carlo method
NASA Astrophysics Data System (ADS)
Dumont, Alexander P.; Patil, Chetan
2018-02-01
Monte Carlo (MC) modeling of photon propagation in turbid media is an essential tool for understanding optical interactions between light and tissue. Insight gathered from outputs of MC models assists in mapping between detected optical signals and bulk tissue optical properties, and as such, has proven useful for inverse calculations of tissue composition and optimization of the design of optical probes. MC models of Raman scattering have previously been implemented without consideration to background autofluorescence, despite its presence in raw measurements. Modeling both Raman and fluorescence profiles at high spectral resolution requires a significant increase in computation, but is more appropriate for investigating issues such as detection limits. We present a new Raman Fluorescence MC model developed atop an existing GPU parallelized MC framework that can run more than 300x times faster than CPU methods. The robust acceleration allows for the efficient production of both Raman and fluorescence outputs from the MC model. In addition, this model can handle arbitrary sample morphologies of excitation and collection geometries to more appropriately mimic experimental settings. We will present the model framework and initial results.
The Monte Carlo code MCPTV--Monte Carlo dose calculation in radiation therapy with carbon ions.
Karg, Juergen; Speer, Stefan; Schmidt, Manfred; Mueller, Reinhold
2010-07-07
The Monte Carlo code MCPTV is presented. MCPTV is designed for dose calculation in treatment planning in radiation therapy with particles and especially carbon ions. MCPTV has a voxel-based concept and can perform a fast calculation of the dose distribution on patient CT data. Material and density information from CT are taken into account. Electromagnetic and nuclear interactions are implemented. Furthermore the algorithm gives information about the particle spectra and the energy deposition in each voxel. This can be used to calculate the relative biological effectiveness (RBE) for each voxel. Depth dose distributions are compared to experimental data giving good agreement. A clinical example is shown to demonstrate the capabilities of the MCPTV dose calculation.
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely
2015-12-01
We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.
Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein
2015-05-01
In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhyadhom, A; McGuinness, C; Descovich, M
Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert.more » Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm{sup 2} area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.« less
DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.
Kumada, Hiroaki; Takada, Kenta; Sakurai, Yoshinori; Suzuki, Minoru; Takata, Takushi; Sakurai, Hideyuki; Matsumura, Akira; Sakae, Takeji
2017-10-26
To establish boron neutron capture therapy (BNCT), the University of Tsukuba is developing a treatment device and peripheral devices required in BNCT, such as a treatment planning system. We are developing a new multimodal Monte Carlo based treatment planning system (developing code: Tsukuba Plan). Tsukuba Plan allows for dose estimation in proton therapy, X-ray therapy and heavy ion therapy in addition to BNCT because the system employs PHITS as the Monte Carlo dose calculation engine. Regarding BNCT, several verifications of the system are being carried out for its practical usage. The verification results demonstrate that Tsukuba Plan allows for accurate estimation of thermal neutron flux and gamma-ray dose as fundamental radiations of dosimetry in BNCT. In addition to the practical use of Tsukuba Plan in BNCT, we are investigating its application to other radiation therapies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu
2017-03-01
Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.
Monte Carlo Simulation of THz Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Blakey, P.
1997-01-01
Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
Beentjes, Casper H L; Baker, Ruth E
2018-05-25
Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.
Monte Carlo role in radiobiological modelling of radiotherapy outcomes
NASA Astrophysics Data System (ADS)
El Naqa, Issam; Pater, Piotr; Seuntjens, Jan
2012-06-01
Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.
NASA Astrophysics Data System (ADS)
Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen
2018-02-01
We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, Surendra N.
1994-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.
Monte Carlo Methods in Materials Science Based on FLUKA and ROOT
NASA Technical Reports Server (NTRS)
Pinsky, Lawrence; Wilson, Thomas; Empl, Anton; Andersen, Victor
2003-01-01
A comprehensive understanding of mitigation measures for space radiation protection necessarily involves the relevant fields of nuclear physics and particle transport modeling. One method of modeling the interaction of radiation traversing matter is Monte Carlo analysis, a subject that has been evolving since the very advent of nuclear reactors and particle accelerators in experimental physics. Countermeasures for radiation protection from neutrons near nuclear reactors, for example, were an early application and Monte Carlo methods were quickly adapted to this general field of investigation. The project discussed here is concerned with taking the latest tools and technology in Monte Carlo analysis and adapting them to space applications such as radiation shielding design for spacecraft, as well as investigating how next-generation Monte Carlos can complement the existing analytical methods currently used by NASA. We have chosen to employ the Monte Carlo program known as FLUKA (A legacy acronym based on the German for FLUctuating KAscade) used to simulate all of the particle transport, and the CERN developed graphical-interface object-oriented analysis software called ROOT. One aspect of space radiation analysis for which the Monte Carlo s are particularly suited is the study of secondary radiation produced as albedoes in the vicinity of the structural geometry involved. This broad goal of simulating space radiation transport through the relevant materials employing the FLUKA code necessarily requires the addition of the capability to simulate all heavy-ion interactions from 10 MeV/A up to the highest conceivable energies. For all energies above 3 GeV/A the Dual Parton Model (DPM) is currently used, although the possible improvement of the DPMJET event generator for energies 3-30 GeV/A is being considered. One of the major tasks still facing us is the provision for heavy ion interactions below 3 GeV/A. The ROOT interface is being developed in conjunction with the CERN ALICE (A Large Ion Collisions Experiment) software team through an adaptation of their existing AliROOT (ALICE Using ROOT) architecture. In order to check our progress against actual data, we have chosen to simulate the ATIC14 (Advanced Thin Ionization Calorimeter) cosmic-ray astrophysics balloon payload as well as neutron fluences in the Mir spacecraft. This paper contains a summary of status of this project, and a roadmap to its successful completion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aima, M; Culberson, W; Hammer, C
Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analogmore » determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically-viable dosimetric framework for the CivaSheet. This work was partially supported by NCI contract (HHSN261201200052C) through CivaTech Oncology Inc.« less
Monte Carlo Transport for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
NASA Astrophysics Data System (ADS)
Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.
2015-01-01
Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Wang, L; Lovelock, M; Chui, C S
1999-12-01
To further validate the Monte Carlo dose-calculation method [Med. Phys. 25, 867-878 (1998)] developed at the Memorial Sloan-Kettering Cancer Center, we have performed experimental verification in various inhomogeneous phantoms. The phantom geometries included simple layered slabs, a simulated bone column, a simulated missing-tissue hemisphere, and an anthropomorphic head geometry (Alderson Rando Phantom). The densities of the inhomogeneity range from 0.14 to 1.86 g/cm3, simulating both clinically relevant lunglike and bonelike materials. The data are reported as central axis depth doses, dose profiles, dose values at points of interest, such as points at the interface of two different media and in the "nasopharynx" region of the Rando head. The dosimeters used in the measurement included dosimetry film, TLD chips, and rods. The measured data were compared to that of Monte Carlo calculations for the same geometrical configurations. In the case of the Rando head phantom, a CT scan of the phantom was used to define the calculation geometry and to locate the points of interest. The agreement between the calculation and measurement is generally within 2.5%. This work validates the accuracy of the Monte Carlo method. While Monte Carlo, at present, is still too slow for routine treatment planning, it can be used as a benchmark against which other dose calculation methods can be compared.
Reconstruction of Human Monte Carlo Geometry from Segmented Images
NASA Astrophysics Data System (ADS)
Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican
2014-06-01
Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified
Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer
NASA Astrophysics Data System (ADS)
Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.
2005-03-01
The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.
NASA Astrophysics Data System (ADS)
Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.
2014-08-01
Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.
Lacoste, V; Gressier, V
2007-01-01
The Institute for Radiological Protection and Nuclear Safety owns two facilities producing realistic mixed neutron-photon radiation fields, CANEL, an accelerator driven moderator modular device, and SIGMA, a graphite moderated americium-beryllium assembly. These fields are representative of some of those encountered at nuclear workplaces, and the corresponding facilities are designed and used for calibration of various instruments, such as survey meters, personal dosimeters or spectrometric devices. In the framework of the European project EVIDOS, irradiations of personal dosimeters were performed at CANEL and SIGMA. Monte Carlo calculations were performed to estimate the reference values of the personal dose equivalent at both facilities. The Hp(10) values were calculated for three different angular positions, 0 degrees, 45 degrees and 75 degrees, of an ICRU phantom located at the position of irradiation.
Nuclear deformation in the laboratory frame
NASA Astrophysics Data System (ADS)
Gilbreth, C. N.; Alhassid, Y.; Bertsch, G. F.
2018-01-01
We develop a formalism for calculating the distribution of the axial quadrupole operator in the laboratory frame within the rotationally invariant framework of the configuration-interaction shell model. The calculation is carried out using a finite-temperature auxiliary-field quantum Monte Carlo method. We apply this formalism to isotope chains of even-mass samarium and neodymium nuclei and show that the quadrupole distribution provides a model-independent signature of nuclear deformation. Two technical advances are described that greatly facilitate the calculations. The first is to exploit the rotational invariance of the underlying Hamiltonian to reduce the statistical fluctuations in the Monte Carlo calculations. The second is to determine quadruple invariants from the distribution of the axial quadrupole operator in the laboratory frame. This allows us to extract effective values of the intrinsic quadrupole shape parameters without invoking an intrinsic frame or a mean-field approximation.
Advanced Computational Methods for Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
Patti, Alessandro; Cuetos, Alejandro
2012-07-01
We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.
Beland, Laurent Karim; Osetskiy, Yury N.; Stoller, Roger E.; ...
2015-02-07
Here, we present a comparison of the Kinetic Activation–Relaxation Technique (k-ART) and the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC), two off-lattice, on-the-fly Kinetic Monte Carlo (KMC) techniques that were recently used to solve several materials science problems. We show that if the initial displacements are localized the dimer method and the Activation–Relaxation Technique nouveau provide similar performance. We also show that k-ART and SEAKMC, although based on different approximations, are in agreement with each other, as demonstrated by the examples of 50 vacancies in a 1950-atom Fe box and of interstitial loops in 16,000-atom boxes. Generally speaking, k-ART’s treatment ofmore » geometry and flickers is more flexible, e.g. it can handle amorphous systems, and rigorous than SEAKMC’s, while the later’s concept of active volumes permits a significant speedup of simulations for the systems under consideration and therefore allows investigations of processes requiring large systems that are not accessible if not localizing calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.
In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less
A Modified Monte Carlo Method for Carrier Transport in Germanium, Free of Isotropic Rates
NASA Astrophysics Data System (ADS)
Sundqvist, Kyle
2010-03-01
We present a new method for carrier transport simulation, relevant for high-purity germanium < 100 > at a temperature of 40 mK. In this system, the scattering of electrons and holes is dominated by spontaneous phonon emission. Free carriers are always out of equilibrium with the lattice. We must also properly account for directional effects due to band structure, but there are many cautions in the literature about treating germanium in particular. These objections arise because the germanium electron system is anisotropic to an extreme degree, while standard Monte Carlo algorithms maintain a reliance on isotropic, integrated rates. We re-examine Fermi's Golden Rule to produce a Monte Carlo method free of isotropic rates. Traditional Monte Carlo codes implement particle scattering based on an isotropically averaged rate, followed by a separate selection of the particle's final state via a momentum-dependent probability. In our method, the kernel of Fermi's Golden Rule produces analytical, bivariate rates which allow for the simultaneous choice of scatter and final state selection. Energy and momentum are automatically conserved. We compare our results to experimental data.
Gray: a ray tracing-based Monte Carlo simulator for PET
NASA Astrophysics Data System (ADS)
Freese, David L.; Olcott, Peter D.; Buss, Samuel R.; Levin, Craig S.
2018-05-01
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within % when accounting for differences in peak NECR. We also estimate the peak NECR to be kcps, or within % of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
Uncertainty Analysis of Power Grid Investment Capacity Based on Monte Carlo
NASA Astrophysics Data System (ADS)
Qin, Junsong; Liu, Bingyi; Niu, Dongxiao
By analyzing the influence factors of the investment capacity of power grid, to depreciation cost, sales price and sales quantity, net profit, financing and GDP of the second industry as the dependent variable to build the investment capacity analysis model. After carrying out Kolmogorov-Smirnov test, get the probability distribution of each influence factor. Finally, obtained the grid investment capacity uncertainty of analysis results by Monte Carlo simulation.
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K
2011-12-01
Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Monte Carlo replica-exchange based ensemble docking of protein conformations.
Zhang, Zhe; Ehmann, Uwe; Zacharias, Martin
2017-05-01
A replica-exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein-protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1-2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924-937. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zaikin, Alexey; Míguez, Joaquín
2017-01-01
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087
Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT
NASA Astrophysics Data System (ADS)
Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing
2017-04-01
The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.
Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas
2012-04-01
Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.
Reboredo, Fernando A; Kim, Jeongnim
2014-02-21
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
NASA Astrophysics Data System (ADS)
Reboredo, Fernando A.; Kim, Jeongnim
2014-02-01
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
Shi, Wei; Wei, Si; Hu, Xin-xin; Hu, Guan-jiu; Chen, Cu-lan; Wang, Xin-ru; Giesy, John P.; Yu, Hong-xia
2013-01-01
Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based reporter gene assay. A novel approach was developed to use Monte Carlo simulation, for evaluation of the potential risks of measured concentrations of TH agonists and antagonists and to determine the major contributors to observed thyroid receptor (TR) antagonist potency. None of the extracts exhibited TR agonist potency, while 12 of 14 water samples exhibited TR antagonistic potency. The most probable observed antagonist equivalents ranged from 1.4 to 5.6 µg di-n-butyl phthalate (DNBP)/L, which posed potential risk in water sources. Based on Monte Carlo simulation related mass balance analysis, DNBP accounted for 64.4% for the entire observed antagonist toxic unit in water sources, while diisobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP) also contributed. The most probable observed equivalent and most probable relative potency (REP) derived from Monte Carlo simulation is useful for potency comparison and responsible chemicals screening. PMID:24204563
NASA Astrophysics Data System (ADS)
Sharma, Natasha; Gupta, A. K.
2017-04-01
Motivated by connections between the inputs and outputs of several transport mechanisms and multi-species functionalities, we studied an open system of a two-species totally asymmetric simple exclusion process with narrow entrances, which assimilate the synergy of the particles with the surrounding environment through Langmuir kinetics (LK). We analyzed the model within the framework of mean-field theory, and examined complex phenomena such as boundary-induced phase transitions and spontaneous symmetry breaking for variant conditions of attachment and detachment rates. Based on the theoretical investigations we obtained the phase boundaries for various symmetric and asymmetric phases. Our finding displays a prolific behavior, highlighting the significant effect of LK rates on symmetry breaking. It is found that for lower orders of LK rates, the number of symmetrical and asymmetrical phases increases notably, while for their higher orders symmetry breaking disappears, revealing that the presence of bulk non-conserving processes can resume/break the uniformity between two species. The critical value of LK rates beyond which the asymmetrical phases disappears is identified. The theoretical findings are explored by extensive Monte Carlo simulations. The effect of the system size and symmetry breaking incident on the Monte Carlo simulation results has also been examined based on particle density histograms.
NASA Astrophysics Data System (ADS)
Galdin, Sylvie; Dollfus, Philippe; Hesto, Patrice
1994-03-01
A theoretical study of a Si/Si1-xGex/Si heterojunction bipolar transistor using Monte Carlo simulations is reported. The geometry and composition of the emitter-base junction are optimized using one-dimensional simulations with a view to improving electron transport in the base. It is proposed to introduce a thin Si-P spacer layer, between the Si-N emitter and the SiGe-P base, which allows launching hot electrons into the base despite the lack of natural conduction-band discontinuity between Si and strain SiGe. The high-frequency behavior of the complete transistor is then studied using 2D modeling. A method of microwave analysis using small signal Monte Carlo simulations that consists of expanding the terminal currents in Fourier series is presented. A cutoff frequency fT of 68 GHz has been extracted. Finally, the occurrence of a parasitic electron barrier at the collector-base junction is responsible for the fT fall-off at high collector current density. This parasitic barrier is lowered through the influence of the collector potential.
Conditional Monte Carlo randomization tests for regression models.
Parhat, Parwen; Rosenberger, William F; Diao, Guoqing
2014-08-15
We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.
Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems
NASA Technical Reports Server (NTRS)
Holda, Julie
2004-01-01
The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.
Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2013-01-01
The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in themore » CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.« less
Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.
Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene
2012-04-21
Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jaehyung; Wagner, Lucas K.; Ertekin, Elif, E-mail: ertekin@illinois.edu
2015-12-14
The fixed node diffusion Monte Carlo (DMC) method has attracted interest in recent years as a way to calculate properties of solid materials with high accuracy. However, the framework for the calculation of properties such as total energies, atomization energies, and excited state energies is not yet fully established. Several outstanding questions remain as to the effect of pseudopotentials, the magnitude of the fixed node error, and the size of supercell finite size effects. Here, we consider in detail the semiconductors ZnSe and ZnO and carry out systematic studies to assess the magnitude of the energy differences arising from controlledmore » and uncontrolled approximations in DMC. The former include time step errors and supercell finite size effects for ground and optically excited states, and the latter include pseudopotentials, the pseudopotential localization approximation, and the fixed node approximation. We find that for these compounds, the errors can be controlled to good precision using modern computational resources and that quantum Monte Carlo calculations using Dirac-Fock pseudopotentials can offer good estimates of both cohesive energy and the gap of these systems. We do however observe differences in calculated optical gaps that arise when different pseudopotentials are used.« less
NASA Astrophysics Data System (ADS)
Popota, F. D.; Aguiar, P.; España, S.; Lois, C.; Udias, J. M.; Ros, D.; Pavia, J.; Gispert, J. D.
2015-01-01
In this work a comparison between experimental and simulated data using GATE and PeneloPET Monte Carlo simulation packages is presented. All simulated setups, as well as the experimental measurements, followed exactly the guidelines of the NEMA NU 4-2008 standards using the microPET R4 scanner. The comparison was focused on spatial resolution, sensitivity, scatter fraction and counting rates performance. Both GATE and PeneloPET showed reasonable agreement for the spatial resolution when compared to experimental measurements, although they lead to slight underestimations for the points close to the edge. High accuracy was obtained between experiments and simulations of the system’s sensitivity and scatter fraction for an energy window of 350-650 keV, as well as for the counting rate simulations. The latter was the most complicated test to perform since each code demands different specifications for the characterization of the system’s dead time. Although simulated and experimental results were in excellent agreement for both simulation codes, PeneloPET demanded more information about the behavior of the real data acquisition system. To our knowledge, this constitutes the first validation of these Monte Carlo codes for the full NEMA NU 4-2008 standards for small animal PET imaging systems.
Popota, F D; Aguiar, P; España, S; Lois, C; Udias, J M; Ros, D; Pavia, J; Gispert, J D
2015-01-07
In this work a comparison between experimental and simulated data using GATE and PeneloPET Monte Carlo simulation packages is presented. All simulated setups, as well as the experimental measurements, followed exactly the guidelines of the NEMA NU 4-2008 standards using the microPET R4 scanner. The comparison was focused on spatial resolution, sensitivity, scatter fraction and counting rates performance. Both GATE and PeneloPET showed reasonable agreement for the spatial resolution when compared to experimental measurements, although they lead to slight underestimations for the points close to the edge. High accuracy was obtained between experiments and simulations of the system's sensitivity and scatter fraction for an energy window of 350-650 keV, as well as for the counting rate simulations. The latter was the most complicated test to perform since each code demands different specifications for the characterization of the system's dead time. Although simulated and experimental results were in excellent agreement for both simulation codes, PeneloPET demanded more information about the behavior of the real data acquisition system. To our knowledge, this constitutes the first validation of these Monte Carlo codes for the full NEMA NU 4-2008 standards for small animal PET imaging systems.
Summarizing Monte Carlo Results in Methodological Research.
ERIC Educational Resources Information Center
Harwell, Michael R.
Monte Carlo studies of statistical tests are prominently featured in the methodological research literature. Unfortunately, the information from these studies does not appear to have significantly influenced methodological practice in educational and psychological research. One reason is that Monte Carlo studies lack an overarching theory to guide…
Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model NEXUS
NASA Astrophysics Data System (ADS)
Bossard, G.; Drescher, H. J.; Kalmykov, N. N.; Ostapchenko, S.; Pavlov, A. I.; Pierog, T.; Vishnevskaya, E. A.; Werner, K.
2001-03-01
The purpose of this paper is twofold: first we want to introduce a new type of hadronic interaction model (NEXUS), which has a much more solid theoretical basis than, for example, presently used models such as QGSJET and VENUS, and ensures therefore a much more reliable extrapolation towards high energies. Secondly, we want to promote an extensive air shower (EAS) calculation scheme, based on cascade equations rather than explicit Monte Carlo simulations, which is very accurate in calculations of main EAS characteristics and extremely fast concerning computing time. We employ the NEXUS model to provide the necessary data on particle production in hadron-air collisions and present the average EAS characteristics for energies 1014-1017 eV. The experimental data of the CASA-BLANCA group are analyzed in the framework of the new model.
NASA Technical Reports Server (NTRS)
Pham-Van-diep, Gerald C.; Muntz, E. Phillip; Erwin, Daniel A.
1990-01-01
Shock wave thickness predictions from Monte Carlo Direct Simulations, using differential scattering and the Maitland-Smith-Aziz interatomic potential, underpredict experiments as shock Mach numbers increase above about 4. Examination of several sources of data has indicated that at relatively high energies the repulsive portion of accepted potentials such as the Maitland-Smith-Aziz may be too steep. An Exponential-6 potential due to Ross, based on high energy molecular beam scattering data and shock velocity measurements in liquid argon, has been combined with the lower energy portion of the Maitland-Smith-Aziz potential. When this hybrid potential is used in Monte Carlo Direct Simulations, agreement with experiments is improved over the previous predictions using the pure Maitland-Smith-Aziz form.
Boda, Dezső; Gillespie, Dirk
2012-03-13
We propose a procedure to compute the steady-state transport of charged particles based on the Nernst-Planck (NP) equation of electrodiffusion. To close the NP equation and to establish a relation between the concentration and electrochemical potential profiles, we introduce the Local Equilibrium Monte Carlo (LEMC) method. In this method, Grand Canonical Monte Carlo simulations are performed using the electrochemical potential specified for the distinct volume elements. An iteration procedure that self-consistently solves the NP and flux continuity equations with LEMC is shown to converge quickly. This NP+LEMC technique can be used in systems with diffusion of charged or uncharged particles in complex three-dimensional geometries, including systems with low concentrations and small applied voltages that are difficult for other particle simulation techniques.
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
NASA Astrophysics Data System (ADS)
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
NASA Astrophysics Data System (ADS)
Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando
Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).
NASA Technical Reports Server (NTRS)
Liu, J.; Tiwari, Surendra N.
1994-01-01
The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.
Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael
2014-05-01
Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.
A point kernel algorithm for microbeam radiation therapy
NASA Astrophysics Data System (ADS)
Debus, Charlotte; Oelfke, Uwe; Bartzsch, Stefan
2017-11-01
Microbeam radiation therapy (MRT) is a treatment approach in radiation therapy where the treatment field is spatially fractionated into arrays of a few tens of micrometre wide planar beams of unusually high peak doses separated by low dose regions of several hundred micrometre width. In preclinical studies, this treatment approach has proven to spare normal tissue more effectively than conventional radiation therapy, while being equally efficient in tumour control. So far dose calculations in MRT, a prerequisite for future clinical applications are based on Monte Carlo simulations. However, they are computationally expensive, since scoring volumes have to be small. In this article a kernel based dose calculation algorithm is presented that splits the calculation into photon and electron mediated energy transport, and performs the calculation of peak and valley doses in typical MRT treatment fields within a few minutes. Kernels are analytically calculated depending on the energy spectrum and material composition. In various homogeneous materials peak, valley doses and microbeam profiles are calculated and compared to Monte Carlo simulations. For a microbeam exposure of an anthropomorphic head phantom calculated dose values are compared to measurements and Monte Carlo calculations. Except for regions close to material interfaces calculated peak dose values match Monte Carlo results within 4% and valley dose values within 8% deviation. No significant differences are observed between profiles calculated by the kernel algorithm and Monte Carlo simulations. Measurements in the head phantom agree within 4% in the peak and within 10% in the valley region. The presented algorithm is attached to the treatment planning platform VIRTUOS. It was and is used for dose calculations in preclinical and pet-clinical trials at the biomedical beamline ID17 of the European synchrotron radiation facility in Grenoble, France.
ERIC Educational Resources Information Center
Lee, Soo; Suh, Youngsuk
2018-01-01
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
NASA Astrophysics Data System (ADS)
Ramkilowan, A.; Griffith, D. J.
2017-10-01
Surveillance modelling in terms of the standard Detect, Recognise and Identify (DRI) thresholds remains a key requirement for determining the effectiveness of surveillance sensors. With readily available computational resources it has become feasible to perform statistically representative evaluations of the effectiveness of these sensors. A new capability for performing this Monte-Carlo type analysis is demonstrated in the MORTICIA (Monte- Carlo Optical Rendering for Theatre Investigations of Capability under the Influence of the Atmosphere) software package developed at the Council for Scientific and Industrial Research (CSIR). This first generation, python-based open-source integrated software package, currently in the alpha stage of development aims to provide all the functionality required to perform statistical investigations of the effectiveness of optical surveillance systems in specific or generic deployment theatres. This includes modelling of the mathematical and physical processes that govern amongst other components of a surveillance system; a sensor's detector and optical components, a target and its background as well as the intervening atmospheric influences. In this paper we discuss integral aspects of the bespoke framework that are critical to the longevity of all subsequent modelling efforts. Additionally, some preliminary results are presented.
Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics
NASA Astrophysics Data System (ADS)
Doronin, Alexander; Meglinski, Igor
2012-09-01
In the framework of further development of the unified approach of photon migration in complex turbid media, such as biological tissues we present a peer-to-peer (P2P) Monte Carlo (MC) code. The object-oriented programming is used for generalization of MC model for multipurpose use in various applications of biomedical optics. The online user interface providing multiuser access is developed using modern web technologies, such as Microsoft Silverlight, ASP.NET. The emerging P2P network utilizing computers with different types of compute unified device architecture-capable graphics processing units (GPUs) is applied for acceleration and to overcome the limitations, imposed by multiuser access in the online MC computational tool. The developed P2P MC was validated by comparing the results of simulation of diffuse reflectance and fluence rate distribution for semi-infinite scattering medium with known analytical results, results of adding-doubling method, and with other GPU-based MC techniques developed in the past. The best speedup of processing multiuser requests in a range of 4 to 35 s was achieved using single-precision computing, and the double-precision computing for floating-point arithmetic operations provides higher accuracy.
Doronin, Alexander; Meglinski, Igor
2012-09-01
In the framework of further development of the unified approach of photon migration in complex turbid media, such as biological tissues we present a peer-to-peer (P2P) Monte Carlo (MC) code. The object-oriented programming is used for generalization of MC model for multipurpose use in various applications of biomedical optics. The online user interface providing multiuser access is developed using modern web technologies, such as Microsoft Silverlight, ASP.NET. The emerging P2P network utilizing computers with different types of compute unified device architecture-capable graphics processing units (GPUs) is applied for acceleration and to overcome the limitations, imposed by multiuser access in the online MC computational tool. The developed P2P MC was validated by comparing the results of simulation of diffuse reflectance and fluence rate distribution for semi-infinite scattering medium with known analytical results, results of adding-doubling method, and with other GPU-based MC techniques developed in the past. The best speedup of processing multiuser requests in a range of 4 to 35 s was achieved using single-precision computing, and the double-precision computing for floating-point arithmetic operations provides higher accuracy.
Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model
NASA Astrophysics Data System (ADS)
Al Sobhi, Mashail M.
2015-02-01
Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
Variance reduction for Fokker–Planck based particle Monte Carlo schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorji, M. Hossein, E-mail: gorjih@ifd.mavt.ethz.ch; Andric, Nemanja; Jenny, Patrick
Recently, Fokker–Planck based particle Monte Carlo schemes have been proposed and evaluated for simulations of rarefied gas flows [1–3]. In this paper, the variance reduction for particle Monte Carlo simulations based on the Fokker–Planck model is considered. First, deviational based schemes were derived and reviewed, and it is shown that these deviational methods are not appropriate for practical Fokker–Planck based rarefied gas flow simulations. This is due to the fact that the deviational schemes considered in this study lead either to instabilities in the case of two-weight methods or to large statistical errors if the direct sampling method is applied.more » Motivated by this conclusion, we developed a novel scheme based on correlated stochastic processes. The main idea here is to synthesize an additional stochastic process with a known solution, which is simultaneously solved together with the main one. By correlating the two processes, the statistical errors can dramatically be reduced; especially for low Mach numbers. To assess the methods, homogeneous relaxation, planar Couette and lid-driven cavity flows were considered. For these test cases, it could be demonstrated that variance reduction based on parallel processes is very robust and effective.« less
Implementing NLO DGLAP evolution in parton showers
Hoche, Stefan; Krauss, Frank; Prestel, Stefan
2017-10-13
Here, we present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.
THE OPTICS OF REFRACTIVE SUBSTRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Narayan, Ramesh, E-mail: mjohnson@cfa.harvard.edu
2016-08-01
Newly recognized effects of refractive scattering in the ionized interstellar medium have broad implications for very long baseline interferometry (VLBI) at extreme angular resolutions. Building upon work by Blandford and Narayan, we present a simplified, geometrical optics framework, which enables rapid, semi-analytic estimates of refractive scattering effects. We show that these estimates exactly reproduce previous results based on a more rigorous statistical formulation. We then derive new expressions for the scattering-induced fluctuations of VLBI observables such as closure phase, and we demonstrate how to calculate the fluctuations for arbitrary quantities of interest using a Monte Carlo technique.
Implementing NLO DGLAP evolution in parton showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höche, Stefan; Krauss, Frank; Prestel, Stefan
2017-10-01
We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.
On the halo events observed by Mount Fuji and Mount Kanbala Emulsion Chamber Experiments
NASA Technical Reports Server (NTRS)
Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.
1985-01-01
The intensity of big gamma-ray families associated by halo is obtained from Mt. Fuji experiment (650 g/sq.cm. atmospheric depth) and Mt. Kanbala experiment (515 g/sq.cm.). The results are compared with Monte Carlo calculation based on several assumptions on interaction mechanisms and the primary cosmic ray composition. The results suggest more than 3 times lower proton abundance among primaries than that of 10 to the 12th to 10 to the 13th eV region within the framework of quasi-scaling model of multiple production.
Triple collinear emissions in parton showers
Hoche, Stefan; Prestel, Stefan
2017-10-17
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing next-to-leading-order (NLO) splitting kernels is discussed as a first application. The correspondence between the Monte Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Finally, numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks PYTHIA and SHERPA.
A Primer in Monte Carlo Integration Using Mathcad
ERIC Educational Resources Information Center
Hoyer, Chad E.; Kegerreis, Jeb S.
2013-01-01
The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…
Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.
Numerical integration of detector response functions via Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
Numerical integration of detector response functions via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.
2017-09-01
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.
Numerical integration of detector response functions via Monte Carlo simulations
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.; ...
2017-06-13
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
Monte Carlo simulations in X-ray imaging
NASA Astrophysics Data System (ADS)
Giersch, Jürgen; Durst, Jürgen
2008-06-01
Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.
Accelerated Monte Carlo Simulation for Safety Analysis of the Advanced Airspace Concept
NASA Technical Reports Server (NTRS)
Thipphavong, David
2010-01-01
Safe separation of aircraft is a primary objective of any air traffic control system. An accelerated Monte Carlo approach was developed to assess the level of safety provided by a proposed next-generation air traffic control system. It combines features of fault tree and standard Monte Carlo methods. It runs more than one order of magnitude faster than the standard Monte Carlo method while providing risk estimates that only differ by about 10%. It also preserves component-level model fidelity that is difficult to maintain using the standard fault tree method. This balance of speed and fidelity allows sensitivity analysis to be completed in days instead of weeks or months with the standard Monte Carlo method. Results indicate that risk estimates are sensitive to transponder, pilot visual avoidance, and conflict detection failure probabilities.
NASA Astrophysics Data System (ADS)
Spezi, Emiliano
2010-08-01
Sixty years after the paper 'The Monte Carlo method' by N Metropolis and S Ulam in The Journal of the American Statistical Association (Metropolis and Ulam 1949), use of the most accurate algorithm for computer modelling of radiotherapy linear accelerators, radiation detectors and three dimensional patient dose was discussed in Wales (UK). The Second European Workshop on Monte Carlo Treatment Planning (MCTP2009) was held at the National Museum of Wales in Cardiff. The event, organized by Velindre NHS Trust, Cardiff University and Cancer Research Wales, lasted two and a half days, during which leading experts and contributing authors presented and discussed the latest advances in the field of Monte Carlo treatment planning (MCTP). MCTP2009 was highly successful, judging from the number of participants which was in excess of 140. Of the attendees, 24% came from the UK, 46% from the rest of Europe, 12% from North America and 18% from the rest of the World. Fifty-three oral presentations and 24 posters were delivered in a total of 12 scientific sessions. MCTP2009 follows the success of previous similar initiatives (Verhaegen and Seuntjens 2005, Reynaert 2007, Verhaegen and Seuntjens 2008), and confirms the high level of interest in Monte Carlo technology for radiotherapy treatment planning. The 13 articles selected for this special section (following Physics in Medicine and Biology's usual rigorous peer-review procedure) give a good picture of the high quality of the work presented at MCTP2009. The book of abstracts can be downloaded from http://www.mctp2009.org. I wish to thank the IOP Medical Physics and Computational Physics Groups for their financial support, Elekta Ltd and Dosisoft for sponsoring MCTP2009, and leading manufacturers such as BrainLab, Nucletron and Varian for showcasing their latest MC-based radiotherapy solutions during a dedicated technical session. I am also very grateful to the eight invited speakers who kindly accepted to give keynote presentations which contributed significantly to raising the quality of the event and capturing the interest of the medical physics community. I also wish to thank all those who contributed to the success of MCTP2009: the members of the local Organizing Committee and the Workshop Management Team who managed the event very efficiently, the members of the European Working Group in Monte Carlo Treatment Planning (EWG-MCTP) who acted as Guest Associate Editors for the MCTP2009 abstracts reviewing process, and all the authors who generated new, high quality work. Finally, I hope that you find the contents of this special section enjoyable and informative. Emiliano Spezi Chairman of MCTP2009 Organizing Committee and Guest Editor References Metropolis N and Ulam S 1949 The Monte Carlo method J. Amer. Stat. Assoc. 44 335-41 Reynaert N 2007 First European Workshop on Monte Carlo Treatment Planning J. Phys.: Conf. Ser. 74 011001 Verhaegen F and Seuntjens J 2005 International Workshop on Current Topics in Monte Carlo Treatment Planning Phys. Med. Biol. 50 Verhaegen F and Seuntjens J 2008 International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification J. Phys.: Conf. Ser. 102 011001
MO-FG-CAMPUS-TeP3-03: Calculation of Proton Pencil Beam Properties with Full Beamline Model in TOPAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulff, J; Abel, E
2016-06-15
Purpose: Introducing Monte Carlo based dose calculation algorithms into proton therapy planning systems (TPS) leads to improved accuracy. However accurate modelling of the proton pencil beam impinging the patient is necessary. Current approaches rely on measurement-driven reconstruction of phase-space and spectrum properties, typically constrained to analytical model functions. In this study a detailed Monte Carlo model of the complete cyclotron-based delivery system was created with the aim of providing more representative beam properties at treatment position. Methods: A model of the Varian Probeam proton system from the cyclotron exit to isocenter was constructed in the TOPAS Monte Carlo framework. Themore » beam evolution through apertures and magnetic elements was validated using Transport/Turtle calculations and additionally against measurements from the Probeam™ system at Scripps Proton Therapy Center (SPTC) in San Diego, CA. A voxelized water phantom at isocenter allowed for comparison of the dose-depth curve from the Probeam model with that of a corresponding Gaussian beam over the entire energy range (70–240 MeV). Measurements of relative beam fluence cross-profiles and depth-dose curves at and around isocenter were also compared to the MC results. Results: The simulated TOPAS beam envelope was found to agree with both the Transport/Turtle and measurements to within 5% for most of the beamline. The MC predicted energy spectrum at isocenter was found to deviate increasingly from Gaussian at energies below 160 MeV. The corresponding effects on the depth dose curve agreed well with measurements. Conclusion: Given the flexibility of TOPAS and available details of the delivery system, an accurate characterization of a proton pencil beam at isocenter is possible. Incorporation of the MC derived properties of the proton pencil beam can eliminate analytical approximations and ultimately increase treatment plan accuracy and quality. Both authors are employees of Varian Medical Systems.« less
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the reaction types as contiguous as possible and removes completed histories from the transport cycle. The sort reduces the amount of divergence in GPU ``thread blocks,'' keeps the SIMD units as full as possible, and eliminates using memory bandwidth to check if a neutron in the batch has been terminated or not. Using a remapping vector means the data access pattern is irregular, but this is mitigated by using large batch sizes where the GPU can effectively eliminate the high cost of irregular global memory access. WARP modifies the standard unionized energy grid implementation to reduce memory traffic. Instead of storing a matrix of pointers indexed by reaction type and energy, WARP stores three matrices. The first contains cross section values, the second contains pointers to angular distributions, and a third contains pointers to energy distributions. This linked list type of layout increases memory usage, but lowers the number of data loads that are needed to determine a reaction by eliminating a pointer load to find a cross section value. Optimized, high-performance GPU code libraries are also used by WARP wherever possible. The CUDA performance primitives (CUDPP) library is used to perform the parallel reductions, sorts and sums, the CURAND library is used to seed the linear congruential random number generators, and the OptiX ray tracing framework is used for geometry representation. OptiX is a highly-optimized library developed by NVIDIA that automatically builds hierarchical acceleration structures around user-input geometry so only surfaces along a ray line need to be queried in ray tracing. WARP also performs material and cell number queries with OptiX by using a point-in-polygon like algorithm. WARP has shown that GPUs are an effective platform for performing Monte Carlo neutron transport with continuous energy cross sections. Currently, WARP is the most detailed and feature-rich program in existence for performing continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs, but compared to production codes like Serpent and MCNP, WARP has limited capabilities. Despite WARP's lack of features, its novel algorithm implementations show that high performance can be achieved on a GPU despite the inherently divergent program flow and sparse data access patterns. WARP is not ready for everyday nuclear reactor calculations, but is a good platform for further development of GPU-accelerated Monte Carlo neutron transport. In it's current state, it may be a useful tool for multiplication factor searches, i.e. determining reactivity coefficients by perturbing material densities or temperatures, since these types of calculations typically do not require many flux tallies. (Abstract shortened by UMI.)
The anesthetic action of some polyhalogenated ethers-Monte Carlo method based QSAR study.
Golubović, Mlađan; Lazarević, Milan; Zlatanović, Dragan; Krtinić, Dane; Stoičkov, Viktor; Mladenović, Bojan; Milić, Dragan J; Sokolović, Dušan; Veselinović, Aleksandar M
2018-04-13
Up to this date, there has been an ongoing debate about the mode of action of general anesthetics, which have postulated many biological sites as targets for their action. However, postoperative nausea and vomiting are common problems in which inhalational agents may have a role in their development. When a mode of action is unknown, QSAR modelling is essential in drug development. To investigate the aspects of their anesthetic, QSAR models based on the Monte Carlo method were developed for a set of polyhalogenated ethers. Until now, their anesthetic action has not been completely defined, although some hypotheses have been suggested. Therefore, a QSAR model should be developed on molecular fragments that contribute to anesthetic action. QSAR models were built on the basis of optimal molecular descriptors based on the SMILES notation and local graph invariants, whereas the Monte Carlo optimization method with three random splits into the training and test set was applied for model development. Different methods, including novel Index of ideality correlation, were applied for the determination of the robustness of the model and its predictive potential. The Monte Carlo optimization process was capable of being an efficient in silico tool for building up a robust model of good statistical quality. Molecular fragments which have both positive and negative influence on anesthetic action were determined. The presented study can be useful in the search for novel anesthetics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
Convolution-based estimation of organ dose in tube current modulated CT
NASA Astrophysics Data System (ADS)
Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan
2016-05-01
Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the convolution-based organ dose estimation method with two other strategies with different approaches of quantifying the irradiation field. The proposed convolution-based estimation method showed good accuracy with the organ dose simulated using the TCM Monte Carlo simulation. The average percentage error (normalized by CTDIvol) was generally within 10% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. This study developed an improved method that accurately quantifies the irradiation field under TCM scans. The results suggested that organ dose could be estimated in real-time both prospectively (with the localizer information only) and retrospectively (with acquired CT data).
Discrete Diffusion Monte Carlo for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
Cell-veto Monte Carlo algorithm for long-range systems.
Kapfer, Sebastian C; Krauth, Werner
2016-09-01
We present a rigorous efficient event-chain Monte Carlo algorithm for long-range interacting particle systems. Using a cell-veto scheme within the factorized Metropolis algorithm, we compute each single-particle move with a fixed number of operations. For slowly decaying potentials such as Coulomb interactions, screening line charges allow us to take into account periodic boundary conditions. We discuss the performance of the cell-veto Monte Carlo algorithm for general inverse-power-law potentials, and illustrate how it provides a new outlook on one of the prominent bottlenecks in large-scale atomistic Monte Carlo simulations.
Nuclide Depletion Capabilities in the Shift Monte Carlo Code
Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...
2017-12-21
A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.
Ground state of excitonic molecules by the Green's-function Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.A.; Vashishta, P.; Kalia, R.K.
1983-12-26
The ground-state energy of excitonic molecules is evaluated as a function of the ratio of electron and hole masses, sigma, with use of the Green's-function Monte Carlo method. For all sigma, the Green's-function Monte Carlo energies are significantly lower than the variational estimates and in favorable agreement with experiments. In excitonic rydbergs, the binding energy of the positronium molecule (sigma = 1) is predicted to be -0.06 and for sigma<<1, the Green's-function Monte Carlo energies agree with the ''exact'' limiting behavior, E = -2.346+0.764sigma.
Microwave Analysis with Monte Carlo Methods for ECH Transmission Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, Michael C.; Lau, Cornwall H.; Hanson, Gregory R.
A new code framework, MORAMC, is presented which model transmission line (TL) systems consisting of overmoded circular waveguide and other components including miter bends and transmission line gaps. The transmission line is modeled as a set of mode converters in series where each component is composed of one or more converters. The parametrization of each mode converter can account for the fabrication tolerances of physically realizable components. These tolerances as well as the precision to which these TL systems can be installed and aligned gives a practical limit to which the uncertainty of the microwave performance of the system canmore » be calculated. Because of this, Monte Carlo methods are a natural fit and are employed to calculate the probability distribution that a given TL can deliver a required power and mode purity. Several examples are given to demonstrate the usefulness of MORAMC in optimizing TL systems.« less
Microwave Analysis with Monte Carlo Methods for ECH Transmission Lines
Kaufman, Michael C.; Lau, Cornwall H.; Hanson, Gregory R.
2018-03-08
A new code framework, MORAMC, is presented which model transmission line (TL) systems consisting of overmoded circular waveguide and other components including miter bends and transmission line gaps. The transmission line is modeled as a set of mode converters in series where each component is composed of one or more converters. The parametrization of each mode converter can account for the fabrication tolerances of physically realizable components. These tolerances as well as the precision to which these TL systems can be installed and aligned gives a practical limit to which the uncertainty of the microwave performance of the system canmore » be calculated. Because of this, Monte Carlo methods are a natural fit and are employed to calculate the probability distribution that a given TL can deliver a required power and mode purity. Several examples are given to demonstrate the usefulness of MORAMC in optimizing TL systems.« less
NASA Astrophysics Data System (ADS)
Hermann, M.; Vandoni, G.; Kersevan, R.; Babcock, C.
2013-12-01
The existing ISOLDE radio frequency quadrupole cooler and buncher (RFQCB) will be upgraded in the framework of the HIE-ISOLDE design study. In order to improve beam properties, the upgrade includes vacuum optimization with the aim of tayloring the overall pressure profile: increasing gas pressure at the injection to enhance cooling and reducing it at the extraction to avoid emittance blow up while the beam is being bunched. This paper describes the vacuum modelling of the present RFQCB using Test Particle Monte Carlo (Molflow+). In order to benchmark the simulation results, real pressure profiles along the existing RFQCB are measured using variable helium flux in the cooling section and compared with the pressure profiles obtained with Molflow+. Vacuum conditions of the improved future RFQCB can then be simulated to validate its design.
Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2018-04-01
Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.
Microwave Analysis with Monte Carlo Methods for ECH Transmission Lines
NASA Astrophysics Data System (ADS)
Kaufman, M. C.; Lau, C.; Hanson, G. R.
2018-03-01
A new code framework, MORAMC, is presented which model transmission line (TL) systems consisting of overmoded circular waveguide and other components including miter bends and transmission line gaps. The transmission line is modeled as a set of mode converters in series where each component is composed of one or more converters. The parametrization of each mode converter can account for the fabrication tolerances of physically realizable components. These tolerances as well as the precision to which these TL systems can be installed and aligned gives a practical limit to which the uncertainty of the microwave performance of the system can be calculated. Because of this, Monte Carlo methods are a natural fit and are employed to calculate the probability distribution that a given TL can deliver a required power and mode purity. Several examples are given to demonstrate the usefulness of MORAMC in optimizing TL systems.
NASA Astrophysics Data System (ADS)
El Rhazouani, O.; Benyoussef, A.
2018-01-01
Re-substitution doping by W has been investigated in the Double Perovskite (DP) Sr2CrRe1-xWxO6 for x ranging from 10 to 90% by using a Monte Carlo Simulation (MCS) in the framework of Ising model. Exchange couplings used in the simulation have been approximated in previous work for experimental Curie temperatures (TC). Doping effect on: partial and total magnetization, magnetic susceptibility, internal energy, specific heat, and Curie temperature has been studied. A sharp drop of partial magnetizations at 40% of W-concentration has been noticed at the magnetic transition. Apparition of a non-monotonic behavior of the total magnetization at 20% of W-concentration. Effect of doping on the stability of the compound has been emphasized. A quasilinear decrease of TC has been observed by increasing the concentration percentage of substitution doping by W.
The Direct Lighting Computation in Global Illumination Methods
NASA Astrophysics Data System (ADS)
Wang, Changyaw Allen
1994-01-01
Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.
Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*
Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G
2014-01-01
Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image-based dosimetry in nuclear medicine. PMID:24200697
NASA Astrophysics Data System (ADS)
Ren, Lixia; He, Li; Lu, Hongwei; Chen, Yizhong
2016-08-01
A new Monte Carlo-based interval transformation analysis (MCITA) is used in this study for multi-criteria decision analysis (MCDA) of naphthalene-contaminated groundwater management strategies. The analysis can be conducted when input data such as total cost, contaminant concentration and health risk are represented as intervals. Compared to traditional MCDA methods, MCITA-MCDA has the advantages of (1) dealing with inexactness of input data represented as intervals, (2) mitigating computational time due to the introduction of Monte Carlo sampling method, (3) identifying the most desirable management strategies under data uncertainty. A real-world case study is employed to demonstrate the performance of this method. A set of inexact management alternatives are considered in each duration on the basis of four criteria. Results indicated that the most desirable management strategy lied in action 15 for the 5-year, action 8 for the 10-year, action 12 for the 15-year, and action 2 for the 20-year management.
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.
1993-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.
Fukata, Kyohei; Sugimoto, Satoru; Kurokawa, Chie; Saito, Akito; Inoue, Tatsuya; Sasai, Keisuke
2018-06-01
The difficulty of measuring output factor (OPF) in a small field has been frequently discussed in recent publications. This study is aimed to determine the OPF in a small field using 10-MV photon beam and stereotactic conical collimator (cone). The OPF was measured by two diode detectors (SFD, EDGE detector) and one micro-ion chamber (PinPoint 3D chamber) in a water phantom. A Monte Carlo simulation using simplified detector model was performed to obtain the correction factor for the detector measurements. About 12% OPF difference was observed in the measurement at the smallest field (7.5 mm diameter) for EDGE detector and PinPoint 3D chamber. By applying the Monte Carlo-based correction factor to the measurement, the maximum discrepancy among the three detectors was reduced to within 3%. The results indicate that determination of OPF in a small field should be carefully performed. Especially, detector choice and appropriate correction factor application are very important in this regard.
Monte-Carlo-based uncertainty propagation with hierarchical models—a case study in dynamic torque
NASA Astrophysics Data System (ADS)
Klaus, Leonard; Eichstädt, Sascha
2018-04-01
For a dynamic calibration, a torque transducer is described by a mechanical model, and the corresponding model parameters are to be identified from measurement data. A measuring device for the primary calibration of dynamic torque, and a corresponding model-based calibration approach, have recently been developed at PTB. The complete mechanical model of the calibration set-up is very complex, and involves several calibration steps—making a straightforward implementation of a Monte Carlo uncertainty evaluation tedious. With this in mind, we here propose to separate the complete model into sub-models, with each sub-model being treated with individual experiments and analysis. The uncertainty evaluation for the overall model then has to combine the information from the sub-models in line with Supplement 2 of the Guide to the Expression of Uncertainty in Measurement. In this contribution, we demonstrate how to carry this out using the Monte Carlo method. The uncertainty evaluation involves various input quantities of different origin and the solution of a numerical optimisation problem.
Monte-Carlo background simulations of present and future detectors in x-ray astronomy
NASA Astrophysics Data System (ADS)
Tenzer, C.; Kendziorra, E.; Santangelo, A.
2008-07-01
Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.
ERIC Educational Resources Information Center
Mao, Xiuzhen; Xin, Tao
2013-01-01
The Monte Carlo approach which has previously been implemented in traditional computerized adaptive testing (CAT) is applied here to cognitive diagnostic CAT to test the ability of this approach to address multiple content constraints. The performance of the Monte Carlo approach is compared with the performance of the modified maximum global…
Modifying the Monte Carlo Quiz to Increase Student Motivation, Participation, and Content Retention
ERIC Educational Resources Information Center
Simonson, Shawn R.
2017-01-01
Fernald developed the Monte Carlo Quiz format to enhance retention, encourage students to prepare for class, read with intention, and organize information in psychology classes. This author modified the Monte Carlo Quiz, combined it with the Minute Paper, and applied it to various courses. Students write quiz questions as part of the Minute Paper…
The Monte Carlo Method. Popular Lectures in Mathematics.
ERIC Educational Resources Information Center
Sobol', I. M.
The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…
Anthology of the Development of Radiation Transport Tools as Applied to Single Event Effects
NASA Astrophysics Data System (ADS)
Reed, R. A.; Weller, R. A.; Akkerman, A.; Barak, J.; Culpepper, W.; Duzellier, S.; Foster, C.; Gaillardin, M.; Hubert, G.; Jordan, T.; Jun, I.; Koontz, S.; Lei, F.; McNulty, P.; Mendenhall, M. H.; Murat, M.; Nieminen, P.; O'Neill, P.; Raine, M.; Reddell, B.; Saigné, F.; Santin, G.; Sihver, L.; Tang, H. H. K.; Truscott, P. R.; Wrobel, F.
2013-06-01
This anthology contains contributions from eleven different groups, each developing and/or applying Monte Carlo-based radiation transport tools to simulate a variety of effects that result from energy transferred to a semiconductor material by a single particle event. The topics span from basic mechanisms for single-particle induced failures to applied tasks like developing websites to predict on-orbit single event failure rates using Monte Carlo radiation transport tools.
A Wigner Monte Carlo approach to density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.
2014-08-01
In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn–Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales verymore » well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn–Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboredo, Fernando A.; Kim, Jeongnim
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspacemore » of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.« less
Hamiltonian Monte Carlo Inversion of Seismic Sources in Complex Media
NASA Astrophysics Data System (ADS)
Fichtner, A.; Simutė, S.
2017-12-01
We present a probabilistic seismic source inversion method that properly accounts for 3D heterogeneous Earth structure and provides full uncertainty information on the timing, location and mechanism of the event. Our method rests on two essential elements: (1) reciprocity and spectral-element simulations in complex media, and (2) Hamiltonian Monte Carlo sampling that requires only a small amount of test models. Using spectral-element simulations of 3D, visco-elastic, anisotropic wave propagation, we precompute a data base of the strain tensor in time and space by placing sources at the positions of receivers. Exploiting reciprocity, this receiver-side strain data base can be used to promptly compute synthetic seismograms at the receiver locations for any hypothetical source within the volume of interest. The rapid solution of the forward problem enables a Bayesian solution of the inverse problem. For this, we developed a variant of Hamiltonian Monte Carlo (HMC) sampling. Taking advantage of easily computable derivatives, HMC converges to the posterior probability density with orders of magnitude less samples than derivative-free Monte Carlo methods. (Exact numbers depend on observational errors and the quality of the prior). We apply our method to the Japanese Islands region where we previously constrained 3D structure of the crust and upper mantle using full-waveform inversion with a minimum period of around 15 s.
Schaefer, C; Jansen, A P J
2013-02-07
We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.
NASA Astrophysics Data System (ADS)
Graham, Eleanor; Cuore Collaboration
2017-09-01
The CUORE experiment is a large-scale bolometric detector seeking to observe the never-before-seen process of neutrinoless double beta decay. Predictions for CUORE's sensitivity to neutrinoless double beta decay allow for an understanding of the half-life ranges that the detector can probe, and also to evaluate the relative importance of different detector parameters. Currently, CUORE uses a Bayesian analysis based in BAT, which uses Metropolis-Hastings Markov Chain Monte Carlo, for its sensitivity studies. My work evaluates the viability and potential improvements of switching the Bayesian analysis to Hamiltonian Monte Carlo, realized through the program Stan and its Morpho interface. I demonstrate that the BAT study can be successfully recreated in Stan, and perform a detailed comparison between the results and computation times of the two methods.
Large-cell Monte Carlo renormalization of irreversible growth processes
NASA Technical Reports Server (NTRS)
Nakanishi, H.; Family, F.
1985-01-01
Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.
Investigation of radiative interaction in laminar flows using Monte Carlo simulation
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, S. N.
1993-01-01
The Monte Carlo method (MCM) is employed to study the radiative interactions in fully developed laminar flow between two parallel plates. Taking advantage of the characteristics of easy mathematical treatment of the MCM, a general numerical procedure is developed for nongray radiative interaction. The nongray model is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. To validate the Monte Carlo simulation for nongray radiation problems, the results of radiative dissipation from the MCM are compared with two available solutions for a given temperature profile between two plates. After this validation, the MCM is employed to solve the present physical problem and results for the bulk temperature are compared with available solutions. In general, good agreement is noted and reasons for some discrepancies in certain ranges of parameters are explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna
2014-09-15
Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less
Gray: a ray tracing-based Monte Carlo simulator for PET.
Freese, David L; Olcott, Peter D; Buss, Samuel R; Levin, Craig S
2018-05-21
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a [Formula: see text] speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within [Formula: see text]% when accounting for differences in peak NECR. We also estimate the peak NECR to be [Formula: see text] kcps, or within [Formula: see text]% of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
Stochastic Analysis of Orbital Lifetimes of Spacecraft
NASA Technical Reports Server (NTRS)
Sasamoto, Washito; Goodliff, Kandyce; Cornelius, David
2008-01-01
A document discusses (1) a Monte-Carlo-based methodology for probabilistic prediction and analysis of orbital lifetimes of spacecraft and (2) Orbital Lifetime Monte Carlo (OLMC)--a Fortran computer program, consisting of a previously developed long-term orbit-propagator integrated with a Monte Carlo engine. OLMC enables modeling of variances of key physical parameters that affect orbital lifetimes through the use of probability distributions. These parameters include altitude, speed, and flight-path angle at insertion into orbit; solar flux; and launch delays. The products of OLMC are predicted lifetimes (durations above specified minimum altitudes) for the number of user-specified cases. Histograms generated from such predictions can be used to determine the probabilities that spacecraft will satisfy lifetime requirements. The document discusses uncertainties that affect modeling of orbital lifetimes. Issues of repeatability, smoothness of distributions, and code run time are considered for the purpose of establishing values of code-specific parameters and number of Monte Carlo runs. Results from test cases are interpreted as demonstrating that solar-flux predictions are primary sources of variations in predicted lifetimes. Therefore, it is concluded, multiple sets of predictions should be utilized to fully characterize the lifetime range of a spacecraft.
NASA Astrophysics Data System (ADS)
Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.
2018-05-01
Monte Carlo Simulation has advanced their quantification based on number of the photon counting to solve the propagation of light inside the tissues including the absorption, scattering coefficient and act as preliminary study for functional near infrared application. The goal of this paper is to identify the optical properties using Monte Carlo simulation for non-invasive functional near infrared spectroscopy (fNIRS) evaluation of penetration depth in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in Monte Carlo simulation which focused on several important parameters include ATP, ADP and relate with blow flow and oxygen content at certain exercise intensity. This will cover the advantages and limitation of such application upon this simulation. This result may help us to prove that our human muscle is transparent to this near infrared region and could deliver a lot of information regarding to the oxygenation level in human muscle. Thus, this might be useful for non-invasive technique for detecting oxygen status in muscle from living people either athletes or working people and allowing a lots of investigation muscle physiology in future.
A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics
NASA Astrophysics Data System (ADS)
Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger
2017-09-01
Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.
Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A
2009-05-21
The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.
Bayesian statistics and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Koch, K. R.
2018-03-01
The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.
An Ensemble-Based Smoother with Retrospectively Updated Weights for Highly Nonlinear Systems
NASA Technical Reports Server (NTRS)
Chin, T. M.; Turmon, M. J.; Jewell, J. B.; Ghil, M.
2006-01-01
Monte Carlo computational methods have been introduced into data assimilation for nonlinear systems in order to alleviate the computational burden of updating and propagating the full probability distribution. By propagating an ensemble of representative states, algorithms like the ensemble Kalman filter (EnKF) and the resampled particle filter (RPF) rely on the existing modeling infrastructure to approximate the distribution based on the evolution of this ensemble. This work presents an ensemble-based smoother that is applicable to the Monte Carlo filtering schemes like EnKF and RPF. At the minor cost of retrospectively updating a set of weights for ensemble members, this smoother has demonstrated superior capabilities in state tracking for two highly nonlinear problems: the double-well potential and trivariate Lorenz systems. The algorithm does not require retrospective adaptation of the ensemble members themselves, and it is thus suited to a streaming operational mode. The accuracy of the proposed backward-update scheme in estimating non-Gaussian distributions is evaluated by comparison to the more accurate estimates provided by a Markov chain Monte Carlo algorithm.
Monte Carlo simulations within avalanche rescue
NASA Astrophysics Data System (ADS)
Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg
2016-04-01
Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
Use of Fluka to Create Dose Calculations
NASA Technical Reports Server (NTRS)
Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John
2012-01-01
Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.
Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
NASA Astrophysics Data System (ADS)
Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.
2018-04-01
While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.
A modified Monte Carlo model for the ionospheric heating rates
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Fontheim, E. G.; Robertson, S. C.
1972-01-01
A Monte Carlo method is adopted as a basis for the derivation of the photoelectron heat input into the ionospheric plasma. This approach is modified in an attempt to minimize the computation time. The heat input distributions are computed for arbitrarily small source elements that are spaced at distances apart corresponding to the photoelectron dissipation range. By means of a nonlinear interpolation procedure their individual heating rate distributions are utilized to produce synthetic ones that fill the gaps between the Monte Carlo generated distributions. By varying these gaps and the corresponding number of Monte Carlo runs the accuracy of the results is tested to verify the validity of this procedure. It is concluded that this model can reduce the computation time by more than a factor of three, thus improving the feasibility of including Monte Carlo calculations in self-consistent ionosphere models.
NASA Astrophysics Data System (ADS)
Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-01
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-16
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
A method for radiological characterization based on fluence conversion coefficients
NASA Astrophysics Data System (ADS)
Froeschl, Robert
2018-06-01
Radiological characterization of components in accelerator environments is often required to ensure adequate radiation protection during maintenance, transport and handling as well as for the selection of the proper disposal pathway. The relevant quantities are typical the weighted sums of specific activities with radionuclide-specific weighting coefficients. Traditional methods based on Monte Carlo simulations are radionuclide creation-event based or the particle fluences in the regions of interest are scored and then off-line weighted with radionuclide production cross sections. The presented method bases the radiological characterization on a set of fluence conversion coefficients. For a given irradiation profile and cool-down time, radionuclide production cross-sections, material composition and radionuclide-specific weighting coefficients, a set of particle type and energy dependent fluence conversion coefficients is computed. These fluence conversion coefficients can then be used in a Monte Carlo transport code to perform on-line weighting to directly obtain the desired radiological characterization, either by using built-in multiplier features such as in the PHITS code or by writing a dedicated user routine such as for the FLUKA code. The presented method has been validated against the standard event-based methods directly available in Monte Carlo transport codes.
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
ERIC Educational Resources Information Center
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.
Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo
NASA Astrophysics Data System (ADS)
Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső
2017-03-01
In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolyte model. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge, electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.
Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső
2017-03-28
In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolytemodel. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge,electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.
NASA Astrophysics Data System (ADS)
Yang, Qian; Sing-Long, Carlos; Chen, Enze; Reed, Evan
2017-06-01
Complex chemical processes, such as the decomposition of energetic materials and the chemistry of planetary interiors, are typically studied using large-scale molecular dynamics simulations that run for weeks on high performance parallel machines. These computations may involve thousands of atoms forming hundreds of molecular species and undergoing thousands of reactions. It is natural to wonder whether this wealth of data can be utilized to build more efficient, interpretable, and predictive models. In this talk, we will use techniques from statistical learning to develop a framework for constructing Kinetic Monte Carlo (KMC) models from molecular dynamics data. We will show that our KMC models can not only extrapolate the behavior of the chemical system by as much as an order of magnitude in time, but can also be used to study the dynamics of entirely different chemical trajectories with a high degree of fidelity. Then, we will discuss three different methods for reducing our learned KMC models, including a new and efficient data-driven algorithm using L1-regularization. We demonstrate our framework throughout on a system of high-temperature high-pressure liquid methane, thought to be a major component of gas giant planetary interiors.
NASA Astrophysics Data System (ADS)
Olson, R.; Evans, J. P.; Fan, Y.
2015-12-01
NARCliM (NSW/ACT Regional Climate Modelling Project) is a regional climate project for Australia and the surrounding region. It dynamically downscales 4 General Circulation Models (GCMs) using three Regional Climate Models (RCMs) to provide climate projections for the CORDEX-AustralAsia region at 50 km resolution, and for south-east Australia at 10 km resolution. The project differs from previous work in the level of sophistication of model selection. Specifically, the selection process for GCMs included (i) conducting literature review to evaluate model performance, (ii) analysing model independence, and (iii) selecting models that span future temperature and precipitation change space. RCMs for downscaling the GCMs were chosen based on their performance for several precipitation events over South-East Australia, and on model independence.Bayesian Model Averaging (BMA) provides a statistically consistent framework for weighing the models based on their likelihood given the available observations. These weights are used to provide probability distribution functions (pdfs) for model projections. We develop a BMA framework for constructing probabilistic climate projections for spatially-averaged variables from the NARCliM project. The first step in the procedure is smoothing model output in order to exclude the influence of internal climate variability. Our statistical model for model-observations residuals is a homoskedastic iid process. Comparing RCMs with Australian Water Availability Project (AWAP) observations is used to determine model weights through Monte Carlo integration. Posterior pdfs of statistical parameters of model-data residuals are obtained using Markov Chain Monte Carlo. The uncertainty in the properties of the model-data residuals is fully accounted for when constructing the projections. We present the preliminary results of the BMA analysis for yearly maximum temperature for New South Wales state planning regions for the period 2060-2079.
NASA Astrophysics Data System (ADS)
Zunino, Andrea; Mosegaard, Klaus
2017-04-01
Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.
Frequency analysis of uncertain structures using imprecise probability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modares, Mehdi; Bergerson, Joshua
2015-01-01
Two new methods for finite element based frequency analysis of a structure with uncertainty are developed. An imprecise probability formulation based on enveloping p-boxes is used to quantify the uncertainty present in the mechanical characteristics of the structure. For each element, independent variations are considered. Using the two developed methods, P-box Frequency Analysis (PFA) and Interval Monte-Carlo Frequency Analysis (IMFA), sharp bounds on natural circular frequencies at different probability levels are obtained. These methods establish a framework for handling incomplete information in structural dynamics. Numerical example problems are presented that illustrate the capabilities of the new methods along with discussionsmore » on their computational efficiency.« less
Mirzajani, N; Ciolini, R; Di Fulvio, A; Esposito, J; d'Errico, F
2014-06-01
Experimental activities are underway at INFN Legnaro National Laboratories (LNL) (Padua, Italy) and Pisa University aimed at angular-dependent neutron energy spectra measurements produced by the (9)Be(p,xn) reaction, under a 5MeV proton beam. This work has been performed in the framework of INFN TRASCO-BNCT project. Bonner Sphere Spectrometer (BSS), based on (6)LiI (Eu) scintillator, was used with the shadow-cone technique. Proper unfolding codes, coupled to BSS response function calculated by Monte Carlo code, were finally used. The main results are reported here. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Sechopoulos, Ioannis; Rogers, D W O; Bazalova-Carter, Magdalena; Bolch, Wesley E; Heath, Emily C; McNitt-Gray, Michael F; Sempau, Josep; Williamson, Jeffrey F
2018-01-01
Studies involving Monte Carlo simulations are common in both diagnostic and therapy medical physics research, as well as other fields of basic and applied science. As with all experimental studies, the conditions and parameters used for Monte Carlo simulations impact their scope, validity, limitations, and generalizability. Unfortunately, many published peer-reviewed articles involving Monte Carlo simulations do not provide the level of detail needed for the reader to be able to properly assess the quality of the simulations. The American Association of Physicists in Medicine Task Group #268 developed guidelines to improve reporting of Monte Carlo studies in medical physics research. By following these guidelines, manuscripts submitted for peer-review will include a level of relevant detail that will increase the transparency, the ability to reproduce results, and the overall scientific value of these studies. The guidelines include a checklist of the items that should be included in the Methods, Results, and Discussion sections of manuscripts submitted for peer-review. These guidelines do not attempt to replace the journal reviewer, but rather to be a tool during the writing and review process. Given the varied nature of Monte Carlo studies, it is up to the authors and the reviewers to use this checklist appropriately, being conscious of how the different items apply to each particular scenario. It is envisioned that this list will be useful both for authors and for reviewers, to help ensure the adequate description of Monte Carlo studies in the medical physics literature. © 2017 American Association of Physicists in Medicine.
Analysis of Naval Ammunition Stock Positioning
2015-12-01
model takes once the Monte -Carlo simulation determines the assigned probabilities for site-to-site locations. Column two shows how the simulation...stockpiles and positioning them at coastal Navy facilities. A Monte -Carlo simulation model was developed to simulate expected cost and delivery...TERMS supply chain management, Monte -Carlo simulation, risk, delivery performance, stock positioning 15. NUMBER OF PAGES 85 16. PRICE CODE 17
ERIC Educational Resources Information Center
Fish, Laurel J.; Halcoussis, Dennis; Phillips, G. Michael
2017-01-01
The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and science to estimate and analyze data and are now becoming standard tools in analyzing business and financial problems. However, few sources explain the application of the Monte Carlo method for individuals and business professionals who are…
NASA Astrophysics Data System (ADS)
Wallace, Jon Michael
2003-10-01
Reliability prediction of components operating in complex systems has historically been conducted in a statistically isolated manner. Current physics-based, i.e. mechanistic, component reliability approaches focus more on component-specific attributes and mathematical algorithms and not enough on the influence of the system. The result is that significant error can be introduced into the component reliability assessment process. The objective of this study is the development of a framework that infuses the needs and influence of the system into the process of conducting mechanistic-based component reliability assessments. The formulated framework consists of six primary steps. The first three steps, identification, decomposition, and synthesis, are primarily qualitative in nature and employ system reliability and safety engineering principles to construct an appropriate starting point for the component reliability assessment. The following two steps are the most unique. They involve a step to efficiently characterize and quantify the system-driven local parameter space and a subsequent step using this information to guide the reduction of the component parameter space. The local statistical space quantification step is accomplished using two proposed multivariate probability models: Multi-Response First Order Second Moment and Taylor-Based Inverse Transformation. Where existing joint probability models require preliminary distribution and correlation information of the responses, these models combine statistical information of the input parameters with an efficient sampling of the response analyses to produce the multi-response joint probability distribution. Parameter space reduction is accomplished using Approximate Canonical Correlation Analysis (ACCA) employed as a multi-response screening technique. The novelty of this approach is that each individual local parameter and even subsets of parameters representing entire contributing analyses can now be rank ordered with respect to their contribution to not just one response, but the entire vector of component responses simultaneously. The final step of the framework is the actual probabilistic assessment of the component. Although the same multivariate probability tools employed in the characterization step can be used for the component probability assessment, variations of this final step are given to allow for the utilization of existing probabilistic methods such as response surface Monte Carlo and Fast Probability Integration. The overall framework developed in this study is implemented to assess the finite-element based reliability prediction of a gas turbine airfoil involving several failure responses. Results of this implementation are compared to results generated using the conventional 'isolated' approach as well as a validation approach conducted through large sample Monte Carlo simulations. The framework resulted in a considerable improvement to the accuracy of the part reliability assessment and an improved understanding of the component failure behavior. Considerable statistical complexity in the form of joint non-normal behavior was found and accounted for using the framework. Future applications of the framework elements are discussed.
[Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].
Furuta, Takuya
2017-01-01
Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
Deterministic theory of Monte Carlo variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueki, T.; Larsen, E.W.
1996-12-31
The theoretical estimation of variance in Monte Carlo transport simulations, particularly those using variance reduction techniques, is a substantially unsolved problem. In this paper, the authors describe a theory that predicts the variance in a variance reduction method proposed by Dwivedi. Dwivedi`s method combines the exponential transform with angular biasing. The key element of this theory is a new modified transport problem, containing the Monte Carlo weight w as an extra independent variable, which simulates Dwivedi`s Monte Carlo scheme. The (deterministic) solution of this modified transport problem yields an expression for the variance. The authors give computational results that validatemore » this theory.« less
NASA Astrophysics Data System (ADS)
Clowes, P.; Mccallum, S.; Welch, A.
2006-10-01
We are currently developing a multilayer avalanche photodiode (APD)-based detector for use in positron emission tomography (PET), which utilizes thin continuous crystals. In this paper, we developed a Monte Carlo-based simulation to aid in the design of such detectors. We measured the performance of a detector comprising a single thin continuous crystal (3.1 mm times 9.5 mm times 9.5 mm) of lutetium yttrium ortho-silicate (LYSO) and an APD array (4times4) elements; each element 1.6 mm2 and on a 2.3 mm pitch. We showed that a spatial resolution of better than 2.12 mm is achievable throughout the crystal provided that we adopt a Statistics Based Positioning (SBP) Algorithm. We then used Monte Carlo simulation to model the behavior of the detector. The accuracy of the Monte Carlo simulation was verified by comparing measured and simulated parent datasets (PDS) for the SBP algorithm. These datasets consisted of data for point sources at 49 positions uniformly distributed over the detector area. We also calculated the noise in the detector circuit and verified this value by measurement. The noise value was included in the simulation. We show that the performance of the simulation closely matches the measured performance. The simulations were extended to investigate the effect of different noise levels on positioning accuracy. This paper showed that if modest improvements could be made in the circuit noise then positioning accuracy would be greatly improved. In summary, we have developed a model that can be used to simulate the performance of a variety of APD-based continuous crystal PET detectors
High-efficiency wavefunction updates for large scale Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed
Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Singh, H; Islam, M
2014-06-01
Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J; Owrangi, A; Jiang, R
2014-06-01
Purpose: This study investigated the performance of the anisotropic analytical algorithm (AAA) in dose calculation in radiotherapy concerning a small finger joint. Monte Carlo simulation (EGSnrc code) was used in this dosimetric evaluation. Methods: Heterogeneous finger joint phantom containing a vertical water layer (bone joint or cartilage) sandwiched by two bones with dimension 2 × 2 × 2 cm{sup 3} was irradiated by the 6 MV photon beams (field size = 4 × 4 cm{sup 2}). The central beam axis was along the length of the bone joint and the isocenter was set to the center of the joint. Themore » joint width and beam angle were varied from 0.5–2 mm and 0°–15°, respectively. Depth doses were calculated using the AAA and DOSXYZnrc. For dosimetric comparison and normalization, dose calculations were repeated in water phantom using the same beam geometry. Results: Our AAA and Monte Carlo results showed that the AAA underestimated the joint doses by 10%–20%, and could not predict joint dose variation with changes of joint width and beam angle. The calculated bone dose enhancement for the AAA was lower than Monte Carlo and the depth of maximum dose for the phantom was smaller than that for the water phantom. From Monte Carlo results, there was a decrease of joint dose as its width increased. This reflected the smaller the joint width, the more the bone scatter contributed to the depth dose. Moreover, the joint dose was found slightly decreased with an increase of beam angle. Conclusion: The AAA could not handle variations of joint dose well with changes of joint width and beam angle based on our finger joint phantom. Monte Carlo results showed that the joint dose decreased with increase of joint width and beam angle. This dosimetry comparison should be useful to radiation staff in radiotherapy related to small bone joint.« less
Incorporating structural analysis in a quantum dot Monte-Carlo model
NASA Astrophysics Data System (ADS)
Butler, I. M. E.; Li, Wei; Sobhani, S. A.; Babazadeh, N.; Ross, I. M.; Nishi, K.; Takemasa, K.; Sugawara, M.; Peyvast, Negin; Childs, D. T. D.; Hogg, R. A.
2018-02-01
We simulate the shape of the density of states (DoS) of the quantum dot (QD) ensemble based upon size information provided by high angle annular dark field scanning transmission electron microscopy (HAADF STEM). We discuss how the capability to determined the QD DoS from micro-structural data allows a MonteCarlo model to be developed to accurately describe the QD gain and spontaneous emission spectra. The QD DoS shape is then studied, with recommendations made via the effect of removing, and enhancing this size inhomogeneity on various QD based devices is explored.
NASA Astrophysics Data System (ADS)
Vienhage, Paul; Barcomb, Heather; Marshall, Karel; Black, William A.; Coons, Amanda; Tran, Hien T.; Nguyen, Tien M.; Guillen, Andy T.; Yoh, James; Kizer, Justin; Rogers, Blake A.
2017-05-01
The paper describes the MATLAB (MathWorks) programs that were developed during the REU workshop1 to implement The Aerospace Corporation developed Unified Game-based Acquisition Framework and Advanced Game - based Mathematical Framework (UGAF-AGMF) and its associated War-Gaming Engine (WGE) models. Each game can be played from the perspectives of the Department of Defense Acquisition Authority (DAA) or of an individual contractor (KTR). The programs also implement Aerospace's optimum "Program and Technical Baseline (PTB) and associated acquisition" strategy that combines low Total Ownership Cost (TOC) with innovative designs while still meeting warfighter needs. The paper also describes the Bayesian Acquisition War-Gaming approach using Monte Carlo simulations, a numerical analysis technique to account for uncertainty in decision making, which simulate the PTB development and acquisition processes and will detail the procedure of the implementation and the interactions between the games.
Schreiber, Eric C; Chang, Sha X
2012-08-01
Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy∕min∕A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Monte Carlo simulations demonstrate that the proposed compact MRT system design is capable of delivering a sufficient dose rate and peak-to-valley ratio for small animal MRT studies.
Monte Carlo Simulations of Radiative and Neutrino Transport under Astrophysical Conditions
NASA Astrophysics Data System (ADS)
Krivosheyev, Yu. M.; Bisnovatyi-Kogan, G. S.
2018-05-01
Monte Carlo simulations are utilized to model radiative and neutrino transfer in astrophysics. An algorithm that can be used to study radiative transport in astrophysical plasma based on simulations of photon trajectories in a medium is described. Formation of the hard X-ray spectrum of the Galactic microquasar SS 433 is considered in detail as an example. Specific requirements for applying such simulations to neutrino transport in a densemedium and algorithmic differences compared to its application to photon transport are discussed.
Quantum annealing of the traveling-salesman problem.
Martonák, Roman; Santoro, Giuseppe E; Tosatti, Erio
2004-11-01
We propose a path-integral Monte Carlo quantum annealing scheme for the symmetric traveling-salesman problem, based on a highly constrained Ising-like representation, and we compare its performance against standard thermal simulated annealing. The Monte Carlo moves implemented are standard, and consist in restructuring a tour by exchanging two links (two-opt moves). The quantum annealing scheme, even with a drastically simple form of kinetic energy, appears definitely superior to the classical one, when tested on a 1002-city instance of the standard TSPLIB.
Diagnosing Undersampling Biases in Monte Carlo Eigenvalue and Flux Tally Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M.; Rearden, Bradley T.; Marshall, William J.
2017-02-08
Here, this study focuses on understanding the phenomena in Monte Carlo simulations known as undersampling, in which Monte Carlo tally estimates may not encounter a sufficient number of particles during each generation to obtain unbiased tally estimates. Steady-state Monte Carlo simulations were performed using the KENO Monte Carlo tools within the SCALE code system for models of several burnup credit applications with varying degrees of spatial and isotopic complexities, and the incidence and impact of undersampling on eigenvalue and flux estimates were examined. Using an inadequate number of particle histories in each generation was found to produce a maximum bias of ~100 pcm in eigenvalue estimates and biases that exceeded 10% in fuel pin flux tally estimates. Having quantified the potential magnitude of undersampling biases in eigenvalue and flux tally estimates in these systems, this study then investigated whether Markov Chain Monte Carlo convergence metrics could be integrated into Monte Carlo simulations to predict the onset and magnitude of undersampling biases. Five potential metrics for identifying undersampling biases were implemented in the SCALE code system and evaluated for their ability to predict undersampling biases by comparing the test metric scores with the observed undersampling biases. Finally, of the five convergence metrics that were investigated, three (the Heidelberger-Welch relative half-width, the Gelman-Rubin more » $$\\hat{R}_c$$ diagnostic, and tally entropy) showed the potential to accurately predict the behavior of undersampling biases in the responses examined.« less
Adluru, Nagesh; Yang, Xingwei; Latecki, Longin Jan
2015-05-01
We consider a problem of finding maximum weight subgraphs (MWS) that satisfy hard constraints in a weighted graph. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., pairs of nodes that cannot belong to the same solution. Our main contribution is a novel inference approach for solving this problem in a sequential monte carlo (SMC) sampling framework. Usually in an SMC framework there is a natural ordering of the states of the samples. The order typically depends on observations about the states or on the annealing setup used. In many applications (e.g., image jigsaw puzzle problems), all observations (e.g., puzzle pieces) are given at once and it is hard to define a natural ordering. Therefore, we relax the assumption of having ordered observations about states and propose a novel SMC algorithm for obtaining maximum a posteriori estimate of a high-dimensional posterior distribution. This is achieved by exploring different orders of states and selecting the most informative permutations in each step of the sampling. Our experimental results demonstrate that the proposed inference framework significantly outperforms loopy belief propagation in solving the image jigsaw puzzle problem. In particular, our inference quadruples the accuracy of the puzzle assembly compared to that of loopy belief propagation.
Sequential Monte Carlo for Maximum Weight Subgraphs with Application to Solving Image Jigsaw Puzzles
Adluru, Nagesh; Yang, Xingwei; Latecki, Longin Jan
2015-01-01
We consider a problem of finding maximum weight subgraphs (MWS) that satisfy hard constraints in a weighted graph. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., pairs of nodes that cannot belong to the same solution. Our main contribution is a novel inference approach for solving this problem in a sequential monte carlo (SMC) sampling framework. Usually in an SMC framework there is a natural ordering of the states of the samples. The order typically depends on observations about the states or on the annealing setup used. In many applications (e.g., image jigsaw puzzle problems), all observations (e.g., puzzle pieces) are given at once and it is hard to define a natural ordering. Therefore, we relax the assumption of having ordered observations about states and propose a novel SMC algorithm for obtaining maximum a posteriori estimate of a high-dimensional posterior distribution. This is achieved by exploring different orders of states and selecting the most informative permutations in each step of the sampling. Our experimental results demonstrate that the proposed inference framework significantly outperforms loopy belief propagation in solving the image jigsaw puzzle problem. In particular, our inference quadruples the accuracy of the puzzle assembly compared to that of loopy belief propagation. PMID:26052182
NASA Astrophysics Data System (ADS)
Peter, Jörg; Semmler, Wolfhard
2007-10-01
Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems.
NASA Astrophysics Data System (ADS)
Stark, C. P.; Rudd, S.; Lall, U.; Hovius, N.; Dadson, S.; Chen, M.-C.
Off-Axis DOAS measurements with non-artificial scattered light, based upon the renowned DOAS technique, allow to optimize the sensitivity of the technique for the trace gas profile in question by strongly increasing the light's path through the relevant atmosphere layers. Multi-Axis-(MAX) DOAS probe several directions simultaneously or sequentially to increase the spatial resolution. Several devices (ground based, air- borne and ship-built) are operated by our group in the framework of the SCIAMACHY validation. Radiative transfer models are an essential requirement for the interpretation of these measurements and their conversion into detailed profile data. Apart from some existing Monte Carlo Models most codes use analytical algorithms to solve the radia- tive transfer equation for given atmospheric conditions. For specific circumstances, e.g. photon scattering within clouds, these approaches are not efficient enough to pro- vide sufficient accuracy. Also horizontal gradients in atmospheric parameters have to be taken into account. To meet the needs of measurement situations for all kinds of scattered light DOAS platforms, a three dimensional full spherical Monte Carlo model was devised. Here we present Air Mass Factors (AMF) to calculate vertical column densities (VCD) from measured slant column densities (SCD). Sensitivity studies on the influence of the wavelength and telescope direction used, of the altitude of profile layers, albedo, refraction and basic aerosols are shown. Also modelled intensity series are compared with radiometer data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Pelletier, C; Lee, C
Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to themore » XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.« less
Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data
NASA Astrophysics Data System (ADS)
Glüsenkamp, Thorsten
2018-06-01
Parameter estimation in HEP experiments often involves Monte Carlo simulation to model the experimental response function. A typical application are forward-folding likelihood analyses with re-weighting, or time-consuming minimization schemes with a new simulation set for each parameter value. Problematically, the finite size of such Monte Carlo samples carries intrinsic uncertainty that can lead to a substantial bias in parameter estimation if it is neglected and the sample size is small. We introduce a probabilistic treatment of this problem by replacing the usual likelihood functions with novel generalized probability distributions that incorporate the finite statistics via suitable marginalization. These new PDFs are analytic, and can be used to replace the Poisson, multinomial, and sample-based unbinned likelihoods, which covers many use cases in high-energy physics. In the limit of infinite statistics, they reduce to the respective standard probability distributions. In the general case of arbitrary Monte Carlo weights, the expressions involve the fourth Lauricella function FD, for which we find a new finite-sum representation in a certain parameter setting. The result also represents an exact form for Carlson's Dirichlet average Rn with n > 0, and thereby an efficient way to calculate the probability generating function of the Dirichlet-multinomial distribution, the extended divided difference of a monomial, or arbitrary moments of univariate B-splines. We demonstrate the bias reduction of our approach with a typical toy Monte Carlo problem, estimating the normalization of a peak in a falling energy spectrum, and compare the results with previously published methods from the literature.
NASA Astrophysics Data System (ADS)
He, Wei; Williard, Nicholas; Osterman, Michael; Pecht, Michael
A new method for state of health (SOH) and remaining useful life (RUL) estimations for lithium-ion batteries using Dempster-Shafer theory (DST) and the Bayesian Monte Carlo (BMC) method is proposed. In this work, an empirical model based on the physical degradation behavior of lithium-ion batteries is developed. Model parameters are initialized by combining sets of training data based on DST. BMC is then used to update the model parameters and predict the RUL based on available data through battery capacity monitoring. As more data become available, the accuracy of the model in predicting RUL improves. Two case studies demonstrating this approach are presented.
Teaching Ionic Solvation Structure with a Monte Carlo Liquid Simulation Program
ERIC Educational Resources Information Center
Serrano, Agostinho; Santos, Flavia M. T.; Greca, Ileana M.
2004-01-01
The use of molecular dynamics and Monte Carlo methods has provided efficient means to stimulate the behavior of molecular liquids and solutions. A Monte Carlo simulation program is used to compute the structure of liquid water and of water as a solvent to Na(super +), Cl(super -), and Ar on a personal computer to show that it is easily feasible to…
Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.
Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A
2005-01-01
The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.
Hybrid Monte Carlo/deterministic methods for radiation shielding problems
NASA Astrophysics Data System (ADS)
Becker, Troy L.
For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods can be used to achieve user-specified Monte Carlo distributions. Overall, the Transform approach performed more efficiently than the weight window methods, but it performed much more efficiently for source-detector problems than for global problems.
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
NASA Astrophysics Data System (ADS)
Bernede, Adrien; Poëtte, Gaël
2018-02-01
In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.
Path-integral Monte Carlo method for Rényi entanglement entropies.
Herdman, C M; Inglis, Stephen; Roy, P-N; Melko, R G; Del Maestro, A
2014-07-01
We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.
Development of a new multi-modal Monte-Carlo radiotherapy planning system.
Kumada, H; Nakamura, T; Komeda, M; Matsumura, A
2009-07-01
A new multi-modal Monte-Carlo radiotherapy planning system (developing code: JCDS-FX) is under development at Japan Atomic Energy Agency. This system builds on fundamental technologies of JCDS applied to actual boron neutron capture therapy (BNCT) trials in JRR-4. One of features of the JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multi-purpose particle Monte-Carlo transport code. Hence application of PHITS enables to evaluate total doses given to a patient by a combined modality therapy. Moreover, JCDS-FX with PHITS can be used for the study of accelerator based BNCT. To verify calculation accuracy of the JCDS-FX, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial were performed, then the results were compared with calculations by JCDS with MCNP. The verification results demonstrated that JCDS-FX is applicable to BNCT treatment planning in practical use.
Comparison of deterministic and stochastic methods for time-dependent Wigner simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Sihong, E-mail: sihong@math.pku.edu.cn; Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg
2015-11-01
Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution ofmore » a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüchow, Arne, E-mail: luechow@rwth-aachen.de; Jülich Aachen Research Alliance; Sturm, Alexander
2015-02-28
Jastrow correlation factors play an important role in quantum Monte Carlo calculations. Together with an orbital based antisymmetric function, they allow the construction of highly accurate correlation wave functions. In this paper, a generic expansion of the Jastrow correlation function in terms of polynomials that satisfy both the electron exchange symmetry constraint and the cusp conditions is presented. In particular, an expansion of the three-body electron-electron-nucleus contribution in terms of cuspless homogeneous symmetric polynomials is proposed. The polynomials can be expressed in fairly arbitrary scaling function allowing a generic implementation of the Jastrow factor. It is demonstrated with a fewmore » examples that the new Jastrow factor achieves 85%–90% of the total correlation energy in a variational quantum Monte Carlo calculation and more than 90% of the diffusion Monte Carlo correlation energy.« less
NASA Astrophysics Data System (ADS)
Sboev, A. G.; Ilyashenko, A. S.; Vetrova, O. A.
1997-02-01
The method of bucking evaluation, realized in the MOnte Carlo code MCS, is described. This method was applied for calculational analysis of well known light water experiments TRX-1 and TRX-2. The analysis of this comparison shows, that there is no coincidence between Monte Carlo calculations, obtained by different ways: the MCS calculations with given experimental bucklings; the MCS calculations with given bucklings evaluated on base of full core MCS direct simulations; the full core MCNP and MCS direct simulations; the MCNP and MCS calculations, where the results of cell calculations are corrected by the coefficients taking into the account the leakage from the core. Also the buckling values evaluated by full core MCS calculations have differed from experimental ones, especially in the case of TRX-1, when this difference has corresponded to 0.5 percent increase of Keff value.
Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Gavilán Arriazu, E. M.; Pinto, O. A.
2018-03-01
We present a Monte Carlo study for the electrosorption of an electroactive species on a modified electrode. The surface of the electrode is modified by the irreversible adsorption of a non-electroactive species which is able to block a percentage of the adsorption sites. This generates an electrode with variable connectivity sites. A second species, electroactive in this case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we are interested in the analysis of the effect of the non-electroactive species near of critical regime, where the c(2 × 2) structure is formed. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of voltammograms, order parameters, isotherms, configurational entropy per site, at several values of energies and coverage degrees of the non-electroactive species.
NASA Astrophysics Data System (ADS)
Komura, Yukihiro; Okabe, Yutaka
2016-04-01
We study the Ising models on the Penrose lattice and the dual Penrose lattice by means of the high-precision Monte Carlo simulation. Simulating systems up to the total system size N = 20633239, we estimate the critical temperatures on those lattices with high accuracy. For high-speed calculation, we use the generalized method of the single-GPU-based computation for the Swendsen-Wang multi-cluster algorithm of Monte Carlo simulation. As a result, we estimate the critical temperature on the Penrose lattice as Tc/J = 2.39781 ± 0.00005 and that of the dual Penrose lattice as Tc*/J = 2.14987 ± 0.00005. Moreover, we definitely confirm the duality relation between the critical temperatures on the dual pair of quasilattices with a high degree of accuracy, sinh (2J/Tc)sinh (2J/Tc*) = 1.00000 ± 0.00004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less
Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson
2017-01-01
This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936
NASA Astrophysics Data System (ADS)
Brdar, S.; Seifert, A.
2018-01-01
We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.
Simulation of radiation damping in rings, using stepwise ray-tracing methods
Meot, F.
2015-06-26
The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less
The difference between LSMC and replicating portfolio in insurance liability modeling.
Pelsser, Antoon; Schweizer, Janina
2016-01-01
Solvency II requires insurers to calculate the 1-year value at risk of their balance sheet. This involves the valuation of the balance sheet in 1 year's time. As for insurance liabilities, closed-form solutions to their value are generally not available, insurers turn to estimation procedures. While pure Monte Carlo simulation set-ups are theoretically sound, they are often infeasible in practice. Therefore, approximation methods are exploited. Among these, least squares Monte Carlo (LSMC) and portfolio replication are prominent and widely applied in practice. In this paper, we show that, while both are variants of regression-based Monte Carlo methods, they differ in one significant aspect. While the replicating portfolio approach only contains an approximation error, which converges to zero in the limit, in LSMC a projection error is additionally present, which cannot be eliminated. It is revealed that the replicating portfolio technique enjoys numerous advantages and is therefore an attractive model choice.
Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorok, R.; Butcher, M.; LaTier, A.
1995-12-31
The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species andmore » plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.« less
NASA Astrophysics Data System (ADS)
Khatibinia, M.; Salajegheh, E.; Salajegheh, J.; Fadaee, M. J.
2013-10-01
A new discrete gravitational search algorithm (DGSA) and a metamodelling framework are introduced for reliability-based design optimization (RBDO) of reinforced concrete structures. The RBDO of structures with soil-structure interaction (SSI) effects is investigated in accordance with performance-based design. The proposed DGSA is based on the standard gravitational search algorithm (GSA) to optimize the structural cost under deterministic and probabilistic constraints. The Monte-Carlo simulation (MCS) method is considered as the most reliable method for estimating the probabilities of reliability. In order to reduce the computational time of MCS, the proposed metamodelling framework is employed to predict the responses of the SSI system in the RBDO procedure. The metamodel consists of a weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, which is called WWLS-SVM. Numerical results demonstrate the efficiency and computational advantages of DGSA and the proposed metamodel for RBDO of reinforced concrete structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin
Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less
Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel
2015-12-01
The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.
Monte Carlo method for calculating the radiation skyshine produced by electron accelerators
NASA Astrophysics Data System (ADS)
Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin
2005-06-01
Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.
Self-learning Monte Carlo method
Liu, Junwei; Qi, Yang; Meng, Zi Yang; ...
2017-01-04
Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. Lastly, we demonstrate the efficiency of SLMC in a spin model at the phasemore » transition point, achieving a 10–20 times speedup.« less
Random Numbers and Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
NASA Astrophysics Data System (ADS)
Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.
2018-05-01
Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although the observed seasonal cycles were found to fall within the confidence limits of the ACCMIP members, this was because the model seasonal cycles spanned extremely wide ranges and there was no single ACCMIP member that performed best for each station. Further work is required to examine the parameterisation of convective mixing in the models to see if this erodes the isolation of the marine boundary layer from the free troposphere and thus hides the models' real ability to reproduce ozone seasonal cycles over marine stations.
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id
2015-09-30
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...
2018-04-19
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave
NASA Astrophysics Data System (ADS)
Yasuda, Shugo
2017-02-01
A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
Characterization of boron carbide with an electron microprobe
NASA Technical Reports Server (NTRS)
Matteudi, G.; Ruste, J.
1983-01-01
Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.
The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic
NASA Technical Reports Server (NTRS)
Armstrong, Curtis D.; Humphreys, William M.
2003-01-01
We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.
General squark flavour mixing: constraints, phenomenology and benchmarks
De Causmaecker, Karen; Fuks, Benjamin; Herrmann, Bjorn; ...
2015-11-19
Here, we present an extensive study of non-minimal flavour violation in the squark sector in the framework of the Minimal Supersymmetric Standard Model. We investigate the effects of multiple non-vanishing flavour-violating elements in the squark mass matrices by means of a Markov Chain Monte Carlo scanning technique and identify parameter combinations that are favoured by both current data and theoretical constraints. We then detail the resulting distributions of the flavour-conserving and flavour-violating model parameters. Based on this analysis, we propose a set of benchmark scenarios relevant for future studies of non-minimal flavour violation in the Minimal Supersymmetric Standard Model.
Nuclear Deformation at Finite Temperature
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.
2014-12-01
Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Alfonsi; C. Rabiti; D. Mandelli
The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data miningmore » module« less
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
Lognormal Approximations of Fault Tree Uncertainty Distributions.
El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P
2018-01-26
Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, JS; Fan, J; Ma, C-M
Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom.more » MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.« less
NASA Astrophysics Data System (ADS)
Ojha, Maheswar; Maiti, Saumen
2016-03-01
A novel approach based on the concept of Bayesian neural network (BNN) has been implemented for classifying sediment boundaries using downhole log data obtained during Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. The Bayesian framework in conjunction with Markov Chain Monte Carlo (MCMC)/hybrid Monte Carlo (HMC) learning paradigm has been applied to constrain the lithology boundaries using density, density porosity, gamma ray, sonic P-wave velocity and electrical resistivity at the Hole U1344A. We have demonstrated the effectiveness of our supervised classification methodology by comparing our findings with a conventional neural network and a Bayesian neural network optimized by scaled conjugate gradient method (SCG), and tested the robustness of the algorithm in the presence of red noise in the data. The Bayesian results based on the HMC algorithm (BNN.HMC) resolve detailed finer structures at certain depths in addition to main lithology such as silty clay, diatom clayey silt and sandy silt. Our method also recovers the lithology information from a depth ranging between 615 and 655 m Wireline log Matched depth below Sea Floor of no core recovery zone. Our analyses demonstrate that the BNN based approach renders robust means for the classification of complex lithology successions at the Hole U1344A, which could be very useful for other studies and understanding the oceanic crustal inhomogeneity and structural discontinuities.
A framework for the probabilistic analysis of meteotsunamis
Geist, Eric L.; ten Brink, Uri S.; Gove, Matthew D.
2014-01-01
A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Rourke, Patrick Francis
The purpose of this report is to provide the reader with an understanding of how a Monte Carlo neutron transport code was written, developed, and evolved to calculate the probability distribution functions (PDFs) and their moments for the neutron number at a final time as well as the cumulative fission number, along with introducing several basic Monte Carlo concepts.
ERIC Educational Resources Information Center
Myers, Nicholas D.; Ahn, Soyeon; Jin, Ying
2011-01-01
Monte Carlo methods can be used in data analytic situations (e.g., validity studies) to make decisions about sample size and to estimate power. The purpose of using Monte Carlo methods in a validity study is to improve the methodological approach within a study where the primary focus is on construct validity issues and not on advancing…
Perturbative two- and three-loop coefficients from large β Monte Carlo
NASA Astrophysics Data System (ADS)
Lepage, G. P.; Mackenzie, P. B.; Shakespeare, N. H.; Trottier, H. D.
Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large β on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z3 tunneling.
Perturbative two- and three-loop coefficients from large b Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.P. Lepage; P.B. Mackenzie; N.H. Shakespeare
1999-10-18
Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large {beta} on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z{sub 3} tunneling.
A smart Monte Carlo procedure for production costing and uncertainty analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, C.; Stremel, J.
1996-11-01
Electric utilities using chronological production costing models to decide whether to buy or sell power over the next week or next few weeks need to determine potential profits or losses under a number of uncertainties. A large amount of money can be at stake--often $100,000 a day or more--and one party of the sale must always take on the risk. In the case of fixed price ($/MWh) contracts, the seller accepts the risk. In the case of cost plus contracts, the buyer must accept the risk. So, modeling uncertainty and understanding the risk accurately can improve the competitive edge ofmore » the user. This paper investigates an efficient procedure for representing risks and costs from capacity outages. Typically, production costing models use an algorithm based on some form of random number generator to select resources as available or on outage. These algorithms allow experiments to be repeated and gains and losses to be observed in a short time. The authors perform several experiments to examine the capability of three unit outage selection methods and measures their results. Specifically, a brute force Monte Carlo procedure, a Monte Carlo procedure with Latin Hypercube sampling, and a Smart Monte Carlo procedure with cost stratification and directed sampling are examined.« less
Understanding quantum tunneling using diffusion Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.
2018-03-01
In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.
Longo, Mariaconcetta; Marchioni, Chiara; Insero, Teresa; Donnarumma, Raffaella; D'Adamo, Alessandro; Lucatelli, Pierleone; Fanelli, Fabrizio; Salvatori, Filippo Maria; Cannavale, Alessandro; Di Castro, Elisabetta
2016-03-01
This study evaluates X-ray exposure in patient undergoing abdominal extra-vascular interventional procedures by means of Digital Imaging and COmmunications in Medicine (DICOM) image headers and Monte Carlo simulation. The main aim was to assess the effective and equivalent doses, under the hypothesis of their correlation with the dose area product (DAP) measured during each examination. This allows to collect dosimetric information about each patient and to evaluate associated risks without resorting to in vivo dosimetry. The dose calculation was performed in 79 procedures through the Monte Carlo simulator PCXMC (A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations), by using the real geometrical and dosimetric irradiation conditions, automatically extracted from DICOM headers. The DAP measurements were also validated by using thermoluminescent dosemeters on an anthropomorphic phantom. The expected linear correlation between effective doses and DAP was confirmed with an R(2) of 0.974. Moreover, in order to easily calculate patient doses, conversion coefficients that relate equivalent doses to measurable quantities, such as DAP, were obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-01-01
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500. PMID:27447632