Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffe, D.E.; Bishai, M.; Diwan, M.V.
2010-10-10
The shadowing of cosmic ray primaries by the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 {sigma} level and the shadow of the sun at the 3.8 {sigma} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 {+-} 0.12{sup o}. Hints of interplanetary magnetic field effects were observed in both the sun and moon shadow.
Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, P.; /Fermilab; Andreopoulos, C.
2010-08-01
The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 {sigma} level and the shadow of the sun at the 3.8 {sigma} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 {+-} 0.12{sup o}. Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow.
Moon and Sun shadowing effect in the MACRO detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2003-11-01
Using data collected by the MACRO experiment from 1989 to the end of its operations in 2000, we have studied in the underground muon flux the shadowing effects due to both the Moon and the Sun. We have observed the shadow cast by the Moon at its apparent position with a significance of 6.5 σ. The Moon shadowing effect has been used to verify the pointing capability of the detector and to determine the instrument resolution for the search of muon excesses from any direction of the celestial sphere. The dependence of the effect on the geomagnetic field is clearly shown by splitting the data sample in day and night observations. The Sun shadow, observed with a significance of 4.6 σ is displaced by about 0.6° from its apparent position. In this case however the explanation resides in the configuration of the Solar and Interplanetary Magnetic Fields, which affect the propagation of cosmic ray particles between the Sun, and the Earth. The displacement of the Sun shadow with respect to the real Sun position has been used to establish an upper limit on the antimatter flux in cosmic rays of about 48% at 68% c.l. and primary energies of about 20 TeV.
The Moon's Phases and the Self Shadow
ERIC Educational Resources Information Center
Young, Timothy; Guy, Mark
2008-01-01
In this article, the authors present a new way of teaching the phases of the Moon. Through the introduction of a "self shadow" (an idea of a shadow that is not well-known), they illuminate students' understanding of the phases of the Moon and help them understand the distinction between the shadows that cause eclipses and the shadows that relate…
Observation of the cosmic-ray shadow of the Moon with IceCube
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration
2014-05-01
We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (>6σ) in both detector configurations. The observed location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandreas, D.E.; Allen, R.C.; Berley, D.
1991-03-01
Data from an extensive air shower detector of ultrahigh-energy cosmic rays shows shadowing of the cosmic-ray flux by the Moon and the Sun with significance of 4.9 standard deviations. This is the first observation of such shadowing. The effect has been used to determine that the angular resolution of the detector is 0.75{degree} {sub {minus}0.90{degree}}{sup +0.13{degree}}.
2010-05-12
Saturn moon Prometheus casts a narrow shadow on the rings near the much larger shadow cast by the planet in this image taken by NASA Cassini spacecraft about five months after Saturn August 2009 equinox.
2010-04-22
The shadow of Saturn moon Mimas is elongated across the planet in this image from NASA Cassini spacecraft. The moon itself is not shown, but the shadow appears just above the ringplane on the right of the image.
2010-03-05
The shadow of Saturn moon Dione, cast onto the planet, is elongated in dramatic fashion in this image captured by NASA Cassini spacecraft. The moon itself does not appear here, but the shadow can be seen south of the ringplane.
Constraining the p¯/p ratio in TeV cosmic rays with observations of the Moon shadow by HAWC
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Belmont-Moreno, E.; BenZvi, S. Y.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Engel, K.; Enríquez-Rivera, O.; Fleischhack, H.; Fraija, N.; Galván-Gámez, A.; García-González, J. A.; González Muñoz, A.; González, M. M.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hona, B.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lee, W. H.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Seglar Arroyo, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Torres, I.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Yodh, G. B.; Zepeda, A.; Zhou, H.; HAWC Collaboration
2018-05-01
An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed toward the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the p ¯/p fraction, which in the absence of any direct measurements provide the tightest available constraints of ˜1 % on the antiproton fraction for energies between 1 and 10 TeV.
Observation of the shadowing of cosmic rays by the Moon using a deep underground detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Benedictis, L.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Huang, Y.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Neri, A. Margiotta; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Pugliese, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Ugolotti, D.; Vakili, M.; Walter, C. W.; Webb, R.
1999-01-01
Using data collected by the MACRO experiment during the years 1989-1996, we show evidence for the shadow of the Moon in the underground cosmic ray flux with a significance of 3.6σ. This detection of the shadowing effect is the first by an underground detector. A maximum-likelihood analysis is used to determine that the angular resolution of the apparatus is 0.9°+/-0.3°. These results demonstrate MACRO's capabilities as a muon telescope by confirming its absolute pointing ability and quantifying its angular resolution.
NASA Astrophysics Data System (ADS)
Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang
2018-01-01
A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.
2018-01-31
NASA TV provided coverage of Super Blue Moon Lunar Eclipse on Jan. 31. The full moon was the third in a series of “supermoons,” when the Moon is closer to Earth in its orbit -- known as perigee -- and about 14 percent brighter than usual. It was also the second full moon of the month, commonly known as a “blue moon.” As the super blue moon passed through Earth’s shadow, viewers in some locations experienced a total lunar eclipse. While in Earth’s shadow, the moon also took on a reddish tint – which is sometimes referred to as a “blood moon.”
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.
2015-05-01
A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.
Spirit Movie of Phobos Eclipse, Sol 675
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Spirit Phobos Eclipse Animation
NASA's Mars Exploration Rover Spirit observed the Martian moon Phobos entering the shadow of Mars during the night of the rover's 675th sol (Nov. 27, 2005). The panoramic camera captured 16 images, spaced 10 seconds apart, covering the period from when Phobos was in full sunlight to when it was entirely in shadow. As with our own Moon during lunar eclipses on Earth, even when in the planet's shadow, Phobos was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. This clip is a sequence of the 16 images showing the eclipse at about 10 times normal speed. It shows the movement of Phobos from left to right as the moon enters the shadow. Scientists are using information about the precise timing of Martian moon eclipses gained from observations such as these to refine calculations about the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface.Jan. 31, 2018 Super Blue Blood Moon
2018-01-26
January 31 brings a lunar trifecta: the Super Blue Blood Moon! NASA TV will offer a livestream starting at 5:30 a.m. This full moon is the third in a series of “supermoons,” when the Moon is closer to Earth in its orbit -- known as perigee -- and about 14 percent brighter than usual. It’s the second full moon of the month, commonly known as a “blue moon.” The super blue moon will pass through Earth’s shadow to give viewers in the right location a total lunar eclipse. While the Moon is in the Earth’s shadow it will take on a reddish tint, known as a “blood moon.” More: https://www.nasa.gov/feature/super-blue-blood-moon-coming-jan-31 Credit: NASA 360
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2018-01-31
California’s NASA Armstrong Flight Research Center’s photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
Spirit View of Phobos Eclipse, Sol 675
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated Spirit View of Phobos Eclipse, Sol 675 NASA's Mars Exploration Rover Spirit observed the Martian moon Phobos entering the shadow of Mars during the night of the rover's 675th sol (Nov. 27, 2005). The panoramic camera captured 16 images, spaced 10 seconds apart, covering the period from when Phobos was in full sunlight to when it was entirely in shadow. As with our own Moon during lunar eclipses on Earth, even when in the planet's shadow, Phobos was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. This view is a time-lapse composite of images taken 20 seconds apart, showing the movement of Phobos from left to right. (At 10 seconds apart, the images of the moon overlap each other.) Scientists are using information about the precise timing of Martian moon eclipses gained from observations such as these to refine calculations about the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface.Annular and Total Solar Eclipses of 2003
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2002-01-01
On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon will pass through Earth's shadow and take on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
NASA Astrophysics Data System (ADS)
Kiefer, Walter S.
2012-01-01
Reliable measurements of the Moon's global heat flow would serve as an important diagnostic test for models of lunar thermal evolution and would also help to constrain the Moon's bulk abundance of radioactive elements and its differentiation history. The two existing measurements of lunar heat flow are unlikely to be representative of the global heat flow. For these reasons, obtaining additional heat flow measurements has been recognized as a high priority lunar science objective. In making such measurements, it is essential that the design and deployment of the heat flow probe and of the parent spacecraft do not inadvertently modify the near-surface thermal structure of the lunar regolith and thus perturb the measured heat flow. One type of spacecraft-related perturbation is the shadow cast by the spacecraft and by thermal blankets on some instruments. The thermal effects of these shadows propagate by conduction both downward and outward from the spacecraft into the lunar regolith. Shadows cast by the spacecraft superstructure move over the surface with time and only perturb the regolith temperature in the upper 0.8 m. Permanent shadows, such as from thermal blankets covering a seismometer or other instruments, can modify the temperature to greater depth. Finite element simulations using measured values of the thermal diffusivity of lunar regolith show that the limiting factor for temperature perturbations is the need to measure the annual thermal wave for 2 or more years to measure the thermal diffusivity. The error induced by permanent spacecraft thermal shadows can be kept below 8% of the annual wave amplitude at 1 m depth if the heat flow probe is deployed at least 2.5 m away from any permanent spacecraft shadow. Deploying the heat flow probe 2 m from permanent shadows permits measuring the annual thermal wave for only one year and should be considered the science floor for a heat flow experiment on the Moon. One way to meet this separation requirement would be to deploy the heat flow and seismology experiments on opposite sides of the spacecraft. This result should be incorporated in the design of future lunar geophysics spacecraft experiments. Differences in the thermal environments of the Moon and Mars result in less restrictive separation requirements for heat flow experiments on Mars.
2018-01-31
California’s NASA Armstrong Flight Research Center photographer Ken Ulbrich takes photos of Super Blue Blood Moon eclipse making a time-lapse composition of the event on January 31. The total lunar eclipse provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2017-01-31
NASA Armstrong Flight Research Center photographer Lauren Hughes takes photos of the Super Blue Blood Moon eclipse from California's Trona Pinnacles Desert National Conservation for the Jan. 31 of the total lunar eclipse that provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2010-09-29
The moon Mimas casts a shadow and creates a single blemish on the kingly crescent of Saturn. Mimas is not shown in this view, but its shadow can be seen on the planet just north of the rings and their shadow.
2000-01-20
Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:35 p.m. EST, moves into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
Hubble Captures Rare Triple-Moon Conjunction
2015-02-06
Three moons and their shadows parade across Jupiter near the end of the event at 07:10 UT on January 24, 2015. Europa has entered the frame at lower left. Slower-moving Callisto is above and to the right of Europa. Fastest-moving Io is approaching the eastern limb of the planet. Europa's shadow is toward the left side of the image and Callisto's shadow to the right. (The moons' orbital velocities are proportionally slower with increasing distance from the planet.) Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) More info: Firing off a string of snapshots like a sports photographer at a NASCAR race, NASA's Hubble Space Telescope captured a rare look at three of Jupiter's largest moons zipping across the banded face of the gas-giant planet: Europa, Callisto, and Io. Jupiter's four largest moons can commonly be seen transiting the face of the giant planet and casting shadows onto its cloud tops. However, seeing three moons transiting the face of Jupiter at the same time is rare, occurring only once or twice a decade. Missing from the sequence, taken on January 24, 2015, is the moon Ganymede that was too far from Jupiter in angular separation to be part of the conjunction. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2010-09-28
Shadows seem ubiquitous in this view from NASA Cassini spacecraft of Saturn rings. The moon Pan casts a long shadow towards the right from where it orbits in the Encke Gap of the A ring in the upper right of the image.
2000-01-20
Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:18 p.m. EST, begins moving into the Earth's shadow, at the start of a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
2000-01-20
Viewed from Merritt Island, Fla., at 11:25 p.m. EST, the full moon, traveling west to east, is nearly completely in the Earth's shadow, producing a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
2000-01-20
Viewed from Merritt Island, Fla., at 10:59 p.m. EST, the full moon, traveling west to east, is three-quarters of the way into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three images, Phobos was in sunlight, moving toward the upper right. After a 100-second delay while Spirit's computer processed the first three images, the rover then took the fourth image, showing Phobos just starting to enter the darkness of the martian shadow. At that point, an observer sitting on Phobos and looking back toward the Sun would have seen a spectacular sunset! In the fifth image, Phobos appeared like a crescent, almost completely shrouded in darkness. In the last three images, Phobos had slipped entirely into the shadow of Mars. However, as with our own Moon during lunar eclipses on Earth, it was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. Rover scientists took some images later in the sequence to try to figure out if this 'Mars-shine' made Phobos colorful while in eclipse, but they'll need more time to complete the analysis because the signal levels are so low. Meanwhile, they will use the information on the timing of the eclipse to refine the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface. In the near future it might be possible for one of the rovers to take images of a 'Deimal' eclipse to learn more about Mars' other enigmatic satellite, Deimos, as well.Milagro Contributions to XXVI International Cosmic Ray Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, C.M.; Haines, T.J.; Sinnis, G.
1999-08-01
Milagrito, a prototype for the Milagro detector, operated for 15 months in 1997--8 and collected 8.9 x 10{sup 9} events. It was the first extensive air shower (EAS) array sensitive to showers initiated by primaries with energy below 1 TeV. The shadows of the sun and moon observed with cosmic rays can be used to study systematic pointing shifts and measure the angular resolution of EAS arrays. Below a few TeV, the paths of cosmic rays coming toward the earth are bent by the helio- and geo-magnetic fields. This is expected to distort and displace the shadows of the sunmore » and the moon. The moon shadow, offset from the nominal (unreflected) position, has been observed with high statistical significance in Milagrito. This can be used to establish energy calibrations, as well as to search for the anti-matter content of the VHE cosmic ray flux. The shadow of the sun has also been observed with high significance.« less
2017-01-31
NASA Armstrong Flight Research Center photographer Lauren Hughes takes photos of the Super Blue Blood Moon eclipse from California’s Trona Pinnacles Desert National Conservation for the Jan. 31 of the total lunar eclipse that provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2017-10-19
Jupiter's moon Amalthea casts a shadow on the gas giant planet in this image captured by NASA's Juno spacecraft. The elongated shape of the shadow is a result of both the location of the moon with relation to Jupiter in this image as well as the irregular shape of the moon itself. The image was taken on Sept. 1, 2017 at 2:46 p.m. PDT (5:46 p.m. EDT), as Juno performed its eighth close flyby of Jupiter. At the time the image was taken, the spacecraft was 2,397 miles (3,858 kilometers) from the tops of the clouds of the planet at a latitude of 17.6 degrees. Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager. The image has been rotated so that the top of the image is actually the equatorial regions while the bottom of the image is of the northern polar regions of the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21969
2009-11-23
Long shadows stretch away from the towering edge waves created by the gravity of the moon Daphnis in this image taken by NASA Cassini spacecraft a little more than a week before Saturn August 2009 equinox.
2007-01-17
Canyons and mountain peaks snake along the terminator on the crater-covered, icy moon Dione. With the Sun at a low angle on their local horizon, the line of mountain ridges above center casts shadows toward the east
Super Blood Moon Lunar Eclipse
2017-12-08
A preview animation of the Super Moon Lunar Eclipse On the evening of September 27, 2015 in the Americas (early morning on September 28 in Europe and most of Africa), the Moon enters the Earth’s shadow, creating a total lunar eclipse, the last of four visible in the Western Hemisphere in a span of 18 months. This animation shows the changing appearance of the Moon as it travels into and out of the Earth’s shadow. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Lunar Flashlight: Illuminating the Moon's South Pole
NASA Technical Reports Server (NTRS)
Hayne, P. O.; Cohen, B. A.; Greenhagen, B. T.; Paige, D. A.; Camacho, J. M.; Sellar, R. G.; Reiter, J.
2016-01-01
Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system.
Analysis of Simulated Temporal Illumination at the Lunar PSRs
NASA Astrophysics Data System (ADS)
Thompson, T. J.; Mahanti, P.
2018-04-01
Illumination on the Moon is modeled temporally for permanently shadowed regions to lighting trends. Crater topography is used to generate viewfactor maps, which show which areas contribute most to scattered light into the primary shadows.
2017-12-08
NASA image release September 7, 2011 The Earth's moon has been an endless source of fascination for humanity for thousands of years. When at last Apollo 11 landed on the moon's surface in 1969, the crew found a desolate, lifeless orb, but one which still fascinates scientist and non-scientist alike. This image of the moon's north polar region was taken by the Lunar Reconnaissance Orbiter Camera, or LROC. One of the primary scientific objectives of LROC is to identify regions of permanent shadow and near-permanent illumination. Since the start of the mission, LROC has acquired thousands of Wide Angle Camera images approaching the north pole. From these images, scientists produced this mosaic, which is composed of 983 images taken over a one month period during northern summer. This mosaic shows the pole when it is best illuminated, regions that are in shadow are candidates for permanent shadow. Image Credit: NASA/GSFC/Arizona State University NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2010-04-06
Bright spokes and the shadow of a moon grace Saturn B ring in this NASA Cassini spacecraft image. Spokes are radial markings scientists continue to study, and they can be seen here stretching from the far left to upper right of the image.
2010-01-13
Dione shadow is elongated as it is cast onto the round shape of Saturn in this image taken by NASA Cassini spacecraft. The moon is not visible here. This view looks toward the northern, sunlit side of the rings from just above the ringplane.
The Moon in Children's Literature
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Troland, Thomas H.
2005-01-01
The Moon's cycle of phases is one of the most familiar natural phenomena, yet also one of the most misunderstood. This probably comes as no surprise, but research has found that a significant segment of the population, including both elementary students and teachers, mistakenly believes that the Moon's phases are caused by the shadow of the Earth.…
2009-07-28
The shadow of the moon Mimas strikes the F ring at a different angle than the angle at which it is cast on the A ring, illustrating differences in the vertical heights of the rings in this image taken as Saturn approaches its August 2009 equinox.
NASA Astrophysics Data System (ADS)
Caton, Daniel B.
2014-01-01
The concept of the cause of the phases of the Moon is one that is well known to be a problem for astronomy students, with a large fraction thinking incorrectly that the phases are caused by the shadow of the Earth. I have typically repeated this question from the first exam in the two-semester Introductory Astronomy course, through the final exam of the second semester, for a total of 8 appearances. It occurred to me that the inclusion of the shadow distractor in these multiple choice questions may actually reinforce the misconception by repeatedly distracting the student to the familiar but wrong answer. I am running an experiment to see if this is happening. I am giving different forms of the question to half the class for exams 2 and 3 of the first semester, exams 1-3 of the second, with half the class not getting the shadow distractor. I then am offering the shadow distractor to the whole class for the two semesters’ final exams. The early results of this experiment will be discussed.
2017-08-21
On Monday, Aug. 21 NASA provided coast-to-coast coverage of the solar eclipse across America- featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during live broadcast seen on NASA Television and the agency’s website. Footage of the moon's shadow moving across the planet is captured from NASA's Gulfstream III aircraft as it flew in the skies off the coast of Oregon during the Aug. 21 solar eclipse
2010-02-05
Two of Saturn moons straddle the planet rings in this color view from NASA Cassini spacecraft. Mimas is closest to NASA Cassini spacecraft here. Epimetheus is on the far side of the rings. Saturn shadow cuts across the middle of the rings.
The Global Albedo of the Moon at 1064 nm from LOLA
NASA Technical Reports Server (NTRS)
Lucey, P. G.; Neumann, G. A.; Riner, M. A.; Mazarico, E.; Smith, D. E.; Zuber, M. T.; Paige, D. A.; Bussey, D. B.; Cahill, J. T.; McGovern, A.;
2014-01-01
The Lunar Orbiter Laser Altimeter (LOLA) measures the backscattered energy of the returning altimetric laser pulse at its wavelength of 1064 nm, and these data are used to map the reflectivity of the Moon at zero-phase angle with a photometrically uniform data set. Global maps have been produced at 4 pixels per degree (about 8 kilometers at the equator) and 2 kilometers resolution within 20 deg latitude of each pole. The zero-phase geometry is insensitive to lunar topography, so these data enable characterization of subtle variations in lunar albedo, even at high latitudes where such measurements are not possible with the Sun as the illumination source. The geometric albedo of the Moon at 1064 nm was estimated from these data with absolute calibration derived from the Kaguya Multiband Imager and extrapolated to visual wavelengths. The LOLA estimates are within 2 sigma of historical measurements of geometric albedo. No consistent latitude-dependent variations in reflectance are observed, suggesting that solar wind does not dominate space weathering processes that modify lunar reflectance. The average normal albedo of the Moon is found to be much higher than that of Mercury consistent with prior measurements, but the normal albedo of the lunar maria is similar to that of Mercury suggesting a similar abundance of space weathering products. Regions within permanent shadow in the polar regions are found to be more reflective than polar surfaces that are sometimes illuminated. Limiting analysis to data with slopes less than 10 deg eliminates variations in reflectance due to mass wasting and shows a similar increased reflectivity within permanent polar shadow. Steep slopes within permanent shadow are also more reflective than similar slopes that experience at least some illumination. Water frost and a reduction in effectiveness of space weathering are offered as possible explanations for the increased reflectivity of permanent shadow; porosity is largely ruled out as the sole explanation. The south polar crater Shackleton is found to be among the most reflective craters in its size range globally but is not the most reflective, so mass wasting cannot be ruled out as a cause for the crater's anomalous reflectance. Models of the abundance of ice needed to account for the reflectance anomaly range from 3 to 14% by weight or area depending on assumptions regarding the effects of porosity on reflectance and whether ice is present as patches or is well mixed in the regolith. If differences in nanophase iron abundances are responsible for the anomaly, the permanently shadowed regions have between 50 and 80% the abundance of nanophase iron in mature lunar soil.
A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^
NASA Astrophysics Data System (ADS)
Wellner, Karen Linette
1995-01-01
This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study: (1) The teaching of spatially dependent content to students without prerequisite spatial structures results in understanding no further beyond that which can be memorized; (2) assessment for projective spatial structures should precede science lessons dealing with time-space relationships, and (3) a student's level of spatial ability may directly impact upon interpretation of three-dimensional models.
2017-12-08
New Moon. By the modern definition, New Moon occurs when the Moon and Sun are at the same geocentric ecliptic longitude. The part of the Moon facing us is completely in shadow then. Pictured here is the traditional New Moon, the earliest visible waxing crescent, which signals the start of a new month in many lunar and lunisolar calendars. NASA's Lunar Reconnaissance Orbiter (LRO) has been in orbit around the Moon since the summer of 2009. Its laser altimeter (LOLA) and camera (LROC) are recording the rugged, airless lunar terrain in exceptional detail, making it possible to visualize the Moon with unprecedented fidelity. This is especially evident in the long shadows cast near the terminator, or day-night line. The pummeled, craggy landscape thrown into high relief at the terminator would be impossible to recreate in the computer without global terrain maps like those from LRO. To download, learn more about this visualization, or to see what the Moon will look like at any hour in 2015, visit svs.gsfc.nasa.gov/goto?4236 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
ScienceCast 163: A Colorful Lunar Eclipse
2014-09-17
Mark your calendar: On Oct. 8th, the Moon will pass through the shadow of Earth for a total lunar eclipse. Sky watchers in the USA will see the Moon turn a beautiful shade of celestial red and maybe turquoise, too.
2017-08-21
A partial eclipse on Florida's Space Coast, the rare astronomical event was photographed from the top of the Vehicle Assembly Building, as the Moon passed between Earth and the midafternoon Sun. The Moon's shadow moved across the landscape from Oregon to South Carolina. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
LCROSS: Lunar CRater Observation and Sensing Satellite Project
NASA Technical Reports Server (NTRS)
Marmie, John
2010-01-01
This slide presentation reviews the success of the Lunar Crater Observation and Sensing Satellite (LCROSS) project. The LCROSS mission science goals was to: (1) Confirm the presence or absence of water ice in a permanently shadowed region on the Moon (2) Identify the form/state of hydrogen observed by at the lunar poles (3) Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations (4) Characterize the lunar regolith within a permanently shadowed crater on the Moon. The mission confirmed the presence of water ice on the moon by impacting a part of the spent Centaur upper stage into the Cabeus crater.. The presentation includes pictures of the development of the spacecraft, testing, launch, impact site, impact and a section of what the author called "Lunacy" which showed joking cartoons.
2018-05-14
Two kinds of dramatic shadows play across the face of Saturn in this view from NASA's Cassini spacecraft from Dec. 6, 2007. The planet's rings cast dark bands across the cloud tops in the northern hemisphere. Near the pole, an elongated shadow can be seen from Saturn's moon Tethys, which appears as a bright sphere left of center. Other icy moons make an appearance as well, including Dione (front right) and Enceladus (back right). A bright storm can be seen in Saturn's southern hemisphere at lower right. This natural color view is a mosaic of images taken using red, green and blue spectral filters. The images were acquired with the Cassini spacecraft wide-angle camera at a distance of approximately 1 million miles (about 1.7 million kilometers) from Saturn. The Cassini spacecraft ended its mission on Sept. 15, 2017 https://photojournal.jpl.nasa.gov/catalog/PIA18320
Fifty Year Canon of Lunar Eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1989-01-01
A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of lunar eclipses. This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of Solar Eclipses: 1986-2035.
ERIC Educational Resources Information Center
Hughes, Stephen; Wimmer, Jason; Towsey, Michael; Fahmi, Marco; Winslett, Greg; Dubler, Gabriel; Le Prou, Angela; Loose, David
2014-01-01
In a total solar eclipse, the Moon completely covers the Sun, casting a shadow several hundred km wide across the face of the Earth. This paper describes observations of the 14 November 2012 total eclipse of the Sun visible from north Queensland, Australia. The edge of the umbra was captured on video during totality, and this video is provided for…
NASA Astrophysics Data System (ADS)
Fargion, Daniele; Oliva, Pietro; de Sanctis Lucentini, Pier Giorgio; Khlopov, Maxim Yu.
The Sun albedo of Cosmic Rays (CRs) at GeVs energy has been discovered recently by the FERMI satellite. They are traces of atmospheric CRs hitting solar atmosphere and reflecting skimming gamma photons. Even if relevant for astrophysics, as being a trace of atmospheric solar CR noises they cannot offer any signal of neutrino astronomy. On the contrary, the Moon with no atmosphere, may become soon a novel filtering calorimeter and an amplifier of energetic muon astronomical neutrinos (at TeV up to hundred TeVs energy); these lepton tracks leave an imprint in their beta decay while in flight to Earth. Their TeV electron air-shower are among the main signals. Also, a more energetic, but more rare, PeV up to EeV tau lunar neutrino events may be escaping as a tau lepton from the Moon: τ PeV secondaries, then, may be shining on Earth’s atmosphere in lunar shadows in a surprising way. One or a few gamma air-shower events inside the Moon shadows may occur each year in near future Cherenkov telescope array (CTA) or large high altitude air shower observatory (LHAASO) TeV gamma array detector, assuming a nonnegligible astrophysical TeV up to hundred TeV neutrino component (with respect to our terrestrial ruling atmospheric ones); these signals will open a new wonderful passe-partout keyhole for neutrino, been seen along the Moon. The lunar solid angle is small and the muon or tau expected rate is rare, but with the future largest tau radio array as the giant radio array for neutrino detection (GRAND), one might well discover such neutrino imprint.
ERIC Educational Resources Information Center
Barrier, Regina M.
2010-01-01
Do you think that the Moon does not rotate? Do you think that the phases of the Moon are created by the Earth's shadow? Do you think that the seasons are a result of the Earth's distance from the Sun? If you answered "yes" to any of these, then you are one of many who possess misconceptions about astronomy.
NASA Technical Reports Server (NTRS)
2007-01-01
The New Horizons Long Range Reconnaissance Imager (LORRI) took this photo of Jupiter at 20:42:01 UTC on January 9, 2007, when the spacecraft was 80 million kilometers (49.6 million miles) from the giant planet. The volcanic moon Io is to the left of the planet; the shadow of the icy moon Ganymede moves across Jupiter's northern hemisphere. Ganymede's average orbit distance from Jupiter is about 1 million kilometers (620,000 miles); Io's is 422,000 kilometers (262,000 miles). Both Io and Ganymede are larger than Earth's moon; Ganymede is larger than the planet Mercury.Edge-on View of Saturn's Rings
NASA Technical Reports Server (NTRS)
1996-01-01
TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.
In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/2002-12-04
International Space Station (ISS) crew members were able to document a rare occurrence. The dark area near the center of the frame is actually a shadow cast by the moon during the total solar eclipse of December 4, 2002. The shadow obscures an area of cloud cover. The Station, with three Expedition Six crew members aboard, was over the Indian Ocean at the time of the eclipse.
2003-11-09
In this lunar eclipse viewed from Merritt Island, Fla., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through - when it does, it is called a lunar eclipse.
NASA Astrophysics Data System (ADS)
Mercatali, A.
2018-01-01
On 1st March 2012 an observative session of Moon's Plato crater was made. The purpose of these observations was to check the presence of one shadow with "hook" form at the inner of Plato crater already reported by H. Percy Wilkins, 3th April 21:30 UT, 1952. The results obtained by us have not shown any shadow with an hook form, but a shadow like a shark fin.
The 2017 solar eclipse and Majorana & Allais gravity anomalies
NASA Astrophysics Data System (ADS)
Munera, Hector A.
2017-01-01
Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce torsional effects on scattered dark matter. Scattered gravity may be detected with mechanical gravimeters and torsinds located inside and outside the optical shadow path in USA, Canada and Mexico.
Young Children Do Not Hold the Classic Earth's Shadow Misconception to Explain Lunar Phases
ERIC Educational Resources Information Center
Wilhelm, Jennifer Anne
2014-01-01
This research explored young children's early thoughts about natural phenomena and investigated sources of influence toward their knowledge construction. Two Piagetian interviews were conducted with four children. Each child was questioned about two phenomena in particular: (a) the moon and its changing appearance (moon phases) and (b) the…
Total Solar Eclipse of 2008 August 01
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2007-01-01
On 2008 August 01, a total eclipse of the Sun is visible from within a narrow corridor that traverses half the Earth. The path of the Moon's umbral shadow begins in northern Canada and extends across Greenland, the Arctic, central Russia, Mongolia, and China. A partial eclipse is seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, most of Europe and Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 308 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
NASA Technical Reports Server (NTRS)
Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.
2007-01-01
Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration
MOC Views of Martian Solar Eclipses
NASA Technical Reports Server (NTRS)
1999-01-01
[figure removed for brevity, see original site]
The shadow of the martian moon, Phobos, has been captured in many recent wide angle camera views of the red planet obtained by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). Designed to monitor changes in weather and surface conditions, the wide angle cameras are also proving to be a good way to spot the frequent solar eclipses caused by the passage of Phobos between Mars and the Sun.The first figure (above), shows wide angle red (left), blue (middle), and color composite (right) views of the shadow of Phobos (elliptical feature at center of each frame) as it was cast upon western Xanthe Terra on August 26, 1999, at about 2 p.m.local time on Mars. The image covers an area about 250 kilometers (155 miles) across and is illuminated from the left. The meandering Nanedi Valles is visible in the lower right corner of the scene. Note the dark spots on three crater floors--these appear dark in the red camera image (left) but are barely distinguished in the blue image (middle), while the shadow is dark in both images. The spots on the crater floors are probably small fields of dark sand dunes.The second figure shows three samples of MOC's global image swaths, each in this case with a shadow of Phobos visible (arrow). The first scene (left) was taken on September 1, 1999, and shows the shadow of Phobos cast upon southern Elysium Planitia. The large crater with dark markings on its floor at the lower right corner is Herschel Basin. The second scene shows the shadow of Phobos cast upon northern Lunae Planum on September 8, 1999. Kasei Valles dominates the upper right and the deep chasms of Valles Marineris dominate the lower third of the September 8 image. The picture on the right shows the shadow of Phobos near the giant volcano, Olympus Mons (upper left), on September 25, 1999. Three other major volcanoes are visible from lower-center (Arsia Mons) and right-center (Pavonis Mons) to upper-middle-right (Ascraeus Mons).Phobos and the smaller, more distant satellite, Deimos, were discovered in 1877 by Asaph Hall, an astronomer at the United States Naval Observatory in Washington, D.C. Hall had been hunting for martian satellites for some time, and was about to abandon the search when he was encouraged by his wife to continue. In honor of her role, the largest crater on Phobos was named Stickney, her maiden name. Phobos is a tiny, potato-shaped world that is only about 13 km by 11 km by 9 km (8 mi by 7 mi by 6 mi) in size.In 1912 Edgar Rice Burroughs published a story entitled 'Under the Moons of Mars' (printed in book form in 1917 as A Princess of Mars) in which he referred to the 'hurtling moons of Barsoom' (Barsoom being the 'native' word for Mars in the fictional account). Burroughs was inspired by the fact that Phobos, having an orbital period of slightly less than 8 hours, would appear from Mars to rise in the west and set in the east only five and a half hours later. (Despite Burroughs' phrase, the outer moon, Deimos, can hardly be said to 'hurtle' -- it takes nearly 60 hours to cross the sky from east to west, rising on one day and not setting again for over two more.)If you could stand on Mars and watch Phobos passing overhead, you would notice that this moon appears to be only about half the size of what Earth's Moon looks like when viewed from the ground. In addition, the Sun would seem to have shrunk to about 2/3 (or nearly 1/2) of its size as seen from Earth. Martian eclipses are therefore dark but not as spectacular as total solar eclipses on Earth can be. In compensation, the martian eclipses are thousands of times more common, occurring a few times a day somewhere on Mars whenever Phobos passes over the planet's sunlit side. Due to the changing geometry of the MGS orbit relative to that of Phobos, the shadow is actually seen in MOC global map images (like in the second figure above) about a dozen times a month.The shadow of Phobos was seen during the Viking missions in the late 1970s, and in fact one day the shadow was observed to pass right over the Viking 1 lander. The surface of Phobos itself was first imaged by Mariner 9 in 1971, and global coverage was obtained by the Viking orbiters in 1976-80. Phobos was the target of the ill-fated Phobos 1 and Phobos 2 spacecraft, launched by the Soviet Union in 1988. Phobos 2 actually reached Mars in 1989 and obtained a few pictures of the satellite--it also captured the shadow of Phobos cast upon the martian surface using its thermal infrared imager, Termoskan. More recently, the MGS MOC observed the tiny moon four times in August and September 1998.2017-12-08
New Moon. By the modern definition, New Moon occurs when the Moon and Sun are at the same geocentric ecliptic longitude. The part of the Moon facing us is completely in shadow then. Pictured here is the traditional New Moon, the earliest visible waxing crescent, which signals the start of a new month in many lunar and lunisolar calendars. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2000-01-20
In this lunar eclipse viewed from Merritt Island, Fla., at 11:55 p.m., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse
2000-01-20
In this lunar eclipse viewed from Merritt Island, Fla., at midnight, the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse
How Cold are the Floors of Lunar Polar Shadowed Craters?
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
2010-01-01
Almost five decades ago Watson, et al, [1] speculated that molecules of volatile species might accumulate within the cryogenic environments of permanently shadowed polar craters. The subject was largely a scientific curiosity until recently. In the mid-1980's, people began to seriously discuss the feasibility of long-term or permanent human settlement of the Moon. Given that the Moon was known be missing the compounds need to support life and that importing volatiles from Earth is prohibitively expensive, lunar colonists were pictured as processing the putative polar volatiles. A bistatic radar experiment performed with the Clementine spacecraft was interpreted to suggest the presence of large quantities of ice at some polar locations. [2] The neutron spectrometer aboard the Lunar Prospector spacecraft reported high concentrations of hydrogen in the polar regolith, [3] and some interpretations of the data set pointed to very high concentrations in permanently shadowed craters. The reformulation of civilian space policy in 2004, known as the Vision for Space Exploration, emphasized lunar exploration with eye toward development of economic returns from cislunar space and long-tern human presence on the Moon. The theme of finding lunar resources was an impetus for the inclusion of the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter. Preliminary results from Diviner report an unexpectedly low temperature down to 35K in the depths of some craters. [4
Self-position estimation using terrain shadows for precise planetary landing
NASA Astrophysics Data System (ADS)
Kuga, Tomoki; Kojima, Hirohisa
2018-07-01
In recent years, the investigation of moons and planets has attracted increasing attention in several countries. Furthermore, recently developed landing systems are now expected to reach more scientifically interesting areas close to hazardous terrain, requiring precise landing capabilities within a 100 m range of the target point. To achieve this, terrain-relative navigation (capable of estimating the position of a lander relative to the target point on the ground surface is actively being studied as an effective method for achieving highly accurate landings. This paper proposes a self-position estimation method using shadows on the terrain based on edge extraction from image processing algorithms. The effectiveness of the proposed method is validated through numerical simulations using images generated from a digital elevation model of simulated terrains.
Lunar volcanism produced a transient atmosphere around the ancient Moon
NASA Astrophysics Data System (ADS)
Needham, Debra H.; Kring, David A.
2017-11-01
Studies of the lunar atmosphere have shown it to be a stable, low-density surface boundary exosphere for the last 3 billion years. However, substantial volcanic activity on the Moon prior to 3 Ga may have released sufficient volatiles to form a transient, more prominent atmosphere. Here, we calculate the volume of mare basalt emplaced as a function of time, then estimate the corresponding production of volatiles released during the mare basalt-forming eruptions. Results indicate that during peak mare emplacement and volatile release ∼3.5 Ga, the maximum atmospheric pressure at the lunar surface could have reached ∼1 kPa, or ∼1.5 times higher than Mars' current atmospheric surface pressure. This lunar atmosphere may have taken ∼70 million years to fully dissipate. Most of the volatiles released by mare basalts would have been lost to space, but some may have been sequestered in permanently shadowed regions on the lunar surface. If only 0.1% of the mare water vented during these eruptions remains in the polar regions of the Moon, volcanically-derived volatiles could account for all hydrogen deposits - suspected to be water - currently observed in the Moon's permanently shadowed regions. Future missions to such locations may encounter evidence of not only asteroidal, cometary, and solar wind-derived volatiles, but also volatiles vented from the interior of the Moon.
Protolife on the Moon--A Neglected Mission
NASA Astrophysics Data System (ADS)
Green, J.
Fumaroles contain the ingredients for protolife on the earth and on the moon. Early Precambrian lunar fumaroles in shadow probably produced H_2O, HCHO, CO_2, CO, C_2N_2, HC_3N, NH3, COS, CH_4, HCN, S-bearing fluids and other compounds. Fumarolic water could have been more abundant in the early Precambrian on the moon based in part on fugacity data for the Apollo fire fountain beads. Formaldehyde formed "in the spark" on the moon in shadow would not be decomposed. Volcanism by flow charging and/or freezing by charge separation of some fumarolic fluids can readily provide the "spark". Only nanocurrents need be invoked. In shadow on the moon, most fumarolic fluids could be preserved as ices for up to billions of years at 40 Kelvin. Realistically, these ices would be discontinuously interlaminated or admixed with ejecta. Early formed amphiphilic compounds (lipids) probably formed double membraned vesicles. Miller-type reactions could possibly provide hydroxy amino acids, sugars, purines and pyrimidines. Cooling of ammonium cyanide compounds with formaldehyde in lunar shadow is presumed to have created hydrogen cyanide and adenine. Fischer-Tropsch reactions in fumaroles could result in aromatic and basic amino acids and on clay produce ribose. Ribose and adenine react to form adenosine which in turn could combine with soluble polyphosphates found in fumaroles to yield adenosine triphosphate. RNA evolving through intermediate compounds can polymerize even in an ice matrix (Monnard, 2002) as would be expected in lunar shadow. In the laboratory, RNA attached to montmorillonite template particles can be encapsulated within enlarged lipid vesicles or protocells (Hanczyc et al, 2003). Clay associated with RNA enhances the enzymatic activity of RNA (Marco, 1999). On earth, the evolution of the Archaea was dependent on tungsto-enzymes; fumaroles on earth are enriched in tungsten. Fumaroles within a distance of meters, exhibit a wide range of temperatures, pH, Eh, periods of desiccation, condensing agents, clay types, and hydrolytic reactivity. In addition, thermodynamically viable reactions involving hydrogen sulfide and troilite can produce biofilms. If methyl thiols are involved, resulting products include the prebiotic agents of formic and acetic acids. All of these parameters would be enhanced by lunar conditions of (1) lower lunar gravity and (2) surface vacuum. Lower lunar gravity would result in a deeper nucleation of bubbles in a fumarolic system with a slower bubble rise rate enhancing probabilities of reactivities of metabolites. Surface vacuum would result in lower boiling points of prebiotic agents such as formic acid producing temperatures more favorable for the formation of protolife. Assuming volcanism, targets for the search for protolife are discussed.
Total Solar Eclipse of 2006 March 29
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2004-01-01
On 2006 March 29, a total eclipse of the Sun will be visible from within a narrow corridor which traverses half the Earth. The path of the Moon's umbral shadow begins in Brazil and extends across the Atlantic, northern Africa, and central Asia where it ends at sunset in western Mongolia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the northern two thirds of Africa, Europe, and central Asia.Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Total Solar Eclipse of 1997 March 9
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1995-01-01
A total eclipse of the Sun will be visible from Asia and the Pacific Ocean on 1997 March 9. The path of the Moon's umbral shadow begins in eastern Kazakhstan and travels through Mongolia and eastern Siberia, where it swings northward to end at sunset in the Arctic Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern Asia, the northern Pacific, and the northwest corner of North America. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 280 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 2001 June 21
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1999-01-01
On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 2002 December 04
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2001-01-01
On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
2014-07-28
This image from NASA Cassini spacecraft, one of those acquired in the survey conducted by the Cassini imaging science team of the geyser basin at the south pole of Enceladus, was taken as Cassini was looking across the moon south pole.
Key Differences in Operating a Rover on the Moon vs. Mars
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
The command and control model for spacecraft operations, as well as the distribution of tasks between ground assets and in space assets, whether with a crew or solely robotic, is fundamentally constrained by the round trip light time between the space asset and the control facility (presumably on Earth, though not required). For an asset on Mars, the round trip light time varies, from roughly fourteen minutes to up to forty minutes. For a Lunar asset the round-trip light time is measured in only a few seconds, but current communications systems may more than double the latency with system overhead. For a Lunar Asset the total command latency may range from six seconds to more than forty, depending on communications overhead and data rates. Further, these variables are not always predictable, thus complicating operations. There are several differentiating factors for Lunar vs. Mars operations, Round trip light time/Atmosphere/Lighting and ShadowsTerrain type and knowledge/Round trip light time has implications for the distribution of tasks between ground and in space assets. Even at Lunar Distances, the combination of round trip light time plus communications systems overhead does not enable joy stick driving of a rover. The best that can be done, if driving from Earth, is near real time command and control. By 2030, driving from in space may be possible. Productivity on Mars requires either long operational sequences of commands, as is done for current rovers such as Curiosity, significant autonomous capability or, as may be possible by 2030, command and control support from space. Another implication of the long round trip light time from Earth to Mars, is that flight software functions must be resident on the in space asset. On the Moon, there is considerably more flexibility, enabling processing functions, to be resident on Earth or in space. This provides the opportunity to take advantage of the considerable processing power available on the ground, but may be constrained by data rates. On the Moon, for practical operational purposes, there is no atmosphere. Hence there is no scattering of light in the shadows. This has implications for image interpretation and driving near the poles. The Moon has permanently shadowed regions (PSR), unique terrain with unknown surface properties. With no scattering of light in shadows, driving on the Moon, particularly at the poles, where we have strong evidence of water, may prove to be hazardous and complex, requiring non-optical sensors, such as LIDAR.
Eclipse-Free-Time Assessment Tool for IRIS
NASA Technical Reports Server (NTRS)
Eagle, David
2012-01-01
IRIS_EFT is a scientific simulation that can be used to perform an Eclipse-Free- Time (EFT) assessment of IRIS (Infrared Imaging Surveyor) mission orbits. EFT is defined to be those time intervals longer than one day during which the IRIS spacecraft is not in the Earth s shadow. Program IRIS_EFT implements a special perturbation of orbital motion to numerically integrate Cowell's form of the system of differential equations. Shadow conditions are predicted by embedding this integrator within Brent s method for finding the root of a nonlinear equation. The IRIS_EFT software models the effects of the following types of orbit perturbations on the long-term evolution and shadow characteristics of IRIS mission orbits. (1) Non-spherical Earth gravity, (2) Atmospheric drag, (3) Point-mass gravity of the Sun, and (4) Point-mass gravity of the Moon. The objective of this effort was to create an in-house computer program that would perform eclipse-free-time analysis. of candidate IRIS spacecraft mission orbits in an accurate and timely fashion. The software is a suite of Fortran subroutines and data files organized as a "computational" engine that is used to accurately predict the long-term orbit evolution of IRIS mission orbits while searching for Earth shadow conditions.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41594 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:35:17 GMT. One of the space station’s solar array panels appears at the top of the frame.
Solar Position Model for use in DIORAMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werley, Kenneth Alan
2016-03-01
The DIORAMA code requires the solar position relative to earth in order to compute GPS satellite orientation. The present document describes two functions that compute the unit vector from either the center of the Earth to the Sun or from any observer’s position to the Sun at some specified time. Another function determines if a satellite lies within the Earth’s shadow umbra. Similarly, functions determine the position of the moon and whether a satellite lies within the Moon’s shadow umbra.
Payload Design for the Lunar Flashlight Mission
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.; Camacho, J. M.; Crabtree, K.; Paine, C.; Sellar, G.
2017-01-01
Recent reflectance data from LRO (Lunar Reconnaissance Orbiter) instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG). These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system.
2006-03-29
ISS012-E-21343 (29 Mar. 2006) --- The shadow of the moon falls on Earth as seen from the International Space Station, 230 miles above the planet, during a total solar eclipse at about 4:50 a.m. CST Wednesday, March 29. This digital photo was taken by the Expedition 12 crew, Commander William McArthur and Flight Engineer Valery Tokarev, who are wrapping up a six-month mission on the complex. Visible near the shadow are portions of Cyprus in the Mediterranean Sea and the coast of Turkey.
2009-12-28
Saturn shadow interrupts the planet rings, leaving just thin slivers of the rings visible in this image, which shows a pair of the planet small moons. Helene is in the center top of the image, Epimetheus is in the lower right.
2009-12-22
Tiny Daphnis appears as a bright dot in the Keeler Gap next to shadows cast by the moon and the edge waves it has created in the A ring in this image taken by NASA Cassini spacecraft before Saturn August 2009 equinox.
Total Solar Eclipse of 1999 August 11
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1997-01-01
On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
1971-08-01
S71-58222 (31 July-2 Aug. 1971) --- During the lunar eclipse that occurred during the Apollo 15 lunar landing mission, astronaut Alfred M. Worden, command module pilot, used a 35mm Nikon camera to obtain a series of 15 photographs while the moon was entering and exiting Earth's umbra. Although it might seem that there should be no light on the moon when it is in Earth's shadow, sunlight is scattered into this region by Earth's atmosphere. This task was an attempt to measure by photographic photometry the amount of scattered light reaching the moon. The four views from upper left to lower right were selected to show the moon as it entered Earth's umbra. The first is a four-second exposure which was taken at the moment when the moon had just entered umbra; the second is a 15-second exposure taken two minutes after entry; the third, a 30-second exposure three minutes after entry; and the fourth is a 60-second exposure four minutes after entry. In all cases the light reaching the moon was so bright on the very high speed film (Eastman Kodak type 2485 emulsion) that the halation obscures the lunar image, which should be about one-third as big as the circle of light. The background star field is clearly evident, and this is very important for these studies. The spacecraft was in full sunlight when these photographs were taken, and it was pointed almost directly away from the sun so that the windows and a close-in portion of the camera's line-of-sight were in shadow. The environment around the vehicle at this time appears to be very "clean" with no light scattering particles noticeable.
The shadow of Saturn's icy satellites in the E ring
NASA Astrophysics Data System (ADS)
Schmidt, J.; Sremcevic, M.
2008-09-01
We analyze shadows that Saturnian satellites cast in the E ring, a faint, broad dust ring composed of icy grains. The brightness contrast of a moon's shadow relative to the surrounding ring allows to infer local properties of the size distribution of ring particles. We derive the shadow contrast from a large number of Cassini images of Enceladus taken in various filters in a range of phase angles 144 to 164 degrees. For Tethys and Dione we identify a clear shadow in images with phase angles larger than 160 degrees. From the data we obtain the number density of E ring grains at the orbits of Tethys and Dione relative to the one near Enceladus. The latter we constrain from the variation of the shadow contrast with color and phase angle. From the Enceladus data we construct the phase curve of the E ring dust between 144 and 164 degrees. We compare to data obtained from Earth-bound observations by de Pater et al 2004 and in situ measurements by the Cosmic Dust Analyzer onboard Cassini.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
NASA Technical Reports Server (NTRS)
Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.
2008-01-01
NASA has announced the selection of several Lunar Science Sortie Concept Studies for potential scientific payloads with future Lunar Missions. The Beagle 2 scientific package was one of those chosen for study. Near the beginning of the next decade will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface with the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package developed to seek the signatures of life on Mars is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration.
Eclipse Shadow from NASA's G-III Research Aircraft
2017-08-21
From aboard NASA's Armstrong Flight Research Center G-III aircraft, this wide angle video of the moon's umbra was captured as they flew over the coast of Oregon, near Lincoln City at 35,00 feet during the eclipse.
Atmospheric Science Data Center
2013-04-16
... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...
NASA Astrophysics Data System (ADS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T. A.; Litvak, M. L.; Sanin, A. B.; Starr, R. D.
2016-12-01
In this paper we review evidence that indicates that high concentrations of hydrogen-bearing volatiles are biased towards the base of poleward-facing slopes (PFS) in the Moon's large southern permanently shadowed regions (PSR). Results are derived from a correlated study of Lunar Reconnaissance Orbiter instrument maps of: epithermal neutron leakage flux observed by the Lunar Exploration Neutron Detector (LEND), topography derived from the Lunar Observing Laser Altimeter (LOLA) and surface thermal maps derived from the Diviner radiometer. Maximum concentrations of hydrogen-volatiles, likely as water ice, are observed in the Cabeus crater's PSR, 0.62 wght% water-equivalent-hydrogen. Detailed studies show that the occurrence of hydrogen-volatiles at the base of the (PFS) are correlated with the locations of low PSR temperatures of Cabeus, Haworth, Shoemaker and Faustini. LEND observations show no consistent correlation to smaller impact craters and the lowest temperatures within the PSR's. It is not presently known if the high volatile concentrations are due to downslope migration or thermal stability in the PFS breaks in slope. 15-km Full-width at Half-Maximum (FWHM) is shown to be an upper-bounds condition for the LEND collimated sensor's spatial resolution, derived from a cross-sectional profile, through the permanently shadowed region at Cabeus'. LEND's high-resolution spatial response is further illustrated in a 220-km long profile cut through the co-aligned permanently shadowed regions and partially-illuminated ridges of Haworth, Shoemaker, Faustini and Amundsen craters.
Lunar true polar wander inferred from polar hydrogen.
Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J
2016-03-24
The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon and the bombardment history of the early Solar System.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Speaking at the event was astronaut John-David Bartoe. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters Project
NASA Technical Reports Server (NTRS)
Mueller, Robert P.
2014-01-01
Results from the recent LCROSS mission in 2010, indicate that H2O ice and other useful volatiles such as CO, He, and N are present in the permanently shadowed craters at the poles of the moon. However, the extreme topography and steep slopes of the crater walls make access a significant challenge. In addition temperatures have been measured at 40K (-233 C) so quick access and exit is desirable before the mining robot cold soaks. The Global Exploration Roadmap lists extreme access as a necessary technology for Lunar Exploration.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41622 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, at the time located over the Western Pacific, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:36:45 GMT. One of the space station’s solar array panels appears at the top of the frame.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41595 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, at the time located over the Western Pacific, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:35:36 GMT. One of the space station’s solar array panels appears at the top of the frame.
Behavior Prediction Tools Strengthen Nanoelectronics
NASA Technical Reports Server (NTRS)
2013-01-01
Several years ago, NASA started making plans to send robots to explore the deep, dark craters on the Moon. As part of these plans, NASA needed modeling tools to help engineer unique electronics to withstand extremely cold temperatures. According to Jonathan Pellish, a flight systems test engineer at Goddard Space Flight Center, "An instrument sitting in a shadowed crater on one of the Moon s poles would hover around 43 K", that is, 43 kelvin, equivalent to -382 F. Such frigid temperatures are one of the main factors that make the extreme space environments encountered on the Moon and elsewhere so extreme. Radiation is another main concern. "Radiation is always present in the space environment," says Pellish. "Small to moderate solar energetic particle events happen regularly and extreme events happen less than a handful of times throughout the 7 active years of the 11-year solar cycle." Radiation can corrupt data, propagate to other systems, require component power cycling, and cause a host of other harmful effects. In order to explore places like the Moon, Jupiter, Saturn, Venus, and Mars, NASA must use electronic communication devices like transmitters and receivers and data collection devices like infrared cameras that can resist the effects of extreme temperature and radiation; otherwise, the electronics would not be reliable for the duration of the mission.
The influence of surface roughness on volatile transport on the Moon
NASA Astrophysics Data System (ADS)
Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.
2018-01-01
The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.
International Observe the Moon Night
2017-12-08
Cathie Peddie - Deputy Project Manager LRO (center) shows a young visitor shadows demo. Credit: NASA/GSFC/Debbie Mccallum On September 18, 2010 the world joined the NASA Goddard Space Flight Center's Visitor Center in Greenbelt, Md., as well as other NASA Centers to celebrate the first annual International Observe the Moon Night (InOMN). To read more go to: www.nasa.gov/centers/goddard/news/features/2010/moon-nigh... NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Goswami, J. N.
2012-07-01
The beginning of this century ushered a new era in lunar exploration. It started with the Smart-1 mission, launched in 2003, that was followed in quick succession by Kaguya, Change-1, Chandrayaan-1, LRO, LCROSS, Change-2 and the most recent GRAIL mission, launched in late 2011. Results obtained by these missions have strengthened some of the existing postulates of lunar evolution, such as the global magma hypothesis, questioned many of our earlier views on moon and generated renewed interest in laboratory studies of lunar samples. Moon can no longer be considered as a bone-dry object. Signatures of hydroxyl and water molecules were found at high latitude lunar regions by Chandrayaan-1 mission and LCROSS mission detected water in the plume generated by a planned impact on a permanently shadowed lunar polar site. Laboratory studies confirmed presence of hydroxyl as a structural component in minerals present in lunar rocks. The permanently shadowed regions turned out to be some of the coldest place in the solar system and could potentially host surface/sub-surface water ice and frozen volatiles. New results obtained by these missions suggest the presence of previously unidentified lunar rock types, young volcanic and tectonic activities, layering within the top kilometre of the lunar surface and the possibility that moon host a very tenuous exosphere. Interesting new features of solar wind interactions with the lunar surface and localized lunar magnetic field have also been delineated. The ongoing effort to reconstruct the new face of the moon will get a boost from results from the GRAIL mission on gravity anomalies and from other upcoming missions, LADEE, Chandrayaan-2, Luna Resource and Luna Glob. A general overview of our current ideas of lunar evolution will be presented along with a preview of upcoming efforts to better understand our closest neighbour in space.
Field Test of Route Planning Software for Lunar Polar Missions
NASA Astrophysics Data System (ADS)
Horchler, A. D.; Cunningham, C.; Jones, H. L.; Arnett, D.; Fang, E.; Amoroso, E.; Otten, N.; Kitchell, F.; Holst, I.; Rock, G.; Whittaker, W.
2017-10-01
A novel field test paradigm has been developed to demonstrate and validate route planning software in the stark low-angled light and sweeping shadows a rover would experience at the poles of the Moon. Software, ConOps, and test results are presented.
2007-12-24
This colorful view, taken from edge-on with the ringplane, contains four of Saturn's attendant moons. Tethys (1,071 kilometers, 665 miles across) is seen against the black sky to the left of the gas giant's limb. Brilliant Enceladus (505 kilometers, 314 miles across) sits against the planet near right. Irregular Hyperion (280 kilometers, 174 miles across) is at the bottom of the image, near left. Much smaller Epimetheus (116 kilometers, 72 miles across) is a speck below the rings directly between Tethys and Enceladus. Epimetheus casts an equally tiny shadow onto the blue northern hemisphere, just above the thin shadow of the F ring. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft wide-angle camera on July 24, 2007 at a distance of approximately 2 million kilometers (1.2 million miles) from Saturn. Image scale is 116 kilometers (72 miles) per pixel on Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA08394
Outreach Testing of Ancient Astronomy
NASA Astrophysics Data System (ADS)
Sanmartin, J. R. S.; Blanco, M. B. M.
2015-10-01
This work is an outreach approach to an ubiquitous recent problem in secondary-school education: how to face back the decreasing interest in natural sciences shown by students under 'pressure' of convenient resources in digital devices/applications. The approach rests on two features. First, empowering of teen-age students to understand regular natural events around, as very few educated people they meet could do. Secondly, an understanding that rests on personal capability to test and verify experimental results from the oldest science, astronomy, with simple instruments as used from antiquity down to the Renaissance (a capability restricted to just solar and lunar motions). Because lengths in astronomy and daily life are so disparate, astronomy basically involved observing and registering values of angles (along with times), measurements being of two types, of angles on the ground and of angles in space, from the ground. First, the gnomon, a simple vertical stick introduced in Babylonia and Egypt, and then in Greece, is used to understand solar motion. The gnomon shadow turns around during any given day, varying in length and thus angle between solar ray and vertical as it turns, going through a minimum (noon time, at a meridian direction) while sweeping some angular range from sunrise to sunset. Further, the shadow minimum length varies through the year, with times when shortest and sun closest to vertical, at summer solstice, and times when longest, at winter solstice six months later. The extreme directions at sunset and sunrise correspond to the solstices, swept angular range greatest at summer, over 180 degrees, and the opposite at winter, with less daytime hours; in between, spring and fall equinoxes occur, marked by collinear shadow directions at sunrise and sunset. The gnomon allows students to determine, in addition to latitude (about 40.4° North at Madrid, say), the inclination of earth equator to plane of its orbit around the sun (ecliptic), this fundamental quantity being given by half the difference between solar distances to vertical at winter and summer solstices, with value about 23.5°. Day and year periods greatly differing by about 2 ½ orders of magnitude, 1 day against 365 days, helps students to correctly visualize and interpret the experimental measurements. Since the gnomon serves to observe at night the moon shadow too, students can also determine the inclination of the lunar orbital plane, as about 5 degrees away from the ecliptic, thus explaining why eclipses are infrequent. Independently, earth taking longer between spring and fall equinoxes than from fall to spring (the solar anomaly), as again verified by the students, was explained in ancient Greek science, which posited orbits universally as circles or their combination, by introducing the eccentric circle, with earth placed some distance away from the orbital centre when considering the relative motion of the sun, which would be closer to the earth in winter. In a sense, this can be seen as hint and approximation of the elliptic orbit proposed by Kepler many centuries later. EPSC Abstracts Vol. 10, EPSC2015-40, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress Secondly, by observing lunar phases and eclipses from the ground, students could also determine, following Aristarchus of Samos in the 3rd century BC, 4 length ratios involving moon and sun distances to earth, and radii of all three, moon, sun, and earth. The angular width of the moon could be first determined with simplest optical devices as about half a degree; this yields the ratio between moon diameter 2RM and distance DM to earth. Next, eclipses of sun prove its angular width, and thus ratio 2RS/DS, similar to the lunar one, though the relatively high lunar orbital eccentricity, 0.055, does result in not quite a full eclipse if at lunar apogee. Further, at a half-moon phase, when the angle sun-moon-earth is a right one, the angle moonearth- sun observed at earth, though also extremely close to 90° and tough to measure, determines the distance ratio DM/DS. Finally, at a lunar eclipse, observation of the shadow-cone width at the moon behind the earth,over 2.6 times the moon diameter, yields the ratio RE/RM. An actual measurement of RE on earth, as crudely carried out by Eratosthenes, again in the 3rd century BC, could then yield all 4 values of moon and sun sizes and distances to earth.
NASA Technical Reports Server (NTRS)
1992-01-01
This view of the Moon's north pole is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter as the spacecraft flew by on December 7, 1992. The left part of the Moon is visible from Earth; this region includes the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left); Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region.
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Szalay, Jamey
2017-10-01
The lunar regolith has been formed, and remains continually reworked, by the intermitten impacts of comets, asteroids, meteoroids, and the continual bombardment by interplanetary dust particles (IDP). Thick atmospheres protect Venus, Earth, and Mars, ablating the incoming IDPs into “shooting stars” that rarely reach the surface. However, the surfaces of airless bodies near 1 AU are directly exposed to the high-speed (>> 1 km/s) IDP impacts. The Moon is expected to be bombarded by 5x103 kg/day of IDPs arriving with a characteristic speed of ~ 20 km/s. The IDP sources impacting the Moon at high latitudes remain largely uncharacterized due to the lack of optical and radar observations in the polar regions on Earth. These high latitude sources have very large impact speeds in the range of 30 < v < 50 km/ hence they are expected to have a significant effect on the lunar surface, including the removal and burial of volatile deposits in the lunar polar regions.Water is thought to be continually delivered to the Moon through geological timescales by water-bearing comets and asteroids, and produced continuously in situ by the impacts of solar wind protons of oxygen rich minerals exposed on the surface. IDPs are an unlikely source of water due to their long UV exposure in the inner solar system, but their high-speed impacts can mobilize secondary ejecta dust particles, atoms and molecules, some with high-enough speed to escape the Moon. Other surface processes that can lead to mobilization, transport and loss of water molecules and other volatiles include solar heating, photochemical processes, and solar wind sputtering. Since none of these are at work in permanently shadowed regions (PSR), dust impacts remain the dominant process to dictate the evolution of volatiles in PSRs. The competing effects of dust impacts are: a) ejecta production leading to loss out of a PSR; b) gardening and overturning the regolith; and c) the possible accumulation of impact ejecta, leading to the burial of the volatiles. This talk will summarize the expected effects of dust impacts on volatile accumulation in the lunar PSRs based on theoretical models, recent laboratory results, and observations by the LADEE spacecraft.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Guest speakers were, astronaut John-David Bartoe, left, and communicator Jeff Lucas. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
In Charon's Shadow: Analysis of the UV Solar Occultation from New Horizons
NASA Astrophysics Data System (ADS)
Kammer, Joshua A.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K. A.; Olkin, C. B.; Gladstone, G. R.; Summers, M. E.; Greathouse, T. K.; Retherford, K. D.; Versteeg, M. H.; Parker, J. W.; Steffl, A. J.; Schindhelm, E.; Strobel, D. F.; Linscott, I. R.; Hinson, D. P.; Tyler, G. L.; Woods, W. W.
2015-11-01
Observations of Charon, Pluto's largest moon, have so far yielded no evidence for a substantial atmosphere. However, during the flyby of New Horizons through the Pluto-Charon system, the Alice ultraviolet spectrograph successfully acquired the most sensitive measurements to date during an occultation of the sun as New Horizons passed through Charon's shadow. These observations include wavelength coverage in the extreme- and far-ultraviolet (EUV and FUV) from 52 nm to 187 nm. We will present these results from Alice, and discuss their implications for an atmosphere on Charon.This work was supported by NASA's New Horizons project.
GSFC_20180130_M12842_Supermoon
2018-01-30
Get ready for the Super Blue Blood Moon! Our closest celestial neighbor is always a wondrous sight, but on the morning of Jan. 31, 2018, three special lunar events are all happening at the same time, providing an excellent excuse to go out and enjoy the nighttime sky. 1 - The full Moon is near the closest point of its orbit so it appears a little larger than usual, what many call a Supermoon. 2 - It’s the second full Moon of the month, what many call a Blue Moon, though the Moon is not literally blue. 3 - There’s a total lunar eclipse, what many call a Blood Moon, visible before sunrise for the western half of the U.S. and other countries near the Pacific. During a total lunar eclipse, the Moon crosses through the shadow of the Earth and LITERALLY appears red as it reflects all of Earth’s sunrises and sunsets. Join NASA scientists Michelle Thaller and Noah Petro live from the Goddard Space Flight Center as we discuss where, when, and how to view this lunar extravaganza and the latest Moon science brought to us by NASA’s Lunar Reconnaissance Orbiter.
2016-08-08
The shadow of Saturn on the rings, which stretched across all of the rings earlier in Cassini's mission (see PIA08362), now barely makes it past the Cassini division. The changing length of the shadow marks the passing of the seasons on Saturn. As the planet nears its northern-hemisphere solstice in May 2017, the shadow will get even shorter. At solstice, the shadow's edge will be about 28,000 miles (45,000 kilometers) from the planet's surface, barely making it past the middle of the B ring. The moon Mimas is a few pixels wide, near the lower left in this image. This view looks toward the sunlit side of the rings from about 35 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on May 21, 2016. The view was obtained at a distance of approximately 2.0 million miles (3.2 million kilometers) from Saturn. Image scale is 120 miles (190 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20494
2017-12-08
Current moon as viewed on Wednesday, June 15, 2011, 19:00 UT (Phase 100%) This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2017-12-08
Full Moon. Rises at sunset, high in the sky around midnight. Visible all night. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
Inconsistent Regolith Thermal Control of Hydrogen Distributions at the Moons South Pole
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I.; Boynton, W. V.; Chin, G.; Litvak, M.; Livengood, Tim; Sanin, A.; Starr, R. D.; Su, Jian; Hamara, D.;
2017-01-01
Introduction: For over fifty years, intense interest has focused on determining if, where, and how much hydrogen (H) may be found near the Moons poles [1]. Driving the ongoing interest has been the critical role that H volatiles must play as a resource for human missions [2]. Now, with several lines of evidence consistently indicating that H concentrations are enhanced in some permanently shadowed regions (PSRs), plus the possibility of diurnally-dependent volatile H concentrations [3-8], investigations are shifting towards understanding the sources of H and factors that govern concentrations. For the last seven-plus years, the Lunar Reconnaissance Orbiter (LRO) has collected an unparalleled temporal and spatial record of geophysical factors that may govern the Moons H distribution [9]. XXXX
MISR Watches Motion of the Moon's Shadow During Total Solar Eclipse
2017-09-19
On Aug. 21, 2017, a total solar eclipse swept across the United States -- the first such eclipse in the contiguous 48 states since 1979, and the first cross-country eclipse since 1918. A partial eclipse was visible in all 50 states, and initial estimates suggest that upwards of 20 million people observed the Moon completely obscuring the Sun in the 70-mile-wide (113-kilometer-wide) path of totality. While viewing a total solar eclipse from the ground is an amazing experience, satellites orbiting Earth see the eclipse from a unique perspective. As the Moon's shadow passed through the United States, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite was capturing images of eastern Wyoming and western Nebraska from its altitude of 438 miles (705 kilometers) above the surface. MISR gathers images on a strip about 249 miles (400 kilometers) wide directly below the path of the satellite. Incredibly, given that the shadow of the Moon took only 90 minutes to cross the entire United States, and Terra itself moves at a brisk 16,700 miles per hour from north to south, MISR happened to be in exactly the right place at the right time to capture totality. From the ground, the moment of totality appears suddenly, sweeping over the sky in just a few seconds. "I was unprepared for just how dark it actually was," says Mika Tosca, a researcher who works with MISR data and who observed the eclipse in Nebraska. "The streetlights even turned on. Everything fell silent, and I swear the temperature dropped." From the vantage point of space, however, it’s possible to see the entire shadow of the Moon, with the completely dark, circular umbra and the more diffuse penumbra. MISR contains nine cameras oriented at different angles, viewing forward, downward, and backward along the flight path, resulting in an approximate seven-minute interval for all nine cameras to image a single location on Earth's surface. This animation combines these nine images into a movie showing the motion of the Moon's shadow during this seven-minute period. In the first image, captured by the camera pointing farthest ahead of the satellite, totality has not quite begun in the area seen by MISR. From the second camera onward, totality sweeps across the image area from west to east, beginning just west of the town of Jay Em, Wyoming, and proceeding about halfway across the MISR swath to the town of Alliance, Nebraska. The motion of the lunar shadow in different pairs of images leads to estimates of the local ground speed ranging between 1,480 and 1,820 miles per hour (2,382 and 2,929 kilometers per hour). The spread in values is a measure of the uncertainty of the estimate. At this location, the predicted speed of the eclipse calculated from lunar orbital motion is about 1,658 miles per hour (2,668 kilometers per hour), which falls in the middle of the range estimated from the MISR images. Tosca's observation that the temperature dropped during the eclipse is a well-known phenomenon. The GLOBE Observer, a phone application dedicated to citizen science and sponsored by NASA, encouraged eclipse-goers to record the local air temperature at regular intervals. Data collected by nearby observers in the path of totality show that, on average, temperatures dropped by 9.3 degrees Fahrenheit (5.2 degrees Celsius) during the eclipse. This compares to an average of 5.4 degrees Fahrenheit drop measured at several Nebraska Mesonet weather stations within the path of totality. The decrease in the amount of sunlight reaching Earth affected more than temperatures. Areas that get a large portion of their power from solar energy were naturally concerned about shortages during the eclipse -- the state of California, though not in the path of totality, estimated that 6,000 megawatts of solar power would be lost during the eclipse. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21957
The equations of motion of an artificial satellite in nonsingular variables
NASA Technical Reports Server (NTRS)
Giacaglia, G. E. O.
1975-01-01
The equations of motion of an artificial satellite are given in nonsingular variables. Any term in the geopotential is considered as well as luni-solar perturbations up to an arbitrary power of r/r prime; r prime being the geocentric distance of the disturbing body. Resonances with tesseral harmonics and with the moon or sun are also considered. By neglecting the shadow effect, the disturbing function for solar radiation is also developed in nonsingular variables for the long periodic perturbations. Formulas are developed for implementation of the theory in actual computations.
SELMA: a mission to study lunar environment and surface interaction
NASA Astrophysics Data System (ADS)
Barabash, Stas; Futaana, Yoshifumi
2017-04-01
SELMA (Surface, Environment, and Lunar Magnetic Anomalies) proposed for the ESA M5 mission opportunity is a mission to study how the Moon environment and surface interact. SELMA addresses four overarching science questions: (1) What is the origin of water on the Moon? (2) How do the "volatile cycles" on the Moon work? (3) How do the lunar mini-magnetospheres work? (4) What is the influence of dust on the lunar environment and surface? SELMA uses a unique combination of remote sensing via UV, IR, and energetic neutral atoms and local measurements of plasma, fields, waves, exospheric gasses, and dust. It will also conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shakleton crater. SELMA carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. The SELMA science objectives include: - Establish the role of the solar wind and exosphere in the formation of the water bearing materials; - Determine the water content in the regolith of the permanently shadowed region and its isotope composition; - Establish variability, sources and sinks of the lunar exosphere and its relations to impact events; - Investigate a mini-magnetosphere interaction with the solar wind; - Investigate the long-term effects of mini-magnetospheres on the local surface; - Investigate how the impact events affect the lunar dust environments; - Investigate how the plasma effects result in lofting the lunar dust; SELMA is a flexible and short (15 months) mission including the following elements SELMA orbiter, SELMA Impact Probe for Magnetic Anomalies (SIP-MA), passive Impactor, and Relaying CubeSat (RCS). SELMA is placed on quasi-frozen polar orbit 30 km x 200 km with the pericenter over the South Pole. Approximately 9 months after the launch SELMA releases SIP-MA to sound the Reiner-Gamma magnetic anomaly with very high time resolution <0.5 s to investigate small-scale structure of the respective mini-magnetosphere. At the end of the mission the passive impactor impacts the permanently shadowed region of the Shakleton crater >10 sec before SELMA and SELMA orbiter flies through the resulted plume to perform high resolution mass spectroscopy of the released volatiles. The data are downlinked to ground and RCS. RCS stays on orbit for 2 more hours to downlink the complete data set. SELMA orbiter payload include: Remote sensing instruments - Infrared and visible spectrometer with spectral range 400 - 3600 nm; - Wide angle and transient phenomena camera to detect meteoroid impact (>100 g) - Moon UV imaging spectrometer with spectral range 115 - 315 nm - ENA telescope with an angular resolution < 10 ̊ In-situ instruments - Lunar ion spectrometer M/ΔM > 80 - Lunar scattered proton and negative ion experiment: - Lunar electron spectrometer - Moon magnetometer - Plasma wave instrument - Lunar dust detector: M>10-15 kg - Lunar exospheric mass spectrometer: M/ΔM > 1000 SIP-MA payload includes: - Waves and electric field instrument - Impact probe ions and electrons spectrometer - Impact probe magnetometer - Context camera Passive 10 kg copper spherical impactor
RESOLVE: An International Mission to Search for Volatiles at the Lunar Poles
NASA Technical Reports Server (NTRS)
Larson, William E.; Quinn, Jacqueline W.; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.; Picard, Martin
2013-01-01
Numerous studies have shown that the use of space resources to manufacture propellant and consumables can significantly reduce the launch mass of space exploration beyond earth orbit. Even the Moon, which has no atmosphere, is ricb in resources that can theoretically be harvested. A series of lunar missions over the last 20 years has shown an unexpected resource on the Moon. There is evidence that water ice and other volatiles useful for the production of propellants are located at the lunar poles, though most of it is located within permanently shadowed craters where accessing these resources is challenging.
2017-12-08
First quarter. Visible high in the southern sky in early evening. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2017-12-08
Waxing gibbous. Visible to the southeast in early evening, up for most of the night. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2017-12-08
Waning crescent. Low to the east before sunrise. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2011-06-15
Waning gibbous. Rises after sunset, high in the sky after midnight, visible to the southwest after sunrise. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2017-12-08
Third quarter. Rises around midnight, visible to the south after sunrise. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
2017-12-08
Waxing crescent. Visible toward the southwest in early evening. This marks the first time that accurate shadows at this level of detail are possible in such a computer simulation. The shadows are based on the global elevation map being developed from measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). LOLA has already taken more than 10 times as many elevation measurements as all previous missions combined. The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 12 seconds, as it is in this animation, our changing view of the Moon makes it look like it's wobbling. This wobble is called libration. The word comes from the Latin for "balance scale" (as does the name of the zodiac constellation Libra) and refers to the way such a scale tips up and down on alternating sides. The sub-Earth point gives the amount of libration in longitude and latitude. The sub-Earth point is also the apparent center of the Moon's disk and the location on the Moon where the Earth is directly overhead. The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point. The roll angle is given by the position angle of the axis, which is the angle of the Moon's north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%. The most noticed monthly variation in the Moon's appearance is the cycle of phases, caused by the changing angle of the Sun as the Moon orbits the Earth. The cycle begins with the waxing (growing) crescent Moon visible in the west just after sunset. By first quarter, the Moon is high in the sky at sunset and sets around midnight. The full Moon rises at sunset and is high in the sky at midnight. The third quarter Moon is often surprisingly conspicuous in the daylit western sky long after sunrise. Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute "north" for "south" in the descriptions. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram
Recent status of the Tibet AS[gamma] experiment. [M1; NGC 1952; Cyg X-1; Her X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Cao, Z.; Ding, L.K.
1993-06-15
The recent status of Tibet air shower experiment, the shadowing measurement of the Moon and the sun and the results of the searching for the steady emission of 10 TeV gamma rays from Crab Nebula, Cyg X-3 and Her X-1 are reported.
The Permanently Shadowed Regions of Dwarf Planet Ceres
NASA Technical Reports Server (NTRS)
Schorghofer, Norbert; Mazarico, Erwan; Platz, Thomas; Preusker, Frank; Schroeder, Stefan E.; Raymond, Carol A.; Russell, Christopher T.
2016-01-01
Ceres has only a small spin axis tilt (4 deg), and craters near its rotational poles can experience permanent shadow and trap volatiles, as is the case on Mercury and on Earth's Moon. Topography derived from stereo imaging by the Dawn spacecraft is used to calculate direct solar irradiance that defines the extent of the permanently shadowed regions (PSRs). In the northern polar region, PSRs cover approximately 1800 sq km or 0.13% of the hemisphere, and most of the PSRs are cold enough to trap water ice over geological time periods. Based on modeling of the water exosphere, water molecules seasonally reside around the winter pole and ultimately an estimated 0.14% of molecules get trapped. Even for the lowest estimates of the amount of available water, this predicts accumulation rates in excess of loss rates, and hence, there should be fresh ice deposits in the cold traps.
Depth and Horizontal Distribution of Volatiles in Lunar Permanently Shadowed Regions
NASA Astrophysics Data System (ADS)
Hurley, D. M.; Bussey, B.; Lawrence, D. J.; Gladstone, R.; Elphic, R. C.; Vondrak, R. R.
2011-12-01
Neutron spectroscopy from Lunar Prospector returned data consistent with the presence of water ice in the near-subsurface of the Moon in permanently shadowed regions (PSRs) at low spatial resolution. Clementine and ground-based radar returned tantalizing, but inconclusive evidence of ice in lunar PSRs. Later, Mini-RF on Chandrayaan-1 and LRO detected a signature consistent with water ice in some polar craters on the Moon, but not all PSRs. Similarly, LEND on LRO detected a heterogeneous distribution of hydrogen among lunar PSRs. In addition, LAMP on LRO detected FUV spectra consistent with a heterogeneous distribution of frost on the surface of permanently shadowed regions. Yet the weakest spectral feature from LAMP was associated with the crater with the strongest hydrogen feature from LEND. The impact of LCROSS into Cabeus released water and other volatiles, but abundances were higher than the background amounts detected by neutron spectroscopy implying heterogeneity within that PSR. Data from any one instrument taken alone would lead one to a different conclusion about the distribution of volatiles than data taken from any other single instrument. Although the data from different instrumentation can seem to be disparate, the apparent discrepancy results from the different fields of view and sensitivities of the detection techniques. The complementary nature of these data can be exploited to provide a multi-dimensional view of volatiles in lunar PSRs. We apply a Monte Carlo model to describe the retention and redistribution of volatiles within lunar cold traps. The model runs constrain the coherence of volatile deposits with depth, area, and time, which allows us to examine how a given volatile distribution would appear to remote sensing experiments. This provides a big picture framework for integrating the observations of volatiles on the surface and at depth at the poles of the Moon with the goal of finding a distribution of volatiles in lunar PSRs consistent with all of the data.
PHOTO ILLUSTRATION OF COMET P/SHOEMAKER-LEVY 9 and PLANET JUPITER
NASA Technical Reports Server (NTRS)
2002-01-01
This is a composite photo, assembled from separate images of Jupiter and comet P/Shoemaker-Levy 9, as imaged by the Wide Field and Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million km) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jupiter's magnificent cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. Credit: H.A. Weaver, T.E. Smith (Space Telescope Science Institute) and J.T. Trauger, R.W. Evans (Jet Propulsion Laboratory), and NASA
1994-07-07
This is a composite photo, assembled from separate images of Jupiter and Comet P/Shoemaker-Levy 9 as imaged by the Wide Field & Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million KM) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jpiter's magnifient cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. CREDIT: H.A. Weaver, T.E. Smith (Space Telescope Science Institute (STSI)) and J.T. Tranuger, R.W. Evans (Jet Propulsion Laboratory (JPL)) and NASA. (HST ref: STSci-PR94-26a)
Celestial illusions and ancient astronomers: Aristarchus and Eratosthenes
NASA Astrophysics Data System (ADS)
Papathomas, Thomas V.
2005-03-01
When the moon is half, one would expect that a line starting from the moon"s center and being perpendicular to the "shadow diameter" would, if extended, go through the center of the light source, namely, the sun. It turns out that, when the sun is visible, this extended line appears to aim significantly above the sun, which is the essence of the "half-moon illusion". The explanation advanced here is that this is not an optical illusion; instead, it can be explained by the relative sizes and distances of the earth, moon, and sun, and it hinges on the fact that the sunrays are nearly parallel with respect to the earth-moon system. It turns out that the ancients knew and used this near-parallelism of the sunrays. Eratosthenes, for example, used a simple but ingenious scheme to obtain a good estimate of the earth"s circumference. An interesting question is: How did the ancients arrive at the conclusion that the sunrays are nearly parallel? This was probably a corollary, based on the immense size of the sun and its huge distance from the earth, as estimated by, among others, Aristarchus of Samos by a brilliantly simple method.
Get Ready for the Great American Eclipse!
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
This year marks 38 years since any part of the continental United States was darkened by the Moon's umbral shadow. During this "eclipse drought," no U.S. residents except those on Hawaii's Big Island in 1991 have had the opportunity to observe totality without traveling abroad. The 2017 Total Solar Eclipse (TSE2017, August 21, 2017) is…
In the Red Shadow of the Earth
ERIC Educational Resources Information Center
Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin
2015-01-01
A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…
The Effect of Planetary Albedo on Solar Orientation of Spacecraft
NASA Technical Reports Server (NTRS)
Fontana, Anthony
1967-01-01
The analytical expression for the solar orientation error caused by planetary albedo is derived. A typical solar sensor output characteristic is assumed and a computer solution to the analytical is obtained. The computer results are presented for a spacecraft in the vicinity of Earth, Venus, Mars, and the Moon. Each planetary body is assumed to be a spherical diffuse reflector with cylindrical shadows and a constant albedo. The data generated herein permit the selection of an appropriate coarse-sensor to fine-sensor switching angle for solar orientation control systems and facilitate the the interpretation of solar-referenced scientific experiment data.
Visualizing Sun-Earth-Moon Relationships through Hands-On Modeling
NASA Astrophysics Data System (ADS)
Morton, Abby
2013-04-01
"Tell me and I forget, teach me and I may remember, involve me and I learn." -Benjamin Franklin Understanding the spatial relationships between the sun, Earth and Moon is fundamental to any basic earth science education. Since both of the following concepts involve shadows on three-dimensional spheres, seeing them on paper is not often conducive to understanding. In the first activity, students use five Styrofoam balls painted to look like the sun and the four positions of the earth in each season. Students position the Earth-balls in their correct order around the sun and translate what they are seeing onto paper. In the second activity, students hold up a Styrofoam ball painted half white, half black. A picture of the sun is projected at the front of the classroom. They move the ball around their heads as if they were the Earth, keeping the lit side of the moon always facing the sun. They then draw the phases of the moon as they see them.
NASA Technical Reports Server (NTRS)
Edmunson, Jennifer
2010-01-01
This slide presentation reviews the lunar resources that we know are available for human use while exploration of the moon. Some of the lunar resources that are available for use are minerals, sunlight, solar wind, water and water ice, rocks and regolith. The locations for some of the lunar resouces and temperatures are reviewed. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission, and its findings are reviewed. There is also discussion about water retention in Permament Shadowed Regions of the Moon. There is also discussion about the Rock types on the lunar surface. There is also discussion of the lunar regolith, the type and the usages that we can have from it.
NASA Astrophysics Data System (ADS)
2004-05-01
A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in diameter, which corresponds to the size of a dime as viewed from about two and a half miles. Illustration of Crab, Titan's Shadow and Chandra Illustration of Crab, Titan's Shadow and Chandra Unlike almost all of Chandra's images which are made by focusing X-ray emission from cosmic sources, Titan's X-ray shadow image was produced in a manner similar to a medical X-ray. That is, an X-ray source (the Crab Nebula) is used to make a shadow image (Titan and its atmosphere) that is recorded on film (Chandra's ACIS detector). Titan's atmosphere, which is about 95% nitrogen and 5% methane, has a pressure near the surface that is one and a half times the Earth's sea level pressure. Voyager I spacecraft measured the structure of Titan's atmosphere at heights below about 300 miles (500 kilometers), and above 600 miles (1000 kilometers). Until the Chandra observations, however, no measurements existed at heights in the range between 300 and 600 miles. Understanding the extent of Titan's atmosphere is important for the planners of the Cassini-Huygens mission. The Cassini-Huygens spacecraft will reach Saturn in July of this year to begin a four-year tour of Saturn, its rings and its moons. The tour will include close flybys of Titan that will take Cassini as close as 600 miles, and the launching of the Huygens probe that will land on Titan's surface. Chandra's X-ray Shadow of Titan Chandra's X-ray Shadow of Titan "If Titan's atmosphere has really expanded, the trajectory may have to be changed." said Tsunemi. The paper on these results has been accepted and is expected to appear in a June 2004 issue of The Astrophysical Journal. Other members of the research team were Haroyoski Katayama (Osaka University), David Burrows and Gordon Garmine (Penn State University), and Albert Metzger (JPL). Chandra observed Titan from 9:04 to 18:46 UT on January 5, 2003, using its Advanced CCD Imaging Spectrometer instrument. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Lunar eclipse photometry: absolute luminance measurements and modeling.
Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael
2008-12-01
The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.
2002-11-01
Saturn appears serene and majestic in the first color composite made of images taken by NASA's Cassini spacecraft on its approach to the ringed planet, with arrival still 20 months away. The planet was 285 million kilometers (177 million miles) away from the spacecraft, nearly twice the distance between the Sun and Earth, when Cassini took images of it in various filters as an engineering test on Oct. 21, 2002. It is summer in Saturn's southern hemisphere. The Sun is a lofty 27 degrees below the equator and casts a semi-circular shadow of the planet on the rings. The shadow extends partway across the rings, leaving the outer A ring in sunlight. The last Saturn-bound spacecraft, Voyager 2, arrived in early northern spring. Many features seen in Voyager images -- spoke-like markings on the rings, clouds and eddies in the hazy atmosphere, ring-shepherding moons -- are not yet visible to Cassini. Titan, Saturn's largest moon, appears in the upper left. It is the only moon resolved from this distance. This composite uses a threefold enhancement in the brightness of Titan relative to the brightness of Saturn. Titan is a major attraction for scientists of the Cassini-Huygens mission. They will study its haze-enshrouded atmosphere and peer down, with special instrumentation, to its surface to look for evidence of organic processes similar to those that might have occurred on the early Earth, prior to the emergence of life. http://photojournal.jpl.nasa.gov/catalog/PIA02884
History of the Inner Solar System According to the Lunar Cold Traps
NASA Astrophysics Data System (ADS)
Crider, D. H.; Stubbs, T. J.; Vondrak, R. R.
2006-12-01
There are regions near the poles of the Moon that are permanently shaded from the Sun's light, are extremely cold (T < 100 K), and may harbor frozen volatiles over geologic timescales. Thus, the contents of the cold traps act as a record of the history of volatiles in the Solar System in the neighborhood of Earth. By taking core samples within the regions of permanent shadow, one can study the inventory of volatiles on the Moon for as long as that region has been shaded from sunlight, which is typically about 2-3 Gyr. There is no other record currently known to extend as far back in time for determining the volatile inventory in the vicinity of the Earth. There are two potential sources of water on the Moon: (1) episodic cometary impacts; and (2) steady production from chemical interactions between solar wind protons and oxygen in the lunar regolith. Water from these sources can migrate through the lunar exosphere to the cold traps. However, the two sources would produce very different stratigraphy in the cold traps, even after they are modified by space weathering processes. After a cometary impact, there would be a relatively pure water ice deposit in the cold traps. The varying contents and total number of ice layers will be indicative of the composition, size distribution, and impact frequency of comets on the Moon. Since the Moon has neither a significant atmosphere nor a global magnetic field, the solar wind flow is able to impinge directly on the lunar surface. Most of the incident hydrogen is lost from the Moon in steady state; however, the interaction can produce water vapor. The molecules can hop on ballistic trajectories around the Moon before being lost by photodissociation or photoionization. A small fraction of the water (4%) is able to reach the cold trap of the permanently shadowed regions before being lost from the Moon. This water can accumulate and get mixed in with the regolith over geologic timescales, holding information about the migration process and solar wind-surface interactions. Core samples from lunar cold traps would reveal the source of volatiles to the cold traps. They would also provide important details about the source(s) and their time-evolution over the entire history of the cold trap. Similar processes are believed to occur on Mercury, so this is a universal phenomenon worthy of further investigation.
2017-10-05
On Oct. 5, 2017, researchers aboard the flying observatoy SOFIA, the Stratospheric Observatory for Infrared Astronomy, studied the atmosphere of Neptune's moon Triton as it cast a faint shadow on eEarth's surface during a two-minute, eclipse like event called an occultation. The team successfully maneuvered the specially equipped Boeing 747SP aircraft, and made observations of the distant star's light as it passed through Triton's atmosphere.
The Sky This Week, 2016 February 2 - 9 - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Moon occurs on the 8th at 9:39 am Eastern Daylight Time. Look for Luna about four degrees northwest of same time! According to folklore, the lack of a shadow cast by an indigenous rodent in rural
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., technicians secure NASA's Lunar Reconnaissance Orbiter, or LRO, onto a stand. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., a crane moves NASA's Lunar Reconnaissance Orbiter, or LRO, toward a stand in the foreground. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact
NASA Astrophysics Data System (ADS)
Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.
2018-04-01
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.
The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Hayne, P. O.; Paige, D. A.
2017-12-01
The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.
Coverage and control of constellations of elliptical inclined frozen lunar orbits
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2005-01-01
A great deal of scientific interest exists regarding the permanently shadowed craters near the poles of the Moon where there may be frozen volatiles. These regions, particularly the Moon's South Pole, have been proposed for extensive robotic and human exploration. Unfortunately, they are typically not in view of Earth, and would require some form of communication relay to facilitate exploration via robotic and/or human missions. One solution for such a relay is a long-lived constellation of lunar telecommunication orbiters providing focused coverage at the pole of interest. Robust support requires this coverage to be continuous, redundant, and, in order to minimize costs, this constellation should consist of 3 satellites or fewer.
Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C.
1992-01-01
A model of spherical bowl-shaped craters is described and applied to the moon, Mercury, and Mars. The maximum temperature of permanently shadowed areas are calculated using estimates of the depth/diameter ratios of typical lunar bowl-shaped craters and assuming a saturated surface in which the craters are completely overlapping. For Mars, two cases are considered: water frost in radiative equilibrium and subliming CO2 frost in vapor equilibrium. Energy budgets and temperatures are used to determine whether a craterlike depression loses mass faster or slower than a flat horizontal surface. This reveals qualitatively whether the frost surface becomes rougher or smoother as it sublimes.
Comet Wild 2 - Stardust Approach Image
NASA Technical Reports Server (NTRS)
2004-01-01
This image was taken during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. It is a distant side view of the roughly spherical comet nucleus. One hemisphere is in sunlight and the other is in shadow analogous to a view of the quarter moon. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter.
In the Shadow of the Moon, What Type of Solar Eclipse Will We See?
ERIC Educational Resources Information Center
Brown, Todd; Brown, Katrina
2017-01-01
Solar eclipses occur several times a year, but most people will be lucky if they see one total solar eclipse in their lifetime. There are two upcoming total solar eclipses that can be seen from different parts of the United States (August 21, 2017 and April 8, 2024), and they provide teachers with an amazing opportunity to engage students with a…
2009-05-14
Dan Andrews, Project Manager LCROSS and Craig Tooley, Project Manager LRO (Lunar Reconnaissance Orbiter) in front of Spacecraft at the Astrotech facility titusville, FL during LRO/LCROSS media photo op event. The LCROSS mission's objective is to confirm the presence or absence of water ice in a permanently shadowed crater at the moon's South Pole. (Photo by Jonis Dino AMES PAO, premission for use granted by Dan Andrews, image owner)
How LEND sees the water on the Moon
NASA Astrophysics Data System (ADS)
Sanin, Anton; Mitrofanov, Igor; Litvak, Maxim; Boynton, William; Bodnarik, Julia; Hamara, Dave; Harshman, Karl; Chin, Gordon; Evans, Larry; Livengood, Timothy; McClanahan, Timothy; Sagdeev, Roald; Starr, Richard
2016-04-01
The Lunar Exploration Neutron Detector (LEND) is operating on orbit around the Moon on-board the Lunar Reconnaissance Orbiter (LRO) spacecraft more than six years. LEND has been designed and manufactured to investigate presence and determine average amount of hydrogen in upper (~1 m depth) subsurface layer of the Lunar regolith with spatial resolution ~10 km from 50 km orbit and to check the hypothesis what the permanently shadowed regions (PSRs) at circumpolar regions are the main reservoirs of a large deposition of water ice on the Moon. One of most interesting and surprising LEND observations that not all large PSRs contain a detectable amount of hydrogen but there are neutron suppression regions (NSRs) with statistically significant suppression of neutron flux. The NSRs partially overlap or include PSRs in craters Cabeus, Shoemaker, Haworth (on South) and Rozhdestvensky U (on North) but significant part of their area spread out at sunlit territory. This means that hydrogen may be preserved for a long time or even accumulated at a subsurface regolith layer of sunlit areas. The majority of PSRs do not show statistically significant suppressions of neutron flux in comparison with neighbor sunlit vicinity. This implies a hypothesis what a permanent shadow is not only necessary condition for the hydrogen accumulation and preservation in the lunar subsurface. A method of water equivalent hydrogen (WEH) in top ~1 meter regolith estimation using LEND data has been developed. Maps of WEH distribution in North and South polar regions will be presented and discussed. Also, WEH estimation in case of hydrogen bearing regolith layer coverage by a dry regolith will be presented for largest NSRs.
Moon - North Polar Mosaic, Color
NASA Technical Reports Server (NTRS)
1996-01-01
During its flight, the Galileo spacecraft returned images of the Moon. The Galileo spacecraft surveyed the Moon on December 7, 1992, on its way to explore the Jupiter system in 1995-1997. The left part of this north pole view is visible from Earth. This color picture is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter. The left part of this picture shows the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left), Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.
2017-10-16
Saturn's moon Dione is captured in this view from NASA's Cassini spacecraft, half in shadow and half in light. Sinuous canyons carve interconnected paths across the moon's icy landscape. Subtle variations in brightness hint at differences in composition, as well as the size and shape of grains in Dione's surface material, or regolith. Cassini spent more than a decade at Saturn studying Dione (698 miles or 1,123 kilometers across) and the planet's many other moons as part of the quest to understand how the moons formed and evolved, and how they are connected. This view looks toward the side of Dione that faces away from Saturn. North is up and rotated 59 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on June 22, 2017. The view was obtained at a distance of approximately 224,000 miles (360,000 kilometers) from Dione. Image scale is 1.4 mile (2.2 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21349
Planetary Drilling and Resources at the Moon and Mars
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
2012-01-01
Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG
Astronomy in the Age of Leonardo.
NASA Astrophysics Data System (ADS)
Welther, B. L.
1997-12-01
In the 1450s, when Leonardo da Vinci was born, horoscopes were still based primarily on the 13th-century tables developed in the court of Alfonso el Sabio of Spain. By the 15th century European astronomers were computing revised forms of the tables. In Italy, for example, Giovanni Bianchini of Ferrara completed his Tabulae astronomicae in the 1440s. It was finally published posthumously in Venice in 1495. By the 1480s Domenico Maria Novara, a professor of astronomy in Bologna, was publishing annual prognostications of eclipses, conjunctions, and other celestial phenomena. Against this background of traditional astronomy in Italy, two Florentines recorded observations of the sun and moon, comets, and meteorology. Paolo dal Pozzi Toscanelli flourished in the first half of the 15th century and Leonardo da Vinci in the last half. Their observations of celestial phenomena were not primarily for astronomical purposes; they were spinoffs of other pursuits such as medicine, astrology, optics, engineering, and studies of light and shadow. As a physician and cartographer, Toscanelli practiced astrology, studied omens, observed comets and plotted their paths on homemade maps. He also was associated with the construction of a gnomon at the top of the Duomo to observe the summer solstice. It was this project that may have brought him into contact with the young artisan, Leonardo da Vinci. As a painter, Leonardo's approach to science and engineering was to observe, sketch and analyze. His interest in light and shadow led him to notice how the earth, moon and planets all reflect sunlight. His extant manuscripts have geometric sketches for eclipses and for the phenomenon known as "old moon in new moon's arms." Unfortunately, because neither Toscanelli nor Leonardo published their observations, they made no impact on the history of astronomical thought or observation. Their contemporaries did not know or write about their work. Astronomers in the 16th century did not know about their manuscripts.
Analysis of a Lunar Base Electrostatic Radiation Shield Concept
NASA Technical Reports Server (NTRS)
Buhler, Charles R.
2004-01-01
Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.
Crowd-Sourced Radio Science at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.
2018-01-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.
On the possibilty of clathrate hydrates on the Moon
NASA Technical Reports Server (NTRS)
Duxbury, N.; Nealson, K.; Romanovsky, V.
2000-01-01
One of the most important inferences of the Lunar Prospector mission data was the existence of subsurface water ice in the permanently shadowed craters near both lunar poles [Feldman et al., 1998]. We propose and substantiate an alternative explanation that hydrogen can exist in the shallow lunar subsurface in the form of clathrate hydrates: CH4 . 6H(2)o and/or CO2 . 6H(2)o.
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the Lunar Reconnaissance Orbiter, or LRO, for installation of the solar array panels. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians move the solar array panel closer to the Lunar Reconnaissance Orbiter, or LRO, for installation. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., a technician checks the installation of a solar array panel on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO, at left. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare the solar array panel for installation on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., the Lunar Reconnaissance Orbiter, or LRO, with a solar array panel installed. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare to install the solar array panel to the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., technicians prepare for installation of the solar array panels on the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
Space Solar Power Technology for Lunar Polar Applications
NASA Technical Reports Server (NTRS)
Henley, Mark W.; Howell, Joe T.
2004-01-01
The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science
NASA Astrophysics Data System (ADS)
Pugacheva, S. G.; Feoktistova, E. A.; Shevchenko, V. V.
2018-05-01
In this paper, we analyze the illumination conditions, the thermal regime, and the possibility of deposits of volatile compounds existing in the vicinity region (NSR S5 region) near the southern pole of the Moon. It has been found that there are no permanently shadowed zones near the Scott crater and the NSR S5 region, though the temperature conditions allow the of compounds such as CH3OH, SO2, NH3, CO2, H2S, C2H4, and water to remain stable relative to evaporation for a long time (≥1 Gyr). It has been also shown that compounds like CO and CH4 cannot stably exist in these regions.
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians remove the bag that will be placed over the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians place the protective bag around the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians begin placing the protective bag around the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians complete placing the protective bag around the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Spectrophotometric properties of Moon's and Mars's surfaces exploration by shadow mechanism
NASA Astrophysics Data System (ADS)
Morozhenko, Alexandr; Vidmachenko, Anatolij; Kostogryz, Nadiia
2015-03-01
Typically, to analyze the data of the phase dependence of brightness atmosphereless celestial bodies one use some modification of the shadow mechanism involving the coherent mechanism. There are several modification of B.Hapke [2] model divided into two groups by the number of unknown parameters: the first one with 4 parameters [3,4] and the second one with up to 10 unknown parameters [1] providing a good agreement of observations and calculations in several wavelengths. However, they are complicated by analysing of the colorindex C(α) dependence and photometric contrast of details with phase K(α) and on the disk (μ o = cos i). We have got good agreement between observed and calculated values of C(α) = U(α)-I(α), K(α), K(muo) for Moon and Mars with a minimum number of unknown parameters [4]. We used an empirical dependence of single scattering albedo (ω) and particle semi-transparency(æ): æ = (1-ω)n. Assuming that [χ (0°)/χ(5°)] = χ (5°)/χ (0°)], where χ(α) is scattering function, using the phase dependence of brightness and opposition effect in a single wavelength, we have defined ω,χ(α),g (particle packing factor), and the first term expansion of χ(α) in a series of Legendre polynomials x1. Good agreement between calculated and observed data of C(α) = U(α)-I(α) for the light and dark parts of the lunar surface and the integral disk reached at n ~ 0,25, g = 0,4 (porosity 0,91), x1 = -0,93, ω = 0,137 at λ = 359nm and 0,394 at λ = 1064nm;, for Mars with n ~ 0,25,g = 0,6 (porosity 0,84), x1 ~ 0, ω = 0,210 at λ = 359nm and ω = 0,784 at λ = 730nm. 1. Bowell E., Hapke B., Domingue D., Lumme K., et al. Applications of photometric models to asteroids, in Asteroids II. Tucson: Univ. Arizona Press. p.524-556. (1989) 2. Hapke B. A theoretical function for the lunar surface, J.Geophys.Res. 68, No.15., 4571-4586(1963). 3. Irwine W. M., The shadowing effect in diffuse reflection, J.Geophys.Res. 71,No.12, 2931-2937(1966). 4. Morozhenko A. V., Yanovitskij E.G., An optical model of the Martian surface in the visible region of spectrum, Astronomy Reports 48, No.4, 795-809(1971).
1969-07-20
The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins,Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins, remained in a parking orbit around the Moon, while the LM, named “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. The LM was a two part spacecraft. Its lower or descent stage had the landing gear, engines, and fuel needed for the landing. When the LM blasted off the Moon, the descent stage served as the launching pad for its companion ascent stage, which was also home for the two astronauts on the surface of the Moon. The LM was full of gear with which to communicate, navigate, and rendezvous. It also had its own propulsion system, and an engine to lift it off the Moon and send it on a course toward the orbiting CM. In this photograph, the shadow of one of the Apollo 11 astronauts can be seen (lower left) as the other snaps a shot of the LM on its landing site.
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., technicians perform backlight inspection and cleaning on NASA's Lunar Reconnaissance Orbiter, or LRO. Black light inspection uses UVA fluorescence to detect possible particulate microcontamination, minute cracks or fluid leaks. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
2009-02-13
CAPE CANAVERAL, Fla. – NASA's Lunar Reconnaissance Orbiter, or LRO, spacecraft is moved into Astrotech in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, has been rotated to vertical on the Aronson stand. A crane will be attached to move it to another stand. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
2009-02-13
CAPE CANAVERAL, Fla. – NASA's Lunar Reconnaissance Orbiter, or LRO, spacecraft completes its journey to NASA's Kennedy Space Center in Florida. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., an overhead crane lowers NASA's Lunar Reconnaissance Orbiter, or LRO, onto the Aronson table. The orbiter will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, spacecraft is being prepared for lifting to an Aronson table. The LRO will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., technicians perform backlight inspection and cleaning on NASA's Lunar Reconnaissance Orbiter, or LRO. Black light inspection uses UVA fluorescence to detect possible particulate microcontamination, minute cracks or fluid leaks. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., technicians prepare an Aronson table to receive NASA's Lunar Reconnaissance Orbiter, or LRO, at left. The orbiter will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., technicians prepare an Aronson table to receive NASA's Lunar Reconnaissance Orbiter, or LRO, at left. The orbiter will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-02-13
CAPE CANAVERAL, Fla. – NASA's Lunar Reconnaissance Orbiter, or LRO, spacecraft is moved into Astrotech in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., an overhead crane lowers NASA's Lunar Reconnaissance Orbiter, or LRO, toward the Aronson table. The orbiter will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., technicians perform backlight inspection and cleaning on NASA's Lunar Reconnaissance Orbiter, or LRO. Black light inspection uses UVA fluorescence to detect possible particulate microcontamination, minute cracks or fluid leaks. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., technicians moved the stand with NASA's Lunar Reconnaissance Orbiter, or LRO. The orbiter will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-03-17
CAPE CANAVERAL, Fla. – At the Astrotech facility in Titusville, Fla., a crane is attached to NASA's Lunar Reconnaissance Orbiter, or LRO. The crane will move LRO to another stand. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Kim Shiflett
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., a technician attaches cables to NASA's Lunar Reconnaissance Orbiter, or LRO. The orbiter will be rotated on the table to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
2009-03-07
CAPE CANAVERAL, Fla. – At Astrotech in Titusville, Fla., technicians get ready to lift NASA's Lunar Reconnaissance Orbiter, or LRO. It will be moved to an Aronson table for rotation to provide proper access for processing. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar CRater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for May 20. Photo credit: NASA/Jack Pfaller
Lunar Surface Charging during Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.
2006-09-01
The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.
Lunar Water Resource Demonstration (LWRD)
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.
2009-01-01
Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith
Total solar eclipse of 3 November 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
A total eclipse of the Sun will be visible from the southern half of the Western Hemisphere on 3 November 1994. The path of the Moon's shadow passes through Peru, Chile, Bolivia, Paraguay, and Brazil. Detailed predictions for this event are presented and include tables of geographic coordinates of the path of totality, local circumstances for hundreds of cities, maps of the path of total and partial eclipse, weather prospects, and the lunar limb profile.
NASA Technical Reports Server (NTRS)
Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)
2002-01-01
Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.
NASA Astrophysics Data System (ADS)
Mariana Peicuti, Cristina
2017-04-01
I am working as primary teacher at Scoala Gimnaziala Dumbrava,Timis County, Romania & my pupils has 6 to 10 years old. I was&I am a main pillar in my community, always disseminating knowledge and experience to students, other teachers in the school area &Timis County.Astronomy is the must favorite subject of my students from my classes. They are very courious & always come to me with questions about Earth and Sky because Curriculum scientific disciplines provides too little information about Earth and Sky.I need to know more about how to teach space contents into my classes&what competencies can form in elementary school and also to share my experience to the others.As a result of participation at this meeting I want to attract as many students to astronomy,science/STEM disciplines&space technologies, to astronomy topics and exploration of outer space.Schools needs to be prepared for social life needs,new generations needs,on science/space technologies,which are one of the key points for developing the knowledge society.I intend to introduce new scientific activities as part of the existing curriculum.I am passionate about astronomy,I need to know new approaches and new ideas for primary because I think Science is very important in daily life. Here are some developed activities with pupils from K-2 grade levels wich I wish share with colleagues in Viena. Subject: MATHEMATICS. Primary Topic: MEASUREMENT : -+=<> ☼ Rockets by Size. Students cut out,color and sequence paper rockets/Read the information on the International Space Station and rockets/Gather pictures of different types of rockets/Print/cut out/color&laminate rocket drawings/Find objects in the room to put in order by height. ☼ Oil Spot Photometer - Measure the brightness of the sun using cooking oil and a white card. A smear of oil on a white card becomes a powerful tool for comparing the brightness of two light sources, including the sun. ☼ The Sundial & Making Shadows-device to measure time by the sun:make a gnomon pattern/Refer to the latitude table to determine the correct angle to mark- 45°/Place the sundial outdoors,with the gnomon pointing North/Record the outline of the gnomon's shadow and record the time next to it/Repeat this process each hour/See if the students notice a pattern in the movement of the shadow. ☼ Play Dough Planets-To demonstrate the size(volume)differences between Earth,Earth's Moon and Mars through a hands-on activity:Make a play dough ball about the size of a marble(Moon).How many "Moons" it would take to make a ball the size of the Mars or Earth?Students combine 8 of the Moon-size balls to make one "Mars"ball.The students have a Moon and a Mars and after that they combine 50 Moon-size balls,to make"Earth." By second to fourth grade age,students are increasingly able to think about abstractions and different perspectives.They can reflect on their thinking and can consider whether their reasoning follows well from the evidence that they have collected.knowledge.They will be learning that science is a continuing process of seeking answers. "We learn best when we learn from our own experiences."
Tidal-Rotational Dynamics of Solar System Worlds, from the Moon to Pluto
NASA Astrophysics Data System (ADS)
Keane, James Tuttle
The spins of planetary bodies are not stagnant; they evolve in response to both external and internal forces. One way a planet's spin can change is through true polar wander. True polar wander is the reorientation of a planetary body with respect to its angular momentum vector, and occurs when mass is redistributed within the body, changing its principal axes of inertia. True polar wander can literally reshape a world, and has important implications for a variety of processes--from the long-term stability of polar volatiles in the permanently shadowed regions of airless worlds like the Moon and Mercury, to the global tectonic patterns of icy worlds like Pluto. In this dissertation, we investigate three specific instances of planetary true polar wander, and their associated consequences. In Chapter 2 we investigate the classic problem of the Moon's dynamical figure. By considering the effects of a fossil figure supported by an elastic lithosphere, and the contribution of impact basins to the figure, we find that the lunar figure is consistent with the Moon's lithosphere freezing in when the Moon was much closer to the Earth, on a low eccentricity synchronous orbit. The South Pole-Aitken impact basin is the single largest perturbation to the Moon's figure and resulted in tens of degrees of true polar wander after its formation. In Chapter 3 we continue our analyses of the lunar figure in light of the discovery of a lunar "volatile" paleopole, preserved in the distribution of hydrogen near the Moon's poles. We find that the formation and evolution of the Procellarum KREEP Terrain significantly altered the Moon's orientation, implying that some fraction of the Moon's polar volatiles are ancient--predating the geologic activity within the Procellarum region. In Chapter 4 we investigate how the formation of the giant, basin-filling glacier, Sputnik Planitia reoriented Pluto. This reorientation is recorded in both the present- day location of Sputnik Planitia (near the Pluto-Charon tidal axis), and the tectonic record of Pluto. This reorientation likely reflects a coupling between Pluto's volatile cycles and rotational dynamics, and may be active on other worlds with comparably large, mobile volatile reservoirs. Finally, in Chapter 5 we consider the broader context of these studies, and touch on future investigations of true polar wander on Mercury, Venus, Mars, Vesta, Ceres, and other worlds in our solar system.
Using Microsoft PowerPoint as an Astronomical Image Analysis Tool
NASA Astrophysics Data System (ADS)
Beck-Winchatz, Bernhard
2006-12-01
Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies
Annular Solar Eclipse of 10 May 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.
Apollo 14 Mission image - View of the Lunar Surface towards the western Horizon.
1971-02-05
AS14-66-9293 (5 Feb. 1971) --- A portion of the Fra Mauro landing site as photographed by one of the Apollo 14 astronauts, standing slightly southwest of the Lunar Module (LM), during the early minutes of their first extravehicular activity (EVA) on the moon. The shadow of the astronaut taking the picture is at lower right. Photographs numbered AS14-66-9271 through AS14-66-9293 comprise a 360 degree panoramic view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacovacci, M.
2009-04-08
The ARGO-YBJ experiment has been put in stable data taking at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l.). In this paper we report a few selected results in Gamma-Ray Astronomy (Crab Nebula and Mrk421 observations, search for high energy tails of Gamma Ray Bursts) and Cosmic Ray Physics (Moon and Sun shadow observations, proton-air cross section measurement, preliminary measurement of the antiproton/proton ratio at TeV energies)
High Resolution Globe of Jupiter
2001-01-30
This true-color simulated view of Jupiter is composed of 4 images taken by NASA's Cassini spacecraft on December 7, 2000. To illustrate what Jupiter would have looked like if the cameras had a field-of-view large enough to capture the entire planet, the cylindrical map was projected onto a globe. The resolution is about 144 kilometers (89 miles) per pixel. Jupiter's moon Europa is casting the shadow on the planet. https://photojournal.jpl.nasa.gov/catalog/PIA02873
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
NASA Astrophysics Data System (ADS)
Guzik, T. G.
2017-12-01
On August 21, 2017 approximately 55 teams across the path of totality of the eclipse across America will use sounding balloon platforms to transmit, in real-time from an altitude of 90,000 feet, HD video of the moon's shadow as it crosses the U.S. from Oregon to South Carolina. This unprecedented activity was originally organized by the Montana Space Grant Consortium in order to 1) use the rare total eclipse event to captivate the imagination of students and encourage the development of new ballooning teams across the United States, 2) provide an inexpensive high bandwidth data telemetry system for real-time video streaming, and 3) establish the basic infrastructure at multiple institutions enabling advanced "new generation" student ballooning projects following the eclipse event. A ballooning leadership group consisting of Space Grant Consortia in Montana, Colorado, Louisiana, and Minnesota was established to support further development and testing of the systems, as well as to assist in training the ballooning teams. This presentation will describe the high bandwidth telemetry system used for the never before attempted live streaming of HD video from the edge of space, the results of this highly collaborative science campaign stretching from coast-to-coast, potential uses of the data telemetry system for other student science projects, and lessons learned that can be applied to the 2024 total solar eclipse.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry-operated, privately financed venture, with NASA as its initial customer, might provide a possible blueprint for future development and operation With industry interested in developing cislunar space and commerce, and competitive forces at work, the timeline for developing this capability could well be accelerated, quicker than any of us can imagine, and just the beginning of things to come.
Agile: From Software to Mission System
NASA Technical Reports Server (NTRS)
Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves
2016-01-01
The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.
Lighting constraints on lunar surface operations
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
1991-01-01
An investigation into the levels of ambient lighting on the lunar surface indicates that for most nearside locations, illumination will be adequate throughout most of the lunar night to conduct EVAs with only minor artificial illumination. The maximum lighting available during the lunar night from Earthshine will be similar to the light level on a July evening at approximately 8:00 pm in the southern United States (approximately 15 minutes after sunset). Because of the captured rotation of the Moon about the Earth, the location of the Earth will remain approximately constant throughout the lunar night, with consequent constant shadow length and angle. Variations in the level of Earthside illumination will be solely a function of Earth phase angle. Experience during the Apollo Program suggests that EVA activities during the period around the lunar noon may be difficult due to lack of surface definition caused by elimination of shadows.
The Investigation Of Carbon Contamination And Sputtering Effects Of Xenon Ion Thrusters
NASA Technical Reports Server (NTRS)
Prak, Moline K.
2004-01-01
The Electro-Physics Branch of the NASA Glenn Research Center investigates the effect of atomic oxygen, environmental durability of high performance power materials and surfaces, and low earth orbit. One of its current projects involves the analysis of ion thrusters. Ion thrusters are devices that initiate a beam of ions to a target area. The type of ion thruster that I have been working with this Summer of 2004 emits positively charged Xenon (Xe(+)) atoms through two grids, the screen grid and the accelerator grid, after it enters an ionization chamber. Insulators are used to mechanically hold and separate these two grids. A propellant isolator, an instrument that closely resembles insulators, is placed in front of the ionization chamber. Both the insulator and isolator are made with a ceramic compound and filled with insulating beads. The main difference between the two devices is that the propellant isolator allows gas to flow through, in this case, the gas is Xe(+) and the insulators do not. In order to avoid carbon deposits and other contaminating chemicals to settle on the insulators and propellant isolator, a metal shadow shield is placed around them. These shadow shields function as a protectant and can be shaped in numerous configurations. Part of my job responsibility this summer is to investigate the effectiveness of different shadow shields that are utilized on three different ion engines: the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), JIMO (Jupiter Icy Moons Orbiter), and NEXIS (Nuclear Electric Xenon Ion System). Using calculus and other mathematical tactics, I was asked to find the total flux of carbon contamination that was able to pass the protectant shadow shield. I familiarized myself with the software program, MathCad2004, to help perform some mathematical computations such as complex integration. Another method of studying the probability of contamination is by experimental simulation. After attaining the precise parameters of the actual shadow shields, I created replicas of three types of shadow shielding to be used to undergo testing. It will be placed in a machine that produces carbon atoms at a high temperature of 200 C. or beam is aimed at a targeted material. As a result of this collision, atoms and other particles are ejected out of the target surface. Another part of my internship consisted of research on sputter ejection, or the angle distribution of sputtered material. This research entailed finding the past results of sputter ejection investigation as well as creating another type of mock simulation. Other minor projects include calculating the path of Xe(+) gas through the insulating beads of the isolators and assisting my mentor in collecting data for his paper for the Joint Propulsion Conference & Exhibit to be held July 11-14,2004 in Fort Lauderdale, Florida.
1969-11-19
AS12-47-6918 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, took this photograph of three of the components of the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon during the first Apollo 12 extravehicular activity (EVA). The Passive Seismic Experiment (PSE) is in the center foreground. The largest object is the Central Station; and the white object on legs is the Suprathermal Ion Detector Experiment (SIDE). A portion of the shadow of astronaut Charles Conrad Jr., commander, can be seen at the left center edge of the picture. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the Lunar Module (LM) to explore the moon.
G-III Aircraft from NASA Armstrong Provides Live TV Coverage of Solar Eclipse Across America
2017-08-13
For the first time in 99 years, a total solar eclipse will cross the entire nation Monday, Aug. 21. A total solar eclipse occurs when the sun is completely obscured by the moon. The lunar shadow enters the United States near Lincoln City, Oregon, at 9:05 a.m. PDT. Totality, where the moon completely covers the sun, begins in Lincoln City around 10:16 a.m. PDT. During totality, there will be up to two and a half minutes of darkness. The G-III aircraft was modified with upgraded windows and communications equipment to enable high-definition video to be streamed to NASA TV during the eclipse enabling citizen science. The aircraft will be flying at 25,000 feet over the coast of Oregon, near Lincoln City during the eclipse on August 21, 2017.
2009-04-19
CAPE CANAVERAL, Fla. –– At Astrotech Space Operations in Titusville, Fla., a technician prepares for the installation of the solar array panel on the Lunar Reconnaissance Orbiter, or LRO. He stands in front of the fairing that will encapsulate the spacecraft at a later date. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Launch of LRO is targeted for June 2. Photo credit: NASA/Jim Grossmann
Lunar Flashlight: Illuminating the Lunar South Pole
NASA Technical Reports Server (NTRS)
Hayne, P. O.; Greenhagen,, B. T.; Paige, D. A.; Camacho, J. M.; Cohen, B. A.; Sellar, G.; Reiter, J.
2016-01-01
Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.
2009-02-15
CAPE CANAVERAL, Fla. – Technicians check out the solar arrays for NASA's Lunar Reconnaissance Orbiter, or LRO, at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jack Pfaller
2009-02-13
CAPE CANAVERAL, Fla. – Technicians secure a work stand supporting NASA's Lunar Reconnaissance Orbiter, or LRO, in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-02-15
CAPE CANAVERAL, Fla. – Inspection begins of the solar arrays for NASA's Lunar Reconnaissance Orbiter, or LRO, at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jack Pfaller
2009-02-13
CAPE CANAVERAL, Fla. – Technicians check the placement of NASA's Lunar Reconnaissance Orbiter, or LRO, on a work stand in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-02-13
CAPE CANAVERAL, Fla. – Technicians begin checkout and processing of NASA's Lunar Reconnaissance Orbiter, or LRO, in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jim Grossmann
2009-02-13
CAPE CANAVERAL, Fla. – The shipping container is removed from around NASA's Lunar Reconnaissance Orbiter, or LRO, at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-02-13
CAPE CANAVERAL, Fla. – Technicians guide NASA's Lunar Reconnaissance Orbiter, or LRO, onto a work stand in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-02-13
CAPE CANAVERAL, Fla. – Technicians begin checkout and processing of NASA's Lunar Reconnaissance Orbiter, or LRO, in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jim Grossmann
2009-02-15
CAPE CANAVERAL, Fla. – A technician inspects the solar arrays for NASA's Lunar Reconnaissance Orbiter, or LRO, at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jack Pfaller
2009-02-13
CAPE CANAVERAL, Fla. – NASA's Lunar Reconnaissance Orbiter, or LRO, spacecraft is moved away from the truck after offloading at Astrotech Space Operations in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO is targeted for April 24. Photo credit: NASA/Kim Shiflett
2009-02-13
CAPE CANAVERAL, Fla. – Technicians begin checkout and processing of NASA's Lunar Reconnaissance Orbiter, or LRO, in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jim Grossmann
2009-02-15
CAPE CANAVERAL, Fla. – Technicians inspect the solar arrays for NASA's Lunar Reconnaissance Orbiter, or LRO, at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jack Pfaller
2009-02-15
CAPE CANAVERAL, Fla. – The solar arrays for NASA's Lunar Reconnaissance Orbiter, or LRO, are inspected at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Jack Pfaller
Hydra Emerges from the Shadows
2015-07-15
Since its discovery in 2005, Pluto's moon Hydra has been known only as a fuzzy dot of uncertain shape, size, and reflectivity. Imaging obtained during NASA's New Horizons' historic transit of the Pluto-Charon system and transmitted to Earth early this morning has definitively resolved these fundamental properties of Pluto's outermost moon. Long Range Reconnaissance Imager (LORRI) observations revealed an irregularly shaped body characterized by significant brightness variations over the surface. With a resolution of 2 miles (3 kilometers) per pixel, the LORRI image shows the tiny potato-shaped moon measures 27 miles (43 kilometers) by 20 miles (33 kilometers). Like that of Charon, Hydra's surface is probably covered with water ice, the most abundant ice in the universe. Observed within Hydra's bright regions is a darker circular structure with a diameter of approximately 6 miles (10 kilometers). Hydra's reflectivity (the percentage of incident light reflected from the surface) is intermediate between that of Pluto and Charon. Hydra was approximately 400,000 miles away from New Horizons when this image was acquired. http://photojournal.jpl.nasa.gov/catalog/PIA19711
Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L
2008-08-01
The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.
The first three rungs of the cosmological distance ladder
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin; DeBenedictis, Erika; Steeger, Jeremy; Bischoff-Kim, Agnes; Tabak, Gil; Pasricha, Kanika
2012-05-01
It is straightforward to determine the size of the Earth and the distance to the Moon without using a telescope. The methods have been known since the third century BCE. However, few astronomers have done this measurement from data they have taken. We use a gnomon to determine the latitude and longitude of South Bend, Indiana, and College Station, Texas, and determine the value of the radius of the Earth to be Rearth=6290 km, only 1.4% smaller than the known value. We use the method of Aristarchus and the size of the Earth's shadow during the lunar eclipse of June 15, 2011 to estimate the distance to the Moon to be 62.3Rearth, 3.3% greater than the known mean value. We use measurements of the angular motion of the Moon against the background stars over the course of two nights, using a simple cross staff device, to estimate the Moon's distance at perigee and apogee. We use simultaneous observations of asteroid 1996 HW1 obtained with small telescopes in Socorro, New Mexico, and Ojai, California, to obtain a value of the Astronomical Unit of (1.59+/-0.19)×108 km, about 6% too large. The data and methods presented here can easily become part of an introductory astronomy laboratory class.
From Galileo's telescope to the Galileo spacecraft: our changing views of the Jupiter system
NASA Astrophysics Data System (ADS)
Lopes, R. M.
2008-12-01
In four centuries, we have gone from the discovery of the four large moons of Jupiter - Io, Europa, Ganymede, and Callisto - to important discoveries about these four very different worlds. Galileo's telescopic discovery was a major turning point in the understanding of science. His observations of the moons' motion around Jupiter challenged the notion of an Earth-centric Universe. A few months later, Galileo discovered the phases of Venus, which had been predicted by the heliocentric model of the Solar System. Galileo also observed the rings of Saturn (which he mistook for planets) and sunspots, and was the first person to report mountains and craters on the Moon, whose existence he deduced from the patterns of light and shadow on the Moon's surface, concluding that the surface was topographically rough. Centuries later, the Galileo spacecraft's discoveries challenged our understanding of outer planet satellites. Results included the discovery of an icy ocean underneath Europa's surface, the possibility of life on Europa, the widespread volcanism on Io, and the detection of a magnetic field around Ganymede. All four of these satellites revealed how the major geologic processes - volcanism, tectonism, impact cratering and erosion - operate in these different bodies, from the total lack of impact craters on Io to the heavily cratered, ancient surface of Callisto. The Galileo spacecraft's journey also took it to Venus and the Moon, making important scientific observations about these bodies. The spacecraft discovered the first moon orbiting around an asteroid which, had Galileo the man observed, would have been another major blow for the geocentric model of our Solar System.
NASA Technical Reports Server (NTRS)
Fry, C. D.; Rawlins, L.; Krause, L. H.; Suggs, R. M.; McTernan, J. K.; Adams, M. L.; Gallagher, D. L.; Anderson, Scott; Allsbrooks, Robert IV
2017-01-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.
Lunar Flashlight: Exploration and Science at the Moon with a 6U Cubesat
NASA Astrophysics Data System (ADS)
Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.
2015-12-01
Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system. In order to address NASA's SKGs, the Lunar Flashlight mission was selected as a secondary payload on the first test flight (EM1) of the Space Launch System (SLS), currently scheduled for 2018. Recent reflectance data from LRO instruments suggest volatiles may be present on the surface, though the detection is not yet definitive. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and map its concentration at the 1-2 kilometer scale within the PSRs. After being ejected in cislunar space by SLS, Lunar Flashlight maneuvers into a low-energy transfer to lunar orbit and then an elliptical polar orbit, spiraling down to a perilune of 10-30 km above the south pole for data collection. Lunar Flashlight will illuminate permanently shadowed regions, measuring surface albedo with point spectrometer at 1.1, 1.5 1.9, and 2.0 mm. Water ice will be distinguished from dry regolith in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and water ice band depths will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain, and to compare with lunar datasets such as LRO and Moon Mineralogy Mapper. Lunar Flashlight enables a low-cost path to science and in-situ resource utilization (ISRU) by identifying ice deposits (if there are any), which would be a game-changing result for expanded human exploration.
The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission
NASA Astrophysics Data System (ADS)
Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.
2017-11-01
The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.
NASA Technical Reports Server (NTRS)
2002-01-01
Saturn appears serene and majestic in the first color composite made of images taken by NASA's Cassini spacecraft on its approach to the ringed planet, with arrival still 20 months away.
The planet was 285 million kilometers (177 million miles) away from the spacecraft, nearly twice the distance between the Sun and Earth, when Cassini took images of it in various filters as an engineering test on Oct. 21, 2002.It is summer in Saturn's southern hemisphere. The Sun is a lofty 27 degrees below the equator and casts a semi-circular shadow of the planet on the rings. The shadow extends partway across the rings, leaving the outer A ring in sunlight. The last Saturn-bound spacecraft, Voyager 2, arrived in early northern spring. Many features seen in Voyager images -- spoke-like markings on the rings, clouds and eddies in the hazy atmosphere, ring-shepherding moons -- are not yet visible to Cassini.Titan, Saturn's largest moon, appears in the upper left. It is the only moon resolved from this distance. This composite uses a threefold enhancement in the brightness of Titan relative to the brightness of Saturn. Titan is a major attraction for scientists of the Cassini-Huygens mission. They will study its haze-enshrouded atmosphere and peer down, with special instrumentation, to its surface to look for evidence of organic processes similar to those that might have occurred on the early Earth, prior to the emergence of life.Cassini will enter orbit around Saturn on July 1, 2004. It will release a piggybacked probe, Huygens, which will descend through Titan's atmosphere on Jan. 14, 2005.The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. Information about the mission is available online at http://saturn.jpl.nasa.gov . The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Office of Space Science, Washington, D.C.Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha
2017-12-01
During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.
Lunar Electric Fields: Observations and Implications
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.
2006-12-01
Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.
Horizons and opportunities in lunar sample science
NASA Technical Reports Server (NTRS)
1985-01-01
The Moon is the cornerstone of planetary science. Lunar sample studies were fundamental in developing an understanding of the early evolution and continued development of planetary bodies, and have led to major revisions in understanding of processes for the accumulation of planetesimals and the formation of planets. Studies of lunar samples have increased an understanding of impact cratering, meteoroid and micrometeoroid fluxes, the interaction of planetary surfaces with radiations and particles, and even the history of the Sun. The lunar sample research program was especially productive, but by no means have all the important answers been determined; continued study of lunar samples will further illuminate the shadows of our knowledge about the solar system. Further, the treasures returned through the Apollo program provide information that is required for a return to the Moon, beginning with new exploration (Lunar Geoscience Observer (LGO)), followed by intensive study (new sample return missions), and eventually culminating in a lunar base and lunar resource utilization.
NASA Technical Reports Server (NTRS)
2007-01-01
The New Horizons Long Range Reconnaissance Imager (LORRI) took this 2-millisecond exposure of Jupiter at 04:41:04 UTC on January 24, 2007. The spacecraft was 57 million kilometers (35.3 million miles) from Jupiter, closing in on the giant planet at 41,500 miles (66,790 kilometers) per hour. At right are the moons Io (bottom) and Ganymede; Ganymede's shadow creeps toward the top of Jupiter's northern hemisphere. Two of Jupiter's largest storms are visible; the Great Red Spot on the western (left) limb of the planet, trailing the Little Red Spot on the eastern limb, at slightly lower latitude. The Great Red Spot is a 300-year old storm more than twice the size of Earth. The Little Red Spot, which formed over the past decade from the merging of three smaller storms, is about half the size of its older and 'greater' counterpart.Modeling the Stability of Volatile Deposits in Lunar Cold Traps
NASA Technical Reports Server (NTRS)
Crider, D. H.; Vondrak, R. R.
2002-01-01
There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.
Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Map of the Moon
NASA Technical Reports Server (NTRS)
Wilson, J. K.; Schwadron, N.; Spence, H. E.; Golightly, M. J.; Case, A. W.; Smith, S.; Blake, J. B.; Kasper, J.; Looper, M. D.; Mazur, J. E.;
2014-01-01
High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith, and by ice deposits in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy ((is) approximately 100 MeV) lunar albedo protons.
Characterization of Stereo Vision Performance for Roving at the Lunar Poles
NASA Technical Reports Server (NTRS)
Wong, Uland; Nefian, Ara; Edwards, Larry; Furlong, Michael; Bouyssounouse, Xavier; To, Vinh; Deans, Matthew; Cannon, Howard; Fong, Terry
2016-01-01
Surface rover operations at the polar regions of airless bodies, particularly the Moon, are of particular interest to future NASA science missions such as Resource Prospector (RP). Polar optical conditions present challenges to conventional imaging techniques, with repercussions to driving, safeguarding and science. High dynamic range, long cast shadows, opposition and white out conditions are all significant factors in appearance. RP is currently undertaking an effort to characterize stereo vision performance in polar conditions through physical laboratory experimentation with regolith simulants, obstacle distributions and oblique lighting.
SiGe Based Low Temperature Electronics for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John
2012-01-01
The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians photograph the Lunar Reconnaissance Orbiter, or LRO, during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments on the LRO include the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
NASA's SDO Catches a Double Photobomb
2017-12-08
On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's view of the sun emerged from Earth’s shadow, the moon was just completing its journey across the sun’s face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. This alignment of the sun, moon and Earth also resulted in a partial solar eclipse on Sept. 13, visible only from parts of Africa and Antarctica. Read more: www.nasa.gov/feature/goddard/nasas-sdo-catches-a-double-p... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Astronaut John Young in shadow of Lunar Module behind ultraviolet camera
1972-04-22
AS16-114-18439 (22 April 1972) --- Astronaut Charles M. Duke Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, commander, during the mission's second extravehicular activity (EVA). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.
Astronaut Charles M. Duke, Jr., in shadow of Lunar Module behind ultraviolet camera
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Charles M. Duke, Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, mission commander, during the mission's second extravehicular activity (EVA-2). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (lm) 'Orion' to explore the Descartes highlands landing site on the Moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (csm) 'Casper' in lunar orbit.
Hubble Spies Spooky Shadow on Jupiter's Giant Eye
2014-10-28
This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hubble Spies Spooky Shadow on Jupiter's Giant Eye (color)
2014-10-28
This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.
2017-12-01
2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on the results of our efforts to engage the public with these two events, and make recommendations for extending and sustaining the engagement of the public in preparation for the 2024 total solar eclipse.
Io's Sodium Cloud (Green-yellow Filter)
NASA Technical Reports Server (NTRS)
1997-01-01
This image of Jupiter's moon Io and its surrounding sky is shown in false color. North is at the top, and east is to the right. Most of Io's visible surface is in shadow, though one can see part of a white crescent on its western side. This crescent is being illuminated mostly by 'Jupitershine' (i.e. sunlight reflected off Jupiter).
The striking burst of white light near Io's eastern equatorial edge is sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometers above the surface, and is being hit by sunlight just a little east of Io's eastern edge.Scattered light from Prometheus' plume and Io's lit crescent also contribute to the diffuse yellowish emission which appears throughout much of the sky. However, much of this emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight at the yellow wavelength of about 589 nanometers.This image was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 through the green-yellow filter of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft. Galileo was then in Jupiter's shadow, and located about 2.3 million kilometers (about 32 Jovian radii) from both Jupiter and Io.The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.Ceres' obliquity history: implications for permanently shadowed regions
NASA Astrophysics Data System (ADS)
Ermakov, A.; Mazarico, E.; Schroeder, S.; Carsenty, U.; Schorghofer, N.; Raymond, C. A.; Zuber, M. T.; Smith, D. E.; Russell, C. T.
2016-12-01
The Dawn spacecraft's Framing Camera (FC) images and radio-tracking data have allowed precise determination of Ceres' rotational pole and obliquity. Presently, the obliquity (ɛ) of Ceres is ≈4°. Because of the low obliquity, permanently shadowed regions (PSRs) can exist on Ceres, and have been identified using both images and shape models (Schorghofer et al., 2016). These observations make Ceres only the third body in the solar system with recognized PSRs after the Moon (Zuber et al., 1997) and Mercury (Chabot et al., 2012). Some craters in Ceres' polar regions possess bright crater floor deposits (BCFD). These crater floors are typically in shadow. However, they receive light scattered from the surrounding sunlit crater walls and therefore can be seen by FC. These bright deposits are hypothesized to be water ice accumulated in PSR cold traps, analogous to the Moon (Watson et al., 1961). The existence of the PSRs critically depends on the body's obliquity. The goal of this work is to study the history of Ceres' obliquity. Knowing past obliquity variations can shed light on the history of PSRs, and can help constrain the water-ice deposition time scales. We integrate the obliquity of Ceres over the last 3 My for the range of C/MR2vol constrained by the Dawn gravity measurements (Park et al., 2016, Ermakov et al., 2016) using methods described in Wisdom & Holman (1991) and Touma & Wisdom (1994). The obliquity history for C/MR2vol=0.392 is shown in Fig. 1. The integrations show that the obliquity of Ceres undergoes large oscillations with the main period of T=25 ky and a maximum of 19.7°. The obliquity oscillations are driven by the periodic change of Ceres' orbit inclination (T=22 ky) and the pole precession (T=210 ky). Ceres passed a local obliquity minimum 1327 years ago when (ɛmin=2.4°). The most recent maximum was 13895 years ago (ɛmax=18.5°). At such high obliquity, most of the present-day PSRs receive direct sunlight. We find a correlation between BCFDs and the most persistent PSRs. In the northern hemisphere, we find that only two PSRs remain at ɛmax. Interestingly, these PSRs contain BCFDs. In the southern hemisphere, we find that only one crater with a BCFD remains in shadow at ɛmax. Ongoing work includes computation of the irradiance of individual BCFDs given the orbital and obliquity history.
Shadow mechanism and the opposition effect of brightness of atmosphereless celestial bodies
NASA Astrophysics Data System (ADS)
Morozhenko, A. V.; Vidmachenko, A. P.
2013-09-01
We consider the Irvine-Yanovistkii modification of the shadow model developed by Hapke for the opposition effect of brightness. The relation between the single scattering albedo ω and the transparency coefficient of particles κ is suggested to be used in the form κ = (1 - ω) n, which allows the number of unknowns in the model to be reduced to two parameters (the packing density of particles g and ω) and the single-scattering phase function Ξ(α). The analysis of spectrophotometric measurements of the moon and Mars showed that the data on the observed opposition effect and the changes in the color index with the phase angle α well agree if the values of n = 0.25 and g = 0.4 (the moon) and 0.6 (Mars) are assumed in calculations. When being applied to asteroids of several types, this method also yielded a satisfactory agreement. For the E-type asteroids, the sets of parameters are [g = 0.6, ω = 0.6, A g = 0.21, and q = 0.83] or [g = 0.3, ω = 0.4, A g = 0.15, and q = 0.71] under the Martian single-scattering phase function; for the M-type asteroids, it is [g = 0.4, ω ≤ 0.1, A g ≤ 0.075, and q ≤ 0.42] under the lunar single-scattering phase function; for the S-type asteroids, it is [g = 0.4, ω = 0.4, A g = 0.28, and q = 0.49] under the lunar single-scattering phase function; and for the C-type asteroids, it is [g = 0.6, ω ≤ 0.1, A g ≤ 0.075, and q = 0.43] under the modified lunar single-scattering phase function. The polarization measurements fulfilled by Gehrels et al. (1964) for the bright feature on the lunar surface, Copernicus (L = -20°08', φ = +10°11'), at a phase angle α = 1.6° revealed the deviations in the position of the polarization plane from that typical for the negative branch. They were 22° and 12° in the G and I filters, respectively. At the same time, the deviation was within the error (±3° in the U filter and for the dark feature Plato (L = -10°32', φ = +51°25'), which can be caused by the coherent mechanism of the formation of the polarization peak.
Total solar eclipse of 1995 October 24
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1994-01-01
A total eclipse of the sun will be visible from Asia and the Pacific Ocean on 24 Oct. 1995. The path of the moon's shadow begins in the Middle East and sweeps across India, Southeast Asia, and the waters of the Indonesian archipelago before ending at sunset in the Pacific. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality.
Challenges of Rover Navigation at the Lunar Poles
NASA Technical Reports Server (NTRS)
Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan;
2015-01-01
Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.
The total solar eclipse of 2010 July 11
NASA Astrophysics Data System (ADS)
McGee, H.; James, N.; Mason, J.
2010-08-01
The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.
Analysis of shadowing effects on spacecraft power systems
NASA Technical Reports Server (NTRS)
Fincannon, H. J.
1995-01-01
This paper describes the Orbiting Spacecraft Shadowing Analysis (OSSA) computer program that was developed at NASA Lewis Research Center in order to assess the shadowing effects on various power systems. The algorithms, inputs and outputs are discussed. Examples of typical shadowing analyses that have been performed for the International Space Station Freedom, International Space Station Alpha and the joint United States/Russian Mir Solar Dynamic Flight Experiment Project are covered. Effects of shadowing on power systems are demonstrated.
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a technician checks the thermal blanket around the LROC narrow angle camera during closeout on the Lunar Reconnaissance Orbiter, or LRO, before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Above the LROC is the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
LCROSS - Lunar Impactor: Pioneering Risk-Tolerant Exploration in Search for Water on the Moon
NASA Technical Reports Server (NTRS)
Andrews, Daniel R.
2010-01-01
The Lunar CRater Observation and Sensing Satellite (LCROSS) was launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009 to determine the presence of water-ice in a permanently shadowed crater on the south pole of the Moon. However, an equally important purpose was to pioneer low-cost, quick-turnaround NASA missions that could accept a higher-than-normal-level of technical risk. When the LCROSS mission proposal was competitively selected by the NASA Exploration Systems Mission Directorate to design, build, and launch a spacecraft in 31 months with a $79M cost-capped budget and a fixed mass allocation, NASA Ames Research Center and its industry partner, Northrop-Grumman, needed a game-changing approach to be successful. That approach was a ground-breaking combination of having a risk-tolerant NASA Class D mission status and finding the right balance point between the inflexible elements of cost and schedule and the newly-flexible element of technical capability.
NASA Technical Reports Server (NTRS)
Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.
2011-01-01
Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).
Io, the closest Galileo's Medicean Moon: Changes in its Sodium Cloud Caused by Jupiter Eclipse
NASA Astrophysics Data System (ADS)
Grava, Cesare; Schneider, Nicholas M.; Barbieri, Cesare
2010-01-01
We report results of a study of true temporal variations in Io's sodium cloud before and after eclipse by Jupiter. The eclipse geometry is important because there is a hypothesis that the atmosphere partially condenses when the satellite enters the Jupiter's shadow, preventing sodium from being released to the cloud in the hours immediately after the reappearance. The challenge lies in disentangling true variations in sodium content from the changing strength of resonant scattering due Io's changing Doppler shift in the solar sodium absorption line. We undertook some observing runs at Telescopio Nazionale Galileo (TNG) at La Palma Canary Island with the high resolution spectrograph SARG in order to observe Io entering into Jupiter's shadow and coming out from it. The particular configuration chosen for the observations allowed us to observe Io far enough from Jupiter and to disentangle line-of-sight effects looking perpendicularly at the sodium cloud. We will present results which took advantage of a very careful reduction strategy. We remove the dependence from γ-factor, which is the fraction of solar light available for resonant scattering, in order to remove the dependence on the radial velocity of Io with respect to the Sun. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG and the Department of Astronomy and Cisas of University of Padova, through a contract by the Italian Space Agency ASI.
2009-05-08
CAPE CANAVERAL, Fla. – Another view of the Lunar Reconnaissance Orbiter, or LRO, at Astrotech Space Operations in Titusville, Fla., during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments seen, at left, are (from bottom) the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
NASA's LRO Discovers Lunar Hydrogen More Abundant on Moon's Pole-Facing Slopes
2015-02-04
Space travel is difficult and expensive – it would cost thousands of dollars to launch a bottle of water to the moon. The recent discovery of hydrogen-bearing molecules, possibly including water, on the moon has explorers excited because these deposits could be mined if they are sufficiently abundant, sparing the considerable expense of bringing water from Earth. Lunar water could be used for drinking or its components – hydrogen and oxygen – could be used to manufacture important products on the surface that future visitors to the moon will need, like rocket fuel and breathable air. Recent observations by NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft indicate these deposits may be slightly more abundant on crater slopes in the southern hemisphere that face the lunar South Pole. "There’s an average of about 23 parts-per-million-by-weight (ppmw) more hydrogen on Pole-Facing Slopes (PFS) than on Equator-Facing Slopes (EFS)," said Timothy McClanahan of NASA's Goddard Space Flight Center in Greenbelt, Maryland. This is the first time a widespread geochemical difference in hydrogen abundance between PFS and EFS on the moon has been detected. It is equal to a one-percent difference in the neutron signal detected by LRO's Lunar Exploration Neutron Detector (LEND) instrument. McClanahan is lead author of a paper about this research published online October 19 in the journal Icarus. Read more: 1.usa.gov/1uaa8s2 Photo caption: LRO image of the moon's Hayn Crater, located just northeast of Mare Humboldtianum, dramatically illuminated by the low Sun casting long shadows across the crater floor. Image Credit: NASA/GSFC/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Norman Rockwell's "Man's First Step On The Moon"
NASA Astrophysics Data System (ADS)
Barker, Timothy
2011-05-01
Rockwell's painting, which appeared in the January 10, 1967 issue of Look magazine, is perhaps the most famous ever done of an astronaut's first step on the Moon. But it has a number of astronomical misconceptions, many of which are apparent to sharp-eyed introductory astronomy students: the size of the Earth in the lunar sky is too large compared to the Big Dipper, the orbiting Command Service Module is illuminated from a different direction than the Earth is, and the lighting on the lunar surface is also inconsistent, among other errors. This raises the question: How could Rockwell, a notoriously meticulous illustrator, have apparently been so careless? It turns out that Rockwell was anything but careless, but rather was typically obsessive about every detail in the painting. He was in constant communication with experts, even traveling to Huston to meet with NASA officials. He went so far as to enlist the help of space artist Pierre Mion, who ended up doing part of the painting, one of only two known collaborations between Rockwell and another artist. When the Look article was published, readers responded with praise but also criticism about the technical errors that still slipped through, to Rockwell's great frustration. The most important part of the painting, however, is accurate and compelling: the astronaut is shown stepping off the LM exactly as Neil Armstrong would do over two years later. The astronaut's boot covers part of the shadow that it casts. Does the shadow run all the way to the heel, or is the boot poised just above the lunar surface? Has the artist captured the instant after, or, perhaps, the instant before, humanity's first contact with another world? I am grateful to the curators at the Norman Rockwell Museum Archives for their assistance.
Effects of Orbital Evolution on Lunar Ice Stability
NASA Astrophysics Data System (ADS)
Siegler, M. A.; Bills, B. G.; Paige, D. A.
2010-12-01
Permanently shadowed regions of the Moon have complex thermal histories that influence their ability to act as traps for water ice. Though many areas are now cold enough that surface water ice would be stable from sublimation losses for billions of years, this has not always been the case. Here we examine the effects of the long term orbital and rotational evolution of the Moon on polar thermal history, volatile stability and mobility. Using data from the Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, we validate models of the current temperature in the lunar polar region. This model includes the effects of topography, scattering, re-radiation, and regolith thermal properties. Then, integrating the effects of tidal torques backward from the present, we reconstruct past orbital and rotational states and use them as input to the thermal model to estimate the thermal environment of the distant lunar past. The rate of tidal evolution of the lunar orbit is quite uncertain, thus use orbital semimajor axis as independent variable, rather than time, in the reconstruction. The orbital integration results in a high obliquity period which occurred when the Moon was at about half its present distance from the Earth. This period, which caused half a year of direct sunlight on the polar region, is due to a transition between two Cassini States, spin-orbit configurations resulting from internal dissipation within the Moon. Since this event, the tilt of the Moon (with respect to the ecliptic) has slowly decreased to the current 1.54 degree. Prior to this transition, due to the relatively small Earth-Moon distance, large amplitude variations in the inclination of the orbital plain were also important. We examine the stability of polar volatiles in response to the evolving lunar orbit, and apply simple models to describe when in the Moon’s history supplied volatiles would have been most likely to be buried by thermal diffusion. When temperatures are much below 95K, ice delivered to the lunar surface is immobile in terms of thermal diffusion. Unless buried on relatively short time scales, most of the current polar environments are currently too cold to efficiently drive ice downward along thermal gradients and protect it from other surface loss processes. In the past, these same locations went through “ice trap” periods, where they were warm enough that supplied volatiles might have been buried by on short time scales, but cold enough that they would not be lost quickly, supplying the subsurface with volatiles that could still be stable today. The Cassini state transition was so warm that ice would either have been driven out into space, or possibly deep into the lunar subsurface. If a present lunar cold trap is ice bearing, that ice is likely to be representative of these “ice trap” periods and have little to do with the early Moon. As each current cold trap had a period where it was most efficient at thermal ice burial, the location of current ground ice on the Moon might also constrain the obliquity and time at which it was deposited. The presence of ice in a specific crater may imply either an increase in water flux or large comet impact during that period.
ERIC Educational Resources Information Center
Hamada, Yo
2016-01-01
This study examines common claims associated with shadowing. Studies in Japan conclude that shadowing is effective for improving learners' listening skills. Two common claims are that shadowing is effective for lower-proficiency learners and that it enhances learners' phoneme perception, thus improving listening comprehension skills. The former…
Tomonaga, Masaki; Imura, Tomoko
2010-07-08
Humans readily perceive whole shapes as intact when some portions of these shapes are occluded by another object. This type of amodal completion has also been widely reported among nonhuman animals and is related to pictorial depth perception. However, the effect of a cast shadow, a critical pictorial-depth cue for amodal completion has been investigated only rarely from the comparative-cognitive perspective. In the present study, we examined this effect in chimpanzees and humans. Chimpanzees were slower in responding to a Pacman target with an occluding square than to the control condition, suggesting that participants perceptually completed the whole circle. When a cast shadow was added to the square, amodal completion occurred in both species. On the other hand, however, critical differences between the species emerged when the cast shadow was added to the Pacman figure, implying that Pacman was in the sky casting a shadow on the square. The cast shadow prevented, to a significant extent, compulsory amodal completion in humans, but had no effect on chimpanzees. These results suggest that cast shadows played a critical role in enabling humans to infer the spatial relationship between Pacman and the square. For chimpanzees, however, a cast shadow may be perceived as another "object". A limited role for cast shadows in the perception of pictorial depth has also been reported with respect to human cognitive development. Further studies on nonhuman primates using a comparative-developmental perspective will clarify the evolutionary origin of the role of cast shadows in visual perception.
Lunar Simulation in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Sechkar, Edward A.
2007-01-01
The Lunar Dust Adhesion Bell Jar has been assembled at the NASA Glenn Research Center to provide a high fidelity lunar simulation facility to test the interactions of lunar dust and lunar dust simulant with candidate aerospace materials and coatings. It has a sophisticated design which enables it to treat dust in a way that will remove adsorbed gases and create a chemically reactive surface. It can simulate the vacuum, thermal, and radiation environments of the Moon, including proximate areas of illuminated heat and extremely cold shadow. It is expected to be a valuable tool in the development of dust repellant and cleaning technologies for lunar surface systems.
Drilling to Extract Liquid Water on Mars: Feasible and Worth the Investment
NASA Technical Reports Server (NTRS)
Stoker, C.
2004-01-01
A critical application for the success of the Exploration Mission is developing cost effective means to extract resources from the Moon and Mars needed to support human exploration. Water is the most important resource in this regard, providing a critical life support consumable, the starting product of energy rich propellants, energy storage media (e.g. fuel cells), and a reagent used in virtually all manufacturing processes. Water is adsorbed and chemically bound in Mars soils, ice is present near the Martian surface at high latitudes, and water vapor is a minor atmospheric constituent, but extracting meaningful quantities requires large complex mechanical systems, massive feedstock handling, and large energy inputs. Liquid water aquifers are almost certain to be found at a depth of several kilometers on Mars based on our understanding of the average subsurface thermal gradient, and geological evidence from recent Mars missions suggests liquid water may be present much closer to the surface at some locations. The discovery of hundreds of recent water-carved gullies on Mars indicates liquid water can be found at depths of 200-500 meters in many locations. Drilling to obtain liquid water via pumping is therefore feasible and could lower the cost and improve the return of Mars exploration more than any other ISRU technology on the horizon. On the Moon, water ice may be found in quantity in permanently shadowed regions near the poles.
NASA Astrophysics Data System (ADS)
Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying
2018-04-01
Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct accuracy exceeding 80%, approximately 5% of the areas were wrongly identified, and approximately 10% of the cloud shadow areas were missing. The accuracy of this method is obviously higher than the recognition accuracy of Fmask, which has correct accuracy lower than 60%, and the missing recognition is approximately 40%.
NASA Astrophysics Data System (ADS)
Wang, Qiongjie; Yan, Li
2016-06-01
With the rapid development of sensor networks and earth observation technology, a large quantity of high resolution remote sensing data is available. However, the influence of shadow has become increasingly greater due to the higher resolution shows more complex and detailed land cover, especially under the shadow. Shadow areas usually have lower intensity and fuzzy boundary, which make the images hard to interpret automatically. In this paper, a simple and effective shadow (including soft shadow) detection and compensation method is proposed based on normal data, Digital Elevation Model (DEM) and sun position. First, we use high accuracy DEM and sun position to rebuild the geometric relationship between surface and sun at the time the image shoot and get the hard shadow boundary and sky view factor (SVF) of each pixel. Anisotropic scattering assumption is accepted to determine the soft shadow factor mainly affected by diffuse radiation. Finally, an easy radiation transmission model is used to compensate the shadow area. Compared with the spectral detection method, our detection method has strict theoretical basis, reliable compensation result and minor affected by the image quality. The compensation strategy can effectively improve the radiation intensity of shadow area, reduce the information loss brought by shadow and improve the robustness and efficiency of the classification algorithms.
Cosmochemistry and Human Exploration
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2004-12-01
About 125 scientists, engineers, business men and women, and other specialists attended the sixth meeting of the Space Resources Roundtable, held at the Colorado School of Mines in Golden, Colorado. The meeting was co-sponsored by the Space Resources Roundtable, Inc. (a nonprofit organization dedicated to the use of space resources for the benefit of humankind), the Lunar and Planetary Institute, and the Colorado School of Mines. Presentations and discussions during the meeting made it clear that the knowledge gained from cosmochemical studies of the Moon and Mars is central to devising ways to use in situ resources. This makes cosmochemistry central to the human exploration and development of space, which cannot happen without extensive in situ resource utilization (ISRU). Cosmochemists at the meeting reported on an array of topics: the nature of lunar surface materials and our lack of knowledge about surface materials in permanently shadowed regions at the lunar poles; how to make reasonable simulated lunar materials for resource extraction testbeds, vehicle design tests, and construction experiments on Earth; and how to explore for resources on the Moon and Mars.
A method to detect layover and shadow based on distributed spaceborne single-baseline InSAR
NASA Astrophysics Data System (ADS)
Yun, Ren; Huanxin, Zou; Shilin, Zhou; Hao, Sun; Kefeng, Ji
2014-03-01
Layover and Shadow are inevitable phenomenena in InSAR, which seriously destroy the continuity of interferometric phase images and present difficulties in the follow-up phase unwrapping. Thus, it's significant to detect layover and shadow. This paper presents an approach to detect layover and shadow using the auto-correlation matrix and amplitude of the two images. The method can make full use of the spatial information of neighboring pixels and effectively detect layover and shadow regions in the case of low registration accuracy. Experiment result on the simulated data verifies effectiveness of the algorithm.
Shadow detection of moving objects based on multisource information in Internet of things
NASA Astrophysics Data System (ADS)
Ma, Zhen; Zhang, De-gan; Chen, Jie; Hou, Yue-xian
2017-05-01
Moving object detection is an important part in intelligent video surveillance under the banner of Internet of things. The detection of moving target's shadow is also an important step in moving object detection. On the accuracy of shadow detection will affect the detection results of the object directly. Based on the variety of shadow detection method, we find that only using one feature can't make the result of detection accurately. Then we present a new method for shadow detection which contains colour information, the invariance of optical and texture feature. Through the comprehensive analysis of the detecting results of three kinds of information, the shadow was effectively determined. It gets ideal effect in the experiment when combining advantages of various methods.
Shadowing effects on multi-step Langmuir probe array on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Ke, R.; Xu, M.; Nie, L.; Gao, Z.; Wu, Y.; Yuan, B.; Chen, J.; Song, X.; Yan, L.; Duan, X.
2018-05-01
Multi-step Langmuir probe arrays have been designed and installed on the HL-2A tokamak [1]–[2] to study the turbulent transport in the edge plasma, especially for the measurement of poloidal momentum flux, Reynolds stress Rs. However, except the probe tips on the top step, all other tips on lower steps are shadowed by graphite skeleton. It is necessary to estimate the shadowing effects on equilibrium and fluctuation measurement. In this paper, comparison of shadowed tips to unshadowed ones is presented. The results show that shadowing can strongly reduce the ion and electron effective collection area. However, its effect is negligible for the turbulence intensity and coherence measurement, confirming that the multi-step LP array is proper for the turbulent transport measurement.
School Socioeconomic Compositional Effect on Shadow Education Participation: Evidence from Japan
ERIC Educational Resources Information Center
Matsuoka, Ryoji
2015-01-01
While shadow education, organized learning activities outside formal school, has grown greatly around the world, the relationship between formal schooling and shadow education has not been well investigated. This study is therefore intended to empirically test whether formal education's structure (i.e. tracking) affects students' shadow education…
NASA Technical Reports Server (NTRS)
Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.
NASA Astrophysics Data System (ADS)
Dabrowski, Jan Paul; Snyder, G. A.; Marschall, L. A.
2009-01-01
Project CLEA announces a new laboratory exercise which allows students to determine the speed of light by timing eclipses of Jupiter's moon Io. The experiment is similar to Ole Roemer's classic 17th Century work which established, for the first time, that light did not travel through space instantaneously. Students view a simulated telescopic view of Jupiter and its satellites, similar to that used in the CLEA exercise, The Revolution of the Moons of Jupiter. After identifying Io, they record the precise time when the moon enters Jupiter's shadow at a date about two months after conjunction. Using the recorded time of this eclipse and the known period of Io, students predict the time of an eclipse near opposition and then record the observed time of that eclipse. The discrepancy between the predicted and observed times, along with the difference in the distance between Earth and Jupiter at the two eclipses yields a value of the speed of light accurate to about 10%. Software provided with the exercise enables students to calculate predicted times and Earth/Jupiter distances, as well as to analyze the time discrepancy and to visualize the logic of the analysis. A student manual, including historical and scientific background of the exercise is provided. Our poster will present examples of the screens and manuals for the exercise and will discuss the limits of accuracy of the method and sources of error. For further information on CLEA exercises, please visit http://www.gettysburg.edu/ marschal/clea/CLEAhome.html This research was sponsored by the National Science Foundation and Gettysburg College.
Lunar Reconnaissance Orbiter Camera (LROC) instrument overview
Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.
2010-01-01
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.
Diviner lunar radiometer observations of cold traps in the moon's south polar region
Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.
2010-01-01
Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.
Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons
NASA Astrophysics Data System (ADS)
Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.
2018-03-01
Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.
NASA Astrophysics Data System (ADS)
Eem, Changkyoung; Kim, Iksu; Hong, Hyunki
2015-07-01
A method to estimate the environmental illumination distribution of a scene with gradient-based ray and candidate shadow maps is presented. In the shadow segmentation stage, we apply a Canny edge detector to the shadowed image by using a three-dimensional (3-D) augmented reality (AR) marker of a known size and shape. Then the hierarchical tree of the connected edge components representing the topological relation is constructed, and the connected components are merged, taking their hierarchical structures into consideration. A gradient-based ray that is perpendicular to the gradient of the edge pixel in the shadow image can be used to extract the shadow regions. In the light source detection stage, shadow regions with both a 3-D AR marker and the light sources are partitioned into candidate shadow maps. A simple logic operation between each candidate shadow map and the segmented shadow is used to efficiently compute the area ratio between them. The proposed method successively extracts the main light sources according to their relative contributions on the segmented shadows. The proposed method can reduce unwanted effects due to the sampling positions in the shadow region and the threshold values in the shadow edge detection.
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Paz, A.; Smith, J.; Captain, J.; Zacny, K.
2016-01-01
Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP).Resource Prospector is a lunar mission to investigate strategic knowledge gaps (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis.
NASA Technical Reports Server (NTRS)
1996-01-01
This series of 10 Hubble Space Telescope images captures several small moons orbiting Saturn. Hubble snapped the five pairs of images while the Earth was just above the ring plane and the Sun below it. The telescope captured a pair of images every 97 minutes as it circled the Earth. Moving out from Saturn, the visible rings are: the broad C Ring, the Cassini Division, and the narrow F Ring.
The first pair of images shows the large, bright moon Dione, near the middle of the frames. Two smaller moons, Pandora (the brighter one closer to Saturn) and Prometheus, appear as if they're touching the F Ring. In the second frame, Mimas emerges from Saturn's shadow and appears to be chasing Prometheus.In the second image pair, Mimas has moved towards the tip of the F Ring. Rhea, another bright moon, has just emerged from behind Saturn. Prometheus, the closest moon to Saturn, has rounded the F Ring's tip and is approaching the planet. The slightly larger moon Epimetheus has appeared.The third image pair shows Epimetheus, as a tiny dot just beyond the tip of the F Ring. Prometheus is in the lower right corner. An elongated clump or arc of debris in the F ring is seen as a slight brightening on the far side of this thin ring.In the fourth image pair, Epimetheus, in the lower right corner, streaks towards Saturn. The long ring arc can be seen in both frames.The fifth image pair again captures Mimas, beyond the tip of the F Ring. The same ring arc is still visible.In addition to the satellites, a pair of stars can be seen passing behind the rings, appearing to move towards the lower left due to Saturn's motion across the sky.The images were taken Nov. 21, 1995 with Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Ogura, Akio; Hayashi, Norio; Negishi, Tohru; Watanabe, Haruyuki
2018-05-09
Medical staff must be able to perform accurate initial interpretations of radiography to prevent diagnostic errors. Education in medical image interpretation is an ongoing need that is addressed by text-based and e-learning platforms. The effectiveness of these methods has been previously reported. Here, we describe the effectiveness of an e-learning platform used for medical image interpretation education. Ten third-year medical students without previous experience in chest radiography interpretation were provided with e-learning instructions. Accuracy of diagnosis using chest radiography was provided before and after e-learning education. We measured detection accuracy for two image groups: nodular shadow and ground-glass shadow. We also distributed the e-learning system to the two groups and analyzed the effectiveness of education for both types of image shadow. The mean correct answer rate after the 2-week e-learning period increased from 34.5 to 72.7%. Diagnosis of the ground glass shadow improved significantly more than that of the mass shadow. Education using the e-leaning platform is effective for interpretation of chest radiography results. E-learning is particularly effective for the interpretation of chest radiography images containing ground glass shadow.
NASA Astrophysics Data System (ADS)
Speyerer, E.; Koeber, S.; Robinson, M. S.
2010-12-01
The spin axis of the Moon is tilted by only 1.5° (compared with the Earth's 23.5°), leaving some areas near the poles in permanent shadow while other nearby regions remain sunlit for a majority of the year. Theory, radar data, neutron measurements, and Lunar CRater Observation and Sensing Satellite (LCROSS) observations suggest that volatiles may be present in the cold traps created inside these permanently shadowed regions. While areas of near permanent illumination are prime locations for future lunar outposts due to benign thermal conditions and near constant solar power. The Lunar Reconnaissance Orbiter (LRO) has two imaging systems that provide medium and high resolution views of the poles. During almost every orbit the LROC Wide Angle Camera (WAC) acquires images at 100 m/pixel of the polar region (80° to 90° north and south latitude). In addition, the LROC Narrow Angle Camera (NAC) targets selected regions of interest at 0.7 to 1.5 m/pixel [Robinson et al., 2010]. During the first 11 months of the nominal mission, LROC acquired almost 6,000 WAC images and over 7,300 NAC images of the polar region (i.e., within 2° of pole). By analyzing this time series of WAC and NAC images, regions of permanent shadow and permanent, or near-permanent illumination can be quantified. The LROC Team is producing several reduced data products that graphically illustrate the illumination conditions of the polar regions. Illumination movie sequences are being produced that show how the lighting conditions change over a calendar year. Each frame of the movie sequence is a polar stereographic projected WAC image showing the lighting conditions at that moment. With the WAC’s wide field of view (~100 km at an altitude of 50 km), each frame has repeat coverage between 88° and 90° at each pole. The same WAC images are also being used to develop multi-temporal illumination maps that show the percent each 100 m × 100 m area is illuminated over a period of time. These maps are derived by stacking all the WAC frames, selecting a threshold to determine if the surface is illuminated, and summing the resulting binary images. In addition, mosaics of NAC images are also being produced for regions of interest at a scale of 0.7 to 1.5 m/pixel. The mosaics produced so far have revealed small illuminated surfaces on the tens of meters scale that were previously thought to be shadowed during that time. The LROC dataset of the polar regions complements previous illumination analysis of Clementine images [Bussey et al., 1999], Kaguya topography [Bussey et al., 2010], and the current efforts underway by the Lunar Orbiter Laser Altimeter (LOLA) Team [Mazarico et al., 2010] and provide an important new dataset for science and exploration. References: Bussey et al. (1999), Illumination conditions at the lunar south pole, Geophysical Research Letters, 26(9), 1187-1190. Bussey et al. (2010), Illumination conditions of the south pole of the Moon derived from Kaguya topography, Icarus, 208, 558-564. Mazarico et al. (2010), Illumination of the lunar poles from the Lunar Orbiter Laser Altimeter (LOLA) Topography Data, paper presented at 41st LPSC, Houston, TX. Robinson et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview, Space Sci Rev, 150, 81-124.
Shadow-free single-pixel imaging
NASA Astrophysics Data System (ADS)
Li, Shunhua; Zhang, Zibang; Ma, Xiao; Zhong, Jingang
2017-11-01
Single-pixel imaging is an innovative imaging scheme and receives increasing attention in recent years, for it is applicable for imaging at non-visible wavelengths and imaging under weak light conditions. However, as in conventional imaging, shadows would likely occur in single-pixel imaging and sometimes bring negative effects in practical uses. In this paper, the principle of shadows occurrence in single-pixel imaging is analyzed, following which a technique for shadows removal is proposed. In the proposed technique, several single-pixel detectors are used to detect the backscattered light at different locations so that the shadows in the reconstructed images corresponding to each detector shadows are complementary. Shadow-free reconstruction can be derived by fusing the shadow-complementary images using maximum selection rule. To deal with the problem of intensity mismatch in image fusion, we put forward a simple calibration. As experimentally demonstrated, the technique is able to reconstruct monochromatic and full-color shadow-free images.
Reflectance calibration and shadow effect of VNIS spectra acquired by the Yutu rover
NASA Astrophysics Data System (ADS)
Hu, Sen; Lin, Yang-Ting; Liu, Bin; Yang, Wei; He, Zhi-Ping; Xing, Wei-Fan
2015-09-01
Yutu is the first lunar rover after the Apollo program and Luna missions. One of the payloads on the Yutu rover, the Visible and Near-infrared Imaging Spectrometer (VNIS), has acquired four VIS/NIR images and SWIR spectra near its landing site in Mare Imbrium. The radiance images were reduced through repairing bad lines and bad points, and applying flat field correction, and then were converted into reflectance values based on the solar irradiance and angles of incidence. A significant shadow effect was observed in the VIS/NIR image. The shadowed regions show lower reflectance with a darkening trend compared with illuminated regions. The reflectance increased by up to 24% for entire images and 17% for the VIS/NIR-SWIR overlapping regions after shadow correction. The correction for the shadow effect will remarkably decrease the estimate of FeO content, by up to 4.9 wt.% in this study. The derived FeO contents of CD-005∼008 after shadow correction are around 18.0 wt.%.
Insolation Effects on Lunar Hydrogen: Observation from the LRO LEND and LOLA Instruments
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Livak, M. M.; Malakhov, A.;
2011-01-01
The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H) Largely, this was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, recent discoveries indicate that the H picture may be more complex than thc PSR hypothesis suggests. Observations by the Lunar Exploration Neutron Detect (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) indicate some H concentrations lie outside PSR. Similarly, observations from Chandraayan-l's M3 and Deep Impact's EPOXI near infra-red observations indicate diurnal cycling of volatile H in lower latitudes. These results suggest other geophysical phenomena may also play a role in the Lunar Hydrogen budget. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies
Rover wheel charging on the lunar surface
NASA Astrophysics Data System (ADS)
Jackson, Telana L.; Farrell, William M.; Zimmerman, Michael I.
2015-03-01
The environment at the Moon is dynamic, with highly variable solar wind plasma conditions at the lunar dayside, terminator, and night side regions. Moving objects such as rover wheels will charge due to contact electrification with the surface, but the degree of charging is controlled by the local plasma environment. Using a dynamic charging model of a wheel, it is demonstrated herein that moving tires will tribocharge substantially when venturing into plasma-current starved regions such as polar craters or the lunar nightside. The surface regolith distribution and the overall effect on charge accumulation of grains cohesively sticking to the rover tire has been incorporated into the model. It is shown that dust sticking can limit the overall charge accumulated on the system. However charge dissipation times are greatly increased in shadowed regions and can present a potential hazard to astronauts and electrical systems performing extra-vehicular activities. We show that dissipation times change with wheel composition and overall system tribocharging is dependent upon wheel velocity.
A High-Sensitivity Broad-Band Seismic Sensor for Shallow Seismic Sounding of the Lunar Regolith
NASA Technical Reports Server (NTRS)
Pike, W. Thomas; Standley, Ian M.; Banerdt, W. Bruce
2005-01-01
The recently undertaken Space Exploration Initiative has prompted a renewed interest in techniques for characterizing the surface and shallow subsurface (0-10s of meters depth) of the Moon. There are several reasons for this: First, there is an intrinsic scientific interest in the subsurface structure. For example the stratigraphy, depth to bedrock, density/porosity, and block size distribution all have implications for the formation of, and geological processes affecting the surface, such as sequential crater ejecta deposition, impact gardening, and seismic settling. In some permanently shadowed craters there may be ice deposits just below the surface. Second, the geotechnical properties of the lunar surface layers are of keen interest to future mission planners. Regolith thickness, strength, density, grain size and compaction will affect construction of exploration infrastructure in terms of foundation strength and stability, ease of excavation, radiation shielding effectiveness, as well as raw material handling and processing techniques for resource extraction.
Soft bilateral filtering volumetric shadows using cube shadow maps
Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang
2017-01-01
Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740
An image-space parallel convolution filtering algorithm based on shadow map
NASA Astrophysics Data System (ADS)
Li, Hua; Yang, Huamin; Zhao, Jianping
2017-07-01
Shadow mapping is commonly used in real-time rendering. In this paper, we presented an accurate and efficient method of soft shadows generation from planar area lights. First this method generated a depth map from light's view, and analyzed the depth-discontinuities areas as well as shadow boundaries. Then these areas were described as binary values in the texture map called binary light-visibility map, and a parallel convolution filtering algorithm based on GPU was enforced to smooth out the boundaries with a box filter. Experiments show that our algorithm is an effective shadow map based method that produces perceptually accurate soft shadows in real time with more details of shadow boundaries compared with the previous works.
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning
Deng, Zhongliang
2018-01-01
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization. PMID:29361718
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
Deng, Zhongliang; Fu, Xiao; Wang, Hanhua
2018-01-20
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
NASA Astrophysics Data System (ADS)
Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Hurley, Dana; Horányi, Mihaly; Mall, Urs; Andre, Nicolas; Ivchenko, Nickolay; Oberst, Jürgen; Retherford, Kurt; Coates, Andrew; Masters, Adam; Wahlund, Jan-Erik; Kallio, Esa; SELMA Proposal Team
2018-07-01
The Moon is an archetypal atmosphere-less celestial body in the Solar System. For such bodies, the environments are characterized by complex interaction among the space plasma, tenuous neutral gas, dust and the outermost layer of the surface. Here we propose the SELMA mission (Surface, Environment, and Lunar Magnetic Anomalies) to study how airless bodies interact with space environment. SELMA uses a unique combination of remote sensing via ultraviolet and infrared wavelengths, and energetic neutral atom imaging, as well as in situ measurements of exospheric gas, plasma, and dust at the Moon. After observations in a lunar orbit for one year, SELMA will conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shackleton crater. SELMA also carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. SELMA was proposed to the European Space Agency as a medium-class mission (M5) in October 2016. Research on the SELMA scientific themes is of importance for fundamental planetary sciences and for our general understanding of how the Solar System works. In addition, SELMA outcomes will contribute to future lunar explorations through qualitative characterization of the lunar environment and, in particular, investigation of the presence of water in the lunar soil, as a valuable resource to harvest from the lunar regolith.
Helios: a tangible and augmented environment to learn optical phenomena in astronomy
NASA Astrophysics Data System (ADS)
Fleck, Stéphanie; Hachet, Martin
2015-10-01
France is among the few countries that have integrated astronomy in primary school levels. However, for fifteen years, a lot of studies have shown that children have difficulties in understanding elementary astronomic phenomena such as day/night alternation, seasons or moon phases' evolution. To understand these phenomena, learners have to mentally construct 3D perceptions of aster motions and to understand how light propagates from an allocentric point of view. Therefore, 4-5 grades children (8 to 11 years old), who are developing their spatial cognition, have many difficulties to assimilate geometric optical problems that are linked to astronomy. To make astronomical learning more efficient for young pupils, we have designed an Augmented Inquiry-Based Learning Environment (AIBLE): HELIOS. Because manipulations in astronomy are intrinsically not possible, we propose to manipulate the underlying model. With HELIOS, virtual replicas of the Sun, Moon and Earth are directly manipulated from tangible manipulations. This digital support combines the possibilities of Augmented Reality (AR) while maintaining intuitive interactions following the principles of didactic of sciences. Light properties are taken into account and shadows of Earth and Moon are directly produced by an omnidirectional light source associated to the virtual Sun. This AR environment provides users with experiences they would otherwise not be able to experiment in the physical world. Our main goal is that students can take active control of their learning, express and support their ideas, make predictions and hypotheses, and test them by conducting investigations.
Physician shadowing: a review of the literature and proposal for guidelines.
Kitsis, Elizabeth A; Goldsammler, Michelle
2013-01-01
Premedical students commonly shadow physicians to gain an understanding of what careers in medicine entail. The authors reviewed the literature to explore (1) whether shadowing achieves this goal consistently and effectively, (2) the ethical issues involved, and (3) other reasons that individuals shadow physicians. The authors searched the MEDLINE database via Ovid for English-language articles published from 1948 to March 2011. Eligible articles described physician shadowing programs and/or assessed the value of physician shadowing independently or in comparison with other educational methods. Of 770 articles identified, 13 articles about physician shadowing programs met inclusion criteria. Two of the 13 programs involved shadowing only, whereas 11 included other educational initiatives. Participants varied; shadowers included students (high school, college, medical school), recent medical school graduates, or international medical graduates. Few studies addressed shadowing by premedical students. Most studies involved programs outside the United States. Shadowing program objectives and characteristics differed. Data reported from focus groups, interviews, and surveys suggest that shadowing experiences generally increased participants' interest in medicine (or a specialty) or improved participants' confidence in transitioning to a new position. Some articles raised ethical and practical concerns related to shadowing. The few shadowing programs described in the literature were heterogeneous and often involved other activities. Further research is warranted; objective outcomes measures would be useful. The authors propose developing guidelines and introducing a code of conduct for premedical students, to enhance the consistency of shadowing experiences and address ethical and practical considerations.
Robotic vision techniques for space operations
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1994-01-01
Automation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.
Layover and shadow detection based on distributed spaceborne single-baseline InSAR
NASA Astrophysics Data System (ADS)
Huanxin, Zou; Bin, Cai; Changzhou, Fan; Yun, Ren
2014-03-01
Distributed spaceborne single-baseline InSAR is an effective technique to get high quality Digital Elevation Model. Layover and Shadow are ubiquitous phenomenon in SAR images because of geometric relation of SAR imaging. In the signal processing of single-baseline InSAR, the phase singularity of Layover and Shadow leads to the phase difficult to filtering and unwrapping. This paper analyzed the geometric and signal model of the Layover and Shadow fields. Based on the interferometric signal autocorrelation matrix, the paper proposed the signal number estimation method based on information theoretic criteria, to distinguish Layover and Shadow from normal InSAR fields. The effectiveness and practicability of the method proposed in the paper are validated in the simulation experiments and theoretical analysis.
The perception of 3-D shape from shadows cast onto curved surfaces.
Norman, J Farley; Lee, Young-lim; Phillips, Flip; Norman, Hideko F; Jennings, L RaShae; McBride, T Ryan
2009-05-01
In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can "discount" the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.
NASA Astrophysics Data System (ADS)
Jordan, A.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N.; Spence, H. E.; Hayne, P. O.; Izenberg, N.
2016-12-01
Solar energetic particles (SEPs) can penetrate regoliths of airless bodies to depths of 1 mm and cause deep dielectric charging. This charging is predicted to dissipate slowly (on the order of days) in regoliths with low electrical conductivities, which could form subsurface electric fields (> 106 V/m) large enough to cause dielectric breakdown (or "sparking"). Colder regoliths are expected to have lower conductivities, so the coldest regions of airless planetary bodies can become the most deep dielectrically charged. Consequently, large SEP events may cause dielectric breakdown in these regions, possibly contributing to space weathering on airless bodies in the inner solar system. Previous work has predicted that, in permanently shadowed regions (PSRs) on the Moon, breakdown weathering may have melted and/or vaporized 10-25 wt% of the meteoritically gardened regolith, a percentage comparable to weathering by meteoroid impacts. But much of the Moon's nightside can also reach cold (<100 K) temperatures, so we now show how breakdown weathering may have affected 4-11 wt% of the gardened regolith over the entire lunar surface. We use data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) to show two examples of SEP events that may have caused breakdown on the Moon. We also scale large SEP events to the orbit of Mars and predict the rate at which they may cause dielectric breakdown on Phobos and Deimos, whose polar regions remain <100 K during their long winters (nearly half an Earth year). On these satellites, the gardening rates are unknown, so we estimate the percentage of regolith affected in these locations as a function of gardening rate. Finally, we briefly show that dielectric breakdown may occur on asteroids that have either high obliquities or PSRs, like Vesta and Ceres, respectively. This work also emphasizes the need for laboratory experiments to inform both remote sensing observations and the analysis of samples already obtained during the Luna and Apollo missions.
2017-12-08
In this rare image taken on 19 July, the wide-angle camera on the international Cassini spacecraft has captured Saturn’s rings and our planet Earth and Moon in the same frame. The dark side of Saturn, its bright limb, the main rings, the F ring, and the G and E rings are clearly seen; the limb of Saturn and the F ring are overexposed. The ‘breaks’ in the brightness of Saturn’s limb are due to the shadows of the rings on the globe of Saturn, preventing sunlight from shining through the atmosphere in those regions. The E and G rings have been brightened for better visibility. Earth, 1.44 billion km away in this image, appears as a blue dot at centre right; the Moon can be seen as a fainter protrusion off its right side. The other bright dots nearby are stars. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-11-01
When NASA's Lunar Crater Observation and Sensing Satellite (LCROSS) and a companion rocket purposely slammed into a crater at the Moon's south pole on 9 October, some observers on Earth lamented as anticlimactic the raised plumes of material that were partially blocked by a crater ridge and were difficult to see with backyard telescopes. However, it turns out that the projectiles struck it big. “Indeed, yes, we found water. We didn’t find just a little bit; we found a significant amount,” said Anthony Colaprete, LCROSS principal investigator with the NASA Ames Research Center, Moffett Field, Calif. At a 13 November news briefing, Colaprete lifted a 2-gallon plastic bucket and said preliminary results indicate that instruments detected about a dozen buckets' worth of water in parts of the two plumes, the first generated by the spent Centaur upper stage of the Atlas V launch vehicle at 1131 UTC and the second generated by LCROSS about 4 minutes later. NASA described the two plumes as a high-angle plume of vapor and fine dust and a lower-angle ejecta curtain of heavier material. LCROSS and the Centaur upper stage hit the permanently shadowed Cabeus crater.
Hands-on astronomy activities for the elementary school
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, T.E.; Horne, J.C.
We held a series of astronomy workshops for local school teachers using astronomy activities from a course we give for Elementary Education majors. The school teachers provide us with feedback about successes and failures. Then we try the revised activities in the classroom. Via this in-service and pre-service feedback, the astronomy laboratory activities in the course have been completely revised over the last three years. The activities we use are almost entirely hands-on. The activities include use of log book (or journal) for describing outside-of-class observations of sunsets, phases of the moon, portable sundial, and the somewhat unique method wemore » use to teach the constellations. In addition, all laboratory activity records are kept in the log book. Laboratory activities cover the use of fists to measure degrees, constellations, phases of the moon, relative distances and size of planets, Invent an Alien, lenses, images and telescopes, and the making of a comet. In our poster, based roughly on the theme of the seasons, we will describe a portable, multi-user sundial, length of the day display using newspaper data, two temperature/season activities, and a model demonstration of why the sundial shadows behave as they do.« less
Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration
NASA Technical Reports Server (NTRS)
Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.
2013-01-01
This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.
Solar eclipse over the South Pacific Ocean
2017-12-08
During a total solar eclipse, the MODIS instrument on NASA's Aqua satellite recorded this image of the shadow of the moon over the South Pacific Ocean on March 8, 2016, at 10:05 pm EST. This total solar eclipse was the last one before an August 21, 2017, total solar eclipse that will be visible in much of the United States. Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2004-04-15
Cassini has sighted Prometheus and Pandora, the two F-ring-shepherding moons whose unpredictable orbits both fascinate scientists and wreak havoc on the F ring. Prometheus (102 kilometers, or 63 miles across) is visible left of center in the image, inside the F ring. Pandora (84 kilometers, or 52 miles across) appears above center, outside the ring. The dark shadow cast by the planet stretches more than halfway across the A ring, the outermost main ring. The mottled pattern appearing in the dark regions of the image is 'noise' in the signal recorded by the camera system, which has subsequently been magnified by the image processing. The F ring is a narrow, ribbon-like structure, with a width seen in this geometry equivalent to a few kilometers. The two small, irregularly shaped moons exert a gravitational influence on particles that make up the F ring, confining it and possibly leading to the formation of clumps, strands and other structures observed there. Pandora prevents the F ring from spreading outward and Prometheus prevents it from spreading inward. However, their interaction with the ring is complex and not fully understood. The shepherds are also known to be responsible for many of the observed structures in Saturn's A ring. The moons, which were discovered in images returned by the Voyager 1 spacecraft in 1980, are in chaotic orbits--their orbits can change unpredictably when the moons get very close to each other. This strange behavior was first noticed in ground-based and Hubble Space Telescope observations in 1995, when the rings were seen nearly edge-on from Earth and the usual glare of the rings was reduced, making the satellites more readily visible than usual. The positions of both satellites at that time were different than expected based on Voyager data. One of the goals for the Cassini-Huygens mission is to derive more precise orbits for Prometheus and Pandora. Seeing how their orbits change over the duration of the mission will help to determine their masses, which in turn will help constrain models of their interiors and provide a more complete understanding of their effect on the rings. This narrow angle camera image was snapped through the broadband green spectral filter, centered at 568 nanometers, on March 10, 2004, when the spacecraft was 55.5 million kilometers (34.5 million miles) from the planet. Image scale is approximately 333 kilometers (207 miles) per pixel. Contrast has been greatly enhanced, and the image has been magnified to aid visibility of the moons as well as structure in the rings. http://photojournal.jpl.nasa.gov/catalog/PIA05387
NASA Astrophysics Data System (ADS)
Channumsin, Sittiporn; Ceriotti, Matteo; Radice, Gianmarco
2018-02-01
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth's gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100 days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.
The mid 19th and early 20th Century Pull of a Nearby Eclipse Shadow Path
NASA Astrophysics Data System (ADS)
Bonifácio, Vitor
2012-09-01
The unique observing conditions allowed by total solar eclipses made them a highly desirable target of 19th and early 20th century astronomical expeditions, particularly after 1842. Due to the narrowness of the lunar shadow at the Earth's surface this usually implied traveling to faraway locations with all the subsequent inconveniences, in particular, high costs and complex logistics. A situation that improved as travel became faster, cheaper and more reliable. The possibility to observe an eclipse in one's own country implied no customs, no language barriers, usually shorter travelling distances and the likely support of local and central authorities. The eclipse proximity also provided a strong argument to pressure the government to support the eclipse observation. Sometimes the scientific elite would use such high profile events to rhetorically promote broader goals. In this paper we will analyse the motivation, goals, negotiating strategies and outcomes of the Portuguese eclipse expeditions made between 1860 and 1914. We will focus, in particular, on the observation of the solar eclipses of 22 December 1870 and 17 April 1912. The former allowed the start-up of astrophysical studies in the country while the movie obtained at the latter led Francisco da Costa Lobo to unexpectedly propose a polar flattening of the Moon.
2013-12-23
Winter is approaching in the southern hemisphere of Saturn and with this cold season has come the familiar blue hue that was present in the northern winter hemisphere at the start of NASA's Cassini mission. The changing blue hue that we have learned marks winter at Saturn is likely due to reduction of ultraviolet sunlight and the haze it produces, making the atmosphere clearer and increasing the opportunity for Rayleigh scattering (scattering by molecules and smaller particles) and methane absorption: both processes make the atmosphere blue. The small black dot seen to the right and up from image center, within the ring shadows of the A and F rings, is the shadow of the moon, Prometheus. For an image showing winter in the northern hemisphere see PIA08166. This view looks toward the unilluminated side of the rings from about 44 degrees below the ring plane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were taken with the Cassini spacecraft wide-angle camera on July 29, 2013. This view was acquired at a distance of approximately 1.003 million miles (1.615 million kilometers) from Saturn. Image scale is 58 miles (93 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17176
NASA Astrophysics Data System (ADS)
Hancock, L. O.
2013-12-01
G. Jones (1856) was first to suggest that the Earth might have its own ring, noting that an Earth ring in the ecliptic plane would account for the latitude dependence of the zodiacal light. Jones's proposal was not accepted: it is difficult to see why the ecliptic would accumulate mass within the Earth-Moon system. Very recently, however, this objection has been mitigated by the discovery of Saturn's Phoebe ring: evidently, the plane of a planetary moon's orbit has now been observed as the site of mass accumulation. An adjustment of just a few degrees from ecliptic to the plane of the lunar orbit gives Jones's proposal the boost of an existing Solar System analogue, mysterious though the analogue is. J. O'Keefe (1980) was first to suggest that an Earth ring system could drive climate: a ring in the equatorial plane, waxing and waning in optical depth, could drive the alternation of Ice Age and interglacial climates. This driver would account for the observation that the Ice Age climate was mainly a difference in winter only. Could Earth have a ring system with one or both elements? Even if light and unstable, it would be important to assess, as it could drive climate change. Dust assessments have not discovered a ring system, but they do not cover low orbits well, nor rule out very small particles stringently. Yet tiny particles can be optically important. There are many difficulties with this hypothesis: Why have ground-based observers never identified an equatorial ring, which after all should be the brightest element of a ring system? Why should a ring system be made of very small particles only? The material must be constantly falling to Earth - where is it? Finally, can we believe in the level of lunar geological activity needed to sustain an Earth ring system? This presentation addresses only one issue: Could ground-based observers have seen but misidentified an equatorial ring? To support consideration of that question, herewith a simple geometric exercise: a schema of ring effects on the southern sky: (i) extinction of extra-terrestrial light between celestial equator and horizon; (ii) brightening of extra-terrestrial light via light-through-dust effects near the southern horizon; and (iii) reflection of sunlight from celestial equator to horizon. These effects would be modulated by season (due to ring self-shadowing) and hour of the night (because of Earth's shadow). We suggest that the expected effects are not "missing" at all - similar effects are well known to observers but are taken to be fully accounted for by skyglow, airglow and light pollution, qualitatively similar phenomena that certainly exist. We conclude that ground-based observers' non-identification of an equatorial ring is not a counter-indicator of a ring's existence. As far as this consideration goes, the question of an Earth ring system is open.
NASA Astrophysics Data System (ADS)
Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.
2007-12-01
The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is established. References Huang, S., (2007), Surface Temperatures at the Nearside of the Moon as a Record of the Radiation Budget of Earth's Climate System, Advances in Space Research, doi:10.1016/j.asr.2007.04.093. Lean, J., Geophys. Res. Lett., (2000), 27(16), 2425-2428. Miyahara, H., G. Wen, R. F. Cahalan, and A. Ohmura, (2007), Deriving Historical Total Solar Irradiance from Lunar Borehole Temperatures, submitted to Geophy. Res. Lett. Nozette, S., E. M. Shoemaker, P. D. Spudis, and C. L. Lichtenberg, The possibility of ice on the Moon, Science, 278, 144-145, 1997. Spudis, P.D., T. Cook, M. Robinson, B. Bussey, and B. Fessler, Topography of the southe polar region from Clementine stereo imaging, New views of the Moon, Integrated remotely sensed, geophysical, and sample datasets, Lunar Planet. Inst., [CD-ROM], abstract 6010, 1998. Wang, Y. M., J. L. Lean and N. R. Sheeley (2005), Astrophys. J., 625, 522-538.
NASA Astrophysics Data System (ADS)
Zamaro, Mattia; Biggs, James D.
2016-02-01
One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BP-GH). In this paper, a showcase of various classes of non-keplerian orbits is identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk and shadowing wake as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation, and the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.
An analytical and experimental evaluation of shadow shields and their support members
NASA Technical Reports Server (NTRS)
Stochl, R. J.; Boyle, R. J.
1972-01-01
Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.
Lunar single-scattering, porosity, and surface-roughness properties with SMART-1/AMIE
NASA Astrophysics Data System (ADS)
Parviainen, H.; Muinonen, K.; Näränen, J.; Josset, J.-L.; Beauvivre, S.; Pinet, P.; Chevrel, S.; Koschny, D.; Grieger, B.; Foing, B.
2009-04-01
We analyze the single-scattering albedo and phase function, local surface roughness and regolith porosity, and the coherent backscattering, single scattering, and shadowing contributions to the opposition effect for specific lunar mare regions imaged by the SMART-1/AMIE camera. We account for shadowing due to surface roughness and mutual shadowing among the regolith particles with ray-tracing computations for densely-packed particulate media with a fractional-Brownian-motion interface with free space. The shadowing modeling allows us to derive the hundred-micron-scale volume-element scattering phase function for the lunar mare regolith. We explain the volume-element phase function by a coherent-backscattering model, where the single scatterers are the submicron-to-micron-scale particle inhomogeneities and/or the smallest particles on the lunar surface. We express the single-scatterer phase function as a sum of three Henyey-Greenstein terms, accounting for increased backward scattering in both narrow and wide angular ranges. The Moon exhibits an opposition effect, that is, a nonlinear increase of disk-integrated brightness with decreasing solar phase angle, the angle between the Sun and the observer as seen from the object. Recently, the coherent-backscattering mechanism (CBM) has been introduced to explain the opposition effect. CBM is a multiple-scattering interference mechanism, where reciprocal waves propagating through the same scatterers in opposite directions always interfere constructively in the backward-scattering direction but with varying interference characteristics in other directions. In addition to CBM, mutual shadowing among regolith particles (SMp) and rough-surface shadowing (SMr) have their effect on the behavior of the observed lunar surface brightness. In order to accrue knowledge on the volume-element and, ultimately, single-scattering properties of the lunar regolith, both SMp and SMr need to be accurately accounted for. We included four different lunar mare regions in our study. Each of these regions covers several hundreds of square kilometers of lunar surface. When selecting the regions, we have required that they have been imaged by AMIE across a wide range of phase angles, including the opposition geometry. The phase-angle range covered is 0-109 °, with incidence and emergence angles (ι and ε) ranging within 7-87 ° and 0-53 °, respectively. The pixel scale varies from 288m down to 29m. Biases and dark currents were subtracted from the images in the usual way, followed by a flat-field correction. New dark-current reduction procedures have recently been derived from in-flight measurements to replace the ground-calibration images . The clear filter was chosen for the present study as it provides the largest field of view and is currently the best-calibrated channel. Off-nadir-pointing observations allowed for the extensive phase-angle coverage. In total, 220 images are used for the present study. The photometric data points were extracted as follows. First, on average, 50 sample areas of 10 Ã- 10 pixels were chosen by hand from each image. Second, the surface normal, ι, ε, °, and α were computed for each pixel in each sample area using the NASA/NAIF SPICE software toolkit with the latest and corrected SMART-1/AMIE SPICE kernels. Finally, the illumination angles and the observed intensity were averaged over each sample area. In total, the images used in the study resulted in approximately 11000 photometric sample points for the four mare regions. We make use of fractional-Brownian-motion surfaces in modeling the interface between free space and regolith and a size distribution of spherical particles in modeling the particulate medium. We extract the effects of the stochastic geometry from the lunar photometry and, simultaneously, obtain the volume-element scattering phase function of the lunar regolith locations studied. The volume-element phase function allows us to constrain the physical properties of the regolith particles. Based on the present theoretical modeling of the lunar photometry from SMART-1/AMIE, we conclude that most of the lunar mare opposition effect is caused by coherent backscattering and single scattering within volume elements comparable to lunar particle sizes, with only a small contribution from shadowing effects. We thus suggest that the lunar single scatterers exhibit intensity enhancement towards the backward scattering direction in resemblance to the scattering characteristics experimentally measured and theoretically computed for realistic small particles. Further interpretations of the lunar volume-element phase function will be the subject of future research.
Scattering of sound by atmospheric turbulence predictions in a refractive shadow zone
NASA Technical Reports Server (NTRS)
Mcbride, Walton E.; Bass, Henry E.; Raspet, Richard; Gilbert, Kenneth E.
1990-01-01
According to ray theory, regions exist in an upward refracting atmosphere where no sound should be present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism involved in producing the sound levels measured in shadow zones. No existing analytical method includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones. In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering from randomly distributed scattering centers ('turbules'). Sound pressure levels are computed for many realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with existing theories and experimental data.
Photometric study of the Moon with SMART-1/AMIE
NASA Astrophysics Data System (ADS)
Naranen, Jyri; Parviainen, Hannu; Muinonen, Karri; Josset, Jean-Luc; Beauvivre, Stephane; Koschny, Detlef; Foing, Bernard H.; Krieger, Bjoern; Amie Team
The Advanced Moon micro-Imager Experiment (AMIE) onboard the ESA SMART-1 lunar mission performed imaging of the Moon between November 2004 and September 2006, when the mission was ended by crashing the spacecraft into the lunar surface. AMIE was a 1024X1024 pixel miniaturized CCD camera with three colour filters and a panchromatic channel (clear filter). The images are of medium-to-high resolution, e.g. at 300 km pericenter altitude the resolution was 27 m/pix. We selected four different regions on the lunar surface imaged by AMIE for the photometric investigation reported here. These regions were selected so that as large phase angle coverage as possible was available, including the opposition geometry. Each of the regions cover a few hundred square kilometers of the lunar surface and were imaged by AMIE several tens of times. The regions examined include, e.g., Reiner gamma and Oceanus Procellarum near the crater Mairan. We utilized the latest in-flight calibration data available and we also georetrified the images to account for the aspect distortions. For the study reported here, the panchromatic filter was chosen since it is the best calibrated channel at the moment. The data was analyzed by implementing a numerical light scattering model with which we have inverted the regolith porosity and macroscopic surface roughness properties for the target areas. The model computes the bidirectional reflectance function using the geometric-optics approximation from a particulate medium constrained by a self-affine fractal random fields mimicking the regolith-covered lunar surface. Fractal description of the surface roughness is used, since it gives a more realistic way to model the true macroscopic surface roughness than the often used Gaussian correlation-model. Unlike in the previous studies, the azimuthal shadowing effects are taken into account, allowing for a more reliable inversion of surface statistics from images with large phase angles. In addition, we have fitted an empirical photometric function to the data which can be used to perform photometric correction to the images in, e.g., image mosaicking. A comparison with the results from the relevant previous photometric studies of the Moon is given. We end by presenting plans for future studies, especially the possible multi-colour photometry.
Concept for a radioisotope powered dual mode lunar rover
NASA Technical Reports Server (NTRS)
Elliott, John O.; Schriener, Timothy M.; Coste, Keith
2006-01-01
Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.
Volatile Analysis by Pyrolysis of Regolith (Vapor) on the Moon using Mass Spectrometry
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Kate, I. L. ten; Brinckerhoff, W.; Cardiff, E.; Dworkin, J. P.; Feng, S.; Getty, S.; Gorevan, S.; Harpold, D.; Jones, A. L.;
2008-01-01
The identification of lunar resources such as water is a fundamental component of the the NASA Vision for Space Exploration. The Lunar Prospector mission detected high concentrations of hydrogen at the lunar poles that may indicate the presence of water or other volatiles in the lunar regolith [1]. One explanation for the presence of enhanced hydrogen in permanently shadowed crater regions is long term trapping of water-ice delivered by comets, asteroids, and other meteoritic material that have bombarded the Moon over the last 4 billion years [2]. It is also possible that the hydrogen signal at the lunar poles is due to hydrogen implanted by the solar wind which is delayed from diffusing out of the regolith by the cold temperatures [3]. Previous measurements of the lunar atmosphere by the LACE experiment on Apollo 17, suggested the presence of cold trapped vola'tiles that were expelled by solar heating [4]. In situ composition and isotopic analyses of the lunar regolith will be required to establish the abundance, origin, and distribution of water-ice and other volatiles at the lunar poles. Volatile Analysis by Pyrolysis of Regolith (VAPoR) on the Moon using mass spectrometry is one technique that should be considered. The VAPoR pyrolysis-mass spectrometer (pyr-MS) instrument concept study was selected for funding in 2007 by the NASA Lunar Sortie Science Opportunities (LSSO) Program. VAPoR is a miniature version of the Sample Analysis at Mars (SAM) instrument suite currently being developed at NASA Goddard for the 2009 Mars Science Laboratory mission (Fig. 1).
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Wegeng, Robert S.; Suzuki, Nantel H.
2012-01-01
Recent missions have confirmed the existence of water and other volatiles on the Moon, both in permanently-shadowed craters and elsewhere. Non-volatile lunar resources may represent significant additional value as infrastructure or manufacturing feedstock. Characterization of lunar resources in terms of abundance concentrations, distribution, and recoverability is limited to in-situ Apollo samples and the expanding remote-sensing database. This paper introduces an approach to lunar resource prospecting supported by a simple lunar surface infrastructure based on the Thermal Wadi concept of thermal energy storage and using compact rovers equipped with appropriate prospecting sensors and demonstration resource extraction capabilities. Thermal Wadis are engineered sources of heat and power based on the storage and retrieval of solar-thermal energy in modified lunar regolith. Because Thermal Wadis keep compact prospecting rovers warm during periods of lunar darkness, the rovers are able to survive months to years on the lunar surface rather than just weeks without being required to carry the burdensome capability to do so. The resulting lower-cost, long-lived rovers represent a potential paradigm breakthrough in extra-terrestrial prospecting productivity and will enable the production of detailed resource maps. Integrating resource processing and other technology demonstrations that are based on the content of the resource maps will inform engineering economic studies that can define the true resource potential of the Moon. Once this resource potential is understood quantitatively, humans might return to the Moon with an economically sound objective including where to go, what to do upon arrival, and what to bring along.
Concept for a Radioisotope Powered Dual Mode Lunar Rover
NASA Astrophysics Data System (ADS)
Elliott, John O.; Schriener, Timothy M.; Coste, Keith
2006-01-01
Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.
A Novel Method of Measuring Upwelling Radiance in the Hydrographic Sub-Hull
NASA Astrophysics Data System (ADS)
Rüssmeier, N.; Zielinski, O.
2016-01-01
In this study we present a new method useful in collecting upwelling radiance (Lu) from a platform submerged in a hydrographic sub-hull or moon pool of a research vessel. The information analyzed here was obtained during a field campaign in the Northwestern European shelf seas aboard the new research vessel SONNE. As the platform was located at the center of the ship, there is minimal effect from pitch and roll which is known to influence upwelling radiance observations. A comparison of the measurements from this platform with a free falling hyperspectral profiler was performed to determine the degree of uncertainty that results from ship shadow. For given Lu(λ) in situ data we observed ±33% intensity deviations compared to profiling measurements that can be attributed to instrument shading during moon pool installation and environmental perturbations. Furthermore Lu(λ) in situ spectra variations were observed at lower wavelengths, therefore a form fitting algorithm was adapted to receive corresponding depths with identical spectral form from Lu(z, λ) profiler casts. During an east to west transect in North Sea with a schedule speed up to 12 knots in situ radiance reflectance rrs(7, λ) measurements at 7 meter depth were performed with this novel radiometer setup. In spite of any restrictions originating from the sub-hull installation, water masses mixing zone from CDOM dominated coastal waters in the Skagerrak Strait towards the open North Sea were successfully derived thus offering an underway applicable upwelling radiance sensing not suffering from sun glint or other typical restrictions of above water radiometer installations.
Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Shao-Wen; Liu, Yu-Xiao, E-mail: weishw@lzu.edu.cn, E-mail: liuyx@lzu.edu.cn
In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on thismore » assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.« less
NASA Astrophysics Data System (ADS)
Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong
2011-10-01
Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the prediction-observation-explanation (POE) strategy (White and Gunstone in Probing understanding. Routledge, New York, 1992) on facilitating preschoolers' acquisition of scientific concepts regarding light and shadow. The children's alternative conceptions were explored as well. Fifty participants were randomly assigned into either an experimental group that played a computer game integrating the POE model or a control group that played a non-POE computer game. By assessing the students' conceptual understanding through interviews, this study revealed that the students in the experimental group significantly outperformed their counterparts in the concepts regarding "shadow formation in daylight" and "shadow orientation." However, children in both groups, after playing the games, still expressed some alternative conceptions such as "Shadows always appear behind a person" and "Shadows should be on the same side as the sun."
GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body
NASA Astrophysics Data System (ADS)
Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz
2016-04-01
Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt
2016-10-01
Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.
The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone
NASA Astrophysics Data System (ADS)
Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.
2017-12-01
Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.
Building detection in SAR imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbach, Ryan Matthew
Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. I present two techniques that are effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed techniques assume that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order tomore » find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint, where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. For the first technique, constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. The second technique calculates weights for the connections and then performs a series of increasingly relaxed hard and soft thresholds. This results in groups of various levels on their validity. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results demonstrate the outcome of the two techniques. The two techniques are compared and discussed.« less
Shadow Probability of Detection and False Alarm for Median-Filtered SAR Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; Doerry, Armin Walter; Miller, John A.
2014-06-01
Median filtering reduces speckle in synthetic aperture radar (SAR) imagery while preserving edges, at the expense of coarsening the resolution, by replacing the center pixel of a sliding window by the median value. For shadow detection, this approach helps distinguish shadows from clutter more easily, while preserving shadow shape delineations. However, the nonlinear operation alters the shadow and clutter distributions and statistics, which must be taken into consideration when computing probability of detection and false alarm metrics. Depending on system parameters, median filtering can improve probability of detection and false alarm by orders of magnitude. Herein, we examine shadow probabilitymore » of detection and false alarm in a homogeneous, ideal clutter background after median filter post-processing. Some comments on multi-look processing effects with and without median filtering are also made.« less
Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor
2013-09-01
It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible.
Variable Shadow Screens for Imaging Optical Devices
NASA Technical Reports Server (NTRS)
Lu, Ed; Chretien, Jean L.
2004-01-01
Variable shadow screens have been proposed for reducing the apparent brightnesses of very bright light sources relative to other sources within the fields of view of diverse imaging optical devices, including video and film cameras and optical devices for imaging directly into the human eye. In other words, variable shadow screens would increase the effective dynamic ranges of such devices. Traditionally, imaging sensors are protected against excessive brightness by use of dark filters and/or reduction of iris diameters. These traditional means do not increase dynamic range; they reduce the ability to view or image dimmer features of an image because they reduce the brightness of all parts of an image by the same factor. On the other hand, a variable shadow screen would darken only the excessively bright parts of an image. For example, dim objects in a field of view that included the setting Sun or bright headlights could be seen more readily in a picture taken through a variable shadow screen than in a picture of the same scene taken through a dark filter or a narrowed iris. The figure depicts one of many potential variations of the basic concept of the variable shadow screen. The shadow screen would be a normally transparent liquid-crystal matrix placed in front of a focal-plane array of photodetectors in a charge-coupled-device video camera. The shadow screen would be placed far enough from the focal plane so as not to disrupt the focal-plane image to an unacceptable degree, yet close enough so that the out-of-focus shadows cast by the screen would still be effective in darkening the brightest parts of the image. The image detected by the photodetector array itself would be used as feedback to drive the variable shadow screen: The video output of the camera would be processed by suitable analog and/or digital electronic circuitry to generate a negative partial version of the image to be impressed on the shadow screen. The parts of the shadow screen in front of those parts of the image with brightness below a specified threshold would be left transparent; the parts of the shadow screen in front of those parts of the image where the brightness exceeded the threshold would be darkened by an amount that would increase with the excess above the threshold.
A hardware architecture for real-time shadow removal in high-contrast video
NASA Astrophysics Data System (ADS)
Verdugo, Pablo; Pezoa, Jorge E.; Figueroa, Miguel
2017-09-01
Broadcasting an outdoor sports event at daytime is a challenging task due to the high contrast that exists between areas in the shadow and light conditions within the same scene. Commercial cameras typically do not handle the high dynamic range of such scenes in a proper manner, resulting in broadcast streams with very little shadow detail. We propose a hardware architecture for real-time shadow removal in high-resolution video, which reduces the shadow effect and simultaneously improves shadow details. The algorithm operates only on the shadow portions of each video frame, thus improving the results and producing more realistic images than algorithms that operate on the entire frame, such as simplified Retinex and histogram shifting. The architecture receives an input in the RGB color space, transforms it into the YIQ space, and uses color information from both spaces to produce a mask of the shadow areas present in the image. The mask is then filtered using a connected components algorithm to eliminate false positives and negatives. The hardware uses pixel information at the edges of the mask to estimate the illumination ratio between light and shadow in the image, which is then used to correct the shadow area. Our prototype implementation simultaneously processes up to 7 video streams of 1920×1080 pixels at 60 frames per second on a Xilinx Kintex-7 XC7K325T FPGA.
A Study on Building an Efficient Job Shadowing Management Methodology for the Undergraduate Students
ERIC Educational Resources Information Center
Sakoda, Koichi; Takahashi, Masakazu
2014-01-01
This paper describes heuristic knowledge through the job-shadowing project at the International University of Kagoshima, Japan. Job shadowing is one of the conventional in-house trainings given to the executive trainee cadets in North America and proved the effect of training in Leonard's paper for the conventional target such as the executive…
Verbal short-term memory as an articulatory system: evidence from an alternative paradigm.
Cheung, Him; Wooltorton, Lana
2002-01-01
In a series of experiments, the role of articulatory rehearsal in verbal [corrected] short-term memory was examined via a shadowing-plus-recall paradigm. In this paradigm, subjects shadowed a word target presented closely after an auditory memory list before they recalled the list. The phonological relationship between the shadowing target and the final item on the memory list was manipulated. Experiments 1 and 2 demonstrated that targets sounding similar to the list-final memory item generally took longer to shadow than unrelated targets. This inhibitory effect of phonological relatedness was more pronounced with tense- than lax-vowel pseudoword recall lists. The interaction between vowel tenseness and phonological relatedness was replicated in Experiment 3 using shorter lists of real words. In Experiment 4, concurrent articulation was applied during list learning to block rehearsal; consequently, neither the phonological relatedness effect nor its interaction with vowel tenseness emerged. Experiments 5 and 6 manipulated the occurrence frequencies and lexicality of the recall items, respectively, instead of vowel tenseness. Unlike vowel tenseness, these non-articulatory memory factors failed to interact with the phonological relatedness effect. Experiment 7 orthogonally manipulated the vowel tenseness and frequencies of the recall items; slowing in shadowing times due to phonological relatedness was modulated by vowel tenseness but not frequency. Taken together, these results suggest that under the present paradigm, the modifying effect of vowel tenseness on the magnitude of slowing in shadowing due to phonological relatedness is indicative of a prominent articulatory component in verbal short-term retention. The shadowing-plus-recall approach avoids confounding overt recall into internal memory processing, which is an inherent problem of the traditional immediate serial recall and span tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yago, J.
As an aid to designers of solar structures, tables are presented which allow determination of shadows for roof overhangs, obstructions, skylights, etc. Shadow effects are illustrated and use of the tables is explained. For times ranging from 7 am to 5 pm, shadow factors are given for June 21, March 21, and September 21 (which are the same), and December 21 at latitudes from 30/sup 0/ to 50/sup 0/. It is assumed that structures are facing true south. Calculations are also illustrated for determining the shadow of solar collectors of known length and tilt. (MJJ)
Field Scale Testing of RESOLVE at 2010 ISRU Analog Test
NASA Technical Reports Server (NTRS)
Captain, Janine E.; Quinn, J. W.; Moss, T. J.; Weis, K. H.
2010-01-01
When mankind returns to the moon, there will be one aspect of the architecture that will totally change how we explore the solar system. For the first time in space exploration, we will take the initial steps towards breaking our reliance on Earth-supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In Situ Resource Utilization (ISRU), will be directed at extracting some of the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of hydrogen that can be reasonably extracted from the regolith, it would provide a foundation for true independence from Earth consumables. With in-situ hydrogen and oxygen (and/or water) we can produce many of the major consumables needed to travel to and operate on a sustainable lunar outpost. We would have water to drink, oxygen to breath, and rocket propellants and fuel cell reagents to enable extended access and operations across the moon. NASA initiated development of an experiment package named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the rim or into a permanently shadowed crater to answer the questions surrounding elevated hydrogen at the lunar poles.
Observation of Signatures of Meteoroidal Water in the Lunar Exosphere by the LADEE NMS Instrument
NASA Astrophysics Data System (ADS)
Benna, M.; Elphic, R. C.; Hurley, D.; Stubbs, T. J.; Mahaffy, P. R.
2017-12-01
During its seven months in orbit, the Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission measured the composition and variability of the tenuous lunar atmosphere. These measurements led to the detection of signatures of water group neutrals (H2O and/or OH) in the exosphere of the Moon. The signature of water has been measured as sporadic, short-lived signal increases above instrument background levels. The NMS data show that the occurrence rate of the high signal water "spikes" is correlated with periods of major annual meteoroid streams. Moreover, the daily water detection rate is in agreement with the expected evolution of the incoming meteoroidal impact flux at the Moon. Monte Carlo modeling of the evolution of vaporized water indicates that the signatures detected by the NMS instrument are commensurate in size and distribution of the energetic fraction of the vapors released by impacts that occurred near the location of the spacecraft. These measurements provide the first direct constraints on the contribution of meteoroid-delivered water to the sequestered ice in the permanently shadow regions of the lunar poles. They also provide a new technique for real-time observations of meteoroid impacts on airless bodies of the solar system through the detection of their associated volatile signatures.
NASA Astrophysics Data System (ADS)
Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.
2017-08-01
Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.
The August 21, 2017 American total solar eclipse through the eyes of GPS
NASA Astrophysics Data System (ADS)
Kundu, Bhaskar; Panda, Dibyashakti; Gahalaut, Vineet K.; Catherine, J. K.
2018-04-01
We explored spatio-temporal variation in Total Electron Contents (TEC) in the ionosphere caused by the recent August 21, 2017 total solar eclipse, which was observed over the United States of America. The path of total solar eclipse passes through the continental parts of the United States of America, starting in the northwestern state of Oregon and ending in the southeastern state of South Carolina, approximately covering 4000 km length. Across this length EarthScope Plate Boundary Observatory (PBO) has been operating a dense cGPS/GNSS networks. During the course of passage of the solar eclipse, the sudden decline in solar radiation by temporarily obscuration by the Moon caused a drop of ˜6-9 × 1016 electrons/m2in the ionosphere with time-delay at the cGPS sites. The significant drop in TEC at cGPS sites captured the average migration velocity of shadow along the eclipse path (0.74 km/s), from which we estimated the Moon's orbital velocity (˜1 km/s). Further, this event also caused some marginal increase in TEC during the eclipse in the Earth's ionosphere in the magnetically conjugate region at the tip of South America and Antarctica, consistent with the model predictions of SAMI3 by Naval Research Laboratory.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
2013-11-12
On July 19, 2013, in an event celebrated the world over, NASA's Cassini spacecraft slipped into Saturn's shadow and turned to image the planet, seven of its moons, its inner rings -- and, in the background, our home planet, Earth. With the sun's powerful and potentially damaging rays eclipsed by Saturn itself, Cassini's onboard cameras were able to take advantage of this unique viewing geometry. They acquired a panoramic mosaic of the Saturn system that allows scientists to see details in the rings and throughout the system as they are backlit by the sun. This mosaic is special as it marks the third time our home planet was imaged from the outer solar system; the second time it was imaged by Cassini from Saturn's orbit; and the first time ever that inhabitants of Earth were made aware in advance that their photo would be taken from such a great distance. With both Cassini's wide-angle and narrow-angle cameras aimed at Saturn, Cassini was able to capture 323 images in just over four hours. This final mosaic uses 141 of those wide-angle images. Images taken using the red, green and blue spectral filters of the wide-angle camera were combined and mosaicked together to create this natural-color view. A brightened version with contrast and color enhanced (Figure 1), a version with just the planets annotated (Figure 2), and an annotated version (Figure 3) are shown above. This image spans about 404,880 miles (651,591 kilometers) across. The outermost ring shown here is Saturn's E ring, the core of which is situated about 149,000 miles (240,000 kilometers) from Saturn. The geysers erupting from the south polar terrain of the moon Enceladus supply the fine icy particles that comprise the E ring; diffraction by sunlight gives the ring its blue color. Enceladus (313 miles, or 504 kilometers, across) and the extended plume formed by its jets are visible, embedded in the E ring on the left side of the mosaic. At the 12 o'clock position and a bit inward from the E ring lies the barely discernible ring created by the tiny, Cassini-discovered moon, Pallene (3 miles, or 4 kilometers, across). (For more on structures like Pallene's ring, see PIA08328). The next narrow and easily seen ring inward is the G ring. Interior to the G ring, near the 11 o'clock position, one can barely see the more diffuse ring created by the co-orbital moons, Janus (111 miles, or 179 kilometers, across) and Epimetheus (70 miles, or 113 kilometers, across). Farther inward, we see the very bright F ring closely encircling the main rings of Saturn. Following the outermost E ring counter-clockwise from Enceladus, the moon Tethys (662 miles, or 1,066 kilometers, across) appears as a large yellow orb just outside of the E ring. Tethys is positioned on the illuminated side of Saturn; its icy surface is shining brightly from yellow sunlight reflected by Saturn. Continuing to about the 2 o'clock position is a dark pixel just outside of the G ring; this dark pixel is Saturn's Death Star moon, Mimas (246 miles, or 396 kilometers, across). Mimas appears, upon close inspection, as a very thin crescent because Cassini is looking mostly at its non-illuminated face. The moons Prometheus, Pandora, Janus and Epimetheus are also visible in the mosaic near Saturn's bright narrow F ring. Prometheus (53 miles, or 86 kilometers, across) is visible as a faint black dot just inside the F ring and at the 9 o'clock position. On the opposite side of the rings, just outside the F ring, Pandora (50 miles, or 81 kilometers, across) can be seen as a bright white dot. Pandora and Prometheus are shepherd moons and gravitational interactions between the ring and the moons keep the F ring narrowly confined. At the 11 o'clock position in between the F ring and the G ring, Janus (111 miles, or 179 kilometers, across) appears as a faint black dot. Janus and Prometheus are dark for the same reason Mimas is mostly dark: we are looking at their non-illuminated sides in this mosaic. Midway between the F ring and the G ring, at about the 8 o'clock position, is a single bright pixel, Epimetheus. Looking more closely at Enceladus, Mimas and Tethys, especially in the brightened version of the mosaic, one can see these moons casting shadows through the E ring like a telephone pole might cast a shadow through a fog. In the non-brightened version of the mosaic, one can see bright clumps of ring material orbiting within the Encke gap near the outer edge of the main rings and immediately to the lower left of the globe of Saturn. Also, in the dark B ring within the main rings, at the 9 o'clock position, one can see the faint outlines of two spoke features, first sighted by NASA's Voyager spacecraft in the early 1980s and extensively studied by Cassini. Finally, in the lower right of the mosaic, in between the bright blue E ring and the faint but defined G ring, is the pale blue dot of our planet, Earth. Look closely and you can see the moon protruding from the Earth's lower right. (For a higher resolution view of the Earth and moon taken during this campaign, see PIA14949.) Earth's twin, Venus, appears as a bright white dot in the upper left quadrant of the mosaic, also between the G and E rings. Mars also appears as a faint red dot embedded in the outer edge of the E ring, above and to the left of Venus. For ease of visibility, Earth, Venus, Mars, Enceladus, Epimetheus and Pandora were all brightened by a factor of eight and a half relative to Saturn. Tethys was brightened by a factor of four. In total, 809 background stars are visible and were brightened by a factor ranging from six, for the brightest stars, to 16, for the faintest. The faint outer rings (from the G ring to the E ring) were also brightened relative to the already bright main rings by factors ranging from two to eight, with the lower-phase-angle (and therefore fainter) regions of these rings brightened the most. The brightened version of the mosaic was further brightened and contrast-enhanced all over to accommodate print applications and a wide range of computer-screen viewing conditions. Some ring features -- such as full rings traced out by tiny moons -- do not appear in this version of the mosaic because they require extreme computer enhancement, which would adversely affect the rest of the mosaic. This version was processed for balance and beauty. This view looks toward the unlit side of the rings from about 17 degrees below the ring plane. Cassini was approximately 746,000 miles (1.2 million kilometers) from Saturn when the images in this mosaic were taken. Image scale on Saturn is about 45 miles (72 kilometers) per pixel. This mosaic was made from pictures taken over a span of more than four hours while the planets, moons and stars were all moving relative to Cassini. Thus, due to spacecraft motion, these objects in the locations shown here were not in these specific places over the entire duration of the imaging campaign. Note also that Venus appears far from Earth, as does Mars, because they were on the opposite side of the sun from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA17172
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael J.; Hayes, Daniel J
2014-01-01
Use of Landsat data to answer ecological questions is contingent on the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, \\textsc{sparcs}: Spacial Procedures for Automated Removal of Cloud and Shadow. The method uses neural networks to determine cloud, cloud-shadow, water, snow/ice, and clear-sky membership of each pixel in a Landsat scene, and then applies a set of procedures to enforce spatial rules. In a comparison to FMask, a high-quality cloud and cloud-shadow classification algorithm currently available, \\textsc{sparcs} performs favorably, with similar omission errors for cloudsmore » (0.8% and 0.9%, respectively), substantially lower omission error for cloud-shadow (8.3% and 1.1%), and fewer errors of commission (7.8% and 5.0%). Additionally, textsc{sparcs} provides a measure of uncertainty in its classification that can be exploited by other processes that use the cloud and cloud-shadow detection. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of algorithms detecting vegetation change.« less
Shadows of rotating five-dimensional charged EMCS black holes
NASA Astrophysics Data System (ADS)
Amir, Muhammed; Singh, Balendra Pratap; Ghosh, Sushant G.
2018-05-01
Higher-dimensional theories admit astrophysical objects like supermassive black holes, which are rather different from standard ones, and their gravitational lensing features deviate from general relativity. It is well known that a black hole shadow is a dark region due to the falling geodesics of photons into the black hole and, if detected, a black hole shadow could be used to determine which theory of gravity is consistent with observations. Measurements of the shadow sizes around the black holes can help to evaluate various parameters of the black hole metric. We study the shapes of the shadow cast by the rotating five-dimensional charged Einstein-Maxwell-Chern-Simons (EMCS) black holes, which is characterized by four parameters, i.e., mass, two spins, and charge, in which the spin parameters are set equal. We integrate the null geodesic equations and derive an analytical formula for the shadow of the five-dimensional EMCS black hole, in turn, to show that size of black hole shadow is affected due to charge as well as spin. The shadow is a dark zone covered by a deformed circle, and the size of the shadow decreases with an increase in the charge q when compared with the five-dimensional Myers-Perry black hole. Interestingly, the distortion increases with charge q. The effect of these parameters on the shape and size of the naked singularity shadow of the five-dimensional EMCS black hole is also discussed.
Selection and Characterization of Landing Sites for Chandrayaan-2 Lander
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.
2016-07-01
Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2017-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In references 1 through 9, a broad range of technological innovations are described and analyzed. Figures 1 depicts program planning for future human missions throughout the solar system which included lunar launched nuclear rockets, and future human settlements on the Moon. Figures 2 and 3 present the results for human Mercury missions, including LEO departure masses and round trip Mercury lander masses. Using in-situ resources, the missions become less burdensome to the LEO launch infrastructure. In one example using Mercury derived hydrogen, the LEO mass of the human Mercury missions can be reduced from 2,800 MT to 1,140 MT (Ref. 15). Additional analyses of staging options for human Mercury missions will be presented. Figures 4 shows an option for thermal control for long term in-space cryogenic storage and Figure 5 depicts the potentially deleterious elements emanating from Mercury that must be addressed, respectively. Updated analyses based on the visions presented will be presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear electric propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Human bases at Mercury may have to be resupplied from resources from regolith and water resources in permanently shadowed craters at its northern pole.
Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission
NASA Technical Reports Server (NTRS)
Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.
NASA Astrophysics Data System (ADS)
Mao, Zirui; Liu, G. R.
2018-02-01
The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2017-06-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "powerlaw" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes in to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2016-01-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "power law" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes on to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
Albedo of Permanently Shadowed Regions of the Lunar Poles
NASA Astrophysics Data System (ADS)
Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.
2012-12-01
Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude limit is due to a complete loss of received laser signal as the spacecraft crosses the terminator due to thermal contraction of insulating blankets that pull the LOLA telescope out of alignment with the detectors. Fortuitously, two of the five laser spots reposition onto detectors after a transition period, so good laser range is obtained on a portion of the lunar night side. Additional calibration of night side reflectance data pole ward of 83° is ongoing [4]. The albedo of measured permanently shaded regions is 0.31 +/- 0.031 (1σ) compared to 0.31 +/- 0.033 (1σ) for measured sunlit regions from 60-80° north and south latitudes. This suggests that the high albedo of the floor of Shackleton is either unique or that the cause of the high albedo only acts at higher latitudes. Additional study of PSRs pole ward of 83° from LOLA night side data and examination of individual orbit tracks through PSRs may help elucidate the relationship between PSRs and albedo and contribute to understanding of these unique thermal environments, distribution of ice in PSRs, and volatile delivery and retention mechanisms. [1] Ingersoll et al. (1992) Icarus, 100, 40-47. [2] Smith et al. (2010) Space Sci. Rev., 150, 209-241. [3] Riner and Lucey (2011) AGU Fall Meeting, #P13D-1707. [4] Zuber et al. (2012) Nature, 486, 378-381. [5] McGovern et al. (2012), Icarus, accepted pending final review.
Time correlations between low and high energy gamma rays from discrete sources
NASA Technical Reports Server (NTRS)
Ellsworth, R. W.
1995-01-01
Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.
2014-12-05
From about three times the distance from Earth to the moon, NASA's Dawn spacecraft spies its final destination -- the dwarf planet Ceres. The resolution of this image does not yet exceed the best views of Ceres, which were obtained by the Hubble Space Telescope (see PIA10235). Nonetheless, Ceres' spherical shape is clearly revealed here. Sunlight illuminates the dwarf planet from the right, leaving a sliver of the surface in shadow at left. A zoomed-in view is provided in Figure 1, along with the original unmagnified, uncropped view. The image was taken on Dec. 1, 2014 with the Dawn spacecraft's framing camera, using a clear spectral filter. Dawn was about 740,000 miles (1.2 million kilometers) from Ceres at the time. Ceres is 590 miles (950 kilometers) across and was discovered in 1801. http://photojournal.jpl.nasa.gov/catalog/PIA19049
Strategies for the public communication of eclipses
NASA Astrophysics Data System (ADS)
Bretones, P. S.
2015-03-01
Eclipses are among the celestial events that draw the attention of the public. This paper discusses strategies for using eclipses as public communication opportunities in the media. It discusses the impact of articles written by the author and analysis of published material for 25 observed eclipses over the last 30 years by mass media in the state of São Paulo, Brazil. On each occasion, a standard article was posted on the Internet and sent to newspapers, radio and TV with information, such as: date, time and local circumstances; type of the eclipse; area of visibility; explanation; diagram of the phenomenon, and the Moon's path through Earth's shadow; eclipses in history; techniques of observation; getting photographs; place and event for public observation. Over the years, direct contact was maintained with the media and jounralists by the press offices of the institutions.
Evidence of Accretion in Saturn's F Ring (Invited)
NASA Astrophysics Data System (ADS)
Agnor, C. B.; Buerle, K.; Murray, C. D.; Evans, M. W.; Cooper, N. J.; Williams, G. W.
2010-12-01
Lying slightly outside the classical Roche radius and being strongly perturbed by the adjacent moons Prometheus and Pandora, Saturn's F ring represents a unique astrophysical laboratory for examining the processes of mass accretion and moonlet formation. Recent images from the Cassini spacecraft reveal optically thick clumps, capable of casting shadows, and associated structures in regions of the F ring following close passage by Prometheus. Here we examine the accretion environment of the F ring and Prometheus' role in moonlet formation and evolution. Using the observed structures adjacent to these clumps and dynamical arguments we estimate the masses of these clumps and find them comparable to that of ~10-20-km contiguous moonlets. Further, we show that Prometheus' perturbations on the F ring create regions of enhanced density and low relative velocity that may accelerate the accretion of clumps and moonlets.
Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline
NASA Technical Reports Server (NTRS)
Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor
2010-01-01
Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.
Prospecting Rovers for Lunar Exploration
NASA Technical Reports Server (NTRS)
Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.
2007-01-01
A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.
2014-09-15
A thin sliver of Mimas is illuminated, the long shadows showing off its many craters, indicators of the moon's violent history. The most famous evidence of a collision on Mimas (246 miles, or 396 kilometers across) is the crater Herschel that gives Mimas its Death Star-like appearance. See PIA12568 for more on Herschel. This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 40 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on May 20, 2013. The view was acquired at a distance of approximately 100,000 miles (200,000 kilometers) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 130 degrees. Image scale is 4,000 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18285
HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER
NASA Technical Reports Server (NTRS)
2002-01-01
While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io are regions of sulfur dioxide frost. On Jupiter, the white and brown regions distinguish areas of high-altitude haze and clouds; the blue regions depict relatively clear skies at high altitudes. These images were taken July 22, 1997, in two wavelengths: 3400 Angstroms (ultraviolet) and 4100 Angstroms (violet). The colors do not correspond closely to what the human eye would see because ultraviolet light is invisible to the eye. Io: Jupiter's Volcanic Moon In the close-up picture of Io (bottom right), the mound rising from Io's surface is actually an eruption from Pillan, a volcano that had previously been dormant. Measurements at two ultraviolet wavelengths indicate that the ejecta consist of sulfur dioxide 'snow,' making the plume appear green in this false-color image. Astronomers increased the color contrast and added false colors to the image to make the faint plume visible. Pillan's plume is very hot and its ejecta is moving extremely fast. Based on information from the Galileo spacecraft, Pillan's outburst is at least 2,240 degrees Fahrenheit (1,500 degrees Kelvin). The late bloomer is spewing material at speeds of 1,800 mph (2,880 kilometers per hour). The hot sulfur dioxide gas expelled from the volcano cools rapidly as it expands into space, freezing into snow. Io is well known for its active volcanoes, many of which blast huge plumes of volcanic debris into space. Astronomers discovered Pillan's volcanic explosion while looking for similar activity from a known active volcano, Pele, about 300 miles (500 kilometers) away from Pillan. But Pele turned out to be peaceful. Io has hundreds of active volcanoes, but only a few, typically eight or nine, have visible plumes at any given time. Scientists will get a closer look at Io later this year during a pair of close flybys to be performed by NASA's Galileo spacecraft, which has been orbiting Jupiter and its moons for nearly 3-1/2 years. The first Galileo flyby is scheduled for Oct. 10 at an altitude of 379 miles (610 kilometers), and the other will occur on Nov. 25, when the spacecraft will fly only 186 miles (300 kilometers) above Io's fiery surface. If the spacecraft survives this daring journey into the intense Jovian radiation environment near Io, it will send back images with dramatically higher resolution than any obtained before, according to mission scientists. The Hubble telescope image of Io's volcanic plume is a composite taken July 5, 1997, in three wavelengths: 2600 Angstroms (ultraviolet), 3400 Angstroms (ultraviolet), and 4100 Angstroms (violet). Credits: John Spencer (Lowell Observatory) and NASA
Hubble Clicks Images of Io Sweeping Across Jupiter
NASA Technical Reports Server (NTRS)
1999-01-01
While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.'
These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2.The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes.'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz.A Trip Around JupiterThe three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days.The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut.These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye.The bright patches on Io are regions of sulfur dioxide frost. On Jupiter, the white and brown regions distinguish areas of high-altitude haze and clouds; the blue regions depict relatively clear skies at high altitudes.These images were taken July 22, 1997, in two wavelengths: 3400 Angstroms (ultraviolet) and 4100 Angstroms (violet). The colors do not correspond closely to what the human eye would see because ultraviolet light is invisible to the eye.Io: Jupiter's Volcanic MoonIn the close-up picture of Io (bottom right), the mound rising from Io's surface is actually an eruption from Pillan, a volcano that had previously been dormant.Measurements at two ultraviolet wavelengths indicate that the ejecta consist of sulfur dioxide 'snow,' making the plume appear green in this false-color image. Astronomers increased the color contrast and added false colors to the image to make the faint plume visible.Pillan's plume is very hot and its ejecta is moving extremely fast. Based on information from the Galileo spacecraft, Pillan's outburst is at least 2,240 degrees Fahrenheit (1,500 degrees Kelvin). The late bloomer is spewing material at speeds of 1,800 mph (2,880 kilometers per hour). The hot sulfur dioxide gas expelled from the volcano cools rapidly as it expands into space, freezing into snow.Io is well known for its active volcanoes, many of which blast huge plumes of volcanic debris into space. Astronomers discovered Pillan's volcanic explosion while looking for similar activity from a known active volcano, Pele, about 300 miles (500 kilometers) away from Pillan. But Pele turned out to be peaceful. Io has hundreds of active volcanoes, but only a few, typically eight or nine, have visible plumes at any given time.Scientists will get a closer look at Io later this year during a pair of close flybys to be performed by NASA's Galileo spacecraft, which has been orbiting Jupiter and its moons for nearly 3-1/2 years.The first Galileo flyby is scheduled for Oct. 10 at an altitude of 379 miles (610 kilometers), and the other will occur on Nov. 25, when the spacecraft will fly only 186 miles (300 kilometers) above Io's fiery surface. If the spacecraft survives this daring journey into the intense Jovian radiation environment near Io, it will send back images with dramatically higher resolution than any obtained before, according to mission scientists.The Hubble telescope image of Io's volcanic plume is a composite taken July 5, 1997, in three wavelengths: 2600 Angstroms (ultraviolet), 3400 Angstroms (ultraviolet), and 4100 Angstroms (violet).Realistic Real-Time Outdoor Rendering in Augmented Reality
Kolivand, Hoshang; Sunar, Mohd Shahrizal
2014-01-01
Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480
Realistic real-time outdoor rendering in augmented reality.
Kolivand, Hoshang; Sunar, Mohd Shahrizal
2014-01-01
Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.
Does the black hole shadow probe the event horizon geometry?
NASA Astrophysics Data System (ADS)
Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Rodriguez, Maria J.
2018-04-01
There is an exciting prospect of obtaining the shadow of astrophysical black holes (BHs) in the near future with the Event Horizon Telescope. As a matter of principle, this justifies asking how much one can learn about the BH horizon itself from such a measurement. Since the shadow is determined by a set of special photon orbits, rather than horizon properties, it is possible that different horizon geometries yield similar shadows. One may then ask how sensitive is the shadow to details of the horizon geometry? As a case study, we consider the double Schwarzschild BH and analyze the impact on the lensing and shadows of the conical singularity that holds the two BHs in equilibrium—herein taken to be a strut along the symmetry axis in between the two BHs. Whereas the conical singularity induces a discontinuity of the scattering angle of photons, clearly visible in the lensing patterns along the direction of the strut's location, it produces no observable effect on the shadows, whose edges remain everywhere smooth. The latter feature is illustrated by examples including both equal and unequal mass BHs. This smoothness contrasts with the intrinsic geometry of the (spatial sections of the) horizon of these BHs, which is not smooth, and provides a sharp example on how BH shadows are insensitive to some horizon geometry details. This observation, moreover, suggests that for the study of their shadows, this static double BH system may be an informative proxy for a dynamical binary.
Lens-free shadow image based high-throughput continuous cell monitoring technique.
Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu
2012-01-01
A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.
The multisensory body revealed through its cast shadows.
Pavani, Francesco; Galfano, Giovanni
2015-01-01
One key issue when conceiving the body as a multisensory object is how the cognitive system integrates visible instances of the self and other bodies with one's own somatosensory processing, to achieve self-recognition and body ownership. Recent research has strongly suggested that shadows cast by our own body have a special status for cognitive processing, directing attention to the body in a fast and highly specific manner. The aim of the present article is to review the most recent scientific contributions addressing how body shadows affect both sensory/perceptual and attentional processes. The review examines three main points: (1) body shadows as a special window to investigate the construction of multisensory body perception; (2) experimental paradigms and related findings; (3) open questions and future trajectories. The reviewed literature suggests that shadows cast by one's own body promote binding between personal and extrapersonal space and elicit automatic orienting of attention toward the body-part casting the shadow. Future research should address whether the effects exerted by body shadows are similar to those observed when observers are exposed to other visual instances of their body. The results will further clarify the processes underlying the merging of vision and somatosensation when creating body representations.
The multisensory body revealed through its cast shadows
Pavani, Francesco; Galfano, Giovanni
2015-01-01
One key issue when conceiving the body as a multisensory object is how the cognitive system integrates visible instances of the self and other bodies with one’s own somatosensory processing, to achieve self-recognition and body ownership. Recent research has strongly suggested that shadows cast by our own body have a special status for cognitive processing, directing attention to the body in a fast and highly specific manner. The aim of the present article is to review the most recent scientific contributions addressing how body shadows affect both sensory/perceptual and attentional processes. The review examines three main points: (1) body shadows as a special window to investigate the construction of multisensory body perception; (2) experimental paradigms and related findings; (3) open questions and future trajectories. The reviewed literature suggests that shadows cast by one’s own body promote binding between personal and extrapersonal space and elicit automatic orienting of attention toward the body-part casting the shadow. Future research should address whether the effects exerted by body shadows are similar to those observed when observers are exposed to other visual instances of their body. The results will further clarify the processes underlying the merging of vision and somatosensation when creating body representations. PMID:26042079
NASA Astrophysics Data System (ADS)
Aboutalebi, M.; Torres-Rua, A. F.; McKee, M.; Kustas, W. P.; Nieto, H.
2017-12-01
Shadows are an unavoidable component of high-resolution imagery. Although shadows can be a useful source of information about terrestrial features, they are a hindrance for image processing and lead to misclassification errors and increased uncertainty in defining surface reflectance properties. In precision agriculture activities, shadows may affect the performance of vegetation indices at pixel and plant scales. Thus, it becomes necessary to evaluate existing shadow detection and restoration methods, especially for applications that makes direct use of pixel information to estimate vegetation biomass, leaf area index (LAI), plant water use and stress, chlorophyll content, just to name a few. In this study, four high-resolution imageries captured by the Utah State University - AggieAir Unmanned Aerial Vehicle (UAV) system flown in 2014, 2015, and 2016 over a commercial vineyard located in the California for the USDA-Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program are used for shadow detection and restoration. Four different methods for shadow detection are compared: (1) unsupervised classification, (2) supervised classification, (3) index-based method, and (4) physically-based method. Also, two different shadow restoration methods are evaluated: (1) linear correlation correction, and (2) gamma correction. The models' performance is evaluated over two vegetation indices: normalized difference vegetation index (NDVI) and LAI for both sunlit and shadowed pixels. Histogram and analysis of variance (ANOVA) are used as performance indicators. Results indicated that the performance of the supervised classification and the index-based method are better than other methods. In addition, there is a statistical difference between the average of NDVI and LAI on the sunlit and shadowed pixels. Among the shadow restoration methods, gamma correction visually works better than the linear correlation correction. Moreover, the statistical difference between sunlit and shadowed NDVI and LAI decreases after the application of the gamma restoration method. Potential effects of shadows on modeling surface energy balance and evapotranspiration using very high resolution UAV imagery over the GRAPEX vineyard will be discussed.
Stability of ice on the Moon with rough topography
NASA Astrophysics Data System (ADS)
Rubanenko, Lior; Aharonson, Oded
2017-11-01
The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.
Further explorations of cosmogonic shadow effects in the Saturnian rings
NASA Technical Reports Server (NTRS)
Alfven, H.; Axnaes, I.; Brenning, N.; Lindqvist, P. A.
1985-01-01
The mass distribution in the Saturnian ring system is compared with predictions from the cosmogonic theory of Alfven and Arrhenius (1975) in which matter in the rings was once a magnetized plasma, with gravitation balanced by centrifugal force and by the magnetic field. As the plasma is neutralized, the magnetic force disappears and the matter can be shown to fall in to a distance 2/3 of the original. This supports the cosmogonic shadow effect, also demonstrated for the astroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the comogonic shadow effect for parts of the finer structures of the Saturnian ring system is investigated. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature.
The drama of illumination: artist's approaches to the creation of HDR in paintings and prints
NASA Astrophysics Data System (ADS)
Parraman, Carinna
2010-02-01
For many centuries artists have considered and depicted illumination in art, from the effect of sunlight on objects at different times of the day, of shadows and highlights as cast by the moon, through indirect light as that through an open window or the artificial light of the candle or firelight. The presentation will consider artists who were fascinated by the phenomena of natural and artificial illumination and how they were able to render the natural world as a form of dynamic range through pigment. Artists have been long aware of the psychological aspects of the juxtaposition of colour in exploiting the optical qualities and arranging visual effects in painting and prints. Artists in the 16th century were attempting to develop an extended dynamic range through multi-colour, wood-block printing. Artists working at the height of naturalist realism in the 17th through the 19th century were fascinated by the illusory nature of light on objects. The presentation will also consider the interpretation of dynamic range through the medium of mezzotint, possibly the most subtle of printing methods, which was used by printers to copy paintings, and to create highly original works of art containing a dynamic range of tones.
Analysis of Shadowing Effects on Spacecraft Power Systems
NASA Technical Reports Server (NTRS)
1995-01-01
As part of an ongoing effort within the NASA Lewis Research Center's Power Systems Project Office to assist in the design and characterization of future space-based power systems, analyses have been performed to assess the effects of shadowing on the capabilities of various power systems on the International Space Station and the Russian MIR.
NASA Astrophysics Data System (ADS)
Loro, Stephen Lee
This study was designed to examine moon illumination, moon angle, cloud cover, sky glow, and Night Vision Goggle (NVG) flight performance to determine possible effects. The research was a causal-comparative design. The sample consisted of 194 Fort Rucker Initial Entry Rotary Wing NVG flight students being observed by 69 NVG Instructor Pilots. The students participated in NVG flight training from September 1992 through January 1993. Data were collected using a questionnaire. Observations were analyzed using a Kruskal-Wallis one-way analysis of variance and a Wilcox matched pairs signed-ranks test for difference. Correlations were analyzed using Pearson's r. The analyses results indicated that performance at high moon illumination levels is superior to zero moon illumination, and in most task maneuvers, superior to >0%--50% moon illumination. No differences were found in performance at moon illumination levels above 50%. Moon angle had no effect on night vision goggle flight performance. Cloud cover and sky glow have selective effects on different maneuvers. For most task maneuvers, cloud cover does not affect performance. Overcast cloud cover had a significant effect on seven of the 14 task maneuvers. Sky glow did not affect eight out of 14 task maneuvers at any level of sky glow.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Greathouse, T. K.; Mandt, K.; Gladstone, R.; Liu, Y.; Hendrix, A. R.; Hurley, D.; Cahill, J. T.; Stickle, A. M.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.
2016-12-01
Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids obtained within the last decade have ushered in a new era of scientific advancement for UV surface investigations. The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, and LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. Prospects for future studies are further enabled by a new, more sensitive dayside operating mode enacted during the present LRO mission extension.
Mapping of the Moon by Clementine
McEwen, A.S.; Robinson, M.S.
1997-01-01
The "faster, cheaper, better" Clementine spacecraft mission mapped the Moon from February 19 to May 3, 1994. Global coverage was acquired in 11 spectral bandpasses from 415 to 2792 nm and at resolutions of 80-330 m/pixel; a thermal-infrared camera sampled ???20% of the surface; a high-resolution camera sampled selected areas (especially the polar regions); and a lidar altimeter mapped the large-scale topography up to latitudes of ??75??. The spacecraft was in a polar, elliptical orbit, 400-450 km periselene altitude. Periselene latitude was -28.5?? for the first month of mapping, then moved to +28.5??. NASA is supporting the archiving, systematic processing, and analysis of the ???1.8 million lunar images and other datasets. A new global positional network has been constructed from 43,000 images and ???0.5 million match points; new digital maps will facilitate future lunar exploration. In-flight calibrations now enable photometry to a high level of precision for the uv-visible CCD camera. Early science results include: (1) global models of topography, gravity, and crustal thicknesses; (2) new information on the topography and structure of multiring impact basins; (3) evidence suggestive of water ice in large permanent shadows near the south pole; (4) global mapping of iron abundances; and (5) new constraints on the Phanerozoic cratering rate of the Earth. Many additional results are expected following completion of calibration and systematic processing efforts. ?? 1997 COSPAR. Published by Elsevier Science Ltd.
Regolith Advanced Surface Systems Operations Robot (RASSOR)
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Smith, Jonathan D.; Cox, Rachel E.; Schuler, Jason M.; Ebert, Tom; Nick, Andrew J.
2012-01-01
Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.
Moving shadows contribute to the corridor illusion in a chimpanzee (Pan troglodytes).
Imura, Tomoko; Tomonaga, Masaki
2009-08-01
Previous studies have reported that backgrounds depicting linear perspective and texture gradients influence relative size discrimination in nonhuman animals (known as the "corridor illusion"), but research has not yet identified the other kinds of depth cues contributing to the corridor illusion. This study examined the effects of linear perspective and shadows on the responses of a chimpanzee (Pan troglodytes) to the corridor illusion. The performance of the chimpanzee was worse when a smaller object was presented at the farther position on a background reflecting a linear perspective, implying that the corridor illusion was replicated in the chimpanzee (Imura, Tomonaga, & Yagi, 2008). The extent of the illusion changed as a function of the position of the shadows cast by the objects only when the shadows were moving in synchrony with the objects. These findings suggest that moving shadows and linear perspective contributed to the corridor illusion in a chimpanzee. Copyright 2009 APA, all rights reserved.
Observing the contour profile of a Kerr-Sen black hole
NASA Astrophysics Data System (ADS)
Lan, X. G.; Pu, J.
2018-06-01
In this paper, the shadow and the corresponding naked singularity cast by a Kerr-Sen black hole are studied. It is found that the shadow of a rotating black hole would be a dark zone surrounded by a deformed circle, and the shadow is distorted more away from a circle when the black hole approaches the extremal case. Besides, it is shown that the mean radius of the shadow decreases and distortion parameter increases with the increasing of charge, respectively. However, the mean radius and the distortion parameter vary complicatedly with the change of spin parameter. In the beginning, both observables decrease rapidly with the increasing of specific angular momentum, nevertheless, they increase slightly in the latter part. These results show that there would be a significant effect of the spin on the shadows, which would be of great importance for probing the nature of the black hole.
Lunar and climatic effects on boar ejaculate traits.
Chinchilla-Vargas, Josué; Kerns, Karl; Rothschild, Max F
2018-06-01
There is evidence that phases of the moon affect wild animal behaviors including reproduction. There is, however, little evidence of moon phase effects on domestic livestock reproduction. This study investigated the effects of moon phase and climatic variables on boar ejaculate traits. Records of 4149 semen collections from boars of nine different breeds at one boar stud were used. The response variables were volume of ejaculate, concentration of sperm in the ejaculate, and number of doses obtained per ejaculate. Moon phase, greatest daily temperature (T), least daily T, average daily relative humidity (RH), temperature-humidity index (THI), season and the interaction of moon phase with season were analyzed at the day of collection and 45 days prior to date of collection as a proxy of initiation of spermatogenesis. For both dates analyzed season and the interaction of season with moon had significant effects (P < 0.05) on the volume of the ejaculate. Moon phase had a significant effect (P < 0.05) on volume of ejaculate at the day of collection. Sperm concentration was affected (P < 0.05) by the interaction of moon phase with season, high and low temperature, THI, RH and breed. Season had an effect (P < 0.01) on concentration of sperm at the initiation of spermatogenesis. For doses that could be used for AI that were obtained/ejaculate, there were effects of moon phase, season, the interaction between season and moon phase and breed (P < 0.05) at collection day and at the initiation of spermatogenesis. There was an interaction (P < 0.0001) between season and moon phase for volume of ejaculate, sperm concentration and number of doses obtained per ejaculate at date of collection and at day of initiation of spermatogenesis. The significant interaction of season and moon phase on boar semen traits suggests that to maximize productivity of modern swine production systems determining a collection schedule in some seasons relative to moon phase may be advantageous. Copyright © 2018 Elsevier B.V. All rights reserved.
Pediatric psychiatric emergency department visits during a full moon.
Kamat, Shyama; Maniaci, Vincenzo; Linares, Marc Yves-Rene; Lozano, Juan M
2014-12-01
This study aimed to verify the hypothesis that the lunar cycle influences the number of pediatric psychiatric emergency department (ED) visits. Pediatric psychiatric ED visits between 2009 and 2011 were obtained retrospectively. Patients aged between 4 and 21 years presenting to Miami Children's Hospital ED with a primary psychiatric complaint were included in the study. Patients with a concomitant psychiatric problem and a secondary medical condition were excluded. The number of psychiatric visits was retrieved for the full moon dates, control dates as well as the day before and after the full moon when the moon appears full to the naked eye (full moon effect). A comparison was made using the 2-sample independent t test. Between 2009 and 2011, 36 dates were considered as the true full moon dates and 108 dates as the "full moon effect." A total of 559 patients were included in the study. The 2-sample independent t tests were performed between the actual full moon date and control dates, as well as between the "full moon effect" dates and control dates. Our results failed to show a statistical significance when comparing the number of pediatric psychiatric patients presenting to a children's hospital ED during a full moon and a non-full moon date. Our study's results are in agreement with those involving adult patients. The full moon does not affect psychiatric visits in a children's hospital.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.
Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudo, H.; Shima, K.; Seki, S.
1991-06-01
Ion-beam shadowing effects have been observed for secondary electrons induced by various ions in the energy range of 1.8--3.8 MeV/amu, under various channeling conditions in Si and GaAs crystals. From a comparison of the energy spectra of electrons induced by ions of equal velocity, we have found reduced shadowing effects for heavy ions (Si, S, and Cl) as compared with light (H, He, C, and O) ions. It is concluded that the reduction results from the screening of the heavy ion's nuclear charge by bound electrons. By analyzing the reduced shadowing effect, the effective nuclear charges for the heavy ionsmore » within the target crystals have been determined.« less
Feasibility and Definition of a Limited-Scale Lunar Polar Volatiles Prospecting Mission
NASA Astrophysics Data System (ADS)
Heldmann, J. L.; Elphic, R. C.; Colaprete, A.; Beyer, R. A.; Fong, T.; Cockrell, J.; Pedersen, L.
2011-12-01
The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold-trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside of areas of strict permanent shadow. These discoveries hint at potentially extensive near-surface deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A small robotic mission to a persistently shadowed but briefly sunlit location with suitable environmental conditions (e.g., short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a volatile-rich site.
Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James
2012-01-01
The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.
Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar
NASA Astrophysics Data System (ADS)
Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.
2017-05-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.
2013-12-23
Slipping into shadow, the south polar vortex at Saturn's moon Titan still stands out against the orange and blue haze layers that are characteristic of Titan's atmosphere. Images like this, from NASA's Cassini spacecraft, lead scientists to conclude that the polar vortex clouds form at a much higher altitude -- where sunlight can still reach -- than the lower-altitude surrounding haze. This view looks towards the trailing hemisphere of Titan (3,200 miles or 5,150 kilometers across). North on Titan is up and rotated 17 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on July 30, 2013. The view was acquired at a distance of approximately 895,000 miles (1.441 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17177
NASA Astrophysics Data System (ADS)
Taylor, S. A.; Coates, A. J.; Jones, G. H.; Wellbrock, A.; Fazakerley, A. N.; Desai, R. T.; Caro-Carretero, R.; Michiko, M. W.; Schippers, P.; Waite, J. H.
2018-01-01
The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6-10 eV and 10-16 eV. We estimate that the proportion of "hot" (>15 eV) to "cold" (<15 eV) electrons during the Enceladus flybys is ≈ 0.1-0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.
Io's Sodium Cloud (Clear Filter and Green-Yellow Filter with Intensity Contours)
NASA Technical Reports Server (NTRS)
1997-01-01
This picture contains two images of Jupiter's moon Io and its surrounding sky. The original frame was exposed twice, once through a clear filter and once through a green-yellow filter. The camera pointed in slightly different directions for the two exposures, placing a clear filter image of Io in the top half of the frame, and a green-yellow filter image of Io in the bottom half of the frame. This picture shows the entire original frame with the addition of intensity contours and false color. East is to the right.
Most of Io's visible surface is in shadow, though part of a white crescent can be seen on its western side. This crescent is being illuminated mostly by 'Jupitershine' (i.e., sunlight reflected off Jupiter). Near Io's eastern equatorial edge is a burst of white light which shows up best in the lower image. This sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometers above the surface, and is being hit by sunlight just a little east of Io's eastern edge.The sky is full of diffuse light, some of which is scattered light from Prometheus' plume and Io's lit crescent (particularly in the half of the frame dominated by the clear filter). However, much of the diffuse emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight into both the clear and green-yellow filters at a wavelength of about 589 nanometers.The intensity contours help to illustrate that: (i) significant diffuse emission is present all the way to the eastern edge of the frame (indeed, the Sodium Cloud is known to extend far beyond that edge); (ii) the diffuse emission exhibits a directional feature at about four o'clock relative to Io's center (similar features have been seen in the Sodium Cloud at greater distances from Io).The upper image of Io exhibits a roundish white spot in the bottom half of Io's shadowed side. This corresponds to thermal emission from the volcano Pele. The lower image bears a much smaller trace of this emission because the clear filter is far more sensitive than the green-yellow filter to those relatively long wavelengths where thermal emission is strongest.This image was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft. Galileo was then in Jupiter's shadow, and located about 2.3 million kilometers (about 32 Jovian radii) from both Jupiter and Io.The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.Correcting the relationship between PRI and shadow fraction for the blue sky effect
NASA Astrophysics Data System (ADS)
Mõttus, Matti
2016-04-01
The Photochemical Reflectance Index (PRI) is defined as the normalized difference ratio of leaf reflectance at two specific wavelengths in the green spectral region. Its value depends on the status of leaf carotenoid content, and especially that of the xanthophyll cycle pigments. Due to the dependence on the xanthophyll cycle, when the photosynthetic apparatus of green leaves is close to the saturation limit, their PRI becomes dependent on light conditions. Therefore, by measuring the PRI of leaves in the same canopy under different local irradiance conditions on a sunny day, it should be possible to determine the saturation level of the leaves. In turn, this gives information on the light use efficiency (LUE) of the vegetation canopy. The average light conditions of visible foliage elements are often quantified with the shadow fraction -- the fraction of visible foliage not lit by direct sunlight. The dependence of PRI on the shadow fraction has been used to remotely measure canopy LUE on clear days. Variations in shadow fraction have been achieved with multiangular measurement. However, besides photosynthetic downregulation, the dependence of canopy PRI on shadow fraction is affected by the blue sky radiation caused by scattering in the atmosphere. To quantify this effect on remotely sensed PRI, we present the underlying definitions relating leaf and canopy PRI and perform the required calculations for typical midsummer conditions in Central Finland. We demonstrate that the effect of blue sky radiation on the variation of PRI with canopy shadow fraction is similar in shape and magnitude to that of LUE variations reported in literature. Next, we propose a new method to assess these PRI variations in structured vegetation. We investiagate this blue sky effect on the PRI -- shadow fraction relationship with high spatial (60 cm) and spectral (9.8 nm) resolution airborne imaging spectroscopy data from Hyytiälä, Finland. We evaluate the spectral irradiance in different locations inside the canopy and calculate a correction term for the canopy PRI estimates defined using top-of-canopy irradiances. We determine the maximum value of the correction term by sampling the most sunlit and shaded road surface locations adjacent to tree crowns. Results indicate that under the particular illumination-view geometry, irradiance variations decreased the canopy PRI by as much as 0.06. The correction depended only slightly on atmospheric correction parameters. Other than the blue sky effect, PRI showed no correlation with the shadow fraction, indicating a lack of down-regulation at the time of measurement.
NASA Astrophysics Data System (ADS)
Qie, G.; Wang, G.; Wang, M.
2016-12-01
Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images
Validation of an In-Water, Tower-Shading Correction Scheme
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Doyle, John P.; Zibordi, Giuseppe; vanderLinde, Dirk
2003-01-01
Large offshore structures used for the deployment of optical instruments can significantly perturb the intensity of the light field surrounding the optical measurement point, where different portions of the visible spectrum are subject to different shadowing effects. These effects degrade the quality of the acquired optical data and can reduce the accuracy of several derived quantities, such as those obtained by applying bio-optical algorithms directly to the shadow-perturbed data. As a result, optical remote sensing calibration and validation studies can be impaired if shadowing artifacts are not fully accounted for. In this work, the general in-water shadowing problem is examined for a particular case study. Backward Monte Carlo (MC) radiative transfer computations- performed in a vertically stratified, horizontally inhomogeneous, and realistic ocean-atmosphere system are shown to accurately simulate the shadow-induced relative percent errors affecting the radiance and irradiance data profiles acquired close to an oceanographic tower. Multiparameter optical data processing has provided adequate representation of experimental uncertainties allowing consistent comparison with simulations. The more detailed simulations at the subsurface depth appear to be essentially equivalent to those obtained assuming a simplified ocean-atmosphere system, except in highly stratified waters. MC computations performed in the simplified system can be assumed, therefore, to accurately simulate the optical measurements conducted under more complex sampling conditions (i.e., within waters presenting moderate stratification at most). A previously reported correction scheme, based on the simplified MC simulations, and developed for subsurface shadow-removal processing of in-water optical data taken close to the investigated oceanographic tower, is then validated adequately under most experimental conditions. It appears feasible to generalize the present tower-specific approach to solve other optical sensor shadowing problems pertaining to differently shaped deployment platforms, and also including surrounding structures and instrument casings.
NASA Astrophysics Data System (ADS)
de Azevedo, Samara C.; Singh, Ramesh P.; da Silva, Erivaldo A.
2017-04-01
Finer spatial resolution of areas with tall objects within urban environment causes intense shadows that lead to wrong information in urban mapping. Due to the shadows, automatic detection of objects (such as buildings, trees, structures, towers) and to estimate the surface coverage from high spatial resolution is difficult. Thus, automatic shadow detection is the first necessary preprocessing step to improve the outcome of many remote sensing applications, particularly for high spatial resolution images. Efforts have been made to explore spatial and spectral information to evaluate such shadows. In this paper, we have used morphological attribute filtering to extract contextual relations in an efficient multilevel approach for high resolution images. The attribute selected for the filtering was the area estimated from shadow spectral feature using the Normalized Saturation-Value Difference Index (NSVDI) derived from pan-sharpening images. In order to assess the quality of fusion products and the influence on shadow detection algorithm, we evaluated three pan-sharpening methods - Intensity-Hue-Saturation (IHS), Principal Components (PC) and Gran-Schmidt (GS) through the image quality measures: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Dimensionless Global Error in Synthesis (ERGAS) and Universal Image Quality Index (UIQI). Experimental results over Worldview II scene from São Paulo city (Brazil) show that GS method provides good correlation with original multispectral bands with no radiometric and contrast distortion. The automatic method using GS method for NSDVI generation clearly provide a clear distinction of shadows and non-shadows pixels with an overall accuracy more than 90%. The experimental results confirm the effectiveness of the proposed approach which could be used for further shadow removal and reliable for object recognition, land-cover mapping, 3D reconstruction, etc. especially in developing countries where land use and land cover are rapidly changing with tall objects within urban areas.
ERIC Educational Resources Information Center
Pyschny, Verena; Landwehr, Markus; Hahn, Moritz; Lang-Roth, Ruth; Walger, Martin; Meister, Hartmut
2014-01-01
Purpose: The objective of the study was to investigate the influence of noise (energetic) and speech (energetic plus informational) maskers on the head shadow (HS), squelch (SQ), and binaural summation (SU) effect in bilateral and bimodal cochlear implant (CI) users. Method: Speech recognition was measured in the presence of either a competing…
NASA Technical Reports Server (NTRS)
Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.
1979-01-01
Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.
Lunar Orbiter Laser Altimeter (LOLA) Data: Lunar Topography and Surface Properties After 7 Years
NASA Astrophysics Data System (ADS)
Neumann, G. A.; Mazarico, E.; Lemoine, F. G.; Sun, X.; Head, J. W., III; Barker, M. K.; Jha, K.; Mao, D.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.
2016-12-01
The LOLA altimeter on LRO has collected data on 31,500 orbits of the Moon since June 2009, firing 4.1 billion laser pulses split into 5 beams. Nearly 7 billion lunar altimetric bounce points have been geolocated with 0.5-m radial accuracy and 10 m total position errors using high-resolution gravity fields from GRAIL combined with radiometric tracking and one-way laser ranging, followed by crossover analysis. The altimetric data are resampled onto uniformly-spaced grids at resolutions down to the 5-m-diameter footprint scale of the LOLA beams where coverage permits. Originally flown to ensure safe landing and to provide a precise global geodetic grid on the Moon, ongoing analysis of LOLA data has enabled the measurement of the centimeter-level lunar tides, the survey of regions in permanent shadow and near-total solar illumination, and addressed problems of volcanology, tectonism, impact cratering, lunar chronology, mineralogy, crustal and interior structure, regolith evolution, nature and evolution of volatiles, surface roughness and slope interactions with particles. Active measurement of the surface reflectance at zero phase has suggested the presence of lunar frost in the coldest regions poleward of 80° N/S while passive measurements of the lunar phase function at 1064 nm wavelength have extended knowledge of lunar photometry in the near-infrared. Imperfections in topographic knowledge at the meter level arise from the need for interpolation within gaps, from misclassification of noise returns, and from residual orbital and attitude errors. Continued observations in the Extended Mission phases address these issues, while classification of ground returns is assisted by increasingly precise digital elevation models produced by stereographic analysis of data from the LRO cameras and the Kaguya Terrain Camera (e.g., imbrium.mit.edu/EXTRAS/SLDEM2015). The lower periapse altitude during the most recent mission year, together with changes in orbital inclination, enables more frequent observations of reflectance and temporal coverage of surface properties in the permanently-shadowed regions at 85-87° S, such as Cabeus, than were obtained in the first mission years. We will report on these science results and the status of production of high-level products to be provided from these observations.
Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones
NASA Astrophysics Data System (ADS)
Kuznetsov, Eduard; Zakharova, Polina
Orbital evolution of objects on Molniya-type orbits is considered near high-order resonance zones. Initial conditions correspond to high-elliptical orbits with the critical inclination 63.4 degrees. High-order resonances are analyzed. Resonance orders are more than 5 and less than 50. Frequencies of perturbations caused by the effect of sectorial and tesseral harmonics of the Earth's gravitational potential are linear combinations of the mean motion of a satellite, angular velocities of motion of the pericenter and node of its orbit, and the angular velocity of the Earth. Frequencies of perturbations were calculated by taking into account secular perturbations from the Earth oblateness, the Moon, the Sun, and a solar radiation pressure. Resonance splitting effect leads to three sub-resonances. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. We used "A Numerical Model of the Motion of Artificial Earth's Satellites", developed by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University. The model of disturbing forces taken into account the main perturbing factors: the gravitational field of the Earth, the attraction of the Moon and the Sun, the tides in the Earth’s body, the solar radiation pressure, taking into account the shadow of the Earth, the Poynting-Robertson effect, and the atmospheric drag. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris. The locations and sizes of resonance zones were refined from numerical simulation. The Poynting-Robertson effect results in a secular decrease in the semi-major axis of a spherically symmetrical satellite. In resonance regions the effect weakens slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the numerical simulation. Under the Poynting-Robertson effect objects pass through the regions of high-order resonances. The Poynting-Robertson effect and secular perturbations of the semi-major axis lead to formation weak stochastic trajectories. The integral autocorrelation function was used to analysis stochastic properties trajectories. This work was supported by the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Researches (grant 13-02-00026a).
NASA Astrophysics Data System (ADS)
Koohafkan, Michael
2006-05-01
The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.
Investigation of truck mounted attenuator (TMA) crashes in work zones in Virginia.
DOT National Transportation Integrated Search
2015-10-01
Truck mounted attenuators (TMAs) are deployed on shadow vehicles in work zones to mitigate the effects of errant : vehicles that strike the shadow vehicle, either by smoothly decelerating the vehicle to a stop when hit head-on or by redirecting : the...
Satellite-Sensor Calibration Verification Using the Cloud-Shadow Method
NASA Technical Reports Server (NTRS)
Reinersman, P.; Carder, K. L.; Chen, F. R.
1995-01-01
An atmospheric-correction method which uses cloud-shaded pixels together with pixels in a neighboring region of similar optical properties is described. This cloud-shadow method uses the difference between the total radiance values observed at the sensor for these two regions, thus removing the nearly identical atmospheric radiance contributions to the two signals (e.g. path radiance and Fresnel-reflected skylight). What remains is largely due to solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by the direct solar irradiance reaching the sea surface and correction for some second-order effects provides the remote-sensing reflectance of the ocean at the location of the neighbor region, providing a known 'ground target' spectrum for use in testing the calibration of the sensor. A similar approach may be useful for land targets if horizontal homogeneity of scene reflectance exists about the shadow. Monte Carlo calculations have been used to correct for adjacency effects and to estimate the differences in the skylight reaching the shadowed and neighbor pixels.
Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits
NASA Technical Reports Server (NTRS)
Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David
2011-01-01
The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar radiation force for several hours. The effects of these events on orbit determination accuracy will be presented. In order to plan for upcoming stationkeeping maneuvers, the maneuver planning team must take the current orbit estimate, propagate it forward to the planned maneuver time, and determine the optimal maneuver to maintain the Lissajous orbit for one or more revolutions. The propagation is performed using a Runge-Kutta 7/8 integrator and typically the position and velocity uncertainty increases with propagation time, increasing the overall uncertainty of the orbit state at the maneuver execution time. The effect of orbit knowledge uncertainty on stationkeeping operations will be presented.
NASA Astrophysics Data System (ADS)
Tatar, N.; Saadatseresht, M.; Arefi, H.
2017-09-01
Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.
Overestimation of Mach number due to probe shadow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosselin, J. J.; Thakur, S. C.; Tynan, G. R.
2016-07-15
Comparisons of the plasma ion flow speed measurements from Mach probes and laser induced fluorescence were performed in the Controlled Shear Decorrelation Experiment. We show the presence of the probe causes a low density geometric shadow downstream of the probe that affects the current density collected by the probe in collisional plasmas if the ion-neutral mean free path is shorter than the probe shadow length, L{sub g} = w{sup 2} V{sub drift}/D{sub ⊥}, resulting in erroneous Mach numbers. We then present a simple correction term that provides the corrected Mach number from probe data when the sound speed, ion-neutral mean free path,more » and perpendicular diffusion coefficient of the plasma are known. The probe shadow effect must be taken into account whenever the ion-neutral mean free path is on the order of the probe shadow length in linear devices and the open-field line region of fusion devices.« less
ERIC Educational Resources Information Center
Ogan-Bekiroglu, Feral
2007-01-01
The purpose of this study was twofold. First, it was aimed to identify Turkish pre-service physics teachers' knowledge and understanding of the Moon, Moon phases, and other lunar phenomena. Second, the effects of model-based teaching on pre-service teachers' conceptions were examined. Conceptions were proposed as mental models in this study. Four…
NASA Astrophysics Data System (ADS)
Morgan, T.; Chin, G.
2007-08-01
NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.
Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing
NASA Technical Reports Server (NTRS)
Kishoni, D.; Heyman, J. S.
1986-01-01
Attention is given to a numerical algorithm that, via signal processing, enables the dynamic correction of the shadowing effect of reflections on ultrasonic displays. The algorithm was applied to experimental data from graphite-epoxy composite material immersed in a water bath. It is concluded that images of material defects with the shadowing corrections allow for a more quantitative interpretation of the material state. It is noted that the proposed algorithm is fast and simple enough to be adopted for real time applications in industry.
Near real-time shadow detection and removal in aerial motion imagery application
NASA Astrophysics Data System (ADS)
Silva, Guilherme F.; Carneiro, Grace B.; Doth, Ricardo; Amaral, Leonardo A.; Azevedo, Dario F. G. de
2018-06-01
This work presents a method to automatically detect and remove shadows in urban aerial images and its application in an aerospace remote monitoring system requiring near real-time processing. Our detection method generates shadow masks and is accelerated by GPU programming. To obtain the shadow masks, we converted images from RGB to CIELCh model, calculated a modified Specthem ratio, and applied multilevel thresholding. Morphological operations were used to reduce shadow mask noise. The shadow masks are used in the process of removing shadows from the original images using the illumination ratio of the shadow/non-shadow regions. We obtained shadow detection accuracy of around 93% and shadow removal results comparable to the state-of-the-art while maintaining execution time under real-time constraints.
Effective Methods of Teaching Moon Phases
NASA Astrophysics Data System (ADS)
Jones, Heather; Hintz, E. G.; Lawler, M. J.; Jones, M.; Mangrubang, F. R.; Neeley, J. E.
2010-01-01
This research investigates the effectiveness of several commonly used methods for teaching the causes of moon phases to sixth grade students. Common teaching methods being investigated are the use of diagrams, animations, modeling/kinesthetics and direct observations of moon phases using a planetarium. Data for each method will be measured by a pre and post assessment of students understanding of moon phases taught using one of the methods. The data will then be used to evaluate the effectiveness of each teaching method individually and comparatively, as well as the method's ability to discourage common misconceptions about moon phases. Results from this research will provide foundational data for the development of educational planetarium shows for the deaf or other linguistically disadvantage children.
Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions
NASA Astrophysics Data System (ADS)
Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano
2018-03-01
In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.
ERIC Educational Resources Information Center
Bates, Elizabeth; Liu, Hua
1996-01-01
Discusses "cued shadowing," during which subjects listen to pairs of words or sentences and repeat a target word signalled by a cue. Rapid semantic and grammatical priming effects have been observed with this technique, both with word and sentence contexts and at different positions within sentence contexts, in normal children and adults, and in…
Schölkopf, B
1998-01-01
Besides the familiar moon illusion [e.g. Hershenson, 1989 The Moon Illusion (Hillsdale, NJ: Lawrence Erlbaum Associates)], wherein the moon appears bigger when it is close to the horizon, there is a less known illusion which causes the moon's illuminated side to appear turned away from the direction of the sun. An experiment documenting the effect is described, and a possible explanation is put forward.
Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.
2007-01-01
In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.
Charon Surprising Youthful and Varied Terrain
2015-07-15
Remarkable new details of Pluto's largest moon Charon are revealed in this image from New Horizons' Long Range Reconnaissance Imager (LORRI), taken late on July 13, 2015 from a distance of 289,000 miles (466,000 kilometers). A swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon's crust, likely a result of internal processes. At upper right, along the moon's curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. Mission scientists are surprised by the apparent lack of craters on Charon. South of the moon's equator, at the bottom of this image, terrain is lit by the slanting rays of the sun, creating shadows that make it easier to distinguish topography. Even here, however, relatively few craters are visible, indicating a relatively young surface that has been reshaped by geologic activity. In Charon's north polar region, a dark marking prominent in New Horizons' approach images is now seen to have a diffuse boundary, suggesting it is a thin deposit of dark material. Underlying it is a distinct, sharply bounded, angular feature; higher resolution images still to come are expected to shed more light on this enigmatic region. The image has been compressed to reduce its file size for transmission to Earth. In high-contrast areas of the image, features as small as 3 miles (5 kilometers) across can be seen. Some lower-contrast detail is obscured by the compression of the image, which may make some areas appear smoother than they really are. The uncompressed version still resides in New Horizons' computer memory and is scheduled to be transmitted at a later date. The image has been combined with color information obtained by New Horizons' Ralph instrument on July 13. New Horizons traveled more than three billion miles over nine-and-a-half years to reach the Pluto system. http://photojournal.jpl.nasa.gov/catalog/PIA19709
Moon illusion in pictures: a multimechanism approach.
Coren, S; Aks, D J
1990-05-01
The existence of the moon illusion in pictorial representations was demonstrated in 6 experiments. Ss either judged the size of the moon in pictures, depicted as on the horizon or high in the sky, or drew horizon and elevated moons. The horizon moon was consistently judged to be larger than the elevated moon, independent of the angle at which the pictures are viewed. The distance paradox usually observed with the moon illusion (horizon moon apparently closer than the elevated moon) also exists in pictures. The magnitude of both size and distance effects depends on the salience of depicted depth cues. The pattern of results suggests that the moon illusion is caused by several interacting mechanisms and that use of pictorial stimuli may allow the separation of various cognitive from physiological contributions to the illusion.
SMART-1 leaves Earth on a long journey to the Moon
NASA Astrophysics Data System (ADS)
2003-09-01
The European Space Agency’s SMART-1 was one of three payloads on Ariane Flight 162. The generic Ariane-5 lifted off from the Guiana Space Centre, Europe’s spaceport at Kourou, French Guiana, at 2014 hrs local time (2314 hrs GMT) on 27 September (01:14 Central European Summer time on 28 September). 42 minutes after launch, SMART-1 as last of the three satellites had been successfully released into a geostationary transfer orbit (654 x 35 885 km, inclined at 7 degrees to the Equator). While the other two satellites are due to manoeuvre towards geostationary orbit, the 367 kg SMART-1 will begin a much longer journey to a target ten times more distant than the geostationary orbit: the Moon. “Europe can be proud”, said ESA Director General Jean-Jacques Dordain, after witnessing the launch from ESA’s ESOC space operations centre in Darmstadt, Germany, “we have set course for the Moon again. And this is only the beginning: we are preparing to reach much further”. The spacecraft has deployed its solar arrays and is currently undergoing initial checkout of its systems under control from ESA/ESOC. This checkout will continue until 4 October and will include with the initial firing of SMART-1’s innovative ion engine. By ion drive to the Moon “Science and technology go hand in hand in this exciting mission to the Moon. The Earth and Moon have over 4 thousand million years of shared history, so knowing the Moon better will help scientists in Europe and all over the world to better understand our planet and will give them valuable new hints on how to better safeguard it” said ESA Director of Science David Southwood, following the launch from Kourou. As the first mission in the new series of Small Missions for Advanced Research in Technology, SMART-1 is mainly designed to demonstrate innovative and key technologies for future deep space science missions. The first technology to be demonstrated on SMART-1 will be Solar Electric Primary Propulsion (SEPP), a highly efficient and lightweight propulsion system that is ideal for long-duration deep space missions in and beyond our solar system. SMART-1’s propulsion system consists in a single ion engine fuelled by 82 kg of xenon gas and pure solar energy. This plasma thruster relies on the “Hall effect” to accelerate xenon ions to speed up to 16,000 m/s (or 57 600 km/hr). It is able to deliver 70 mN of thrust with a specific impulse (the ratio between thrust and propellant consumption) 5 to 10 times better than traditional chemical thrusters and for much longer durations (months or even years, compared to the few minutes’ operating times typical of traditional chemical engines). The ion engine is scheduled to go into action on 30 September. At first, it will fire almost continuously -stopping only when the spacecraft is in the Earth’s shadow - to accelerate the probe (at about 0.2 mm/s2) and raise the altitude of its perigee (the lowest point of its orbit) from 654 to 14 000 km. This manoeuvre will take about 80 days to complete and will place the spacecraft safely above the radiation belts that surround the Earth. Commissioning will be completed within 2 weeks, after which ESA’s control centre at ESOC will be in contact with the spacecraft for two 8-hour periods every week. Once at a safe distance from Earth, SMART-1 will fire its thruster for periods of several days to progressively raise its apogee (the maximum altitude of its orbit) to the orbit of the Moon. At 200 000 km from Earth, it will begin receiving significant tugs from the Moon as it passes by. It will then perform three gravity-assist manoeuvres while flying by the Moon in late December 2004, late January and February 2005. Eventually, SMART-1 will be “captured” and enter a near-polar elliptical lunar orbit in March 2005. SMART-1 will then use its thruster to reduce the altitude and eccentricity of this orbit. During this 18-month transfer phase, the solar-electric primary propulsion’s performance, and its interactions with the spacecraft and its environment, will be closely monitored by the Spacecraft Potential, Electron & Dust Experiment (SPEDE) and the Electric Propulsion Diagnostic Package (EPDP) to detect possible side-effects or interactions with natural electric and magnetic phenomena in nearby space. A promising technology, Solar Electric Primary Propulsion could be applied to numerous interplanetary missions in the Solar System, reducing the size and cost of propulsion systems while increasing manoeuvring flexibility and the mass available for scientific instrumentation. In addition to Solar Electric Primary Propulsion, SMART-1 will demonstrate a wide range of new technologies like a Li-Ion modular battery package; new-generation high-data-rate deep space communications in X and Ka bands with the X/Ka-band Telemetry and Telecommand Experiment (KaTE); a computer technique enabling spacecraft to determine their position autonomously in space, which is the first step towards fully autonomous spacecraft navigation. Digging for the Moon’s remaining secrets In April 2005 SMART-1 will begin the second phase of its mission, due to last at least six months and dedicated to the study of the Moon from a near polar orbit. For more than 40 years, the Moon has been visited by automated space probes and by nine manned expeditions, six of which landed on its surface. Nevertheless, much remains to be learnt about our closest neighbour, and SMART-1’s payload will conduct observations never performed before in such detail. The Advanced/Moon Micro-Imaging Experiment (AMIE) miniaturised CCD camera will provide high-resolution and high-sensitivity imagery of the surface, even in poorly lit polar areas. The highly compact SIR infrared spectrometer will map lunar materials and look for water and carbon dioxide ice in permanently shadowed craters. The Demonstration Compact Imaging X-ray Spectrometer (D-CIXS) will provide the first global chemical map of the Moon and the X-ray Solar Monitor (XSM) will perform spectrometric observations of the Sun and provide calibration data to D-CIXS to compensate for solar variability. The SPEDE experiment used to monitor Solar Electric Primary Propulsion interactions with the environment will also study how the solar wind affects the Moon. The overall data collected by SMART-1 will provide new inputs for studies of the evolution of the Moon, its chemical composition and its geophysical processes, and also for comparative planetology in general. Paving the way for future space probes In addition to valuable lunar science, SMART-1’s payload will be involved in the mission’s technology demonstrations to prepare for future-generation deep space missions. For instance, the AMIE camera will be used to validate the On-Board Autonomous Navigation (OBAN) algorithm, which correlates data from sensors and star trackers to provide navigational data. It will also participate in a laser communication link experiment with ESA’s optical ground station at the Teide Observatory in Tenerife, Canary Islands, trying to detect an incoming laser beam from the ground. Using both AMIE and KaTE hardware, the Radio Science Investigation System (RSIS) experiment will demonstrate a new way of gauging the interiors of planets and their moons by detecting the well-known tilting motion of the Moon. This technology can be used later by ESA planetary missions. SMART-1 was developed for ESA by the Swedish Space Corporation, as prime contractor, with contributions from almost 30 contractors from 11 European countries and the United States. Despite its small size, the spacecraft carries 19 kg of science payload consisting in experiments led by Principal Investigators from Finland, Germany, Italy, Switzerland and the United Kingdom. Despite its relatively small budget and short development schedule, SMART-1 holds tremendous potential for future missions and is a clear illustration of Europe’s ambitions in the exploration of the solar system, also highlighted by June’s launch of Mars Express, which has now completed over the half on its journey to Mars, and the launch of Rosetta, due in February 2004, to visit comet Churyumov-Gerasimenko.
Exploring Sea Quark EMC Effect and Anti-Shadowing Through Drell-Yan at SeaQuest / Fermilab E906
NASA Astrophysics Data System (ADS)
Dannowitz, Bryan; Fermilab E906 / SeaQuest Collaboration
2015-04-01
Fermilab E906/SeaQuest is a fixed-target experiment that uses the 120 GeV Main Injector proton beam. SeaQuest will extract sea anti-quark structure of the proton by detecting dimuon pairs created by Drell-Yan and measuring the cross-section ratios for LH2, LD2, C, Fe, and W targets. The European Muon Collaboration (EMC) discovered that the momentum distribution of quarks in a free nucleon becomes modified when bound within a nucleus. In studying the EMC Effect, an anti-shadowing feature has been observed in DIS and pion-induced DY measurements in the 0 . 1
The Motion of a Satellite of the Moon
NASA Technical Reports Server (NTRS)
Lass, Harry
1960-01-01
The motion of a satellite of the Moon depends on the potential field due to the Moon as well as the gravitational effects of the Earth and Sun. If one chooses a frame of reference attached to the Moon, it can be shown that the force field resulting from the Sun can be neglected when compared with the perturbing field of the Moon resulting from its oblateness. The effect of the Earth's field on the satellite is of the some order of magnitude as the Moon's perturbing field and must be included in an analysis of the motion of a satellite of the Moon. We will assume that the distance between Earth and Moon remains constant, and we will consider satellite orbits of small eccentricity. It will be shown that a nearly circular polar orbit will digress less than 1 deg from a polar orbit and that the change in eccentricity is less than a factor of e in one year.
Highest-resolution Europa Image & Mosaic from Galileo
2017-02-08
This mosaic of images includes the most detailed view of the surface of Jupiter's moon Europa obtained by NASA's Galileo mission. The topmost footprint is the highest resolution image taken by Galileo at Europa. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The other seven images in this observation were obtained at a resolution of 38 feet (12 meters) per pixel, thus the mosaic, including the top image, has been projected at the higher image scale. The top image is also provided at its original resolution, as a separate image file. It includes a vertical black line that resulted from missing data that was not transmitted by Galileo. This is the highest resolution view of Europa available until a future mission visits the icy moon. The right side of the image was previously published as PIA01180. Although this data has been publicly available in NASA's Planetary Data System archive for many years, NASA scientists have not previously combined these images into a mosaic for public release. This observation was taken with the sun relatively high in the sky, so most of the brightness variations visible here are due to color differences in the surface material rather than shadows. Bright ridge tops are paired with darker valleys, perhaps due to a process in which small temperature variations allow bright frost to accumulate in slightly colder, higher-elevation locations. http://photojournal.jpl.nasa.gov/catalog/PIA21431
RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization
NASA Technical Reports Server (NTRS)
2008-01-01
To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
NASA Technical Reports Server (NTRS)
1996-01-01
Volcanic hot spots and auroral emissions glow on the darkside of Jupiter's moon Io in the image at left. The image was taken by the camera onboard NASA's Galileo spacecraft on 29 June, 1996 UT while Io was in Jupiter's shadow. It is the best and highest-resolution image ever acquired of hot spots or auroral features on Io. The mosaic at right of 1979 Voyager images is shown with an identical scale and projection to identify the locations of the hot spots seen in the Galileo image. The grid marks are at 30 degree intervals of latitude and longitude. North is to the top.
In the nighttime Galileo image, small red ovals and perhaps some small green areas are from volcanic hot spots with temperatures of more than about 700 kelvin (about 1000 degrees Fahrenheit). Greenish areas seen near the limb, or edge of the moon, are probably the result of auroral or airglow emissions of neutral oxygen or sulfur atoms in volcanic plumes and in Io's patchy atmosphere. The image was taken from a range of 1,035,000 kilometers (about 643,000 miles).The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoDoctoring Undercover: updating the educational tradition of shadowing.
Clark, Claire D
2017-01-01
Premedical students are educated in basic biological and health sciences. As a complement to traditional premedical coursework, medical school applicants are encouraged to shadow practitioners, with the hope that observation will introduce students to the culture and practice of healthcare. Yet the shadowing experience varies widely across practitioners and institutions; resources that guide students' critical reflection and structure the experience are scarce. A pilot experiential learning course, Doctoring Undercover: Shadowing and the Culture of Medicine, was developed to fill this gap. The course consisted of three parts: an introduction to medical culture through the disciplines of medical sociology, history, anthropology, and bioethics; a site placement in which students applied these fields' analytical techniques to the study of medical culture and practice; and the development of an online activity guide that other premedical students may adapt to their shadowing circumstances. Students reported that they were exposed to new disciplinary perspectives and interprofessional environments that they would not traditionally encounter. Students' contributions to the shadowing guide encouraged active learning and reflection on the dynamics of effective patient-provider relationships and shadowing experiences. Locally, the class may be scaled for a larger group of premedical students and incorporated into a formal pathway program for premedical students; the content will also be integrated into the clinical medicine course for first-year medical students. Online, the guide will be promoted for use by other institutions and by individuals planning extracurricular shadowing experiences; feedback will be solicited. Tools for evaluating the short- and long-term impact of the course and guide will be developed and validated. Observational and experimental studies of the course's impact should be conducted. ICM: Introduction to Clinical Medicine; SCE: Selective Clinical Experiences.
Bistatic Radar Observations of the Moon Using Mini-RF on LRO and the Arecibo Observatory
NASA Technical Reports Server (NTRS)
Patterson, G. W.; Stickle, A. M.; Turner, F. S.; Jensen, J. R.; Bussey, D. B. J.; Spudis, P.; Espiritu, R. C.; Schulze, R. C.; Yocky, D. A.; Wahl, D. E.;
2016-01-01
The Miniature Radio Frequency (Mini-RF) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) that operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 to 2015. The purpose of this bistatic campaign was to characterize the radar scattering properties of the surface and near-surface, as a function of bistatic angle, for a variety of lunar terrains and search for a coherent backscatter opposition effect indicative of the presence of water ice. A variety of lunar terrain types were sampled over a range of incidence and bistatic angles; including mare, highland, pyroclastic, crater ejecta, and crater floor materials. Responses consistent with an opposition effect were observed for the ejecta of several Copernican-aged craters and the floor of the south-polar crater Cabeus. The responses of ejecta material varied by crater in a manner that suggests a relationship with crater age. The response for Cabeus was observed within the portion of its floor that is not in permanent shadow. The character of the response differs from that of crater ejecta and appears unique with respect to all other lunar terrains observed. Analysis of data for this region suggests that the unique nature of the response may indicate the presence of near-surface deposits of water ice.
An Efficient and Robust Moving Shadow Removal Algorithm and Its Applications in ITS
NASA Astrophysics Data System (ADS)
Lin, Chin-Teng; Yang, Chien-Ting; Shou, Yu-Wen; Shen, Tzu-Kuei
2010-12-01
We propose an efficient algorithm for removing shadows of moving vehicles caused by non-uniform distributions of light reflections in the daytime. This paper presents a brand-new and complete structure in feature combination as well as analysis for orientating and labeling moving shadows so as to extract the defined objects in foregrounds more easily in each snapshot of the original files of videos which are acquired in the real traffic situations. Moreover, we make use of Gaussian Mixture Model (GMM) for background removal and detection of moving shadows in our tested images, and define two indices for characterizing non-shadowed regions where one indicates the characteristics of lines and the other index can be characterized by the information in gray scales of images which helps us to build a newly defined set of darkening ratios (modified darkening factors) based on Gaussian models. To prove the effectiveness of our moving shadow algorithm, we carry it out with a practical application of traffic flow detection in ITS (Intelligent Transportation System)—vehicle counting. Our algorithm shows the faster processing speed, 13.84 ms/frame, and can improve the accuracy rate in 4% ~ 10% for our three tested videos in the experimental results of vehicle counting.
NASA Astrophysics Data System (ADS)
Hu, X.; Li, X.
2012-08-01
The orthophoto is an important component of GIS database and has been applied in many fields. But occlusion and shadow causes the loss of feature information which has a great effect on the quality of images. One of the critical steps in true orthophoto generation is the detection of occlusion and shadow. Nowadays LiDAR can obtain the digital surface model (DSM) directly. Combined with this technology, image occlusion and shadow can be detected automatically. In this paper, the Z-Buffer is applied for occlusion detection. The shadow detection can be regarded as a same problem with occlusion detection considering the angle between the sun and the camera. However, the Z-Buffer algorithm is computationally expensive. And the volume of scanned data and remote sensing images is very large. Efficient algorithm is another challenge. Modern graphics processing unit (GPU) is much more powerful than central processing unit (CPU). We introduce this technology to speed up the Z-Buffer algorithm and get 7 times increase in speed compared with CPU. The results of experiments demonstrate that Z-Buffer algorithm plays well in occlusion and shadow detection combined with high density of point cloud and GPU can speed up the computation significantly.
Academic aspects of lunar water resources and their relevance to lunar protolife.
Green, Jack
2011-01-01
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife.
Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife
Green, Jack
2011-01-01
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife. PMID:22016644
Gu, Gang; Zhou, Yu-min; Wang, Da-li; Chen, Lian; Zhong, Nan-shan; Ran, Pi-xin
2012-04-10
To evaluate the effects of shadow boxing training on the exercise endurance and quality of life of Chinese patients with COPD (chronic obstructive pulmonary disease). From May 2010 to March 2011, a total of 70 COPD patients in stable phases were recruited from Liwan, Yuexiu and Haizhu districts of Guangzhou. There were 35 patients in the shadow boxing exercise group and 35 patients in the control group. And they were matched by gender and age. The patients in the shadow boxing group exercised for 3 months while those in the control group received the conventional out-hospital management only. Their demographic, medical history, smoking status, medicinal use, spirometric data, clinical COPD questionnaire (CCQ) scores, 6-minute walking distance and Borg scores were collected before and after trial. A total of 63 COPD patients (33 in shadow boxing group vs. 30 in control group) completed the study. There was an average dropout rate of 5.7% (2/35) in shadow boxing group and 14.3% (5/35) in control group. No differences existed between two groups in age (67 ± 8 vs 69 ± 9 yr), male proportion (84.8% vs 86.7%), body mass index (22.8 ± 2.6 vs 22.7 ± 3.0), usage proportion of medicine (42.4% vs 33.3%), duration of disease (4.0 ± 7.5 vs 5.5 ± 7.3), percentage of smokers (78.8% vs 80.0%), 6-minute walking distance (447 ± 94 vs 414 ± 100), CCQ total score (15.0 ± 9.4 vs 14.1 ± 8.8), CCQ symptom score (9.2 ± 5.6 vs 8.3 ± 5.0) and activity score (5.8 ± 4.5 vs 5.8 ± 4.4) at baseline (all P > 0.05). At the end of study, the 6-minute walking distance of patients had statistical differences between two groups (P < 0.01). The shadow boxing group increased by (51 ± 55) m while the control dropped by (19 ± 58) m. The total score, symptom score and activity score of clinical COPD questionnaire had statistical differences between two groups. They decreased significantly in the shadow boxing group as compared with the baseline data while there was no significant change in the control group. No statistical differences existed between two groups in the changes of forced vital capacity (FVC), forced expiratory volume in one second (FEV(1)), FEV(1)% pred, Borg score and dyspnea scales. Capable of improving the exercise endurance and life quality of COPD patients, shadow boxing exercise may become one of effective rehabilitation programs for COPD patients in stable phases in communities.
Apollo Field Geology: 45 Years of Digesting Rocks, Field Data, and Future Objectives
NASA Astrophysics Data System (ADS)
Schmitt, H. H.
2012-12-01
Twelve Apollo astronauts participated in the Lunar Field Geological Experiment, overseen by Gene Shoemaker, Gordon Swann, and Bill Muehlberger and their Co-Investigators. In conjunction with geologists and engineers of the Geological Survey and NASA, this team planned, trained and executed the first extraterrestrial field geological investigation. As a result, astronaut sample selection, observations, photo-documentation and experiment deployment underpin 45 years of laboratory analyses and interpretation by thousands of lunar and planetary scientists. --Current hypotheses related to the origin, evolution and nature of the Moon would be far different had Apollo geological explorations not occurred, even assuming that all robotic missions flown before and since Apollo were flown. *Would we have recognized lunar meteorites without the broad suite of Apollo samples to guide us? If we eventually had properly identified such meteorites, would their chemistry and age data give us the same detailed insights about the origin and evolution of the Moon without the highly specific field documentation of samples collected by the astronauts? *Would we recognize that the early history of the Earth and Mars up to 3.8 billion years ago, including the development of life's precursors, was a period of the prolonged violence due to impacts of asteroids and comets? Would we have realized that clay minerals, produced by the alteration of impact-generated glass and debris, would have been dominant components and potential templates for complex organic molecules in the terrestrial and Martian environments? *Would we fully understand the surface environments of asteroids and young terrestrial planets without the detailed dissection and analysis of Apollo's lunar regolith samples? *Would the Moon's near-surface environment, and its mantle and core structure, be as well defined as they are without the ground-truth provided by Apollo samples and the equipment carefully emplaced there by the Apollo astronauts? *Would we finally be having an observation-based debate about testable hypotheses related to the origin of the Moon without the pristine samples of volatile-rich, orange and green pyroclastic glass? *Would we know of the three potential sources of lunar water-ice in permanent shadow, namely, comets, solar wind, and primordial water, without Apollo's samples of the regolith and pristine pyroclastic glasses? *Would we know the extent of the distributed resources of the Moon, including solar Helium-3, without regolith samples from six sites on the Moon? *Without the broad spectrum of Apollo samples, many other questions about the Moon would still be open or unasked. --Future lunar and planetary geological exploration should focus both on expanding science related to the history of the Earth and other planets and on preparations for permanent human settlement. In optimizing that exploration, an enhanced partnership between field activities undertaken by humans and robots should be developed. Robotic precursor and post-cursor support of planning, equipment deployment, and systematic data-gathering can add significantly to the normal returns provided by the insights of trained and experienced field geologists. They should do what humans do best, that is, react instantaneously and with perspicacity to new situations, discoveries and challenges.
History of Science and Conceptual Change: The Formation of Shadows by Extended Light Sources
ERIC Educational Resources Information Center
Dedes, Christos; Ravanis, Konstantinos
2009-01-01
This study investigates the effectiveness of a teaching conflict procedure whose purpose was the transformation of the representations of 12-16-year-old pupils in Greece concerning light emission and shadow formation by extended light sources. The changes observed during the children's effort to destabilize and reorganise their representations…
ERIC Educational Resources Information Center
Orwig, Gary W.
1979-01-01
The first experiment determined that verbal interference (shadowing) was detrimental to the subjects' memory of words and high similarity pictures; the second, designed to minimize the possibility that students would sort through the pictures, indicated that verbal interference did not decrease memory of high similarity pictures. (Author/JEG)
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.
Video Job Shadows. Project SEED.
ERIC Educational Resources Information Center
Kucinkas, Gene; Noyce, Gary
Video Job Shadows encourages students to develop questions about a job and offers them the chance to videotape a business person answering those questions about his or her job. The program can be an effective method of teaching high school students about the world of work and the specific requirements and responsibilities of some jobs in their…
NASA Technical Reports Server (NTRS)
Hartung, J. B.
1984-01-01
The Moon's center of mass is displaced from its center of figure about 2 km in a roughly earthward direction. Most maria are on the side of the Moon which faces the Earth. It is assumed that the Moon was initially spherically symmetric. The emplacement of mare basalts transfers mass which produces most of the observed center of mass displacement toward the Earth. The cause of the asymmetric distribution of lunar maria was examined. The Moon is in a spin orbit coupled relationship with the Earth and the effect of the Earth's gravity on the Moon is asymmetric. The earth-facing side of the Moon is a gravitational favored location for the extrusion of mare basalt magma in the same way that the topographically lower floor of a large impact basin is a gravitationally favored location. This asymmetric effect increases inversely with the fourth power of the Earth Moon distance. The history of the Earth-Moon system includes: formation of the Moon by accretion processes in a heliocentric orbit ner that of the Earth; a gravitational encounter with the Earth about 4 billion years ago resulting in capture of the Moon into a geocentric orbit and heating of the Moon through dissipation of energy related to tides raised during close approaches to the Earth(5) to produce mare basalt magma; and evolution of the Moon's orbit to its present position, slowly at first to accommodate more than 500 million years during which magmas were extruded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartung, J.B.
1984-01-01
The Moon's center of mass is displaced from its center of figure about 2 km in a roughly earthward direction. Most maria are on the side of the Moon which faces the Earth. It is assumed that the Moon was initially spherically symmetric. The emplacement of mare basalts transfers mass which produces most of the observed center of mass displacement toward the Earth. The cause of the asymmetric distribution of lunar maria was examined. The Moon is in a spin orbit coupled relationship with the Earth and the effect of the Earth's gravity on the Moon is asymmetric. The earth-facingmore » side of the Moon is a gravitational favored location for the extrusion of mare basalt magma in the same way that the topographically lower floor of a large impact basin is a gravitationally favored location. This asymmetric effect increases inversely with the fourth power of the Earth Moon distance. The history of the Earth-Moon system includes: formation of the Moon by accretion processes in a heliocentric orbit near that of the Earth; a gravitational encounter with the Earth about 4 billion years ago resulting in capture of the Moon into a geocentric orbit and heating of the Moon through dissipation of energy related to tides raised during close approaches to the Earth(5) to produce mare basalt magma; and evolution of the Moon's orbit to its present position, slowly at first to accommodate more than 500 million years during which magmas were extruded.« less
NASA Astrophysics Data System (ADS)
Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.
2015-03-01
Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation and detection of the shadow of urban objects.
The opposition and tilt effects of Saturn’s rings from HST observations
NASA Astrophysics Data System (ADS)
Salo, Heikki; French, Richard G.
2010-12-01
The two major factors contributing to the opposition brightening of Saturn's rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199-223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ's. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ˜ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623-642) study for the B ˜ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428-460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present. Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B's the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70-90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493-522).
Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes
NASA Technical Reports Server (NTRS)
2008-01-01
Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected dust angle, as a function of Lunar Module altitude.
Perceptual distance and the moon illusion.
Kaufman, Lloyd; Vassiliades, Vassias; Noble, Richard; Alexander, Robert; Kaufman, James; Edlund, Stefan
2007-01-01
The elevated moon usually appears smaller than the horizon moon of equal angular size. This is the moon illusion. Distance cues may enable the perceptual system to place the horizon moon at an effectively greater distance than the elevated moon, thus making it appear as larger. This explanation is related to the size-distance invariance hypothesis. However, the larger horizon moon is usually judged as closer than the smaller zenith moon. A bias to expect an apparently large object to be closer than a smaller object may account for this conflict. We designed experiments to determine if unbiased sensitivity to illusory differences in the size and distance of the moon (as measured by d') is consistent with SDIH. A moon above a 'terrain' was compared in both distance and size to an infinitely distant moon in empty space (the reduction moon). At a short distance the terrain moon was adjudged as both closer and smaller than the reduction moon. But these differences could not be detected at somewhat greater distances. At still greater distances the terrain moon was perceived as both more distant and larger than the reduction moon. The distances at which these transitions occurred were essentially the same for both distance and size discrimination tasks, thus supporting SDIH.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Technical Reports Server (NTRS)
Fincannon, James
1995-01-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Astrophysics Data System (ADS)
Fincannon, James
1995-05-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Lunar Science from and for Planet Earth
NASA Astrophysics Data System (ADS)
Pieters, M. C.; Hiesinger, H.; Head, J. W., III
2008-09-01
Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment in the inner solar system and the environment under which early life was able to survive. We learned that the long-lived heat producing elements are concentrated on the lunar nearside and a major geologic event must have occurred very early during the evolution of the crust and mantle to accomplish this. We learned that significant volatile deposits occur at both lunar poles and may have resulted in water ice in their permanently shadowed regions. The embers then fire from this small influx of new information and understanding in the 1990s set the stage for the next generation of lunar exploration. International Lunar Exploration: The Golden Age In 2003 ESA launched what was to become a highly successful technology demonstration mission to the Moon, SMART-1. This small pathfinder has now been followed by some of the most sophisticated remote sensing robotic missions ever sent to the Moon. The SELENE/KAGUYA mission from JAXA and the Chang'E mission from China were launched in 2007 and are successfully returning remarkable data to Earth with unprecedented resolution and detail. The Chandrayaan-1 mission of ISRO with a complement of modern Indian as well foreign instruments is set to launch in 2008. The LRO/LCROSS pair of NASA will be next, followed by NASA's GRAIL geophysics mission in 2010. It is fitting that Earth's neighbour, which harbours so many secrets about our own origins and place in the universe, is now being explored independently by a virtual armada originating from space-faring nations across the Earth. The opportunities for peaceful coordination and cooperation abound, both at the personal scientist-to-scientist level as well as at the national policy level. The next 50 years of exploration of the Earth-Moon system will be truly remarkable with the new foundation of knowledge brought forth by this golden age of lunar exploration.
Parsons, T.
2002-01-01
The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.
LRO-LAMP failsafe door-open performance: improving FUV measurements of dayside lunar hydration
NASA Astrophysics Data System (ADS)
Davis, Michael W.; Greathouse, Thomas K.; Kaufmann, David E.; Retherford, Kurt D.; Versteeg, Maarten H.
2017-08-01
The Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) is a lightweight (6.1 kg), lowpower (4.5 W), ultraviolet spectrograph based on the Alice instruments aboard the European Space Agency's Rosetta spacecraft and NASA's New Horizons spacecraft. Its primary job is to identify and localize exposed water frost in permanently shadowed regions (PSRs) near the Moon's poles, and to characterize landforms and albedos in PSRs. LRO launched on June 18, 2009 and reached lunar orbit four days later. LAMP operated with its failsafe door closed for its first seven years in flight. The failsafe door was opened in October 2016 to increase light throughput during dayside operations at the expense of no longer having the capacity to take further dark observations and slightly more operational complexity to avoid saturating the instrument. This one-time irreversible operation was approved after extensive review, and was conducted flawlessly. The increased throughput allows measurement of dayside hydration in one orbit, instead of averaging multiple orbits together to reach enough signal-to-noise. The new measurement mode allows greater time resolution of dayside water migration for improved investigations into the source and loss processes on the lunar surface. LAMP performance and optical characteristics after the failsafe door opening are described herein, including the new effective area, wavelength solution, and resolution.
Zheng, Yelong; Lu, Hongyu; Yin, Wei; Tao, Dashuai; Shi, Lichun; Tian, Yu
2016-10-07
Forces acted on legs of water-walking arthropods with weights in dynes are of great interest for entomologist, physicists, and engineers. While their floating mechanism has been recognized, the in vivo leg forces stationary have not yet been simultaneously achieved. In this study, their elegant bright-edged leg shadows are used to make the tiny forces visible and measurable based on the updated Archimedes' principle. The force was approximately proportional to the shadow area with a resolution from nanonewton to piconewton/pixel. The sum of leg forces agreed well with the body weight measured with an accurate electronic balance, which verified updated Archimedes' principle at the arthropod level. The slight changes of vertical body weight focus position and the body pitch angle have also been revealed for the first time. The visualization of tiny force by shadow is cost-effective and very sensitive and could be used in many other applications.
ERIC Educational Resources Information Center
Bray, Mark
2014-01-01
Recent decades have brought global expansion of private supplementary tutoring, widely known as shadow education. Such tutoring consumes considerable resources and is usually viewed by participating households as an investment that will increase the recipients' academic achievements. However, research on the effectiveness of tutoring has…
Parent Explanation and Preschoolers' Exploratory Behavior and Learning in a Shadow Exhibition
ERIC Educational Resources Information Center
Van Schijndel, Tessa J. P.; Raijmakers, Maartje E. J.
2016-01-01
The present study fills a gap in existing visitor research by focusing on the preschool age group. The study explores relationships between parent explanation, children's exploratory behavior, and their domain-specific learning in a shadow exhibition. In addition, the effect of a preceding theater show on child and parent behaviors is examined. In…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousseau, Joel A.
2015-01-01
Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.
Lightness Constancy in Surface Visualization
Szafir, Danielle Albers; Sarikaya, Alper; Gleicher, Michael
2016-01-01
Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers’ abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design. PMID:26584495
Singing in the moonlight: dawn song performance of a diurnal bird varies with lunar phase
York, Jennifer E.; Young, Andrew J.; Radford, Andrew N.
2014-01-01
It is well established that the lunar cycle can affect the behaviour of nocturnal animals, but its potential to have a similar influence on diurnal species has received less research attention. Here, we demonstrate that the dawn song of a cooperative songbird, the white-browed sparrow weaver (Plocepasser mahali), varies with moon phase. When the moon was above the horizon at dawn, males began singing on average 10 min earlier, if there was a full moon compared with a new moon, resulting in a 67% mean increase in performance period and greater total song output. The lack of a difference between full and new moon dawns when the moon was below the horizon suggests that the observed effects were driven by light intensity, rather than driven by other factors associated with moon phase. Effects of the lunar cycle on twilight signalling behaviour have implications for both pure and applied animal communication research. PMID:24429683
The early history of the lunar inclination. [effect of tidal friction
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1973-01-01
The effect of tidal friction on the inclination of the lunar orbit to the earth's equator for earth-moon distances of less than 10 earth radii is examined. The results obtained bear on a conclusion drawn by Gerstenkorn and others which has been raised as a fatal objection to the fission hypothesis of lunar origin, namely, that the present nonzero inclination of the moon's orbit to the ecliptic implies a steep inclination of the moon's orbit to the earth's equatorial plane in the early history of the earth-moon system. This conclusion is shown to be valid only for particular rheological models of the earth. The earth is assumed to behave like a highly viscous fluid in response to tides raised in it by the moon. The moon is assumed to be tideless and in a circular orbit about the earth. The equations of tidal friction are integrated numerically to give inclination of the lunar orbit as a function of earth-moon distance.
Zheng, Yingying; Zhou, Yiyi; Lai, Qiujia
2015-06-01
The aim of the current study was to observe the effects of Twenty-four Move Shadow Boxing combined with psychosomatic relaxation on depression and anxiety in patients with Type-2 Diabetes. One hundred and twenty (120) patients with Type-2 Diabetes and depressive/anxious symptoms were divided into intervention group (60 cases) and control group (60 cases) according to the minimum distribution principle of unbalanced indicators. Twenty-four Move Shadow Boxing group used this intervention combined with psychosomatic relaxation. Control group underwent conventional treatment. All the patients in the two groups completed the Self-rating Depression Scale (SDS) and Self-Rating Anxiety Scale (SAS) before and after treatment. Among the 52 people included in the statistical analysis, the recovery rate was 13.3%. The differences between depression and anxiety scores in the intervention group before and after treatment were statistically significant (P<0.001), whereas these differences were non-significant in the control group (P=0.123). After the treatment, the glycated hemoglobin reduction in the intervention group was greater than that of the control group (t=2.438, P=0.016). The combination of Twenty-four Move Shadow Boxing and psychosomatic relaxation has a beneficial auxiliary therapeutic effect on depression and anxiety accompanying Type-2 Diabetes.
Left right asymmetry of nuclear shadowing in charged current DIS
NASA Astrophysics Data System (ADS)
Fiore, R.; Zoller, V. R.
2006-01-01
We study the shadowing effect in highly asymmetric diffractive interactions of left- and right-handed W-bosons with atomic nuclei. The target nucleus is found to be quite transparent for the charmed-strange Fock component of the light-cone W+ in the helicity state λ = + 1 and rather opaque for the csbar dipole with λ = - 1. The shadowing correction to the structure function ΔxF3 = x F3νN - x F3νbarN extracted from νFe and νbar Fe data is shown to make up about 20% in the kinematical range of CCFR/NuTeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, R.
We exploremore » the effects of shadowing on inclusive J / ψ and Υ ( 1 S ) production at AFTER@LHC. We also present the rates as a function of p T and rapidity for p + Pb and Pb + p collisions in the proposed AFTER@LHC rapidity acceptance.« less
Vogt, R.
2015-01-01
We exploremore » the effects of shadowing on inclusive J / ψ and Υ ( 1 S ) production at AFTER@LHC. We also present the rates as a function of p T and rapidity for p + Pb and Pb + p collisions in the proposed AFTER@LHC rapidity acceptance.« less
Prospecting for Polar Volatiles: Results from the Resolve Field
NASA Technical Reports Server (NTRS)
Elphic, Richard C.; Colarprete, Anthony; Deans, Matthew C.; Heldman, Jennifer; Sanders, Gerald B.; Larson, William E.
2013-01-01
Both the Moon and Mercury evidently host ice and other volatile compounds in cold traps at the planets poles. Determining the form, spatial distribution, and abundance of these volatiles at the lunar poles can help us understand how and when they were delivered and emplaced. This bears directly on the delivery of water and prebiotic compounds to the inner planets over the solar system s history, and also informs plans for utilizing the volatiles as resources for sustained human exploration as well as the commercial development of space. Temperature models and orbital data suggest near-surface volatile concentrations may exist at polar locations not strictly in permanent shadow. Remote operation of a robotic lunar rover mission for the 7-10 days of available sunlight would permit key questions to be answered. But such a short, quick-tempo mission has unique challenges and requires a new concept of operations. Both science and rover operations decisionmaking must be done in real time, requiring immediate situational awareness, data analysis, and decision support tools.
Apollo 12 Mission image - Lunar surface near lunar module
1969-11-19
AS12-47-6949 (19-20 Nov. 1969) --- A photograph of the Apollo 12 lunar landing site taken during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. The Apollo 12 Lunar Module (LM) is on the left. Barely visible in the center of the picture, in the shadows on the farside of the crater, is the Surveyor 3 spacecraft. The two spacecraft are about 600 feet apart. Conrad and Bean walked over to Surveyor 3 during their second EVA. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit, while astronauts Conrad and Bean descended in the LM to explore the moon. The considerable glare in the picture is caused by the position of the sun. The Apollo tool carrier is the object next to the LM footpad.
NASA Astrophysics Data System (ADS)
Raut, U.
2017-12-01
We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.
NASA Technical Reports Server (NTRS)
1979-01-01
This dramatic view of Jupiter's satellite Io shows two simultaneously occurring volcanic eruptions. One can be seen on the limb, (at lower right) in which ash clouds are rising more than 150 miles (260 kilometers) above the satellite's surface. The second can be seen on the terminator (shadow between day and night) where the volcanic cloud is catching the rays of the rising sun. The dark hemisphere of Io is made visible by light reflected from Jupiter. Seen in Io's night sky, Jupiter looms almost 40 times larger and 200 times brighter than our own full Moon. This photo was taken by Voyager 1 on March 8, 1979, looking back 2.6 million miles (4.5 million kilometers) at Io, three days after its historic encounter. This is the same image in which Linda A. Morabito, a JPL engineer, discovered the first extraterrestrial volcanic eruption (the bright curved volcanic cloud on the limb). Jet Propulsion Laboratory manages and controls the Voyager project for NASA's Office of Space Science.
Shadows of Bonnor black dihole by chaotic lensing
NASA Astrophysics Data System (ADS)
Wang, Mingzhi; Chen, Songbai; Jing, Jiliang
2018-03-01
We numerically study the shadows of a Bonnor black dihole through the technique of backward ray tracing. The presence of a magnetic dipole yields nonintegrable photon motion, which sharply affects the shadow of the compact object. Our results show that there exists a critical value for the shadow. When the magnetic dipole parameter is less than the critical value the shadow is a black disk, but when the magnetic dipole parameter is larger than the critical value the shadow becomes a concave disk with eyebrows possessing a self-similar fractal structure. These behaviors are very similar to those of the equal-mass and nonspinning Majumdar-Papapetrou binary black holes. However, we find that the two larger shadows and the smaller eyebrow-like shadows are joined together by the middle black zone for the Bonnor black dihole, which is different from that in the Majumdar-Papapetrou binary black hole spacetime where they are disconnected. With the increase of the magnetic dipole parameter, the middle black zone connecting the main shadows and the eyebrow-like shadows becomes narrow. Our results show that the spacetime properties arising from the magnetic dipole yield interesting patterns for the shadow cast by a Bonnor black dihole.
The influence of global self-heating on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2013-07-01
In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of global self-heating that occurs within the large concavities of irregularly shaped asteroids, which has been neglected or dismissed in all previous models. It is also combined with rough surface thermal-infrared beaming effects, which have been previously shown to enhance the Yarkovsky orbital drift and dampen on average the YORP rotational acceleration by orders of several tens of per cent. Tests on all published concave shape models of near-Earth asteroids, and also on 100 Gaussian random spheres, show that the Yarkovsky effect is sensitive to shadowing and global self-heating effects at the few per cent level or less. For simplicity, Yarkovsky models can neglect these effects if the level of accuracy desired is of this order. Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and global self-heating effects. Its sensitivity increases with decreasing relative strength of the YORP rotational acceleration, and does not appear to depend greatly on the degree of asteroid concavity. Global self-heating tends to produce a vertical offset in an asteroid's YORP-rotational-acceleration versus obliquity curve which is in opposite direction to that produced by shadowing effects. It also ensures that at least one critical obliquity angle exists at which zero YORP rotational acceleration occurs. Global self-heating must be included for accurate predictions of the YORP effect if an asteroid exhibits a large shadowing effect. If global self-heating effects are not included, then it is found in ˜75 per cent of cases that better predictions are produced when shadowing is also not included. Furthermore, global self-heating has implications for reducing the sensitivity of the YORP effect predictions to detailed variations in an asteroid's shape model.
Intuitive optics: what great apes infer from mirrors and shadows.
Völter, Christoph J; Call, Josep
2018-05-02
There is ongoing debate about the extent to which nonhuman animals, like humans, can go beyond first-order perceptual information to abstract structural information from their environment. To provide more empirical evidence regarding this question, we examined what type of information great apes (chimpanzees, bonobos, and orangutans) gain from optical effects such as shadows and mirror images. In an initial experiment, we investigated whether apes would use mirror images and shadows to locate hidden food. We found that all examined ape species used these cues to find the food. Follow-up experiments showed that apes neither confused these optical effects with the food rewards nor did they merely associate cues with food. First, naïve chimpanzees used the shadow of the hidden food to locate it but they did not learn within the same number of trials to use a perceptually similar rubber patch as indicator of the hidden food reward. Second, apes made use of the mirror images to estimate the distance of the hidden food from their own body. Depending on the distance, apes either pointed into the direction of the food or tried to access the hidden food directly. Third, apes showed some sensitivity to the geometrical relation between mirror orientation and mirrored objects when searching hidden food. Fourth, apes tended to interpret mirror images and pictures of these mirror images differently depending on their prior knowledge. Together, these findings suggest that apes are sensitive to the optical relation between mirror images and shadows and their physical referents.
Shadow poles in coupled-channel problems calculated with the Berggren basis
NASA Astrophysics Data System (ADS)
Id Betan, R. M.; Kruppa, A. T.; Vertse, T.
2018-02-01
Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.
Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.
2011-01-01
Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.
Infrasound propagation in tropospheric ducts and acoustic shadow zones.
de Groot-Hedlin, Catherine D
2017-10-01
Numerical computations of the Navier-Stokes equations governing acoustic propagation are performed to investigate infrasound propagation in the troposphere and into acoustic shadow zones. An existing nonlinear finite-difference, time-domain (FDTD) solver that constrains input sound speed models to be axisymmetric is expanded to allow for advection and rigid, stair-step topography. The FDTD solver permits realistic computations along a given azimuth. It is applied to several environmental models to examine the effects of nonlinearity, topography, advection, and two-dimensional (2D) variations in wind and sound speeds on the penetration of infrasound into shadow zones. Synthesized waveforms are compared to a recording of a rocket motor fuel elimination event at the Utah Test and Training Range. Results show good agreement in the amplitude, duration, and spectra of synthesized and recorded waveforms for propagation through 2D atmospheric models whether or not topography, advection, or nonlinearity is explicitly included. However, infrasound propagation through a one-dimensional, range-averaged, atmospheric model yields waveforms with lower amplitudes and frequencies, suggesting that small-scale atmospheric variability causes significant scatter within the troposphere, leading to enhanced infrasound penetration into shadow zones. Thus, unresolved fine-scale atmospheric dynamics are not required to explain infrasound propagation into shadow zones.
Tungsten isotopes and the origin of the Moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruijer, Thomas S.; Kleine, Thorsten
Here, the giant impact model of lunar origin predicts that the Moon mainly consists of impactor material. As a result, the Moon is expected to be isotopically distinct from the Earth, but it is not. To account for this unexpected isotopic similarity of the Earth and Moon, several solutions have been proposed, including (i) post-giant impact Earth–Moon equilibration, (ii) alternative models that make the Moon predominantly out of proto-Earth mantle, and (iii) formation of the Earth and Moon from an isotopically homogeneous disk reservoir. Here we use W isotope systematics of lunar samples to distinguish between these scenarios. We reportmore » high-precision 182W data for several low-Ti and high-Ti mare basalts, as well as for Mg-suite sample 77215, and lunar meteorite Kalahari 009, which complement data previously obtained for KREEP-rich samples. In addition, we utilize high-precision Hf isotope and Ta/W ratio measurements to empirically quantify the superimposed effects of secondary neutron capture on measured 182W compositions. Our results demonstrate that there are no resolvable radiogenic 182W variations within the Moon, implying that the Moon differentiated later than 70 Ma after Solar System formation. In addition, we find that samples derived from different lunar sources have indistinguishable 182W excesses, confirming that the Moon is characterized by a small, uniform ~+26 parts-per-million excess in 182W over the present-day bulk silicate Earth. This 182W excess is most likely caused by disproportional late accretion to the Earth and Moon, and after considering this effect, the pre-late veneer bulk silicate Earth and the Moon have indistinguishable 182W compositions. Mixing calculations demonstrate that this Earth–Moon 182W similarity is an unlikely outcome of the giant impact, which regardless of the amount of impactor material incorporated into the Moon should have generated a significant 182W excess in the Moon. Consequently, our results imply that post-giant impact processes might have modified 182W, leading to the similar 182W compositions of the pre-late veneer Earth's mantle and the Moon.« less
Tungsten isotopes and the origin of the Moon
Kruijer, Thomas S.; Kleine, Thorsten
2017-08-04
Here, the giant impact model of lunar origin predicts that the Moon mainly consists of impactor material. As a result, the Moon is expected to be isotopically distinct from the Earth, but it is not. To account for this unexpected isotopic similarity of the Earth and Moon, several solutions have been proposed, including (i) post-giant impact Earth–Moon equilibration, (ii) alternative models that make the Moon predominantly out of proto-Earth mantle, and (iii) formation of the Earth and Moon from an isotopically homogeneous disk reservoir. Here we use W isotope systematics of lunar samples to distinguish between these scenarios. We reportmore » high-precision 182W data for several low-Ti and high-Ti mare basalts, as well as for Mg-suite sample 77215, and lunar meteorite Kalahari 009, which complement data previously obtained for KREEP-rich samples. In addition, we utilize high-precision Hf isotope and Ta/W ratio measurements to empirically quantify the superimposed effects of secondary neutron capture on measured 182W compositions. Our results demonstrate that there are no resolvable radiogenic 182W variations within the Moon, implying that the Moon differentiated later than 70 Ma after Solar System formation. In addition, we find that samples derived from different lunar sources have indistinguishable 182W excesses, confirming that the Moon is characterized by a small, uniform ~+26 parts-per-million excess in 182W over the present-day bulk silicate Earth. This 182W excess is most likely caused by disproportional late accretion to the Earth and Moon, and after considering this effect, the pre-late veneer bulk silicate Earth and the Moon have indistinguishable 182W compositions. Mixing calculations demonstrate that this Earth–Moon 182W similarity is an unlikely outcome of the giant impact, which regardless of the amount of impactor material incorporated into the Moon should have generated a significant 182W excess in the Moon. Consequently, our results imply that post-giant impact processes might have modified 182W, leading to the similar 182W compositions of the pre-late veneer Earth's mantle and the Moon.« less
NASA Astrophysics Data System (ADS)
Hue, V.; Roth, L.; Grodent, D. C.; Gladstone, R.; Saur, J.; Bonfond, B.
2017-12-01
The interaction of the co-rotating magnetospheric plasma with Jupiter's Galilean moons generates local perturbations and auroral emissions in the moons' tenuous atmospheres. Alfvén waves are launched by this local interaction and travel along Jupiter's field lines triggering various effects that finally lead to the auroral moon footprints far away in Jupiter's polar regions. Within the large Hubble Space Telescope aurora program in support of the NASA Juno mission (HST GO-14634, PI D. Grodent), HST observed the local aurora at the moons Io and Ganymede on three occasions in 2017 while the Juno Ultraviolet Spectrograph simultaneously observed Jupiter's aurora and the moon footprints. In this presentation, we will provide first results from the first-ever simultaneous moon and footprint observations for the case of Io. We compare the temporal variability of the local moon aurora and the Io footprint, addressing the question how much of the footprint variability originates from changes at the moon source and how much originates from processes in the regions that lie in between the moon and Jupiter's poles.
Evaluation of Tower Shadowing on Anemometer Measurements at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruggeman, David Alan
2016-06-14
The objective of this study is to evaluate the effect of tower shadowing from the meteorology towers at LANL during 2014. This study is in response to the Department of Energy Meteorological Coordinating Council visit in 2015 that recommended an evaluation of any biases in the wind data introduced by the tower and boom alignment at all meteorology towers.
The Day the Earth Smiled: Sneak Preview
2013-07-22
In this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and our planet Earth and its moon in the same frame. It is only one footprint in a mosaic of 33 footprints covering the entire Saturn ring system (including Saturn itself). At each footprint, images were taken in different spectral filters for a total of 323 images: some were taken for scientific purposes and some to produce a natural color mosaic. This is the only wide-angle footprint that has the Earth-moon system in it. The dark side of Saturn, its bright limb, the main rings, the F ring, and the G and E rings are clearly seen; the limb of Saturn and the F ring are overexposed. The "breaks" in the brightness of Saturn's limb are due to the shadows of the rings on the globe of Saturn, preventing sunlight from shining through the atmosphere in those regions. The E and G rings have been brightened for better visibility. Earth, which is 898 million miles (1.44 billion kilometers) away in this image, appears as a blue dot at center right; the moon can be seen as a fainter protrusion off its right side. An arrow indicates their location in the annotated version. (The two are clearly seen as separate objects in the accompanying composite image PIA14949.) The other bright dots nearby are stars. This is only the third time ever that Earth has been imaged from the outer solar system. The acquisition of this image, along with the accompanying composite narrow- and wide-angle image of Earth and the moon and the full mosaic from which both are taken, marked the first time that inhabitants of Earth knew in advance that their planet was being imaged. That opportunity allowed people around the world to join together in social events to celebrate the occasion. This view looks toward the unilluminated side of the rings from about 20 degrees below the ring plane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were obtained with the Cassini spacecraft wide-angle camera on July 19, 2013 at a distance of approximately 753,000 miles (1.212 million kilometers) from Saturn, and approximately 898.414 million miles (1.445858 billion kilometers) from Earth. Image scale on Saturn is 43 miles (69 kilometers) per pixel; image scale on the Earth is 53,820 miles (86,620 kilometers) per pixel. The illuminated areas of neither Earth nor the Moon are resolved here. Consequently, the size of each "dot" is the same size that a point of light of comparable brightness would have in the wide-angle camera. http://photojournal.jpl.nasa.gov/catalog/PIA17171
The 1999 Mw 7.1 Hector Mine, California, earthquake: A test of the stress shadow hypothesis?
Harris, R.A.; Simpson, R.W.
2002-01-01
We test the stress shadow hypothesis for large earthquake interactions by examining the relationship between two large earthquakes that occurred in the Mojave Desert of southern California, the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes. We want to determine if the 1999 Hector Mine earthquake occurred at a location where the Coulomb stress was increased (earthquake advance, stress trigger) or decreased (earthquake delay, stress shadow) by the previous large earthquake. Using four models of the Landers rupture and a range of possible hypocentral planes for the Hector Mine earthquake, we discover that most scenarios yield a Landers-induced relaxation (stress shadow) on the Hector Mine hypocentral plane. Although this result would seem to weigh against the stress shadow hypothesis, the results become considerably more uncertain when the effects of a nearby Landers aftershock, the 1992 ML 5.4 Pisgah earthquake, are taken into account. We calculate the combined static Coulomb stress changes due to the Landers and Pisgah earthquakes to range from -0.3 to +0.3 MPa (- 3 to +3 bars) at the possible Hector Mine hypocenters, depending on choice of rupture model and hypocenter. These varied results imply that the Hector Mine earthquake does not provide a good test of the stress shadow hypothesis for large earthquake interactions. We use a simple approach, that of static dislocations in an elastic half-space, yet we still obtain a wide range of both negative and positive Coulomb stress changes. Our findings serve as a caution that more complex models purporting to explain the triggering or shadowing relationship between the 1992 Landers and 1999 Hector Mine earthquakes need to also consider the parametric and geometric uncertainties raised here.
Generating soft shadows with a depth buffer algorithm
NASA Technical Reports Server (NTRS)
Brotman, L. S.; Badler, N. I.
1984-01-01
Computer-synthesized shadows used to appear with a sharp edge when cast onto a surface. At present the production of more realistic, soft shadows is considered. However, significant costs arise in connection with such a representation. The current investigation is concerned with a pragmatic approach, which combines an existing shadowing method with a popular visible surface rendering technique, called a 'depth buffer', to generate soft shadows resulting from light sources of finite extent. The considered method represents an extension of Crow's (1977) shadow volume algorithm.
ERIC Educational Resources Information Center
Yurumezoglu, Kemal; Karabey, Burak; Koyunkaya, Melike Yigit
2017-01-01
Full shadows, partial shadows and multilayer shadows are explained based on the phenomenon of the linear dispersion of light. This paper focuses on progressing the understanding of shadows from physical and mathematical perspectives. A significant relationship between light and color pigments is demonstrated with the help of the concept of sets.…
ERIC Educational Resources Information Center
Parikesit, Gea O. F.
2014-01-01
Shadows can be found easily everywhere around us, so that we rarely find it interesting to reflect on how they work. In order to raise curiosity among students on the optics of shadows, we can display the shadows in 3D, particularly using a stereoscopic set-up. In this paper we describe the optics of stereoscopic shadows using simple schematic…
Rodríguez, Begoña; Blas, Juan; Lorenzo, Rubén M; Fernández, Patricia; Abril, Evaristo J
2011-04-01
Personal exposure meters (PEM) are routinely used for the exposure assessment to radio frequency electric or magnetic fields. However, their readings are subject to errors associated with perturbations of the fields caused by the presence of the human body. This paper presents a novel analysis method for the characterization of this effect. Using ray-tracing techniques, PEM measurements have been emulated, with and without an approximation of this shadowing effect. In particular, the Global System for Mobile Communication mobile phone frequency band was chosen for its ubiquity and, specifically, we considered the case where the subject is walking outdoors in a relatively open area. These simulations have been contrasted with real PEM measurements in a 35-min walk. Results show a good agreement in terms of root mean square error and E-field cumulative distribution function (CDF), with a significant improvement when the shadowing effect is taken into account. In particular, the Kolmogorov-Smirnov (KS) test provides a P-value of 0.05 when considering the shadowing effect, versus a P-value of 10⁻¹⁴ when this effect is ignored. In addition, although the E-field levels in the absence of a human body have been found to follow a Nakagami distribution, a lognormal distribution fits the statistics of the PEM values better than the Nakagami distribution. As a conclusion, although the mean could be adjusted by using correction factors, there are also other changes in the CDF that require particular attention due to the shadowing effect because they might lead to a systematic error. Copyright © 2010 Wiley-Liss, Inc.
Surface Properties of the Moon, Venus and Small Bodies from Radar Observations
NASA Technical Reports Server (NTRS)
Campbell, Donald B.
1997-01-01
Studies of the moon during the period of the grant revolved around the issues of the possible presence of ice at the lunar poles and the determination of the electrical properties of the maria regoliths. The search for ice at the poles was conducted using measurements of the radar backscatter cross sections and circular polarization ratios measured from 125 m resolution Arecibo radar imagery at 13 cm wavelength obtained by Nicholas Stacy. No clear indication of the presence of ice was found in areas thought to be in permanent shadow from solar radiation. Then Cornell graduate student Greg Black modeled the radar backscattering behavior of the icy Galilean satellites using three wavelength measurements of their radar backscattering properties obtained with the Arecibo and Goldstone radars. The radar scattering properties of Europa, Ganymede, and Callisto are unlike those of any other object observed with planetary radars. They are strongly backscattering with specific radar cross sections that can exceed unity. Polarization ratios are also high, approx. 1.5, indicative of multiple scattering, and the echos follow a diffuse scattering law at all incident angles with no indication of quasi-specular reflections. 3) Most of our effort on small bodies went into developing and investigating methods for long baseline radar synthesis imaging of near-earth asteroids and comets. At X-band, the width of the synthesized beam of the Very Long Baseline Array (VLBA) is approximately 15 m at 0.03AU, a typical close approach distance for near-earth asteroids. A small amount of work was done analyzing Venus data from Arecibo and the Magellan mission.
Searching for water at the south pole of the Moon with a lunar impactor
NASA Astrophysics Data System (ADS)
Banerdt, B.; Alkalai, L.
The idea that water on the Moon s surface would eventually migrate to the lunar poles and be cold-trapped there indefinitely was first proposed in the 1960 s and subsequent modeling has generally confirmed this possibility The existence of such polar water deposits is critical for planning future lunar exploration and it has important implications for lunar science as well However observations from the Earth and orbiting spacecraft have not been able to categorically confirm or deny the existence of ice in permanently shadowed depressions at the lunar poles The next generation of orbiters such as LRO Chandrayaan and SELENE while making important observations will be capable only of providing circumstantial evidence of water and its concentration and the challenges of landing and operating a spacecraft in the extreme conditions of permanent night are considerable We have studied a low-cost alternative approach similar to NASA s Deep Impact mission for enabling a direct detection of the existence of water in the upper few meters of the lunar subsurface Our mission uses a 1000-kg spacecraft to impact the lunar surface at 2 5-3 km sec from a geocentric trajectory This impact will excavate a crater 20 meters in diameter ejecting over 50 cubic meters of regolith Assuming a few volume percent water this ejecta would include several metric tons of ice Spectral evidence for water may be found across the electromagnetic spectrum from microwave and infrared to ultraviolet This could be derived from the immediate impact flash vapor produced through secondary
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Greathouse, T. K.; Mandt, K. E.; Gladstone, R.; Hendrix, A.; Cahill, J. T.; Liu, Y.; Grava, C.; Hurley, D.; Egan, A.; Kaufmann, D. E.; Raut, U.; Byron, B. D.; Magana, L. O.; Stickle, A. M.; Wyrick, D. Y.; Pryor, W. R.
2017-12-01
Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids have proven surprisingly useful for advancing our understanding of planetary surfaces. This new appreciation for planetary far-UV imaging spectroscopy is provided in large part thanks to nearly a decade of investigations with the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP). LAMP has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, enabling comparisons of direct and hemispheric (diffuse) illumination derived albedos. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. On October 6, 2016 LAMP enacted a new, more sensitive dayside operating mode that expands its ability to search for diurnally varying hydration signals associated with different regions and features.
Structure of scintillations in Neptune's occultation shadow
NASA Technical Reports Server (NTRS)
Hubbard, W. B.; Lellouch, Emmanuel; Sicardy, Bruno; Brahic, Andre; Vilas, Faith
1988-01-01
An exceptionally high-quality data set from a Neptune occultation is used here to derive a number of new results about the statistical properties of the fluctuations of the intensity distribution in various parts of Neptune's occultation shadow. An approximate numerical ray-tracing model which successfully accounts for many of the qualitative aspects of the observed intensity fluctuation distribution is introduced. Strong refractive scintillation is simulated by including the effects of 'turbulence' with projected atmospheric properties allowed to vary in both the direction perpendicular and parallel to the limb, and an explicit two-dimensional picture of a typical intensity distribution throughout an occulting planet's shadow is presented. The results confirm the existence of highly anisotropic turbulence.
Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels
Son, In Keun; Mao, Shiwen; Hur, Seung Min
2009-01-01
We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks. PMID:22408556
THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Yanxiang; Zhou Jilin; Xie Jiwei
2013-05-20
Compared to the giant planets in the solar system, exoplanets have many remarkable properties, such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism to interpret the above and other observed properties. If the observed giant planet architectures are indeed outcomes of PPS, such a drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of PPS on the survival of exoplanets' regular moons. From an observational viewpoint, some preliminary conclusions are drawn from the simulations. (1) PPSmore » is a destructive process to the moon systems; single planets on eccentric orbits are not ideal moon-search targets. (2) If hot Jupiters formed through PPS, their original moons have little chance of survival. (3) Planets in multiple systems with small eccentricities are more likely to hold their primordial moons. (4) Compared with lower-mass planets, massive planets in multiple systems may not be the preferred moon-search targets if the system underwent a PPS history.« less
Shadow analysis via the C+K Visioline: A technical note.
Houser, T; Zerweck, C; Grove, G; Wickett, R
2017-11-01
This research investigated the ability of shadow analysis (via the Courage + Khazaka Visioline and Image Pro Premiere 9.0 software) to accurately assess the differences in skin topography associated with photo aging. Analyses were performed on impressions collected from a microfinish comparator scale (GAR Electroforming) as well a series of impressions collected from the crow's feet region of 9 women who represent each point on the Zerweck Crow's Feet classification scale. Analyses were performed using a Courage + Khazaka Visioline VL 650 as well as Image Pro Premiere 9.0 software. Shadow analysis showed an ability to accurately measure the groove depth when measuring impressions collected from grooves of known depth. Several shadow analysis parameters showed a correlation with the expert grader ratings of crow's feet when averaging measurements taken from the North and South directions. The Max Depth parameter in particular showed a strong correlation with the expert grader's ratings which improved when a more sophisticated analysis was performed using Image Pro Premiere. When used properly, shadow analysis is effective at accurately measuring skin surface impressions for differences in skin topography. Shadow analysis is shown to accurately assess the differences across a range of crow's feet severity correlating to a 0-8 grader scale. The Visioline VL 650 is a good tool for this measurement, with room for improvement in analysis which can be achieved through third party image analysis software. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Saturn and 4 Icy Moons in Natural Color
1998-06-08
This approximate natural-color image shows Saturn, its rings, and four of its icy satellites. Three satellites (Tethys, Dione, and Rhea) are visible against the darkness of space, and another smaller satellite (Mimas) is visible against Saturn's cloud tops very near the left horizon and just below the rings. The dark shadows of Mimas and Tethys are also visible on Saturn's cloud tops, and the shadow of Saturn is seen across part of the rings. Saturn, second in size only to Jupiter in our Solar System, is 120,660 km (75,000 mi) in diameter at its equator (the ring plane) but, because of its rapid spin, Saturn is 10% smaller measured through its poles. Saturn's rings are composed mostly of ice particles ranging from microscopic dust to boulders in size. These particles orbit Saturn in a vast disk that is a mere 100 meters (330 feet) or so thick. The rings' thinness contrasts with their huge diameter--for instance 272,400 km (169,000 mi) for the outer part of the bright A ring, the outermost ring visible here. The pronounced concentric gap in the rings, the Cassini Division (named after its discoverer), is a 3500-km wide region (2200 mi, almost the width of the United States) that is much less populated with ring particles than the brighter B and A rings to either side of the gap. The rings also show some enigmatic radial structure ('spokes'), particularly at left. This image was synthesized from images taken in Voyager's blue and violet filters and was processed to recreate an approximately natural color and contrast. http://photojournal.jpl.nasa.gov/catalog/PIA00400
The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment
NASA Astrophysics Data System (ADS)
Srama, Ralf
2014-05-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.
A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions
Huang, Shiqi; Huang, Wenzhun; Zhang, Ting
2016-01-01
The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application. PMID:27924935
A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions.
Huang, Shiqi; Huang, Wenzhun; Zhang, Ting
2016-12-07
The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application.
NASA Astrophysics Data System (ADS)
Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.
2014-10-01
Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model comparison on the red and near infrared bands. The advantages of SCnS + C and SCnS + W on both bands are expected to facilitate forest classification and change detection applications.
Özaşçılar, Mine; Ziyalar, Neylan
2017-07-01
Studies have examined university students' fear of crime focusing on the relationship between the fear of sexual assault and fear of other crimes, termed the shadow of sexual assault hypothesis; however, no study to date has examined the shadow thesis in a Turkish context. Drawing on the shadow thesis, using a sample of 723 university students in Istanbul, this study focuses on the effect of fear of sexual assault and perceived risk of crime to general fear of crime among university students in Istanbul. Also, the predictors of fear of crime are explored to examine the relationship between lifestyle characteristics, constrained behaviors, and fear. The findings of the study supported the shadow thesis, indicating that fear of sexual assault shaped the nonsexual crimes, especially crimes involving face-to-face confrontations between the victim and offender. Furthermore, lifestyle characteristics are correlated with the men's fear of nonsexual crimes, particularly fear of robbery, aggravated assault, and burglary home.
A novel lost packets recovery scheme based on visual secret sharing
NASA Astrophysics Data System (ADS)
Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao
2017-08-01
In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).
Building Shadow Detection from Ghost Imagery
NASA Astrophysics Data System (ADS)
Zhou, G.; Sha, J.; Yue, T.; Wang, Q.; Liu, X.; Huang, S.; Pan, Q.; Wei, J.
2018-05-01
Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.
Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn
We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes lessmore » cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.« less
Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions
NASA Astrophysics Data System (ADS)
Nguyen, Dung Duc
Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.
Survival of extrasolar giant planet moons in planet-planet scattering
NASA Astrophysics Data System (ADS)
CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean
2015-12-01
Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.
Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, René, E-mail: rheller@physics.mcmaster.ca
2014-05-20
Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in themore » phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.« less
From the Cover: Explaining the moon illusion
NASA Astrophysics Data System (ADS)
Kaufman, Lloyd; Kaufman, James H.
2000-01-01
An old explanation of the moon illusion holds that various cues place the horizon moon at an effectively greater distance than the elevated moon. Although both moons have the same angular size, the horizon moon must be perceived as larger. More recent explanations hold that differences in accommodation or other factors cause the elevated moon to appear smaller. As a result of this illusory difference in size, the elevated moon appears to be more distant than the horizon moon. These two explanations, both based on the geometry of stereopsis, lead to two diametrically opposed hypotheses. That is, a depth interval at a long distance is associated with a smaller binocular disparity, whereas an equal depth interval at a smaller distance is associated with a larger disparity. We conducted experiments involving artificial moons and confirmed the hypothesis that the horizon moon is at a greater perceptual distance. Moreover, when a moon of constant angular size was moved closer it was also perceived as growing smaller, which is consistent with the older explanation. Although Emmert's law does not predict the size-distance relationship over long distances, we conclude that the horizon moon is perceived as larger because the perceptual system treats it as though it is much farther away. Finally, we observe that recent explanations substitute perceived size for angular size as a cue to distance. Thus, they imply that perceptions cause perceptions.
Kaufman, Lloyd; Kaufman, James H.
2000-01-01
An old explanation of the moon illusion holds that various cues place the horizon moon at an effectively greater distance than the elevated moon. Although both moons have the same angular size, the horizon moon must be perceived as larger. More recent explanations hold that differences in accommodation or other factors cause the elevated moon to appear smaller. As a result of this illusory difference in size, the elevated moon appears to be more distant than the horizon moon. These two explanations, both based on the geometry of stereopsis, lead to two diametrically opposed hypotheses. That is, a depth interval at a long distance is associated with a smaller binocular disparity, whereas an equal depth interval at a smaller distance is associated with a larger disparity. We conducted experiments involving artificial moons and confirmed the hypothesis that the horizon moon is at a greater perceptual distance. Moreover, when a moon of constant angular size was moved closer it was also perceived as growing smaller, which is consistent with the older explanation. Although Emmert's law does not predict the size–distance relationship over long distances, we conclude that the horizon moon is perceived as larger because the perceptual system treats it as though it is much farther away. Finally, we observe that recent explanations substitute perceived size for angular size as a cue to distance. Thus, they imply that perceptions cause perceptions. PMID:10618447
Kaufman, L; Kaufman, J H
2000-01-04
An old explanation of the moon illusion holds that various cues place the horizon moon at an effectively greater distance than the elevated moon. Although both moons have the same angular size, the horizon moon must be perceived as larger. More recent explanations hold that differences in accommodation or other factors cause the elevated moon to appear smaller. As a result of this illusory difference in size, the elevated moon appears to be more distant than the horizon moon. These two explanations, both based on the geometry of stereopsis, lead to two diametrically opposed hypotheses. That is, a depth interval at a long distance is associated with a smaller binocular disparity, whereas an equal depth interval at a smaller distance is associated with a larger disparity. We conducted experiments involving artificial moons and confirmed the hypothesis that the horizon moon is at a greater perceptual distance. Moreover, when a moon of constant angular size was moved closer it was also perceived as growing smaller, which is consistent with the older explanation. Although Emmert's law does not predict the size-distance relationship over long distances, we conclude that the horizon moon is perceived as larger because the perceptual system treats it as though it is much farther away. Finally, we observe that recent explanations substitute perceived size for angular size as a cue to distance. Thus, they imply that perceptions cause perceptions.