Science.gov

Sample records for moorella thermoacetica atcc

  1. Engineering of a functional thermostable kanamycin resistance marker for use in Moorella thermoacetica ATCC39073.

    PubMed

    Iwasaki, Yuki; Kita, Akihisa; Sakai, Shinsuke; Takaoka, Kazue; Yano, Shinichi; Tajima, Takahisa; Kato, Junichi; Nishio, Naomichi; Murakami, Katsuji; Nakashimada, Yutaka

    2013-06-01

    A transformation system for Moorella thermoacetica ATCC39073 was developed using thermostable kanamycin resistant gene (kanR) derived from the plasmid pJH1 that Streptococcus faecalis harbored. When kanR with its native promoter was introduced into uracil auxotrophic mutant of M. thermoacetica ATCC39073 together with a gene to complement the uracil auxotrophy as a selection marker, it did not give kanamycin resistance due to poor transcription level of kanR. However, the use of glyceraldehyde-3-phosphate dehydrogenase promoter cloned from M. thermoacetica ATCC39073 significantly improved transcription level of kanR and resulted in the cell growth in the presence of more than 150 μg mL(-1) kanamycin. It was also demonstrated that kanR with G3PD promoter can be used as a selection marker for transformation of wild-type strain of M. thermoacetica ATCC39073.

  2. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  3. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorella thermoacetica

    PubMed Central

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2014-01-01

    Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  4. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica

    SciTech Connect

    Hu, P; Rismani-Yazdi, H; Stephanopoulos, G

    2013-05-16

    Anaerobic bacteria such as Moorella thermoacetica have the capacity of fixing carbon dioxide with carbon monoxide and hydrogen for the production of ethanol, acetic acid, and other useful chemicals. In this study, we evaluated the fixation of CO2 for the production of acetic acid, as a product in its own right but also as precursor for lipid synthesis by oleaginous organisms. We achieved maximum cell optical density of 11.3, acetic acid titer of 31 g/L, and productivity of 0.55 g/L-h at CO mass-transfer rate of 83 mM/h. We also showed electron availability by CO mass transfer limited the process at CO mass transfer rates lower than 30 mM/h. Further enhancement of mass-transfer rate removed such limitations in favor of biological kinetics as main limitation. This work underlines the potential of microbial processes for converting syngas to fuel and chemical products in processes suitable for distributed feedstock utilization. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3176-3183, 2013

  5. Two propanediol utilization-like proteins of Moorella thermoacetica with phosphotransacetylase activity.

    PubMed

    Breitkopf, Ronja; Uhlig, Ronny; Drenckhan, Tina; Fischer, Ralf-Jörg

    2016-09-01

    Moorella thermoacetica is one of the model acetogenic bacteria for the resolution of the Wood-Ljungdahl (acetyl-CoA) pathway in which CO2 is autotrophically assimilated yielding acetyl-CoA as central intermediate. Its further conversion into acetate relies on subsequent phosphotransacetylase (PTA) and acetate kinase reactions. However, the genome of M. thermoacetica contains no pta homologous gene. It has been speculated that the moth_0864 and moth_1181 gene products sharing similarities with an evolutionarily distinct phosphotransacylase involved in 1,2-propanediol utilization (PDUL) of Salmonella enterica act as PTAs in M. thermoacetica. Here, we demonstrate specific PTA activities with acetyl-CoA as substrate of 9.05 and 2.03 U/mg for the recombinant enzymes PDUL1 (Moth_1181) and PDUL2 (Moth_0864), respectively. Both showed maximal activity at 65 °C and pH 7.6. Native proteins (90 kDa) are homotetramers composed of four subunits with apparent molecular masses of about 23 kDa. Thus, one or both PDULs of M. thermoacetica might act as PTAs in vivo catalyzing the penultimate step of the Wood-Ljungdahl pathway toward the formation of acetate. In silico analysis underlined that up to now beside of M. thermoacetica, only Sporomusa ovata contains only PDUL like class(III)-PTAs but no other phosphotransacetylases or phosphotransbutyrylases (PTBs).

  6. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.

    PubMed

    Kimura, Zen-ichiro; Kita, Akihisa; Iwasaki, Yuki; Nakashimada, Yutaka; Hoshino, Tamotsu; Murakami, Katsuji

    2016-03-01

    Moorella thermoacetica is an anaerobic thermophilic acetogen that is capable of fermenting sugars, H(2)/CO(2) and syngas (H(2)/CO). For this reason, this bacterium is potentially useful for biotechnology applications, particularly the production of biofuel from CO(2). A soil isolate of M. thermoacetica, strain Y72, produces both ethanol and acetate from H(2)/CO(2); however, the maximum concentrations of these two products are too low to enable commercialization of the syngas fermentation process. In the present study, glycerol was identified as a novel electron sink among the fermentation products of strain Y72. Notably, a 1.5-fold increase in the production of ethanol (1.4 mM) was observed in cultures supplemented with glycerol during syngas fermentation. This discovery is expected to aid in the development of novel methods that allow for the regulation of metabolic pathways to direct and increase the production of desirable fermentative compounds.

  7. Influence of nitrate on oxalate- and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica.

    PubMed

    Seifritz, Corinna; Fröstl, Jürgen M; Drake, Harold L; Daniel, Steven L

    2002-12-01

    Oxalate and glyoxylate supported growth and acetate synthesis by Moorella thermoacetica in the presence of nitrate under basal (without yeast extract) culture conditions. In oxalate cultures, acetate formation occurred concomitant with growth and nitrate was reduced in the stationary phase. Growth in the presence of [(14)C]bicarbonate or [(14)C]oxalate showed that CO(2) reduction to acetate and biomass or oxalate oxidation to CO(2) was not affected by nitrate. However, cells engaged in oxalate-dependent acetogenesis in the presence of nitrate lacked a membranous b-type cytochrome, which was present in cells grown in the absence of nitrate. In glyoxylate cultures, growth was coupled to nitrate reduction and acetate was formed in the stationary phase after nitrate was totally consumed. In the absence of nitrate, glyoxylate-grown cells incorporated less CO(2) into biomass than oxalate-grown cells. CO(2) conversion to biomass by glyoxylate-grown cells decreased when cells were grown in the presence of nitrate. These results suggest that: (1) oxalate-grown cells prefer CO(2) as an electron sink and bypass the nitrate block on the acetyl-CoA pathway at the level of reductant flow and (2) glyoxylate-grown cells prefer nitrate as an electron sink and bypass the nitrate block of the acetyl-CoA pathway by assimilating carbon via an unknown process that supplements or replaces the acetyl-CoA pathway. In this regard, enzymes of known pathways for the assimilation of two-carbon compounds were not detected in glyoxylate- or oxalate-grown cells.

  8. THERMICANUS AEGYPTIUS GEN. NOV., SP. NOV., ISOLATED FROM OXIC SOIL, A FERMENTATIVE MICROAEROPHILE THAT GROWS COMMENSALLY WITH THE THERMOPHILIC ACETOGEN MOORELLA THERMOACETICA

    EPA Science Inventory

    A thermophilic, fermentative microaerophile (ET-5b) and a thermophilic acetogen (ET-5a) were coisolated from oxic soil obtained from Egypt. The 16S rRNA gene sequence of ET-5a was 99.8% identical to that of the classic acetogen Moorella thermoacetica. Further analyses confirmed t...

  9. Crystallization and preliminary X-ray analysis of RsbS from Moorella thermoacetica at 2.5 A resolution.

    PubMed

    Quin, Maureen; Newman, Joseph; Firbank, Susan; Lewis, Richard J; Marles-Wright, Jon

    2008-03-01

    The thermophilic bacterium Moorella thermoacetica possesses an rsb operon that is related to the genetic locus common to many Gram-positive bacteria that regulates the activity of the stress-responsive sigma factor sigma(B). One of the gene products of this operon is RsbS, a single STAS-domain protein that is a component of higher order assemblies in Bacillus subtilis known as 'stressosomes'. It is expected that similar complexes are found in M. thermoacetica, but in this instance regulating the biosynthesis of cyclic di-GMP, a ubiquitous secondary messenger. Selenomethionine-labelled MtRsbS protein was crystallized at room temperature using the hanging-drop vapour-diffusion method. Crystals belonging to space group P2(1)2(1)2(1), with unit-cell parameters a = 51.07, b = 60.52, c = 89.28 A, diffracted to 2.5 A resolution on beamline I04 of the Diamond Light Source. The selenium substructure was solved using SHELX and it is believed that this represents the first reported ab initio crystal structure to be solved using diffraction data collected at DLS.

  10. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  11. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage.

    PubMed

    Balk, Melike; van Gelder, Ton; Weelink, Sander A; Stams, Alfons J M

    2008-01-01

    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 mum in diameter and 2 to 8 mum in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70 degrees C, with an optimum at 55 to 60 degrees C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter(-1) with an optimum at 10 g liter(-1). Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor.

  12. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.

    SciTech Connect

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-10-01

    A thermophilic, anaerobic, spore-forming bacterium (strain JW/AS-Y6) was isolated from a mixed sediment-water sample from a hot spring (Calcite Spring area) at Yellowstone National Park. The vegetative cells of this organism were straight rods, 0.5 to 0.6 by 3.0 to 6.5 {mu}m. Cells occurred singly and exhibited a slight tumbling motility. They formed round refractile endospores in terminal swollen sporangia. Cells stained gram positive. The temperature range for growth at pH 6.8 was 43 to 65{degrees}C, with optimum growth at 58{degrees}C. The range for growth at 60{degrees}C (pH{sup 60C}; with the pH meter calibrated at 60{degrees}C) was 5.9 to 7.8, with an optimum pH{sub 60C} of 6.3 to 6.5. The substrates utilized included glycerol, glucose, fructose, mannose, galactose, xylose, lactate, glycerate, pyruvate, and yeast extract. In the presence of CO{sub 2}, acetate was the only organic product from glyerol and carbohydrate fermentation. No H{sub 2} was produced during growth. The strain was not able to grow chemolithotrophically at the expense of H{sub 2}-CO{sub 2}; however, suspensions of cells in the exponential growth phase consumed H{sub 2}. The bacterium reduced fumarate to succinate and thiosulfate to elemental sulfur. Growth was exhibited by ampicillin, chloramphenicol, erythromycin, rifampin, and tetracycline, but not by streptomycin. The G+C content of the DNA was 54.5 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolate in the Gram type-positive Bacillus-Clostridium subphylum. On the basis of physiological properties and phylogenetic analysis we propose that the isolated strain constitutes a new species, Moorella glycerini; the type strain is JW/AS-Y6 (= DSM 11254 = ATCC 700316).

  13. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    PubMed Central

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  14. Genome Sequences of Pseudoalteromonas Strains ATCC BAA-314, ATCC 70018, and ATCC 70019.

    PubMed

    Givan, Scott A; Zhou, Ming-Yi; Bromert, Karen; Bivens, Nathan; Chapman, Linda Fleet

    2015-05-07

    The assembly and annotation of the draft genome sequences for Pseudoalteromonas strains ATCC BAA314, ATCC 700518, and ATCC 700519 reveal candidates for promoting symbiosis between Pseudoalteromonas strains and eukaryotes. Groups of genes generally associated with virulence are present in all three strains, suggesting that these bacteria may be pathogenic under specific circumstances.

  15. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  16. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  17. Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture.

    PubMed

    Sakai, Shinsuke; Nakashimada, Yutaka; Inokuma, Kentaro; Kita, Masayuki; Okada, Hideki; Nishio, Naomichi

    2005-03-01

    The growth inhibition of Moorella sp. HUC22-1 by undissociated acetic acid was analyzed using a non-competitive inhibition model coupled with a pH inhibition model. In the cells grown on H2 and CO2, the inhibition constant, K(p) of the undissociated acetic acid was 6.2 mM (164 mM as the total acetate at pH 6.2, pKa = 4.795, 55 degrees C), which was 1.5-fold higher than that obtained in cells grown on fructose. When a pH-controlled batch culture was performed using a fermentor at pH 6.2 with H2 and CO2, a maximum of 0.92 g/l of dry cell weight and 339 mM of acetate were produced after 220 h, which were 4.4- and 6.8-fold higher than those produced in the pH-uncontrolled batch culture, respectively. In order to reduce acetate inhibition in the culture medium, a repeated batch culture with cell recycling was performed at a constant pH with H2 and CO2. At a pH of 6.2, the total acetate production reached 840 mmol/l-reactor with 4.7 mmol/l-reactor of total ethanol production after 420 h. When the culture pH was maintained at 5.8, which was the optimum for ethanol production, the total ethanol production reached 15.4 mmol/l-reactor after 430 h, although the total acetate production was decreased to 675 mmol/l-reactor.

  18. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  19. Draft Genome Assemblies of Proteus mirabilis ATCC 7002 and Proteus vulgaris ATCC 49132.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-10-23

    The pleomorphic swarming bacilli of the genus Proteus are common human gut commensal organisms but also the causative agents of recurrent urinary tract infections and bacteremia. We sequenced and assembled the 3.99-Mbp genome of Proteus mirabilis ATCC 7002 (accession no. JOVJ00000000) and the 3.97-Mbp genome of Proteus vulgaris ATCC 49132 (accession no. JPIX00000000), both of which are commonly used reference strains.

  20. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    PubMed

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.

  1. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

    PubMed

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E; Schäffer, Christina

    2015-06-11

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  2. Capsule structure of Proteus mirabilis (ATCC 49565).

    PubMed Central

    Beynon, L M; Dumanski, A J; McLean, R J; MacLean, L L; Richards, J C; Perry, M B

    1992-01-01

    Proteus mirabilis 2573 (ATCC 49565) produces an acidic capsular polysaccharide which was shown from glycose analysis, carboxyl reduction, methylation, periodate oxidation, and the application of one dimensional and two-dimensional high-resolution nuclear magnetic resonance techniques to be a high-molecular-weight polymer of branched trisaccharide units composed of 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine), 2-acetamido-2,6-dideoxy-L-galactose (N-acetyl-L-fucosamine), and D-glucuronic acid, having the structure: [formula: see text] P. mirabilis 2573 also produces an O:6 serotype lipopolysaccharide in which the O-chain component has the same structure as the homologous capsular polysaccharide. This is the first report of a defined capsular polysaccharide in this bacterial genus. PMID:1551839

  3. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a Gram-negative, rod shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512. ...

  4. Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila.

    PubMed

    Tang, Jane S; Gillevet, Patrick M

    2003-07-01

    Strain ATCC 9341, currently known as Micrococcus luteus, has been designated as a quality-control strain in a number of applications. It is also cited as the standard culture in several official methods and manuals, as well as the Code of Federal Regulations. Over the years, it has become apparent that ATCC 9341 does not resemble other M. luteus strains; however, its phenotypic characteristics alone were ambiguous. Recently, a polyphasic study was performed in which molecular data were combined with cytochemical properties and physiological characteristics. The results clearly indicate that ATCC 9341 is a member of the genus Kocuria. Thus, it is proposed to reclassify ATCC 9341 as Kocuria rhizophila and to alert users worldwide of this name change.

  5. Transformation of jervine by Cunninghamella elegans ATCC 9245.

    PubMed

    El Sayed, K A; Halim, A F; Zaghloul, A M; Dunbar, D C; McChesney, J D

    2000-09-01

    Preparative-scale fermentation of the known C-nor-D-homosteroidal jerveratrum alkaloid jervine with Cunninghamella elegans (ATCC 9245) has resulted in the isolation of (-)-jervinone as the major metabolite. In addition, C. elegans ATCC 9245 was able to epimerize C-3 of jervine, producing 3-epi-jervine. This epimerization reaction was similar to that reported for tomatidine, the known spirosolane-type Solanum alkaloid. The structure elucidation of both metabolites was based primarily on 1D- and 2D-NMR analyses.

  6. Microgravity alters the physiological characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under different nutrient conditions.

    PubMed

    Kim, H W; Matin, A; Rhee, M S

    2014-04-01

    The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies.

  7. Microgravity Alters the Physiological Characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under Different Nutrient Conditions

    PubMed Central

    Kim, H. W.; Matin, A.

    2014-01-01

    The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies. PMID:24487539

  8. Characterization of total deoxyribonucleic acid of Mycobacterium paratuberculosis (ATCC 19698) and of M. avium complex (ATCC 25291) using restriction enzymes.

    PubMed

    Labidi, A

    1988-01-01

    Total DNA was extracted from M. paratuberculosis (ATCC 19698) and from M. avium complex (ATCC 25291) cultivated on RVB-10 enriched liquid media. Restriction endonuclease analysis was conducted of Total DNA using 34 enzymes and DNA digestion profiles were compared. Fifteen enzymes revealed important differences between the two species. Two pairs of enzymes (EcoRII, BstNI) and (MboI, Sau3AI) provide evidence for the presence of dcmI and dam methylation in DNA of M. avium complex and M. paratuberculosis. The differences in DNA fragments of these two species could be of potential value in differentiating these clinically significant mycobacteria.

  9. Draft Genome Sequence of Vibrio (Listonella) anguillarum ATCC 14181

    PubMed Central

    Grim, Christopher J.

    2016-01-01

    We report the draft genome sequence of Vibrio anguillarum ATCC 14181, a Gram-negative, hemolytic, O2 serotype marine bacterium that causes mortality in mariculture species. The availability of this genome sequence will add to our knowledge of diversity and virulence mechanisms of Vibrio anguillarum as well as other pathogenic Vibrio spp. PMID:27795288

  10. Draft Genome Sequence of Rhodococcus rhodochrous Strain ATCC 21198

    SciTech Connect

    Shields-Menard, Sara A.; Brown, Steven D; Klingeman, Dawn Marie; Indest, Karl; Hancock, Dawn; Wewalwela, Jayani; French, Todd; Donaldson, Janet

    2014-01-01

    Rhodococcus rhodochrous is a Gram-positive red-pigmented bacterium commonly found in the soil. The draft genome sequence for R. rhodochrous strain ATCC 21198 is presented here to provide genetic data for a better understanding of its lipid-accumulating capabilities.

  11. Complete genome sequence of Campylobacter gracilis ATCC 33236T

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human oral pathogen Campylobacter gracilis has been isolated from periodontal and endodontal infections, and also from non-oral head, neck or lung infections. This study describes the whole-genome sequence of the human periodontal isolate ATCC 33236T (=FDC 1084), which is the first closed genome...

  12. Chitin oligosaccharide deacetylase from Shewanella baltica ATCC BAA-1091.

    PubMed

    Hirano, Takako; Shiraishi, Haruka; Ikejima, Masafumi; Uehara, Rie; Hakamata, Wataru; Nishio, Toshiyuki

    2017-03-01

    Chitin oligosaccharide deacetylase (COD) from bacteria that have been examined so far typically comprise two carbohydrate-binding domains (CBDs) and one polysaccharide deacetylase domain. In contrast, Shewanella baltica ATCC BAA-1091 COD (Sb-COD) has only one CBD, yet exhibits chitin-binding properties and substrate specificities similar to those of other CODs.

  13. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast.

  14. Draft Genome Sequence of Strain ATCC 33958, Reported To Be Elizabethkingia miricola

    PubMed Central

    Matyi, Stephanie A.; Hoyt, Peter R.; Ayoubi-Canaan, Patricia; Hasan, Nabeeh A.

    2015-01-01

    We report the draft genome of Elizabethkingia strain ATCC 33958, which has been classified as Elizabethkingia miricola. Similar to other Elizabethkingia species, the ATCC 33958 draft genome contains numerous β-lactamase genes. ATCC 33958 also harbors a urease gene cluster which supports classification as E. miricola. PMID:26205869

  15. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used...

  16. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, William S.; Thomas, Steven R.; Nieves, Rafael A.; Himmel, Michael E.

    1994-01-01

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C.sub.1, and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81.degree. C. at pH's from about 2 to about 9, and at a inactivation temperature of about 100.degree. C. at pH's from about 2 to about 9.

  17. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  18. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.

    PubMed

    Lee, Christopher M; Gu, Jin; Kafle, Kabindra; Catchmark, Jeffrey; Kim, Seong H

    2015-11-20

    The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles.

  19. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  20. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895

    PubMed Central

    Kim, H. W.

    2016-01-01

    ABSTRACT We previously showed that modeled microgravity conditions alter the physiological characteristics of Escherichia coli O157:H7. To examine how microgravity conditions affect bacterial heat stress responses, D values, membrane fatty acid composition, and heat stress-related gene expression (clpB, dnaK, grpE, groES, htpG, htpX, ibpB, and rpoH), E. coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895 were cultured under two different conditions: low-shear modeled microgravity (LSMMG, an analog of spaceflight conditions) and normal gravity (NG, Earth-like conditions). When 24-h cultures were heated to 55°C, cells cultured under LSMMG conditions showed reduced survival compared with cells cultured under NG conditions at all time points (P < 0.05). D values of all tested strains were lower after LSMMG culture than after NG culture. Fourteen of 37 fatty acids examined were present in the bacterial membrane: nine saturated fatty acids (SFA) and five unsaturated fatty acids (USFA). The USFA/SFA ratio, a measure of membrane fluidity, was higher under LSMMG conditions than under NG conditions. Compared with control cells grown under NG conditions, cells cultured under LSMMG conditions showed downregulation of eight heat stress-related genes (average, −1.9- to −3.7-fold). The results of this study indicate that in a simulated space environment, heat resistance of E. coli O157:H7 decreased, and this might be due to the synergistic effects of the increases in membrane fluidity and downregulated relevant heat stress genes. IMPORTANCE Microgravity is a major factor that represents the environmental conditions in space. Since infectious diseases are difficult to deal with in a space environment, comprehensive studies on the behavior of pathogenic bacteria under microgravity conditions are warranted. This study reports the changes in heat stress resistance of E. coli O157:H7, the severe foodborne pathogen, under conditions that mimic microgravity. The results

  1. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  2. Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895

    PubMed Central

    Chen, Bi-Shuang; Otten, Linda G.; Resch, Verena; Muyzer, Gerard; Hanefeld, Ulf

    2013-01-01

    Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous. PMID:24501654

  3. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  4. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  5. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  6. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  7. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran.

    PubMed

    Liu, Ziyong; Ying, Yu; Li, Fuli; Ma, Cuiqing; Xu, Ping

    2010-05-01

    Wheat bran, a by-product of the wheat milling industry, consists mainly of hemicellulose, starch and protein. In this study, the hydrolysate of wheat bran pretreated with dilute sulfuric acid was used as a substrate to produce ABE (acetone, butanol and ethanol) using Clostridium beijerinckii ATCC 55025. The wheat bran hydrolysate contained 53.1 g/l total reducing sugars, including 21.3 g/l of glucose, 17.4 g/l of xylose and 10.6 g/l of arabinose. C. beijerinckii ATCC 55025 can utilize hexose and pentose simultaneously in the hydrolysate to produce ABE. After 72 h of fermentation, the total ABE in the system was 11.8 g/l, of which acetone, butanol and ethanol were 2.2, 8.8 and 0.8 g/l, respectively. The fermentation resulted in an ABE yield of 0.32 and productivity of 0.16 g l(-1) h(-1). This study suggests that wheat bran can be a potential renewable resource for ABE fermentation.

  8. Production of Biohydrogen from Wastewater by Klebsiella oxytoca ATCC 13182.

    PubMed

    Thakur, Veena; Tiwari, K L; Jadhav, S K

    2015-08-01

    Production of biohydrogen from distillery effluent was carried out by using Klebsiella oxytoca ATCC 13182. The work focuses on optimization of pH, temperature, and state of bacteria, which are the various affecting factors for fermentative biohydrogen production. Results indicates that at 35 °C for suspended cultures, the production was at its maximum (i.e., 91.33 ± 0.88 mL) when compared with other temperatures. At 35 °C and at pH 5 and 6, maximum productions of 117.67 ± 1.45 and 111.67 ± 2.72 mL were observed with no significant difference. When immobilized, Klebsiella oxytoca ATCC 13182 was used for biohydrogen production at optimized conditions, production was 186.33 ± 3.17 mL. Hence, immobilized cells were found to be more advantageous for biological hydrogen production over suspended form. Physicochemical analysis of the effluent was conducted before and after fermentation and the values suggested that the fermentative process is an efficient method for biological treatment of wastewater.

  9. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    PubMed Central

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  10. Ionizing radiation sensitivity of Listeria monocytogenes ATCC 49594 and Listeria innocua ATCC 51742 inoculated on endive (Cichorium endiva).

    PubMed

    Niemira, Brendan A; Fan, Xuetong; Sokorai, Kimberly J B; Sommers, Christopher H

    2003-06-01

    Ionizing radiation inactivates the pathogenic bacteria that can contaminate leafy green vegetables. Leaf pieces and leaf homogenate of endive (Cichorium endiva) were inoculated with the pathogen Listeria monocytogenes (ATCC 49594) or Listeria innocua (ATCC 51742), a nonpathogenic surrogate bacterium. The radiation sensitivity of the two strains was similar, although L. innocua was more sensitive to the type of suspending leaf preparation. During refrigerated storage after irradiation, the population of L. monocytogenes on inoculated endive was briefly suppressed by 0.42 kilogray (kGy), a dose calibrated to achieve a 99% reduction. However, the pathogen regrew after 5 days until it exceeded the bacterial levels on the control after 19 days in storage. Treatment with 0.84 kGy, equivalent to a 99.99% reduction, suppressed L. monocytogenes throughout refrigerated storage. Doses up to 1.0 kGy had no significant effect on the color of endive leaf material, regardless of whether taken from the leaf edge or the leaf midrib. The texture of leaf edge material was unaffected by doses up to 1.0 kGy, whereas the maximum dose tolerated by leaf midrib material was 0.8 kGy. These results show that endive leaves may be treated with doses sufficient to achieve at least a 99.99% reduction of L. monocytogenes with little or no impact on the product's texture or color.

  11. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    PubMed

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  12. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    PubMed Central

    León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  13. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  14. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791)

    PubMed Central

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791). PMID:26988049

  15. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791).

    PubMed

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J; Payne, Justin; Allard, Marc W; Hoffmann, Maria

    2016-03-17

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791).

  16. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  17. Complete genome sequence of Anabaena variabilis ATCC 29413

    SciTech Connect

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne A.; Copeland, A; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L; Kyrpides, Nikos C; Woyke, Tanja

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

  18. Complete genome sequence of Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne; Copeland, Alex; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L.; Kyrpides, Nikos C; Woyke, Tanja

    2014-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40° C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence. PMID:25197444

  19. Biotransformation of (-)beta-pinene by Aspergillus niger ATCC 9642.

    PubMed

    Toniazzo, Geciane; de Oliveira, Débora; Dariva, Cláudio; Oestreicher, Enrique Guillermo; Antunes, Octávio A C

    2005-01-01

    The main objective of this work was to investigate the biotransformations of (-)alpha-pinene, (-)beta-pinene, and (+) limonene by Aspergillus niger ATCC 9642. The culture conditions involved--concentration of cosolvent (EtOH), substrate applied, and sequential addition of substrates were--investigated. Adaptation of the precultures with small amounts of substrate was also studied. The experiments were performed in conical flasks with liquid cultures. This strain of A. niger was able to convert only (-)beta-pinene into alpha-terpineol. An optimum conversion of (-)beta-pinene into alpha-terpineol of about 4% was obtained when the substrate was applied as a diluted solution in EtOH and sequential addition of substrate was used.

  20. Xanthomonas campestris atcc 31601 and process for use

    SciTech Connect

    Weisrock, W.P.; McCarthy, E.F.

    1983-11-29

    A degenerative-resistant strain of Xanthomonas campestris has been developed and a process for using this strain to effectively overcome the problems of continuous xanthan production. This strain of X. campestris, designated X. campestris XCP-19 ATCC 31601, is capable of continuously producing xanthan at high specific productivities, i.e., 0.24 to 0.32 gm xanthan/gm cells/hr, for several hundred hours without culture degeneration from inexpensive aqueous nutrient media such as, for example, a minimal medium consisting primarily of inorganic salts, glucose, and NH4Cl. The medium may or may not also contain a yeast extract or yeast autolysate as a supplemental nitrogen source. Any medium having assimilable sources of carbon, nitrogen, and inorganic substances will serve satisfactorily for use with this new organism. 14 claims.

  1. Tolerance and metabolic response of acetogenic bacteria toward oxygen.

    PubMed

    Karnholz, Arno; Küsel, Kirsten; Gössner, Anita; Schramm, Andreas; Drake, Harold L

    2002-02-01

    The acetogens Sporomusa silvacetica, Moorella thermoacetica, Clostridium magnum, Acetobacterium woodii, and Thermoanaerobacter kivui (i) grew in both semisolid and liquid cultivation media containing O(2) and (ii) consumed small amounts of O(2). Low concentrations of O(2) caused a lag phase in growth but did not alter the ability of these acetogens to synthesize acetate via the acetyl coenzyme A pathway. Cell extracts of S. silvacetica, M. thermoacetica, and C. magnum contained peroxidase and NADH oxidase activities; catalase and superoxide dismutase activities were not detected.

  2. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    PubMed

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations.

  3. Whole-Genome Sequence for Methicillin-Resistant Staphylococcus aureus Strain ATCC BAA-1680.

    PubMed

    Daum, Luke T; Bumah, Violet V; Masson-Meyers, Daniela S; Khubbar, Manjeet; Rodriguez, John D; Fischer, Gerald W; Enwemeka, Chukuka S; Gradus, Steve; Bhattacharyya, Sanjib

    2015-03-12

    We report here the whole-genome sequence of the USA300 strain of methicillin-resistant Staphylococcus aureus (MRSA), designated ATCC BAA-1680, and commonly referred to as community-associated MRSA (CA-MRSA). This clinical MRSA isolate is commercially available from the American Type Culture Collection (ATCC) and is widely utilized as a control strain for research applications and clinical diagnosis. The isolate was propagated in ATCC medium 18, tryptic soy agar, and has been utilized as a model S. aureus strain in several studies, including MRSA genetic analysis after irradiation with 470-nm blue light.

  4. Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. mobilis Lectotype Strain ATCC 10988 ▿

    PubMed Central

    Pappas, Katherine M.; Kouvelis, Vassili N.; Saunders, Elizabeth; Brettin, Thomas S.; Bruce, David; Detter, Chris; Balakireva, Mariya; Han, Cliff S.; Savvakis, Giannis; Kyrpides, Nikos C.; Typas, Milton A.

    2011-01-01

    Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. PMID:21725006

  5. New insights into chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712.

    PubMed

    Fernández-Martínez, Lorena T; Borsetto, Chiara; Gomez-Escribano, Juan Pablo; Bibb, Maureen J; Al-Bassam, Mahmoud M; Chandra, Govind; Bibb, Mervyn J

    2014-12-01

    Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916-sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na(+)/H(+) antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway.

  6. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  7. Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399

    SciTech Connect

    Dermoun, Z.; Belaich, J.P.

    1985-07-01

    A newly designed batch calorimeter was used to investigate the degradability of some celluloses having varying degrees of crystallinity. The PTC of an aerobic culture of Cellulomonas uda ATCC 21399 obtained revealed a diauxic growth which is attributed to the presence of hemicellulose contaminating Avicel and MN300 cellulose. The microcrystalline celluloses used were not completely utilized, whereas amorphous cellulose was easily metabolized, indicating that under the growth conditions used here, the physical structure of cellulose strongly influenced its microbial degradability. An equivalent growth yield of ca. 0.44 g/g was found with all the substrates used. The heat evolved by metabolism of one g cellulose was - 5.86 kJ/g, a value similar to that obtained with glucose culture. The growth rate was the only variable parameter. The data obtained showed as expected that the hydrolysis product of cellulose was consumed in the same way as that of glucose and that the only limiting factor to the biodegradability of cellulose was the breakdown of the polymeric substrate. It is concluded that data obtained with glucose metabolism can be used to evaluate the extent of cellulose degradation.

  8. Complete Genome Sequence of Type Strain Campylobacter fetus subsp. fetus ATCC 27374

    PubMed Central

    Oliveira, Luciana M.; Resende, Daniela M.; Dorneles, Elaine M. S.; Horácio, Elvira C. A.; Alves, Fernanda L.; Gonçalves, Leilane O.; Tavares, Grace S.; Stynen, Ana Paula R.; Lage, Andrey P.

    2016-01-01

    Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here. PMID:27979934

  9. Draft Genome Sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621.

    PubMed

    Poehlein, Anja; Najdenski, Hristo; Simeonova, Diliana D

    2017-03-23

    We present here the 5.561-Mbp assembled draft genome sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621, a phosphite- and organophosphonate-assimilating Gammaproteobacterium. The genome harbors 5,179 predicted protein-coding genes.

  10. Complete Genome Sequence of Type Strain Campylobacter fetus subsp. fetus ATCC 27374.

    PubMed

    Oliveira, Luciana M; Resende, Daniela M; Dorneles, Elaine M S; Horácio, Elvira C A; Alves, Fernanda L; Gonçalves, Leilane O; Tavares, Grace S; Stynen, Ana Paula R; Lage, Andrey P; Ruiz, Jeronimo C

    2016-12-15

    Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here.

  11. Synthesis of a tetrasaccharide glycosyl glycerol. Precursor to glycolipids of Meiothermus taiwanensis ATCC BAA-400.

    PubMed

    Ren, Chien-Tai; Tsai, Yu-Hsuan; Yang, Yu-Liang; Zou, Wei; Wu, Shih-Hsiung

    2007-07-06

    Synthesis of a tetrasaccharide glycosyl glycerol, the core structure of glycoglycerolipid from Meiothermus taiwanensis ATCC BAA-400, was described. A one-pot glycosylation with three components was employed as a key step.

  12. Draft Genome Sequence of an Enterococcus faecalis ATCC 19433 Siphovirus Isolated from Raw Domestic Sewage

    PubMed Central

    Ly, Melissa; Pride, David T.; Toranzos, Gary A.

    2017-01-01

    ABSTRACT We previously isolated and characterized an Enterococcus faecalis ATCC 19433 siphovirus from raw domestic sewage as a viral indicator of human fecal pollution. Here, we report the draft genome sequence of this bacteriophage. PMID:28104647

  13. Draft Genome Sequence of an Enterococcus faecalis ATCC 19433 Siphovirus Isolated from Raw Domestic Sewage.

    PubMed

    Santiago-Rodriguez, Tasha M; Ly, Melissa; Pride, David T; Toranzos, Gary A

    2017-01-19

    We previously isolated and characterized an Enterococcus faecalis ATCC 19433 siphovirus from raw domestic sewage as a viral indicator of human fecal pollution. Here, we report the draft genome sequence of this bacteriophage.

  14. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.

    PubMed

    Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria

    2017-01-20

    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively.

  15. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  16. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.

    PubMed

    Grosso-Becerra, María-Victoria; González-Valdez, Abigail; Granados-Martínez, María-Jessica; Morales, Estefanía; Servín-González, Luis; Méndez, José-Luis; Delgado, Gabriela; Morales-Espinosa, Rosario; Ponce-Soto, Gabriel-Yaxal; Cocotl-Yañez, Miguel; Soberón-Chávez, Gloria

    2016-12-01

    Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.

  17. Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures.

    PubMed

    Dams, Rosemeri I; Guilherme, Alexandre A; Vale, Maria S; Nunes, Vanja F; Leitão, Renato C; Santaella, Sandra T

    2016-12-01

    The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.

  18. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.

    PubMed

    Yang, Yan-Bei; Wang, Shuai; Wang, Chang; Huang, Quan-Yong; Bai, Jing-Wen; Chen, Jian-Qing; Chen, Xue-Ying; Li, Yan-Hua

    2015-12-01

    Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.

  19. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  20. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H.C.

    1998-07-14

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  1. Effect of carbon source on pyrimidine biosynthesis in Pseudomonas alcaligenes ATCC 14909.

    PubMed

    Santiago, Manuel F; West, Thomas P

    2003-01-01

    The effect of carbon source on the regulation of the de novo pyrimidine biosynthetic enzymes in Pseudomonas alcaligenes ATCC 14909 was investigated. The de novo pyrimidine biosynthetic enzymes were measured in extracts of P. alcaligenes ATCC 14909 cells and of cells from an auxotroph deficient for orotate phosphoribosyltransferase activity. Pyrimidine biosynthetic enzyme activities in ATCC 14909 were influenced by pyrimidine supplementation to the culture medium but not by the carbon source present. Pyrimidine limitation of the auxotroph elevated the de novo enzyme activities indicating that this pathway may be controlled at the transcriptional level by a pyrimidine-related compound. Its regulation seemed to be subject to less transcriptional control by a pyrimidine-related compound than what was observed in the closely related species Pseudomonas pseudoalcaligenes.

  2. Restriction endonuclease analysis of total deoxyribonucleic acid of Mycobacterium tuberculosis H37RV (ATCC 27294) and of M. bovis (ATCC 19210).

    PubMed

    Labidi, A

    1988-01-01

    Total DNA from two slowly-growing pathogenic mycobacterial species propagated in vitro was isolated, digested with each of 34 restriction endonucleases and analyzed by agarose gel electrophoresis. The most distinct profiles for M. tuberculosis (ATCC 27294) and for M. bovis (ATCC 19210) were obtained respectively using (BamHI, DraI, ClaI, EcoRI, EcoRV, HindIII, HpaI, SalI, SmaI, XbaI, and XmaI). The patterns produced for these strains were reproducible and distinguishable from each other. However, with several enzymes the patterns for M. tuberculosis and M. bovis were similar. Evidence was obtained for the presence of dam and dcmI methylations in the DNA of each mycobacterial species.

  3. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  4. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response.

  5. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.

    PubMed

    Tsai, Yu-Kuo; Chen, Hung-Wen; Lo, Ta-Chun; Lin, Thy-Hou

    2009-03-01

    Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139.

  6. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).

    PubMed

    Portilho, Márcia; Matioli, Graciette; Zanin, Gisella Maria; de Moraes, Flávio Faria; Scamparini, Adilma Regina Pippa

    2006-01-01

    Agrobacterium isolated from soil samples produced two extracellular polysaccharides: succinoglycan, an acidic soluble polymer, and curdlan gum, a neutral, insoluble polymer. Maize glucose, cassava glucose, and maize maltose were used in fermentation medium to produce insoluble polysaccharide. Two Agrobacterium sp. strains which were used (ATCC 31749 and IFO 13140) in the production of insoluble exopolysaccharide presented equal or superior yields compared to the literature. The strain ATCC 31749 yielded better production when using maize maltose, whose yield was 85%, whereas strain IFO 13140 produced more when fed maize glucose, producing a yield of 50% (on reducing sugars).

  7. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).

    PubMed

    Portilho, Márcia; Matioli, Graciette; Zanin, Gisella Maria; de Moraes, Flávio Faria; Scamparini, Adilma Regina Pippa

    2006-03-01

    Agrobacterium isolated from soil samples produced two extracellular polysaccharides: succinoglycan, an acidic soluble polymer, and curdlan gum, a neutral, insoluble polymer. Maize glucose, cassava glucose, and maize maltose were used in fermentation medium to produce insoluble polysaccharide. Two Agrobacterium sp. strains which were used (ATCC 31749 and IFO 13140) in the production of insoluble exopolysaccharide presented equal or superior yields compared to the literature. The strain ATCC 31749 yielded better production when using maize maltose, whose yield was 85%, whereas strain IFO 13140 produced more when fed maize glucose, producing a yield of 50% (on reducing sugars).

  8. Draft Genome Sequences of Sanguibacteroides justesenii, gen. nov., sp. nov., Strains OUH 308042T (= ATCC BAA-2681T) and OUH 334697 (= ATCC BAA-2682), Isolated from Blood Cultures from Two Different Patients.

    PubMed

    Sydenham, Thomas Vognbjerg; Hasman, Henrik; Justesen, Ulrik Stenz

    2015-03-26

    We announce here the draft genome sequences of Sanguibacteroides justesenii, gen. nov., sp. nov., strains OUH 308042(T) (= DSM 28342(T) = ATCC BAA-2681(T)) and OUH 334697 (= DSM 28341 = ATCC BAA-2682), isolated from blood cultures from two different patients and composed of 51 and 39 contigs for totals of 3,385,516 and 3,410,672 bp, respectively.

  9. Agar disk diffusion (Bauer-Kirby) tests with various fastidious and nonfastidious reference (ATCC) strains: comparison of several agar media.

    PubMed

    Traub, W H; Leonhard, B

    1994-01-01

    Several agar media (Mueller-Hinton agar, MHA; diagnostic sensitivity test agar, DSTA; Schaedler agar, SchA; Todd-Hewitt agar with added yeast extract, THYA; Wilkins-Chalgren agar, WCA) were compared using the Bauer-Kirby agar disk diffusion test against six nonfastidious quality control strains: Staphylococcus aureus ATCC 25923 and ATCC 29213, Escherichia coli ATCC 25922 and ATCC 35218, Pseudomonas aeruginosa ATCC 27853, and Enterococcus faecalis ATCC 29212. MHA, DSTA, and THYA yielded essentially comparable inhibition zones. However, WCA and SchA antagonized cotrimoxazole and aminoglycoside antibiotics; furthermore, SchA antagonized polymyxin B, and both WCA and SchA antagonized imipenem against the P. aeruginosa strain, but not against the E. coli strains. Sheep blood-MHA (Bl-MHA), WCA, THYA, and DSTA were examined with Streptococcus pyogenes ATCC 19615, Streptococcus agalactiae ATCC 13813, and Streptococcus pneumoniae ATCC 6306. In comparison with Bl-MHA, both WCA and THYA yielded comparable inhibition zones against S. pyogenes; DSTA afforded suboptimal growth. DSTA yielded larger inhibition zones with the majority of antimicrobial drugs against S. agalactiae, whereas WCA and THYA enhanced the activity of oxacillin and penicillin G against this strain. S. pneumoniae strain ATCC 6306 grew well on Bl-MHA, yielded suboptimal growth on WCA and faint growth on THYA, and failed to grow on DSTA. Chocolate-supplemented sheep blood-MHA (CHOC-MHA) was compared with Haemophilus test medium (HTM), WCA with added NAD, and THYA with added hematin and NAD against Haemophilus influenzae strains ATCC 35056 and ATCC 49247. The activities of doxycycline and rifampin were enhanced against both strains by HTM, WCA+NAD, and THYA+hematin+NAD. Only WCA+NAD antagonized cotrimoxazole against both H. influenzae strains, an effect due to thymidine; however, HTM antagonized cotrimoxazole against S. aureus ATCC 25923 and E. coli ATCC 25922. It was concluded that Bl-MHA performed best for

  10. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    PubMed Central

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity. PMID:27010592

  11. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  12. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    PubMed

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S; Ellis, Tom

    2016-03-24

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  13. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.

    PubMed

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-06-16

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain.

  14. Draft Genome Sequence of a Metronidazole-Resistant Derivative of Gardnerella vaginalis Strain ATCC 14019

    PubMed Central

    Schuyler, Jessica A.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.

    2015-01-01

    We report the genome sequence of a metronidazole-resistant derivative of Gardnerella vaginalis ATCC 14019. This strain was obtained after serial selection to increase the MIC from 4 to ≥500 µg/ml. Two coding changes, in genes encoding a response regulator and an NAD+ synthetase, arose during selection. PMID:26564054

  15. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  16. Full-Genome Assembly of Reference Strain Providencia stuartii ATCC 33672.

    PubMed

    Frey, K G; Bishop-Lilly, K A; Daligault, H E; Davenport, K W; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Jaissle, J; Koroleva, G I; Ladner, J T; Minogue, T D; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-10-23

    A member of the normal human gut microflora, Providencia stuartii is of clinical interest due to its role in nosocomial infections of the urinary tract and because it readily acquires antibiotic resistance. Here, we present the complete genome of P. stuartii strain ATCC 33672, consisting of a 4.28-Mbp chromosome and a 48.9-kbp plasmid.

  17. Genome Sequence of Actinomyces naeslundii Strain ATCC 27039, Isolated from an Abdominal Wound Abscess

    PubMed Central

    Yamane, Kazuyoshi; Yamanaka, Takeshi; Maruyama, Hugo; Wang, Pao-Li; Komasa, Satoshi; Okazaki, Joji

    2016-01-01

    Here, we present the complete genome sequence of Actinomyces naeslundii strain ATCC 27039, isolated from an abdominal wound abscess. This strain is genetically transformable and will thus provide valuable information related to its crucial role in oral multispecies biofilm development. PMID:28034855

  18. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    PubMed Central

    Davis, Jennifer R.; Goodwin, Lynne; Teshima, Hazuki; Detter, Chris; Tapia, Roxanne; Han, Cliff; Huntemann, Marcel; Wei, Chia-Lin; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Woyke, Tanja; Pitluck, Sam; Peters, Lin; Nolan, Matt; Land, Miriam

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass-degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized component of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism. PMID:23833133

  19. Complete Genome Sequence of the Beer Spoilage Organism Pediococcus claussenii ATCC BAA-344T

    PubMed Central

    Pittet, Vanessa; Abegunde, Teju; Marfleet, Travis; Haakensen, Monique; Morrow, Kendra; Jayaprakash, Teenus; Schroeder, Kristen; Trost, Brett; Byrns, Sydney; Bergsveinson, Jordyn; Kusalik, Anthony

    2012-01-01

    Pediococcus claussenii is a common brewery contaminant. We have sequenced the chromosome and plasmids of the type strain P. claussenii ATCC BAA-344. A ropy variant was chosen for sequencing to obtain genetic information related to growth in beer, as well as exopolysaccharide and possibly biofilm formation by this organism. PMID:22328764

  20. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  1. Draft Genome Sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621

    PubMed Central

    Najdenski, Hristo

    2017-01-01

    ABSTRACT We present here the 5.561-Mbp assembled draft genome sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621, a phosphite- and organophosphonate-assimilating Gammaproteobacterium. The genome harbors 5,179 predicted protein-coding genes. PMID:28336608

  2. Draft Genome Sequence of Veillonella tobetsuensis ATCC BAA-2400T Isolated from Human Tongue Biofilm.

    PubMed

    Mashima, Izumi; Nakazawa, Futoshi

    2015-08-20

    Here, we report the draft genome sequence of Veillonella tobetsuensis ATCC-BAA 2400(T). This bacterium has the remarkable ability to form oral biofilms. The genome is predicted to encode the necessary enzymes involved in the pathway that facilitates the conversion of lactate to propionate.

  3. Whole-genome sequence of Nocardiopsis alba strain ATCC BAA-2165, associated with honeybees.

    PubMed

    Qiao, Jianjun; Chen, Lei; Li, Yongli; Wang, Jiangxin; Zhang, Weiwen; Chen, Shawn

    2012-11-01

    The actinomycete Nocardiopsis alba was reportedly associated with honeybees in separate occurrences. We report the complete genome of Nocardiopsis alba ATCC BAA-2165 isolated from honeybee guts. It will provide insights into the metabolism and genetic regulatory networks of this genus of bacteria that enable them to live in a range of environments.

  4. Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T.

    PubMed

    Pittet, Vanessa; Abegunde, Teju; Marfleet, Travis; Haakensen, Monique; Morrow, Kendra; Jayaprakash, Teenus; Schroeder, Kristen; Trost, Brett; Byrns, Sydney; Bergsveinson, Jordyn; Kusalik, Anthony; Ziola, Barry

    2012-03-01

    Pediococcus claussenii is a common brewery contaminant. We have sequenced the chromosome and plasmids of the type strain P. claussenii ATCC BAA-344. A ropy variant was chosen for sequencing to obtain genetic information related to growth in beer, as well as exopolysaccharide and possibly biofilm formation by this organism.

  5. Complete genome sequence of Helicobacter cinaedi type strain ATCC BAA-847.

    PubMed

    Miyoshi-Akiyama, Tohru; Takeshita, Nozomi; Ohmagari, Norio; Kirikae, Teruo

    2012-10-01

    Here we report the completely annotated genome sequence of the Helicobacter cinaedi type strain (ATCC BAA-847), which is an emerging pathogen that causes cellulitis and bacteremia. The genome sequence will provide new insights into the diagnosis, pathogenic mechanisms, and drug resistance of H. cinaedi.

  6. Complete Genome Sequences for Three Chromosomes of the Burkholderia stabilis Type Strain (ATCC BAA-67).

    PubMed

    Bugrysheva, Julia V; Cherney, Blake; Sue, David; Conley, Andrew B; Rowe, Lori A; Knipe, Kristen M; Frace, Michael A; Loparev, Vladimir N; Avila, Julie R; Anderson, Kevin; Hodge, David R; Pillai, Segaran P; Weigel, Linda M

    2016-11-17

    We report here the complete annotated genome sequence of the Burkholderia stabilis type strain ATCC BAA-67. There were three circular chromosomes with a combined size of 8,527,947 bp and G+C composition of 66.4%. These characteristics closely resemble the genomes of other sequenced members of the Burkholderia cepacia complex.

  7. Draft Genome Sequence of the Oleaginous Yeast Cryptococcus curvatus ATCC 20509

    PubMed Central

    Ojumu, John

    2016-01-01

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. Here, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential. PMID:27811111

  8. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    SciTech Connect

    Davis, Jennifer R.; Goodwin, Lynne A.; Teshima, Hazuki; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Huntemann, Marcel; Wei, Chia-Lin; Han, James; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Szeto, Ernest; Markowitz, Victor; Ivanova, N; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Woyke, Tanja; Pitluck, Sam; Peters, Lin; Nolan, Matt; Land, Miriam L; Sello, Jason K.

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  9. Draft Genome Sequence of the Rodent Opportunistic Pathogen Pasteurella pneumotropica ATCC 35149T.

    PubMed

    Sasaki, Hiraku; Ishikawa, Hiroki; Asano, Ryoki; Ueshiba, Hidehiro; Matsumoto, Tetsuya; Boot, Ron; Kawamoto, Eiichi

    2014-08-07

    Pasteurella pneumotropica is an opportunistic pathogen in rodents that is commonly isolated from upper respiratory tracts in laboratory rodents. Here, we report the draft genome sequence of the P. pneumotropica type strain ATCC 35149, which was first isolated and characterized as biotype Jawetz.

  10. Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1

    PubMed Central

    Hawkins, Shawn A; Layton, Alice C; Ripp, Steven; Williams, Dan; Sayler, Gary S

    2008-01-01

    The genome of a fecal pollution indicator phage, Bacteroides fragilis ATCC 51477-B1, was sequenced and consisted of 44,929 bases with a G+C content of 38.7%. Forty-six putative open reading frames were identified and genes were organized into functional clusters for host specificity, lysis, replication and regulation, and packaging and structural proteins. PMID:18710568

  11. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    NASA Astrophysics Data System (ADS)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun

    2014-06-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  12. Interactions of Bacillus licheniformis ATCC 10716 and normal flora of human skin.

    PubMed

    Bibel, D J; Smiljanic, R J; Lovell, D J

    1978-06-01

    To determine whether antibiotic production might be ecologically advantageous in the survival of Bacillus species on human skin, we applied spores of a bacitracin-producing strain of Bacillus licheniformis (ATCC 10716) to the forearms of 11 volunteers. Three additional strains of B. licheniformis which did not synthesize antibiotics, including a mutant of ATCC 10716, were used in subsequent control trials. Samples of flora were taken from inoculated and control (opposite forearm) sites during the colonization period, generally 3 weeks. Although population densities were unaltered, changes in the carriage, composition, and bacitracin sensitivity of resident flora were related with the presence of ATCC 10716 only, which suggests that microbial interactions are important in bacillus colonization and in maintenance of normal flora. Interactions were examined in vitro by comparing growth curves of representative skin bacteria, including isolates of Staphylococcus epidermidis, Staphylococcus saprophyticus, Micrococcus luteus, and a large-colony diphtheroid, grown individually, in mixed culture with each other, and together in presence of each test strain of B. licheniformis. We observed some diminution of growth of M. luteus and the diphtheroid in the first mixed culture, and the diphtheroid was completely retarded in common culture with ATCC 10716. Lesser antibiotic effects were seen on the cocci, whose rank of sensitivity was similar to that in vivo. The growth of the diphtheroid was enhanced in mixed culture with those strains of bacilli which lack antibiotic activity.

  13. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    SciTech Connect

    Close, Dan; Ojumu, John O.

    2016-11-03

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  14. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    DOE PAGES

    Close, Dan; Ojumu, John O.

    2016-11-03

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  15. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  16. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  17. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  18. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system.

    PubMed

    Ortakci, F; Sert, S

    2012-12-01

    The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system.

  19. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    SciTech Connect

    Stroemberg, N.K.; Karlsson, K.A. )

    1990-07-05

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose were active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.

  20. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct.

    PubMed

    West, Thomas P; Nemmers, Beth

    2008-02-01

    The production of the polysaccharide curdlan from the ethanol processing coproduct condensed corn distillers solubles by the bacterium Agrobacterium sp. ATCC 31749 was investigated. It was found that curdlan could be produced by the bacterium using condensed corn distillers solubles as a source of carbon and nitrogen. As the concentration of condensed corn distillers solubles was increased from 50 g l(-1) to 400 g l(-1), the concentration of curdlan increased but not proportionally. The highest curdlan concentration was produced by the strain on 400 g l(-1 )condensed corn distillers solubles after 120 h and its level was higher than was observed for glucose-based curdlan production. Biomass production by ATCC 31749 was also highest after 120 h of growth on 400 g l(-1 )condensed corn distillers solubles and was higher than found for glucose-based biomass production.

  1. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    PubMed

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium.

  2. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750.

    PubMed Central

    Yamamoto, K; Oishi, K; Fujimatsu, I; Komatsu, K

    1991-01-01

    R-(-)-Mandelic acid was produced from racemic mandelonitrile by Alcaligenes faecalis ATCC 8750. Ammonium acetate or L-glutamic acid as the carbon source and n-butyronitrile as the inducer in the culture medium were effective for bacterial growth and the induction of R-(-)-mandelic acid-producing activity. The R-(-)-mandelic acid formed from mandelonitrile by resting cells was present in a 100% enantiomeric excess. A. faecalis ATCC 8750 has an R-enantioselective nitrilase for mandelonitrile and an amidase for mandelamide. As R-(-)-mandelic acid was produced from racemic mandelonitrile in a yield of 91%, whereas no S-mandelonitrile was left, the S-mandelonitrile remaining in the reaction is spontaneously racemized because of the chemical equilibrium and is used as the substrate. Consequently, almost all the mandelonitrile is consumed and converted to R-(-)-mandelic acid. R-(-)-Mandelic acid was also produced when benzaldehyde plus HCN was used as the substrate. PMID:1660699

  3. Reclassification of a parathione-degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis.

    PubMed

    Kawahara, Kazuyoshi; Tanaka, Atsushi; Yoon, Jaewoo; Yokota, Akira

    2010-06-01

    A parathione-degrading bacterium isolated from rice field in the Philippines, Flavobacterium sp. ATCC 27551 (Sethunathan and Yoshida, 1973, Can. J. Microbiol., 19, 873-875), was re-examined chemotaxonomically and phylogenetically. The strain contained 2-hydroxymyristic acid (2-OH 14 : 0), cis-vaccenic acid (18 : 1 omega7c), and palmitic acid (16 : 0) as major cellular fatty acids, two kinds of glycosphingolipids, and ubiquinone-10 as a sole quinone component. The G+C content of genomic DNA of the strain was 65.9 mol%. The phylogenetic analyses of the 16S rRNA gene indicated that the strain was included in the family Sphingomonadaceae, and most closely related to Sphingobium fuliginis (98.0% similarity) and Sphingobium herbicidovorans (97.3%). The strain showed similar physiological characteristics and a moderate value of DNA-DNA relatedness to S. fuliginis. These data suggested it reasonable to conclude that strain ATCC 27551 was identified as S. fuliginis.

  4. Complete Genome Sequence of Pseudomonas syringae pv. lapsa Strain ATCC 10859, Isolated from Infected Wheat

    PubMed Central

    Kong, Jun; Jiang, Hongshan; Li, Baiyun; Zhao, Wenjun

    2016-01-01

    Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syringae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69 tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to pathogenesis and virulence. PMID:26941133

  5. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum.

  6. Efficacy of oral Bifidobacterium bifidum ATCC 29521 on microflora and antioxidant in mice.

    PubMed

    Wang, Bao-gui; Xu, Hai-bo; Xu, Feng; Zeng, Zhe-ling; Wei, Hua

    2016-03-01

    This study aimed to examine whether Bifidobacterium bifidum ATCC 29521, a species of colonic microflora in humans, is involved in the intestinal tract of mice. This study was also conducted to determine the antioxidant activity of this species by evaluating different microbial populations and reactive oxygen species isolated from feces and intestinal contents for 28 days of oral administration. Microbial diversities were assessed through bacterial culture techniques, PCR-DGGE, and real-time PCR. This study showed that the intake of B. bifidum ATCC 29521 significantly (p < 0.05) improved the ecosystem of the intestinal tract of BALB/c mice by increasing the amount of probiotics (Lactobacillus intestinalis and Lactobacillus crispatus) and by reducing unwanted bacterial populations (Enterobacter, Escherichia coli). Antioxidative activities of incubated cell-free extracts were evaluated through various assays, including the scavenging ability of DPPH radical (64.5% and 67.54% (p < 0.05), respectively, at 21 days in nutrients and 28 days in MRS broth), superoxide anion, and hydroxyl radical (85% and 61.5% (p < 0.05), respectively, at intestinal contents in nutrients and 21 days in MRS broth). Total reducing power (231.5 μmol/L (p < 0.05), 14 days in MRS broth) and mRNA level of genes related to oxidative stress were also determined. Results indicated that B. bifidum ATCC 29521 elicits a beneficial effect on murine gut microbiota and antioxidant activities compared with the control samples. This species can be considered as a potential bioresource antioxidant to promote health. Bifidobacterium bifidum ATCC 29521 may also be used as a promising material in microbiological and food applications.

  7. Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer.

    PubMed

    Thibessard, Annabelle; Haas, Drago; Gerbaud, Claude; Aigle, Bertrand; Lautru, Sylvie; Pernodet, Jean-Luc; Leblond, Pierre

    2015-11-20

    Streptomyces ambofaciens ATCC23877 is a soil bacterium industrially exploited for the production of the macrolide spiramycin which is used in human medicine as an antibacterial and anti-toxoplasmosis chemical. Its genome consists of a 8.3 Mbp linear chromosome and a 89 kb circular plasmid. The complete genome sequence reported here will enable us to investigate Streptomyces genome evolution and to discover new secondary metabolites with potential applications notably in human medicine.

  8. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  9. Draft Genome Sequence of the Fast-Growing Marine Bacterium Vibrio natriegens Strain ATCC 14048

    PubMed Central

    Wang, Zheng; Lin, Baochuan; Hervey, W. Judson

    2013-01-01

    Vibrio natriegens bacteria are Gram-negative aquatic microorganisms that are found primarily in coastal seawater and sediments and are perhaps best known for their high growth rates (generation time of <10 min). In this study, we report the first sequenced genome of this species, that of the type strain Vibrio natriegens ATCC 14048, a salt marsh mud isolate from Sapelo Island, GA. PMID:23929482

  10. Draft Genome Sequence of the Fast-Growing Marine Bacterium Vibrio natriegens Strain ATCC 14048.

    PubMed

    Wang, Zheng; Lin, Baochuan; Hervey, W Judson; Vora, Gary J

    2013-08-08

    Vibrio natriegens bacteria are Gram-negative aquatic microorganisms that are found primarily in coastal seawater and sediments and are perhaps best known for their high growth rates (generation time of <10 min). In this study, we report the first sequenced genome of this species, that of the type strain Vibrio natriegens ATCC 14048, a salt marsh mud isolate from Sapelo Island, GA.

  11. Influence of controlled atmosphere on thermal inactivation of Escherichia coli ATCC 25922 in almond powder.

    PubMed

    Cheng, Teng; Li, Rui; Kou, Xiaoxi; Wang, Shaojin

    2017-06-01

    Heat controlled atmosphere (CA) treatments hold potential to pasteurize Salmonella enteritidis PT 30 in almonds. Nonpathogenic Escherichia coli ATCC 25922 was used as a surrogate species of pathogenic Salmonella for validation of thermal pasteurization to meet critical safety requirements. A controlled atmosphere/heating block system (CA-HBS) was used to rapidly determine thermal inactivation of E. coli ATCC 25922. D- and z-values of E. coli ATCC 25922 inoculated in almond powder were determined at four temperatures between 65 °C and 80 °C under different gas concentrations and heating rates. The results showed that D- and z-values of E. coli under CA treatment were significantly (P < 0.05) lower than those under regular atmosphere (RA) treatment at 4 given temperatures. Relatively higher CO2 concentrations (20%) and lower O2 concentrations (2%) were more effective to reduce thermal inactivation time. There were no significant differences in D-values of E. coli when heating rates were above 1 °C/min both in RA and CA treatments. But D-values significantly (P < 0.05) increased under RA treatment and decreased under CA treatment at lower heating rates. Combination of rapid heat and CA treatments could be a promising method for thermal inactivation of S. enteritidis PT 30 in almond powder.

  12. Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367.

    PubMed

    Moreno-Arribas, V; Lonvaud-Funel, A

    1999-11-01

    Tyramine, a frequent amine in wines, is produced from tyrosine by the tyrosine decarboxylase (TDC) activity of bacteria. The tyramine-producing strain Lactobacillus brevis IOEB 9809 isolated from wine and the reference strain L. brevis ATCC 367 were studied. At the optimum pH, 5.0, K(m) values of IOEB 9809 and ATCC 367 crude extracts for L-tyrosine were 0.58 mM and 0.67 mM, and V(max) was higher for the wine strain (115 U) than the ATCC 367 (66 U). TDC exhibited a preference for L-tyrosine over L-DOPA as substrate. Enzyme activity was pyridoxal-5'-phosphate (PLP)-dependent and it was stabilized by the substrate and coenzyme. In contrast, glycerol and beta-mercaptoethanol strongly inhibited TDC. Tyramine competitively inhibited TDC for both strains. Citric acid, lactic acid and ethanol had an inhibitory effect on cells and crude extracts, but none could inhibit TDC at the usual concentrations in wines.

  13. The fur transcription regulator and fur-regulated genes in Clostridium botulinum A ATCC 3502.

    PubMed

    Zhang, Weibin; Ma, Junhua; Zang, Chengyuan; Song, Yingying; Liu, Peipei

    2011-01-01

    Clostridium botulinum is a spore-forming bacterium that can produce a very powerful neurotoxin that causes botulism. In this study, we have investigated the Fur transcription regulators in Clostridium botulinum and Fur-regulated genes in Clostridium botulinum A ATCC 3502. We found that gene loss may be the main cause leading to the different numbers of Fur transcription regulators in different Clostridium botulinum strains. Meanwhile, 46 operons were found to be regulated by the Fur transcription regulator in Clostridium botulinum A ATCC 3502, involved in several functional classifications, including iron acquisition, iron utilization, iron transport, and transcription regulator. Under an iron-restricted medium, we experimentally found that a Fur transcription regulator (CBO1372) and two operons (DedA, CBO2610-CBO2614 and ABC transporter, CBO0845-CBO0847) are shown to be differentially expressed in Clostridium botulinum A ATCC 3502. This study has provided-us novel insights into the diversity of Fur transcription regulators in different Clostridium botulinum strains and diversity of Fur-targeted genes, as well as a better understanding of the dynamic changes in iron restriction occurring in response to this stress.

  14. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  15. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  16. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611.

    PubMed

    Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua

    2017-03-23

    Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10(8)g(-1) wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level.

  17. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  18. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    PubMed

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  19. Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541.

    PubMed

    Giacomucci, L; Toja, F; Sanmartín, P; Toniolo, L; Prieto, B; Villa, F; Cappitelli, F

    2012-09-01

    Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet-Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D. desulfuricans grown in presence or in absence of paint. We found that D. desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D. desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.

  20. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  1. Effects of penicillin G on morphology and certain physiological parameters of Lactobacillus acidophilus ATCC 4356.

    PubMed

    Khaleghi, M; Kasra Kermanshahi, R; Zarkesh-Esfahani, S H

    2011-08-01

    Evidence shows that probiotic bacteria can undergo substantial structural and morphological changes in response to environmental stresses, including antibiotics. Therefore, this study investigated the effects of penicillin G (0.015, 0.03, and 0.06 mg/l) on the morphology and adhesion of Lactobacillus acidophilus ATCC 4356, including the colony morphotype, biofilm production, hydrophobicity, H₂O₂ formation, S-layer structure, and slpA gene expression. Whereas only smooth colonies grew in the presence of penicillin, rough and smooth colony types were observed in the control group. L. acidophilus ATCC 4356 was found to be hydrophobic under normal conditions, yet its hydrophobicity decreased in the presence of the antibiotic. No biofilm was produced by the bacterium, despite testing a variety of different culture conditions; however, treatment with penicillin G (0.015-0.06 mg/l) significantly decreased its production of H₂O₂ formation and altered the S-layer protein structure and slpA gene expression. The S-protein expression decreased with 0.015 mg/l penicillin G, yet increased with 0.03 and 0.06 mg/l penicillin G. In addition, the slpA gene expression decreased in the presence of 0.015 mg/l of the antibiotic. In conclusion, penicillin G was able to alter the S-layer protein production, slpA gene expression, and certain physicochemical properties of Lactobacillus acidophilus ATCC 4356.

  2. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

    PubMed Central

    Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  3. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    PubMed Central

    Iiyama, Kazuhiro; Mon, Hiroaki; Mori, Kazuki; Mitsudome, Takumi; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-ichiro; Yasunaga-Aoki, Chisa

    2015-01-01

    A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. PMID:25853059

  4. Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107.

    PubMed

    Sosio, Margherita; Gallo, Giuseppe; Pozzi, Roberta; Serina, Stefania; Monciardini, Paolo; Bera, Agnieska; Stegmann, Evi; Weber, Tilmann

    2014-01-23

    We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC-PTA-5024 consists of 8,543,819 bp, with a 71.2% G+C content and 7,860 protein-coding genes.

  5. Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107

    PubMed Central

    Gallo, Giuseppe; Pozzi, Roberta; Serina, Stefania; Monciardini, Paolo; Bera, Agnieska; Stegmann, Evi; Weber, Tilmann

    2014-01-01

    We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC-PTA-5024 consists of 8,543,819 bp, with a 71.2% G+C content and 7,860 protein-coding genes. PMID:24459268

  6. Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC 12472.

    PubMed

    Morohoshi, Tomohiro; Fukamachi, Katsumasa; Kato, Masashi; Kato, Norihiro; Ikeda, Tsukasa

    2010-01-01

    Chromobacterium violaceum produces the purple pigment violacein by quorum-sensing regulation. 20-bp of the lux box-like sequence was found upstream of vioA in C. violaceum ATCC 12472. CviR received C10-HSL and C6-HSL and activated the transcription of vioA in Escherichia coli. However, in strain ATCC 12472, C6-HSL inhibited both C10-HSL-mediated violacein production and the transcription of vioA.

  7. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    PubMed

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  8. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    SciTech Connect

    Robas, N.; Zouheiry, H.; Branlant, G.; Branlant, C. )

    1993-01-05

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.

  9. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    PubMed Central

    2011-01-01

    Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how Cyanothece ATCC51142

  10. Extraction, purification, and characterization of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Holt, S C

    1991-01-01

    The outer membrane of Wolinella recta ATCC 33238 was isolated by French pressure cell disruption and differential centrifugation. Outer membrane proteins (OMPs) were solubilized by Zwittergent 3.14 extraction and separated by DEAE-Sephacel ion-exchange chromatography. The major OMPs that were found in W. recta ATCC 33238 and in several other Wolinella spp. consisted of proteins with apparent molecular masses of 51, 45, and 43 kDa. These three conserved proteins were purified to essential homogeneity by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and characterized chemically. Heating at between 75 and 100 degrees C revealed both the 43- and 51-kDa proteins to be heat modified from apparent molecular masses of 32 and 38 kDa, respectively. The 45-kDa protein was unmodified at all temperatures tested. Two-dimensional isoelectric focusing-SDS-PAGE revealed the 51-kDa protein to be composed of multiple pIs between a pH of 5.0 and greater than 8.0 while the 43- and 45-kDa proteins had a pI of approximately 6.0. N'-terminal amino acid sequence analysis of the first 30 to 40 amino acids and search of the Protein Identification Resource data base for similar proteins only revealed the 43-kDa protein to be similar to the P.69 OMP of Bordetella pertussis; however, the homology was weak (33%). Amino acid analysis revealed the 43-kDa protein to be noncharged and the 45- and 51-kDa proteins to be hydrophilic, containing between 38 to 42% polar residues but no cysteine. This study reports the purification and partial characterization of three conserved proteins in W. recta ATCC 33238. Images PMID:1894372

  11. Solid state fermentation production of chitin deacetylase by Colletotrichum lindemuthianum ATCC 56676 using different substrates.

    PubMed

    Suresh, P V; Sachindra, N M; Bhaskar, N

    2011-06-01

    Production of extracellular chitin deacetylase by Colletotrichum lindemuthianum ATCC 56676 under solid substrate fermentation was studied. The suitability of shrimp shell chitin waste (SSCW) and commercial wheat bran (CWB) was evaluated for maximal enzyme production. CWB medium (pH 6.4 ± 0.2) supplemented with chitosan favoured maximal chitin deacetylase yield of 460.4 ± 14.7 unit/g initial dry substrate (U/g IDS) at 96 h as compared to maximal yield of 392.0 ± 6.4 U/g IDS at 192 h in SSCW medium (pH 8.7 ± 0.2) at 25 °C incubation temperature and 60% (w/w) initial moisture content of medium. Along with chitin deacetylase, C. lindemuthianum ATCC 56676 produced maximum endo-chitinase (0.28 ± 0.03 U/g IDS at 144 h) and β-N-acetylhexosaminidase (0.79 ± 0.009 U/g IDS at 192 h) in CWB medium and 0.49 ± 0.05 U/g IDS of endo-chitinase at 264 h and 0.38 ± 0.04 U/g IDS of β-N-acetylhexosaminidase at 96 h of incubation in SSCW medium. SEM studies indicated the difference in the morphology of mycelia and hyphae of C. lindemuthianum ATCC 56676 when grown on different solid substrates. Production of chitin deacetylase by SSF is being reported for the first time.

  12. Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis.

    PubMed

    Ghimire, Gopal Prasad; Koirala, Niranjan; Sohng, Jae Kyung

    2015-05-01

    Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC 27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained four genes, all transcribed in one direction. These genes encode polypeptides that resemble polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalenehopene cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/ mass spectrometry.

  13. Multicenter Investigation of Gepotidacin (GSK2140944) Agar Dilution Quality Control Determinations for Neisseria gonorrhoeae ATCC 49226

    PubMed Central

    Fedler, Kelley A.; Scangarella-Oman, Nicole E.; Ross, James E.; Flamm, Robert K.

    2016-01-01

    Gepotidacin, a novel triazaacenaphthylene antibacterial agent, is the first in a new class of type IIA topoisomerase inhibitors with activity against many biothreat and conventional pathogens, including Neisseria gonorrhoeae. To assist ongoing clinical studies of gepotidacin to treat gonorrhea, a multilaboratory quality assurance investigation determined the reference organism (N. gonorrhoeae ATCC 49226) quality control MIC range to be 0.25 to 1 μg/ml (88.8% of gepotidacin MIC results at the 0.5 μg/ml mode). PMID:27161642

  14. Evaluating Chemical Mitigation of Salmonella Typhimurium ATCC 14028 in Animal Feed Ingredients.

    PubMed

    Cochrane, Roger A; Huss, Anne R; Aldrich, Gregory C; Stark, Charles R; Jones, Cassandra K

    2016-04-01

    Salmonella Typhimurium is a potential feed safety hazard in animal feed ingredients. Thermal mitigation of Salmonella spp. during rendering is effective but does not eliminate the potential for cross-contamination. Therefore, the objective of this experiment was to evaluate the effectiveness of chemicals to mitigate postrendering Salmonella Typhimurium ATCC 14028 contamination in rendered proteins over time. Treatments were arranged in a 6 × 4 factorial with six chemical treatments and four rendered protein meals. The chemical treatments included (i) control without chemical treatment, (ii) 0.3% commercial formaldehyde product, (iii) 2% essential oil blend, (iv) 2% medium chain fatty acid blend, (v) 3% organic acid blend, and (vi) 1% sodium bisulfate. The four rendered protein meals included (i) feather meal, (ii) blood meal, (iii) meat and bone meal, and (iv) poultry by-product meal. After matrices were chemically treated, they were inoculated with Salmonella Typhimurium ATCC 14028, stored at room temperature, and enumerated via plate counts on days 0, 1, 3, 7, 14, 21, and 42 postinoculation. The Salmonella concentration in ingredients treated with medium chain fatty acid and commercial formaldehyde were similar to one another (P = 0.23) but were 2 log lower than the control (P < 0.05). Ingredients treated with organic acids and essential oils also had lower Salmonella concentrations than the control (P < 0.05). Time also played a significant role in Salmonella mitigation, because all days except days 14 and 21 (P = 0.92) differed from one another. Rendered protein matrix also affected Salmonella stability, because concentrations in meat and bone meal and blood meal were similar to one another (P = 0.36) but were greater than levels in feather meal and poultry by-product meal (P < 0.05). In summary, chemical treatment and time both mitigated Salmonella Typhimurium ATCC 14028, but their effectiveness was matrix dependent. Time and chemical treatment with medium

  15. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    PubMed Central

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacterial strain without previous selection for glyphosate utilization as a source of phosphorus. PMID:16347639

  16. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in Acinetobacter baumannii ATCC19606(T).

    PubMed

    Darvish Alipour Astaneh, Shakiba; Rasooli, Iraj; Mousavi Gargari, Seyed Latif

    2014-09-01

    Filamentous hemagglutinin adhesins (FHA) are key factors for bacterial attachment and subsequent cell accumulation on substrates. Here an FHA-like Outer membrane (OM) adhesin of Acinetobacter baumannii ATCC19606(T) was displayed on Escherichia coli. The candidate autotransporter (AT) genes were identified in A. baumannii ATCC19606(T) genome. The exoprotein (FhaB1) and transporter (FhaC1) were produced independently within the same cell (FhaB1C1). The fhaC1 was mutated. In vitro adherence to epithelial cells of the recombinant FhaB1C1 and the mutant strains were compared with A. baumanni ATCC19606(T). A bivalent chimeric protein (K) composed of immunologically important portions of fhaB1 (B) and fhaC1 (C) was constructed. The mice vaccinated with chimeric protein were challenged with A. baumannii ATCC19606(T) and FhaB1C1 producing recombinant E. coli. Mutations in the fhaC1 resulted in the absence of FhaB1 in the OM. Expression of FhaB1C1 enhanced the adherence of recombinant bacteria to A546 bronchial cell line. The results revealed association of FhaB1 with bacterial adhesion and biofilm formation. Immunization with a combination of recombinant B and K proteins proved protective against A. baumanni ATCC19606(T). The findings may be applied in active and passive immunization strategies against A. baumannii.

  17. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides.

    PubMed

    Biondi, Natascia; Piccardi, Raffaella; Margheri, M Cristina; Rodolfi, Liliana; Smith, Geoffrey D; Tredici, Mario R

    2004-06-01

    The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed.

  18. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  19. Production of fructosyltransferase by Aureobasidium sp. ATCC 20524 in batch and two-step batch cultures.

    PubMed

    Salinas, Martín A; Perotti, Nora I

    2009-01-01

    A comparison of fructosyltransferase (EC 2.4.1.9) production by Aureobasidium sp. ATCC 20524 in batch and two step batch cultures was investigated in a 1-l stirred tank reactor using a sucrose supply of 200 g/l. Results showed that the innovative cultivation in two step of Aureobasidium sp. produced more fructosyltransferase (FFase) than the single batch culture at the same sucrose concentration with a maximal enzyme production of 523 U/ml, which was 80.5% higher than the one obtained in the batch culture. The production of fructooligosaccharides (FOSs) was also analyzed; their concentration reached a maximum value of 160 g/l the first day in the two-step culture and 127 g/l in the single-batch mode. The use of the two-step batch culture with Aureobasidium sp. ATCC 20524 in allowing the microorganism to grow up prior to the induction of sucrose (second step), proved to be a powerful method for producing fructosyltransferase and FOSs.

  20. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress.

    PubMed

    Babu, Malli Mohan Ganesh; Sridhar, Jayavel; Gunasekaran, Paramasamy

    2011-11-10

    Silver nanoparticles (AgNPs) were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM) but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Global expression profiling using genomic DNA microarray indicated that 10% (n = 524) of the total genes (n = 5234) represented on the microarray were up-regulated in the cells treated with silver nitrate. The majority of genes encoding for chaperones (GroEL), nutrient transporters, DNA replication, membrane proteins, etc. were up-regulated. A substantial number of the genes encoding chemotaxis and flagellar proteins were observed to be down-regulated. Motility assay of the silver nitrate treated cells revealed reduction in their chemotactic activity compared to the control cells. In addition, 14 distinct transcripts overexpressed from the 'empty' intergenic regions were also identified and proposed as stress-responsive non-coding small RNAs.

  1. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.

    PubMed

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  2. Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912.

    PubMed

    Sun, W Q; Meng, M; Kumar, G; Geelhaar, L A; Payne, G F; Speedie, M K; Stacy, J R

    1996-05-01

    In previous studies, bacterial cultures were isolated that had the ability to degrade the nitrate ester glyceryl trinitrate (i.e., nitroglycerin). The goal of the present study was to examine the ability of resting cells and cell-free extracts of the isolate Bacillus sp. ATCC 51912 to degrade the more recalcitrant nitrate ester propylene glycol dinitrate (PGDN). It was observed that the PGDN-denitrating activity was expressed during growth even when cells were cultured in the absence of nitrate esters. This indicates that nitrate esters are not required for expression of denitration activity. Using cell-free extracts, PGDN was observed to be sequentially denitrated to propylene glycol mononitrate (PGMN) and propylene glycol with the second denitration step proceeding more slowly than the first. Also it was observed that dialysis of the cell-free extracts did not affect denitration activity indicating that regenerable cofactors [e.g., NAD(P)H or ATP] are not required for denitration.

  3. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769.

    PubMed

    Tajima, K; Nakajima, K; Yamashita, H; Shiba, T; Munekata, M; Takai, M

    2001-12-31

    The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.

  4. The teichuronic acid from the walls of Bacillus licheniformis A.T.C.C. 9945.

    PubMed Central

    Lifely, M R; Tarelli, E; Baddiley, J

    1980-01-01

    The teichuronic acid of Bacillus licheniformis A.T.C.C. 9945 grown under phosphate limitation was isolated from the cell walls and purified by ion-exchange and Sephadex chromatography. The detailed structure of the polysaccharide was established by methylation analysis, periodate oxidation and partial acid hydrolysis. The polymer is composed of tetrasaccharide repeating units with the structure [GlcA beta(1 leads to 4)GlcA beta(1 leads to 3)GalNAc beta(1 leads to 6)GalNAc alpha(1 leads to 4)n. 13C n.m.r. analysis has confirmed most of the structural features of the polysaccharide and, in particular, the anomeric configurations and linkage positions of substituents. The teichuronic acid from glucose-limited cells was identical with that from cells grown under phosphate limitation. PMID:6263243

  5. Closing the Carbon Balance for Fermentation by Clostridium thermocellum (ATCC 27405)

    SciTech Connect

    Ellis, Lucas D; Holwerda, Evert K; Hogsett, David; Rogers, Steve; Shao, Xiongjun; Tschaplinski, Timothy J; Thorne, Phil; Lynd, L.

    2012-01-01

    Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, {>=}92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products - ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.

  6. Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, D; Todescato, D; Moritz, D E; Oliveira, J Vladimir; Oliveira, D; Ulson de Souza, A A; Guelli Souza, S M A

    2015-08-01

    Some of the noxious atmospheric pollutants such as nitrogen and sulfur dioxides come from the fossil fuel combustion. Biodesulfurization and biodenitrogenation are processes which remove those pollutants through the action of microorganisms. The ability of sulfur and nitrogen removal by the strain Rhodococcus erythropolis ATCC 4277 was tested in a biphasic system containing different heavy gas oil concentrations in a batch reactor. Heavy gas oil is an important fraction of petroleum, because after passing through, the vacuum distillation is incorporated into diesel oil. This strain was able to remove about 40% of the nitrogen and sulfur present in the gas heavy oil. Additionally, no growth inhibition occurred even when in the presence of pure heavy gas oil. Results present in this work are considered relevant for the development of biocatalytic processes for nitrogen and sulfur removal toward building feasible industrial applications.

  7. Complete annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono).

    PubMed

    Miyoshi-Akiyama, Tohru; Satou, Kazuhito; Kato, Masako; Shiroma, Akino; Matsumura, Kazunori; Tamotsu, Hinako; Iwai, Hiroki; Teruya, Kuniko; Funatogawa, Keiji; Hirano, Takashi; Kirikae, Teruo

    2015-01-01

    We report the completely annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono), which is a used for virulence and/or immunization studies. The complete genome sequence of M. tuberculosis Kurono was determined with a length of 4,415,078 bp and a G+C content of 65.60%. The chromosome was shown to contain a total of 4,340 protein-coding genes, 53 tRNA genes, one transfer messenger RNA for all amino acids, and 1 rrn operon. Lineage analysis based on large sequence polymorphisms indicated that M. tuberculosis Kurono belongs to the Euro-American lineage (lineage 4). Phylogenetic analysis using whole genome sequences of M. tuberculosis Kurono in addition to 22 M. tuberculosis complex strains indicated that H37Rv is the closest relative of Kurono based on the results of phylogenetic analysis. These findings provide a basis for research using M. tuberculosis Kurono, especially in animal models.

  8. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163.

    PubMed

    Mohedano, María de la Luz; Russo, Pasquale; de Los Ríos, Vivian; Capozzi, Vittorio; Fernández de Palencia, Pilar; Spano, Giuseppe; López, Paloma

    2014-02-26

    Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.

  9. Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174

    PubMed Central

    Rattray, F. P.; Bockelmann, W.; Fox, P. F.

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH(inf2)-Ala-Lys-Asn-Asp-Ala-Val-Gly-Gly-Met-Gly-Tyr-Leu-Ser-Met-Ile-Pro-Se r-Gln-Pro-Gly. PMID:16535130

  10. Specificity of Salmonella Typhimurium strain (ATCC 14028) growth responses to Salmonella serovar-generated spent media.

    PubMed

    Calo, Juliany Rivera; Park, Si Hong; Baker, Christopher A; Ricke, Steven C

    2015-01-01

    Salmonella enterica is one of the most prevalent pathogens responsible for foodborne illness worldwide. Numerous Salmonella serovars have been associated with the consumption of a variety of products, and limiting food-borne illness due to Salmonella serovars is a continuing problem for food producers and public health. The emergence and prevalence of Salmonella serovars has been studied but the predominant serovars have varied somewhat over the years. The aims of this research were to compare the aerobic growth responses of selected predominant foodborne Salmonella serovars, and evaluate how the spent media from different serovars affects the growth of a well-characterized Salmonella Typhimurium strain. Growth responses were similar for most strains in spent media except for S. Typhimurium (ATCC 14028), which exhibited a decrease in growth in the presence of Salmonella Heidelberg (ARI-14) spent media. This research will provide a better understanding of the growth differences among several Salmonella serovars in nutrient limited spent media.

  11. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    PubMed

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  12. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633

    PubMed Central

    Borisova, Svetlana A.; Circello, Benjamin T.; Zhang, Jun Kai; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Summary Rhizocticins are phosphonate oligopeptide antibiotics containing the C-terminal non-proteinogenic amino acid (Z)-l-2-amino-5-phosphono-3-pentenoic acid (APPA). Here we report the identification and characterization of the rhizocticin biosynthetic gene cluster (rhi) in Bacillus subtilis ATCC6633. Rhizocticin B was heterologously produced in the non-producer strain Bacillus subtilis 168. A biosynthetic pathway is proposed based on bioinformatics analysis of the rhi genes. One of the steps during the biosynthesis of APPA is an unusual aldol reaction between phosphonoacetaldehyde and oxaloacetate catalyzed by an aldolase homolog RhiG. Recombinant RhiG was prepared and the product of an in vitro enzymatic conversion was characterized. Access to this intermediate allows for biochemical characterization of subsequent steps in the pathway. PMID:20142038

  13. Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174.

    PubMed

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-09-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH(inf2)-Ala-Lys-Asn-Asp-Ala-Val-Gly-Gly-Met-Gly-Tyr-Leu-Ser-Met-Ile-Pro-Se r-Gln-Pro-Gly.

  14. Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC9175.

    PubMed

    Cholet, Orianne; Hénaut, Alain; Bonnarme, Pascal

    2007-04-01

    The expression of genes possibly involved in L-methionine and lactate catabolic pathways were performed in Brevibacterium linens (ATCC9175) in the presence or absence of added L-methionine. The expression of 27 genes of 39 selected genes differed significantly in L-methionine-enriched cultures. The expression of the gene encoding L-methionine gamma-lyase (MGL) is high in L-methionine-enriched cultures and is accompanied by a dramatic increase in volatile sulfur compounds (VSC) biosynthesis. Several genes encoding alpha-ketoacid dehydrogenase and one gene encoding an acetolactate synthase were also up-regulated by L-methionine, and are probably involved in the catabolism of alpha-ketobutyrate, the primary degradation product of L-methionine to methanethiol. Gene expression profiles together with biochemical data were used to propose catabolic pathways for L-methionine in B. linens and their possible regulation by L-methionine.

  15. Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies

    PubMed Central

    Venkataraman, Sowmyalakshmi; Narayan, Shoba; Chadha, Anju

    2016-01-01

    Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC. PMID:27739423

  16. Pore-forming ability of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Egli, C; Hancock, R E; Holt, S C

    1992-01-01

    Three major outer membrane proteins with apparent molecular masses of 43, 45, and 51 kDa were purified from Wolinella recta ATCC 33238, and their pore-forming abilities were determined by the black lipid bilayer method. The non-heat-modifiable 45-kDa protein (Omp 45) showed no pore-forming activity even at high KCl concentrations. The single-channel conductances in 1 M KCl of the heat-modifiable proteins with apparent molecular masses of 43 kDa (Omp 43) and 51 kDa (Omp 51) were 0.49 and 0.60 nS, respectively. The proteins formed nonselective channels and, as determined by experiments of ion selectivity and zero-current potential, were weakly anion selective. Images PMID:1370429

  17. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749.

    PubMed

    West, Thomas P

    2009-12-01

    A mutant strain of the curdlan-producing bacterium Agrobacterium sp. ATCC 31749, isolated by ethylmethane sulfonate mutagenesis and resistance to ampicillin, was capable of elevated curdlan synthesis. Using 2.5% corn syrup, glucose or maltose as a carbon source, the mutant strain was shown to produce a 1.5-fold, 1.5-fold or 1.5-fold higher level of curdlan, respectively, than its parent strain after 120 h of growth. The mutant strain produced higher curdlan levels after 96 or 120 h of growth on glucose or maltose as a carbon source than it did on corn syrup. Biomass production by the mutant strain grown on the carbon sources studied was slightly elevated compared to its parent strain. It was concluded that the elevated curdlan production observed for the mutant strain grown on corn syrup or glucose was not due to an increase in biomass production.

  18. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917.

    PubMed

    Wang, Pingping; Wu, Zhen; Wu, Jing; Pan, Daodong; Zeng, Xiaoqun; Cheng, Kemeng

    2016-10-01

    Lactic acid bacteria are widely used in fermented foods, especially cheese products. In this study, we observed the salt tolerance of Lactobacillus plantarum ATCC 14917 after exposure to different concentrations of NaCl in MRS medium. Quantitative proteomic profiles using two-dimensional electrophoresis identified 384 proteins, of which 26 were upregulated and 31 downregulated. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry was then used to identify 11 proteins, of which three were linked to carbohydrate metabolism. The downregulation of carbamoyl phosphate synthase in carbohydrate metabolism revealed a bacterial regulation mechanism to save energy in order to survive during the salt tolerance. Other proteins were found involved in transcription-translation processes, fatty acid biosynthesis, and the primary metabolic process.

  19. Inactivation of Escherichia coli (ATCC 4157) in diluted apple cider by dense-phase carbon dioxide.

    PubMed

    Gunes, Gurbuz; Blum, L K; Hotchkiss, J H

    2006-01-01

    Dense-phase carbon dioxide (CO2) treatments in a continuous flow through system were applied to apple cider to inactivate Escherichia coli (ATCC 4157). A response surface design with factors of the CO2/product ratio (0, 70, and 140 g/kg), temperature (25, 35, and 45 degrees C), and pressure (6.9, 27.6, and 48.3 MPa) were used. E. coli was very sensitive to dense CO2 treatment, with a more than 6-log reduction in treatments containing 70 and 140 g/kg CO2, irrespective of temperature and pressure. The CO2/product ratio was the most important factor affecting inactivation rate of E. coli. No effect of temperature and pressure was detected because of high sensitivity of the cells to dense CO2. Dense CO2 could be an alternative pasteurization treatment for apple cider. Further studies dealing with the organoleptic quality of the product are needed.

  20. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461.

    PubMed

    Harding, Nancy E; Patel, Yamini N; Coleman, Russell J

    2004-02-01

    Sphingomonas elodea ATCC 31461 produces gellan, a capsular polysaccharide that is useful as a gelling agent for food and microbiological media. Complementation of nonmucoid S. elodea mutants with a gene library resulted in identification of genes essential for gellan biosynthesis. A cluster of 18 genes spanning 21 kb was isolated. These 18 genes are homologous to genes for synthesis of sphingan polysaccharide S-88 from Sphingomonas sp. ATCC 31554, with predicted amino acid identities varying from 61% to 98%. Both polysaccharides have the same tetrasaccharide repeat unit, comprised of [-->4)-alpha- l-rhamnose-(1-->3)-beta- d-glucose-(1-->4)-beta- d-glucuronic acid-(1-->4)-beta- d-glucose-(1-->]. Polysaccharide S-88, however, has mannose or rhamnose in the fourth position and has a rhamnosyl side chain, while gellan has no sugar side chain but is modified by glyceryl and acetyl substituents. Genes for synthesis of the precursor dTDP- l-rhamnose were highly conserved. The least conserved genes in this cluster encode putative glycosyl transferases III and IV and a gene of unknown function, gelF. Three genes ( gelI, gelM, and gelN) affected the amount and rheology of gellan produced. Four additional genes present in the S-88 sphingan biosynthetic gene cluster did not have homologs in the gene cluster for gellan biosynthesis. Three of these gene homologs, gelR, gelS, and gelG, were found in an operon unlinked to the main gellan biosynthetic gene cluster. In a third region, a gene possibly involved in positive regulation of gellan biosynthesis was identified.

  1. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    SciTech Connect

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.; Charania, Moiz A.; Hill, Eric A.; Anderson, Lindsey N.; Monroe, Matthew E.; Smith, Richard D.; Beliaev, Alexander S.; Wright, Aaron T.; Nojiri, H.

    2016-10-14

    ABSTRACT

    Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2production, a highly perplexing phenomenon because H2evolving enzymes are O2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK.

    IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment

  2. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus brevis ATCC 8287, a surface (S-layer) strain, possesses a variety of functional properties that make it both a potential probiotic and a good vaccine vector candidate. With this in mind, our aim was to study the survival of L. brevis in the porcine gut and investigate the effect of th...

  3. Alternative sigma factor SigK has a role in stress tolerance of group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Dahlsten, Elias; Kirk, David; Lindström, Miia; Korkeala, Hannu

    2013-06-01

    The role of the alternative sigma factor SigK in cold and osmotic stress tolerance of Clostridium botulinum ATCC 3502 was demonstrated by induction of sigK after temperature downshift and exposure to hyperosmotic conditions and by impaired growth of the sigK mutants under the respective conditions.

  4. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters.

    PubMed

    Rice, Marlen C; Norton, Jeanette M; Stein, Lisa Y; Kozlowski, Jessica; Bollmann, Annette; Klotz, Martin G; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T B K; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-03-16

    Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified.

  5. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose

    PubMed Central

    Pfeffer, Sarah; Mehta, Kalpa

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  6. Genome sequence of n-alkane-degrading Hydrocarboniphaga effusa strain AP103T (ATCC BAA-332T).

    PubMed

    Chang, Hung-Kuang; Zylstra, Gerben J; Chae, Jong-Chan

    2012-09-01

    Hydrocarboniphaga effusa strain AP103(T) (ATCC BAA-332(T)) is a member of the Gammaproteobacteria utilizing n-alkanes as the sole source of carbon and energy. Here we report the draft genome sequence of AP103(T), which consists of 5,193,926 bp with a G + C content of 65.18%.

  7. Genome Sequence of Streptococcus phocae subsp. phocae Strain ATCC 51973T Isolated from a Harbor Seal (Phoca vitulina)

    PubMed Central

    Poblete-Morales, Matías

    2015-01-01

    Streptococcus phocae subsp. phocae is a pathogen that affects different pinniped and mammalian species. This announcement reports the genome sequence of the type strain ATCC 51973 isolated in Norway from clinical specimens of harbor seal (Phoca vitulina), revealing interesting genes related to possible virulence factors. PMID:26586875

  8. A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334.

    PubMed

    Cooney, Meagan A; Steele, James L; Steinberg, Howard; Talaat, Adel M

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) the causative agent of Johne's disease, is one of the most serious infectious diseases in dairy cattle worldwide. Due to the chronic nature of this disease and no feasible control strategy, it is essential to have an efficient animal model which is representative of the natural route of infection as well as a viable treatment option. In this report, we evaluated the effect of different doses of M. paratuberculosis in their ability to colonize murine tissues following oral delivery and the ability of Lactobacillus casei ATCC 334, a nascent probiotic, to combat paratuberculosis. Oral inoculation of mice was able to establish paratuberculosis in a dose-dependent manner. Two consecutive doses of approximately 10(9) CFU per mouse resulted in a disseminated infection, whereas lower doses were not efficient to establish infection. All inoculated mice were colonized with M. paratuberculosis, maintained infection for up to 24 weeks post infection and generated immune responses that reflect M. paratuberculosis infection in cattle. Notably, oral administration of L. casei ATCC 334 did not reduce the level of M. paratuberculosis colonization in treated animals. Interestingly, cytokine responses and histology indicated a trend for the immunomodulation and reduction of pathology in animals receiving L. casei ATCC 334 treatment. Overall, a reproducible oral model of paratuberculosis in mice was established that could be used for future vaccine experiments. Although the L. casei ATCC 334 was not a promising candidate for controlling paratuberculosis, we established a protocol to screen other probiotic candidates.

  9. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    PubMed Central

    Rice, Marlen C.; Stein, Lisa Y.; Kozlowski, Jessica; Bollmann, Annette; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T. B. K.; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-01-01

    ABSTRACT Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified. PMID:28302769

  10. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds.

  11. Altered Composition of Ralstonia eutropha Poly(hydroxyalkanoate) through Expression of PHA Synthase from Allochromatium vinosum ATCC 35206

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The class III poly(hydroxyalkanoate) synthase (PHAS) genes (phaC and phaE) of a photosynthetic bacterium, Allochromatium vinosum ATCC 35206, were cloned, sequenced and expressed in a heterologous host. We employed a PCR technique coupled with a chromosomal gene-walking method to clone and subsequen...

  12. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  13. Azotobacter Genomes: The Genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412)

    PubMed Central

    Robson, Robert L.; Jones, Robert; Robson, R. Moyra; Schwartz, Ariel; Richardson, Toby H.

    2015-01-01

    The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these

  14. Two Master Switch Regulators Trigger A40926 Biosynthesis in Nonomuraea sp. Strain ATCC 39727

    PubMed Central

    Lo Grasso, Letizia; Maffioli, Sonia; Sosio, Margherita; Bibb, Mervyn; Puglia, Anna Maria

    2015-01-01

    ABSTRACT The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by the dbv gene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation of dbv6 had no effect. In addition, overexpression of dbv3 led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons, dbv14-dbv8 and dbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4, dbv29, dbv36, and dbv37) and of six operons (dbv2-dbv1, dbv14-dbv8, dbv17-dbv15, dbv21-dbv20, dbv24-dbv28, and dbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription of dbv4 and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation. IMPORTANCE This report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomycete Nonomuraea sp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis

  15. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  16. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

    PubMed Central

    Fleige, Christian; Meyer, Florian

    2016-01-01

    ABSTRACT The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for the central vanillin catabolism enzyme, vanillin dehydrogenase. This mutation resulted in improvement of the final concentration of vanillin by more than 2.2 g/liter, with a molar yield of 80.9%. Further improvement was achieved with constitutive expression of the vanillin anabolism genes ech and fcs, coding for the enzymes feruloyl-coenzyme A (CoA) synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech). The transcription of both genes was shown to be induced by ferulic acid, which explains the unwanted adaptation phase in the fermentation process before vanillin was efficiently produced by the wild-type cells. Through the constitutive and enhanced expression of the two genes, the adaptation phase was eliminated and a final vanillin concentration of 19.3 g/liter, with a molar yield of 94.9%, was obtained. Moreover, an even higher final vanillin concentration of 22.3 g/liter was achieved, at the expense of a lower molar yield, by using an improved feeding strategy. This is the highest reported vanillin concentration reached in microbial fermentation processes without extraction of the product. Furthermore, the vanillin was produced almost without by-products, with a molar yield that nearly approached the theoretical maximum. IMPORTANCE Much effort has been put into optimization of the biotechnological production of natural vanillin. The demand for this compound is growing due to increased consumer concerns regarding chemically produced food additives. Since this

  17. Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin

    PubMed Central

    2011-01-01

    Background Teicoplanin is a glycopeptide antibiotic used clinically in Europe and in Japan for the treatment of multi-resistant Gram-positive infections. It is produced by fermenting Actinoplanes teichomyceticus. The pharmaceutically active principle is teicoplanin A2, a complex of compounds designated T-A2-1-A2-5 differing in the length and branching of the fatty acid moiety linked to the glucosamine residue on the heptapeptide scaffold. According to European and Japanese Pharmacopoeia, components of the drug must be reproduced in fixed amounts to be authorized for clinical use. Results We report our studies on optimizing the fermentation process to produce teicoplanin A2 in A. teichomyceticus ATCC 31121. Robustness of the process was assessed on scales from a miniaturized deep-well microtiter system to flasks and 3-L bioreactor fermenters. The production of individual factors T-A2-1-A2-5 was modulated by adding suitable precursors to the cultivation medium. Specific production of T-A2-1, characterized by a linear C10:1 acyl moiety, is enhanced by adding methyl linoleate, trilinoleate, and crude oils such as corn and cottonseed oils. Accumulation of T-A2-3, characterized by a linear C10:0 acyl chain, is stimulated by adding methyl oleate, trioleate, and oils such as olive and lard oils. Percentages of T-A2-2, T-A2-4, and, T-A2-5 bearing the iso-C10:0, anteiso-C11:0, and iso-C11:0 acyl moieties, respectively, are significantly increased by adding precursor amino acids L-valine, L-isoleucine, and L-leucine. Along with the stimulatory effect on specific complex components, fatty acid esters, oils, and amino acids (with the exception of L-valine) inhibit total antibiotic productivity overall. By adding industrial oils to medium containing L-valine the total production is comparable, giving unusual complex compositions. Conclusions Since the cost and the quality of teicoplanin production depend mainly on the fermentation process, we developed a robust and scalable

  18. Antimicrobial susceptibility testing of aquatic bacteria: quality control disk diffusion ranges for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28 degrees C.

    PubMed

    Miller, R A; Walker, R D; Baya, A; Clemens, K; Coles, M; Hawke, J P; Henricson, B E; Hsu, H M; Mathers, J J; Oaks, J L; Papapetropoulou, M; Reimschuessel, R

    2003-09-01

    Quality control (QC) ranges for disk diffusion susceptibility testing of aquatic bacterial isolates were proposed as a result of a multilaboratory study conducted according to procedures established by the National Committee for Clinical Laboratory Standards (NCCLS). Ranges were proposed for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28 degrees C for nine different antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, gentamicin, oxolinic acid, oxytetracycline, ormetoprim-sulfadimethoxine, and trimethoprim-sulfamethoxazole). All tests were conducted on standard Mueller-Hinton agar. With >/=95% of all data points fitting within the proposed QC ranges, the results from this study comply with NCCLS guidelines and have been accepted by the NCCLS Subcommittee for Veterinary Antimicrobial Susceptibility Testing. These QC guidelines will permit greater accuracy in interpreting results and, for the first time, the ability to reliably compare susceptibility test data between aquatic animal disease diagnostic laboratories.

  19. Antimicrobial Susceptibility Testing of Aquatic Bacteria: Quality Control Disk Diffusion Ranges for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28°C

    PubMed Central

    Miller, R. A.; Walker, R. D.; Baya, A.; Clemens, K.; Coles, M.; Hawke, J. P.; Henricson, B. E.; Hsu, H. M.; Mathers, J. J.; Oaks, J. L.; Papapetropoulou, M.; Reimschuessel, R.

    2003-01-01

    Quality control (QC) ranges for disk diffusion susceptibility testing of aquatic bacterial isolates were proposed as a result of a multilaboratory study conducted according to procedures established by the National Committee for Clinical Laboratory Standards (NCCLS). Ranges were proposed for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28°C for nine different antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, gentamicin, oxolinic acid, oxytetracycline, ormetoprim-sulfadimethoxine, and trimethoprim-sulfamethoxazole). All tests were conducted on standard Mueller-Hinton agar. With ≥95% of all data points fitting within the proposed QC ranges, the results from this study comply with NCCLS guidelines and have been accepted by the NCCLS Subcommittee for Veterinary Antimicrobial Susceptibility Testing. These QC guidelines will permit greater accuracy in interpreting results and, for the first time, the ability to reliably compare susceptibility test data between aquatic animal disease diagnostic laboratories. PMID:12958263

  20. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Nair, R V; Bennett, G N; Papoutsakis, E T

    1994-01-01

    A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad. Images PMID:8300540

  1. Unexpected talaroenamine derivatives and an undescribed polyester from the fungus Talaromyces stipitatus ATCC10500.

    PubMed

    Zang, Yi; Genta-Jouve, Grégory; Sun, Tithnara Anthony; Li, Xuwen; Didier, Buisson; Mann, Stéphane; Mouray, Elisabeth; Larsen, Annette K; Escargueil, Alexandre E; Nay, Bastien; Prado, Soizic

    2015-11-01

    Chemical investigation of the fungus Talaromyces stipitatus ATCC 10500, whose genome has been sequenced, led to the isolation of four undescribed talaroenamines B-E along with the known talaroenamine A. Their structures were elucidated on the basis of spectroscopic studies including mass spectrometry, extensive 2D NMR and electronic circular dichroism (ECD). Interestingly, talaroenamine A had previously been isolated from the strain of T. stipitatus Δtrop C, a strain knocked out for the gene encoding a non-heme Fe(II)-dependent dioxygenase catalyzing the oxidative ring expansion leading to the tropolone, but never from a wild-type strain. All talaroenamines were evaluated for their antiplasmodial activity and Talaroenamine D exhibited the best inhibition against the chloroquine-resistant Plasmodium falciparum (FcB1 strain) without noticeable toxicity on HeLa and preadipose cell lines. In the course of the chemical investigation of T. stipitatus, an undescribed polyester was also isolated and its absolute configuration was determined by hydrolysis and transesterification followed by gas chromatography on chiral column.

  2. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  3. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia.

  4. Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953.

    PubMed

    Song, Eun-Kyung; Kim, Hyunjin; Sung, Hee-Kyung; Cha, Jaeho

    2002-05-29

    An extracellular levanbiohydrolase gene, levM, from Microbacterium laevaniformans ATCC 15953 was cloned and its nucleotide sequence was determined. Nucleotide sequence analysis of this gene revealed a 1863 bp open reading frame coding for a protein of 621 amino acids. The deduced amino acid sequence of the levM gene exhibited 28-47% sequence identities with levanases, levanfructotransferases, and inulinases. The LevM was overexpressed by using a T7 promoter in Escherichia coli BL21 (DE3) and purified 24-fold from culture supernatant. The molecular weight of this enzyme was 68,800 Da based on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of this enzyme for levan degradation was pH 6.0 and 30 degrees C, respectively. Thin-layer and high-performance liquid chromatography analyses proved that the enzyme produced mostly levanbiose from levan in an exo-acting manner. The recombinant enzyme also hydrolyzed inulin, 1-kestose, and nystose, indicating that the enzyme cleaves not only beta-2,6-linkage of levan but also beta-2,1-linkage of fructooligosaccharides. This is the first report on a gene encoding a levanbiohydrolase that produces levanbiose as a major degradation product.

  5. Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642.

    PubMed

    Miyazaki, Takatsugu; Matsumoto, Yuji; Matsuda, Kana; Kurakata, Yuma; Matsuo, Ichiro; Ito, Yukishige; Nishikawa, Atsushi; Tonozuka, Takashi

    2011-12-01

    A gene for processing α-glucosidase I from a filamentous fungus, Aspergillus brasiliensis (formerly called Aspergillus niger) ATCC 9642 was cloned and fused to a glutathione S-transferase tag. The active construct with the highest production level was a truncation mutant deleting the first 16 residues of the hydrophobic N-terminal domain. This fusion enzyme hydrolyzed pyridylaminated (PA-) oligosaccharides Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA and the products were identified as Glc(2)Man(9)GlcNAc(2)-PA and Glc(2)Man(4)-PA, respectively. Saturation curves were obtained for both Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA, and the K (m) values for both substrates were estimated in the micromolar range. When 1 μM Glc(3)Man(4)-PA was used as a substrate, the inhibitors kojibiose and 1-deoxynojirimycin had similar effects on the enzyme; at 20 μM concentration, both inhibitors reduced activity by 50%.

  6. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  7. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses.

    PubMed

    Ai, Hongxia; Liu, Min; Yu, Pingru; Zhang, Shaozhi; Suo, Yukai; Luo, Ping; Li, Shuang; Wang, Jufang

    2015-09-20

    Welan gum production by Alcaligenes sp. ATCC31555 from cane molasses was studied in batch fermentation to reduce production costs and enhance gum production. The pretreatment of cane molasses, agitation speed and the addition of supplements were investigated to optimize the process. Sulfuric acid hydrolysis was found to be the optimal pretreatment, resulting in a maximum gum concentration of 33.5 g/L, which is 50.0% higher than those obtained from the molasses' mother liquor. Agitation at 600 rpm at 30°C and addition of 10% n-dodecane following fermentation for 36 h increased the maximum gum production up to 41.0 ± 1.41 g/L, which is 49.1% higher than the greatest welan gum concentration in the literature so far. The welan gum product showed an acceptable molecular weight, similar rheological properties and better thermal stability to that obtained from glucose. These results indicate that cane molasses may be a suitable and inexpensive substrate for cost-effective industrial-scale welan gum production.

  8. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; Nielsen, S. S.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.

  9. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  10. Production of Surfactant from Bacillus subtilis ATCC 21332 using Potato substrates

    SciTech Connect

    Fox, Sandra Lynn; Bala, Greg Alan

    2000-12-01

    Surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis is known to reduce the surface tension of water from 72 to 27 mN/m. Potato substrates were evaluated as a carbon source for surfactant production by B. subtilis ATCC 21332. An established potato medium, simulated liquid and solid potato waste media, and a commercially prepared potato starch in a mineral salts medium were evaluated in shake flask experiments to verify growth, surface tension reduction, and carbohydrate reduction capabilities. Total carbohydrate assays and glucose monitoring indicated that B. subtilis was able to degrade potato substrates to produce surfactant. Surface tensions dropped from 71.3±0.1 to 28.3±0.3 mN/m (simulated solid potato medium) and to 27.5±0.3 mN/m (mineral salts medium). A critical micelle concentration (CMC) of 0.10 g/l was obtained from a methylene chloride extract of the simulated solid potato medium.

  11. Immunobiological activities of a porin fraction isolated from Fusobacterium nucleatum ATCC 10953.

    PubMed Central

    Takada, H; Ogawa, T; Yoshimura, F; Otsuka, K; Kokeguchi, S; Kato, K; Umemoto, T; Kotani, S

    1988-01-01

    From Fusobacterium nucleatum ATCC 10953 cell envelope fraction whose inner membranes had been removed by treatment with sodium N-lauroyl sarcosinate, an outer membrane protein (37,000 Mr in a native state) was prepared by extraction with lithium dodecyl sulfate. The protein thus obtained showed distinct porin activity, namely, the ability to form hydrophilic diffusion pores by incorporation into the artificial liposome membrane. The porin fraction exhibited strong immunobiological activities in the in vitro assays: B-cell mitogenicity and polyclonal B-cell activation on murine splenocytes, stimulatory effects on guinea pig peritoneal macrophages, and enhancement of the migration of human blood monocytes. The porin fraction also exhibited immunoadjuvant activity to increase the antibody production against sheep erythrocytes in the spleen of mice that were immunized by sheep erythrocytes with porin. Although chemical analyses revealed that the test porin fraction contained a considerable amount of lipopolysaccharide (LPS) (around 12% of the fraction), the studies with LPS-nonresponding C3H/HeJ mice and on the inhibitory effects of polymyxin B strongly suggest that most of the above bioactivities are due to porin protein itself, not to coexistent LPS in the porin fraction. Images PMID:2831155

  12. Influence of commercial sanitizers on lipopolysaccharide production by Salmonella Enteritidis ATCC 13076.

    PubMed

    Venter, P; Abraham, M; Lues, J F R; Ivanov, I

    2006-12-01

    The effect of typical sanitizers on the composition and toxicity of lipopolysaccharides (LPSs) produced by Salmonella Enteritidis ATCC 13076 was analyzed. Salmonella Enteritidis was propagated up to the late exponential phase in the presence of commercial sanitizing solutions. LPS was extracted and derivatized with trifluoroacetylation, and gas chromatography-mass spectrometry analysis and the chromogenic Limulus amoebocyte lysate assay were used to assess the ultrastructure and toxicity of the LPS. The viability and debris formation during growth were evaluated to verify the bactericidal and bacteriostatic effects of the sanitizers and to assess sanitizer effects on LPS formation. The LPSs produced were quantified at 1.7 x 10(4), 1.2 x 10(4), 3.6 x 10(3), and 9.6 x 10(4) [KDO] x OD(620nm)(-1) for the controls and the organisms grown in the presence of a chlorinated sanitizer, a heavy-duty alkaline cleaner, and a phenolic hand wash solution, respectively. In response to these treatments, the short-chain polysaccharide fractions of the LPSs in the Salmonella Enteritidis cells increased. This finding suggests that this organism increases the low-molecular-weight fraction of the LPS in relation to the high-molecular-weight fraction to survive these unfavorable conditions. The cumulative change in the LPS in response to the sanitizers influenced the toxicity of the LPS; however, this change could not be related to an individual compound within any of the assessed fractions.

  13. Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products.

    PubMed

    Probst, Kyle V; Vadlani, Praveen V

    2015-12-01

    Single cell oil (SCO) is a valuable noncrop-based renewable oil source. Hemicellulose derived sugars can be utilized to produce SCO using the oleaginous yeast Lipomyces starkeyi ATCC 56304. Bran by-products were tested as hemicellulose-rich feedstocks for the production of SCO. Whole and destarched corn and wheat bran hydrolysates were produced using hydrothermal and dilute sulfuric acid (0%, 0.5%, 1.0%, v/v) pretreatment along with enzymatic hydrolysis. Whole bran hydrolysates produced from hydrothermal pretreatment generated the highest average oil yields of 126.7 and 124.3 mg oil/g sugar for both wheat and corn bran, respectively. 1.0% acid pretreatment was effective for the destarched bran generating a hemicellulose hydrolysis efficiency of 94% and 84% for wheat and corn bran, respectively, resulting in the highest oil yield of 70.7 mg oil/g sugar. The results indicate pretreated corn and wheat bran hydrolysates can serve as viable feedstocks for oleaginous yeast SCO bioconversion.

  14. Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; McKeehen, J. D.; Stephens, S. D.; Nielsen, S. S.; Saha, P. R.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Compositional analyses of Cyanothece sp. strain ATCC 51142 showed high protein (50-60%) and low fat (0.4-1%) content, and the ability to synthesize vitamin B12. The amino acid profile indicated that Cyanothece sp. was a balanced protein source. Fatty acids of the 18:3n-3 type were also present. Mineral analyses indicated that the cellular biomass may be a good source of Fe, Zn and Na. Caloric content was 4.5 to 5.1 kcal g dry weight-1 and the carbon content was approximately 40% on a dry weight basis. Nitrogen content was 8 to 9% on a dry weight basis and total nucleic acids were 1.3% on a dry weight basis. Short-term feeding studies in rats followed by histopathology found no toxicity or dietary incompatibility problems. The level of uric acid and allantoin in urine and tissues was low, suggesting no excess of nucleic acids, as sometimes reported in the past for a cyanobacteria-containing diet. The current work discusses the potential implications of these results for human nutrition applications.

  15. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.

    PubMed

    Meyer, Daniel Derrossi; Andrino, Felipe Gabriel; Possedente de Lira, Simone; Fornaro, Adalgiza; Corção, Gertrudes; Brandelli, Adriano

    2016-01-01

    One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.

  16. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  17. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Choi, Sung Jun; Im, Jung Ae; Song, Hyohak; Cho, Jung Hee; Seung, Do Young; Papoutsakis, E. Terry; Bennett, George N.

    2012-01-01

    Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h. PMID:22210214

  18. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    McDermott, Jason E; Oehmen, Christopher S; McCue, Lee Ann; Hill, Eric; Choi, Daniel M; Stöckel, Jana; Liberton, Michelle; Pakrasi, Himadri B; Sherman, Louis A

    2011-08-01

    Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC 51142 is an excellent candidate for such systems biology studies because: (i) it displays tight functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for bioenergy production and carbon sequestration. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in this organism. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a significant advance in the understanding of gene regulation in this important organism.

  19. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.

    PubMed

    Rojas-Rosas, Oscar; Villafaña-Rojas, Juan; López-Dellamary, Fernando A; Nungaray-Arellano, Jesús; González-Reynoso, Orfil

    2007-07-01

    The production and characterization of polyhydroxyalkanoic acids (PHAs) from glucose in Pseudomonas aeruginosa ATCC 9027 is described. We determined that the synthesis of PHAs was not due to a complete lack of nitrogen source, as previously reported for other microorganisms. The synthesis of PHAs was observed during exponential growth and it depended on the carbon/nitrogen ratio in the culture. More significantly, the specific PHA accumulation rate in this phase was higher than that observed in the storage phase. This phenomenon was a consequence of higher extracellular production rates of gluconate and 2-ketogluconate detected during the storage phase. Therefore, the production of those acids decreased the synthesis of PHAs in P. aeruginosa. The maximum percentage of PHA accumulation obtained was 10.8% of the cell dry matter when all the glucose was consumed. The monomer composition of this PHA consisted only of saturated 3-hydroxy fatty acids (octanoic, decanoic, and dodecanoic acids) as shown by gas chromatography - mass spectroscopy and nuclear magnetic resonance analyses, where 3-hydroxydecanoic acid was the main component because of the high affinity of its PhaC synthase for this monomer. The physical properties of this PHA were determined by differential scanning calorimetry and gel permeation chromatography.

  20. Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae.

    PubMed

    Brzuszkiewicz, Elzbieta; Schulz, Tino; Rydzewski, Kerstin; Daniel, Rolf; Gillmaier, Nadine; Dittmann, Christine; Holland, Gudrun; Schunder, Eva; Lautner, Monika; Eisenreich, Wolfgang; Lück, Christian; Heuner, Klaus

    2013-12-01

    Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.

  1. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637.

    PubMed

    Szabados, Florian; Kleine, Britta; Anders, Agnes; Kaase, Martin; Sakinç, Türkân; Schmitz, Inge; Gatermann, Sören

    2008-08-01

    Invasion of bacteria into nonphagocytic host cells is an important pathogenicity factor for escaping the host defence system. Gram-positive organisms, for example Staphylococcus aureus and Listeria monocytogenes, are invasive in nonphagocytic cells, and this mechanism is discussed as an important part of the infection process. Uropathogenic Escherichia coli and Staphylococcus saprophyticus can cause acute and recurrent urinary tract infections as well as bloodstream infections. Staphylococcus saprophyticus shows strong adhesion to human urinary bladder carcinoma and Hep2 cells and expresses the 'Microbial Surface Components Recognizing Adhesive Matrix molecule' (MSCRAMM)-protein SdrI with collagen-binding activity. MSCRAMMs are responsible for adhesion and collagen binding in S. aureus and are discussed as an important pathogenicity factor for invasion. To investigate internalization in S. aureus, several fluorescence activated cell sorting (FACS) assays have been described recently. We used a previously described FACS assay, with slight modifications, in addition to an antibiotic protection assay and transmission electron microscopy to show that S. saprophyticus ATCC 15305 and the wild-type strain 7108 were internalized into the human urinary bladder carcinoma cell line 5637. The discovery of the internalization of S. saprophyticus may be an important step for understanding the pathogenicity of recurrent infections caused by this organism.

  2. Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472.

    PubMed

    Azevedo, Juliana Simão Nina de; Silva-Rocha, Rafael; Silva, Artur; Peixe Carepo, Marta Sofia; Cruz Schneider, Maria Paula

    2008-02-01

    Chromobacterium violaceum ATCC 12472 presents an arsRCB-type operon, which is involved in arsenic resistance. The regulating protein of this resistance system (ArsR) does not have the small conserved site (ELCVDCL) to link to the metalloid, as observed in Escherichia coli, and is thus considered to be an atypical ArsR protein, like that observed in Acidithiobacillus ferrooxidans. In the present study, the gene expression profile of the ars operon under induction at different concentrations of arsenite - As(III) - was obtained via real-time PCR (TaqMan), by correlating the threshold cycle (Ct) values of induced and uninduced (control) samples. Through linear regression analysis (R2 = 0.9926), the gene expression profile of the ars operon showed clearly that the 0.125 micromol/L concentration of As(III) was sufficient to provoke a 4-fold increase in the resistance system, and a further increase in concentration resulted in an increase of up to 53-fold in transcription rates. The relation between resistance and induction of the ars operon indicates that the increased resistance to As(III) is associated with the increase in the number of transcripts.

  3. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein.

    PubMed Central

    Rattray, F P; Fox, P F; Healy, A

    1996-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and either Gln-172-Tyr-173 or Phe-23-Phe-24 were the first, second, and third bonds cleaved, respectively. Other cleavage sites included Asn-19-Leu-20, Phe-32-Gly-33, Tyr-104-Lys-105, Leu-142-Ala-143, Phe-150-Arg-151, Gln-152-Phe-153, Leu-169-Gly-170, and Thr-171-Gln-172. The proteinase had a broad specificity for the amino acid residues at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions. PMID:8593051

  4. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein.

    PubMed Central

    Rattray, F P; Fox, P F; Healy, A

    1997-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The major sites of hydrolysis were Ser-18-Ser-19, Glu-20-Glu-21, Gln-56-Ser-57, Gln-72-Asn-73, Leu-77-Thr-78, Ala-101-Met-102, Phe-119-Thr-120, Leu-139-Leu-140, Ser-142-Trp-143, His-145-Gln-146, Gln-167-Ser-168, Gln-175-Lys-176, Tyr-180-Pro-181, and Phe-190-Leu-191. The proteinase had a broad specificity for the amino acid residues present at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions. PMID:9172371

  5. Listeria ivanovii ATCC 19119 strain behaviour is modulated by iron and acid stress.

    PubMed

    Longhi, Catia; Ammendolia, Maria Grazia; Conte, Maria Pia; Seganti, Lucilla; Iosi, Francesca; Superti, Fabiana

    2014-09-01

    It has been suggested that the rarity of human listeriosis due to Listeria ivanovii reflects not only host tropism factors but also the rare occurrence of this species in the environment, compared with Listeria monocytogenes. In the present study we evaluate the effects on the reference strain L. ivanovii ATCC 19119 behaviour of two combined stresses, low iron availability and acid environment, that bacteria can encounter in the passage from saprophytic life to the host. In these conditions, L. ivanovii evidenced a different behaviour compared to L. monocytogenes exposed to similar conditions. L. ivanovii was not able to mount an acid tolerance response (ATR) even if, upon entry into the stationary phase in iron-loaded medium, growth phase-dependent acid resistance (AR) was evidenced. Moreover, bacteria grown in iron excess and acidic pH showed the higher invasion value in Caco-2 cells, even though it was not able to efficiently multiply. On the contrary, low iron and acidic conditions improved invasion ability in amniotic WISH cells.

  6. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  7. Expression pattern of recombinant organophosphorus hydrolase from Flavobacterium sp. ATCC 27551 in Escherichia coli.

    PubMed

    Kwak, Yunyoung; Rhee, In-Koo; Shin, Jae-Ho

    2013-09-01

    Concerned with the influence of tagging system on the expression of heterogeneous protein in Escherichia coli, we attempted to express the organophosphorus hydrolase (OPH) of Flavobacterium sp. ATCC 27551 in E. coli. Recombinant OPH was overproduced successfully in E. coli when modified without the use of a tobacco etch virus (TEV) protease cleavage sequence. In addition, though there has never been a report on the extracellular secretion of recombinant OPH harboring native Tat signal peptides in E. coli, the produced protein was observed to be secreted extracellularly. Through the use of reverse transcriptional quantitative real-time PCR and comparison of the predicted folding rate, it was determined that OPH expression may be affected by the existence of a TEV protease cleavage sequence at the C-terminus during the process of translated protein folding, leading to the suppressed OPH activity. With the potential compatibility between native Tat signal peptides of OPH and E. coli Tat pathway secretion system, we report a successful expression of recombinant OPH harboring native Tat signal peptides in E. coli, for the first time.

  8. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.

    PubMed

    Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika

    2017-03-16

    Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.

  9. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    NASA Technical Reports Server (NTRS)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  10. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759.

    PubMed

    Zhu, Chengjun; Nomura, Christopher T; Perrotta, Joseph A; Stipanovic, Arthur J; Nakas, James P

    2010-01-01

    Glycerol, a byproduct of the biodiesel industry, can be used by bacteria as an inexpensive carbon source for the production of value-added biodegradable polyhydroxyalkanoates (PHAs). Burkholderia cepacia ATCC 17759 synthesized poly-3-hydroxybutyrate (PHB) from glycerol concentrations ranging from 3% to 9% (v/v). Increasing the glycerol concentration results in a gradual reduction of biomass, PHA yield, and molecular mass (M(n) and M(w)) of PHB. The molecular mass of PHB produced utilizing xylose as a carbon source is also decreased by the addition of glycerol as a secondary carbon source dependent on the time and concentration of the addition. (1)H-NMR revealed that molecular masses decreased due to the esterification of glycerol with PHB resulting in chain termination (end-capping). However, melting temperature and glass transition temperature of the end-capped polymers showed no significant difference when compared to the xylose-based PHB. The fermentation was successfully scaled up to 200 L for PHB production and the yield of dry biomass and PHB were 23.6 g/L and 7.4 g/L, respectively.

  11. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein.

    PubMed

    Rattray, F P; Fox, P F; Healy, A

    1997-06-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The major sites of hydrolysis were Ser-18-Ser-19, Glu-20-Glu-21, Gln-56-Ser-57, Gln-72-Asn-73, Leu-77-Thr-78, Ala-101-Met-102, Phe-119-Thr-120, Leu-139-Leu-140, Ser-142-Trp-143, His-145-Gln-146, Gln-167-Ser-168, Gln-175-Lys-176, Tyr-180-Pro-181, and Phe-190-Leu-191. The proteinase had a broad specificity for the amino acid residues present at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions.

  12. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein.

    PubMed

    Rattray, F P; Fox, P F; Healy, A

    1996-02-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and either Gln-172-Tyr-173 or Phe-23-Phe-24 were the first, second, and third bonds cleaved, respectively. Other cleavage sites included Asn-19-Leu-20, Phe-32-Gly-33, Tyr-104-Lys-105, Leu-142-Ala-143, Phe-150-Arg-151, Gln-152-Phe-153, Leu-169-Gly-170, and Thr-171-Gln-172. The proteinase had a broad specificity for the amino acid residues at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions.

  13. Biosurfactant production by cultivation of Bacillus atrophaeus ATCC 9372 in semidefined glucose/casein-based media.

    PubMed

    das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Penna, Thereza Christina Vessoni; Converti, Attilio

    2007-04-01

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35 degrees C for 24 h on glucose-and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B(max)=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  14. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551

    SciTech Connect

    Khajamohiddin, Syed; Babu, Pakala Suresh; Chakka, Deviprasanna; Merrick, Mike; Bhaduri, Anirban; Sowdhamini, Ramanathan; Siddavattam, Dayananda . E-mail: sdsl@uohyd.ernet.in

    2006-12-22

    The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.

  15. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  16. Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245.

    PubMed

    Norouzian, D; Farhangi, A; Tolooei, S; Saffari, Z; Mehrabi, M R; Chiani, M; Ghassemi, S; Farahnak, M; Akbarzadeh, A

    2011-08-01

    Bacterial Celluloses (BC) are gaining importance in research and commerce due to numerous factors affecting the bacterial cellulose characteristics and application in different industries. The aim of the present study was to produce bacterial cellulose in different media using different cultivation vessels. Bacterial cellulose was produced by static cultivation of Glucanacetobacter xylinum ATCC 10245 in different culture media such as Brain Heart Agar, Luria Bertani Agar /Broth, Brain Heart Infusion, Hestrin-Schramm and medium no. 125. Cultivation of bacterium was conducted in various culture vessels with different surface area. The cellulose membrane was treated and purified with a 0.1 M NaOH solution at 90 degreesC for 30 min and dried by a freeze- drier at -40 degreesC to obtain BC. The prepared bacterial cellulose was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). The amount of produced BC was related directly to the surface area of culture vessels.

  17. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975.

    PubMed Central

    Song, D D; Jacques, N A

    1999-01-01

    The site-directed mutated fructosyltransferases (Ftfs) of Streptococcus salivarius ATCC 25975, D312E, D312S, D312N and D312K were all active at 37 degrees C, indicating that Asp-312 present in the 'sucrose box' was not the nucleophilic Asp residue responsible for the formation of a covalent fructosyl-enzyme intermediate required for enzyme activity. Analysis of the kinetic constants of the purified mutated forms of the enzyme showed that Asp-312 was most likely an essential amino acid involved in determining acceptor recognition and/or stabilizing a beta-turn in the protein. In contrast, when the Asp-397 of the Ftf present in the conserved triplet RDP motif of all 60 bacterial and plant family-32 glycosylhydrolases was mutated to a Ser residue, both sucrose hydrolysis and polymerization ceased. Tryptophan emission spectra confirmed that this mutation did not alter protein structure. Comparison of published data from other site-directed mutated enzymes implicated the Asp residue in the RDP motif as the one that may form a transient covalent fructosyl intermediate during the catalysis of sucrose by the Ftf of S. salivarius. PMID:10548559

  18. Genome Sequence Alterations Detected upon Passage of Burkholderia mallei ATCC 23344 in Culture and in Mammalian Hosts

    DTIC Science & Technology

    2006-09-05

    genome sequence of B. mallei ATCC 23344: nine in the laboratory culture passaged isolate, eight in the mouse spleen isolate, eight in the horse lung...mouse spleen isolate and 8 in the lab culture and indels 3 in the human liver isolate and 3 in the human blood isolate, were different. Intergenic...8 CTGTCGTG 21 22 no no BMAA0376 Transporter 9 GTGCGAT 19 20 no no BMAA1878 Transcriptional regulator Mouse Spleen 1 GAGGCGT 26 25 no no BMA2774

  19. Draft Genome Sequence of Escherichia coli O157:H7 ATCC 35150 and a Nalidixic Acid-Resistant Mutant Derivative

    PubMed Central

    Markell, James A.; Koziol, Adam G.

    2015-01-01

    Shiga toxin-producing Escherichia coli strains, occasionally isolated from food, are of public health importance. Here, we report on the 5.30-Mbp draft genome sequence of E. coli O157:H7 EDL931 (strain ATCC 35150) and the 5.32-Mbp draft genome sequence of a nalidixic acid-resistant mutant derivative used as a distinguishable control strain in food-testing laboratories. PMID:26205873

  20. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  1. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.

    PubMed

    Harper, L L; McDaniel, C S; Miller, C E; Wild, J R

    1988-10-01

    The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.

  2. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.

    PubMed Central

    Harper, L L; McDaniel, C S; Miller, C E; Wild, J R

    1988-01-01

    The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources. Images PMID:3202637

  3. Characterization of Streptomyces venezuelae ATCC 10595 rRNA gene clusters and cloning of rrnA.

    PubMed Central

    La Farina, M; Stira, S; Mancuso, R; Grisanti, C

    1996-01-01

    Streptomyces venezuelae ATCC 10595 harbors seven rRNA gene clusters which can be distinguished by BglII digestion. The three rRNA genes present in each set are closely linked with the general structure 16S-23S-5S. We cloned rrnA and sequenced the 16S-23S spacer region and the region downstream of the 5S rRNA gene. No tRNA gene was found in these regions. PMID:8631730

  4. Salmonella Typhimurium Strain ATCC14028 Requires H2-Hydrogenases for Growth in the Gut, but Not at Systemic Sites

    PubMed Central

    Maier, Lisa; Barthel, Manja; Stecher, Bärbel; Maier, Robert J.; Gunn, John S.; Hardt, Wolf-Dietrich

    2014-01-01

    Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization. PMID:25303479

  5. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    PubMed Central

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  6. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  7. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.

  8. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.

    PubMed

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2014-05-16

    The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.

  9. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid.

    PubMed

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source.

  10. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella.

    PubMed

    Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.

  11. The two-component system CBO2306/CBO2307 is important for cold adaptation of Clostridium botulinum ATCC 3502.

    PubMed

    Derman, Yağmur; Isokallio, Marita; Lindström, Miia; Korkeala, Hannu

    2013-10-01

    Clostridium botulinum is a notorious foodborne pathogen. Its ability to adapt to and grow at low temperatures is of interest for food safety. Two-component systems (TCSs) have been reported to be involved in cold-shock and growth at low temperatures. Here we show the importance of TCS CBO2306/CBO2307 in the cold-shock response of C. botulinum ATCC 3502. The relative expression levels of the cbo2306 and cbo2307 were up to 4.4-fold induced in the cold-shocked cultures but negatively regulated in the late-log and stationary growth phase in relation to early logarithmic growth phase in non-shocked cultures. Importance of the CBO2306/CBO2307 in the cold stress was further demonstrated by impaired growth of insertional cbo2306 or cbo2307 knockout mutants in relation to the wild-type strain ATCC 3502. The results suggest that the TCS CBO2306/CBO2307 is important for cold-shock response and adaptation of C. botulinum ATCC 3502 to low temperature.

  12. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    PubMed Central

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole‐genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio‐Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high‐efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4‐fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  13. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.

    PubMed

    Hoogewerf, Arlene J; Dyk, Lisa A Van; Buit, Tyler S; Roukema, David; Resseguie, Emily; Plaisier, Christina; Le, Nga; Heeringa, Lee; Griend, Douglas A Vander

    2015-02-01

    Sequencing of a cadmium resistance operon from a Staphylococcus aureus ATCC12600 plasmid revealed that it is identical to a cadCA operon found in MRSA strains. Compared to plasmid-cured and cadC-mutant strains, cadC-positive ATCC12600 cells had increased resistance to cadmium (1 mg ml(-1) cadmium sulfate) and zinc (4 mg ml(-1) zinc sulfate), but not to other metal ions. After growth in media containing 20 µg ml(-1) cadmium sulfate, cadC-mutant cells contained more intracellular cadmium than cadC-positive ATCC12600 cells, suggesting that cadC absence results in impaired cadmium efflux. Electrophoretic mobility shift assays were performed with CadC proteins encoded by the S. aureus ATCC12600 plasmid and by the cadC gene of pI258, which is known to act as a transcriptional repressor and shares only 47% protein sequence identity with ATCC12600 CadC. Mobility shifts occurred when pI258 CadC protein was incubated with the promoter DNA-regions from the pI258 and S. aureus ATCC12600 cadCA operons, but did not occur with S. aureus ATCC12600 CadC protein, indicating that the ATCC12600 CadC protein does not interact with promoter region DNA. This cadCA operon, found in MRSA strains and previously functionally uncharacterized, increases resistance to cadmium and zinc by an efflux mechanism, and CadC does not function as a transcriptional repressor.

  14. Sensitive and specific modified Hodge test for KPC and metallo-beta- lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603.

    PubMed

    Pasteran, Fernando; Veliz, Omar; Rapoport, Melina; Guerriero, Leonor; Corso, Alejandra

    2011-12-01

    We evaluated the ability of the modified Hodge test to discriminate between KPC- and metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa isolates and carbapenemase nonproducers. With Escherichia coli ATCC 25922 as the indicator strain, the MHT resulted in low sensitivity, specificity, and repeatability. Replacing the indicator strain with Klebsiella pneumoniae ATCC 700603 led to an improved performance (100%, 97%, 0%, and 100% sensitivity, specificity, indeterminate results and repeatability, respectively).

  15. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec.

  16. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    PubMed

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  17. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se(4+)∙L(-1)) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis,irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.(-1)) was obtained after a 48-h culture in media containing 30 mg Se(4+)∙L(-1). The highest content of selenomethionine (238.8 μg∙gd.w.(-1)) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se(4+)∙L(-1). Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L(-1). The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  18. Cronobacter sakazakii ATCC 29544 Autoaggregation Requires FliC Flagellation, Not Motility

    PubMed Central

    Hoeflinger, Jennifer L.; Miller, Michael J.

    2017-01-01

    Cronobacter sakazakii is an opportunistic nosocomial and foodborne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. Little is known about the pathogenesis mechanism of this pathogen and if there are any consequences of C. sakazakii colonization in healthy individuals. In this study, we characterized the mechanisms of autoaggregation in C. sakazakii ATCC 29544 (CS29544). Autoaggregation in CS29544 occurred rapidly, within 30 min, and proceeded to a maximum of 70%. Frameshift mutations in two flagellum proteins (FlhA and FliG) were identified in two nonautoaggregating CS29544 clonal variant isolates. Strategic gene knockouts were generated to determine if structurally intact and functional flagella were required for autoaggregation in CS29544. All structural knockouts (ΔflhA, ΔfliG, and ΔfliC) abolished autoaggregation, whereas the functional knockout (ΔmotAB) did not prevent autoaggregation. Complementation with FliC (ΔfliC/cfliC) restored autoaggregation. Autoaggregation was also disrupted by the addition of exogenous wild-type CS29544 filaments in a dose-dependent manner. Finally, filament supercoils tethering neighboring wild-type CS29544 cells together were observed by transmission electron microscopy. In silico analyses suggest that direct interactions of neighboring CS29544 FliC filaments proceed by hydrophobic bonding between the externally exposed hypervariable regions of the CS29544 FliC flagellin protein. Further research is needed to confirm if flagella-mediated autoaggregation plays a prominent role in C. sakazakii pathogenesis. PMID:28293226

  19. Physiological and Transcriptional Response of Lactobacillus casei ATCC 334 to Acid Stress▿ †§

    PubMed Central

    Broadbent, Jeff R.; Larsen, Rebecca L.; Deibel, Virginia; Steele, James L.

    2010-01-01

    This study investigated features of the acid tolerance response (ATR) in Lactobacillus casei ATCC 334. To optimize ATR induction, cells were acid adapted for 10 or 20 min at different pH values (range, 3.0 to 5.0) and then acid challenged at pH 2.0. Adaptation over a broad range of pHs improved acid tolerance, but the highest survival was noted in cells acid adapted for 10 or 20 min at pH 4.5. Analysis of cytoplasmic membrane fatty acids (CMFAs) in acid-adapted cells showed that they had significantly (P < 0.05) higher total percentages of saturated and cyclopropane fatty acids than did control cells. Specifically, large increases in the percentages of C14:0, C16:1n(9), C16:0, and C19:0(11c) were noted in the CMFAs of acid-adapted and acid-adapted, acid-challenged cells, while C18:1n(9) and C18:1n(11) showed the greatest decrease. Comparison of the transcriptome from control cells (grown at pH 6.0) against that from cells acid adapted for 20 min at pH 4.5 indicated that acid adaption invoked a stringent-type response that was accompanied by other functions which likely helped these cells resist acid damage, including malolactic fermentation and intracellular accumulation of His. Validation of microarray data was provided by experiments that showed that L. casei survival at pH 2.5 was improved at least 100-fold by chemical induction of the stringent response or by the addition of 30 mM malate or 30 mM histidine to the acid challenge medium. To our knowledge, this is the first report that intracellular histidine accumulation may be involved in bacterial acid resistance. PMID:20207759

  20. Genome Sequence and Analysis of the Oral Bacterium Fusobacterium nucleatum Strain ATCC 25586

    PubMed Central

    Kapatral, Vinayak; Anderson, Iain; Ivanova, Natalia; Reznik, Gary; Los, Tamara; Lykidis, Athanasios; Bhattacharyya, Anamitra; Bartman, Allen; Gardner, Warren; Grechkin, Galina; Zhu, Lihua; Vasieva, Olga; Chu, Lien; Kogan, Yakov; Chaga, Oleg; Goltsman, Eugene; Bernal, Axel; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    We present a complete DNA sequence and metabolic analysis of the dominant oral bacterium Fusobacterium nucleatum. Although not considered a major dental pathogen on its own, this anaerobe facilitates the aggregation and establishment of several other species including the dental pathogens Porphyromonas gingivalis and Bacteroides forsythus. The F. nucleatum strain ATCC 25586 genome was assembled from shotgun sequences and analyzed using the ERGO bioinformatics suite (http://www.integratedgenomics.com). The genome contains 2.17 Mb encoding 2,067 open reading frames, organized on a single circular chromosome with 27% GC content. Despite its taxonomic position among the gram-negative bacteria, several features of its core metabolism are similar to that of gram-positive Clostridium spp., Enterococcus spp., and Lactococcus spp. The genome analysis has revealed several key aspects of the pathways of organic acid, amino acid, carbohydrate, and lipid metabolism. Nine very-high-molecular-weight outer membrane proteins are predicted from the sequence, none of which has been reported in the literature. More than 137 transporters for the uptake of a variety of substrates such as peptides, sugars, metal ions, and cofactors have been identified. Biosynthetic pathways exist for only three amino acids: glutamate, aspartate, and asparagine. The remaining amino acids are imported as such or as di- or oligopeptides that are subsequently degraded in the cytoplasm. A principal source of energy appears to be the fermentation of glutamate to butyrate. Additionally, desulfuration of cysteine and methionine yields ammonia, H2S, methyl mercaptan, and butyrate, which are capable of arresting fibroblast growth, thus preventing wound healing and aiding penetration of the gingival epithelium. The metabolic capabilities of F. nucleatum revealed by its genome are therefore consistent with its specialized niche in the mouth. PMID:11889109

  1. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  2. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707†

    PubMed Central

    Klotz, Martin G.; Arp, Daniel J.; Chain, Patrick S. G.; El-Sheikh, Amal F.; Hauser, Loren J.; Hommes, Norman G.; Larimer, Frank W.; Malfatti, Stephanie A.; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa M.; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type). PMID:16957257

  3. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states

    PubMed Central

    Sánchez, MC.; Ribeiro-Vidal, H.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz, M.

    2017-01-01

    Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression. PMID:28369099

  4. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  5. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  6. Cloning, expression and characterization of D-aminoacylase from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173.

    PubMed

    Wang, Wei; Xi, Huange; Bi, Qirui; Hu, Ying; Zhang, Yang; Ni, Mengxiang

    2013-07-19

    D-Aminoacylase catalyzes the conversion of N-acyl-D-amino acids to d-amino acids and fatty acids. The aim of this study was to identify the D-aminoacylase gene from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173 and investigate the biochemical characterization of the enzyme. A previously uncharacterized D-aminoacylase gene (ADdan) from this organism was cloned and sequenced. The open reading frame (ORF) of ADdan was 1467 bp in size encoding a 488-amino acid polypeptide. ADdan, with a high amino acid similarity to N-acyl-D-aspartate amidohydrolase from Alcaligenes A6, showed relatively low sequence similarities to other characterized D-aminoacylases. The recombinant ADdan protein was expressed in Escherichia coli BL21 (DE3) using pET-28a with a T7 promoter. The enzyme was purified in a single chromatographic step using nickel affinity gel column. The molecular mass of the expressed protein, calculated by SDS-PAGE, was about 52 kDa. The purified ADdan showed optimal activity at pH 8.0 and 50°C, and was stable at pH 6.0-8.0 and up to 45°C. Its activity was inhibited by Cu(2+), Fe(2+), Ca(2+), Mn(2+), Ni(2+), Zn(2+) and Hg(2+), whereas Mg(2+) had no significant influence on this recombinant D-aminoacylase. This is the first report on the characterization of D-aminoacylase with activity towards both N-acyl derivatives of neutral D-amino acids and N-acyl-D-aspartate. The characteristics of ADdan could prove to be of interest in industrial production of D-amino acids.

  7. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  8. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    PubMed

    Boruta, Tomasz; Bizukojc, Marcin

    2016-04-01

    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis.

  9. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  10. Zinc and Arsenic Immobilization and Magnetite Formation Upon Maghemite Reduction by Shewanella putrefaciens ATCC 8071

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Ona-Nguema, G.; Bonnin, D.; Menguy, N.; Brown, G. E.

    2007-12-01

    Dissimilatory reduction of ferric iron oxides is recognized as an important component of the iron biogeochemical cycle, causing the dissolution of iron oxide minerals and the possible formation of Fe(II)-bearing minerals such as magnetite, green rusts, siderite, etc. These mineralogical transformations affect the mobility of surface- associated toxic metal(loid)s, which may be released into solution, adsorbed, or incorporated into newly formed minerals. Maghemite (γ-Fe2O3) is an iron oxide mineral that is found in certain tropical soils and as isolated deposits in more temperate regions. In these settings, maghemite may play an important role in the biogeochemical cycling of iron and of surface-associated trace metal(loids). However, the reduction of maghemite by iron-respiring bacteria, the impact of reductive dissolution on the release of associated contaminants, and the nature of biogenic Fe(II)-containing reaction products are not well documented. In the present study, we incubated samples of pure maghemite and As(V)- and Zn-adsorbed maghemite with an iron reducing bacterium, Shewanella putrefaciens strain ATCC 8071, in a batch system under anoxic conditions. As a result of Fe(III) bioreduction, all mineral suspensions turned from brown to black during the first hour of incubation, indicating the onset of magnetite formation. The presence of this mineral was confirmed by transmission Mössbauer spectroscopy at room temperature, which showed the formation of an almost stoichiometric magnetite. High-resolution transmission electron microscopy images indicate that the parent maghemite and the biogenic magnetite particles are octahedral in shape and of similar size (5 to 20 nm). The presence of 50 mg/L adsorbed Zn(II) did not affect the initial rate of iron reduction with respect to the Zn-free maghemite sample (0.62 mM Fe(II)/h and 0.66 mM Fe(II)/h, respectively). However, adsorption of 50 and 100 mg/L As(V) on maghemite decreased the initial iron reduction rate

  11. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    PubMed Central

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  12. Design and production of functionalized biopolyesters by Methylobacterium extorquens ATCC 55366: Toward new tissue engineering materials

    NASA Astrophysics Data System (ADS)

    Hoefer, Heinrich Friedrich Philipp Till Nikolaus

    Vascular networks are required to support the formation and function of three-dimensional tissues. Biodegradable scaffolds are being considered in order to promote vascularization where natural regeneration of lost or destroyed vascular networks fails. Particularly; composite materials are expected to fulfill the complex demands of a patient's body to support wound healing. Microbial biopolyesters are being regarded as such second and third generation biomaterials. Methylobacterium extorquens is one of several microorganisms that should be considered for the production of advanced polyhydroxyalkanoates (PHAs). M. extorquens displays a distinct advantage in that it is able to utilize methanol as an inexpensive substrate for growth and biopolyester production. The design of functionalized PHAs, which would be made of both saturated short-chain-length (scl, C ≤ 5) and unsaturated medium-chain-length (mcl, 6 ≤ C ≤ 14) monomeric units, aimed at combining desirable material properties of inert scl/mcl-PHAs with those of functionalized mcl-PHAs. By independently inserting the phaC1 or the phaC2 gene from Pseudomonas fluorescens GK13, recombinant M. extorquens strains were obtained which were capable of producing PHAs containing C-C double bonds. A fermentation process was developed to obtain gram quantities of biopolyesters employing the recombinant M. extorquens ATCC 55366 strain which harbored the phaC2 gene of P. fluorescens GK13, the better one of the two strains at incorporating unsaturated monomeric units. The PHAs produced were found in a blend of scl-PHAs and functionalized scl/mcl-PHAs (4 ≤ C ≤ 6), which were the products of the native and of the recombinant PHA synthase, respectively. Thermo-mechanical analysis confirmed that the functionalized scl/mcl-PHAs exhibited the desirable material properties expected. This project contributed to current research on polyhydroxyalkanoates at different levels. The terminal double bonds of the functionalized scl

  13. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.

    PubMed

    Buch, Aditi D; Archana, G; Kumar, G Naresh

    2009-08-01

    Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the Escherichia coli citrate synthase (gltA) gene in Pseudomonas fluorescens ATCC 13525. The resultant approximately 2-fold increase in citrate synthase activity in the gltA-overexpressing strain Pf(pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in Pf(pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain Pf(pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the Synechococcus elongatus PCC 6301 phosphoenolpyruvate carboxylase and E. coli gltA genes in P. fluorescens ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in P. fluorescens ATCC 13525

  14. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  15. Development of real-time PCR primer and probe sets for detecting degenerated and non-degenerated forms of the butanol-producing bacterium Clostridium acetobutylicum ATCC 824.

    PubMed

    Lee, Sun-Mi; Cho, Min Ok; Um, Youngsoon; Sang, Byoung-In

    2010-05-01

    Degeneration is one of the limiting factors in butanol fermentation, and it must be monitored and prevented for stable butanol production. In Clostridium acetobutylicum ATCC 824, the most well-known butanol-producing microorganism, degeneration is caused by the loss of the pSOL1 plasmid that carries essential genes involved in solvent production. In this study, we designed two specific primer and probe sets for real-time qPCR (RT-qPCR) detection of C. acetobutylicum ATCC 824 (the C. aceto set) and pSOL1-possessing C. acetobutylicum ATCC 824 (the DGS set). Specific primer and probe sets were designed on the basis of the 16S rDNA sequence and pSOL1 sequence. The number of degenerated C. acetobutylicum could be quantified by subtracting the number of C. acetobutylicum ATCC 824 containing pSOL1 from the total number of C. acetobutylicum ATCC 824. The primer and probe sets permitted the specific detection and quantification of degenerated C. acetobutylicum and total butanol-producing C. acetobutylicum by RT-qPCR.

  16. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  17. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442.

    PubMed

    Liang, Ying; Zhu, Li; Ding, Han; Gao, Minjie; Zheng, Zhiyong; Wu, Jianrong; Zhan, Xiaobei

    2017-02-10

    A coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442 (AT-CFS) with wheat bran as the optimal nitrogen source was established for producing low-molecular-weight curdlan with high production, which can potentially reduce the cost of low-molecular-weight curdlan biosynthesis. The initial inoculate ratio, pH and the fermentation time were optimized. Compared with the curdlan from the single fermentation system of Agrobacterium sp. ATCC 31749 (A-SFS), the molecular weight (Mw) of the curdlan produced from AT-CFS decreased by 34.01% (from 110.85kDa to 73.15kDa), and the curdlan production (47.9g/L) and conversion rate of glucose to curdlan (0.60gg(-1)) increased by 119.93% and 36.36%, respectively. The results of RT-PCR showed high curdlan production in AT-CFS was highly correlated with aerobic respiration intensity and curdlan synthase activity. The structure of the curdlan from AT-CFS was the same as that from A-SFS.

  18. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749.

    PubMed

    Yu, Li-Jun; Wu, Jian-Rong; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi Chung

    2011-07-01

    The regulatory function of global regulator NtrC on curdlan biosynthesis and nitrogen consumption under nitrogen-limited condition in Agrobacterium sp. ATCC 31749 was investigated. The ntrC mutant of Agrobacterium sp. was constructed by homologous recombination. The ability to utilize NH4Cl and KNO3 was impaired in the mutant. Other nitrogenous compounds, such as glutamic acid and glutamine, were utilized normally. Curdlan production capability was impaired severely in the mutant. Curdlan production was 5-fold lower than the wild type strain in batch fermentation with NH4Cl as the sole nitrogen source. However, up to 6.5 g l(-1) of a newly found alkali-insoluble biopolymer was produced by the ntrC mutant when glutamic acid was used as nitrogen source. The new biopolymer had glycosidic bond and hydroxyl group but no β-configuration absorption peak on IR spectrum was found as different from curdlan. In addition, the mutant exhibited a rapid morphological change from the dot to rod form. These results deduced that the global regulator NtrC was involved in curdlan and other biopolymer biosynthesis in Agrobacterium sp. ATCC 31749 in response to nitrogen-limited condition.

  19. Development of a potential functional food prepared with pigeon pea (Cajanus cajan), oats and Lactobacillus reuteri ATCC 55730.

    PubMed

    Barboza, Yasmina; Márquez, Enrique; Parra, Katynna; Piñero, M Patricia; Medina, Luis M

    2012-11-01

    The purpose of this study was to investigate the survival of Lactobacillus reuteri ATCC 55730 in creams, prepared with pigeon peas and oat. Products were analysed to determine their content of protein, fibre, fat, carbohydrates and degree of likeness. Viable numbers of L. reuteri and pH were determined after 1, 7, 14, 21 and 28 days of storage at 4°C. Results showed significant differences (P < 0.05) in protein, fat, fibre and carbohydrate content between creams. No significant differences (P > 0.05) were found on sensory quality between control and creams with L. reuteri. After 28 days, the cell viability was above 7 log cfu/g in all creams. L. reuteri ATCC 55730 had the highest viability in cream with 40% pigeon pea and 20% oat (8.16 log cfu/g). In conclusion, due to its acceptability and highly nutritious value, the product could be used so as to support the growth of L. reuteri.

  20. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    PubMed

    Fujiwara, T; Fukumori, Y

    1996-04-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN.

  1. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride.

    PubMed

    Lee, H Y; Chai, L C; Pui, C F; Mustafa, S; Cheah, Y K; Nishibuchi, M; Radu, S

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1-10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress.

  2. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142.

    PubMed Central

    Schneegurt, M A; Sherman, D M; Nayar, S; Sherman, L A

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms. Images PMID:8132452

  3. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.

  4. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance.

  5. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869.

    PubMed

    Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan

    2016-07-28

    Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

  6. Electricity and H2 generation from hemicellulose by sequential fermentation and microbial fuel/electrolysis cell

    NASA Astrophysics Data System (ADS)

    Yan, Di; Yang, Xuewei; Yuan, Wenqiao

    2015-09-01

    Electricity and hydrogen generation by bacteria Geobacter sulfurreducens in a dual-chamber microbial fuel/electrolysis cell following the fermentation of hemicellulose by bacteria Moorella thermoacetica was investigated. Experimental results showed that 10 g l-1 xylose under 60 °C was appropriate for the fermentation of xylose by M. thermoacetica, yielding 0.87 g-acetic acid per gram of xylose consumed. Corncob hydrolysate could also be fermented to produce acetic acid, but with lower yield (0.74 g-acid per g-xylose). The broths of xylose and corncob hydrolysate fermented by M. thermoacetica containing acetic acid were fed to G. sulfurreducens in a dual-chamber microbial fuel/electrolysis cell for electricity and hydrogen generation. The highest open-circuit cell voltages generated were 802 and 745 mV, and hydrogen yields were 41.7 and 23.3 mmol per mol-acetate, in xylose and corncob hydrolysate fermentation broth media, respectively. The internal resistance of the microbial fuel/electrolysis cell fed with corncob hydrolysate fermentation broth (3472 Ω) was much higher than that with xylose fermentation broth (1993 Ω) or sodium acetate medium (467 Ω), which was believed to be the main cause of the variation in hydrogen yield of the three feeding media.

  7. Evaluation of peracetic acid sanitizers efficiency against spores isolated from spoiled cans in suspension and on stainless steel surfaces.

    PubMed

    André, S; Hédin, S; Remize, F; Zuber, F

    2012-02-01

    The aim of this study was to determine the inactivation effect of industrial formulations of peracetic acid biocides on bacterial spores adhering to stainless steel surfaces. A standardized protocol was used to validate biocide activity against spores in suspension. To validate sporicidal activity under practical conditions, we developed an additional protocol to simulate industrial sanitization of stainless steel surfaces with a foam sanitizer. Spores of three spore-forming bacteria, Clostridium sporogenes PA3679, Geobacillus stearothermophilus, and Moorella thermoacetica/thermoautotrophica, were sprayed onto stainless steel as bioaerosols. Sporicidal activity was high against the C. sporogenes spore suspension, with more than 5 log CFU ml(-1) destroyed at all liquid biocide contact times. Sporicidal activity also was high against G. stearothermophilus and M. thermoacetica/thermoautotrophica spores after 30 min of contact, but we found no population reduction at the 5-min contact time for the highest sporicide concentration tested. The foam biocide effectively inactivated C. sporogenes spores adhered to stainless steel but had a reduced decontamination effect on other species. For G. stearothermophilus spores, sanitization with the foam sporicide was more efficient on horizontal steel than on vertical steel, but foam sanitization was ineffective against M. thermoacetica/thermoautotrophica whatever the position. These results highlight that decontamination efficiency may differ depending on whether spores are suspended in an aqueous solution or adhered to a stainless steel surface. Biocide efficiency must be validated using relevant protocols and bacteria representative of the microbiological challenges and issues affecting each food industry.

  8. Identification and characterization of oxalate oxidoreductase, a novel thiamine pyrophosphate-dependent 2-oxoacid oxidoreductase that enables anaerobic growth on oxalate.

    PubMed

    Pierce, Elizabeth; Becker, Donald F; Ragsdale, Stephen W

    2010-12-24

    Moorella thermoacetica is an anaerobic acetogen, a class of bacteria that is found in the soil, the animal gastrointestinal tract, and the rumen. This organism engages the Wood-Ljungdahl pathway of anaerobic CO(2) fixation for heterotrophic or autotrophic growth. This paper describes a novel enzyme, oxalate oxidoreductase (OOR), that enables M. thermoacetica to grow on oxalate, which is produced in soil and is a common component of kidney stones. Exposure to oxalate leads to the induction of three proteins that are subunits of OOR, which oxidizes oxalate coupled to the production of two electrons and CO(2) or bicarbonate. Like other members of the 2-oxoacid:ferredoxin oxidoreductase family, OOR contains thiamine pyrophosphate and three [Fe(4)S(4)] clusters. However, unlike previously characterized members of this family, OOR does not use coenzyme A as a substrate. Oxalate is oxidized with a k(cat) of 0.09 s(-1) and a K(m) of 58 μM at pH 8. OOR also oxidizes a few other 2-oxoacids (which do not induce OOR) also without any requirement for CoA. The enzyme transfers its reducing equivalents to a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. In conjunction with the well characterized Wood-Ljungdahl pathway, OOR should be sufficient for oxalate metabolism by M. thermoacetica, and it constitutes a novel pathway for oxalate metabolism.

  9. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775(T), a plant pathogen of French bean pods.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, Tbk; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Halpern, Malka

    2016-01-01

    Phaseolibacter flectens strain ATCC 12775(T) (Halpern et al., Int J Syst Evol Microbiol 63:268-273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  10. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    PubMed

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development.

  11. Microbial conversion of milbemycins: hydroxylation of milbemycin A4 and related compounds by Cunninghamella echinulata ATCC 9244.

    PubMed

    Nakagawa, K; Miyakoshi, S; Torikata, A; Sato, K; Tsukamoto, Y

    1991-02-01

    Many strains of zygomycetes and actinomycetes were found to convert milbemycin A4 (1a) to 13 beta-hydroxymilbemycin A4 (1b). Among these strains, Cunninghamella echinulata ATCC 9244 had the most efficient 13 beta-hydroxylation ability on milbemycins. In the conversion of milbemycin A3 (2a), 29-hydroxymilbemycin A4 (4a), and 30-hydroxymilbemycin A4 (5a) with this strain, only 13 beta-hydroxylated products were obtained. On the other hand, starting from milbemycin A4 (1a) and 5-ketomilbemycin A4 5-oxime (6a), 13 beta,24- and 13 beta,30-dihydroxy derivatives were also isolated along with 13 beta-hydroxylated products. Similarly, conversion of milbemycin D (3a) and LL-F28249 alpha (8a) gave 13 beta- and 28-hydroxy derivatives (8b and 8c).

  12. Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression.

    PubMed

    Yang, Fan; Gong, Yanfen; Liu, Gang; Zhao, Shengming; Wang, Juan

    2015-07-01

    The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

  13. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439

    PubMed Central

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B.; Melançon, Charles E.

    2016-01-01

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally-derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751

  14. Cloning and sequencing of the trpE gene from Arthrobacter globiformis ATCC 8010 and several related subsurface Arthrobacter isolates

    SciTech Connect

    Chernova, T.; Viswanathan, V.K.; Austria, N.; Nichols, B.P.

    1998-09-01

    Tryptophan dependent mutants of Arthrobacter globiformis ATCC 8010 were isolated and trp genes were cloned by complementation and marker rescue of the auxotrophic strains. Rescue studies and preliminary sequence analysis reveal that at least the genes trpE, trpC, and trpB are clustered together in this organism. In addition, sequence analysis of the entire trpE gene, which encodes component I of anthranilate synthase, is described. Segments of the trpE gene from 17 subsurface isolates of Arthrobacter sp. were amplified by PCR and sequenced. The partial trpE sequences from the various strains were aligned and subjected to phylogenetic analysis. The data suggest that in addition to single base changes, recombination and genetic exchange play a major role in the evolution of the Arthrobacter genome.

  15. Influence of mixotrophic growth on rhythmic oscillations in expression of metabolic pathways in diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Digmurti, Madhuri G; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    This study investigates the influence of mixotrophy on physiology and metabolism by analysis of global gene expression in unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (henceforth Cyanothece 51142). It was found that Cyanothece 51142 continues to oscillate between photosynthesis and respiration in continuous light under mixotrophy with cycle time of ∼ 13 h. Mixotrophy is marked by an extended respiratory phase compared with photoautotrophy. It can be argued that glycerol provides supplementary energy for nitrogen fixation, which is derived primarily from the glycogen reserves during photoautotrophy. The genes of NDH complex, cytochrome c oxidase and ATP synthase are significantly overexpressed in mixotrophy during the day compared to autotrophy with synchronous expression of the bidirectional hydrogenase genes possibly to maintain redox balance. However, nitrogenase complex remains exclusive to nighttime metabolism concomitantly with uptake hydrogenase. This study throws light on interrelations between metabolic pathways with implications in design of hydrogen producer strains.

  16. Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE).

    PubMed

    Garrido, A; Pashley, R M; Ninham, B W

    2017-03-01

    In the treatment of household wastewater viruses are hard to eliminate. A new technique is described which tackles this major problem. The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses by a hot (150°C) air bubble column evaporator (HBCE) system Its surface charging properties obtained by dynamic light scattering, have been studied in a range of aqueous salt solutions and secondary treated synthetic sewage water. A combination of MS2 virus surface charge properties with thermal inactivation rates, and an improved double layer plaque assay technique, allows an assessment of the efficiency of the HBCE process for virus removal in water. The system is a new energy efficient treatment for water reuse applications.

  17. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    DOE PAGES

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; ...

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp.more » It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  18. Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978.

    PubMed

    Fernando, Dinesh M; Chong, Patrick; Singh, Manu; Spicer, Victor; Unger, Mark; Loewen, Peter C; Westmacott, Garrett; Kumar, Ayush

    2017-01-01

    Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism.

  19. Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H2 Production in Cyanothece sp. ATCC 51142

    PubMed Central

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; Sadler, Natalie C.; Melnicki, Matthew R.; Hill, Eric A.; Markillie, Lye Meng; Nicora, Carrie D.; Wright, Aaron T.; Romine, Margaret F.; Beliaev, Alexander S.

    2015-01-01

    To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process. PMID:26525576

  20. Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium Anabaena sp. strain CA (ATCC 33047).

    PubMed Central

    Smith, R L; Van Baalen, C; Tabita, F R

    1990-01-01

    The control of nitrogenase recovery from inactivation by oxygen was studied in Anabaena sp. strain CA (ATCC 33047). Nitrogenase activity (acetylene reduction) in cultures grown in 1% CO2 in air was inhibited by exposure to 1% CO2-99% O2 and allowed to recover in the presence of high oxygen tensions. Cultures exposed to hyperbaric levels of oxygen in the presence of 10 mM NH4NO3 were incapable of regaining nitrogenase activity, whereas control cultures returned to 65 to 80% of their original activity within about 3 h after exposure to high oxygen tension. In contrast to the regulation of heterocyst differentiation and nitrogenase synthesis, recovery from oxygen inactivation in this organism was shown to be under the control of NH4+ rather than NO3-. PMID:2110151

  1. [Effect of cinnamon and lavender oils on FtsZ gene expression in the Staphylococus aureus ATCC 29213].

    PubMed

    2013-01-01

    This study was designed to determine the effect of lavender and cinnamon oils on FtsZ gene expression in Staphylococcus aureus ATCC 29213. The cinnamon and lavender oils at least partially results from the inhibition of FtsZ transcription and disruption of cell division process at the level of the septum synthesis, what is similar to mechanisms of drug action used in anti-staphylococcal therapies. The presented results could be an important background for the further detailed research, which is needed to clarify the effect of essential oils on FtsZ synthesis at the posttranscriptional level and other stages of cell division process of S. aureus and other pathogenic bacteria.

  2. Cloning and knockout of phytoene desaturase gene in Sphingomonas elodea ATCC 31461 for economic recovery of gellan gum.

    PubMed

    Zhu, Liang; Wu, Xuechang; Li, Ou; Chen, Yamin; Qian, Chaodong; Teng, Yi; Tao, Xianglin; Gao, Haichun

    2011-09-01

    A gene encoding phytoene desaturase (crtI) in the carotenoid biosynthetic pathway of Sphingomonas elodea ATCC 31461, an industrial gellan gum-producing strain, was cloned and identified. This gene is predicted to encode a 492-amino acid protein with significant homology to the phytoene desaturase of other carotenogenic organisms. Knockout of crtI gene blocked yellow carotenoid pigment synthesis and resulted in the accumulation of colorless phytoene, confirming that it encodes phytoene desaturase. Further research indicates that the yield of gellan gum production by crtI gene knockout mutants is almost the same as that by the wild-type strain. In addition, a recovery method based on the colorless fermentation broth of the crtI gene knockout mutant was investigated. Compared to the volume of alcohol for the parent strain, much less alcohol (30%) is required in this recovery process; thus, the costs of downstream purification of gellan gum can be substantially reduced.

  3. Multi-omic dynamics associate oxygenic photosynthesis with nitrogenase-mediated H2 production in Cyanothece sp. ATCC 51142

    DOE PAGES

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; ...

    2015-11-03

    This study combines transcriptomic and proteomic profiling to provide new insights on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in the model cyanobacterium, Cyanothece sp. ATCC 51142. To date, the proposed mechanisms used to describe the energy metabolism processes that support H2 production in Cyanothece 51142 have assumed that ATP and reductant requirements are derived solely from glycogen oxidation and/or cyclic-electron flow around photosystem I. The results from this study present and test an alternative hypothesis by showing that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized withmore » nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the likely role of photocatalytic H2O oxidation as a major participating process.« less

  4. Effects of Phenylglyoxal and N-ethylmaleimide Concentration on Mycophenolic Acid Production by Penicillium brevi-compactum ATCC16024

    PubMed Central

    Ardestani, Fatemeh

    2016-01-01

    Mycophenolic acid is a secondary extracellular metabolite of Penicillium strains with numerous pharmaceutical properties such as antibiotic and immunosuppressive uses. The aim of this work is the survey of the effect of phenylglyoxal and n-ethylmaleimide concentration in culture medium on mycophenolic acid production by Penicillium brevi-compactum ATCC16024 was investigated. Batch submerged fermentation was performed in 250 mL shake flasks at 24 °C and 200 rpm in a rotary shaker for 300 h using a basic culture medium containing different concentrations of phenylglyoxal and n-ethylmaleimide ranged from 0 to 20 mg. L-1. For the basic medium without any amounts of phenylglyoxal and n-ethylmaleimide (control), maximum MPA production, product yield and productivity of process was in order, 1.5042 g. L-1, 20.3 mg. g-1 consumed glucose and 5.37 mg. L-1h-1. Maximum produced MPA of 2.9032 g. L-1, MPA yield of 39.23 mg. g-1 of consumed glucose, productivity of 10.37 mg. L-1 h-1 and total enhancement of 93.11% was obtained when the culture medium was contained 18 mg. L-1 of phenylglyoxal, represented more than 93% raising in compare to control. Maximum MPA concentration, yield and productivity in order was obtained 3.1123 g. L-1, 42.06 mg. g-1 of consumed glucose and 11.11 mg. L-1 h-1, with using 6 mg. L-1 of n-ethylmaleimide. N-ethylmaleimide was caused to 2.138 folds (106.89%) increase in MPA production by P. brevi-compactum ATCC16024. PMID:28243291

  5. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5.

    PubMed

    Lindberg, Pia; Lindblad, Peter; Cournac, Laurent

    2004-04-01

    Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.

  6. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  7. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606

    PubMed Central

    Richie, Daryl L.; Takeoka, Kenneth T.; Bojkovic, Jade; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Wei, Jun-Rong; Dean, Charles R.

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  8. Stress-Induced Evolution of Heat Resistance and Resuscitation Speed in Escherichia coli O157:H7 ATCC 43888.

    PubMed

    Gayán, Elisa; Cambré, Alexander; Michiels, Chris W; Aertsen, Abram

    2016-11-15

    The development of resistance in foodborne pathogens to food preservation techniques is an issue of increasing concern, especially in minimally processed foods where safety relies on hurdle technology. In this context, mild heat can be used in combination with so-called nonthermal processes, such as high hydrostatic pressure (HHP), at lower individual intensities to better retain the quality of the food. However, mild stresses may increase the risk of (cross-)resistance development in the surviving population, which in turn might compromise food safety. In this investigation, we examined the evolution of Escherichia coli O157:H7 strain ATCC 43888 after recurrent exposure to progressively intensifying mild heat shocks (from 54.0°C to 60.0°C in 0.5°C increments) with intermittent resuscitation and growth of survivors. As such, mutant strains were obtained after 10 cycles of selection with ca. 10(6)-fold higher heat resistance than that for the parental strain at 58.0°C, although this resistance did not extend to temperatures exceeding 60.0°C. Moreover, these mutant strains typically displayed cross-resistance against HHP shock and displayed signs of enhanced RpoS and RpoH activity. Interestingly, additional cycles of selection maintaining the intensity of the heat shock constant (58.5°C) selected for mutant strains in which resuscitation speed, rather than resistance, appeared to be increased. Therefore, it seems that resistance and resuscitation speed are rapidly evolvable traits in E. coli ATCC 43888 that can compromise food safety.

  9. Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551.

    PubMed

    Pandeeti, Emmanuel Vijay Paul; Longkumer, Toshisangba; Chakka, Deviprasanna; Muthyala, Venkateswar Reddy; Parthasarathy, Sunil; Madugundu, Anil Kumar; Ghanta, Sujana; Medipally, Srikanth Reddy; Pantula, Surat Chameli; Yekkala, Harshita; Siddavattam, Dayananda

    2012-12-01

    The complete sequence of pPDL2 (37,317 bp), an indigenous plasmid of Sphingobium fuliginis ATCC 27551 that encodes genes for organophosphate degradation (opd), revealed the existence of a site-specific integrase (int) gene with an attachment site attP, typically seen in integrative mobilizable elements (IME). In agreement with this sequence information, site-specific recombination was observed between pPDL2 and an artificial plasmid having a temperature-sensitive replicon and a cloned attB site at the 3' end of the seryl tRNA gene of Sphingobium japonicum. The opd gene cluster on pPDL2 was found to be part of an active catabolic transposon with mobile elements y4qE and Tn3 at its flanking ends. Besides the previously reported opd cluster, this transposon contains genes coding for protocatechuate dioxygenase and for two transport proteins from the major facilitator family that are predicted to be involved in transport and metabolism of aromatic compounds. A pPDL2 derivative, pPDL2-K, was horizontally transferred into Escherichia coli and Acinetobacter strains, suggesting that the oriT identified in pPDL2 is functional. A well-defined replicative origin (oriV), repA was identified along with a plasmid addiction module relB/relE that would support stable maintenance of pPDL2 in Sphingobium fuliginis ATCC 27551. However, if pPDL2 is laterally transferred into hosts that do not support its replication, the opd cluster appears to integrate into the host chromosome, either through transposition or through site-specific integration. The data presented in this study help to explain the existence of identical opd genes among soil bacteria.

  10. Multiple Mechanisms Contribute to Lateral Transfer of an Organophosphate Degradation (opd) Island in Sphingobium fuliginis ATCC 27551

    PubMed Central

    Pandeeti, Emmanuel Vijay Paul; Longkumer, Toshisangba; Chakka, Deviprasanna; Muthyala, Venkateswar Reddy; Parthasarathy, Sunil; Madugundu, Anil Kumar; Ghanta, Sujana; Medipally, Srikanth Reddy; Pantula, Surat Chameli; Yekkala, Harshita; Siddavattam, Dayananda

    2012-01-01

    The complete sequence of pPDL2 (37,317 bp), an indigenous plasmid of Sphingobium fuliginis ATCC 27551 that encodes genes for organophosphate degradation (opd), revealed the existence of a site-specific integrase (int) gene with an attachment site attP, typically seen in integrative mobilizable elements (IME). In agreement with this sequence information, site-specific recombination was observed between pPDL2 and an artificial plasmid having a temperature-sensitive replicon and a cloned attB site at the 3′ end of the seryl tRNA gene of Sphingobium japonicum. The opd gene cluster on pPDL2 was found to be part of an active catabolic transposon with mobile elements y4qE and Tn3 at its flanking ends. Besides the previously reported opd cluster, this transposon contains genes coding for protocatechuate dioxygenase and for two transport proteins from the major facilitator family that are predicted to be involved in transport and metabolism of aromatic compounds. A pPDL2 derivative, pPDL2-K, was horizontally transferred into Escherichia coli and Acinetobacter strains, suggesting that the oriT identified in pPDL2 is functional. A well-defined replicative origin (oriV), repA was identified along with a plasmid addiction module relB/relE that would support stable maintenance of pPDL2 in Sphingobium fuliginis ATCC 27551. However, if pPDL2 is laterally transferred into hosts that do not support its replication, the opd cluster appears to integrate into the host chromosome, either through transposition or through site-specific integration. The data presented in this study help to explain the existence of identical opd genes among soil bacteria. PMID:23275877

  11. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS.

  12. No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a Phase I Open Label Study to assess safety, tolerability and cytokine responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed since the mid 1990s by between 2 and 5 million people daily, the scientific literature lacks rigorous clinical trials that describe the potential harms of LGG, particularly in the elderly. The primary objective of this open label...

  13. Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology

    PubMed Central

    He, Jingxuan; Sundararajan, Anitha; Devitt, Nicholas P.; Schilkey, Faye D.; Ramaraj, Thiruvarangan

    2016-01-01

    Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters. PMID:27151802

  14. Difference in cellular damage and cell death in thermal death time disks and high hydrostatic pressure treated Salmonella Enteritidis (ATCC13076) in liquid whole egg

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella Enteritidis (ATCC13076) in liquid whole egg (LWE) following thermal-death-time (TDT) disk and high hydrostatic pressure treatments were examined. Salmonella enteritidis was inoculated ...

  15. The effects of different light-dark cycles on the metabolism of the diazotrophic, unicellular cyanobacteria Cyanothece sp. ATCC 51142, and Cyanothecesp. PCC 7822.

    PubMed

    Arshad, Sarah; Mishra, Sujata; Sherman, Louis A

    2014-10-01

    The diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 demonstrates circadian patterns in nitrogenase activity, H2 production and glycogen storage when grown under nitrogen-fixing, 12:12 light:dark (L:D) conditions. In this study, we grew Cyanothece sp. ATCC 51142, and another strain in this genus, Cyanothece sp. PCC 7822, under long-day (16:8 L:D) and short-day (8:16 L:D) nitrogen-fixing conditions to determine if they continued to display circadian rhythms. Both strains demonstrated similar circadian patterns for all three metabolic parameters when grown under long-day conditions. However, the strains responded differently to short-day growth conditions. Cyanothece sp. ATCC 51142 retained reasonable circadian patterns under 8:16 L:D conditions, whereas Cyanothece sp. PCC 7822 had quite damped patterns without a clear circadian pattern. In particular, glycogen storage changed very little throughout the day and we ascribe this to the difference in the type of glycogen granules in Cyanothece sp. PCC 7822 which has small β-granules, compared to the large, starch-like granules in Cyanothece sp. ATCC 51142. The results suggested that both mechanistic and regulatory processes play a role in establishing the basis for these metabolic oscillations.

  16. Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology.

    PubMed

    He, Jingxuan; Sundararajan, Anitha; Devitt, Nicholas P; Schilkey, Faye D; Ramaraj, Thiruvarangan; Melançon, Charles E

    2016-05-05

    Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters.

  17. Complete Genome Sequence of Spiroplasma apis B31T (ATCC 33834), a Bacterium Associated with May Disease of Honeybees (Apis mellifera).

    PubMed

    Ku, Chuan; Lo, Wen-Sui; Chen, Ling-Ling; Kuo, Chih-Horng

    2014-01-09

    Spiroplasma apis B31(T) (ATCC 33834) is a wall-less bacterium in the class Mollicutes that has been linked to May disease of honeybees (Apis mellifera). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its virulence factors.

  18. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis

    PubMed Central

    Mehta, Kalpa

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  19. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastrointestinal tract.

    PubMed

    van Passel, Mark W J; Kant, Ravi; Palva, Airi; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Glavina del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Davenport, Karen Walston; Sims, David; Brettin, Thomas S; Detter, John C; Han, Shunsheng; Larimer, Frank W; Land, Miriam L; Hauser, Loren; Kyrpides, Nikolaos; Ovchinnikova, Galina; Richardson, P Paul; de Vos, Willem M; Smidt, Hauke; Zoetendal, Erwin G

    2011-05-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract.

  20. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    SciTech Connect

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Sims, David; Detter, J. Chris; Han, Cliff; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ovchinnikova, Galina; Richardson, Paul; De Vos, Willem M.; Smidt, Hauke; Zoetendal, Erwin G.

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  1. Genome sequences of three tunicamycin-producing Streptomyces strains; S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396

    Technology Transfer Automated Retrieval System (TEKTRAN)

    S. chartreusis strains NRRL 12338 and NRRL 3882, S. clavuligerus NRRL 3585, and S. lysosuperificus ATCC 31396, are known producers of tunicamycins, and also of charteusins, clavulinate, cephalosporins, holomycins, and calcimycin. Here we announce the sequencing of the S. lysosuperificus and the two...

  2. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  3. Structures and characteristics of novel siderophores from plant deleterious Pseudomonas fluorescens A225 and Pseudomonas putida ATCC 39167.

    PubMed

    Khalil-Rizvi, S; Toth, S I; van der Helm, D; Vidavsky, I; Gross, M L

    1997-04-08

    When Pseudomonas putida ATCC 39167 and plant-deleterious Pseudomonas fluorescens A225 were grown in an iron-deficient culture medium, they each produced two different novel yellow-green fluorescent pseudobactins: P39167-I, II and PA225-I, II. Pseudobactin P39167-I has a molecular formula of C46H65O23N13 and is monoanionic at neutral pH. P39167-II has the molecular formula of C46H63O22N13 and no charge at neutral pH. Pseudobactin PA225-I has a molecular formula of C46H65O24N13 and is monoanionic at neutral pH whereas pseudobactin PA225-II has the molecular formula of C46H63O23N13 and no charge at neutral pH. All four of the pseudobactins contain a dihydroxyquinoline-based chromophore. The amino acid sequence for the octapeptide in case of pseudobactins from P. putida ATCC 39167 is Chr-Ser(1)-Ala(1)-AcOHOrn-Gly-Ala(2)-OHAsp-Ser(2)-Thr. In case of pseudobactins from P. fluorescens A225, the octapeptide has the sequence Chr-Ser(1)-Ala-AcOHOrn-Gly-Ser(2)-OHAsp-Ser(3)-Thr. For all four pseudobactins (P39167-I, II and PA225-I, II), the serine(1) residue of the octapeptide is attached to the carboxylic acid group on the C-11 of the fluorescent quinoline via an amide bond. Additionally, for pseudobactin P39167-II and PA225-II, the hydroxyl group of the serine(1) residue is also attached to the carboxyl group of threonine residue at the carboxy terminus of the peptide via an ester bond, resulting in a cyclic depsipeptide in contrast to the linear peptide chain of P39167-I and PA225-I. For all four pseudobactins, a malamide group is attached to the C-3 of the quinoline derived chromophore. The three bidentate iron(III) chelating groups in all four pseudobactins consist of a 1,2-dihydroxy aromatic group of the fluorescent chromophore, a hydroxy acid group of beta-hydroxy aspartic acid, and a hydroxamate group from the acylated Ndelta-hydroxyornithine. The amino acid constituents of the pseudobactins P39167 I, II are the same as those in pseudobactin A214, whereas those in A225

  4. Cloning, expression, purification, crystallization and preliminary X-ray characterization of allantoinase from Bacillus licheniformis ATCC 14580

    PubMed Central

    Conejero-Muriel, Mayte; Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Gavira, Jose A.

    2014-01-01

    Allantoinase, a member of the amidohydrolase superfamily, exists in a wide variety of organisms, including bacteria, fungi, plants and a few animals, such as fishes and amphibians. Allantoinase catalyzes the reversible hydrolysis of allantoin into allantoate by hydrolytic cleavage of the N1—C2 amide bond of the five-membered hydantoin ring. Allantoinase from Bacillus licheniformis (AllBali) presents an inverted enantioselectivity towards allantoin (R-enantioselective), which is a distinguishable feature that is not observed for other allantoinases. In this work, B. licheniformis ATCC 14580 allantoinase (AllBali) containing a C-terminal His6 tag was overproduced in Escherichia coli and purified to homogeneity. Crystals of AllBali were obtained by the vapour-diffusion method using 0.1 M potassium thiocyanate, 20%(w/v) polyethylene glycol 3350 as a crystallization solution. X-ray diffraction data were collected to a resolution of 3.5 Å with an R merge of 29.2% from a crystal belonging to space group P1211, with unit-cell parameters a = 54.93, b = 164.74, c = 106.89 Å, β = 98.49°. There are four molecules in the asymmetric unit with a solvent content of 47% as estimated from the Matthews coefficient (V M = 2.34 Å3 Da−1). PMID:25372819

  5. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.

    PubMed

    Zhong, Hua; Jiang, Yongbing; Zeng, Guangming; Liu, Zhifeng; Liu, Liuxia; Liu, Yang; Yang, Xin; Lai, Mingyong; He, Yibin

    2015-03-21

    The effects of low-concentration monorhamnolipid (monoRL) on the adsorption of Pseudomonas aeruginosa ATCC 9027 grown on glucose or hexadecane to glass beads with hydrophobic or hydrophilic surfaces was investigated using batch adsorption experiments. Results showed that adsorption isotherms of the cells on both types of glass beads fitted the Freundlich equation better than the Langmuir equation. The Kf of the Freundlich equation for adsorption of hexadecane-grown cell to glass beads with hydrophobic surface was remarkably higher than that for adsorption of hexadecane-grown cell to glass beads with hydrophilic surface, or glucose-grown cell to glass beads with either hydrophilic or hydrophobic surface. Furthermore, it decreased with the increasing monoRL concentration. For both groups of cells, the zeta potential was close to each other and stable with the increase of monoRL concentration. The surface hydrophobicity of hexadecane-grown cells, however, was significantly higher than that of the glucose-grown cells and it decreased with the increase of monoRL concentration. The results indicate the importance of hydrophobic interaction on adsorption of bacterial cells to surfaces and monoRL plays a role in reducing the bacterial adsorption by affecting cell surface hydrophobicity.

  6. Identification and functional characterization of an afsR homolog regulatory gene from Streptomyces venezuelae ATCC 15439.

    PubMed

    Maharjan, Sushila; Oh, Tae-Jin; Lee, Hei Chan; Sohng, Jae Kyung

    2009-02-01

    Sequencing analysis of a 5-kb DNA fragment from Streptomyces venezuelae ATCC 15439 revealed the presence of one 3.1-kb open reading frame (ORF), designated afsRsv. The deduced product of afsR-sv (1,056 aa) was found to have high homology with the global regulatory protein AfsR. Homology-based analysis showed that afsR-sv represents a transcriptional activator belonging to the Streptomyces antibiotic regulatory protein (SARP) family that includes an Nterminal SARP domain containing a bacterial transcriptional activation domain (BTAD), an NB-ARC domain, and a Cterminal tetratricopeptide repeat domain. Gene expression analysis by reverse transcriptase PCR (RT-PCR) demonstrated the activation of transcription of genes belonging to pikromycin production, when afsR-sv was overexpressed in S. venezuelae. Heterologous expression of the afsR-sv in different Streptomyces strains resulted in increased production of the respective antibiotics, suggesting that afsR-sv is a positive regulator of antibiotics biosynthesis.

  7. Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1

    SciTech Connect

    Shen, Hai; Wang, Yi-Tin

    1995-07-01

    In a defined coculture of a Cr(VI) reducer, Escherichia coli ATCC 33456, and a phenol degrader, Pseudomonas putida DMP-1, simultaneous reduction of Cr(VI) and degradation of phenol was observed. When Cr(VI) was present in the coculture, quantitative transformation of Cr(VI) into Cr(III) proceeded with simultaneous degradation of phenol. Cr(VI) reduction was correlated to phenol degradation in the coculture as demonstrated by a regression analysis of the cumulative Cr(VI) reduction and the cumulative phenol degradation. Both the rate and extent of Cr(VI) reduction and phenol degradation were significantly influenced by the population composition of the coculture. Although Cr(VI) reduction occurred as a result of E. coli metabolism, the rate of phenol degradation by P. putida may become a rate-limiting factor for Cr(VI) reduction at a low population ratio of P. putida to E. coli. Phenol degradation by P. putida was very susceptible to the presence of Cr(VI), whereas Cr(VI) reduction by E. coli was significantly influenced by phenol only when phenol was present at high concentrations (>9 mM). 32 refs., 7 figs., 1 tab.

  8. Cloning, expression, purification, crystallization and preliminary X-ray characterization of allantoinase from Bacillus licheniformis ATCC 14580.

    PubMed

    Conejero-Muriel, Mayte; Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Gavira, Jose A

    2014-11-01

    Allantoinase, a member of the amidohydrolase superfamily, exists in a wide variety of organisms, including bacteria, fungi, plants and a few animals, such as fishes and amphibians. Allantoinase catalyzes the reversible hydrolysis of allantoin into allantoate by hydrolytic cleavage of the N1-C2 amide bond of the five-membered hydantoin ring. Allantoinase from Bacillus licheniformis (AllBali) presents an inverted enantioselectivity towards allantoin (R-enantioselective), which is a distinguishable feature that is not observed for other allantoinases. In this work, B. licheniformis ATCC 14580 allantoinase (AllBali) containing a C-terminal His6 tag was overproduced in Escherichia coli and purified to homogeneity. Crystals of AllBali were obtained by the vapour-diffusion method using 0.1 M potassium thiocyanate, 20%(w/v) polyethylene glycol 3350 as a crystallization solution. X-ray diffraction data were collected to a resolution of 3.5 Å with an Rmerge of 29.2% from a crystal belonging to space group P12₁1, with unit-cell parameters a=54.93, b=164.74, c=106.89 Å, β=98.49°. There are four molecules in the asymmetric unit with a solvent content of 47% as estimated from the Matthews coefficient (VM=2.34 Å3 Da(-1)).

  9. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Vinh, Nguyen X; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell's metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production.

  10. HS-SPME-GC-FID method for detection and quantification of Bacillus cereus ATCC 10702 mediated 2-acetyl-1-pyrroline.

    PubMed

    Deshmukh, Yogita; Khare, Puja; Patra, D D; Nadaf, Altafhusain B

    2014-01-01

    A rapid micro-scale solid-phase micro-extraction (SPME) procedure coupled with gas-chromatography with flame ionized detector (GC-FID) was used to extract parts per billion levels of a principle basmati aroma compound "2-acetyl-1-pyrroline" (2-AP) from bacterial samples. In present investigation, optimization parameters of bacterial incubation period, sample weight, pre-incubation time, adsorption time, and temperature, precursors and their concentrations has been studied. In the optimized conditions, detection of 2-AP produced by Bacillus cereus ATCC10702 using only 0.5 g of sample volume was 85 μg/kg. Along with 2-AP, 15 other compounds produced by B. cereus were also reported out of which 14 were reported for the first time consisting mainly of (E)-2-hexenal, pentadecanal, 4-hydroxy-2-butanone, n-hexanal, 2-6-nonadienal, 3-methoxy-2(5H) furanone and 2-acetyl-1-pyridine and octanal. High recovery of 2-AP (87 %) from very less amount of B. cereus samples was observed. The method is reproducible fast and can be used for detection of 2-AP production by B. cereus.

  11. Production and downstream processing of (1→3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750

    PubMed Central

    2012-01-01

    We isolated a mutant that produced higher levels of curdlan than the wild strain Agrobacterium sp. ATCC 31750 by chemical mutagenesis using N-methyl-N-nitro-nitrosoguanidine. The mutant strain produced 66 g/L of curdlan in 120 h with a yield of (0.88) while, the wild strain produced 41 g/L in 120 h with a yield of (0.62) in a stirred bioreactor. The mutant could not produce curdlan when the pH was shifted from 7.0 to 5.5 after nitrogen depletion as followed for wild strain. In contrast, pH optimum for cell growth and curdlan production for mutant was found to be 7.0. We optimized the downstream processing of curdlan by varying different volumes of NaOH and HCl for extraction and precipitation of curdlan. The molecular weight of the purified curdlan from the wild and mutant strain was 6.6 × 105 Da and 5.8 × 105 Da respectively. The monosaccharide analyses confirm that curdlan from both wild and mutant strain contains only glucose units. From the NMR and FTIR data, it has been confirmed that curdlan was exclusively composed of β (1 → 3)-D-glucan residues. PMID:22681895

  12. Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior

    PubMed Central

    Gayán, Elisa; Govers, Sander K.; Michiels, Chris W.; Aertsen, Abram

    2016-01-01

    Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP) shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation. PMID:27917163

  13. Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803.

    PubMed

    Saha, Rajib; Verseput, Alex T; Berla, Bertram M; Mueller, Thomas J; Pakrasi, Himadri B; Maranas, Costas D

    2012-01-01

    Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731) for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen) and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively) span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100) and a sensitivity of 1 (19/19) for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark) biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models.

  14. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    PubMed

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation.

  15. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    PubMed

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis.

  16. Growth response of Escherichia coli ATCC 35218 adapted to several concentrations of sodium benzoate and potassium sorbate.

    PubMed

    Santiesteban-López, N Angélica; Rosales, Mónica; Palou, Enrique; López-Malo, Aurelio

    2009-11-01

    Escherichia coli ATCC 35218 growth response was evaluated after repetitive cultivation in stepwise increasing antimicrobial agent concentrations (potassium sorbate or sodium benzoate) to observe its adaptation process to high weak-acid concentrations. The effect of antimicrobial (potassium sorbate or sodium benzoate) concentration (0 to 7,000 ppm) was tested using laboratory media. Cells adapted at 1,000 ppm were inoculated in media containing the same concentration of the antimicrobial; after that, cells were transferred to media containing a higher concentration, followed by repetitive cultivations. In every case, viable cells were determined by surface plating every hour up to 48 h. Logarithmic representations of survival or growing fraction were modeled using the Gompertz equation. Adapted and nonadapted cells were analyzed for plasmid presence as well as phosphofructokinase and succinate dehydrogenase activity. Bacterial growth was observed after adaptation processes in media formulated up to 7,000 ppm of potassium sorbate or sodium benzoate. Analyses of variance demonstrated that no significant difference (P > 0.05) in lag time or growth rate was observed among adapted cells cultured in media containing the studied concentrations for each of the antimicrobials tested. These results suggest that E. coli can be adapted to high weak-acid concentrations if the exposure is performed under sublethal conditions. Furthermore, there was demonstrated inhibition of the enzymes phosphofructokinase and succinate dehydrogenase by action of sodium benzoate and potassium sorbate, respectively. E. coli adaptation to antimicrobial agents was not related to plasmid presence but appears to be due to other action mechanisms.

  17. Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978.

    PubMed

    Lai, Meng-Jiun; Soo, Po-Chi; Lin, Nien-Tsung; Hu, Anren; Chen, You-Jie; Chen, Li-Kuang; Chang, Kai-Chih

    2013-08-01

    Acinetobacter baumannii has recently emerged as a major cause of healthcare-associated infections owing to an increase in its antimicrobial resistance to virtually all available drugs. The ability of endolysins (lysozymes) to digest cell walls when applied exogenously to bacterial cells has enabled their use as novel antibacterials. In order to utilise endolysins as a therapeutic alternative to antibiotics, we surveyed the genome sequence of A. baumannii ATCC 17978 and successfully identified two phage-related endolysin genes, A1S_1600 and A1S_2016 (termed lysAB3 and lysAB4, respectively). Following cloning and expression/purification, various antibacterial activities of these two phage-related endolysins were determined in vitro. Zymographic assays showed that only purified LysAB3 could lyse the peptidoglycan of the A. baumannii cell wall. When applied exogenously, both LysAB3 and LysAB4 were active against most Acinetobacter spp. tested but had virtually no activity against other non-Acinetobacter spp. Scanning electron microscopy revealed that exposure to 100μg/mL LysAB3 and LysAB4 for up to 60min caused a remarkable modification of the cell shape of A. baumannii. These results indicate that the genes encoding phage-related endolysins can be readily isolated from the bacterial genome and have potential for the development of novel antimicrobial agents.

  18. A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405.

    PubMed

    Godovikova, Valentina; Goetting-Minesky, M Paula; Shin, Jae M; Kapila, Yvonne L; Rickard, Alexander H; Fenno, J Christopher

    2015-09-01

    Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism.

  19. Simulated microgravity affects ciprofloxacin susceptibility and expression of acrAB-tolC genes in E. coli ATCC25922

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Zheng, Yanhua; Si, Shaoyan; Shi, Yuhua; Huang, Yuling; Zhang, Jianzhong; Cui, Yan; Cui, Yimin

    2015-01-01

    As a representative fluoroquinolone antibacterial, ciprofloxacin is frequently used to treat infections caused by bacteria such as E. coli. It is much meaningful to explore ciprofloxacin susceptibility and investigate a possible mechanism of drug susceptibility changes in E. coli ATCC25922 exposed to the environmental stress of simulated microgravity. The subculture of E. coli lasted for 7 days under simulated microgravity conditions (SMG) and normal microgravity (NG) conditions. On the 8th day, the cultures were divided into three groups: (1) NG group (continuous NG cultures); (2) SMG group (continuous SMG cultures); (3) SMCNG group (simulated microgravity change into normal gravity cultures). Ciprofloxacin (a final concentration of 0.125 μg/ml) sensitivity and expression of acrAB-tolC genes were detected in E. coli cells. The count and percentage of viable cells in the SMG cultures bacteria exposed to ciprofloxacin were higher than that in NG cultures and reduced to the levels of NG group when they were subcultivated from SMG to NG. The expressions of efflux pump genes (acrA, acrB and tolC) were upregulated in SMG culture and downregulated to the levels of NG group when they were subcultivated from SMG to NG. Susceptibility to ciprofloxacin and expression of acrAB-tolC genes in E. coli could be reversibly affected by SMG conditions. Over expression of efflux pump genes acrAB-tolC perhaps played an important role in decreased CIP susceptibility under SMG. PMID:26339360

  20. Actinobacillus succinogenes ATCC 55618 Fermentation Medium Optimization for the Production of Succinic Acid by Response Surface Methodology

    PubMed Central

    Zhu, Li-Wen; Wang, Cheng-Cheng; Liu, Rui-Sang; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie

    2012-01-01

    As a potential intermediary feedstock, succinic acid takes an important place in bulk chemical productions. For the first time, a method combining Plackett-Burman design (PBD), steepest ascent method (SA), and Box-Behnken design (BBD) was developed to optimize Actinobacillus succinogenes ATCC 55618 fermentation medium. First, glucose, yeast extract, and MgCO3 were identified to be key medium components by PBD. Second, preliminary optimization was run by SA method to access the optimal region of the key medium components. Finally, the responses, that is, the production of succinic acid, were optimized simultaneously by using BBD, and the optimal concentration was located to be 84.6 g L−1 of glucose, 14.5 g L−1 of yeast extract, and 64.7 g L−1 of MgCO3. Verification experiment indicated that the maximal succinic acid production of 52.7 ± 0.8 g L−1 was obtained under the identified optimal conditions. The result agreed with the predicted value well. Compared with that of the basic medium, the production of succinic acid and yield of succinic acid against glucose were enhanced by 67.3% and 111.1%, respectively. The results obtained in this study may be useful for the industrial commercial production of succinic acid. PMID:23093852

  1. Simulated microgravity affects ciprofloxacin susceptibility and expression of acrAB-tolC genes in E. coli ATCC25922.

    PubMed

    Xu, Bingxin; Li, Chenglin; Zheng, Yanhua; Si, Shaoyan; Shi, Yuhua; Huang, Yuling; Zhang, Jianzhong; Cui, Yan; Cui, Yimin

    2015-01-01

    As a representative fluoroquinolone antibacterial, ciprofloxacin is frequently used to treat infections caused by bacteria such as E. coli. It is much meaningful to explore ciprofloxacin susceptibility and investigate a possible mechanism of drug susceptibility changes in E. coli ATCC25922 exposed to the environmental stress of simulated microgravity. The subculture of E. coli lasted for 7 days under simulated microgravity conditions (SMG) and normal microgravity (NG) conditions. On the 8th day, the cultures were divided into three groups: (1) NG group (continuous NG cultures); (2) SMG group (continuous SMG cultures); (3) SMCNG group (simulated microgravity change into normal gravity cultures). Ciprofloxacin (a final concentration of 0.125 μg/ml) sensitivity and expression of acrAB-tolC genes were detected in E. coli cells. The count and percentage of viable cells in the SMG cultures bacteria exposed to ciprofloxacin were higher than that in NG cultures and reduced to the levels of NG group when they were subcultivated from SMG to NG. The expressions of efflux pump genes (acrA, acrB and tolC) were upregulated in SMG culture and downregulated to the levels of NG group when they were subcultivated from SMG to NG. Susceptibility to ciprofloxacin and expression of acrAB-tolC genes in E. coli could be reversibly affected by SMG conditions. Over expression of efflux pump genes acrAB-tolC perhaps played an important role in decreased CIP susceptibility under SMG.

  2. Replacement of Soybean Meal with Animal Origin Protein Meals Improved Ramoplanin A2 Production by Actinoplanes sp. ATCC 33076.

    PubMed

    Erkan, Deniz; Kayali, Hulya Ayar

    2016-09-01

    Ramoplanin A2 is the last resort antibiotic for treatment of many high morbidity- and mortality-rated hospital infections, and it is expected to be marketed in the forthcoming years. Therefore, high-yield production of ramoplanin A2 gains importance. In this study, meat-bone meal, poultry meal, and fish meal were used instead of soybean meal for ramoplanin A2 production by Actinoplanes sp. ATCC 33076. All animal origin nitrogen sources stimulated specific productivity. Ramoplanin A2 levels were determined as 406.805 mg L(-1) in fish meal medium and 374.218 mg L(-1) in poultry meal medium. These levels were 4.25- and 4.09-fold of basal medium, respectively. However, the total yield of poultry meal was higher than that of fish meal, which is also low-priced. In addition, the variations in pH levels, protein levels, reducing sugar levels, extracellular protease, amylase and lipase activities, and intracellular free amino acid levels were monitored during the incubation period. The correlations between ramoplanin production and these variables with respect to the incubation period were determined. The intracellular levels of L-Phe, D-Orn, and L-Leu were found critical for ramoplanin A2 production. The strategy of using animal origin nitrogen sources can be applied for large-scale ramoplanin A2 production.

  3. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.

    PubMed

    Clares, Marta E; Moreno, José; Guerrero, Miguel G; García-González, Mercedes

    2014-10-10

    The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures.

  4. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-06-01

    Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions.

  5. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation.

    PubMed

    Li, Hua-Xiang; Lu, Zhen-Ming; Geng, Yan; Gong, Jin-Song; Zhang, Xiao-Juan; Shi, Jin-Song; Xu, Zheng-Hong; Ma, Yan-He

    2015-10-01

    Large-scale submerged fermentation (SmF) of Antrodia camphorata (A. camphorata) usually encounters challenges including tedious preparation of mycelial inoculum, long fermentation period (10-14 d), and poor repeatability. Here we developed an asexual reproduction-based repeated batch fermentation (RBF) process for bioactive metabolites production by A. camphorata ATCC 200183. Compared with traditional batch fermentation, production time was shortened to 58 d from 80 d (overall time for eight cycles) using the RBF process established in this study, and accordingly, the productivities of bioactive metabolites (including antrodins) were improved by 40-60%. Kinetic parameters (α is 2.1-18.7 times as β) indicated that the cell growth was the major contribution for bioactive metabolites production. The RBF shows excellent batch-repeatability (Pearson correlation coefficient of 0.998±0.001), together with advantages of energy-efficient, low cost, and labor-saving, RBF process can be implemented to SmF by other filamentous fungi.

  6. Proton Nuclear Magnetic Resonance Spectroscopy as a Technique for Gentamicin Drug Susceptibility Studies with Escherichia coli ATCC 25922

    PubMed Central

    García-Álvarez, Lara; Busto, Jesús H.; Avenoza, Alberto; Sáenz, Yolanda; Peregrina, Jesús Manuel

    2015-01-01

    Antimicrobial drug susceptibility tests involving multiple time-consuming steps are still used as reference methods. Today, there is a need for the development of new automated instruments that can provide faster results and reduce operating time, reagent costs, and labor requirements. Nuclear magnetic resonance (NMR) spectroscopy meets those requirements. The metabolism and antimicrobial susceptibility of Escherichia coli ATCC 25922 in the presence of gentamicin have been analyzed using NMR and compared with a reference method. Direct incubation of the bacteria (with and without gentamicin) into the NMR tube has also been performed, and differences in the NMR spectra were obtained. The MIC, determined by the reference method found in this study, would correspond with the termination of the bacterial metabolism observed with NMR. Experiments carried out directly into the NMR tube enabled the development of antimicrobial drug susceptibility tests to assess the effectiveness of the antibiotic. NMR is an objective and reproducible method for showing the effects of a drug on the subject bacterium and can emerge as an excellent tool for studying bacterial activity in the presence of different antibiotic concentrations. PMID:25972417

  7. Investigating the influence of pH, temperature and agitation speed on yellow pigment production by Penicillium aculeatum ATCC 10409.

    PubMed

    Afshari, Majid; Shahidi, Fakhri; Mortazavi, Seyed Ali; Tabatabai, Farideh; Es'haghi, Zarin

    2015-01-01

    In this study, the combined effect of pH, temperature and agitation speed on yellow pigment production and mycelial growth of Penicillium aculeatum ATCC 10409 was investigated in whey media. Different pH levels (5, 6.5 and 8), temperatures (25, 30 and 35°C) and agitation speed levels (100 and 150 rpm) were tested to determine the best conditions to produce a fungal yellow pigment under submerged fermentation. The best production of yellow pigment (1.38 g/L) was obtained with a pH value of 6.5, a temperature of 30°C and an agitation speed of 150 rpm. In contrast, the maximal biomass concentration (11.12 g/L) was obtained at pH value of 8, a temperature of 30°C and an agitation speed of 100 rpm. These results demonstrated that biomass and yellow pigment production were not directly associated. The identification of the structure of unknown P. aculeatum yellow pigment was detected using UV absorption spectrum and FT-IR spectroscopy.

  8. The positive effects of Mn2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332

    PubMed Central

    Huang, Xiangfeng; Liu, Jia'nan; Wang, Yihan; Liu, Jia; Lu, Lijun

    2015-01-01

    Surfactin, one of the most effective biosurfactants, has great potential in commercial applications. Studies on effective methods to reduce surfactin’s production cost are always a hotspot in the research field of biosurfactants. The aim of this study was to reveal the role of Mn2+ in promoting the biosynthesis of surfactin by Bacillus subtilis ATCC 21332, which could arise more targeted suggestions on surfactin yield promotion. In this study, B. subtilis was cultivated in media containing different Mn2+ concentrations. The obtained results showed that the yield of surfactin gradually increased upon Mn2+ addition (0.001 to 0.1 mmol/L) and achieved the maximal production of 1500 mg/L, which reached 6.2-fold of the yield obtained in media without Mn2+ addition. Correspondingly, the usage ratios of ammonium nitrate were improved. When the Mn2+ concentration was higher than 0.05 mmol/L, nitrate became the main nitrogen source, instead of ammonium, indicating that the nitrogen utilization pattern was also changed. An increase in nitrate reductase activity was observed and the increase upon Mn2+ dosage had a positive correlate with nitrate use, and then stimulated secondary metabolic activity and surfactin synthesis. On the other hand, Mn2+ enhanced the glutamate synthase activity, which increased nitrogen absorption and transformation and provided more free amino acids for surfactin synthesis. PMID:26019656

  9. Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803

    PubMed Central

    Saha, Rajib; Verseput, Alex T.; Berla, Bertram M.; Mueller, Thomas J.; Pakrasi, Himadri B.; Maranas, Costas D.

    2012-01-01

    Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731) for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen) and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively) span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100) and a sensitivity of 1 (19/19) for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark) biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models. PMID:23133581

  10. Insights into the complex 3-D architecture of thylakoid membranes in unicellular cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B

    2011-04-01

    In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is left-handed in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.

  11. Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC33047

    SciTech Connect

    Ramos, J.L.; Guerrero, M.G.; Losada, M.

    1984-07-01

    Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When L-methionine-DL-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 ..mu..mol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of L-methionine-DL-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors L-methionine-DL-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.

  12. Dechlorination of chlorinated compounds by Trametes versicolor ATCC 200801 crude laccase and quantitative structure-activity relationship of toxicity.

    PubMed

    Çabuk, Ahmet; Sidir, Yadigar G; Aytar, Pinar; Gedikli, Serap; Sidir, İsa

    2012-01-01

    Chlorinated compounds constitute an important class of xenobiotics. Crude laccase was produced using Trametes versicolor ATCC (200801) in potato dextrose broth, with wheat bran as an inducing medium, and its ability to dechlorinate eight compounds was determined. The compounds were 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, heptachlor and pentachlorophenol. A range of parameters for the dechlorination of some compounds was tested, including incubation period, pH, initial substrate concentration, temperature, and enzyme quantity. The oxygen consumption was determined during each dechlorination process, under pre-determined optimum conditions. The changes in chemical structure of the compounds were also determined, by using FTIR analysis, following dechlorination of test chlorophenolics. Strong interactions were found to lead to the reactivity of hydroxyl groups in some cases and chlorine atoms were released from the benzene ring. The changes in compound toxicity were monitored before and after enzymatic treatment, using Microtox. Quantitative structure-activity relationships for the toxicity of the chlorinated compounds were developed. Consequently, the toxic activity of the test compounds was controlled by electrophilic index and electronic properties.

  13. Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304.

    PubMed

    Taoka, Yousuke; Nagano, Naoki; Okita, Yuji; Izumida, Hitoshi; Sugimoto, Shinichi; Hayashi, Masahiro

    2011-04-01

    Thraustochytrium aureum ATCC 34304 was grown in the presence and absence of polyoxyethylene sorbitan monooleate (Tween 80). The aim of this work was to obtain basic knowledge about the effect of Tween 80 on growth, lipid accumulation and fatty acid composition in T. aureum. The addition of Tween 80 to a culture medium significantly enhanced the growth of T. aureum, and the biomass increased with an increase of Tween 80 content. Total lipid content and total fatty acid content were significantly higher in 1.0% Tween 80 in comparison with the control (absence of Tween 80). The fatty acid profile showed that the content of C18:1n-9 (oleic acid) significantly increased as a result of the addition of Tween 80. These results indicated that part of the Tween 80 added to the medium was utilized as a carbon source or that the oleate included in Tween 80 was directly incorporated into T. aureum cells as a fatty acid. Neither the DHA content nor the percentage of DHA did not change in spite of the addition of Tween 80. However, the DHA yield significantly increased because the biomass increased due to the addition of Tween 80.

  14. The glycolipids from the non-capsulated strain of Pneumococcus I-192R, A.T.C.C. 12213

    PubMed Central

    Brundish, D. E.; Shaw, N.; Baddiley, J.

    1965-01-01

    1. The total lipid was extracted from the non-capsulated strain of Pneumococcus I–192R, A.T.C.C. 12213, with chloroform–methanol mixtures. Two glycolipids were isolated by chromatography on silicic acid and DEAE-cellulose (acetate form). 2. The major glycolipid was obtained pure in a yield of 640mg./34g. dry wt. of cells and represents about 34% of the total lipid. It contained galactose, glucose, glycerol and fatty acid ester residues in the proportions 1:1:1:2, and yielded on saponification a crystalline non-reducing glycoside. 3. The structure of the glycoside was shown to be O-α-d-galactopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-d-glycerol. The fatty acids obtained on saponification were identified by gas–liquid partition chromatography of their methyl esters. 4. The minor glycolipid was obtained as a 1:1 (w/w) mixture with the major component, but after saponification the two glycosides were separated by paper chromatography. Evidence was obtained for the structure of the glycoside derived from the minor glycolipid as 1-O-α-d-glucosylglycerol. 5. A general method is described for determining the stereochemistry of the glycerol moiety in 1-linked glycerol glycosides. PMID:16749097

  15. The complete genome sequence and analysis of vB_VorS-PVo5, a Vibrio phage infectious to the pathogenic bacterium Vibrio ordalii ATCC-33509.

    PubMed

    Echeverría-Vega, Alex; Morales-Vicencio, Pablo; Saez-Saavedra, Camila; Ceh, Janja; Araya, Rubén

    2016-01-01

    The bacterium Vibrio ordalii is best known as the causative agent of vibriosis outbreaks in fish and thus recognized for generating serious production losses in aquaculture systems. Here we report for the first time on the isolation and the genome sequencing of phage vB_VorS-PVo5, infectious to Vibrio ordalii ATCC 33509. The features as well as the complete genome sequence and annotation of the Vibrio phage are described; vB_VorS-PVo5 consists of a lineal double stranded DNA totaling ~ 80.6 Kb in length. Considering its ability to lyse Vibrio ordalii ATCC 33509, the phage is likely to gain importance in future aquaculture applications by controlling the pathogen and as such replacing antibiotics as the treatment of choice.

  16. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    SciTech Connect

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-07-01

    Native zinc-containing ATP sulfurylase from D. desulfuricans ATCC 27774 was purified to homogeneity and crystallized. Diffraction data were collected to 2.5 Å resolution. Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

  17. Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin.

    PubMed

    Williamson, N R; Simonsen, H T; Harris, A K P; Leeper, F J; Salmond, George P C

    2006-02-01

    The prodigiosin biosynthetic gene cluster (pig cluster) of Serratia marcescens ATCC 274 (Sma 274) is flanked by cueR/copA homologues. Inactivation of the copA homologue resulted in an increased sensitivity to copper, confirming that CopA is involved in copper homeostasis in Sma 274. The effect of copper on the biosynthesis of prodigiosin in Sma 274 and the copA mutant strain was investigated. Increased levels of copper were found to reduce prodigiosin production in the wild type Sma 274, but increase production in the copA mutant strain. The physiological implications for CopA mediated prodigiosin production are discussed. We also demonstrate that the gene products of pigB-pigE of Sma 274 are sufficient for the biosynthesis of 2-methyl-3-n-amyl-pyrrole and condensation with 4-methoxy-2,2'-bipyrrole-5-carboxyaldehyde to form prodigiosin, as we have shown for Serratia sp. ATCC 39006.

  18. New methymycin derivatives of Streptomyces venezuelae ATCC 15439 and their inhibitory effects on human T cell proliferation mediated by PMA/ionomycin.

    PubMed

    Ding, Rong; Tang, Jinshan; Gao, Hao; Li, Ting; Zhou, Hua; Liu, Liang; Yao, Xin-Sheng

    2012-09-01

    Two new methymycin derivatives, 3'-demethylmethymycin (1) and 3'-demethyldeoxymethymycin (2), together with seven known ones (3-9), were obtained from the strain Streptomyces venezuelae ATCC 15439. Their structures were determined on the basis of IR, MS, 1D and 2D NMR data. In addition, the inhibitory effects of all the compounds on human T cell proliferation mediated by PMA/ionomycin were evaluated. The data suggested for the first time that methymycin derivatives have potential anti-inflammatory activity.

  19. Role of Acinetobactin-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galleria mellonella Caterpillars, and Mice

    PubMed Central

    Gaddy, Jennifer A.; Arivett, Brock A.; McConnell, Michael J.; López-Rojas, Rafael; Pachón, Jerónimo

    2012-01-01

    Acinetobacter baumannii, which causes serious infections in immunocompromised patients, expresses high-affinity iron acquisition functions needed for growth under iron-limiting laboratory conditions. In this study, we determined that the initial interaction of the ATCC 19606T type strain with A549 human alveolar epithelial cells is independent of the production of BasD and BauA, proteins needed for acinetobactin biosynthesis and transport, respectively. In contrast, these proteins are required for this strain to persist within epithelial cells and cause their apoptotic death. Infection assays using Galleria mellonella larvae showed that impairment of acinetobactin biosynthesis and transport functions significantly reduces the ability of ATCC 19606T cells to persist and kill this host, a defect that was corrected by adding inorganic iron to the inocula. The results obtained with these ex vivo and in vivo approaches were validated using a mouse sepsis model, which showed that expression of the acinetobactin-mediated iron acquisition system is critical for ATCC 19606T to establish an infection and kill this vertebrate host. These observations demonstrate that the virulence of the ATCC 19606T strain depends on the expression of a fully active acinetobactin-mediated system. Interestingly, the three models also showed that impairment of BasD production results in an intermediate virulence phenotype compared to those of the parental strain and the BauA mutant. This observation suggests that acinetobactin intermediates or precursors play a virulence role, although their contribution to iron acquisition is less relevant than that of mature acinetobactin. PMID:22232188

  20. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    SciTech Connect

    Rudolf, Jeffrey D.; Bigelow, Lance; Chang, Changsoo; Cuff, Marianne E.; Lohman, Jeremy R.; Chang, Chin-Yuan; Ma, Ming; Yang, Dong; Clancy, Shonda; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  1. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.

    PubMed

    Baumgart, Meike; Unthan, Simon; Rückert, Christian; Sivalingam, Jasintha; Grünberger, Alexander; Kalinowski, Jörn; Bott, Michael; Noack, Stephan; Frunzke, Julia

    2013-10-01

    The activity of bacteriophages and phage-related mobile elements is a major source for genome rearrangements and genetic instability of their bacterial hosts. The genome of the industrial amino acid producer Corynebacterium glutamicum ATCC 13032 contains three prophages (CGP1, CGP2, and CGP3) of so far unknown functionality. Several phage genes are regularly expressed, and the large prophage CGP3 (∼190 kbp) has recently been shown to be induced under certain stress conditions. Here, we present the construction of MB001, a prophage-free variant of C. glutamicum ATCC 13032 with a 6% reduced genome. This strain does not show any unfavorable properties during extensive phenotypic characterization under various standard and stress conditions. As expected, we observed improved growth and fitness of MB001 under SOS-response-inducing conditions that trigger CGP3 induction in the wild-type strain. Further studies revealed that MB001 has a significantly increased transformation efficiency and produced about 30% more of the heterologous model protein enhanced yellow fluorescent protein (eYFP), presumably as a consequence of an increased plasmid copy number. These effects were attributed to the loss of the restriction-modification system (cg1996-cg1998) located within CGP3. The deletion of the prophages without any negative effect results in a novel platform strain for metabolic engineering and represents a useful step toward the construction of a C. glutamicum chassis genome of strain ATCC 13032 for biotechnological applications and synthetic biology.

  2. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor.

    PubMed

    Nair, R V; Green, E M; Watson, D E; Bennett, G N; Papoutsakis, E T

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871-885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain.

  3. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.

    PubMed

    Hassan, Sedky H A; Morsy, Fatthy Mohamed

    2015-12-01

    Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.

  4. The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces.

    PubMed

    Truong, Vi Khanh; Geeganagamage, Nipuni Mahanamanam; Baulin, Vladimir A; Vongsvivut, Jitraporn; Tobin, Mark J; Luque, Pere; Crawford, Russell J; Ivanova, Elena P

    2017-03-01

    Nanostructured insect wing surfaces have been reported to possess the ability to resist bacterial colonization through the mechanical rupture of bacterial cells coming into contact with the surface. In this work, the susceptibility of physiologically young, mature and old Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 bacterial cells, to the action of the bactericidal nano-pattern of damselfly Calopteryx haemorrhoidalis wing surfaces, was investigated. The results were obtained using several surface characterization techniques including optical profilometry, scanning electron microscopy, synchrotron-sourced Fourier transform infrared microspectroscopy, water contact angle measurements and antibacterial assays. The data indicated that the attachment propensity of physiologically young S. aureus CIP 65.8(T) and mature P. aeruginosa ATCC 9721 bacterial cells was greater than that of the cells at other stages of growth. Both the S. aureus CIP 65.8(T) and P. aeruginosa ATCC 9721 cells, grown at the early (1 h) and late stationary phase (24 h), were found to be most susceptible to the action of the wings, with up to 89.7 and 61.3% as well as 97.9 and 97.1% dead cells resulting from contact with the wing surface, respectively.

  5. Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest

    PubMed Central

    Mandelli, Fernanda; Oliveira Ramires, Brenda; Couger, Matthew Brian; Paixão, Douglas A. A.; Camilo, Cesar M.; Polikarpov, Igor; Prade, Rolf

    2015-01-01

    Here, we present the draft genome sequence of Thermus filiformis strain ATCC 43280, a thermophile bacterium capable of producing glycosylated carotenoids acylated with branched fatty acids and enzymes of biotechnological potential. PMID:25977443

  6. Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest.

    PubMed

    Mandelli, Fernanda; Oliveira Ramires, Brenda; Couger, Matthew Brian; Paixão, Douglas A A; Camilo, Cesar M; Polikarpov, Igor; Prade, Rolf; Riaño-Pachón, Diego M; Squina, Fabio M

    2015-05-14

    Here, we present the draft genome sequence of Thermus filiformis strain ATCC 43280, a thermophile bacterium capable of producing glycosylated carotenoids acylated with branched fatty acids and enzymes of biotechnological potential.

  7. Comparison of Molecular and Biological Characteristics of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine (Ingelvac PRRS MLV), the Parent Strain of the Vaccine (ATCC VR2332), ATCC VR2385, and Two Recent Field Isolates of PRRSV

    PubMed Central

    Opriessnig, T.; Halbur, P. G.; Yoon, K.-J.; Pogranichniy, R. M.; Harmon, K. M.; Evans, R.; Key, K. F.; Pallares, F. J.; Thomas, P.; Meng, X. J.

    2002-01-01

    The objectives of this study were to compare the molecular and biological characteristics of recent porcine reproductive and respiratory syndrome virus (PRRSV) field isolates to those of a modified live virus (MLV) PRRS vaccine and its parent strain. One hundred seventeen, 4-week-old pigs were randomly assigned to six groups. Group 1 (n = 20) served as sham-inoculated negative controls, group 2 (n = 19) was inoculated with Ingelvac PRRS MLV vaccine, group 3 (n = 20) was inoculated with the parent strain of the vaccine (ATCC VR2332), group 4 (n = 19) was inoculated with vaccine-like PRRSV field isolate 98-38803, group 5 (n = 19) was inoculated with PRRSV field isolate 98-37120, and group 6 (n = 20) was inoculated with known high-virulence PRRSV isolate ATCC VR2385. The levels of severity of gross lung lesions (0 to 100%) among the groups were significantly different at both 10 (P < 0.0001) and 28 days postinoculation (p.i.) (P = 0.002). At 10 days p.i., VR2332 (26.5% ± 4.64%) and VR2385 (36.4% ± 6.51%) induced gross lesions of significantly greater severity than 98-38803 (0.0% ± 0.0%), 98-37120 (0.8% ± 0.42%), Ingelvac PRRS MLV (0.9% ± 0.46%), and negative controls (2.3% ± 1.26%). At 28 days p.i., 98-37120 (17.2% ± 6.51%) induced gross lesions of significantly greater severity than any of the other viruses. Analyses of the microscopic-interstitial-pneumonia-lesion scores (0 to 6) revealed that VR2332 (2.9 ± 0.23) and VR2385 (3.1 ± 0.35) induced significantly more severe lesions at 10 days p.i. At 28 days p.i., VR2385 (2.5 ± 0.27), VR2332 (2.3 ± 0.21), 98-38803 (2.6 ± 0.29), and 98-37120 (3.0 ± 0.41) induced significantly more severe lesions than Ingelvac PRRS MLV (0.7 ± 0.17) and controls (0.7 ± 0.15). The molecular analyses and biological characterizations suggest that the vaccine-like isolate 98-38803 (99.5% amino acid homology based on the ORF5 gene) induces microscopic pneumonia lesions similar in type to, but different in severity and time of

  8. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract.

    PubMed

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-03-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.

  9. Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718.

    PubMed

    Kozlowski, Jessica A; Price, Jennifer; Stein, Lisa Y

    2014-08-01

    Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2 (-)) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2 (-) reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes.

  10. Transcriptional response of Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and characterization of the OxyR regulon.

    PubMed

    Milse, Johanna; Petri, Kathrin; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The aerobic soil bacterium Corynebacterium glutamicum ATCC 13032 has a remarkable natural resistance to hydrogen peroxide. A major player in hydrogen peroxide defense is the LysR type transcriptional regulator OxyR, homologs of which are present in a wide range of bacteria. In this study, the global transcriptional response of C. glutamicum to oxidative stress induced by hydrogen peroxide was examined using whole genome DNA microarrays, demonstrating the dynamic reaction of the regulatory networks. Deletion of oxyR resulted in an increased resistance of the C. glutamicum mutant to hydrogen peroxide. By performing DNA microarray hybridizations and RT-qPCR, differentially expressed genes were detected in the mutant. The direct control by OxyR was verified by electrophoretic mobility shift assays for 12 target regions. The results demonstrated that OxyR in C. glutamicum acts as a transcriptional repressor under non-stress conditions for a total of 23 genes. The regulated genes encode proteins related to oxidative stress response (e.g. katA), iron homeostasis (e.g. dps) and sulfur metabolism (e.g. suf cluster). Besides the regulator of the suf cluster, SufR, OxyR regulated the gene cg1695 encoding a putative transcriptional regulator, indicating the role of OxyR as a master regulator in defense against oxidative stress. Using a modified DNase footprint approach, the OxyR-binding sites in five target promoter regions, katA, cydA, hemH, dps and cg1292, were localized and in each upstream region at least two overlapping binding sites were found. The DNA regions protected by the OxyR protein are about 56bp in length and do not have evident sequence similarities. Still, by giving an insight in the H2O2 stimulon and extending the OxyR regulon this study considerably contributes to the understanding of the response of C. glutamicum to hydrogen peroxide-mediated oxidative stress.

  11. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from "Chelatobacter" strain ATCC 29600.

    PubMed Central

    Uetz, T; Schneider, R; Snozzi, M; Egli, T

    1992-01-01

    An assay based on the consumption of nitrilotriacetate (NTA) was developed to measure the activity of NTA monooxygenase (NTA-Mo) in cell extracts of "Chelatobacter" strain ATCC 29600 and to purify a functional, NTA-hydroxylating enzyme complex. The complex consisted of two components that easily dissociated during purification and upon dilution. Both components were purified to more than 95% homogeneity, and it was possible to reconstitute the functional, NTA-hydroxylating enzyme complex from pure component A (cA) and component B (cB). cB exhibited NTA-stimulated NADH oxidation but was unable to hydroxylate NTA. It had a native molecular mass of 88 kDa and contained flavin mononucleotide (FMN). cA had a native molecular mass of 99 kDa. No catalytic activity has yet been shown for cA alone. Under unfavorable conditions, NADH oxidation was partly or completely uncoupled from hydroxylation, resulting in the formation of H2O2. Optimum hydroxylating activity was found to be dependent on the molar ratio of the two components, the absolute concentration of the enzyme complex, and the presence of FMN. Uncoupling of the reaction was favored in the presence of high salt concentrations and in the presence of flavin adenine dinucleotide. The NTA-Mo complex was sensitive to sulfhydryl reagents, but inhibition was reversible by addition of excess dithiothreitol. The Km values for Mg(2+)-NTA, FMN, and NADH were determined as 0.5 mM, 1.3 microM, and 0.35 mM, respectively. Of 26 tested compounds, NTA was the only substrate for NTA-Mo. Images PMID:1735711

  12. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  13. Differential Transcriptional Analysis of the Cyanobacterium Cyanothece sp. Strain ATCC 51142 during Light-Dark and Continuous-Light Growth

    SciTech Connect

    Toepel, Jorg; Welsh, Eric A.; Summerfield, Tina; Pakrasi, Himadri B.; Sherman, Louis A.

    2008-06-01

    We analyzed the metabolic rhythms and differential gene transcription in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC51142 under N₂-fixing conditions with 12h light-12h dark cycles followed by 36 h continuous light. Cultures were grown in a 6-L bioreactor that was specially designed for photosynthetic microorganisms and that permitted continuous monitoring of parameters such as pH and dissolved oxygen. Our main objective was to determine the strategies used by these cells to perform N₂ fixation under normal day-night conditions, as well as under greater stress caused by continuous light. Our results strongly suggested that the level of N₂ fixation is dependent upon respiration for energy production and for removal of intracellular O₂. We determined that N₂ fixation cycled in continuous light, but that the N₂ fixation peak was lower and that glycogen degradation and respiration were also lower under these conditions. We also demonstrated that nifH (the gene encoding the Fe protein) and nifB and nifX were strongly induced in the continuous light; this is consistent with the mode of operation of these proteins relative to the MoFe protein and suggested that any regulation of N₂ fixation was at a posttranscriptional level. Also, many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione) were strongly induced during N₂ fixation in continuous light. We suggest that these carriers were required to generate enhanced cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of enhanced O₂, respectively.

  14. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data.

    PubMed Central

    Kordel, M; Hofmann, B; Schomburg, D; Schmid, R D

    1991-01-01

    A procedure for the purification of a very hydrophobic lipase from Pseudomonas sp. strain ATCC 21808 was elaborated by avoiding the use of long-chain detergents in view of subsequent crystallization of the enzyme. The purification procedure included chromatography on Q-Sepharose in the presence of n-octyl-beta-D-glucopyranoside, Ca2+ precipitation of fatty acids, and Octyl-Sepharose chromatography. The enzyme was purified 260-fold to a yield of 35% and a specific activity of 3,300 U/mg. The molecular weight was determined as 35,000; a polyacrylamide gel under nondenaturing conditions revealed a band at 110,000, and the isoelectric point proved to be at 4.5 to 4.6. The lipase crystallized with different salts and ethylene glycol polymers in the presence of n-octyl-beta-D-glucopyranoside and one alkyloligooxyethylene compound (CxEy) in the range from C5E2 to C8E4. The crystals diffract to a resolution of about 0.25 nm. Precession photographs revealed that they belong to space group C2 with lattice constants of a = 9.27 nm, b = 4.74 nm, c = 8.65 nm, and beta = 122.3 degrees, indicating a cell content of one molecule per asymmetric unit of the crystal. In hydrolysis of triglycerides, the lipase showed substrate specificity for saturated fatty acids from C6 to C12 and unsaturated long-chain fatty acids. Monoglycerides were hydrolyzed very slowly. The N-terminal sequence is identical to that of the lipase from Pseudomonas cepacia. Treatment with diethyl-p-nitrophenylphosphate affected the activities toward triolein and p-nitrophenylacetate to the same extent and with the same velocity. Images PMID:1856176

  15. Effects of Areca Nut Extracts on Phagocytosis of Actinobacillus actinomycete mcomitans ATCC 33384 by Neutrophils in Patients with Chronic Periondontitis

    PubMed Central

    Patil, Kavita Gangaram; Metgud, Sharada Chidanand

    2013-01-01

    Background & Objective: A higher prevalence of periodontal disease among areca nut chewers than non chewers has been demonstrated. Neutrophils, the first line of defence mechanism against microbial infection play an important role in maintaining the periodontal health. In this context our aim was to evaluate the effects of areca nut extracts on phagocytic activity by neutrophils isolated from gingival crevicular washing of healthy subjects and patients with chronic periodontitis. Material and Methods: Sample size consisted of a total of 60 subjects which were divided into two groups of 30 each. Group I consisted healthy subjects and Group II consisted clinically diagnosed cases of chronic periodontitis. Neutrophils isolated from gingival crevicular washings of both groups were treated with aqueous extracts of ripe areca nut (rANE) and tender areca nut (tANE) and examined for their effect on cellular viability of neutrophils using typan blue exclusion assay. The possible/ ableffects on the phagocytic activity of neutrophils against a periodontal pathogen Aggregatibacter actinomycetemcomitans(ATCC 33384) was determined by using microscopic method. Results: Both rANE and tANE affected the phagocytic activity by neutrophils in healthy and patients with chronic periodontitis. Ripe areca nut extract has altered the neutrophil functions more than tender areca nut in both the groups. There was no difference seen in the cell viability of neutrophils when treated with rANE and tANE in both the groups (p> 0.05). Conclusion: Both ripe and tender arecanut extract affected the neutrophil function in healthy and patients with chronic periodontitis. Ripe arecanut extract significantly altered the neutrophils functions more than tender areca nut extract. Thus, alterations in these functions of neutrophils may lead to signs of clinical diseases associated with areca chewing. PMID:24298462

  16. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  17. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models.

    PubMed

    Tan, Michelle S F; White, Aaron P; Rahman, Sadequr; Dykes, Gary A

    2016-01-01

    Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.

  18. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models

    PubMed Central

    Tan, Michelle S. F.; White, Aaron P.; Rahman, Sadequr

    2016-01-01

    Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment. PMID:27355584

  19. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    SciTech Connect

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  20. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009

    PubMed Central

    Li, Rongfeng; Lloyd, Evan P.; Moshos, Kristos A.

    2014-01-01

    Nearly 50 naturally-occurring carbapenem β-lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C-2 and C-6 side chains as well as the stereochemistry at C-5/C-6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. While the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by S. argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that genes encoding the biosynthesis of the bicyclic core and the C-6 and C-2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22/23, encode a two-component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems. PMID:24420617

  1. Revision of N2O-Producing Pathways in the Ammonia-Oxidizing Bacterium Nitrosomonas europaea ATCC 19718

    PubMed Central

    Kozlowski, Jessica A.; Price, Jennifer

    2014-01-01

    Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2−) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2− reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes. PMID:24907318

  2. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques.

    PubMed

    Lu, Zhen-Ming; Lei, Jian-Yong; Xu, Hong-Yu; Shi, Jing-Song; Xu, Zheng-Hong

    2011-10-01

    In this study, alteration in morphology of submergedly cultured Antrodia camphorata ATCC 200183 including arthroconidia, mycelia, external and internal structures of pellets was investigated. Two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) were built to optimize the inoculum size and medium components for intracellular triterpenoid production from A. camphorata. Root mean squares error, R (2), and standard error of prediction given by ANN model were 0.31%, 0.99%, and 0.63%, respectively, while RSM model gave 1.02%, 0.98%, and 2.08%, which indicated that fitness and prediction accuracy of ANN model was higher when compared to RSM model. Furthermore, using genetic algorithm (GA), the input space of ANN model was optimized, and maximum triterpenoid production of 62.84 mg l(-1) was obtained at the GA-optimized concentrations of arthroconidia (1.78 × 10⁵ ml(-1)) and medium components (glucose, 25.25 g l(-1); peptone, 4.48 g l(-1); and soybean flour, 2.74 g l(-1)). The triterpenoid production experimentally obtained using the ANN-GA designed medium was 64.79 ± 2.32 mg l(-1) which was in agreement with the predicted value. The same optimization process may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoid production from A. camphorata and to improve the production of bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.

  3. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    PubMed

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production.

  4. EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction.

    PubMed

    Rivas, María G; González, Pablo J; Brondino, Carlos D; Moura, José J G; Moura, Isabel

    2007-11-01

    The EPR characterization of the molybdenum(V) forms obtained on formate reduction of both as-prepared and inhibited formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774, an enzyme that catalyzes the oxidation of formate to CO(2), is reported. The Mo(V) EPR signal of the as-prepared formate-reduced enzyme is rhombic (g(max)=2.012, g(mid)=1.996, g(min)=1.985) and shows hyperfine coupling with two nuclear species with I=1/2. One of them gives an anisotropic splitting and is not solvent exchangeable (A(max)=11.7, A(mid)=A(min)=non-detectable, A-values in cm(-1)x10(-4)). The second species is exchangeable with solvent and produces a splitting at the three principal g-values (A(max)=7.7, A(mid)=10.0, A(min)=9.3). The hyperfine couplings of the non-solvent and solvent exchangeable nuclei are assigned to the hydrogen atoms of the beta-methylene carbon of a selenocysteine and to a Mo ligand whose nature, sulfydryl or hydroxyl, is still in debate. The Mo(V) species obtained in the presence of inhibitors (azide or cyanide) yields a nearly axial EPR signal showing only one detectable splitting given by nuclear species with I=1/2 (g(max)=2.092, g(mid)=2.000, g(min)=1.989, A(max)=non-detectable, A(mid)=A(min)=7.0), which is originated from the alpha-proton donated by the formate to a proximal ligand of the molybdenum. The possible structures of both paramagnetic molybdenum species (observed upon formate reduction in presence and absence of inhibitors) are discussed in comparison with the available structural information of this enzyme and the structural and EPR properties of the closely related formate dehydrogenase-H from Escherichia coli.

  5. Rhythmic and sustained oscillations in metabolism and gene expression of Cyanothece sp. ATCC 51142 under constant light

    PubMed Central

    Gaudana, Sandeep B.; Krishnakumar, S.; Alagesan, Swathi; Digmurti, Madhuri G.; Viswanathan, Ganesh A.; Chetty, Madhu; Wangikar, Pramod P.

    2013-01-01

    Cyanobacteria, a group of photosynthetic prokaryotes, oscillate between day and night time metabolisms with concomitant oscillations in gene expression in response to light/dark cycles (LD). The oscillations in gene expression have been shown to sustain in constant light (LL) with a free running period of 24 h in a model cyanobacterium Synechococcus elongatus PCC 7942. However, equivalent oscillations in metabolism are not reported under LL in this non-nitrogen fixing cyanobacterium. Here we focus on Cyanothece sp. ATCC 51142, a unicellular, nitrogen-fixing cyanobacterium known to temporally separate the processes of oxygenic photosynthesis and oxygen-sensitive nitrogen fixation. In a recent report, metabolism of Cyanothece 51142 has been shown to oscillate between photosynthetic and respiratory phases under LL with free running periods that are temperature dependent but significantly shorter than the circadian period. Further, the oscillations shift to circadian pattern at moderate cell densities that are concomitant with slower growth rates. Here we take this understanding forward and demonstrate that the ultradian rhythm under LL sustains at much higher cell densities when grown under turbulent regimes that simulate flashing light effect. Our results suggest that the ultradian rhythm in metabolism may be needed to support higher carbon and nitrogen requirements of rapidly growing cells under LL. With a comprehensive Real time PCR based gene expression analysis we account for key regulatory interactions and demonstrate the interplay between clock genes and the genes of key metabolic pathways. Further, we observe that several genes that peak at dusk in Synechococcus peak at dawn in Cyanothece and vice versa. The circadian rhythm of this organism appears to be more robust with peaking of genes in anticipation of the ensuing photosynthetic and respiratory metabolic phases. PMID:24367360

  6. Overproduction of individual gas vesicle proteins perturbs flotation, antibiotic production and cell division in the enterobacterium Serratia sp. ATCC 39006.

    PubMed

    Monson, Rita E; Tashiro, Yosuke; Salmond, George P C

    2016-09-01

    Gas vesicles are intracellular proteinaceous organelles that facilitate bacterial colonization of static water columns. In the enterobacterium Serratia sp. ATCC 39006, gas vesicle formation requires the proteins GvpA1, GvpF1, GvpG, GvpA2, GvpK, GvpA3, GvpF2 and GvpF3 and the three gas vesicle regulatory proteins GvrA, GvrB and GvrC. Deletion of gvpC alters gas vesicle robustness and deletion of gvpN or gvpV results in small bicone vesicles. In this work, we assessed the impacts on gas vesicle formation when each of these 14 essential proteins was overexpressed. Overproduction of GvpF1, GvpF2, GvrA, GvrB or GvrC all resulted in significantly reduced gas vesicle synthesis. Perturbations in gas vesicle formation were also observed when GvpV and GvpA3 were in excess. In addition to impacts on gas vesicle formation, overproduction of GvrA or GvrB led to elevated biosynthesis of the tripyrrole pigment, prodigiosin, a secondary metabolite of increasing medical interest due to its antimalarial and anticancer properties. Finally, when GvpG was overexpressed, gas vesicles were still produced, but the cells exhibited a growth defect. Further analysis showed that induction of GvpG arrested cell growth and caused a drop in viable count, suggesting a possible physiological role for this protein linking gas vesicle biogenesis and binary fission. These combined results demonstrate that the stoichiometry of individual gas vesicle proteins is crucially important for controlled organelle morphogenesis and flotation and provides evidence for the first link between gas vesicle assembly and cell division, to our knowledge.

  7. TRANSCRIPTIONAL ANALYSIS OF THE UNICELLULAR, DIAZOTROPHIC CYANOBACTERIUM CYANOTHECE SP. ATCC 51142 GROWN UNDER SHORT DAY/NIGHT CYCLES(1).

    PubMed

    Toepel, Jo Rg; McDermott, Jason E; Summerfield, Tina C; Sherman, Louis A

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration, and nitrogen fixation when grown under N2 -fixing conditions. We have performed a global transcription analysis of this organism using 6 h light:dark (L:D) cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian-regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with these data and those from 2 d L:D and L:D plus continuous light experiments to better differentiate between diurnal and circadian-regulated genes. Cyanothece sp. acclimated in several ways to growth under short L:D conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown, and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation, and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short L:D cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes, which displayed a diurnal, dark-dependent gene expression.

  8. Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light.

    PubMed

    Min, Hongtao; Sherman, Louis A

    2010-07-01

    We report on the hydrogen production properties of the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142. This organism has a versatile metabolism and can grow in the presence or absence of combined nitrogen and can grow photosynthetically or mixotrophically and heterotrophically in the presence of glycerol. The strain produces a bidirectional hydrogenase (encoded by the hox genes), an uptake hydrogenase (hupLS), and nitrogenase (nifHDK). We demonstrated hydrogen production by both the hydrogenase and the nitrogenase under appropriate metabolic conditions. The highest rates of hydrogen production were produced under nitrogen-fixing conditions when cells were grown and incubated under continuous light conditions, in either the presence or absence of glycerol. Under such nitrogen-fixing conditions, we have achieved rates of 300 micromol H(2)/mg chloramphenicol (Chl)/hr during the first 24 h of incubation. The levels of H(2) measured were dependent upon the incubation conditions, such as sparging with argon, which generated anaerobic conditions. We demonstrated that the same conditions led to high levels of H(2) production and N(2) fixation, indicating that low-oxygen conditions favor nitrogenase activity for both processes. The levels of hydrogen produced by the hydrogenase are much lower, typically 5 to 10 micromol H(2)/mg Chl/hr. Hydrogenase activity was dependent upon electron transport through photosystem II (PS II), whereas nitrogenase activity was more dependent on PS I, as well as on respiration. Although cells do not double under the incubation conditions when sparged with argon to provide a low-oxygen environment, the cells are metabolically active, and hydrogen production can be inhibited by the addition of chloramphenicol to inhibit protein synthesis.

  9. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions

    PubMed Central

    Kilcullen, Kathleen; Teunis, Allison; Popova, Taissia G.; Popov, Serguei G.

    2016-01-01

    Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1) and 14579 (BC2) in aerobic and microaerobic (static) cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO), and metabolic product(s) such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1 was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1 cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid. PMID:26870026

  10. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets.

    PubMed

    Lähteinen, Tanja; Lindholm, Agneta; Rinttilä, Teemu; Junnikkala, Sami; Kant, Ravi; Pietilä, Taija E; Levonen, Katri; von Ossowski, Ingemar; Solano-Aguilar, Gloria; Jakava-Viljanen, Miia; Palva, Airi

    2014-03-15

    Lactobacillus brevis ATCC 8287, a surface (S-layer) strain, possesses a variety of functional properties that make it both a potential probiotic and a good vaccine vector candidate. With this in mind, our aim was to study the survival of L. brevis in the porcine gut and investigate the effect of this strain on the growth and immune function of recently weaned piglets during a feeding trial. For this, 20 piglets were divided evenly into a treatment and a control group. Piglets in the treatment group were fed L. brevis cells (1×10(10)) daily for three weeks, whereas those in the control group were provided an equivalent amount of probiotic-free placebo. For assessing the impact of L. brevis supplementation during the feeding trial, health status and weight gain of the piglets were monitored, pre- and post-trial samples of serum and feces were obtained, and specimens of the small and large intestinal mucosa and digesta were collected at slaughter. The results we obtained indicated that L. brevis-supplemented feeding induced a non-significant increase in piglet body weight and caused no change in the morphology of the intestinal mucosa. L. brevis cells were found to localize mainly in the large intestine, but they could not be isolated from feces. To a lesser extent, L. brevis was detected in the small intestine, although there was no specific attachment to the Peyer's patches. Changes in total serum IgG and IgA concentrations were not caused by supplemented L. brevis and no measurable rise in L. brevis-specific IgG was observed. However, analysis of cytokine gene expression in intestinal mucosa revealed downregulation of TGF-β1 in the ileum and upregulation of IL-6 in the cecum in the L. brevis-supplemented group. Based on the results from this study, we conclude that whereas L. brevis appears to have some intestinal immunomodulatory effects, the ability of this strain to survive and colonize within the porcine gut appears to be limited.

  11. Identification and characterization of a novel β-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium.

    PubMed

    Temuujin, Uyangaa; Chi, Won-Jae; Park, Jae-Sun; Chang, Yong-Keun; Song, Jae Yang; Hong, Soon-Kwang

    2012-12-01

    Victivallis vadensis ATCC BAA-548 is a Gram-negative, anaerobic bacterium that was isolated from a human fecal sample. From the genomic sequence of V. vadensis, one gene was found to encode agarase; however, its enzymatic properties have never been characterized. The gene encoding the putative agarase (NCBI reference number ZP_01923925) was cloned by PCR and expressed in E. coli Rosetta-gami by using the inducible T(7) promoter of pET28a(+). The expressed protein with a 6×His tag at the N-terminus was named His6-VadG925 and purified as a soluble protein by Ni(2+)-NTA agarose affinity column chromatography. The purification of the enzyme was 26.8-fold, with a yield of 73.2% and a specific activity of 1.02 U/mg of protein. The purified His6-VadG925 produced a single band with an approximate MW of 155 kDa, which is consistent with the calculated value (154,660 Da) including the 6×His tag. Although VadG925 and many of its homologs were annotated as agarases, it did not hydrolyze agarose. Instead, purified His(6)-VadG925 hydrolyzed an artificial chromogenic substrate, p-nitrophenyl-β-D-galactopyranoside, but not p-nitrophenyl-α-D-galactopyranoside. The optimum pH and temperature for this β-galactosidase activity were pH 7.0 and 40°C, respectively. The K(m) and V(max) of His6-VadG925 towards p-nitrophenyl-β-D-galactopyranoside were 1.69 mg/ml (0.0056 M) and 30.3 U/mg, respectively. His6-VadG925 efficiently hydrolyzed lactose into glucose and galactose, which was demonstrated by TLC and mass spectroscopy. These results clearly demonstrated that VadG925 is a novel β-galactosidase that can hydrolyze lactose, which is unusual because of its low homology to validated β-galactosidases.

  12. Chemical characterization and biologic properties of lipopolysaccharide from Bacteroides gingivalis strains W50, W83, and ATCC 33277.

    PubMed

    Bramanti, T E; Wong, G G; Weintraub, S T; Holt, S C

    1989-12-01

    The chemistry and selected biological activity of lipopolysaccharide (LPS) from Bacteroides gingivalis strains W50, W83, and ATCC 33277 were compared, as well as the role of this molecule as a mediator of selected inflammatory responses. Chemically, the LPSs consisted of 47-58% Lipid A, 5-10% carbohydrate, 0.05% 3-deoxy 2-octulosonic acid, 0.3% heptose, 3.8-5.2% hexosamine, and 2% phosphate. Rhamnose represented the dominant sugar (26-36%), with lesser amounts of glucose (18-34%), galactose (18-25%), mannose (9-12%), glucosamine (7-11%), and galactosamine (2-5%). The major fatty acids were: 13-methyl-tetradecanoate (42-45%), 3-OH-heptadecanoate (21-23%), hexadecanoate (16-19%), and 12-methyl-tetradecanoate (6-8%). SDS-PAGE and sodium deoxycholate-PAGE revealed the LPS to be a smooth chemotype. Differences in migration patterns between the virulent and avirulent strain LPSs also occurred. C3H/HeN macrophages (Mø) exposed to 1 microgram/ml of LPS released 3.2-4.2 ng of prostaglandin E (PGE)/ml of supernatant, representing 236-278% of control. Interleukin-1 (IL-1) activity in C3H/HeN and C3H/HeJ Mø exposed to 50 micrograms of LPS/ml was 382-724% and 270-300% of control, respectively; similar Mø exposed to 10 micrograms of LPS/ml released 1.6-2.0 ng and 0.3-0.5 ng of tumor necrosis factor (TNF)/ml of supernatant, respectively. Maximum TNF release in C3H/HeN Mø occurred in response to 50 micrograms of LPS/ml, and was sustained for up to 96 hours. These results suggest that LPS from the B. gingivalis strains stimulate cytokine production from Mø which, in turn, may play a role in orchestrating the inflammatory response for the development of periodontal diseases.

  13. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass

    SciTech Connect

    Wilson, Charlotte M; Rodriguez Jr, Miguel; Johnson, Courtney M; Martin, S L.; Chu, Tzu Ming; Wolfinger, Russ; Hauser, Loren John; Land, Miriam L; Klingeman, Dawn Marie; Tschaplinski, Timothy J; Mielenz, Jonathan R; Brown, Steven D

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. Results C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNAseq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5 % false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts

  14. Radiation-induced cell lethality of samonella typhimurium ATCC 14028: Cooperative effect of hydroxyl radical and oxygen

    SciTech Connect

    Kim, Y.A.; Thayer, D.W.

    1995-10-01

    The lethality of {gamma}-radiation doses of 0.2 to 1.0 kGy for Salmonella typhimurium ATCC 14028 was measured in the presence of air, N{sub 2} and N{sub 2}O and with the hydroxyl radical scavengers formate and polyethylene glycol (PEG), M{sub r} 8,000. Saturation of cell suspensions with either N{sub 2}O or N{sub 2}/N{sub 2}/N{sub 2}O (1:1, v/v) gas was expected to double the number of hydroxyl radicals (OH{center_dot}) and to produce an equivalent increase in lethality, but this did not occur. Adding 10% (v/v) O{sub 2} to either N{sub 2}/N{sub 2}O gas produced approximately the same {gamma}-irradiation lethality for S. typhimurium as did air. Addition of hydroxyl radical scavengers, 40 mM formate and 1.5% (w/v) PEG, significantly reduced the lethality of {gamma} radiation for S. typhimurium in the presence of air but not in the presence of N{sub 2} or N{sub 2}O gases. Membrane-permeable formate provided slightly better protection than nonpermeable PEG. Cells of S. typhimurium grown under anaerobic conditions were more sensitive to radiation, and were less protected by hydroxyl radical scavengers, especially formate, than when cells grown under aerobic conditions were irradiated in the presence of oxygen. Hydroxyl radical scavengers provided no further protection during irradiation in the absence of oxygen. These results indicated that the increased radiation sensitivity of cells grown under anaerobic conditions may be related to superoxide radicals which could increase intercellular damage during irradiation in the presence of oxygen. However, endogenous superoxide dismutase and catalase activities did not protect cells from the radiation-induced lethality of S. typhimurium. Cytoplasmic extracts protected bacterial DNA in vitro in either the presence of absence of oxygen, and no radiation-induced lipid peroxidation of the cellular components was identified by measuring the levels of 2-thiobarbituric acid. 38 refs., 4 figs., 2 tabs.

  15. Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium.

    PubMed

    Cagri-Mehmetoglu, A; Kusakli, S; van de Venter, M

    2012-07-01

    The aim of this research was to assess the amounts of polysaccharide and surfactin produced by Bacillus subtilis ATCC 6633 in rehydrated whey powder (RWP) as the growth medium. One-day-old cultures of B. subtilis (∼4.6 log cfu/mL) were inoculated into 100mL of 10, 15, or 20% (wt/vol) RWP and incubated at 30°C for 72 h. To analyze the effects of lactose and protein on polysaccharide and surfactin production, 6 RWP solutions containing different levels of lactose and protein were also used as media. The number of vegetative cells and spores, pH, viscosity, and the concentration of lactose were determined at 0, 24, 48, or 72 h of fermentation. The levels of polysaccharide and surfactin produced after 72 h of fermentation were measured using HPLC and the phenol-sulfuric acid method, respectively. During 72 h of fermentation, B. subtilis populations increased from 4.6 to 10.54, 9.82, and 9.67 log(10) cfu/mL in 10, 15, and 20% RWP, respectively. The number of B. subtilis spores in 10% RWP increased from 3.91 to 4.72 log(10) cfu/mL after 48 and 72 h of fermentation, respectively. The increased level of lactose or protein in RWP did not significantly change the vegetative growth. After 72h of fermentation, the pH of RWP decreased from 5.70 to 4.99 with a slight increase in viscosity. Polysaccharide levels in 10, 15, and 20% RWP after fermentation were 513.6, 613.5, and 768.3mg/L, respectively, with B. subtilis producing 0.18 to 0.29 g/L of surfactin after 72 h of fermentation. The polysaccharide or surfactin production was not changed significantly by addition of protein or lactose to RWP. These results indicate that RWP is a good fermentation substrate for surfactin and polysaccharide production.

  16. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824.

    PubMed

    Harris, Latonia M; Welker, Neil E; Papoutsakis, Eleftherios T

    2002-07-01

    The Clostridium acetobutylicum ATCC 824 spo0A gene was cloned, and two recombinant strains were generated, an spo0A inactivation strain (SKO1) and an spo0A overexpression strain [824(pMPSOA)]. SKO1 was developed by targeted gene inactivation with a replicative plasmid capable of double-crossover chromosomal integration--a technique never used before with solventogenic clostridia. SKO1 was severely deficient in solvent formation: it produced only 2 mM acetone and 13 mM butanol, compared to the 92 mM acetone and 172 mM butanol produced by the parental strain. After 72 h of growth on solid media, SKO1 formed long filaments of rod-shaped cells that failed to septate. SKO1 cells never achieved the swollen clostridial form typical of the parental strain and did not form endospores. No spo0A transcripts were detected in SKO1, while transcription of two solvent formation operons (aad-ctfA-ctfB and adc; both containing 0A boxes in their promoter regions) was limited. Strain 824(pMSPOA) produced higher butanol concentrations than the control strain [824(pIMP1)] and dramatically elevated spo0A transcript levels and displayed a bimodal pattern of spo0A transcription similar to that of B. subtilis. Microscopic studies indicated that sporulation was both enhanced and accelerated due to spo0A overexpression compared to that of both the 824(pIMP1) and parental strains. Consistent with that, expression of the key solvent formation genes (aad-ctfA-ctfB and adc) and three sporulation-specific genes (spoIIGA, sigE, and sigG) was observed earlier in strain 824(pMSPOA) than in the plasmid control. These data support the hypothesis that Spo0A is a transcriptional regulator that positively controls sporulation and solvent production. Its effect on solvent formation is a balancing act in regulating sporulation versus solvent gene expression: its overexpression apparently tips the balance in favor of accelerated and enhanced sporulation at the expense of overall solvent production.

  17. Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides.

    PubMed

    Rivière, Audrey; Gagnon, Mérilie; Weckx, Stefan; Roy, Denis; De Vuyst, Luc

    2015-11-01

    Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS.

  18. Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502.

    PubMed

    Kirk, David G; Zhang, Zhen; Korkeala, Hannu; Lindström, Miia

    2014-08-01

    Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model.

  19. Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides

    PubMed Central

    Rivière, Audrey; Gagnon, Mérilie; Weckx, Stefan; Roy, Denis

    2015-01-01

    Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS. PMID:26319874

  20. Isolation of Three New Surface Layer Protein Genes (slp) from Lactobacillus brevis ATCC 14869 and Characterization of the Change in Their Expression under Aerated and Anaerobic Conditions

    PubMed Central

    Jakava-Viljanen, Miia; Åvall-Jääskeläinen, Silja; Messner, Paul; Sleytr, Uwe B.; Palva, Airi

    2002-01-01

    Two new surface layer (S-layer) proteins (SlpB and SlpD) were characterized, and three slp genes (slpB, slpC, and slpD) were isolated, sequenced, and studied for their expression in Lactobacillus brevis neotype strain ATCC 14869. Under different growth conditions, L. brevis strain 14869 was found to form two colony types, smooth (S) and rough (R), and to express the S-layer proteins differently. Under aerobic conditions R-colony type cells produced SlpB and SlpD proteins, whereas under anaerobic conditions S-colony type cells synthesized essentially only SlpB. Anaerobic and aerated cultivations of ATCC 14869 cells in rich medium also resulted in S-layer protein patterns similar to those of the S- and R-colony type cells, respectively. Electron microscopy suggested the presence of only a single S-layer with an oblique structure on the cells of both colony forms. The slpB and slpC genes were located adjacent to each other, whereas the slpD gene was not closely linked to the slpB-slpC gene region. Northern analyses confirmed that both slpB and slpD formed a monocistronic transcription unit and were effectively expressed, but slpD expression was induced under aerated conditions. slpC was a silent gene under the growth conditions tested. The amino acid contents of all the L. brevis ATCC 14869 S-layer proteins were typical of S-layer proteins, whereas their sequence similarities with other S-layer proteins were negligible. The interspecies identity of the L. brevis S-layer proteins was mainly restricted to the N-terminal regions of those proteins. Furthermore, Northern analyses, expression of a PepI reporter protein under the control of the slpD promoter, and quantitative real-time PCR analysis of slpD expression under aerated and anaerobic conditions suggested that, in L. brevis ATCC 14869, the variation of S-layer protein content involves activation of transcription by a soluble factor rather than DNA rearrangements that are typical for most of the S-layer phase

  1. The Genome Sequence of Bacillus cereus ATCC 10987 Reveals Metabolic Adaptations and a Large Plasmid Related to Bacillus anthracis pXO1

    DTIC Science & Technology

    2004-01-01

    R.L. and Waites,K.B. (2003) Bacillus cereus bacteremia in a preterm neonate. J. Clin. Microbiol., 41, 3441±3444. 9. Ginsburg,A.S., Salazar,L.G., True... bacteremia and pneumonia due to Bacillus cereus . J. Clin. Microbiol., 35, 504±507. 12. Okinaka,R., Cloud,K., Hampton,O., Hoffmaster,A., Hill,K., Keim,P...The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1 David A. Rasko

  2. The genome of the insecticidal Chromobacterium subtsugae PRAA4-1 and its comparison with that of Chromobacterium violaceum ATCC 12472.

    PubMed

    Blackburn, Michael B; Sparks, Michael E; Gundersen-Rindal, Dawn E

    2016-12-01

    The genome of Chromobacterium subtsugae strain PRAA4-1, a betaproteobacterium producing insecticidal compounds, was sequenced and compared with the genome of C. violaceum ATCC 12472. The genome of C. subtsugae displayed a reduction in genes devoted to capsular and extracellular polysaccharide, possessed no genes encoding nitrate reductases, and exhibited many more phage-related sequences than were observed for C. violaceum. The genomes of both species possess a number of gene clusters predicted to encode biosynthetic complexes for secondary metabolites; these clusters suggest they produce overlapping, but distinct assortments of metabolites.

  3. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobiumerdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobiumjarvisii sp. nov.

    PubMed

    Martínez-Hidalgo, Pilar; Ramírez-Bahena, Martha Helena; Flores-Félix, José David; Rivas, Raúl; Igual, José M; Mateos, Pedro F; Martínez-Molina, Eustoquio; León-Barrios, Milagros; Peix, Álvaro; Velázquez, Encarna

    2015-06-01

    The species Mesorhizobim loti was isolated from nodules of Lotus corniculatus and its type strain deposited in several collections. Some of these type strains, such as those deposited in the USDA and ATCC collections before 1990, are not coincident with the original strain, NZP 2213T, deposited in the NZP culture collection. The analysis of the 16S rRNA gene showed that strains USDA 3471T and ATCC 33669T formed independent branches from that occupied by Mesorhizobium loti NZP 2213T and related to those occupied by Mesorhizobium opportunistum WSM2075T and Mesorhizobium huakuii IFO 15243T, respectively, with 99.9 % similarity in both cases. However, the analysis of concatenated recA, atpD and glnII genes with similarities lower than 96, 98 and 94 %, respectively, between strains USDA 3471T and M. opportunistum WSM2075T and between strains ATCC 33669T and M. huakuii IFO 15243T, indicated that the strains USDA 3471T and ATCC 33669T represent different species of the genus Mesorhizobium. These results were confirmed by DNA-DNA hybridization experiments and phenotypic characterization. Therefore, the two strains were reclassified as representatives of the two species Mesorhizobium erdmanii sp. nov. (type strain USDA 3471T = CECT 8631T = LMG 17826t2T) and Mesorhizobium jarvisii sp. nov. (type strain ATCC 33669T = CECT 8632T = LMG 28313T).

  4. Functional csdA is needed for effective adaptation and initiation of growth of Clostridium botulinum ATCC 3502 at suboptimal temperature.

    PubMed

    Söderholm, Henna; Derman, Yağmur; Lindström, Miia; Korkeala, Hannu

    2015-09-02

    The activity of RNA helicase csdA (cbo2802) after temperature downshift was compared to its activity at optimal growth temperature, and the effect of sense and antisense oriented insertional inactivation of cbo2802 on the growth of ATCC 3502 at suboptimal temperature was evaluated. The relative cbo2802 transcript level was significantly induced for 30min to 5h after cold shock. In contrast, a significant decrease in the relative transcript level of cbo2802 was observed within the same time frame at 37°C. Inactivation of cbo2802 led to an extensive delay in initiation of exponential growth at 20°C but not at 37°C. In addition, the mean minimum growth temperatures of the mutant strains were higher than those of the wild-type strain. During a 24-hour incubation at 37°C, all strains were motile, whereas at 20°C the mutant strains showed severely impaired motility compared to the wild-type strain. This study shows that a functional csdA is needed for effective adaptation and initiation of growth and motility of Clostridium botulinum ATCC 3502 at suboptimal temperature.

  5. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945.

  6. Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were ualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  7. S-layer protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene.

    PubMed Central

    Boot, H J; Kolen, C P; van Noort, J M; Pouwels, P H

    1993-01-01

    The cell surfaces of several Lactobacillus species are covered by a regular layer composed of a single species of protein, the S-protein. The 43-kDa S-protein of the neotype strain Lactobacillus acidophilus ATCC 4356, which originated from the pharynx of a human, was purified. Antibodies generated against purified S-protein were used to screen a lambda library containing chromosomal L. acidophilus ATCC 4356 DNA. Several phages showing expression of this S-protein in Escherichia coli were isolated. A 4.0-kb DNA fragment of one of those phages hybridized to a probe derived from an internal tryptic fragment of the S-protein. The slpA gene, coding for the surface layer protein, was located entirely on the 4.0-kb fragment as shown by deletion analysis. The nucleotide sequence of the slpA gene was determined and appeared to encode a protein of 444 amino acids. The first 24 amino acids resembled a putative secretion signal, giving rise to a mature S-protein of 420 amino acids (44.2 kDa). The predicted isoelectric point of 9.4 is remarkably high for an S-protein but is in agreement with the data obtained during purification. The expression of the entire S-protein or of large, C-terminally truncated S-proteins is unstable in E. coli. Images PMID:8407780

  8. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.

    PubMed

    Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; Yu, Xiao-Bin; Jiang, Yun; Lin, Chi-Chung

    2011-07-01

    Expression at the mRNA level of ten selected genes in Agrobacterium sp. ATCC 31749 under various dissolved oxygen (DO) levels during curdlan fermentation related to electron transfer chain (ETC), tricarboxylic acid (TCA) cycle, peptidoglycan/lipopolysaccharide biosynthesis, and uridine diphosphate (UDP)-glucose biosynthesis were determined by qRT-PCR. Experiments were performed at DO levels of 30%, 50%, and 75%, as well as under low-oxygen conditions. The effect of high cell density on transcriptional response of the above genes under low oxygen was also studied. Besides cytochrome d (cyd A), the transcription levels of all the other genes were increased at higher DO and reached maximum at 50% DO. Under 75% DO, the transcriptional levels of all the genes were repressed. In addition, transcription levels of icd, sdh, cyo A, and fix N genes did not exhibit significant fluctuation with high cell density culture under low oxygen. These results suggested a mechanism for DO regulation of curdlan synthesis through regulation of transcriptional levels of ETCs, TCA, and UDP-glucose synthesis genes during curdlan fermentation. To our knowledge, this is the first report that DO concentration apparently regulates curdlan biosynthesis in Agrobacterium sp. ATCC 31749 providing essential lead for the optimization of the fermentation at the industrial scale.

  9. The pattern of growth observed for Clostridium botulinum type A1 strain ATCC 19397 is influenced by nutritional status and quorum sensing: a modelling perspective

    PubMed Central

    Ihekwaba, Adaoha E. C.; Mura, Ivan; Peck, Michael W.; Barker, G. C.

    2015-01-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most poisonous substances known to mankind. However, toxin regulation and signals triggering synthesis as well as the regulatory network and actors controlling toxin production are unknown. Experiments show that the neurotoxin gene is growth phase dependent for C. botulinum type A1 strain ATCC 19397, and toxin production is influenced both by culture conditions and nutritional status of the medium. Building mathematical models to describe the genetic and molecular machinery that drives the synthesis and release of BoNT requires a simultaneous description of the growth of the bacterium in culture. Here, we show four plausible modelling options which could be considered when constructing models describing the pattern of growth observed in a botulinum growth medium. Commonly used bacterial growth models are unsuitable to fit the pattern of growth observed, since they only include monotonic growth behaviour. We find that a model that includes both the nutritional status and the ability of the cells to sense their surroundings in a quorum-sensing manner is most successful at explaining the pattern of growth obtained for C. botulinum type A1 strain ATCC 19397. PMID:26449712

  10. Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation.

    PubMed

    Zhang, Hongcai; Jin, Yafang; Deng, Yun; Wang, Danfeng; Zhao, Yanyun

    2012-11-15

    Shrimp shell powders (SSPs) were fermented by successive two-step fermentation of Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 to extract chitin. Taguchi experimental design with orthogonal array was employed to investigate the most contributing factors on each of the one-step fermentation first. The identified optimal fermentation conditions for extracting chitin from SSPs using S. marcescens B742 were 2% SSP, 2h of sonication time, 10% incubation level, and 4d of culture time, while that of using L. plantarum ATCC 8014 fermentation was 2% SSP, 15% glucose, 10% incubation level, and 2d of culture time. Successive two-step fermentation using identified optimal fermentation conditions resulted in chitin yield of 18.9% with the final deproteinization (DP) and demineralization (DM) rate of 94.5% and 93.0%, respectively. The obtained chitin was compared with the commercial chitin from SSP using scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD). Results showed that the chitin prepared by the successive two-step fermentation exhibited similar physicochemical and structural properties to those of the commercial one, while significantly less use of chemical reagents.

  11. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  12. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    PubMed

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  13. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm(2)) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.

  14. The pattern of growth observed for Clostridium botulinum type A1 strain ATCC 19397 is influenced by nutritional status and quorum sensing: a modelling perspective.

    PubMed

    Ihekwaba, Adaoha E C; Mura, Ivan; Peck, Michael W; Barker, G C

    2015-12-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most poisonous substances known to mankind. However, toxin regulation and signals triggering synthesis as well as the regulatory network and actors controlling toxin production are unknown. Experiments show that the neurotoxin gene is growth phase dependent for C. botulinum type A1 strain ATCC 19397, and toxin production is influenced both by culture conditions and nutritional status of the medium. Building mathematical models to describe the genetic and molecular machinery that drives the synthesis and release of BoNT requires a simultaneous description of the growth of the bacterium in culture. Here, we show four plausible modelling options which could be considered when constructing models describing the pattern of growth observed in a botulinum growth medium. Commonly used bacterial growth models are unsuitable to fit the pattern of growth observed, since they only include monotonic growth behaviour. We find that a model that includes both the nutritional status and the ability of the cells to sense their surroundings in a quorum-sensing manner is most successful at explaining the pattern of growth obtained for C. botulinum type A1 strain ATCC 19397.

  15. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502.

    PubMed

    Derman, Yağmur; Söderholm, Henna; Lindström, Miia; Korkeala, Hannu

    2015-04-01

    Clostridium botulinum is a notable food pathogen and responsible for botulism due to production of botulinum neurotoxin. Strains of C. botulinum can adapt to and survive in stress conditions and food processing. The cold shock protein coding genes (csp) are involved in growth at low temperature, but they may also possess other functions. In this mutational analysis we show that cspB and cspC, but not cspA, are important for NaCl, pH and ethanol stress responses and for motility of C. botulinum ATCC 3502. In all NaCl concentrations tested, the cspB mutant had lower maximum growth rate and, together with the cspC mutant, a longer lag phase compared to the wild-type strain. At low pH, the cspB and cspC mutants showed either lower maximum growth rates or longer lag phases compared to the wild type. In all ethanol concentrations tested, the cspB mutant had lower maximum growth rates and the cspC mutant had a longer lag phase than the wild-type strain. Motility was reduced in cspA and cspC mutants, and flagella formation was affected. The results suggest that cspB plays a universal role in stress response and cspC aids C. botulinum in NaCl, pH and ethanol stress in C. botulinum ATCC 3502.

  16. Switching antibiotics production on and off in actinomycetes by an IclR family transcriptional regulator from Streptomyces peucetius ATCC 27952.

    PubMed

    Chaudhary, Amit Kumar; Singh, Bijay; Maharjan, Sushila; Jha, Amit Kumar; Kim, Byung-Gee; Sohng, Jae Kyung

    2014-08-01

    Doxorubicin, produced by Streptomyces peucetius ATCC 27952, is tightly regulated by dnrO, dnrN, and dnrI regulators. Genome mining of S. peucetius revealed the presence of the IclR (doxR) type family of transcription regulator mediating the signal-dependent expression of operons at the nonribosomal peptide synthetase gene cluster. Overexpression of doxR in native strain strongly repressed the drug production. Furthermore, it also had a negative effect on the regulatory system of doxorubicin, wherein the transcript of dnrI was reduced to the maximum level in comparision with the other two. Interestingly, the overexpression of the same gene also had strong inhibitory effects on the production of actinorhodin (blue pigment) and undecylprodigiosin (red pigment) in Streptomyces coelicolor M145, herboxidiene production in Streptomyces chromofuscus ATCC 49982, and spinosyn production in Saccharopolyspora spinosa NRRL 18395, respectively. Moreover, DoxR exhibited pleiotropic effects on the production of blue and red pigments in S. coelicolor when grown in different agar media, wherein the production of blue pigment was inhibited in R2YE medium and the red pigment was inhibited in YEME medium. However, the production of both blue and red pigments from S. coelicolor harboring doxR was halted in ISP2 medium, whereas S. coelicolor produced both pigmented antibiotics in the same plate. These consequences demonstrate that the on and off production of these antibiotics was not due to salt stress or media compositions, but was selectively controlled in actinomycetes.

  17. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    PubMed

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  18. Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    PubMed Central

    Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei; Fredrickson, Jim K.; Konopka, Allan E.; Beliaev, Alexander S.; Reed, Jennifer L.

    2012-01-01

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values. PMID:22529767

  19. Incubation temperature, osmolarity, and salicylate affect the expression of resistance-nodulation-division efflux pumps and outer membrane porins in Acinetobacter baumannii ATCC19606T.

    PubMed

    Bazyleu, Andrei; Kumar, Ayush

    2014-08-01

    In this study, we examined the impact of various environmental conditions on the expression of resistance-nodulation-division (RND) efflux pumps and outer membrane (OM) porins, two key determinants of Acinetobacter baumannii's intrinsic resistance, an organism known to cause various multidrug resistant infections in immunocompromised individuals. Quantitative RT-PCR was used to analyze the expression of adeB, adeG, and adeJ (genes encoding RND pumps) and 33 kDa, carO, and oprD (genes encoding OM porins) of A. baumannii ATCC19606(T) under different incubation temperatures (30, 37, and 42 °C) and in the presence of high osmolarity and salicylate. Downregulation of all three RND pumps was observed at 30 °C, while downregulation of all three porins tested was observed at increased osmolarity. Downregulation of RND efflux pumps, particularly AdeABC, was consistent with increased susceptibility to antibiotics that are substrates of this pump. Expression of the adeR response regulator gene of the AdeRS system, the activator of the AdeABC pump, was also analyzed. Our work shows that various environmental stress conditions can influence the expression of RND pumps and porins in A. baumannii ATCC19606(T) and thus may play a role in the modulation of its antibiotic resistance.

  20. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.

    PubMed

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2015-08-01

    Germination, the process by which dormant endospores return to vegetative growth, is a critical process in the life cycle of the notorious pathogen Clostridium botulinum. Crucial is the degradation by hydrolytic enzymes of an inner peptidoglycan spore layer termed the cortex. Two mechanistically different systems of cortex lysis exist in spores of Clostridium species. C. botulinum ATCC 3502 harbours the Bacillus-like system of SleB, CwlJ and YpeB cortex lytic enzymes (CLEs). Through the construction of insertional gene knockout mutants in the sleB, cwlJ and ypeB genes of C. botulinum ATCC 3502 and the production of spores of each mutant strain, the effect on germination was assessed. This study demonstrates a reduced germination efficiency in spores carrying mutations in either sleB or ypeB with an approximate 2-fold reduction in heat resistant colony forming units (CFU/OD600) when plated on rich media. This reduction could be restored to wild-type levels by removing the spore coat and plating on media supplemented with lysozyme. It was observed that cwlJ spores displayed a similar germination efficiency as wild-type spores (P > 0.05). An optimal germinant commixture was identified to include a combination of l-alanine with sodium bicarbonate as it resulted in a 32% drop in OD600, while the additional incorporation of l-lactate resulted in a 57% decrease. Studies of the germination efficiency of spores prepared from all three CLE mutants was performed by monitoring the associated decrease in optical density but a germination defect was not observed in any of the CLE mutant strains. This was likely due to the lack of specificity of this particular assay. Taken together, these data indicate that functional copies of SleB and YpeB, but not CwlJ are required for the optimal germination of the spores of C. botulinum ATCC 3502.

  1. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    PubMed Central

    Mormann, Sascha; Lömker, Alexander; Rückert, Christian; Gaigalat, Lars; Tauch, Andreas; Pühler, Alfred; Kalinowski, Jörn

    2006-01-01

    Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L

  2. Rhodococcus rhodochrous ATCC12674 Becomes Alkane-Tolerant upon GroEL2 Overexpression and Survives in the n-Octane Phase in Two Phase Culture

    PubMed Central

    Takihara, Hayato; Matsuura, Chiaki; Ogihara, Jun; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We recently reported that the overexpression of GroEL2 played an important role in increasing the alkane tolerance of Rhodococcus erythropolis PR4. In the present study, we examined the effects of the introduction of groEL2 on the alkane tolerance of other Rhodococcus strains. The introduction of groEL2 into Rhodococcus strains led to increased alkane tolerance. The translocation of R. rhodochrous ATCC12674 cells to and survival in the n-octane (C8) phase in two phase culture were significantly enhanced by the introduction of groEL2 derived from strain PR4, suggesting that engineering cells to overexpress GroEL2 represents an effective strategy for enhancing organic solvent tolerance in Rhodococcus. PMID:25491752

  3. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production.

    PubMed

    Yu, L J; Wu, J R; Zheng, Z Z; Lin, C C; Zhan, X B

    2011-01-01

    The changes in transcription of genes involved in nitrogen metabolism and curdlan biosynthesis, and total protein expression were firstly analyzed to define the responses of Agrobacterium sp. ATCC 31749 to nitrogen source availability during curdlan fermentation. The transcription of all nitrogen metabolism and regulation genes increased significantly under nitrogen limitation. The genes of carbon (exoC) and nitrogen (ntrB, ntrC, and nifR) metabolism showed distinctive transcriptional responses to nitrogen limitation. Their relative expression level was increased by 14, 9, 7 and 7-fold, respectively. Two-dimentional electrophoresis (2-DE) revealed that the expression of 14 proteins were elevated and 6 proteins were down-regulated significantly under nitrogen starvation. Furthermore, 4 proteins (GroEL, ABC transporter, Atu1730 and enoyl-acyl carrier protein reductase) in which the expression level changed significantly were identified. The results showed that Agrobacterium sp. regulates its carbon flux and nitrogen assimilation effectively for better survival.

  4. Characterization of the Genes Encoding d-Amino Acid Transaminase and Glutamate Racemase, Two d-Glutamate Biosynthetic Enzymes of Bacillus sphaericus ATCC 10208

    PubMed Central

    Fotheringham, Ian G.; Bledig, Stefan A.; Taylor, Paul P.

    1998-01-01

    In Bacillus sphaericus and other Bacillus spp., d-amino acid transaminase has been considered solely responsible for biosynthesis of d-glutamate, an essential component of cell wall peptidoglycan, in contrast to the glutamate racemase employed by many other bacteria. We report here the cloning of the dat gene encoding d-amino acid transaminase and the glr gene encoding a glutamate racemase from B. sphaericus ATCC 10208. The glr gene encodes a 28.8-kDa protein with 40 to 50% sequence identity to the glutamate racemases of Lactobacillus, Pediococcus, and Staphylococcus species. The dat gene encodes a 31.4-kDa peptide with 67% primary sequence homology to the d-amino acid transaminase of the thermophilic Bacillus sp. strain YM1. PMID:9696787

  5. Effect of glutathione L-cystein and L-djenkolic acid in the synthesis and mutagenicity of azide metabolite in Bacillus subtilis ATCC 6633 strain.

    PubMed

    Elbetieha, A; Owais, W M; Saadoun, I; Hussein, E

    1999-10-01

    The Bacillus subtilis ATCC 6633 strain synthesizes a mutagenic metabolite from sodium azide and O-acetylserine. Mutagenicity of azide was decreased in growth media containing 10(-4) M glutathione, L-cysteine or L-djenkolic acid whereas dithiothritol (DTT) added at the same concentration did not reduce the mutagenicity of azide. Likewise, glutathione, L-cysteine, L-djenkolic acid, and DTT were found to have no effect in reducing the mutagenicity of the in vitro produced metabolite using bacterial cell-free extract. These results suggest that O-acetyl-serine sulfhydrylase catalyzes the reaction of azide and O-acetylserine to form a mutagenic metabolite, which is ninhydrin positive and migrates in TLC to an Rf value similar to that of azidoalanine in both acidic and basic solvent systems.

  6. Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain.

    PubMed

    Huang, Jian-Ming; Lin, Wei-Chen; Li, Sung-Chou; Shih, Min-Hsiu; Chan, Wen-Ching; Shin, Jyh-Wei; Huang, Fu-Chin

    2016-07-01

    Acanthamoeba keratitis (AK) is a serious ocular disease caused by pathogenic Acanthamoeba gaining entry through wounds in the corneal injury; generally, patients at risk for contracting AK wear contact lenses, usually over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequences: it makes the cornea turbid and difficult to operate on, including procedures such as enucleation of the eyeball. At present, diagnosis of this disease is not straightforward, and treatment is very demanding. We have established the comparative transcriptome and extracellular secreted proteomic database according to the non-pathogenic strain ATCC 30010 and the pathogenic strains NCKU_B and NCKU_D. We identified 44 secreted proteins successfully, 10 consensus secreted proteins and 34 strain-specific secreted proteins. These proteins may provide targets for therapy and immuno-diagnosis of Acanthamoeba infections. This study shows a suitable approach to identify secreted proteins in Acanthamoeba and provides new perspectives for the study of molecules potentially involved in the AK.

  7. The domain of unknown function DUF1521 exhibits metal ion-inducible autocleavage activity - a novel example from a putative effector protein of Vibrio coralliilyticus ATCC BAA-450.

    PubMed

    Schirrmeister, Jana; Zocher, Sara; Flor, Liane; Göttfert, Michael; Zehner, Susanne

    2013-06-01

    Vibrio coralliilyticus ATCC BAA-450 is a pathogen causing coral bleaching at elevated seawater temperatures. Based on the available genome sequence, the strain has a type III secretion system. Within the corresponding gene cluster, VIC_001052 is encoded, which contains a conserved domain of unknown function DUF1521. In this study, we show that the purified domain exhibits autocleavage activity in the presence of several divalent metal ions, for example, calcium and manganese but not with magnesium or zinc. Autocleavage is not affected by temperatures between 0 and 30 °C, indicating that seawater temperature is not a critical factor for this activity. The DUF1521 domain and the cleavage site are conserved in several proteins from proteobacteria, suggesting a similar cleavage activity for these proteins.

  8. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    SciTech Connect

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, TBK; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C.; Halpern, Malka

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  9. Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates

    PubMed Central

    Freude, Christoph

    2016-01-01

    Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, −49‰ to −64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu = −14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. For M. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm = −0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2 (εanabol. = −28.6‰) as well as on glucose (εanabol. = +2.9‰). PMID:26921422

  10. Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms▿

    PubMed Central

    Nevin, Kelly P.; Hensley, Sarah A.; Franks, Ashley E.; Summers, Zarath M.; Ou, Jianhong; Woodard, Trevor L.; Snoeyenbos-West, Oona L.; Lovley, Derek R.

    2011-01-01

    Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (>80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process. PMID:21378039

  11. Triclosan Can Select for an AdeIJK-Overexpressing Mutant of Acinetobacter baumannii ATCC 17978 That Displays Reduced Susceptibility to Multiple Antibiotics

    PubMed Central

    Fernando, Dinesh M.; Xu, Wayne; Loewen, Peter C.; Zhanel, George G.

    2014-01-01

    In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a 116G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump. PMID:25136007

  12. Proteome Analyses of Strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp under Culture Conditions Resulting in Enhanced H-2 Production

    SciTech Connect

    Aryal, Uma K.; Callister, Stephen J.; Mishra, Sujata; Zhang, Xiaohui; Shutthanandan, Janani I.; Angel, Thomas E.; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Sherman, Louis

    2013-02-01

    Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes and we performed quantitative proteome analysis of Cyanothece ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose-phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2 producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822, and allows an in-depth comparative analysis of major physiological and biochemical processes that influence H2-production in both the strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large scale H2 production.

  13. The secretome of Acinetobacter baumannii ATCC 17978 type II secretion system reveals a novel plasmid encoded phospholipase that could be implicated in lung colonization.

    PubMed

    Elhosseiny, Noha M; El-Tayeb, Ossama M; Yassin, Aymen S; Lory, Stephen; Attia, Ahmed S

    2016-12-01

    Acinetobacter baumannii infections are compounded with a striking lack of treatment options. In many Gram-negative bacteria, secreted proteins play an important early role in avoiding host defences. Typically, these proteins are targeted to the external environment or into host cells using dedicated transport systems. Despite the fact that medically relevant species of Acinetobacter possess a type II secretion system (T2SS), only recently, its significance as an important pathway for delivering virulence factors has gained attention. Using in silico analysis to characterize the genetic determinants of the T2SS, which are found clustered in other organisms, in Acinetobacter species, they appear to have a unique genetic organization and are distributed throughout the genome. When compared to other T2SS orthologs, individual components of the T2SS apparatus showed the highest similarity to those of Pseudomonas aeruginosa. A mutant of Acinetobacter baumannii strain ATCC 17978 lacking the secretin component of the T2SS (ΔgspD), together with a trans-complemented mutant, were tested in a series of in vitro and in vivo assays to determine the role of T2SS in pathogenicity. The ΔgspD mutant displayed decreased lipolytic activity, associated with attenuated colonization ability in a murine pneumonia model. These phenotypes are linked to LipAN, a novel plasmid-encoded phospholipase, identified through mass spectroscopy as a T2SS substrate. Recombinant LipAN showed specific phospholipase activity in vitro. Proteomics on the T2-dependent secretome of ATCC 17978 strain revealed its potential dedication to the secretion of a number of lipolytic enzymes, among others which could contribute to its virulence. This study highlights the role of T2SS as an active contributor to the virulence of A. baumannii potentially through secretion of a newly identified phospholipase.

  14. The cold-induced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in group I Clostridium botulinum ATCC 3502 cold tolerance.

    PubMed

    Dahlsten, Elias; Zhang, Zhen; Somervuo, Panu; Minton, Nigel P; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    The two-component system CBO0366/CBO0365 was recently demonstrated to have a role in cold tolerance of group I Clostridium botulinum ATCC 3502. The mechanisms under its control, ultimately resulting in increased sensitivity to low temperature, are unknown. A transcriptomic analysis with DNA microarrays was performed to identify the differences in global gene expression patterns of the wild-type ATCC 3502 and a derivative mutant with insertionally inactivated cbo0365 at 37 and 15°C. Altogether, 150 or 141 chromosomal coding sequences (CDSs) were found to be differently expressed in the cbo0365 mutant at 37 or 15°C, respectively, and thus considered to be under the direct or indirect transcriptional control of the response regulator CBO0365. Of the differentially expressed CDSs, expression of 141 CDSs was similarly affected at both temperatures investigated, suggesting that the putative CBO0365 regulon was practically not affected by temperature. The regulon involved genes related to acetone-butanol-ethanol (ABE) fermentation, motility, arsenic resistance, and phosphate uptake and transport. Deteriorated growth at 17°C was observed for mutants with disrupted ABE fermentation pathway components (crt, bcd, bdh, and ctfA), arsenic detoxifying machinery components (arsC and arsR), or phosphate uptake mechanism components (phoT), suggesting roles for these mechanisms in cold tolerance of group I C. botulinum. Electrophoretic mobility shift assays showed recombinant CBO0365 to bind to the promoter regions of crt, arsR, and phoT, as well as to the promoter region of its own operon, suggesting direct DNA-binding transcriptional activation or repression as a means for CBO0365 in regulating these operons. The results provide insight to the mechanisms group I C. botulinum utilizes in coping with cold.

  15. Biosurfactant production and surface translocation are regulated by PlcR in Bacillus cereus ATCC 14579 under low-nutrient conditions.

    PubMed

    Hsueh, Yi-Huang; Somers, Eileen B; Lereclus, Didier; Ghelardi, Emilia; Wong, Amy C Lee

    2007-11-01

    Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.0 g K(2)HPO(4), 3.0 g KH(2)PO(4), 0.1 g MgSO(4).7H(2)O, 0.1 g (NH(4))(2)SO(4), 0.01 g CaCl(2), 0.001 g FeSO(4), 0.1 g NaCl, 1.0 g glucose, and 125 mg yeast extract per liter] containing 0.7% agar. The dendritic patterns formed by sliding translocation of nonflagellated cells are enhanced under low-nutrient conditions and require sufficient production of a biosurfactant, which appears to be repressed by PlcR. The wild-type and complemented strains failed to slide on the surface of EPS agar because of the production of low levels of biosurfactant. Precoating EPS agar surfaces with surfactin (a biosurfactant produced by Bacillus subtilis) or biosurfactant purified from the DeltaplcR mutant rescued the ability of the wild-type and complemented strains to slide. When grown on a nutrient-rich medium like Luria-Bertani agar, both the wild-type and DeltaplcR mutant strains produced flagella. The wild type was hyperflagellated and elongated and exhibited swarming behavior, while the DeltaplcR mutant was multiflagellated and the cells often formed long chains but did not swarm. Thin-layer chromatography and mass spectrometry analyses suggested that the biosurfactant purified from the DeltaplcR mutant was a lipopeptide and had a mass of 1,278.1722 (m/z). This biosurfactant has hemolytic activity and inhibited the growth of several gram-positive bacteria.

  16. Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287

    PubMed Central

    Åvall-Jääskeläinen, Silja; Hynönen, Ulla; Ilk, Nicola; Pum, Dietmar; Sleytr, Uwe B; Palva, Airi

    2008-01-01

    Background Lactobacillus brevis ATCC 8287 is covered by a regular surface (S-) layer consisting of a 435 amino acid protein SlpA. This protein is completely unrelated in sequence to the previously characterized S-layer proteins of Lactobacillus acidophilus group. Results In this work, the self-assembly and cell wall binding domains of SlpA were characterized. The C-terminal self-assembly domain encompassed residues 179–435 of mature SlpA, as demonstrated by the ability of N-terminally truncated recombinant SlpA to form a periodic structure indistinguishable from that formed by full length SlpA. Furthermore, a trypsin degradation analysis indicated the existence of a protease resistant C-terminal domain of 214 amino acids. By producing a set of C-terminally truncated recombinant SlpA (rSlpA) proteins the cell wall binding region was mapped to the N-terminal part of SlpA, where the first 145 amino acids of mature SlpA alone were sufficient for binding to isolated cell wall fragments of L. brevis ATCC 8287. The binding of full length rSlpA to the cell walls was not affected by the treatment of the walls with 5% trichloroacetic acid (TCA), indicating that cell wall structures other than teichoic acids are involved, a feature not shared by the Lactobacillus acidophilus group S-layer proteins characterized so far. Conserved carbohydrate binding motifs were identified in the positively charged N-terminal regions of six Lactobacillus brevis S-layer proteins. Conclusion This study identifies SlpA as a two-domain protein in which the order of the functional domains is reversed compared to other characterized Lactobacillus S-layer proteins, and emphasizes the diversity of potential cell wall receptors despite similar carbohydrate binding sequence motifs in Lactobacillus S-layer proteins. PMID:18828902

  17. Transcriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer

    PubMed Central

    Pittet, Vanessa; Phister, Trevor G.; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcusclaussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P. claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria. PMID:24040005

  18. Transcriptome sequence and plasmid copy number analysis of the brewery isolate Pediococcus claussenii ATCC BAA-344 T during growth in beer.

    PubMed

    Pittet, Vanessa; Phister, Trevor G; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344(T) (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P. claussenii ATCC BAA-344(T) genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria.

  19. Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142.

    PubMed Central

    Colón-López, M S; Sherman, D M; Sherman, L A

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium which demonstrated extensive metabolic periodicities of photosynthesis, respiration, and nitrogen fixation when grown under N2-fixing conditions. N2 fixation and respiration peaked at 24-h intervals early in the dark or subjective-dark period, whereas photosynthesis was approximately 12 h out of phase and peaked toward the end of the light or subjective-light phase. Gene regulation studies demonstrated that nitrogenase is carefully controlled at the transcriptional and posttranslational levels. Indeed, Cyanothece sp. strain ATCC 51142 has developed an expensive mode of regulation, such that nitrogenase was synthesized and degraded each day. These patterns were seen when cells were grown under either light-dark or continuous-light conditions. Nitrogenase mRNA was synthesized from the nifHDK operon during the first 4 h of the dark period under light-dark conditions or during the first 6 h of the subjective-dark period when grown in continuous light. The nitrogenase NifH and NifDK subunits reached a maximum level at 4 to 10 h in the dark or subjective-dark periods and were shown by Western blotting and electron microscopy immunocytochemistry to be thoroughly degraded toward the end of the dark periods. An exception is the NifDK protein (MoFe-protein), which appeared not to be completely degraded under continuous-light conditions. We hypothesize that cellular O2 levels were kept low by decreasing photosynthesis and by increasing respiration in the early dark or subjective-dark periods to permit nitrogenase activity. The subsequent increase in O2 levels resulted in nitrogenase damage and eventual degradation. PMID:9209050

  20. Proteome Analyses of Strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp. under Culture Conditions Resulting in Enhanced H2 Production

    PubMed Central

    Aryal, Uma K.; Callister, Stephen J.; Mishra, Sujata; Zhang, Xiaohui; Shutthanandan, Janani I.; Angel, Thomas E.; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.

    2013-01-01

    Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H2 production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H2 production. PMID:23204418

  1. Triclosan can select for an AdeIJK-overexpressing mutant of Acinetobacter baumannii ATCC 17978 that displays reduced susceptibility to multiple antibiotics.

    PubMed

    Fernando, Dinesh M; Xu, Wayne; Loewen, Peter C; Zhanel, George G; Kumar, Ayush

    2014-11-01

    In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.

  2. Inactivation of Escherichia coli ATCC 25922 and Escherichia coil O157:H7 in apple juice and apple cider, using pulsed light treatment.

    PubMed

    Sauer, Anne; Moraru, Carmen I

    2009-05-01

    The main objective of this work was to evaluate the effectiveness of pulsed light (PL) treatment for the inactivation of Escherichia coli in liquids with different levels of clarity. Nonpathogenic E. coli ATCC 25922 and pathogenic E. coli O157: H7 were used as challenge organisms. Butterfield's phosphate buffer (BPB), tryptic soy broth (TSB), apple juice, and apple cider were used as substrates. The inoculated liquids were placed in a thin layer (1.3 mm) into glass chambers (23 by 53 by 11 mm) and exposed to PL doses of up to 13.1 J/cm2. PL treatments were performed in a Xenon RS-3000C PL unit, both in static mode and under turbulence. Survivors were determined by standard plate counting or the most-probable-number technique. For static treatments, reduction levels exceeding 8.5 log were obtained in BPB for all strains and reduction levels of about 3.5 log were obtained in TSB. For apple juice, inactivation levels of 2.66 +/- 0.10 log were obtained for E. coli ATCC 25922 and 2.52 +/- 0.19 log for E. coli O157:H7. In cider, inactivation levels of 2.32 +/- 0.16 log and 3.22 +/- 0.29 log were obtained for the nonpathogenic and pathogenic strains, respectively. Inactivation kinetics was characterized using the Weibull model. Turbulent treatments resulted in 5.76 +/- 0.06 log reduction in cider and 7.15 +/- 0.22 log reduction in juice, which satisfies the U.S. Food and Drug Administration requirement of 5-log reduction of E. coli. These results show promise for the use of PL for the effective reduction of E. coli in apple juice and cider.

  3. First Complete Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhimurium Strain ATCC 13311 (NCTC 74), a Reference Strain of Multidrug Resistance, as Achieved by Use of PacBio Single-Molecule Real-Time Technology

    PubMed Central

    Juan, Ayaka; Tamotsu, Hinako; Ashimine, Noriko; Nakano, Kazuma; Shimoji, Makiko; Shiroma, Akino; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2014-01-01

    We report the first complete genomic sequence of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311, the leading food-borne pathogen and a reference strain used in drug resistance studies. De novo assembly with PacBio sequencing completed its chromosome and one plasmid. They will accelerate the investigation into multidrug resistance in Salmonella Typhimurium. PMID:25278532

  4. An enumeration method and sampling plan for mapping the number and distribution of a multiple antibiotic resistant strain (ATCC 700408) of Salmonella typhimurium DT104 on the carcass of Cornish game hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping the number and distribution of Salmonella on the chicken carcass will help guide better design of processing procedures to reduce or eliminate this human pathogen from chicken. A selective plating media with multiple antibiotics (XLH-CATS) and a multiple antibiotic resistant strain (ATCC 70...

  5. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis.

  6. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    PubMed Central

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  7. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny.

    PubMed

    Cavalier-Smith, Thomas

    2015-04-01

    Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees.

  8. Collaborative study report: evaluation of the ATCC experimental mycoplasma reference strains panel prepared for comparison of NAT-based and conventional mycoplasma detection methods.

    PubMed

    Dabrazhynetskaya, Alena; Volokhov, Dmitriy V; Lin, Tsai-Lien; Beck, Brian; Gupta, Rajesh K; Chizhikov, Vladimir

    2013-11-01

    The main goal of this collaborative study was to evaluate the experimental panel of cryopreserved mycoplasma reference strains recently prepared by the American Type Culture Collection (ATCC(®)) in order to assess the viability and dispersion of cells in the mycoplasma stocks by measuring the ratio between the number of genomic copies (GC) and the number of colony forming units (CFU) in the reference preparations. The employment of microbial reference cultures with low GC/CFU ratios is critical for unbiased and reliable comparison of mycoplasma testing methods based on different methodological approaches, i.e., Nucleic Acid Testing (NAT) and compendial culture-based techniques. The experimental panel included ten different mycoplasma species known to represent potential human and animal pathogens as well as common contaminants of mammalian and avian cell substrates used in research, development, and manufacture of biological products. Fifteen laboratories with expertise in field of mycoplasma titration and quantification of mycoplasmal genomic DNA participated in the study conducted from February to October of 2012. The results of this study demonstrated the feasibility of preparing highly viable and dispersed (possessing low GC/CFU ratios) frozen stocks of mycoplasma reference materials, required for reliable comparison of NAT-based and conventional mycoplasma detection methods.

  9. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread.

    PubMed

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-07-01

    The goal of this investigation was to develop baking products using Bifidobacterium pseudocatenulatum ATCC27919, a phytase producer, as a starter in sourdough for the production of whole rye-wheat mixed bread. This Bifidobacterium strain contributed to myo-inositol hexakisphosphate (phytate) hydrolysis, resulting in breads with higher mineral availability as was predicted by the phytate/mineral molar ratios, which remained below the inhibitory threshold values for Ca and Zn intestinal absorption. The products with sourdough showed similar technological quality as their homologous without sourdough, with levels of acetic and d/l lactic acids in dough and bread baking significantly higher with the use of sourdough. The overall acceptability scores showed that breads with 25% of whole rye flour were highly accepted regardless of the inclusion of sourdough. This work emphasises that the in situ production of phytase during fermentation by GRAS/QPS microorganisms constitutes a strategy which is particularly appropriate for reducing the phytate contents in products for human consumption.

  10. Determination of the folate content in cladodes of nopal (Opuntia ficus indica) by microbiological assay utilizing Lactobacillus casei (ATCC 7469) and enzyme-linked immunosorbent assay.

    PubMed

    Ortiz-Escobar, Tania Breshkovskaya; Valverde-González, Maria Elena; Paredes-López, Octavio

    2010-05-26

    Prickly pear cactus has been an important food source in Mexico since ancient times due to its economical and ecological benefits and potential nutraceutical value. Nevertheless, studies on the nutritional aspects and health benefits have been scarce. The purpose of this study was to assess, apparently for the first time, the folate contents of cladodes of nopal by a microbiological assay, using Lactobacillus casei (ATCC 7469) in extracts that were enzymatically treated to release the bound vitamin, employing single, dual, and trienzymatic procedures, and using the enzyme-linked immunosorbent assay (ELISA). We used Opuntia cladodes of different length sizes. The microbiological assay showed some differences among enzyme treatments and sizes of nopal; the trienzyme treatment (alpha-amylase-protease-conjugase) was more efficient in determining the folate content in nopal, giving 5.0 ng/g in the small size cladodes at 54 h of testing time, while ELISA showed no significant differences in the folate content among sizes of cladodes (5.5-5.62 ng/g at 0 min testing time). Both techniques may be used for the assessment of folate content in cladodes, but ELISA is more rapid and reliable.

  11. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344.

    PubMed

    Liao, Wei; Liu, Yan; Frear, Craig; Chen, Shulin

    2008-09-01

    Fumaric acid is widely used as a food additive for flavor and preservation. Rhizopus oryzae ATCC 20344 is a fungus known for good fumaric acid production. It also has been reported that the fungal biomass has high chitin content. This study investigated the possibility of producing both fumaric acid and chitin via R. oryzae fermentation of dairy manure. Co-production of valuable bio-based chemicals such as fumaric acid and chitin could make the utilization of manure more efficient and more profitable. A three step fermentation process was developed which effectively utilized the nitrogen as well as the carbohydrate sources within the manure. These steps were: the culturing of pellet seed; biomass cultivation on liquid manure to produce both biomass and chitin; and fumaric acid production on the hydrolysate from the manure fiber. Under the identified optimal conditions, the fermentation system had a fumaric acid yield of 31%, and a biomass concentration of 11.5 g/L that contained 0.21 g chitin/g biomass.

  12. A β-glucosidase from Oenococcus oeni ATCC BAA-1163 with potential for aroma release in wine: Cloning and expression in E. coli.

    PubMed

    Michlmayr, Herbert; Schümann, Christina; Wurbs, Phillip; Barreira Braz da Silva, Nuno M; Rogl, Veronika; Kulbe, Klaus D; Del Hierro, Andrés M

    2010-07-01

    Lactic acid bacteria (LAB) are responsible for olfactory changes in wine during malolactic fermentation (MLF). A side characteristic of MLF is the release of grape derived aroma compounds from their glycosylated precursors by β-glycosidase activities of these bacteria. Apart from Oenococcus oeni, which is regarded as the most promising species for MLF, glycosidic activities have also been observed in wine related members of the genera Lactobacillus and Pediococcus. Nevertheless, information on the involved enzymes including their potential use in winemaking is limited. In this study we report that β-glucosidases with similar protein sequences can be identified in the genomes of Lactobacillus brevis, O. oeni and Leuconostoc mesenteroides. TTG serves as start codon for the glucosidase gene of O. oeni. The β-glucosidase of O. oeni ATCC BAA-1163 was expressed in E. coli and partially characterized. The enzyme displayed characteristics similar to β-glucosidases isolated from L. brevis and L. mesenteroides. A pH optimum between 5.0 and 5.5, and a K(m) of 0.17 mmol L(-1 )pNP-β-D-glucopyranoside were determined. A glycosyltransferase activity was observed in the presence of ethanol. The enzyme from O. oeni was capable to hydrolyze glycosides extracted from Muskat wine. This study also contains a report on glycosidase activities of several LAB species including Oenococcus kitaharae.

  13. Heterologous Expression of the Thiopeptide Antibiotic GE2270 from Planobispora rosea ATCC 53733 in Streptomyces coelicolor Requires Deletion of Ribosomal Genes from the Expression Construct

    PubMed Central

    Flinspach, Katrin; Kapitzke, Claudia; Tocchetti, Arianna; Sosio, Margherita; Apel, Alexander K.

    2014-01-01

    GE2270 is a thiopeptide antibiotic generated by extensive posttranslational modifications of a ribosomally generated precursor peptide. Thiopeptides are especially active against Gram-positive bacteria, including methicillin resistant Staphylococcus aureus (MRSA). In this study the GE2270 biosynthetic gene cluster (pbt) from Planobispora rosea ATCC 53733 was successfully expressed in the heterologous host strain Streptomyces coelicolor M1146. Notably, exconjugants containing the pbt gene cluster could only be obtained after deletion of the major part of the ribosomal genes flanking the gene cluster. This is a striking example that genes belonging to primary metabolism can prevent the successful conjugative transfer of DNA from phylogenetic distant species and thus complicate heterologous expression of secondary metabolite gene clusters. GE2270 production in the heterologous producer strain increased after introduction of the constitutive ermE* promoter upstream of the GE2270 resistance gene tuf from P. rosea. Insertion of the inducible tcp830 promoter resulted in inducible GE2270 production. When the regulatory gene pbtR was deleted, the resulting strain ceased to produce GE2270, suggesting an essential role of PbtR as a putative transcriptional activator of GE2270 expression. PMID:24598591

  14. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749.

    PubMed

    Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; English, Nike; Yu, Xiao-Bin; Lin, Chi-Chung

    2012-01-01

    A significant problem in scale-down cultures, rarely studied for metabolic characterization and curdlan-producing Agrobacterium sp. ATCC 31749, is the presence of dissolved oxygen (DO) gradients combined with pH control. Constant DO, between 5% and 75%, was maintained during batch fermentations by manipulating the agitation with PID system. Fermentation, metabolic and kinetic characterization studies were conducted in a scale-down system. The curdlan yield, intracellular nucleotide levels and glucose conversion efficiency into curdlan were significantly affected by DO concentrations. The optimum DO concentrations for curdlan production were 45-60%. The average curdlan yield, curdlan productivity and glucose conversion efficiency into curdlan were enhanced by 80%, 66% and 32%, respectively, compared to that at 15% DO. No apparent difference in the gel strength of the resulting curdlan was detected. The comparison of curdlan biosynthesis and cellular nucleotide levels showed that curdlan production had positive relationship with intracellular levels of UTP, ADP, AMP, NAD(+), NADH and UDP-glucose. The curdlan productivity under 45% DO and 60% DO was different during 20-50 h. However, after 60 h curdlan productivity of both conditions was similar. On that basis, a simple and reproducible two-stage DO control process for curdlan production was developed. Curdlan production yield reached 42.8 g/l, an increase of 30% compared to that of the single agitation speed control process.

  15. Gene Expression Patterns Associated with the Biosynthesis of the Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133 in Response to UVA Radiation▿

    PubMed Central

    Soule, Tanya; Garcia-Pichel, Ferran; Stout, Valerie

    2009-01-01

    Under exposure to UV radiation, some cyanobacteria synthesize sunscreen compounds. Scytonemin is a heterocyclic indole-alkaloid sunscreen, the synthesis of which is induced upon exposure to UVA (long-wavelength UV) radiation. We previously identified and characterized an 18-gene cluster associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133; we now report on the expression response of these genes to a step-up shift in UVA exposure. Using quantitative PCR on cDNAs from the N. punctiforme transcriptome and primers targeting each of the 18 genes in the cluster, we followed their differential expression in parallel subcultures incubated with and without UVA. All 18 genes are induced by UVA irradiation, with relative transcription levels that generally peak after 48 h of continuous UVA exposure. A five-gene cluster implicated in the process of scytonemin biosynthesis solely on the basis of comparative genomics was also upregulated. Furthermore, we demonstrate that all of the genes in the18-gene region are cotranscribed as part of a single transcriptional unit. PMID:19429608

  16. Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646

    PubMed Central

    Moumen, Bouziane; Nguen-The, Christophe; Sorokin, Alexei

    2012-01-01

    Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII) in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus  β-haemolysin. PMID:22567391

  17. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591

    PubMed Central

    Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659

  18. Rosmarinus officinalis L. essential oil and its majority compound 1,8-cineole at sublethal amounts induce no direct and cross protection in Staphylococcus aureus ATCC 6538.

    PubMed

    Gomes Neto, Nelson Justino; Luz, Isabelle da Silva; Tavares, Adassa Gama; Honório, Vanessa Gonçalves; Magnani, Marciane; de Souza, Evandro Leite

    2012-12-01

    In this study, the inhibitory efficacy of Rosmarinus officinalis essential L. (ROEO) and 1,8-cineole (CIN) in inhibiting the growth and survival of Staphylococcus aureus ATCC 6538 and the induction of direct and bacterial cross protection (lactic acid pH 5.2; NaCl 100 g/L; high temperature 45°C) were evaluated following exposure to sublethal and increasing amounts of these treatments in meat broth. All of the concentrations of the ROEO and CIN examined in this study (minimum inhibitory concentration [MIC], 1/2 MIC, and 1/4 MIC) inhibited the viability of S. aureus throughout the 120 min of exposure. The overnight exposure of S. aureus to sublethal amounts of both ROEO or CIN in meat broth did not result in direct or cross protection. Cells progressively subcultured (24-h cycles) in meat broth with increasing amounts of ROEO or CIN showed no increased direct tolerance. These results reveal the antimicrobial efficacy of ROEO and CIN for use in food conservation systems as anti-S. aureus compounds given their efficacy at inhibiting bacterial growth, in addition to their lack of induction for the development of homologous and heterologous resistance.

  19. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis.

    PubMed Central

    Nollet, L; Demeyer, D; Verstraete, W

    1997-01-01

    Evidence is provided that reductive acetogenesis can be stimulated in ruminal samples during short-term (24-h) incubations when methanogenesis is inhibited selectively. While addition of the reductive acetogen Peptostreptococcus productus ATCC 35244 alone had no significant influence on CH4 and volatile fatty acid (VFA) production in ruminal samples, the addition of this strain together with 2-bromoethanesulfonic acid (BES) (final concentration, 0.01 or 0.03 mM) resulted in stimulation of acetic acid production and H2 consumption. Since acetate production exceeded amounts that could be attributed to reductive acetogenesis, as measured by H2 consumption, it was found that P. productus also fermented C6 units (glucose and fructose) heterotrophically to mainly acetate (> 99% of the total VFA). Using 14CH3COOH, we concluded that addition of BES and BES plus P. productus did not alter the consumption of acetate in ruminal samples. The addition of P. productus to BES-treated ruminal samples caused supplemental inhibition of CH4 production and stimulation of VFA production, representing a possible energy gain of about 13 to 15%. PMID:8979351

  20. A β-glucosidase from Oenococcus oeni ATCC BAA-1163 with potential for aroma release in wine: Cloning and expression in E. coli

    PubMed Central

    Michlmayr, Herbert; Schümann, Christina; Wurbs, Phillip; Barreira Braz da Silva, Nuno M.; Rogl, Veronika; Kulbe, Klaus D.; del Hierro, Andrés M.

    2011-01-01

    Lactic acid bacteria (LAB) are responsible for olfactory changes in wine during malolactic fermentation (MLF). A side characteristic of MLF is the release of grape derived aroma compounds from their glycosylated precursors by β-glycosidase activities of these bacteria. Apart from Oenococcus oeni, which is regarded as the most promising species for MLF, glycosidic activities have also been observed in wine related members of the genera Lactobacillus and Pediococcus. Nevertheless, information on the involved enzymes including their potential use in winemaking is limited. In this study we report that β-glucosidases with similar protein sequences can be identified in the genomes of Lactobacillus brevis, O. oeni and Leuconostoc mesenteroides. TTG serves as start codon for the glucosidase gene of O. oeni. The β-glucosidase of O. oeni ATCC BAA-1163 was expressed in E. coli and partially characterized. The enzyme displayed characteristics similar to β-glucosidases isolated from L. brevis and L. mesenteroides. A pH optimum between 5.0 and 5.5, and a Km of 0.17 mmol L−1 pNP-β-D-glucopyranoside were determined. A glycosyltransferase activity was observed in the presence of ethanol. The enzyme from O. oeni was capable to hydrolyze glycosides extracted from Muskat wine. This study also contains a report on glycosidase activities of several LAB species including Oenococcus kitaharae. PMID:21243086

  1. 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: Operational conditions and kinetics in batch cultivations.

    PubMed

    Rodriguez, Alberto; Wojtusik, Mateusz; Ripoll, Vanessa; Santos, Victoria E; Garcia-Ochoa, F

    2016-01-01

    Shimwellia blattae ATCC 33430 as biocatalyst in the conversion of 1,3-propanediol from glycerol is herein evaluated. Several operational conditions in batch cultivations, employing pure and raw glycerol as sole carbon source, were studied. Temperature was studied at shaken bottle scale, while pH control strategy, together with the influence of raw glycerol and its impurities during fermentation were studied employing a 2L STBR. Thereafter, fluid dynamic conditions were considered by changing the stirring speed and the gas supply (air or nitrogen) in the same scale-up experiments. The best results were obtained at a temperature of 37°C, an agitation rate of 200rpm, with free pH evolution from 6.9 and subsequent control at 6.5 and no gas supply during the fermentation, employing an initial concentration of 30g/L of raw glycerol. Under these conditions, the biocatalyst is competitive, leading to results in line with other previous works in the literature in batch conditions, reaching a final concentration of 1,3-propanediol of 13.84g/L, with a yield of 0.45g/g and a productivity of 1.19g/(Lh) from raw glycerol.

  2. Improvement of chloramphenicol production in Streptomyces venezuelae ATCC 10712 by overexpression of the aroB and aroK genes catalysing steps in the shikimate pathway.

    PubMed

    Vitayakritsirikul, Vipawan; Jaemsaeng, Ratchaniwan; Lohmaneeratana, Karan; Thanapipatsiri, Anyarat; Daduang, Ratama; Chuawong, Pitak; Thamchaipenet, Arinthip

    2016-03-01

    Streptomyces venezuelae ATCC 10712 produces chloramphenicol in small amounts. To enhance chloramphenicol production, two genes, aroB and aroK, encoding rate-limiting enzymes of the shikimate pathway were overexpressed using the expression vector pIJ86 under the control of the strong constitutive ermE* promoter. The recombinant strains, S. venezuelae/pIJ86-aroB and S. venezuelae/pIJ86-aroK, produced 2.5- and 4.3-fold greater amounts respectively of chloramphenicol than wild type at early stationary phase of growth. High transcriptional levels of aroB and aroK genes were detected at the early exponential growth of both recombinant strains and consistent with the enhanced expression of pabB gene encoding an early enzyme in chloramphenicol biosynthesis. The results suggested that the increment of carbon flux was directed towards intermediates in the shikimate pathway required for the production of chorismic acid, and consequently resulted in the enhancement of chloramphenicol production. This work is the first report of a convenient genetic approach to manipulate primary metabolite genes in S. venezuelae in order to increase chloramphenicol production.

  3. Using Flow Cytometry to Evaluate the Stress Physiological Response of the Yeast Saccharomyces carlsbergensis ATCC 6269 to the Presence of 5-Hydroxymethylfurfural During Ethanol Fermentations.

    PubMed

    Lopes da Silva, Teresa; Baptista, Cátia; Reis, Alberto; Passarinho, Paula C

    2017-03-01

    Lignocellulosic materials have been considered low-cost effective substrates for bioethanol production. However, lignocellulosic pretreatment releases toxic compounds such as 5-hydroxymethylfurfural (HMF) that is known to inhibit the yeast growth and ethanol production. In this work, flow cytometry was used to monitor the physiological response of the yeast Saccharomyces carlsbergensis ATCC 6269 in the presence of different initial HMF concentrations within the range of 0-15 g/L, in terms of cell membrane integrity, potential, and intracellular lipids. It was observed that the HMF presence affected more significantly the yeast growth than the ethanol production. At 15 g/L HMF, the yeast growth and fermentation ability were completely inhibited. The cell membrane integrity and potential decreased as the initial HMF concentration increased. At the end of the fermentation process with 10 g/L HMF, the yeast culture contained 45 % of cells with depolarized plasma membrane, 52 % of cells with permeabilized plasma membrane, and 53 % of cells with increasing reactive oxygen species (ROS) levels. Using the Nile Red stain, it was observed that intracellular polar lipids were more affected by the initial HMF concentration than the neutral lipids, probably due to the extensive membrane damage.

  4. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production.

    PubMed

    Hayrapetyan, Hasmik; Tempelaars, Marcel; Nierop Groot, Masja; Abee, Tjakko

    2015-01-01

    Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.

  5. Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases.

    PubMed

    Chazarreta Cifré, Lorena; Alemany, Mariana; de Mendoza, Diego; Altabe, Silvia

    2013-10-01

    At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.

  6. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633.

    PubMed

    Pan, Xiaohong; Liu, Zunjing; Chen, Zhi; Cheng, Yangjian; Pan, Danmei; Shao, Jiening; Lin, Zhang; Guan, Xiong

    2014-05-15

    In this study, we investigated the Cr(VI) uptake mechanism of planktonic cells and biofilms of Bacillus subtilis (B. subtilis) ATCC-6633. Data showed that the effect of planktonic cells on the Cr(VI) uptake was quite different from that of biofilms. Planktonic cells had strong ability of Cr(VI) reduction, while biofilms possessed a great potential of Cr(III) immobilization. For planktonic cells, 100 mg/L Cr(VI) could be completely reduced. Both exopolymeric substances and cytoplasmic extracts contributed to high capacity of Cr(VI) reduction. After the reduction, noticeable Cr(III) precipitates were accumulated on bacterial surfaces, but 37.5% Cr(III) still remained in the supernatant. For biofilms, the biofilm debris became the main active ingredient of the Cr(VI) reduction. However, only 20 mg/L Cr(VI) could be reduced probably because of unavailability of reducing active sites during the biofilm formation. Further studies showed that biofilms had a better Cr(III) immobilization capacity than planktonic cells with 100% Cr(III) immobilized. Moreover, for the first time, we proposed a strategy combining the advantages of both planktonic cells and biofilms, and a successful Cr(VI) removal from typical Cr(VI)-containing plating wastewater was achieved through a 10-L pilot-scale experiment.

  7. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356.

    PubMed

    Gao, Xue; Huang, Lulu; Zhu, Liqi; Mou, Chunxiao; Hou, Qihang; Yu, Qinghua

    2016-01-01

    Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention.

  8. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    PubMed

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2016-12-21

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours.

  9. Internalization of the PDZ and its photodynamic effect on the growth of ATCC and clinical strains of E. coli and S. aureus

    NASA Astrophysics Data System (ADS)

    Rodrigues da Silva, Gislene; Henrique Correia Pereira, André; Guerra Pinto, Juliana; José Raniero, Leandro; Ferreira-Strixino, Juliana

    2016-09-01

    The treatment of bacterial infections has been a challenge after the end of the ‘era of antibiotics’. Bacteria are capable of causing many infectious diseases; therefore, with the increasing number of bacteria becoming resistant, development of alternative therapies is needed to minimize, or even eliminate the use of antibiotics. Photodynamic therapy (PDT) is a promising alternative to fight microorganism. In view of the increasing emergence of resistant bacteria and the limitations of conventional treatment, this study evaluated the effect of photodynamic therapy with photodithazine (PDZ) in inactivating bacterial strains of E. coli and S. aureus in vitro, comparing the behavior of clinical and ATCC strains. Confocal microscopy analysis was performed to determine the internalization of the PS and spectrophotometric technique was used to determine the growth of bacteria in vitro. PDT using PDZ was able to reduce the growth of S. aureus strains using the incubation time of 24 h, whereas no satisfactory results were obtained with 15 min incubation. The E. coli strains, tested at two incubation times, did not affectively reduce bacterial growth. Therefore, it is concluded that PDT using PDZ is viable when applied to the S. aureus strains, when suitable incubation times are used.

  10. Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase.

    PubMed Central

    Xu, Y; Mortimer, M W; Fisher, T S; Kahn, M L; Brockman, F J; Xun, L

    1997-01-01

    Nitrilotriacetate (NTA) is an important chelating agent in detergents and has also been used extensively in processing radionuclides. In Chelatobacter heintzii ATCC 29600, biodegradation of NTA is initiated by NTA monooxygenase that oxidizes NTA to iminodiacetate and glyoxylate. The NTA monooxygenase activity requires two component proteins, component A and component B, but the function of each component is unclear. We have cloned and sequenced a gene cluster encoding components A and B (nmoA and nmoB) and two additional open reading frames, nmoR and nmoT, downstream of nmoA. Based on sequence similarities, nmoR and nmoT probably encode a regulatory protein and a transposase, respectively. The NmoA sequence was similar to a monooxygenase that uses reduced flavin mononucleotide (FMNH2) as reductant; NmoB was similar to an NADH:flavin mononucleotide (FMN) oxidoreductase. On the basis of this information, we tested the function of each component. Purified component B was shown to be an NADH:FMN oxidoreductase, and its activity could be separated from that of component A. When the Photobacterium fischeri NADH:FMN oxidoreductase was substituted for component B in the complete reaction, NTA was oxidized, showing that the substrate specificity of the reaction resides in component A. Component A is therefore an NTA monooxygenase that uses FMNH2 and O2 to oxidize NTA, and component B is an NADH:FMN oxidoreductase that provides FMNH2 for NTA oxidation. PMID:9023192

  11. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    SciTech Connect

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di; Trincao, J.; Pickering, I.J.; George, G.N.; Calvete, J.J.; Brondino, C.; Pereira, A.S.; Lampreia, J.; Tavares, P.; Moura, J.J.G.; Moura, I.

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  12. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356

    PubMed Central

    Gao, Xue; Huang, Lulu; Zhu, Liqi; Mou, Chunxiao; Hou, Qihang; Yu, Qinghua

    2016-01-01

    Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention. PMID:27826541

  13. Multi-omic dynamics associate oxygenic photosynthesis with nitrogenase-mediated H2 production in Cyanothece sp. ATCC 51142

    SciTech Connect

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; Sadler, Natalie C.; Melnicki, Matthew R.; Hill, Eric A.; Markillie, Lye Meng; Nicora, Carrie D.; Wright, Aaron T.; Romine, Margaret F.; Beliaev, Alexander S.

    2015-11-03

    This study combines transcriptomic and proteomic profiling to provide new insights on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in the model cyanobacterium, Cyanothece sp. ATCC 51142. To date, the proposed mechanisms used to describe the energy metabolism processes that support H2 production in Cyanothece 51142 have assumed that ATP and reductant requirements are derived solely from glycogen oxidation and/or cyclic-electron flow around photosystem I. The results from this study present and test an alternative hypothesis by showing that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the likely role of photocatalytic H2O oxidation as a major participating process.

  14. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes.

    PubMed

    Lindbäck, T; Okstad, O A; Rishovd, A L; Kolstø, A B

    1999-11-01

    Haemolysin BL (HBL) is a Bacillus cereus toxin composed of a binding component, B, and two lytic components, L1 and L2. HBL is also the enterotoxin responsible for the diarrhoeal food poisoning syndrome caused by several strains of B. cereus. The three genes encoding the HBL components constitute an operon and are transcribed from a promoter 608 bp upstream of the hblC translational start site. The first gene of the hbl operon, hblC, in the B. cereus type strain, ATCC 14579, was inactivated in this study. Inactivation of hblC strongly reduced both the enterotoxigenic activity of B. cereus ATCC 14579 and the haemolytic activity against sheep erythrocytes, while maintaining full haemolytic activity against human erythrocytes.

  15. Determination of lethality rate constants and D-values for heat-resistant Bacillus spores ATCC 29669 exposed to dry heat from 125°C to 200°C.

    PubMed

    Schubert, Wayne W; Beaudet, Robert A

    2011-04-01

    Exposing flight hardware to dry heat is a NASA-approved sterilization method for reducing microbial bioburden on spacecraft. The existing NASA specification only allows heating the flight hardware between 104°C and 125°C to reduce the number of viable microbes and bacterial spores. Also, the NASA specifications only allow a four log reduction by dry heat microbial reduction because very heat-resistant spores are presumed to exist in a diverse population (0.1%). The goal of this research was to obtain data at higher temperatures than 125°C for one of the most heat-resistant microorganisms discovered in a spacecraft assembly area. These data support expanding the NASA specifications to temperatures higher than 125°C and relaxing the four log reduction specification. Small stainless steel vessels with spores of the Bacillus strain ATCC 29669 were exposed to constant temperatures between 125°C and 200°C under both dry and ambient room humidity for set time durations. After exposures, the thermal spore exposure vessels were cooled and the remaining spores recovered and plated out. Survivor ratios, lethality rate constants, and D-values were determined at each temperature. The D-values for the spores exposed under dry humidity conditions were always found to be shorter than those under ambient humidity. The temperature dependence of the lethality rate constants was obtained by assuming that they obeyed Arrhenius behavior. The results are compared to those of B. atrophaeus ATCC 9372. In all cases, the D-values of ATCC 29669 are between 20 and 50 times longer than those of B. atrophaeus ATCC 9372.

  16. Determination of Lethality Rate Constants and D-Values for Heat-Resistant Bacillus Spores ATCC 29669 Exposed to Dry Heat from 125°C to 200°C

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Beaudet, Robert A.

    2011-04-01

    Exposing flight hardware to dry heat is a NASA-approved sterilization method for reducing microbial bioburden on spacecraft. The existing NASA specification only allows heating the flight hardware between 104°C and 125°C to reduce the number of viable microbes and bacterial spores. Also, the NASA specifications only allow a four log reduction by dry heat microbial reduction because very heat-resistant spores are presumed to exist in a diverse population (0.1%). The goal of this research was to obtain data at higher temperatures than 125°C for one of the most heat-resistant microorganisms discovered in a spacecraft assembly area. These data support expanding the NASA specifications to temperatures higher than 125°C and relaxing the four log reduction specification. Small stainless steel vessels with spores of the Bacillus strain ATCC 29669 were exposed to constant temperatures between 125°C and 200°C under both dry and ambient room humidity for set time durations. After exposures, the thermal spore exposure vessels were cooled and the remaining spores recovered and plated out. Survivor ratios, lethality rate constants, and D-values were determined at each temperature. The D-values for the spores exposed under dry humidity conditions were always found to be shorter than those under ambient humidity. The temperature dependence of the lethality rate constants was obtained by assuming that they obeyed Arrhenius behavior. The results are compared to those of B. atrophaeus ATCC 9372. In all cases, the D-values of ATCC 29669 are between 20 and 50 times longer than those of B. atrophaeus ATCC 9372.

  17. Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824

    PubMed Central

    Fontaine, Lisa; Meynial-Salles, Isabelle; Girbal, Laurence; Yang, Xinghong; Croux, Christian; Soucaille, Philippe

    2002-01-01

    The adhE2 gene of Clostridium acetobutylicum ATCC 824, coding for an aldehyde/alcohol dehydrogenase (AADH), was characterized from molecular and biochemical points of view. The 2,577-bp adhE2 codes for a 94.4-kDa protein. adhE2 is expressed, as a monocistronic operon, in alcohologenic cultures and not in solventogenic cultures. Primer extension analysis identified two transcriptional start sites 160 and 215 bp upstream of the adhE2 start codon. The expression of adhE2 from a plasmid in the DG1 mutant of C. acetobutylicum, a mutant cured of the pSOL1 megaplasmid, restored butanol production and provided elevated activities of NADH-dependent butyraldehyde and butanol dehydrogenases. The recombinant AdhE2 protein expressed in E. coli as a Strep-tag fusion protein and purified to homogeneity also demonstrated NADH-dependent butyraldehyde and butanol dehydrogenase activities. This is the second AADH identified in C. acetobutylicum ATCC 824, and to our knowledge this is the first example of a bacterium with two AADHs. It is noteworthy that the two corresponding genes, adhE and adhE2, are carried by the pSOL1 megaplasmid of C. acetobutylicum ATCC 824. PMID:11790753

  18. Identification and Utility of FdmR1 as a Streptomyces Antibiotic Regulatory Protein Activator for Fredericamycin Production in Streptomyces griseus ATCC 49344 and Heterologous Hosts▿ †

    PubMed Central

    Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2008-01-01

    The fredericamycin (FDM) A biosynthetic gene cluster, cloned previously from Streptomyces griseus ATCC 49344, contains three putative regulatory genes, fdmR, fdmR1, and fdmR2. Their deduced gene products show high similarity to members of the Streptomyces antibiotic regulatory protein (SARP) family (FdmR1) or to MarR-like regulators (FdmR and FdmR2). Here we provide experimental data supporting FdmR1 as a SARP-type activator. Inactivation of fdmR1 abolished FDM biosynthesis, and FDM production could be restored to the fdmR1::aac(3)IV mutant by expressing fdmR1 in trans. Reverse transcription-PCR transcriptional analyses revealed that up to 26 of the 28 genes within the fdm gene cluster, with the exception of fdmR and fdmT2, were under the positive control of FdmR1, directly or indirectly. Overexpression of fdmR1 in S. griseus improved the FDM titer 5.6-fold (to about 1.36 g/liter) relative to that of wild-type S. griseus. Cloning of the complete fdm cluster into an integrative plasmid and subsequent expression in heterologous hosts revealed that considerable amounts of FDMs could be produced in Streptomyces albus but not in Streptomyces lividans. However, the S. lividans host could be engineered to produce FDMs via constitutive expression of fdmR1; FDM production in S. lividans could be enhanced further by overexpressing fdmC, encoding a putative ketoreductase, concomitantly with fdmR1. Taken together, these studies demonstrate the viability of engineering FDM biosynthesis and improving FDM titers in both the native producer S. griseus and heterologous hosts, such as S. albus and S. lividans. The approach taken capitalizes on FdmR1, a key activator of the FDM biosynthetic machinery. PMID:18556785

  19. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A.

    PubMed

    Arroyo, Luis A; Herrera, Carmen M; Fernandez, Lucia; Hankins, Jessica V; Trent, M Stephen; Hancock, Robert E W

    2011-08-01

    The emergence of multidrug resistance among Acinetobacter baumannii is leading to an increasing dependence on the use of polymyxins as last-hope antibiotics. Here, we utilized genetic and biochemical methods to define the involvement of the pmrCAB operon in polymyxin resistance in this organism. Sequence analysis of 16 polymyxin B-resistant strains, including 6 spontaneous mutants derived from strain ATCC 17978 and 10 clinical isolates from diverse sources, revealed that they had independent mutations in the pmrB gene, encoding a sensor kinase, or in the response regulator PmrA. Knockout of the pmrB gene in two mutants and two clinical isolates led to a decrease in the polymyxin B susceptibility of these strains, which could be restored with the cloned pmrAB genes from the mutants but not from the wild type. Reverse transcription-quantitative PCR (RT-qPCR) analysis also showed a correlation between the expression of pmrC and polymyxin B resistance. Characterization of lipid A species from the mutant strains, by thin-layer chromatography and mass spectrometry, indicated that the addition of phosphoethanolamine to lipid A correlated with resistance. This addition is performed in Salmonella enterica serovar Typhimurium by the product of the pmrC gene, which is a homolog of the pmrC gene from Acinetobacter. Knockout of this gene in the mutant R2 [pmrB(T235I)] reversed resistance as well as phosphoethanolamine modification of lipid A. These results demonstrate that specific alterations in the sequence of the pmrCAB operon are responsible for resistance to polymyxins in A. baumannii.

  20. The pmrCAB Operon Mediates Polymyxin Resistance in Acinetobacter baumannii ATCC 17978 and Clinical Isolates through Phosphoethanolamine Modification of Lipid A▿

    PubMed Central

    Arroyo, Luis A.; Herrera, Carmen M.; Fernandez, Lucia; Hankins, Jessica V.; Trent, M. Stephen; Hancock, Robert E. W.

    2011-01-01

    The emergence of multidrug resistance among Acinetobacter baumannii is leading to an increasing dependence on the use of polymyxins as last-hope antibiotics. Here, we utilized genetic and biochemical methods to define the involvement of the pmrCAB operon in polymyxin resistance in this organism. Sequence analysis of 16 polymyxin B-resistant strains, including 6 spontaneous mutants derived from strain ATCC 17978 and 10 clinical isolates from diverse sources, revealed that they had independent mutations in the pmrB gene, encoding a sensor kinase, or in the response regulator PmrA. Knockout of the pmrB gene in two mutants and two clinical isolates led to a decrease in the polymyxin B susceptibility of these strains, which could be restored with the cloned pmrAB genes from the mutants but not from the wild type. Reverse transcription-quantitative PCR (RT-qPCR) analysis also showed a correlation between the expression of pmrC and polymyxin B resistance. Characterization of lipid A species from the mutant strains, by thin-layer chromatography and mass spectrometry, indicated that the addition of phosphoethanolamine to lipid A correlated with resistance. This addition is performed in Salmonella enterica serovar Typhimurium by the product of the pmrC gene, which is a homolog of the pmrC gene from Acinetobacter. Knockout of this gene in the mutant R2 [pmrB(T235I)] reversed resistance as well as phosphoethanolamine modification of lipid A. These results demonstrate that specific alterations in the sequence of the pmrCAB operon are responsible for resistance to polymyxins in A. baumannii. PMID:21646482

  1. Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms.

    PubMed

    Nguyen, Scott V; Harhay, Gregory P; Bono, James L; Smith, Timothy P L; Harhay, Dayna M

    2017-01-01

    Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation.

  2. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure.

    PubMed

    Capita, Rosa; Riesco-Peláez, Félix; Alonso-Hernando, Alicia; Alonso-Calleja, Carlos

    2014-02-01

    Escherichia coli ATCC 12806 was exposed to increasing subinhibitory concentrations of three biocides widely used in food industry facilities: trisodium phosphate (TSP), sodium nitrite (SNI), and sodium hypochlorite (SHY). The cultures exhibited an acquired tolerance to biocides (especially to SNI and SHY) after exposure to such compounds. E. coli produced biofilms (as observed by confocal laser scanning microscopy) on polystyrene microtiter plates. Previous adaptation to SNI or SHY enhanced the formation of biofilms (with an increase in biovolume and surface coverage) both in the absence and in the presence (MIC/2) of such compounds. TSP reduced the ability of E. coli to produce biofilms. The concentration of suspended cells in the culture broth in contact with the polystyrene surfaces did not influence the biofilm structure. The increase in cell surface hydrophobicity (assessed by a test of microbial adhesion to solvents) after contact with SNI or SHY appeared to be associated with a strong capacity to form biofilms. Cultures exposed to biocides displayed a stable reduced susceptibility to a range of antibiotics (mainly aminoglycosides, cephalosporins, and quinolones) compared with cultures that were not exposed. SNI caused the greatest increase in resistances (14 antibiotics [48.3% of the total tested]) compared with TSP (1 antibiotic [3.4%]) and SHY (3 antibiotics [10.3%]). Adaptation to SHY involved changes in cell morphology (as observed by scanning electron microscopy) and ultrastructure (as observed by transmission electron microscopy) which allowed this bacterium to persist in the presence of severe SHY challenges. The findings of the present study suggest that the use of biocides at subinhibitory concentrations could represent a public health risk.

  3. RT-qPCR analysis of putative beer-spoilage gene expression during growth of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-344(T) in beer.

    PubMed

    Bergsveinson, Jordyn; Pittet, Vanessa; Ziola, Barry

    2012-10-01

    Lactic acid bacteria (LAB) contamination of beer presents a continual economic threat to brewers. Interestingly, only certain isolates of LAB can grow in the hostile beer environment (e.g., as studied here, Lactobacillus brevis BSO 464 (Lb464) and a non-ropy isolate of Pediococcus claussenii ATCC BAA-344(T) (Pc344NR)), indicating that significant genetic specialization is required. The genes hitA, horA, horB, horC, and bsrA, which have been proposed to confer beer-spoiling ability to an organism, are suspected of counteracting the antimicrobial effects of hops. However, these genes are not present in the same combination (if at all) across beer-spoiling organisms. As such, we sought to investigate the extent to which these genes participate during Lb464 and Pc344NR mid-logarithmic growth in beer through reverse transcription quantitative PCR analysis. We first determined the optimal reference gene set needed for data normalization and, for each bacterium, established that two genes were needed for accurate assessment of gene expression. Following this, we found that horA expression was induced for Pc344NR, but not for Lb464, during growth in beer. Instead, horC expression was dramatically increased in Lb464 when growing in beer, whereas no change was detected for the other putative beer-spoilage-related genes. This indicates that HorC may be one of the principle mediators enabling growth of Lb464 in beer, whereas in Pc344NR, this may be attributable to HorA. These findings not only reveal that Lb464 and Pc344NR are unique in their beer-specific genetic expression profile but also indicate that a range of genetic specialization exists among beer-spoilage bacteria.

  4. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  5. Topological characterization of an inner membrane (1-->3)-beta-D-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749.

    PubMed

    Karnezis, Tara; Epa, V Chandana; Stone, Bruce A; Stanisich, Vilma A

    2003-10-01

    The crdS gene of Agrobacterium sp. strain ATCC31749 encodes the curdlan synthase (CrdS) protein based on the homology of the derived CrdS protein sequence with those of beta-glycosyl transferases with repetitive action patterns (Stasinopoulos et al. [1999] Glycobiology, 9, 31-41). Here we show that chemical (NTG) mutagenesis of crdS abolishes curdlan production and the induced mutations can be complemented by a cloned crdS amplicon, thus providing genetic confirmation that crdS is essential for curdlan production. When expressed in the native Agrobacterium or in Escherichia coli, the largely hydrophobic CrdS protein exhibited an Mr of approximately 60 kDa (compared with the predicted mass of 73,121 Da) and was located in the inner membrane of both bacteria. By analyzing reciprocal fusions between crdS and the reporter genes, lacZ and phoA, and assessing the sensitivity of CrdS in spheroplasts to proteinase K, CrdS was shown to be an integral membrane protein with seven transmembrane helices and an Nout-Cin disposition. A central large and relatively hydrophilic cytoplasmic region carries the substrate-binding and catalytic D,D,D35QxxRW motif. The amino acid sequence of this domain of CrdS was threaded onto the 3D structure of the comparable domain of the SpsA protein, a member of the family GT-2 glycosyl transferases, and enabled the identification of corresponding amino acids involved in binding UDP in CrdS. Analysis of Agrobacterium membrane preparations using blue native-PAGE provided preliminary evidence that CrdS occurs in multimeric protein complexes of approximately 420 kDa and approximately 500 kDa.

  6. Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms

    PubMed Central

    Nguyen, Scott V.; Harhay, Gregory P.; Bono, James L.; Smith, Timothy P. L.

    2017-01-01

    ABSTRACT Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation. PMID:28293682

  7. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH.

    PubMed

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-03-05

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h(-1) . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.

  8. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols.

    PubMed

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Naresh Kumar, G

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2) transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2) containing artificial oxalate operon (plac-FpOAR-oah) and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp) secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil.

  9. Characterization of VanYn, a novel D,D-peptidase/D,D-carboxypeptidase involved in glycopeptide antibiotic resistance in Nonomuraea sp. ATCC 39727.

    PubMed

    Binda, Elisa; Marcone, Giorgia L; Pollegioni, Loredano; Marinelli, Flavia

    2012-09-01

    VanY(n) is a novel protein involved in the mechanism of self-resistance in Nonomuraea sp. ATCC 39727, which produces the glycopeptide antibiotic A40926, the precursor of the second-generation dalbavancin, which is in phase III of clinical development. VanY(n) (196 residues) is encoded by the dbv7 gene within the dbv biosynthetic cluster devoted to A40926 production. C-terminal His6-tagged VanY(n) was successfully expressed as a soluble and active protein in Escherichia coli. The analysis of the sequence suggests the presence of a hydrophobic transmembrane portion and two conserved sequences (SxHxxGxAxD and ExxH) in the extracytoplasmic domain that are potentially involved in coordination of Zn(2+) and catalytic activity. The presence of these conserved sequences indicates a similar mechanism of action and substrate binding in VanY(n) as in VanY, VanX and VanXY Zn(2+)-dependent D,D-carboxypeptidases and D-Ala-D-Ala dipeptidases acting on peptidoglycan maturation and involved in glycopeptide resistance in pathogens. On substrates mimicking peptidoglycan precursors, VanY(n) shows D,D-carboxypeptidase and D,D-dipeptidase activity, but lacks D,D-carboxyesterase ability on D-Ala-D-Lac-terminating peptides. VanY(n) belongs to the metallo-D,D-carboxypeptidase family, but it is inhibited by β-lactams. Its characterization provides new insights into the evolution and transfer of resistance determinants from environmental glycopeptide-producing actinomycetes (such as Nonomuraea sp.) to glycopeptide-resistant pathogens (enterococci and staphylococci). It may also contribute to an early warning system for emerging resistance mechanisms following the introduction into clinics of a second-generation glycopeptide such as dalbavancin.

  10. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877.

    PubMed

    Barona-Gómez, Francisco; Lautru, Sylvie; Francou, Francois-Xavier; Leblond, Pierre; Pernodet, Jean-Luc; Challis, Gregory L

    2006-11-01

    Siderophore-mediated iron acquisition has been well studied in many bacterial pathogens because it contributes to virulence. In contrast, siderophore-mediated iron acquisition by saprophytic bacteria has received relatively little attention. The independent identification of the des and cch gene clusters that direct production of the tris-hydroxamate ferric iron-chelators desferrioxamine E and coelichelin, respectively, which could potentially act as siderophores in the saprophyte Streptomyces coelicolor A3(2), has recently been reported. Here it is shown that the des cluster also directs production of desferrioxamine B in S. coelicolor and that very similar des and cch clusters direct production of desferrioxamines E and B, and coelichelin, respectively, in Streptomyces ambofaciens ATCC 23877. Sequence analyses of the des and cch clusters suggest that components of ferric-siderophore uptake systems are also encoded within each cluster. The construction and analysis of a series of mutants of S. coelicolor lacking just biosynthetic genes or both the biosynthetic and siderophore uptake genes from the des and cch clusters demonstrated that coelichelin and desferrioxamines E and B all function as siderophores in this organism and that at least one of these metabolites is required for growth under defined conditions even in the presence of significant quantities of ferric iron. These experiments also demonstrated that a third siderophore uptake system must be present in S. coelicolor, in addition to the two encoded within the cch and des clusters, which show selectivity for coelichelin and desferrioxamine E, respectively. The ability of the S. coelicolor mutants to utilize a range of exogenous xenosiderophores for iron acquisition was also examined, showing that the third siderophore-iron transport system has broad specificity for tris-hydroxamate-containing siderophores. Together, these results define a complex system of multiple biosynthetic and uptake pathways for

  11. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582

    PubMed Central

    Augimeri, Richard V.; Strap, Janice L.

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature. PMID:26733991

  12. Determination of lethality rate constants and D-values for Bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115 degrees C to 170 degrees C.

    PubMed

    Kempf, M J; Schubert, W W; Beaudet, R A

    2008-12-01

    Dry heat microbial reduction is the NASA-approved sterilization method to reduce the microbial bioburden on spaceflight hardware for missions with planetary protection requirements. The method involves heating the spaceflight hardware to temperatures between 104 degrees C and 125 degrees C for up to 50 hours, while controlling the humidity to very low values. Collection of lethality data at temperatures above 125 degrees C and with ambient (uncontrolled) humidity conditions would establish whether any microbial reduction credit can be offered to the flight project for processes that occur at temperatures greater than 125 degrees C. The goal of this research is to determine the survival rates of Bacillus atrophaeus (ATCC 9372) spores subjected to temperatures higher than 125 degrees C under both dry (controlled) and room ambient humidity (36-66% relative humidity) conditions. Spores were deposited inside thin, stainless steel thermal spore exposure vessels (TSEVs) and heated under ambient or controlled humidity conditions from 115 degrees C to 170 degrees C. After the exposures, the TSEVs were cooled rapidly, and the spores were recovered and plated. Survivor ratios, lethality rate constants, and D-values were calculated at each temperature. At 115 degrees C and 125 degrees C, the controlled humidity lethality rate constant was faster than the ambient humidity lethality rate constant. At 135 degrees C, the ambient and controlled humidity lethality rate constants were statistically identical. At 150 degrees C and 170 degrees C, the ambient humidity lethality rate constant was slightly faster than the controlled humidity lethality rate constant. These results provide evidence for possibly modifying the NASA dry heat microbial reduction specification.

  13. ISBst12, a novel type of insertion-sequence element causing loss of S-layer-gene expression in Bacillus stearothermophilus ATCC 12980.

    PubMed

    Egelseer, E M; Idris, R; Jarosch, M; Danhorn, T; Sleytr, U B; Sára, M

    2000-09-01

    The cell surface of the surface layer (S-layer)-carrying strain of Bacillus stearothermophilus ATCC 12980 is completely covered with an oblique lattice composed of the S-layer protein SbsC. In the S-layer-deficient strain, theS-layer gene sbsC was still present but was interrupted by a novel type of insertion sequence (IS) element designated ISBst12. The insertion site was found to be located within the coding region of the sbsC gene, 199 bp downstream from the translation start of SbsC. ISBst12 is 1612 bp long, bounded by 16 bp imperfect inverted repeats and flanked by a directly repeated 8 bp target sequence. ISBst12 contains an ORF of 1446 bp and is predicted to encode a putative transposase of 482 aa with a calculated theoretical molecular mass of 55562 Da and an isoelectric point of 9.13. The putative transposase does not exhibit a typical DDE motif but displays aHis-Arg-Tyr triad characteristic of the active site of integrases from the bacteriophage lambda Int family. Furthermore, two overlapping leucine-zipper motifs were identified at the N-terminal part of the putative transposase. As revealed by Southern blotting, ISBst12 was present in multiple copies in the S-layer-deficient strain as well as in the S-layer-carrying strain. Northern blotting indicated that S-layer gene expression is already inhibited at the transcriptional level, since no sbsC-specific transcript could be identified in the S-layer-deficient strain. By using PCR, ISBst12 was also detected in B. stearothermophilus PV72/p6, in its oxygen-induced strain variant PV72/p2 and in the S-layer-deficient strain PV72/T5.

  14. Applications of the Box-Wilson design model for bio-hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564).

    PubMed

    Alalayah, W M; Kalil, M S; Kadhum, A A H; Jahim, J; Zaharim, A; Alauj, N M; El-Shafie, A

    2010-07-15

    Box-Wilson design (BWD) model was applied to determine the optimum values of influencing parameters in anaerobic fermentation to produce hydrogen using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). The main focus of the study was to find the optimal relationship between the hydrogen yield and three variables including initial substrate concentration, initial medium pH and reaction temperature. Microbial growth kinetic parameters for hydrogen production under anaerobic conditions were determined using the Monod model with incorporation of a substrate inhibition term. The values of micro(max) (maximum specific growth rate) and K, (saturation constant) were 0.398 h(-1) and 5.509 g L(-1), respectively, using glucose as the substrate. The experimental substrate and biomass-concentration profiles were in good agreement with those obtained by the kinetic-model predictions. By varying the conditions of the initial substrate concentration (1-40 g L(-1)), reaction temperature (25-40 degrees C) and initial medium pH (4-8), the model predicted a maximum hydrogen yield of 3.24 mol H2 (mol glucose)(-1). The experimental data collected utilising this design was successfully fitted to a second-order polynomial model. An optimum operating condition of 10 g L(-1) initial substrate concentration, 37 degrees C reaction temperature and 6.0 +/- 0.2 initial medium pH gave 80% of the predicted maximum yield of hydrogen where as the experimental yield obtained in this study was 77.75% exhibiting a close accuracy between estimated and experimental values. This is the first report to predict bio-hydrogen yield by applying Box-Wilson Design in anaerobic fermentation while optimizing the effects of environmental factors prevailing there by investigating the effects of environmental factors.

  15. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA)

    PubMed Central

    Grande, Rossella; Di Marcantonio, Maria C.; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation. PMID:26733944

  16. Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study

    PubMed Central

    Solano-Aguilar, Gloria; Molokin, Aleksey; Botelho, Christine; Fiorino, Anne-Maria; Vinyard, Bryan; Li, Robert; Chen, Celine; Urban, Joseph; Dawson, Harry; Andreyeva, Irina; Haverkamp, Miriam; Hibberd, Patricia L.

    2016-01-01

    We examined gene expression of whole blood cells (WBC) from 11 healthy elderly volunteers participating on a Phase I open label study before and after oral treatment with Lactobacillus rhamnosus GG-ATCC 53103 (LGG)) using RNA-sequencing (RNA-Seq). Elderly patients (65–80 yrs) completed a clinical assessment for health status and had blood drawn for cellular RNA extraction at study admission (Baseline), after 28 days of daily LGG treatment (Day 28) and at the end of the study (Day 56) after LGG treatment had been suspended for 28 days. Treatment compliance was verified by measuring LGG-DNA copy levels detected in host fecal samples. Normalized gene expression levels in WBC RNA were analyzed using a paired design built within three analysis platforms (edgeR, DESeq2 and TSPM) commonly used for gene count data analysis. From the 25,990 transcripts detected, 95 differentially expressed genes (DEGs) were detected in common by all analysis platforms with a nominal significant difference in gene expression at Day 28 following LGG treatment (FDR<0.1; 77 decreased and 18 increased). With a more stringent significance threshold (FDR<0.05), only two genes (FCER2 and LY86), were down-regulated more than 1.5 fold and met the criteria for differential expression across two analysis platforms. The remaining 93 genes were only detected at this threshold level with DESeq2 platform. Data analysis for biological interpretation of DEGs with an absolute fold change of 1.5 revealed down-regulation of overlapping genes involved with Cellular movement, Cell to cell signaling interactions, Immune cell trafficking and Inflammatory response. These data provide evidence for LGG-induced transcriptional modulation in healthy elderly volunteers because pre-treatment transcription levels were restored at 28 days after LGG treatment was stopped. To gain insight into the signaling pathways affected in response to LGG treatment, DEG were mapped using biological pathways and genomic data mining

  17. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    PubMed

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  18. Characterization of a glycoside hydrolase family-51 α-l-arabinofuranosidase gene from Aureobasidium pullulans ATCC 20524 and its encoded product.

    PubMed

    Ohta, Kazuyoshi; Fujii, Shinya; Higashida, Chihiro

    2013-09-01

    The genomic DNA and cDNA encoding α-l-arabinofuranosidase were cloned from the dimorphic fungus Aureobasidium pullulans ATCC 20524 and sequenced. The open reading frame (2097 bp) of the α-l-arabinofuranosidase gene abfB was interrupted by five introns of 49, 49, 50, 65, and 49 bp. The gene encoded a presumed signal peptide of 17 residues and a mature protein of 682 residues with a calculated Mr of 74,230 Da and a theoretical isoelectric point of 4.95. Glu-362 and Glu-440 residues are likely involved in catalytic reactions as an acid/base and a nucleophile, respectively. The protein possessed 15 potential N-glycosylation sites. The deduced amino acid sequence of the abfB gene product was 58% identical to the Penicillium purpurogenum ABF 2, which belongs to the glycoside hydrolase family-51 α-l-arabinofuranosidase. The abfB cDNA was functionally expressed in the yeast Pichia pastoris. The recombinant enzyme, AbfB, was purified from the culture filtrate, and it appeared as a single band on SDS-PAGE with an apparent Mr of 110 kDa. AbfB showed α-l-arabinofuranosidase activity of 56.6 U/mg of protein toward p-nitrophenyl (pNP) α-l-arabinofuranoside at optimal pH 4.5 and 75°C. The enzyme exhibited apparent Km and Vmax values of 6.27 mM and 78.1 μmol/mg/min, respectively, for pNP α-l-arabinofuranoside. The enzyme was highly active on rye arabinoxylan as well as pNP α-l-arabinofuranoside, but it showed weak activity toward α-(1→5)-l-arabinobiose, α-(1→5)-l-arabinotriose, branched l-arabinan, linear α-(1→5)-l-arabinan, and arabinogalactan.

  19. Short communication: the complete genome sequence of Bifidobacterium animalis subspecies animalis ATCC 25527(T) and comparative analysis of growth in milk with B. animalis subspecies lactis DSM 10140(T).

    PubMed

    Loquasto, J R; Barrangou, R; Dudley, E G; Roberts, R F

    2011-12-01

    The objective of this work was to sequence the genome of Bifidobacterium animalis ssp. animalis ATCC 25527(T), the subspecies most closely related to B. animalis ssp. lactis, some strains of which are widely added to dairy foods as probiotics. The complete 1,932,963-bp genome was determined by a combination of 454-shotgun sequencing and PCR gap closing, and the completed assembly was verified by comparison with a KpnI optical map. Comparative analysis of the B. animalis ssp. animalis ATCC 25527(T) and B. animalis ssp. lactis DSM 10140(T) genomes revealed high degrees of synteny and sequence homology. Comparative genomic analysis revealed 156 and 182 genes that were unique to and absent in the B. animalis ssp. animalis genome, respectively. Among these was a set of unique clustered regularly interspaced short palindromic repeats (CRISPR)-associated genes and a novel CRISPR locus containing 30 spacers in the genome of B. animalis ssp. animalis. Although previous researchers have suggested that one of the defining phenotypic differences between B. animalis ssp. animalis and B. animalis ssp. lactis is the ability of the latter to grow in milk and milk-based media, the differential gene content did not provide insights to explain these differences. Furthermore, growth and acid production in milk and milk-based media did not differ significantly between B. animalis ssp. lactis (DSM 10140(T) and Bl04) and B. animalis ssp. animalis (ATCC 25527(T)). Growth of these strains in supplemented milk suggested that growth was limited by a lack of available low-molecular-weight nitrogen in the 3 strains examined.

  20. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion

    PubMed Central

    2010-01-01

    Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans) continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1) was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in the vaginal environment