Sample records for morb mantle source

  1. HIMU-type Mid-Ocean Ridge Basalts Incorporate a Primitive Component

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Schilling, J. E.

    2011-12-01

    Samples from 5°N to 7°S along the MAR axis span a range of compositions from depleted MORB (La/SmN ~0.5, 206Pb/204Pb ~18) to very enriched MORB (La/SmN ~3, 206Pb/204Pb ~20). The measured 206Pb/204Pb in the enriched samples are among the highest measured MORB values and are thought to represent a HIMU type mantle (high μ where μ is the U/Pb ratio). Therefore, the enriched samples provide a unique opportunity to characterize the heavy noble gas composition of the HIMU mantle. If HIMU mantle is related to recycled crust, then the noble gas measurements can also provide insights into recycling of atmospheric noble gases back into the mantle. Additionally, the depleted equatorial samples provide an opportunity to characterize the Ar and Xe composition of the N-MORB source for comparison to the 14°N E-MORB popping rock. Finally, the large variations in lithophile isotopes over a geographically short distance affords the opportunity to study the nature of coupling between the noble gases and lithophile tracers, and understand the origin of the heterogeneities in the MORB source. Stepwise crushing and rare gas analysis (He, Ne, Ar, Xe) was undertaken for both enriched and depleted samples. Many of the crushing steps yielded 20Ne/22Ne > 12, and good correlations between Ne, Ar, and Xe isotopes allow for mantle source compositions of Ar and Xe to be determined by extrapolating the measured values to a mantle 20Ne/22Ne of 12.5. The highest measured values of Ar and Xe in a depleted N-MORB are comparable to measured values of the E-MORB popping rock (40Ar/36Ar ~28,000, 129Xe/130Xe ~7.7). When extrapolated to a mantle 20Ne/22Ne of 12.5, the depleted MORB sample indicates a 40Ar/36Ar of ~43,000 (higher than popping rock) and 129Xe/130Xe of ~7.8. Enriched MORB samples from this suite, thought to represent the HIMU mantle, have the same He and Ne characteristics as HIMU basalts from the Cook and Austral Islands; more radiogenic He than MORBs is accompanied by less nucleogenic Ne than MORBs. Additionally, the enriched MORB samples also constrain the HIMU mantle 40Ar/36Ar to ~20,000 and 129Xe/130Xe ~7.3-7.5, significantly lower than the depleted MORBs. Like the HIMU basalts from the Cook and Austral Islands, a less degassed reservoir than the MORB source must be invoked to explain the He and Ne systematics in the HIMU-type MORBs. If HIMU represents recycled crust, then it must have entrained or been entrained by a less degassed mantle from the deep interior. This less degassed reservoir would also explain the good correspondence between low 21Ne/22Ne, low 40Ar/36Ar and low 129Xe/130Xe in the HIMU-type samples. While we cannot rule out recycling of atmospheric noble gases to explain the low 40Ar/36Ar and 129Xe/130Xe, involvement of a source less degassed in He and Ne would also be accompanied by a less degassed Ar and Xe isotopic signature. Therefore the simplest explanation of the covariation between the noble gases and lithophile isotopes involves a mixture of a less processed and hence more primitive component, a degassed recycled component, and depleted MORB mantle beneath the equatorial Mid-Atlantic Ridge.

  2. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.

    PubMed

    Mukhopadhyay, Sujoy

    2012-06-06

    The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.

  3. Europium and strontium anomalies in the MORB source mantle

    NASA Astrophysics Data System (ADS)

    Tang, Ming; McDonough, William F.; Ash, Richard D.

    2017-01-01

    Lower crustal recycling depletes the continental crust of Eu and Sr and returns Eu and Sr enriched materials into the mantle (e.g., Tang et al., 2015, Geology). To test the hypothesis that the MORB source mantle balances the Eu and Sr deficits in the continental crust, we carried out high precision Eu/Eu∗ and Sr/Sr∗ measurement for 72 MORB glasses with MgO >8.5% from the Pacific, Indian, and Atlantic mid-ocean ridges. MORB glasses with MgO ⩾ 9 wt.% have a mean Eu/Eu∗ of 1.025 ± 0.025 (2 σm, n = 46) and Sr/Sr∗ of 1.242 ± 0.093 (2 σm, n = 41) and these ratios are positively correlated. These samples show both positive and negative Eu and Sr anomalies, with no correlations between Eu/Eu∗ vs. MgO or Sr/Sr∗ vs. MgO, suggesting that the anomalies are not produced by plagioclase fractionation at MgO >9 wt.% and, thus, other processes must be responsible for generating the anomalies. We term these MORB samples primitive MORBs, as they record the melt Eu/Eu∗ and Sr/Sr∗ before plagioclase fractionation. Consequently, the mean oceanic crust, including cumulates, has a bulk Eu/Eu∗ of ∼1 and 20% Sr excess. Considering that divalent Sr and Eu(II) diffuse faster than trivalent Pr, Nd, Sm, and Gd, we evaluated this kinetic effect on Sm-Eu-Gd and Pr-Sr-Nd fractionations during spinel peridotite partial melting in the MORB source mantle. Our modeling shows that the correlated Eu and Sr anomalies seen in primitive MORBs may result from disequilibrium mantle melting. Melt fractions produced during early- and late-stage melting may carry positive and negative Eu and Sr anomalies, respectively, that overlap with the ranges documented in primitive MORBs. Because the net effect of disequilibrium melting is to produce partial melts with bulk positive Eu and Sr anomalies, the MORB source mantle must have Eu/Eu∗ < 1.025 ± 0.025 (2 σm) and Sr/Sr∗ < 1.242 ± 0.093 (2 σm). Although we cannot rule out the possibility that recycled lower continental crustal materials, which have positive Eu and Sr anomalies, are partially mixed into the upper mantle (i.e., MORB source region), a significant amount of this crustal component must have been sequestered into the deep mantle, as supported by the negative 206Pb/204Pb-Eu/Eu∗ and 206Pb/204Pb-Sr/Sr∗ correlations in ocean island basalts.

  4. Dynamical Geochemistry

    NASA Astrophysics Data System (ADS)

    Davies, G. F.

    2009-12-01

    Dynamical and chemical interpretations of the mantle have hitherto remained incompatible, despite substantial progress over recent years. It is argued that both the refractory incompatible elements and the noble gases can be reconciled with the dynamical mantle when mantle heterogeneity is more fully accounted for. It is argued that the incompatible-element content of the MORB source is about double recent estimates (U~10 ng/g) because enriched components have been systematically overlooked, for three main reasons. (1) in a heterogeneous MORB source, melts from enriched pods are not expected to equilibrate fully with the peridotite matrix, but recent estimates of MORB-source composition have been tied to residual (relatively infertile) peridotite composition. (2) about 25% of the MORB source comes from plumes, but plume-like components have tended to be excluded. (3) a focus on the most common “normal” MORBs, allegedly representing a “depleted” MORB source, has overlooked the less-common but significant enriched components of MORBs, of various possible origins. Geophysical constraints (seismological and topographic) exclude mantle layering except for the thin D” layer and the “superpiles” under Africa and the Pacific. Numerical models then indicate the MORB source comprises the rest of the mantle. Refractory-element mass balances can then be accommodated by a MORB source depleted by only a factor of 2 from chondritic abundances, rather than a factor of 4-7. A source for the hitherto-enigmatic unradiogenic helium in OIBs also emerges from this picture. Melt from subducted oceanic crust melting under MORs will react with surrounding peridotite to form intemediate compositions here termed hybrid pyroxenite. Only about half of the hybrid pyroxenite will be remelted, extracted and degassed at MORs, and the rest will recirculate within the mantle. Over successive generations starting early in Earth history, volatiles will come to reside mainly in the hybrid pyroxenite. This will be denser than average mantle and will tend to accumulate in D”, like subducted oceanic crust. Because residence times in D” are longer, it will degas more slowly. Thus plumes will tap a mixture of older, less-degassed hybrid pyroxenite, containing less-radiogenic noble gases, and degassed former oceanic crust. Calculations of degassing history confirm that this picture can quantitatively account for He, Ne and Ar in MORBs and OIBs. Geophysically-based dynamical models have been shown over recent years to account quantitatively for the isotopes of refractory incompatible elements. This can now be extended to noble gas isotopes. The remaining significant issue is that thermal evolution calculations require more radiogenic heating than implied by cosmochemical estimates of radioactive heat sources. This may imply that tectonic and thermal evolution have been more episodic in the Phanerozoic than has been generally recognised.

  5. The Ge/Si ratio quantifies the role of recycled crust in the generation of MORBs

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J. M.

    2017-12-01

    Global MORBs cover a broad spectrum of incompatible element compositions from depleted [(La/Sm)N < 0.5] to enriched [(La/Sm)N 0.5-2]. Two explanations for the origin of the enriched mantle sources of E-MORBs from ridge segments not associated with plumes have been proposed: (1) re-fertilization of Depleted Mantle (DM) by infiltration of low-degree melts (<1%) from subducted crust, or (2) by entrainment of solid recycled crust in the Depleted Mantle (DM). Whether pyroxenite contributes melt to E-MORB can be resolved by chemically distinguishing between partial melts of a peridotite source vs. those of a lithologically heterogeneous source of peridotite and pyroxenite. In this study, we exploit the mineralogical preferences of elements like Ge and Si to distinguish melts formed from peridotite or pyroxenite. In-situ analyses of 60 elements in 319 MORB glasses from north (10-36 °N) Mid-Atlantic Ridge (MAR) and Mid-Cayman Rise were performed by LA-ICP-MS. Use of a large laser spot size (150 μm) and high repetition rate (50 Hz) yielded a low blank correction (< 5%) for Ge, and high external precision for the Ge/Si ratio (± 3%, 1σ) in MORB glasses. E-MORBs (6.4±0.2) are systematically lower in Ge/Si than D-MORBs (7.2±0.2), while N-MORBs fall in between and are not fully resolved from either D- or E-MORB. Based on experimental Ds, partial melts from pyroxenites are always lower in Ge/Si than partial melts from peridotites because Ge is more compatible in garnet and clinopyroxene than in olivine [1]. E-MORBs also have lower Sc abundances (37 vs. 43 ppm) but slightly higher Fe/Mn ratios (55 vs. 53) than D-MORBs, and lower La/Nb (0.6 vs. 1-2) and Sr/Nb (<20 vs. >40), consistent with addition of 27% pyroxenite-derived melts to a D-MORB-like composition. This requires that the amount of solid recycled garnet pyroxenite in a peridotite source is 12%. The Ge/Si ratio is a new tool that effectively discriminates between melts derived from peridotite sources and melts derived from pyroxenite sources. Extrapolating from the correlation between K2O/TiO2 and Ge/Si established in this study, we estimated the distribution of pyroxenite, solid recycled crust, in the mantle sources of global MORB segments, which reveals a mode of 3-4% pyroxenite in the MORB source. [1] Davis et al., 2013

  6. Primordial domains in the depleted upper mantle identified by noble gases in MORBs

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.

    2017-12-01

    The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR (Tucker et al., 2012), our new data suggest that primordial material may be present throughout the MORB source. Such material could either have been stored for a long term in the upper mantle, or recently mixed into the upper mantle from a deeper reservoir.

  7. Plate Tectonic Cycling and Whole Mantle Convection Modulate Earth's 3He/22Ne Ratio

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Jackson, C.; Hesse, M. A.; Tremblay, M. M.; Shuster, D. L.; Gu, J.

    2016-12-01

    3He and 22Ne are not produced in the mantle or fractionated by partial melting, and neither isotope is recycled back into the mantle by subduction of oceanic basalt or sediment. Thus, it is a surprise that large 3He/22Ne variations exist within the mantle and that the mantle has a net elevated 3He/22Ne ratio compared to volatile-rich planetary precursor materials. Depleted subcontinental lithospheric mantle and mid-ocean ridge basalt (MORB) mantle have distinctly higher 3He/22Ne compared to ocean island basalt (OIB) sources ( 4-12.5 vs. 2.5-4.5, respectively) [1,2]. The low 3He/22Ne of OIBs approaches chondritic ( 1) and solar nebula values ( 1.5). The high 3He/22Ne of the MORB mantle is not similar to solar sources or any known family of meteorites, requiring a mechanism for fractionating He from Ne in the mantle and suggesting isolation of distinct mantle reservoirs throughout geologic time. We model the formation of a MORB source with elevated and variable 3He/22Ne though diffusive exchange between dunite channel-hosted basaltic liquids and harzburgite wallrock beneath mid-ocean ridges. Over timescales relevant to mantle upwelling beneath spreading centers, He may diffuse tens to hundreds of meters into wallrock while Ne is relatively immobile, producing a regassed, depleted mantle lithosphere with elevated 3He/22Ne. Subduction of high 3He/22Ne mantle would generate a MORB source with high 3He/22Ne. Regassed, high 3He/22Ne mantle lithosphere has He concentrations 2-3 orders of magnitude lower than undegassed mantle. To preserve the large volumes of high 3He/22Ne mantle required by the MORB source, mixing between subducted and undegassed mantle reservoirs must have been limited throughout geologic time. Using the new 3He/22Ne constraints, we ran a model similar to [3] to quantify mantle mixing timescales, finding they are on the order of Gyr assuming physically reasonable seafloor spreading rates, and that Earth's convecting mantle has lost >99% of its primordial volatile elements. Most significantly, mantle convection is not and cannot have been layered for most of geologic time. [1] Graham (2002), RiMG 74, 247-317. [2] Jalowitzki et al. (2016), EPSL 450, 263-273. [3] Gonnermann & Mukhopadhyay (2009), Nature, 560-563.

  8. The Fate of Sulfur during Decompression Melting of Peridotite and Crystallization of Basalts - Implications for Sulfur Geochemistry of MORB and the Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Ding, S.; Dasgupta, R.

    2014-12-01

    Magmatism in mid-ocean ridges is the main pathway of sulfur (S) from the Earth's mantle to the surficial reservoir. MORB is generally considered sulfide saturated due to the positive correlation between S and FeOT concentration (e.g., [1]). However, most MORBs are differentiated, and both S content and sulfur concentration at sulfide saturation (SCSS) change with P, T, and magma composition (e.g., [2]). Therefore, it remains uncertain, from the MORB chemistry alone, whether mantle melts parental to MORB are sulfide saturated. In this study, we modeled the behavior of S during isentropic partial melting of a fertile peridotite using pMELTS [3] and an SCSS parameterization [4]. Our results show that during decompression melting, at a fixed mantle potential temperature, TP (e.g., 1300 °C), SCSS of aggregate melt first slightly increases then decreases at shallower depth with total variation <200 ppm. However, an increase of TP results in a significant increase of SCSS of primitive melts. Our model shows that at 15% melting (F), sulfide in the residue is exhausted for a mantle with <200 ppm S. The resulted sulfide-undersaturated partial melts contain <1000 ppm S and are 4-6 times enriched in Cu compared to the source. In order to compare our modeled results directly to the differentiated basalts, isobaric crystallization calculation was performed on 5, 10, and 15% aggregate melts. SCSS changes along liquid line of descent with a decrease in T and increase in FeOT. Comparison of S contents between the model results and MORB glasses [5] reveals that many MORBs derive from sulfide undersaturated melts. Further, for a TP of 1300-1350 °C and F of 10-15 wt.%, reproduction of self-consistent S, and Cu budget of many MORB glasses requires that S of their mantle source be ~25-200 ppm. We will discuss the interplay of TP, average F, and the conditions of differentiation to bracket the S geochemistry of MORB and MORB source mantle and develop similar systematics for OIBs and OIB source. References: [1] Le Roux et al. (2006) EPSL, 251, 209-231. [2] Baker and Moritti (2011) Rev. in Mineral. Geochem, 73, 167-213. [3] Ghiorso et al. (2002) Geochem. Geophy. Geosy. 3, 5. [4] Li and Ripley (2009) Econ. Geol. 104, 405-412. [5] Jenner and O'Neill (2012) Geochem. Geophy. Geosy. 13, 1.

  9. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We suggest that this MORB-like metasomatism was capable of overprinting the noble gas composition of Gobernador Gregores due to recent metasomatism of the SCLM because of asthenospheric mantle upwelling in response to opening of the Patagonian slab window. The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 380 up to 6560, with mantle source 40Ar/36Ar between 8100-700+1400 and 17700-3100+4400. The lower 40Ar/36Ar ratio of the Gobernador Gregores mantle source, compared with that of Pali-Aike, attests that the Patagonia SCLM was affected significantly by atmospheric contamination associated with the recycled oceanic lithosphere.

  10. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle

    NASA Astrophysics Data System (ADS)

    Cottrell, Elizabeth; Kelley, Katherine A.

    2011-05-01

    Micro-analytical determination of Fe3+/∑Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure (μ-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe3+/∑Fe ratios of 0.16 ± 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe3+/∑Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe3+/∑Fe ratios determined by micro-colorimety and XANES can be attributed to the Mössbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe3+/∑Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe3+ behaving incompatibly in shallow MORB magma chambers. MORB Fe3+/∑Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na2O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe3+ may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at ~ QFM. Both explanations, in combination with the measured MORB Fe3+/∑Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe2O3.

  11. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.

    2006-05-01

    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and overlap within 1 sigma estimates from phase transitions at the 410 km (Jeanloz and Thompson, 1983) and 670 km (Hirose, 2002) seismic discontinuities. Variations in MORB FeOliq can be used to calculate the variance of TpMORB. FeOliq variations in global MORB show that 95% of the sub-MORB mantle has a T range of 165°C; 68% of MORB fall within temperature variations of ±30°C. In comparison, Te at Hawaii and Iceland are 1706°C and 1646°C respectively, and hence Te> is 248°C at Hawaii and 188°C at Iceland. Tp estimates at Hawaii and Iceland also exceed maximum Tp estimates at MORs (at 95% level) by 171 and 111°C respectively. These Te are in agreement with estimates derived from excess topography and dynamic models of mantle flow and melt generation (e.g., Sleep, 1990, Schilling, 1991, Ito et al., 1999). A clear result is that Hawaii and Iceland are hot relative to MORB. Rayleigh number calculations further show that for these Te, critical depths (i.e., the depths at which Ra > 1000) are < 130 km. Hawaii and Iceland are thus almost assuredly the result of thermally driven, active upwellings, or mantle plumes.

  12. Transition Element Abundances in MORB Basalts

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J.; Fields, D.; Jefferson, G.; Perfit, M. R.

    2012-12-01

    The mineralogy of the mantle sources of basalts is an important, but hard to constrain parameter, especially with the basalts as chemical probes of major element mantle composition. Geophysical models imply that the deep mantle may have significant variations in Fe and Si relative to the ambient mantle sampled by MORB. Some petrological models of sub-ridge melting involve both pyroxenite and peridotite, implying that basalts preferentially sample a pyroxenite endmember. The First-Row Transition Elements (FRTE), Ga and Ge are compatible to moderately incompatible during partial melting, and are sensitive to mineralogical variability in the mantle and thus can provide constraints on mantle source mineralogy for MORB. We have analyzed major elements, FRTE, Ga and Ge on 231 basaltic glasses from the Middle Atlantic Ridge (MAR between -23°S to 36.44°N), 30 Mid-Cayman Rise basaltic glasses, 12 glasses from the Siqueiros Fracture Zone (EPR), 9 glasses from the Blanco Trough, Juan de Fuca ridge, and Galapagos Spreading Centers (EPR), and 4 Indian Ocean MORB. Large spots (150 μm) were precisely (±1%) analyzed by a New Wave UP193FX excimer (193 nm) laser ablation system coupled to a high-resolution ICP-MS at the National High Magnetic Field Laboratory using a high ablation rate (50 Hz) to yield blank contributions <1% for all elements, particularly Ge. The data demonstrate that the Ge/Si (6.96 x 10E-6 ± 3%, 1σ) and Fe/Mn (55 ± 2%) ratios for MORB are insensitive to fractional crystallization within the MgO range 6%-10%. MORB have Zn/Fe (9.9 x 10E-4 ± 7%), Ga/Sc (0.37-0.50), Ga/Al (2.2 x 10E-4 ± 11%) ratios, with the variations mostly due to the effects of fractional crystallization. Recent experimental determination of FRTE, Ga and Ge partition coefficients provide a framework within which to interpret these data [1]. Using these new partition coefficients, we have modeled the sensitivity of each element to mineralogical variations in the mantle source. Olivine primarily controls the partitioning of Fe, Zn, Ga and Ge; garnet dominates the Sc abundance; spinel exerts exceptionally strong control over Ga and Zn, and cannot be neglected as a source mineral for these elements. MORB FRTE, Ga and Ge abundances are consistent with partial melting of a spinel peridotite source (<1% garnet) similar to that estimated for DMM, although the abundances of many of these elements need to be better constrained in the model sources. [1] Davis et al. GCA (submitted)

  13. Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): Evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Saccani, Emilio; Allahyari, Khalil; Rahimzadeh, Bahman

    2014-05-01

    The Sarve-Abad (Sawlava) ophiolites crop out in the Main Zagros Thrust Zone and represent remnants of the Mesozoic southern Neo-Tethys Ocean that was located between the Arabian shield and Sanandaj-Sirjan continental block. They consist of several incomplete ophiolitic sequences including gabbroic bodies, a dyke complex, and pillow lava sequences. These rocks generally range from sub-alkaline to transitional character. Mineral chemistry and whole-rock geochemistry indicate that they have compositions akin to enriched-type mid-ocean ridge basalts (E-MORB) and plume-type MORB (P-MORB). Nonetheless, the different depletion degrees in heavy rare earth elements (HREE), which can be observed in both E-MORB like and P-MORB like rocks enable two main basic chemical types of rocks to be distinguished as Type-I and Type-II. Type-I rocks are strongly depleted in HREE (YbN < ~ 6), whereas Type-II rocks are moderately depleted in HREE (YbN > 9.0). Petrogenetic modeling shows that Type-I rocks originated from 7 to 16% polybaric partial melting of a MORB-type mantle source, which was significantly enriched by plume-type components. These rocks resulted from the mixing of variable fractions of melts generated in garnet-facies and the spinel-facies mantle. In contrast, Type-II rocks originated from 5 to 8% partial melting in the spinel-facies of a MORB-type source, which was moderately enriched by plume-type components. A possible tectono-magmatic model for the generation of the southern Neo-Tethys oceanic crust implies that the continental rift and subsequent oceanic spreading were associated with uprising of MORB-type asthenospheric mantle featuring plume-type component influences decreasing from deep to shallow mantle levels. These deep plume-type components were most likely inherited from Carboniferous mantle plume activity that was associated with the opening of Paleo-Tethys in the same area.

  14. K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Li, Y.

    2016-12-01

    Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.

  15. The Lowest δ7Li Yet Recorded in MORB Glasses: The Connection with Oceanic Core Complex Formation, Refractory Rutile-bearing Eclogitic Mantle Sources and Melt Supply

    NASA Astrophysics Data System (ADS)

    Casey, J. F.; Gao, Y.; Benavidez, R.; Dragoi, C.

    2010-12-01

    The region between 12°N and 16°N along the Mid-Atlantic Ridge is known for its prolific development of oceanic core complexes and for a geochemical anomaly centered at ~14°N. We examine the correlation of the geochemical anomaly with a region characterized by low magma supply. Basalt glasses over the geochemical anomaly are unusual in exhibiting E-MORB to T-MORB HIMU-DMM isotopic gradients. The most enriched MORBs exhibit positive Ta and Nb anomalies and negative Th and Pb anomalies that are similar to some OIB basalts. Some more primitive basalts exhibit positive Ti, Sr and Eu anomalies. The center of the geochemical anomaly is characterized by elevated La/Sm ratios that are strongly correlated with Nb/La, Nb/Nb*, Ta/Ta* and Sr, Nd, Pb isotopic anomalies. In addition, we have recently documented a regional anomaly in δ7Li, with the lowest values ever recorded in MORB glasses near the center of the anomaly. We interpret this data to indicate that the mantle source in the 12-16°N region of the Mid-Atlantic Ridge involves subducted slab components including a refractory rutile-bearing eclogitic source that has suffered significant dehydration and a previously depleted mantle source that has undergone an ancient depletion event that results in little melt supply being contributed to the ridge axis. We examine melt supply implications in the context of core complex development and these unusual mantle source characteristics.

  16. Volatile element content of the heterogeneous upper mantle

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.

    2014-12-01

    The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of magma mixing between D- and E-MORB. Finally we use the volatile to trace element ratios of our samples to estimate the volatile element budget of the end-member components of the upper mantle. [1] Niu, Y. et al. (2002) EPSL, 199, 327-345. [2] Kamenetsky, V. S. et al. (2000) J. Petrology, 41, 411-430.

  17. Redox Heterogenity in MORB

    NASA Astrophysics Data System (ADS)

    Cottrell, E.; Kelley, K. A.

    2012-12-01

    Mantle oxygen fugacity (fO2) has a first-order effect on the petrogenesis of mantle-derived melts and the speciation of mantle fluids. Current debate centers on the spatial uniformity of upper mantle fO2 and its constancy through geologic time. We use iron K-edge X-ray absorption near-edge structure (μXANES) spectroscopy to provide Fe3+ /ΣFe ratios of submarine mantle-derived basalts from mid-ocean ridges (MORB) as a proxy for fO2. A global survey of primitive (>8.75 wt% MgO) MORB glasses at spreading centers, unaffected by plumes, reveals a decrease in Fe3+ /ΣFe ratio of 12% relative with indices of mantle enrichment such as 87/86Sr, 208/204Pb, Ba/La, and Rb/Sr ratios. The strong negative correlation between upper mantle fO2 and enrichment recorded by MORB glasses contrasts with the positive relationship hinted at by abyssal peridotite oxybarometry (e.g. Ballhaus, CMP, 1993) and the general prediction of a positive correlation born of the expectation that Fe3+ can be treated as more incompatible than Fe2+ during mantle melting. These data unequivocally link upper mantle oxidation state to mantle source enrichment. EMORB generation is commonly attributed to subduction-related processes. That EMORB is more reduced than NMORB implies that deeply subducted and recycled lithologies, such as anoxic sediment, may be more reduced than ambient mantle. Negative correlations between traditional tracers of recycled sediment (e.g. +Nb anomaly, high 87/86Sr, high LILE/LREE) and redox support this hypothesis. Preservation of redox signatures on plate-recycling timescales of hundreds of millions to billions of years would require the mantle to be very poorly buffered. Alternatively, MORB Fe3+ /ΣFe ratios may be generated in situ beneath ridges as a function of variable carbon content. The shallow MORB source is too oxidized to stabilize graphite (Cottrell and Kelley, EPSL, 2011) and carbon exists as oxides. Decreasing fO2 with increasing depth eventually stabilizes reduced carbon species (diamond, carbides, alloys), however, and aCO2 may buffer mantle assemblages. Upon ascent, reduced carbon in upwelling mantle must oxidize, reducing Fe in the process such that more carbon-rich mantle would arrive at the surface with a lower Fe3+ /ΣFe ratio. We cannot directly correlate Fe3+ /ΣFe ratios with CO2 concentrations because submarine basalts have variably degassed CO2; however, the unequivocally carbon-rich sample 2πD43 (popping rock) does record a low Fe3+ /ΣFe ratio. CO2 variations on the order of 80 ppm in the mantle source would explain the range of MORB/EMORB Fe3+ /ΣFe ratios we observe, indicating a possible range of carbon concentrations in subduction-related lithologies. The relationships between MORB Fe3+ /ΣFe ratios, trace elements, and isotopes are consistent with modeled mixtures of depleted melts and low-degree carbonatitic melts of ancient subducted igneous crust plus 5-15% sediment (Stracke et al., G3, 2001) using the near-solidus carbonatitic partition coefficients of Dasgupta et al., Chem Geol, (2009). It may be that low degree carbonatitic melts even act through geologic time to scavenge and fractionate trace elements, creating enriched high-carbon reservoirs. Low Fe3+ /ΣFe ratios, and even EMORB itself, may therefore herald greater carbon concentrations, and the influence of low-degree carbonatitic melts, in Earth's mantle.

  18. The ratios of carbon and non-radiogenic helium and argon isotopes in the mantle and crustal rocks

    NASA Technical Reports Server (NTRS)

    Lokhov, K.; Levsky, L.

    1994-01-01

    The studies of the relations of carbon and primary isotopes of noble gases were carried out on the natural gases and on the mantle rocks from the mantle M-type sources, which represent the degassed mantle reservoir (MORB's). These works has the aim of estimation of the values of the C/3He ratios in the deep mantle fluids to determine the flux of the mantle CO2 on the basis of known flux of primary mantle 3He. It was found, that in the natural gases the values of the C/3He ratios fall into the range from 1 times E plus 6 to 1 times E plus 15, and in the fluids of MORB's are constant near 2 times E plus 9. We have studied the mantle rocks from the relatively undergassed mantle P minus type sources: continental; Baikal Rift (Siberia), Mongolia, Catalonia (Spain), Pannonia Depression (central Europe) and ocean; Spietzbergen isl., Hawaii isl., Canarian isl. It ws found, that in mantle xenolites and the host alkaline basalts from the continental rifts and ocean islands, the values of the C/3He ratios fall into the range from E plus 11 to E plus 15 (and this result needed to be explained; the higher carbon to helium ratios is relatively undergassed mantle reservoir compared with the degassed one, requires whether hilly compatibility of helium compared with carbon, whether additional flux of 3He to the degassed mantle reservoir). From the other hand it was found that in the mantle rocks from the sources of P minus and M minus types, continental carbonatites, the values of the C/36Ar ratios are constant in the range from E plus 9 to E plus 10, the close values have the MORB's also.

  19. The record of mantle heterogeneity preserved in Earth's oceanic crust

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.

    2017-12-01

    Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.

  20. Rare gases in Samoan xenoliths

    NASA Astrophysics Data System (ADS)

    Poreda, R. J.; Farley, K. A.

    1992-09-01

    The rare gas isotopic compositions of residual harzburgite xenoliths from Savai'i (SAV locality) and an unnamed seamount south of the Samoan chain (PPT locality) provide important constraints on the rare gas evolution of the mantle and atmosphere. Despite heterogeneous trace element compositions, the rare gas characteristics of the xenoliths from each of the two localities are strikingly similar. SAV and PPT xenoliths have 3He/ 4He ratios of11.1 ± 0.5 R A and21.6 ± 1 R A, respectively; this range is comparable to the 3He/ 4He ratios in Samoan lavas and clearly demonstrates that they have trapped gases from a relatively undegassed reservoir. The neon results are not consistent with mixing between MORB and a plume source with an atmospheric signature. Rather, the neon isotopes reflect either a variably degassed mantle (with a relative order of degassing of Loihi < PPT < Reunion < SAV < MORB), or mixing between the Loihi source and MORB. The data supports the conclusions of Honda et al. that the 20Ne/ 22Ne ratio in the mantle more closely resembles the solar ratio than the atmospheric one. 40Ar/ 36Ar ratios in the least contaminated samples range from 4,000 to 12,000 with the highest values in the 22 RA PPT xenoliths. There is no evidence for atmospheric 40Ar/ 36Ar ratios in the mantle source of these samples, which indicates that the lower mantle may have 40Ar/ 36Ar ratios in excess of 5,000. Xenon isotopic anomalies in 129Xe and 136Xe are as high as 6%, or about half of the maximum MORB excess and are consistent with the less degassed nature of the Samoan mantle source. These results contradict previous suggestions that the high 3He/ 4He mantle has a near-atmospheric heavy rare gas isotopic composition.

  1. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature 2012; [2] Tucker et al., EPSL (in review); [3] Moreira et al., Nature 1998 [4] Touboul et al., Science 2012.

  2. Halogens in normal- and enriched-basalts from Central Indian Ridge (18-20°S): Testing the E-MORB subduction origin hypothesis

    NASA Astrophysics Data System (ADS)

    Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.

    2012-12-01

    Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E-MORB from Macquarie Island [Kendrick et al., 2012]. The concentrations are not related to superficial processes. The on-axis samples display a relatively restricted range (6.9-8.6wt%) of MgO contents, suggesting no control of the crystallisation processes. The basalts were erupted between 3900-2000 m bsl, so no appreciable degassing of halogens would be expected. The strong correlation, which exists between the halogens and other incompatible elements (e.g., Rb, La), also rules out seawater assimilation. Therefore, concentrations and elemental ratios can be directly linked to melting and source features. Estimates of halogens abundances in the depleted-mantle source are 4 ppm Cl, 14 ppb Br and 0.3 ppb I. These low abundances, which are in agreement with values derived for sub-continental mantle from coated diamonds [Burgess et al., 2002], suggest that, like noble gases, the upper mantle is degassed of its halogens. Critically, the halogen elemental ratios show no significant variations along the axial ridge and off-axis ridge or between N-MORB and E-MORB: Br/Cl=0.00147±0.00014, I/Cl=0.000021±0.000005; I/Br=0.0142±0.0036. These ratios are similar to E-MORB from Macquarie Island [Kendrick et al., 2012]. This observation is thus not consistent with subduction as a source of halogen enrichment in E-MORB.

  3. Evidence from Xenon isotopes for limited mixing between MORB sources and plume sources since 4.45 Ga

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.

    2011-12-01

    Xenon isotopes provide unique insights into the sources of volatile material for planet Earth, the degassing of the mantle, and the chemical evolution of the mantle [1-4]. 129Xe is produced from 129I, which has a half-life of 16 Myrs, and 131-136Xe are produced from 244Pu, which has a half-life of 80 Myrs. To a smaller extent, 131-136Xe are also produced from 238U fission. Thus, ratios of Pu-derived to U-derived fission xenon and 129I-derived to Pu-derived fission xenon constrain the rate and degree of outgassing of a mantle reservoir. Here, I report on the Pu-derived to U-derived fission xenon and Pu/I ratio of the Iceland plume. I then compare the plume observations with the gas rich popping rock from the North Mid Atlantic Ridge that samples the upper mantle [4]. Through step crushing of multiple aliquots of a basalt glass from Iceland, 51 high-precision He, Ne, Ar, and Xe isotopic compositions were generated. Combined He, Ne, and Xe measurements provide unequivocal evidence that the Iceland plume has a lower 129Xe/130Xe ratio than MORBs because it evolved with a I/Xe ratio distinct from the MORB source and not because of recycled atmosphere (which has low 129Xe/130Xe) in the plume source. Since 129I became extinct 80 Myrs after solar system formation, limited mixing between plume and MORB source is a stringent requirement since 4.45 Ga. Of the 51 different isotopic analyses, 42 data points were distinct from the atmospheric 129Xe/130Xe composition at two standard deviations. These 42 data points were utilized to calculate the ratio of Pu- to U-derived fission xenon. The starting composition of terrestrial Xe is a matter of debate. However, for reasonable starting compositions of air, non-radiogenic atmosphere, solar wind, and U-Xe [5-7], the Iceland plume ,on average, has approximately a factor of two higher Pu-derived xenon than the MORB source. These data thus, provide unequivocal evidence that the Iceland plume is less degassed than the MORB source and that the differences must have existed early on because Pu becomes extinct after ~ 400 Myrs. Thus, the Xe isotopic data suggests that differences between plume and MORB sources are the result of different mantle processing rates and not related to the preferential recycling of atmospheric gases into the plume source. Furthermore, if the plumes are derived from the large low shear wave velocity (LLSVPs) provinces at the base of the lower mantle [8], then our results require that LLSVPs are not made of solely recycled material. Rather, primitive material must constitute some fraction of the LLSVPs, and LLSVPs are ancient, having persisted through most of Earth's history. [1] Holland and Ballentine, Nature, 2006. [2] Yokochi and Marty, EPSL, 2004. [3] Coltice et al., Chem Geol., 2009. [4] Moriera et al., Science, 1998. [5] Caffee et al., Science, 1998. [6] Kunz et al., Science 1998. [7] Pepin and Porcelli, EPSL, 2006. [8] Torsvik et al., Nature, 2010.

  4. Opening of the South China Sea and Upwelling of the Hainan Plume

    NASA Astrophysics Data System (ADS)

    Yu, Mengming; Yan, Yi; Huang, Chi-Yue; Zhang, Xinchang; Tian, Zhixian; Chen, Wen-Huang; Santosh, M.

    2018-03-01

    Opening of the South China Sea and upwelling of the Hainan Plume are among the most challenging issues related to the tectonic evolution of East Asia. However, when and how the Hainan Plume affected the opening of the South China Sea remains unclear. Here we investigate the geochemical and isotopic features of the 25 Ma mid-ocean ridge basalt (MORB) in the Kenting Mélange, southern Taiwan, 16 Ma MORB drilled by the IODP Expedition 349, and 9 Ma ocean island basalt-type dredged seamount basalt. The 25 Ma MORBs reveal a less metasomatic depleted MORB mantle-like source. In contrast, the Miocene samples record progressive mantle enrichment and possibly signal the contribution of the Hainan Plume. We speculate that MORBs of the South China Sea which could have recorded plume-ridge source mixing perhaps appear since 23.8 Ma. On the contrary, the Paleocene-Eocene ocean island basalt-type intraplate volcanism of the South China continental margin is correlated to decompression melting of a passively upwelling fertile asthenosphere due to continental rifting.

  5. The temperature of primary melts and mantle sources of komatiites, OIBs, MORBs and LIPs

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander

    2015-04-01

    There is general agreement that the convecting mantle, although mostly peridotitic in composition, is compositionally and thermally heterogeneous on different spatial scales. The amount, sizes, temperatures and compositions of these heterogeneities significantly affect mantle dynamics because they may diverge greatly from dominant peridotites in their density and fusibility. Differences in potential temperature and composition of mantle domains affect magma production and cannot be easily distinguished from each other. This has led to radically different interpretations of the melting anomalies that produce ocean-island basalts, large igneous provinces and komatiites: most scientists believe that they originate as hot, deep-sourced mantle plumes; but a small though influential group (e.g. Anderson 2005, Foulger, 2010) propose that they derive from high proportions of easily fusible recycled or delaminated crust, or in the case of komatiites contain large amount of H2O (e.g. Grove & Parman, 2004). The way to resolve this ambiguity is an independent estimation of temperature and composition of mantle sources of various types of magma. In this paper I report application of newly developed olivine-spinel-melt geothermometers based on partition of Al, Cr, Sc and Y for different primitive lavas from mid-ocean ridges, ocean-island basalts, large igneous provinces and komatiites. The results suggest significant variations of crystallization temperature for the same Fo of high magnesium olivines of different types of mantle-derived magmas: from the lowest (down to 1220 degree C) for MORB to the highest (up to over 1500 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and confirm the relatively low temperature of the mantle source of MORB and higher temperatures in the mantle plumes that produce the OIB of Iceland, Hawaii, Gorgona, Archean komatiites and several LIPs (e.g Siberian and NAMP). The established liquidus temperatures and compositions of primary melts allow estimating potential temperatures and compositions of their mantle sources. The results strongly confirm mantle plume theory and presence of variable amounts of recycled crustal material in the mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491.

  6. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the stability field of garnet and/or spinel lherzolite, suggesting that the source of these lavas may stem from MORB mixing with an enriched plume (OIB) source. The discovery of these magmatic signatures beneath the North Fiji Basin is important in understanding the heterogeneities of volatiles in the mantle, in addition to linking deeper mantle and subsurface crustal processes.

  7. a View of the Marble-Cake Mantle from the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Hanan, B. B.; Graham, D. W.; Hemond, C.; Blichert-Toft, J.; Albarede, F.

    2014-12-01

    Along the Southeast Indian Ridge, variations in axial depth, crustal thickness, hydrothermal venting [1], basaltic major elements and U-series disequilibria [2] all indicate a west-to-east decrease in magma supply and mantle temperature from the Amsterdam-St. Paul hotspot to the Australian-Antarctic Discordance. Paired Hf-Pb isotopes in closely spaced glasses (5-10 km) from 81-100°E define two populations revealing compositional streaks in the upper mantle [3]. The number density of the streaks follows a Poisson distribution with a characteristic thickness of ~20 km. K/Ti and Na8 do not correlate with Pb or Hf isotopes, and both isotopic domains encompass N- and E-MORB types indicating the variations represent mantle source heterogeneities. 3He/4He varies from 7.5 - 10.2 RA, more than half the range in global MORB away from hotspot influence [4]. No systematic relationship exists between 3He/4He and Pb or Hf isotopes. A general negative correlation between K/Ti and Fe8 for the SEIR resembles that for MORBs globally, with higher K/Ti associated with lower 3He/4He. Collectively the observations suggest the presence of lithologically heterogeneous mantle. Lower 3He/4He derives from a source containing a few percent pyroxenite or ecologite, while 3He/4He > 9 RA arises from peridotite. Mantle convection has folded together distinct composite reservoirs of heterogeneous mantle, and stretched them into streaks that remain discernible units. The mantle 'unit' giving rise to each MORB sample represents a 'mixture of mixtures' with a multi-stage mixing history. Spectral analysis of the length scales of Hf, Pb and He isotopic variability allows a visual representation of this upper mantle 'texture'. The dominant length scales reflect large (1000, 500 km) and regional scale (100-150 km) structures in mantle flow, and sampling of heterogeneities during partial melting (20-30 km). 1-Baker et al., doi:10.1002/2014GC005344; 2-Russo et al., doi:10.1016/j.epsl.2008.11.016; 3-Hanan et al., doi:10.1016/j.epsl.2013.05.028; 4-Graham et al., doi:10.1002/2014GC005264

  8. The Paradox of a Wet (High H2O) and Dry (Low H2O/Ce) Mantle: High Water Concentrations in Mantle Garnet Pyroxenites from Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2013-01-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of Mid-Ocean Ridge Basalt (MORB) and Oceanic Island Basalt (OIB). but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. Here, we analyzed by FTIR water in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than cpx/opx equilibrium from experimental data. The pyroxenite cpx and opx H2O concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between H2O in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between H2O concentrations and or the presence of phlogopite. These data imply that cpx and opx may be at water saturation, far lower than experimental data suggest. Reconstructed bulk rock pyroxenite H2O ranges from 200-460 ppm (average 331 +/- 75 ppm), 2 to 8 times higher than H2O estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas. The average bulk rock pyroxenite H2O/Ce is 69 +/-35, lower than estimates of the MORB source (approx 150) or FOZO, C (200-250) mantle component, but consistent with "dry" EM sources (<100). These data suggest that a metasomatized, refertilized oceanic lithosphere that contains pyroxenitic veins (e.g. the lower part of an oceanic plate, where ascending melts can become trapped and crystallize), will have both higher water concentrations and low H2O/Ce, and may contribute to EM-type OIB sources, like that of Samoa basalts. Therefore, a low H2O/Ce mantle source may not necessarily be "dry".

  9. Low-3He/4He sublithospheric mantle source for the most magnesian magmas of the Karoo large igneous province

    NASA Astrophysics Data System (ADS)

    Heinonen, Jussi S.; Kurz, Mark D.

    2015-09-01

    The massive outpourings of Karoo and Ferrar continental flood basalts (CFBs) ∼180 Ma ago mark the initial Jurassic rifting stages of the Gondwana supercontinent. The origin and sources of these eruptions have been debated for decades, largely due to difficulties in defining their parental melt and mantle source characteristics. Recent findings of Fe- and Mg-rich dikes (depleted ferropicrite suite) from Vestfjella, western Dronning Maud Land, Antarctica, have shed light on the composition of the deep sub-Gondwanan mantle: these magmas have been connected to upper mantle sources presently sampled by the Southwest Indian Ocean mid-ocean ridge basalts (SWIR MORBs) or to high 3He/4He plume-entrained non-chondritic primitive mantle sources formed early in Earth's history. In an attempt to determine their He isotopic composition and relative contributions from magmatic, cosmogenic, and radiogenic He sources, we performed in-vacuo stepwise crushing and melting analyses of olivine mineral separates, some of which were abraded to remove the outer layer of the grains. The best estimate for the mantle isotopic composition is given by a sample with the highest amount of He released (>50%) during the first crushing step of an abraded coarse fraction. It has a 3He/4He of 7.03 ± 0.23 (2σ) times the atmospheric ratio (Ra), which is indistinguishable from those measured from SWIR MORBs (6.3-7.3 Ra; source 3He/4He ∼6.4-7.6 Ra at 180 Ma) and notably lower than in the most primitive lavas from the North Atlantic Igneous Province (up to 50 Ra), considered to represent the epitome magmas from non-chondritic primitive mantle sources. Previously published trace element and isotopic (Sr, Nd, and Pb) compositions do not suggest a direct genetic link to any modern hotspot of Indian or southern Atlantic Oceans. Although influence of a mantle plume cannot be ruled out, the high magma temperatures and SWIR MORB-like geochemistry of the suite are best explained by supercontinent insulation of a precursory Indian Ocean upper mantle source. Such a model is also supported by the majority of the recent studies on the structure, geochronology, and petrology of the Karoo CFBs.

  10. Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise - Pacific/Antarctic ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Chen, Li-Hui; Li, Shi-Zhen

    2013-12-01

    A large-scale mantle compositional discontinuity was identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition located at the EPR 23°S-32°S. Because of the EPR-Easter hotspot interactions in this area, the nature of this geochemical discontinuity remains unclear. IODP Sites U1367 and U1368 drilled into the ocean crust that was accreted at ∼33.5 Ma and ∼13.5 Ma, respectively, between 28°S and 30°S on the EPR. We use lavas from Sites U1367 and U1368 to track this mantle discontinuity away from the EPR. The mantle sources for basalts at Sites U1367 and U1368 represent, respectively, northern and southern Pacific mantle sub-domains in terms of Sr-Nd-Pb-Hf isotopes. The significant isotopic differences between the two IODP sites are consistent with addition of ancient subduction-processed ocean crust to the south Pacific mantle sub-domain. Our modeling result shows that a trace element pattern similar to that of U1368 E-MORB can be formed by melting a subduction-processed typical N-MORB. The trace element and isotope compositions for Site U1368 MORBs can be formed by mixing a HIMU mantle end-member with Site U1367 MORBs. Comparison of our data with those from the EPR-PAR shows a geochemical mantle boundary near the Easter microplate that separates the Pacific upper mantle into northern and southern sub-domains. On the basis of reconstruction of initial locations of the ocean crust at the two sites, we find that the mantle boundary has moved northward to the Easter microplate since before 33.5 Ma. A model, in which along-axis asthenospheric flow to where asthenosphere consumption is strongest, explains the movement of the apparent mantle boundary.

  11. The Mantle Isotopic Array: A Tale of Two FOZOs

    NASA Astrophysics Data System (ADS)

    Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.

    2017-12-01

    Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with primitive He in OIBs along with differences in mixing timescales and mantle processing rates for MORBs and OIBs. The two distinct FOZO compositions must also indicate limited direct mixing between the two over Earth's 4.5 Gyr history. References: [1] Hart et al., Science 1992; [2] Farley et al., EPSL 1992; [3] Hanan and Graham, Science 1996.

  12. Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior

    NASA Astrophysics Data System (ADS)

    Leventhal, Janet A.; Reid, Mary R.; Montana, Art; Holden, Peter

    1995-05-01

    Mafic and ultramafic xenoliths entrained in lavas of the Cima volcanic field have Nd and Sr isotopic ratios indicative of a source similar to that of mid-ocean ridge basalt (MORB). Nd and Sr internal isochrons demonstrate a Late Cretaceous intrusion age. These results, combined with evidence for emplacement in the lower crust and upper mantle, indicate invasion of the lower crust by asthenospheric magmas in the Late Cretaceous. Constituting the first prima facie evidence for depleted-mantle magmatism in the Basin and Range province prior to late Cenozoic volcanism, these results lend key support to models suggesting crustal heating by ascent of asthenosphere in the Mesozoic Cordilleran interior.

  13. Deep Mantle Origin for the DUPAL Anomaly?

    NASA Astrophysics Data System (ADS)

    Ingle, S.; Weis, D.

    2002-12-01

    Twenty years after the discovery of the Dupal Anomaly, its origin remains a geochemical and geophysical enigma. This anomaly is associated with the Southern Hemisphere oceanic mantle and is recognized by basalts with geochemical characteristics such as low 206Pb/204Pb and high 87Sr/86Sr. Both mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) are affected, despite originating from melting at different depths and of different mantle sources. We compile geochemical data for both MORB and OIB from the three major oceans to help constrain the physical distribution and chemical composition of the Dupal Anomaly. There is a clear decrease in 206Pb/204Pb and an increase in 87Sr/86Sr with more southerly latitude for Indian MORB and OIB; these correlations are less obvious in the Atlantic and non-existent in the Pacific. The average* 143Nd/144Nd for Pacific and Atlantic OIB is 0.5129, but is lower for Indian OIB (0.5128). Interestingly, Pacific, Atlantic and Indian OIB all have 176Hf/177Hf averages of 0.2830. Indian MORB also record this phenomenon of low Nd with normal Hf isotopic compositions (Chauvel and Blichert-Toft, EPSL, 2001). Hf isotopes appear, therefore, to be a valid isotopic proxy for measuring the presence and magnitude of the Dupal Anomaly at specific locations. Wen (EPSL, 2001) reported a low-velocity layer at the D'' boundary beneath the Indian Ocean from which the Dupal Anomaly may originate. This hypothesis may be consistent with our compilations demonstrating that the long-lived Dupal Anomaly does not appear to be either mixing efficiently into the upper mantle or spreading to other ocean basins through time. We suggest that the Dupal source could be continually tapped by upwelling Indian Ocean mantle plumes. Plumes would then emplace pockets of Dupal material into the upper mantle and other ascending plumes might further disperse this material into the shallow asthenosphere. This could explain both the presence of the Dupal signature in MORB and OIB and the geochemical similarities between some Indian Ocean mantle plumes, such as Kerguelen, and the Dupal signature. * To avoid sampling biases, data for each ocean island (or group) are averaged and these values are used to calculate the average for each ocean.

  14. Petrogenesis and tectonic implications of Triassic mafic complexes with MORB/OIB affinities from the western Garzê-Litang ophiolitic mélange, central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Ma, Chang-Qian; Guo, Yu-Heng; Xiong, Fu-Hao; Guo, Pan; Zhang, Xin

    2016-09-01

    Although numerous Paleo-Tethyan ophiolites with mid-oceanic ridge basalts (MORB) and/or oceanic-island basalt (OIB) affinities have been reported in the central Tibetan Plateau (CTP), the origin and tectonic nature of these ophiolites are not well understood. The petrogenesis, mantle sources and geodynamic setting of the mafic rocks from these ophiolites are unclear, which is the main reason for this uncertainty. In this paper, we present new geochronological, mineralogical and Sr-Nd isotopic data for the Chayong and Xiewu mafic complexes in the western Garzê-Litang suture zone (GLS), a typical Paleo-Tethyan suture crossing the CTP. Zircon LA-ICP-MS U-Pb ages of 234 ± 3 Ma and 236 ± 2 Ma can be interpreted as formation times of the Chayong and Xiewu mafic complexes, respectively. The basalts and gabbros of the Chayong complex exhibit enriched MORB (E-MORB) compositional affinities except for a weak depletion of Nb, Ta and Ti relative to the primitive mantle, whereas the basalts and gabbros of the Xiewu complex display distinct E-MORB and OIB affinities. The geochemical features suggest a probable fractionation of olivine ± clinopyroxene ± plagioclase as well as insignificant crustal contamination. The geochemical and Sr-Nd isotopic data reveal that the Chayong mafic rocks may have been derived from depleted MORB-type mantle metasomatized by crustal components and Xiewu mafic rocks from enriched lithospheric mantle metasomatized by OIB-like components. The ratios of Zn/Fet, La/Yb and Sm/Yb indicate that these mafic melts were produced by the partial melting of garnet + minor spinel-bearing peridotite or spinel ± minor garnet-bearing peridotite. We propose that back-arc basin spreading associated with OIB/seamount recycling had occurred in the western GLS at least since the Middle Triassic times, and the decompression melting of the depleted MORB-type asthenosphere mantle and partial melting of sub-continental lithosphere were metasomatized by plume-related melts, such as OIB s, which led to the generation of the Chayong and Xiewu mafic melts.

  15. Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Gill, James B.; van Keken, Peter E.; Kawabata, Hiroshi; Skora, Susanne

    2017-02-01

    We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature (Tp) of 1650-1500°C during 3.5-1.5 Ga before decreasing gradually to ˜1300°C today. The source mantle composition changed from primitive (PM) to depleted as Tp decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a two-stage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high-Tp (3.5-1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the subcontinental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5-0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before ˜1.5 Ga to less vigorous afterward is suggested to explain the thermochemical mantle evolution.

  16. The Oxidation State of Fe in Glasses from the Galapagos Archipelago: Variable Oxygen Fugacity as a Function of Mantle Source

    NASA Astrophysics Data System (ADS)

    Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.

    2015-12-01

    The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error < 0.5 log units) and showing that oxidation state varies as a function of mantle source composition in the Galapagos hotspot system. After correcting back to a common MgO content = 8.0 wt%, the trace element depleted group similar to MORB (ITD), and the group similar to Pinta (WD = high Th/La, Δ7/4, Δ8/4 ratios) show Fe3+/ΣFe ratios within the range of MORB (average ITD = 0.162 ± 0.003 and WD = 0.164 ± 0.006). Another trace element enriched group similar to Sierra Negra and Cerro Azul (ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0.006). With C/3He ratios an order of magnitude greater than MORB this suggests that the primitive mantle is a more carbonated and oxidized source than the depleted upper mantle.

  17. Calcium Isotopic Compositions of Normal Mid-Ocean Ridge Basalts From the Southern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Hongli; Liu, Fang; Li, Xin; Wang, Guiqin; Zhang, Zhaofeng; Sun, Weidong

    2018-02-01

    Mantle peridotites show that Ca is isotopically heterogeneous in Earth's mantle, but the mechanism for such heterogeneity remains obscure. To investigate the effect of partial melting on Ca isotopic fractionation and the mechanism for Ca isotopic heterogeneity in the mantle, we report high-precision Ca isotopic compositions of the normal Mid-Ocean Ridge Basalts (N-MORB) from the southern Juan de Fuca Ridge. δ44/40Ca of these N-MORB samples display a small variation ranging from 0.75 ± 0.05 to 0.86 ± 0.03‰ (relative to NIST SRM 915a, a standard reference material produced by the National Institute of Standards and Technology), which are slightly lower than the estimated Upper Mantle value of 1.05 ± 0.04‰ and the Bulk Silicate Earth (BSE) value of 0.94 ± 0.05‰. This phenomenon cannot be explained by fractional crystallization, because olivine and orthopyroxene fractional crystallization has limited influence on δ44/40Ca of N-MORB due to their low CaO contents, while plagioclase fractional crystallization cannot lead to light Ca isotopic compositions of the residue magma. Instead, the lower δ44/40Ca of N-MORB samples compared to their mantle source is most likely caused by partial melting. The offset in δ44/40Ca between N-MORB and BSE indicates that at least 0.1-0.2‰ fractionation would occur during partial melting and light Ca isotopes are preferred to be enriched in magma melt, which is in accordance with the fact that δ44/40Ca of melt-depleted peridotites are higher than fertile peridotites in literature. Therefore, partial melting is an important process that can decrease δ44/40Ca in basalts and induce Ca isotopic heterogeneity in Earth's mantle.

  18. High H2O/Ce of K-rich MORB from Lena Trough and Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Snow, J. E.; Feig, S. T.

    2014-12-01

    Lena Trough in the Arctic ocean is the oblique spreading continuation of Gakkel Ridge through the Fram Strait (eg Snow et al. 2011). Extreme trace element and isotopic compositions seen in Lena Trough basalt appear to be the enriched end member dominating the geochemistry of the Western Volcanic Zone of the Western Gakkel Ridge as traced by Pb isotopes, K2O/TiO2, Ba/Nb and other isotopic, major and trace element indicators of mixing (Nauret et al., 2011). This is in contrast to neighboring Gakkel Ridge which has been spreading for 50-60 million years. Basalts from Lena Trough also show a pure MORB noble gas signature (Nauret et al., 2010) and peridotites show no evidence of ancient components in their Os isotopes (Lassiter, et al., in press). The major and trace element compositions of the basalts, however are very distinct from MORB, being far more potassic than all but a single locality on the SW Indian Ridge. We determined H2O and trace element composiitions of a suite of 17 basalt glasses from the Central Lena Trough (CLT) and the Gakkel Western Volcanic Zone, including many of those previously analyzed by Nauret et al. (2012). The Western Gakkel glasses have high H2O/Ce for MORB (>300) suggesting a water rich source consistent with the idea that the northernmost Atlantic mantle is enriched in water (Michael et al., 1995). They are within the range of Eastern Gakkel host glasses determined by Wanless et al, 2013. The Lena Trough (CLT) glasses are very rich in water for MORB (>1% H2O) and are among the highest H2O/Ce (>400) ever measured in MORB aside from melt inclusions in olivine. Mantle melting dynamics and melt evolution cannot account for the H2O/Ce variations in MORB, as these elements have similar behavior during melting and crustal evolution. Interestingly, the H2O/K2O ratios in the basalts are only around 1. This is because the K2O levels in the CLT glasses are very high as well relative to REE. The absolutely linear relationship between H2O and K2O/TiO2 in Lena and Gakkel basalts shows that water systematics in these rocks are completely governed by source composition, with little or no modification by mantle melting dynamics or crystal fractionation. The geochemical influence of the WVZ enriched mantle source declines with distance from Lena Trough along Gakkel Ridge.

  19. The Chlorine Isotope Composition of Earth’s Mantle

    NASA Astrophysics Data System (ADS)

    Bonifacie, M.; Jendrzejewski, N.; Agrinier, P.; Humler, E.; Coleman, M.; Javoy, M.

    2008-03-01

    Chlorine stable isotope compositions (δ37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-δ37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-δ37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has δ37Cl ≤ 1.6 per mil (‰), which is significantly lower than that of surface reservoirs (~ 0‰). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation (associated with removal of Cl from the mantle and its return by subduction over Earth history) and/or the addition (to external reservoirs) of a late volatile supply that is 37Cl-enriched.

  20. Analysis of PKP scattering using mantle mixing simulations and axisymmetric 3D waveforms

    NASA Astrophysics Data System (ADS)

    Haugland, Samuel M.; Ritsema, Jeroen; van Keken, Peter E.; Nissen-Meyer, Tarje

    2018-03-01

    The scattering of PKP waves in the lower mantle produces isolated signals before the PKIKP phase. We explore whether these so-called PKIKP precursors can be related to wave scattering off mid ocean ridge basalt (MORB) fragments that have been advected in the deep mantle throughout geologic time. We construct seismic models of small-scale (>20 km) heterogeneity in the lower mantle informed by mantle mixing simulations from Brandenburg et al. (2008) and generate PKIKP precursors using 3D, axisymmetric waveform simulations up to 0.75 Hz. We consider two end-member geodynamic models with fundamentally different distributions of MORB in the lower mantle. Our results suggest that the accumulation of MORB at the base of the mantle is a viable hypothesis for the origin of PKP scattering. We find that the strength of the PKIKP precursor amplitudes is consistent with P wave speed heterogeneity of 0.1-0.2%, as reported previously. The radial distribution of MORB has a profound effect on the strength of PKIKP precursors. Simulation of PKIKP precursors for models with an increasing MORB concentration in the lowermost 500 km of the mantle appears to reproduce most accurately the strength of PKIKP precursors in Global Seismic Network waveforms. These models assume that MORB has an excess density of at least 7%. Additional simulations of more complex geodynamic models will better constrain the geodynamic conditions to explain the significant variability of PKP scattering strength.

  1. The paradox of a wet (high H2O) and dry (low H2O/Ce) mantle: High water concentrations in mantle garnet pyroxenites from Hawaii

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Peslier, A. H.

    2013-12-01

    Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of MORB and OIB [1], but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. We analyzed by FTIR water concentrations in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt. H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than experimental cpx/opx equilibrium data. These pyroxenite cpx and opx water concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and megacrysts from kimberites [2] and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between water in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between water concentrations and the presence of phlogopite. These data imply that cpx and opx water concentrations may be buffered by phlogopite crystallization. Reconstructed bulk rock pyroxenite water concentrations (not including phlogopite, i.e. minimum) range from 200-460 ppm (average 331× 75 ppm), significantly higher than water estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas [1,3]. The average bulk rock pyroxenite H2O/Ce is 69 × 35, lower than estimates of the MORB source (~150) or FOZO, C (200-250) mantle component, but consistent with 'dry' EM sources (<100) [1]. These data suggest that a metasomatized, refertilized oceanic lithosphere that contains a pyroxenite component (e.g. in the lower part of an oceanic plate, where ascending melts can become trapped and crystallize), will have both higher water concentrations and low H2O/Ce, and may contribute to EM-type OIB sources, like that of Samoan basalts [5]. Therefore, a low H2O/Ce mantle source may not necessarily be 'dry'. [1] Dixon et al., 2002, Nature 420, 385-389. [2] Peslier, 2010 JVGR 197, 239-258. [3] Dixon et al., 1997 JP 38, 911-939. [4] O'Leary et al. 2010 EPSL 297, 111-120. [5] Workman et al., 2006 EPSL 241, 932 - 951.

  2. Recycling Revisited: Where did all the Subducted Sediments go?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Chauvel, C.; Lewin, E.; Kelemen, P. B.; Hacker, B. R.

    2016-12-01

    Several lines of reasoning have revived the idea [1] that subduction has recycled continent-derived sediments into the mantle on a massive scale. For example, well-known peaks in zircon ages have been reinterpreted as reflecting variable rates of crust destruction via erosion and sediment subduction [2]. In addition, assessment of the trace element budgets of subducted sediments and arc volcanics, as well as geological and geophysical studies of accretionary wedges have led to estimates that about one mass of present-day continental crust has been returned to the mantle [3]. If these ideas are correct, then recycled sedimentary components should be present in MORB and OIB sources. As previously established, Nb/U and 87Sr/86Sr are negatively correlated in all EM2-type OIBs, clearly indicating continental/sedimentary input. However, the MORB source reservoir, being depleted in incompatible elements, is particularly susceptible to "pollution" by subducted sediments. Chauvel et al. [4] modeled the Hf-Nd isotopic array of MORBs+OIBs and concluded that it requires the addition of up to 6 % subducted sediment. We revisit this issue and show that global MORBs show no decrease in Nb/U with increasing 87Sr/86Sr, ruling out extensive addition of recycled sediment into global MORB sources. Instead, the Hf-Nd array can be obtained by recycled alkali basalts derived from subducted seamounts and ocean islands, rather than sediments. Moreover, mantle plumes with clearly identifiable sediment input contribute less than 20% of the total plume flux. We conclude that most of the subducted sediment flux is not returned to the convecting mantle. Instead, its most plausible fate is to be underplated beneath existing continental crust via "relamination" [5]. These results imply that continental recycling is subordinate and the growth of the continental crust has been largely irreversible. [1] Armstrong, 1968, Rev. Geophys. 6, 175. [2] Hawkesworth et al., 2009, Science 323, 49. [3] Porter & White, 2009, Geochem. Geophys. Geosyst., 10, Q12016. Scholl & von Huene, 2007, GSA Memoir 200. [4] Chauvel et al., 2008, Nature Geosci. 1, 64. [5] Hacker et al., 2011, EPSL 307, 501. Kelemen & Behn, 2016 Nature Geosci. 9, 197.

  3. Meter-scale Hf isotopic changes in the MORB mantle by interaction with pyroxenite-derived melts: insight from the Ligurian Ophiolites (Italy)

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Borghini, G.; Class, C.; Goldstein, S. L.; Cai, Y.; Cipriani, A.; Zanetti, A.; Hofmann, A. W.

    2017-12-01

    Melt percolation and melt-peridotite interaction are efficient processes in creating chemical and isotopic heterogeneity in the upper mantle at variable scale. Such processes can generate a pyroxenite-bearing veined mantle often invoked as source of the oceanic magmatism. Natural examples of such veined mantle are however scarce, as well as studies combining geochemical and isotopic investigations with detailed field control and sampling. Mantle lherzolites in the External Liguride ophiolites (Northern Apennines) contain cm-thick pyroxenite layers that originated by deep infiltration of MORB-type melts (Borghini et al., 2016, J.Petrology 57). In a previous study (Borghini et al, 2013, Geology 41), we showed that geochemical gradients are preserved across the pyroxenite-peridotite contact, and the host peridotites have been modified in terms of modal, chemical and Nd isotopic composition, by reaction with pyroxenite-derived melts. Such interaction caused systematic lowering of the Sm/Nd ratios in clinopyroxene of the host peridotite at >0.1 m scale, and over time this resulted in decimeter-scale Nd isotopic heterogeneity, larger than the Nd isotopic variability of global abyssal peridotites. In this paper, we show the results of Lu-Hf isotopic investigations, performed on the same peridotite-pyroxenite profiles, aimed to test the existence of Hf isotopic changes in mantle peridotite induced by a pyroxenite component. In both peridotites and pyroxenites, initial (160Ma) EpsilonHf versus EpsilonNd values define an overall positive correlation, almost covering the entire MORB variation, and extending beyond the depleted end of the MORB field. As documented for Nd isotopes, the lowest 176Lu/177Hf and 176Hf/177Hf ratios are shown by peridotites adjacent to pyroxenite layers, as a result of reaction with pyroxenite-derived melts. Internal Lu-Hf isochrones on two pyroxenite-peridotite profiles have yielded Ordovician ages of pyroxenite emplacement, consistent with previous Sm-Nd investigations (Borghini et al., 2013). Our results point to predominant coherent behaviour of Hf and Nd isotopes during melt percolation and melt-peridotite interaction, and corroborate the role of such processes in creating the enriched mantle components often invoked to explain the isotopic variability of MORBs.

  4. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.

  5. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.

    2017-12-01

    An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal profiles by addition of <1% carbonated sediment-derived supercritical fluids/melts to depleted asthenospheric or subcontinental lithospheric mantle, and 2) 410 to 660 km, where PREMA-type mantle sources are generated, above slabs with average to cool thermal profiles, by addition of <1% carbonated eclogite ± sediment-derived supercritical fluids to depleted mantle.

  6. Alkaline lavas from southern Mendoza, Argentina, extend the Patagonian DUPAL mantle field to the north

    NASA Astrophysics Data System (ADS)

    Soager, N.; Holm, P. M.; Llambias, E.

    2010-12-01

    The lavas sampled around Río Colorado ~37°S at the border of Mendoza and Neuquén provinces, Argentina, define an OIB-like end-member composition for the Pleistocene and Holocene activity in the Payún Matrú volcanic field. Although positioned in the far back-arc of the Andes, only a few lavas show signs of involvement of slab fluids or crustal contamination such as relatively high LILEs relative to Nb. The very low La/Nb (~0.66) and Zr/Nb (~5) and high U/Pb (0.3-0.4) of the end-member composition clearly distinguish the source from normal MORB mantle, while high Ba/Nb (~10) and K/Nb (370-400) compared to FOZO and HIMU type OIBs suggest an EM type of mantle. Overall, the trace element patterns of the Río Colorado lavas are similar to the central and north Patagonian intraplate basalts and to South Atlantic E-MORB affected by the Discovery plume and the LOMU component (le Roux et al., 2002, EPSL 203). The isotopic composition of the Río Colorado component has a 206Pb/204Pb = 18.4, 207Pb/204Pb = 15.58, 208Pb/204Pb = 38.3, 87Sr/86Sr = 0.70353 and 143Nd/144Nd = 0.51285. This composition overlaps the central and north Patagonian intraplate basalts in Pb-isotopic space but is slightly less enriched in Sr and Nd-isotopes. It is distinctly different from the FOZO like composition of the south Patagonian intraplate basalts and the nearby Juan Fernandéz plume but similar to the South Atlantic N-MORB and MORB from the southern Chile Ridge segment 4 (Sturm et al., 1999, JGR 104) described as DUPAL type. The DUPAL-MORB type isotopic composition and the plume-like trace element patterns of the Río Colorado lavas suggest the presence of a weak plume beneath the area. The eruption of the large Payún Matrú volcano and the gigantic Pleistocene flood basalts also calls for a thermal anomaly to produce these melts during a weakly compressive tectonic regime with no significant addition of slab fluids. This was supported by Burd et al. (2008, Abstr., 7th Int. Sym. And. Geo.) who recognized a plume-like conductive structure beneath Payún Matrú volcano on an electrical resistivity profile across the Payún Matrú volcanic field. The many Argentine and Chile Ridge EM1 basalts form part of the global DUPAL-anomaly (Hart, 1984, Nature 309) which suggests a common mode of formation of the enriched mantle sources; most likely anciently subducted components in the underlying upper mantle, either in a larger reservoir or as dispersed bodies of material. From there they can rise as small plumes or be entrained in a convecting MORB source mantle.

  7. The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality

    NASA Astrophysics Data System (ADS)

    Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.

    2006-12-01

    Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South African Archean cratons. Erosion of these roots by the asthenospheric drift confers a distinct continental signature on the source of South Atlantic MORB. This pattern is also consistent with the observation that the lowest He isotope values occur, on average, along the South Atlantic ridge. To some extent, the dynamics of the North Atlantic upper mantle mirrors the Indian situation: the flow field of Behn et al. (2004) shows that the North Atlantic asthenosphere also fills up through deep mantle upwellings, which is consistent with the Dupal-like isotopic signature of the Arctic ridges. M.D. Behn, C.P. Conrad and P.G. Silver (2004), Detection of upper mantle flow associated with the African Superplume, Earth. Planet. Sci. Lett., 224, 259-274.

  8. Behavior of MORB magmas at uppermost mantle beneath a fast-spreading axis: an example from Wadi Fizh of the northern Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Akizawa, Norikatsu; Arai, Shoji; Tamura, Akihiro

    2012-10-01

    Relationships of lithologies in uppermost mantle section of Oman ophiolite are highly complicated, harzburgites especially being closely associated with dunites, wehrlites, and gabbros. The petrology and geochemistry of the uppermost mantle section provide constrains on how MORB (mid-ocean ridge basalt) magmas migrate from the mantle to crust. We conducted detailed sampling at the uppermost mantle section of the northern Oman ophiolite (along Wadi Fizh), and it provides us with centimeter-scale lithological and mineral chemical heterogeneity. In particular, we found peculiar plagioclase-free harzburgites that have not been recorded from the current ocean floor, which contain high-Mg# [Mg/(Mg + Fe2+) atomic ratio] clinopyroxenes that are almost in equilibrium (saturated) with MORB in terms of REE concentrations. They are from the uppermost mantle section underlying the wehrlite-dunite layer (=Moho transition zone; MTZ) just beneath the layered gabbro. MORBs cannot be in equilibrium with harzburgites; however, we call the peculiar harzburgites as "MORB-saturated harzburgite" for simplicity in this paper. The MORB-saturated harzburgites exhibit slightly enriched mineralogy (e.g., spinels with higher Ti and ferric iron, and clinopyroxenes with higher Ti and Na) and contain slightly but clearly more abundant modal clinopyroxene (up to 3.5 vol.%) than ordinary Oman depleted harzburgites (less than 1 vol.% clinopyroxene), which are similar to abyssal harzburgites. Gabbro-clinopyroxenite bands, which were melt lenses beneath the ridge axis, are dominant around the MTZ. Detailed sampling around the gabbro-clinopyroxenite bands revealed that the MORB-saturated harzburgites appear around the bands. The interaction between a melt that was MORB-like and an ordinary harzburgite induced incongruent melting of orthopyroxenes in harzburgites, and the melt chromatographically intruded into the wall harzburgite and was modified to coexist with olivine and two pyroxenes at low melt/harzburgite ratios. The modified melt left clinopyroxene (not clinopyroxene + plagioclase as in plagioclase-impregnated abyssal harzburgite) to form the MORB-saturated harzburgites in the vicinity (harzburgite) of the fracture, which are left as gabbro-clinopyroxenite bands. This local modification mimics the whole lithological and chemical variation of the MTZ and makes chemical variation of MORB suite at fast-spreading ridge.

  9. Petrologic evidence that most ocean islands derive from thermally driven mantle plumes

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.

    2006-12-01

    Perhaps the most crucial test of the mantle plume hypothesis concerns whether hot spots are indeed hot. To conduct this test, olivine-liquid equilibria are used to estimate mantle potential temperatures (Tp) for 15 putative plume localities (using the GEOROC database). Ocean islands (OIB) were selected on the availability of rocks that attain olivine control (where olivine addition/removal alone controls rock composition) so that primitive FeO contents could be estimated. Several other variables in addition to FeO must also be known: Except at Iceland and Hawaii, where large numbers of olivine analyses allow individual estimates for the maximum forsterite contents (Fomax) of olivines, a single Fomax value, 91.5, is adopted for all OIB (and MORB; determined from a global database of olivine compositions); as a null hypothesis, MORB-like values for oxygen fugacity (QFM-1; Bezos and Humler, 2005) and the Fe-Mg exchange coefficient between olivine and liquid (0.31; calculated from Toplis, 2005, Herzberg and O'Hara, 1998) are adopted. Generalized differences in water contents between OIB and MORB (Dixon et al., 2002) are also accounted for. All temperatures are calculated at 1 GPa, using averages of existing (Beattie, 1993) and new (Putirka et al., 2006) olivine geothermometers. Except for Galapagos, primitive OIBs have nearly uniform FeO contents that are higher compared to MORB (at MgO>10 wt. %, mean OIB FeOt = 11.6 wt. %). These high FeO contents require higher mean temperatures of olivine-liquid equilibration for OIB, by an average of 150±20°C compared to MORB. Olivine equilibration temperatures do not depend on mantle source composition, so are independent of whether eclogite-type components occur in the mantle. If a peridotite bulk composition is assumed (to estimate melt fraction from partial melting experiments) olivine equilibration temperatures can be converted to Tp; OIB (Galapagos excepted) yield a mean Tp of 1583°C, compared to 1397°C for MORB. When inter- island compositional variation is accounted for, all OIB except Galapagos yield excess temperatures (Tp^{OIB} - Tp^{MORB}) of 133-280°C, with a mean of 186± 36°C. Galapagos lavas yield an excess temperature of 16°C; perhaps mixing has diluted its thermal signal, but in any event, its Tp is essentially identical to MORB. Nevertheless, most OIB (93% in this sample) exhibit large excess temperatures. Thermally driven mantle plumes, as proposed by Morgan (1971), thus appear to be common, not rare. A second implication, less certain than the first, involves the narrow standard deviation of ±36°C for Tp at OIB, which almost certainly reflects a lower limit to actual thermal variability. This narrow range indicates that all hot spots derive from a single thermal boundary layer.

  10. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7 Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11 B = - 9.1 ± 2.4 ‰ . Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6 Li in the surface reservoirs, which requires the existence of 7 Li -enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean.

  11. Controls on the iron isotopic composition of global arc magmas

    NASA Astrophysics Data System (ADS)

    Foden, John; Sossi, Paolo A.; Nebel, Oliver

    2018-07-01

    We determined the iron isotope composition of 130 mafic lavas from 15 arcs worldwide with the hypothesis that the results would reflect the relatively high oxidation state of arc magmas. Although this expectation was not realized, this Fe isotope data set reveals important insights into the geodynamic controls and style of the melting regimes in the sub-arc mantle. Samples are from oceanic arcs from the circum-Pacific, the Indonesian Sunda-Banda islands, Scotia and the Lesser Antilles as well as from the eastern Pacific Cascades. Their mean δ57Fe value is +0.075 ± 0.05‰, significantly lighter than MORB (+0.15 ± 0.03‰). Western Pacific arcs extend to very light δ57Fe (Kamchatka = -0.11 ± 0.04‰). This is contrary to expectation, because Fe isotope fractionation factors (Sossi et al., 2016, 2012) and the incompatibility of ferric versus ferrous iron during mantle melting, predict that melts of more oxidized sources will be enriched in heavy Fe isotopes. Subducted oxidation capacity flux may correlate with hydrous fluid release from the slab. If so, a positive correlation between each arc's thermal parameter (ϕ) and δ57Fe is predicted. On the contrary, the sampled arcs mostly contribute to a negative array with the ϕ value. High ϕ arcs, largely in the western Pacific, have primary magmas with lower δ57Fe values than the low ϕ, eastern Pacific arcs. Arcs with MORB-like Sr-, Nd- and Pb-isotopes, show a large range of δ57Fe from heavy MORB-like values (Scotia or the Cascades) to very light values (Kamchatka, Tonga). Although all basalts with light δ57Fe values have MORB-like Pb-, Nd- and Sr-isotope ratios some, particularly those from eastern Indonesia, have heavier δ57Fe and higher Pb- and Sr- and lower Nd-isotope ratios reflecting sediment contamination of the mantle wedge. Because basalts with MORB-like radiogenic isotopes range all the way from heavy to light δ57Fe values this trend is process-, not source composition-driven. Neither the slab-derived influx of fluids with light iron or sediment-derived melts with heavier iron can drive the iron isotopic shifts. The trend to light iron isotopes is partly the result of repeated, hydrous flux-driven, fO2-buffered, melting of initially normal-DMM-like mantle. However the most negative δ57Fe must also reflect re-melting of sources that have experienced prior diffusive (disequilibrium) stripping of heavy Fe isotopes due to rapid melt extraction and metasomatism. Data from intra-arc to back-arc rifts in the western Pacific show that these arc signatures are rapidly dispersed by influx of DMM or OIB mantle once intra- and back-arc rifting and slab rollback gains momentum. We suggest that the characteristic light arc signatures only form when the source is lodged under arcs where sub-arc mantle undergoes corner flow forming an isolated roll. This process of heavy iron depletion is most efficient in the high ϕ arcs of the western Pacific and least prevalent in the low ϕ arcs of the eastern Pacific where δ57Fe values are MORB-like. This implies that there is a fundamental change in character of sub-arc mantle melting between east and west Pacific, percolative and fluid fluxed in the west and diapiric and decompressional in the east.

  12. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our data support the notion that the fraction of plutonium-derived Xe in plume sources (oceanic as well as continental) is higher than in the MORB source reservoir. Hence, the MORB - type reservoirs appear to be well distinguished and more degassed than the plume sources (oceanic as well as continental) supporting the heterogeneity of Earth's mantle. Finally this study highlights that xenon isotopes in the Eifel gas have preserved a chemical signature that is characteristic of other mantle plume sources. This is very intriguing because the presence of a mantle plume in this sector of Central Europe was already inferred from geophysical and geochemical studies(Buikin et al., 2005; Goes et al., 1999). Notably, tomographic images show a low-velocity structure down to 2000 km depth, representing deep mantle upwelling under central Europe, that may feed smaller upper-mantle plumes (Eifel volcanic district-Germany). References Buikin A., Trieloff M., HoppJ., Althaus T., Korochantseva E., Schwarz W.H. &Altherr R., (2005), Noble gas isotopessuggestdeepmantleplume source of late Cenozoicmaficalkalinevolcanism in Europe, Earth Planet. Sci. Lett. 230, 143-162. Goes S., Spakman W. &BijwaardH., (1999), A lowermantle source for centraleuropeanvolcanism, Science, 286, 1928-1931.G. Holland, M. Cassidy, C.J. Ballentine, Meteorite Kr in the Earth's mantle suggests a late accretionary source for the atmosphere, Science, 326, 1522-1525, (2009). Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56 (1989). Mukhopadhyay S., Early differentiation and volatile accretion recorded in deep-mantle neon and xenon Nature, 486, 101-106, (2013).

  13. Chlorine isotope evidence for crustal recycling into the Earth's mantle

    NASA Astrophysics Data System (ADS)

    John, Timm; Layne, Graham D.; Haase, Karsten M.; Barnes, Jaime D.

    2010-09-01

    Subduction of oceanic lithosphere is a key feature of terrestrial plate tectonics. However, the effect of this recycled crustal material on mantle composition is debated. Ocean island basalts (OIB) provide direct insights into the composition of Earth's mantle. The distinct composition of the HIMU (high 238U/ 204Pb)- and EM (enriched mantle)-type OIB mantle sources may be due to either recycling of oceanic crust and sediment into the mantle or metasomatic processes within the mantle. Chlorine derived from seawater or crustal fluids potentially provides a tracer for recycled material. Previously reported δ 37Cl values for mid-ocean ridge basalts (MORB) range from ca. - 3.0 to near 0‰. In contrast to MORB, we find a larger variation in OIB glasses representing HIMU- and EM-type mantle sources based on replicate SIMS analyses with δ 37Cl values ranging from - 1.6 to + 1.1‰ for HIMU-type and - 0.4 to + 2.9‰ for EM-type lavas. These δ 37Cl values correlate positively with 87Sr/ 86Sr ratios for both the HIMU- and EM-type samples. The negative δ 37Cl values of some HIMU-type lavas overlap with those of altered oceanic lithosphere, which is assumed to be present in the HIMU source. The EM lavas have high 87Sr/ 86Sr and primarily positive δ 37Cl values. We hypothesize that subducting sediments may have developed high δ 37Cl values by expelling 37Cl-depleted pore fluids, thus accounting for the positive δ 37Cl values recorded in the EM-type lavas.

  14. U-Series Disequilibria across the New Southern Ocean Mantle Province, Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Scott, S. R.; Sims, K. W. W.; Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Michael, P. J.; Choi, H.; Yang, Y. S.

    2017-12-01

    Mid-ocean ridge basalts (MORB) provide a unique window into the temporal and spatial scales of mantle evolution. Long-lived radiogenic isotopes in MORB have demonstrated that the mantle contains many different chemical components or "flavors". U-series disequilibria in MORB have further shown that different chemical components/lithologies in the mantle contribute differently to mantle melting processes beneath mid-ocean ridges. Recent Sr, Nd, Hf, and Pb isotopic analyses from newly collected basalts along the Australian-Antarctic Ridge (AAR) have revealed that a large distinct mantle province exists between the Australian-Antarctic Discordance and the Pacific-Antarctic Ridge, extending from West Antarctica and Marie Byrd Land to New Zealand and Eastern Australia (Park et al., submitted). This southern mantle province is located between the Indian-type mantle and the Pacific-type mantle domains. U-series measurements in the Southeast Indian Ridge and East Pacific Rise provinces show distinct signatures suggestive of differences in melting processes and source lithology. To examine whether the AAR mantle province also exhibits different U-series systematics we have measured U-Th-Ra disequilibria data on 38 basalts from the AAR sampled along 500 km of ridge axis from two segments that cross the newly discovered Southern Ocean Mantle province. We compare the data to those from nearby ridge segments show that the AAR possesses unique U-series disequilibria, and are thus undergoing distinct mantle melting dynamics relative to the adjacent Pacific and Indian ridges. (230Th)/(238U) excesses in zero-age basalts (i.e., those with (226Ra)/(230Th) > 1.0) range from 1.3 to 1.7, while (226Ra)/(230Th) ranges from 1.0 to 2.3. (226Ra)/(230Th) and (230Th)/(238U) are negatively correlated, consistent with the model of mixing between deep and shallow melts. The AAR data show higher values of disequilibria compared to the Indian and Pacific Ridges, which can be explained by either lower melting rates and porosities, or a higher gt/cpx ratio in their mantle source. That both long-lived radiogenic isotopes and U-series disequilibria are distinct in these three adjacent mantle provinces suggests that lithological differences are strongly influencing the melting process beneath each of these mid-ocean ridges.

  15. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  16. Effects of Fertile Mantle Compositional Variation and Spreading Rate Variation on the Working of Global Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Niu, Y.; O'Hara, M. J.

    2014-12-01

    Mantle temperature variation, plate spreading rate variation and mantle compositional variation have been considered to be the three fundamental variables that govern the working of global ocean ridges [1]. An analysis demonstrates that mantle compositional variation exerts the primary control on ocean ridge processes; it determines (1) variation in both composition and mode of mantle mineralogy, (2) variation of mantle density, (3) variation of ridge axial depth, (4) source-inherited MORB compositional variation, (4) density-controlled variation in the amplitude of mantle upwelling, (5) apparent variation in the extent of melting, and (6) the correlated variation of MORB chemistry with ridge axial depth [2]. The above interpretations are reinforced by the updated MORB database [3]. The new database also confirms spreading rate control on the extent of melting as shown previously [4]. Mantle temperature variation could play a part, but its overstated role [3,5] results from a basic error (1) in treating ridge axial depth variation as evidence of mantle temperature variation by ignoring the intrinsic control of mantle composition, (2) in treating "mantle plume" influenced ridges (e.g., Iceland) as normal ridges of plate spreading origin, and (3) in treating low Vs at greater depths (> 300 km vs. < 200 km beneath ridges) beneath these "mantle plume" influenced ridges as evidence for hot ridge mantle. In order to understand the working of global ocean ridges, we must avoid plume-influenced ridges (e.g., in the vicinity of Iceland) and remove/average out data from such ridges. As a result, the correlations (e.g., between ridge axial depth, mantle low Vs anomaly, and some geochemical parameters) required for the interpretation of mantle temperature control all disappear. There is thus no evidence for large mantle temperature variation away from ridges influenced by "mantle plumes". References: [1] Niu et al., 2001, Earth Planet Sci. Lett., 186, 383-399; [2] Niu & O'Hara, 2008, J. Petrol., 49, 633-664; [3] Gale et al., 2014, J. Petrol, 55, 1051-1082; [4] Niu & Hékinian, 1997, Nature, 385, 326-329; [5] Dalton et al., 2014, Science, 334, 80-83; [6]Niu & Hékinian, 2004, In Oceanic Hotspots, Springer-Verlag, 285-307.

  17. Oceanization of the lithospheric mantle: the study case of the spinel peridotites from Monte Maggiore (Corsica, France).

    NASA Astrophysics Data System (ADS)

    Piccardo, G. B.

    2009-04-01

    The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks (Rampone, 2004; Rampone et al., 2008; 2009) provide reliable geochronological informations (i.e. Sm-Nd cpx-plg-wr isochron ages and Sm-Nd model ages) and evidence that the whole mafic and ultramafic rocks show an overall Sm/Nd isotopic homogeneity. Cpx-plg-wr data from gabbroic dykes define internal isochrones yielding Jurassic ages (162+/-10 Ma and 159+/-15 Ma, respectively). The plg-cpx(-wr) isochrons for impregnated plagioclase peridotites yields age of 155+/-6 Ma. The initial ɛNd values (8.9-9.7) are indicative of a MORB affinity. Calculated DM model ages for both spinel and plagioclase peridotites point to a Late Jurassic age (150 Ma). Isotope ratios of cpx from spinel and plagioclase peridotites conform to the linear array defined by overall gabbroic rocks. The isotopic evidence from the melt-percolated, reactive and impregnated peridotites indicates that the pristine lithospheric mantle protoliths were isotopically homogenized by the melt-rock interaction during percolation/impregnation processes which erased any pre-existing isotopic signature. Moreover, the overall Sm/Nd isotopic homogeneity indicates that the asthenospheric mantle sources of the infiltrating melts were isotopically homogeneous. Accordingly, it is plausible that percolation and intrusion were operated by similar and coeval Late Jurassic MORB-type melts. In conclusion, petrologic and isotopic data allow to recognize that the extending sub-continental lithospheric mantle was infiltrated by Late Jurassic MORB melts, formed by asthenospheric decompression-induced partial melting during continental extension and rifting. Melt-peridotite interaction modified the compositional features of the lithospheric mantle and caused its isotopic resetting. Accordingly, the sub-continental lithospheric mantle underwent an "oceanization" process (i.e. isotope resetting to "oceanic" MORB signatures) during Late Jurassic times operated by asthenospheric MORB melts. Depending on the melt composition, the lithospheric level and the mode of melt-rock interaction, fertile peridotites from the sub-continental lithospheric mantle were transformed, concomitantly, to depleted spinel peridotites and refertilized plagioclase peridotites.

  18. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by the crustal metasomatism through melt-peridotite reaction at the slab-mantle interface in oceanic subduction channels. Continental basalts of Mesozoic to Cenozoic ages from eastern China are used as a case example to illustrate the above petrogenetic mechanism. Subduction of the paleo-Pacific oceanic slab beneath the eastern edge of Eurasian continent in the Early Mesozoic would have transferred the crustal signatures into the mantle sources of these basalts. This process would be associated with rollback of the subducting slab at that time, whereas the partial melting of metasomatites takes place mainly in the Late Mesozoic to Cenozoic to produce the continental basalts. Therefore, OIB-like continental basalts are also the product of subduction-zone magmatism though they occur in intraplate settings.

  19. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten

    2016-11-01

    Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.

  20. Geochemistry of the Bela Ophiolite, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, M.; Nicholson, K. N.; Mahmood, K.

    2008-12-01

    The Bela ophiolite complex of Balochistan, Pakistan has been the subject of several geochemical and tectonic studies in the past. However until now there has never been a combined structural, geochemical and tectonic assimilation study which adequately explains the observed geochemistry and structural geology in a global tectonic framework. Here we present the geochemical findings of our work. The Bela ophiolite complex consists of two major units: the basal section or Lower Unit, and the Upper Unit, between the two is a mélange zone. The Lower Unit is relatively homogeneous and consists almost entirely of flow basalts and pillow basalts. The base of the Upper Unit is the metamorphic sole which is overlain by a sequence of massive basalts flows and intrusions of gabbro and granites. The entire Upper Unit is cut by doleritic dykes and sills. Geochemically the Lower Unit is comprised of basaltic lavas with E-MORB affinities. These lavas are tholeiitic, low-K series lavas with trace element signatures of E-type MORB. For example ratios such as V/Ti, Zr/Y, Nb/Th, Th/La and Nb/U all suggest these lavas are E-MORB. Previous workers have suggested these lavas are back-arc basin (BAB) however the samples lack the characteristic signatures of subduction modified MORB. This conclusion is supported by chondrite and N-MORB normalized spider diagrams where the Lower Unit lavas are enriched in the LILE with respect to the HFSE. The Upper Unit of the Bela Ophiolite sequence has a slightly more complex history. The older lavas sequences, the massive basalt flows, gabbros and granites, all formed in an oceanic arc environment. These lavas exhibit classic arc signatures such as a negative Nb and Ti anomalies, are enriched in LILE and LREE relative to HSFE, and plot in the volcanic arc and island arc fields in classic ternary plots such as 2Nb- Zr/4-Y and Y/15-La/10-Nb/8. The younger sequence of intrusions found in the Bela ophiolite appear to have BAB signatures. These lavas have relatively flat MORB normalized plots, are slightly depleted in the LILE relative the HFSE, and have a very small negative Nb anomaly. Source characteristics for both units have been determined using trace element data. This work suggests that the E-MORB lavas are derived from partial melting of enriched mantle. The lavas found in the Upper Unit have all been sourced from depleted or N-MORB mantle which has been modified by subducting fluids. It is possible that the younger BAB samples have a slightly more enriched source than the corresponding arc lavas which might indicate movement of the subduction zone allowing the influx of new mantle material below the wedge. In conclusion, our new geochemical work shows that the Bela ophiolite contains three distinct magmatic sequences: a lower E-MORB sequence over lain by a series of volcanic arc lavas which are cut by BAB-type sills and dykes.

  1. Global Importance of Mafic Magma with Low TiO2

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2014-12-01

    I discuss the distribution of very low-TiO2 basaltic lava in the ocean basins, which petrologic and geologic evidence suggests originated from refractory mantle that was emplaced during continental rifting. Glass compositions have TiO2 ~0.3-0.8%, Na2O <2% and MgO ~8-9%, similar to some lava (e.g., boninite) in island arcs and ophiolites. Not well known is that it is a widespread component or actual eruptive at spreading ridges, some large igneous provinces (LIPs), and at volcanic rifted margins. It is an end component of the global MORB array. Although at high MgO it is rare, differentiates with higher TiO2 are regionally important. The most typical occurrence in usual MORB is as melt inclusions in calcic plagioclase phenocrysts (>An88), where its influence can also be inferred from low-TiO2 clinopyroxene. The crystals are incorporated into more typical MORB by magma mixing. In some cases, most of the global array can be inferred from crystallization histories of single samples. At ridges, low-TiO2 basalts approach calcic boninite in composition, and have similar mineralogy including presence of both low-Ca and high-Ca pyroxene. Type localities are basalt from DSDP Site 236 in the Indian Ocean and a dredge haul from the Danger Island Trough at Manihiki Plateau, a fragment of a large igneous province (LIP) in the SW Pacific. A third location is Padloping Island in the Labrador Sea, a part of the North Atlantic Igneous Province, where mixing relations in picrites entail a low-TiO2 component similar to boninite. This component is likely the source of forsteritic olivine (>Fo91) in these rocks and did not require either high eruptive or potential temperatures when such olivine crystallized. As with boninite, low-TiO2 magma in ridge settings is likely derived from a refractory (harzburgitic) and probably somewhat hydrous mantle source by extents of melting and temperatures comparable to those of typical MORB extracted from more fertile peridotite. Refractory mantle in oceanic settings probably resulted from incorporation of ancient mantle that was originally beneath island arcs or continental crust, but which was added to oceanic mantle by delamination or major stoping that occurred while continents were rifted. That mantle has geochemical attributes reflective of ancient melting events in the history of the planet.

  2. Geochemical Evidence Against Pyroxenites in the Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Humayun, M.; Yang, S.; Clague, D. A.

    2017-12-01

    Hawaiian lavas exhibit high Fe/Mn ratios, and other elemental and isotopic characteristics, that have been argued to be evidence for chemical interactions at the core-mantle boundary. Alternatively, the enrichment in silica relative to 3 GPa melts of garnet peridotite, and the high Fe/Mn, has been argued to represent the contributions of garnet pyroxenite melts generated beneath a thick lithosphere. Here, we present a set of new elemental ratios designed to effectively discriminate partial melts of peridotite from pyroxenite in mantle sources. A set of 200 Hawaiian volcanic glasses from 7 volcanoes were analyzed by LA-ICP-MS for the abundances of 63 elements, with an emphasis on obtaining precise Ge/Si ratios. From experimental partitioning, silica-rich partial melts of MORB-like garnet pyroxenite are expected to have low Ge/Si ratios relative to their sources due to the retention of Ge in the residue by both garnet and pyroxene. In contrast, partial melts of peridotite are expected to have high Ge/Si ratios relative to mantle peridotites due to the incompatibility of Ge in olivine. We observed that Ge abundances in subaerial Hawaiian volcanoes are correlated with indicators of volcanic degassing, including S, Re and As. Subaerial and submarine lavas exhibit a correlation between Ge/Si ratio and S content that indicates that all Hawaiian lavas share the same pre-eruptive Ge/Si ratio. Submarine glasses with the least evidence of degassing exhibit a constant Ge/Si ratio over the range of SiO2 (44-52 %) observed in Hawaiian volcanics. Surprisingly, MORB glasses exhibit more variation in Ge/Si ratio than the pre-eruptive Ge/Si of Hawaiian glasses, implying the presence of 0-12% recycled crust in the MORB source. The constant Ge/Si ratio of Hawaiian glasses implies that pyroxenite melting did not enrich Hawaiian lavas in silica. Processes that could yield Si-rich melts without changing the Ge/Si ratio may involve melt-lithosphere interaction or bridgmanite/ferropericlase fractionation in the deep mantle.

  3. Reconstructing mantle volatile contents through the veil of degassing

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.

    2014-12-01

    The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.

  4. Tracing subducted crustal materials in the mantle by using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Teng, F. Z.

    2016-12-01

    Recent studies show that some continental basalt, mantle-metasomatised peridotite and cratonic eclogite have heterogeneous Mg isotopic compositions. These isotopically distinct Mg isotopic compositions have been explained by the incorporation of subducted materials in their mantle sources though the detailed mechanisms are still not well understood. In particular, how Mg-poor crustal materials can modify Mg isotopic systematics of Mg-rich mantle is unknown. Subduction zones are the most efficient sites for crust and mantle interactions, hence should be where the most prominent Mg isotopic variation occurs. However, to date, little is known on Mg isotope systematics in the subduction factory. Here I first review and report new Mg isotopic data for arc lava, subarc peridotite and the subducted slab (marine sediment, altered basalt and abyssal peridotite), then use them to constrain the origins of mantle Mg isotopic heterogeneity and lay the foundation for using Mg isotopes as new tools for tracing crust-mantle interactions. The main conclusions are 1) fluid-rock interactions can modify Mg isotopic systematics of abyssal peridotites; 2) island arc lavas have non-MORB Mg isotopic compositions, reflecting distinct surbarc mantle Mg isotopic signature; 3) continental arcs have non-MORB Mg isotopic compositions, likely resulting from crustal contamination and 4) the isotopically heterogeneous continental basalts are mainly produced by mixing of isotopically distinct magmas instead of being partial melting products of metasomatised mantle peridotites.

  5. Boron Isotopic Composition of Metasomatized Mantle Xenoliths from the Western Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Hudgins, T.; Nelson, W. R.

    2017-12-01

    The Western Branch of the East African Rift System is known to have a thick lithosphere and sparse, alkaline volcanism associated with a metasomatized mantle source. Recent work investigating the relationship between Western Branch metasomatized mantle xenoliths and associated lavas has suggested that these metasomes are a significant factor in the evolution of the rift. Hydrous/carbonated fluids or silicate melts are potent metasomatic agents, however gaining insight into the source of a metasomatic agent proves challenging. Here we investigate the potential metasomatic fluid sources using B isotope analysis of mineral separates from Western Branch xenoliths. Preliminary SIMS analyses of phlogopite from Katwe Kikorongo and Bufumbira have and average B isotopic composition of -28.2‰ ± 5.1 and -16.4‰ ± 3.6, respectively. These values are are dissimilar to MORB (-7.5‰ ± 0.7; Marschall and Monteleone, 2015), primitive mantle (-10‰ ± 2; Chaussidon and Marty, 1995), and bulk continental crust (-9.1‰ ± 2.4; Marschall et al., 2017) and display significant heterogeneity across a relatively short ( 150km) portion of the Western Branch. Though displaying large variability, these B isotopic compositions are indicative of a metasomatic agent with a more negative B isotopic composition than MORB, PM, or BCC. These results are consistent with fluids that released from a subducting slab and may be related to 700 Ma Pan-African subduction.

  6. The Xenon record of Earth's early differentiaiton

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.; Kelley, K. A.

    2011-12-01

    Xenon isotopes in mantle derived rocks provide information on the early differentiation of the silicate mantle of our planet. {131,132 134,136}Xe isotopes are produced by the spontaneous fission of two different elements: the now extinct radionuclide 244Pu, and the long-lived 238U. These two parent nuclides, however, yield rather different proportion of fissiogenic Xenon isotopes. Hence, the proportion of Pu- to U-derived fission xenon is indicative of the degree and rate of outgassing of a mantle reservoir. Recent data obtained from Iceland in our lab confirm that the Xenon isotopic composition of the plume source(s) is characterized by lower 136Xe/130Xe ratios than the MORB source and the Iceland plume is more enriched in the Pu-derived Xenon component. These features are interpreted as reflecting different degrees of outgassing and appear not to be the result of preferential recycling of Xenon to the deep mantle. To further investigate how representative the Icelandic measurements might be of other mantle plumes, we measured noble gases (He, Ne, Ar, Xe) in gas-rich basalt glasses from the Rochambeau Ridge (RR) in the Northern Lau Basin. Recent work suggests the presence of a "Samoan-like" OIB source in the northern Lau Basin and our measurements were performed on samples with plume-like 3He/4He ratios (15-28 RA) [1]. The Xenon isotopic measurements indicate that the maximum measured 136Xe/130Xe ratios in the Rochambeau samples are similar to Iceland. In particular, for one of the gas rich samples we were able to obtain 77 different isotopic measurements through step-crushing. Preliminary investigation of this sample suggests higher Pu- to U-derived fission Xenon than in MORBs. To quantitatively evaluate the degree and rate of outgassing of the plume and MORB reservoirs, particularly during the first few hundred million years of Earth's history, we have modified a geochemical reservoir model that was previously developed to investigate mantle overturn and mixing from He, Ar and lithophile isotopes [2]. We will present the results from this geochemical reservoirs model, which is constrained by our high precision dataset from the Rochambeau Rift (Northern Lau Basin) and Iceland along with the Xenon dataset from popping rock [3]. [1] Lupton et al., GRL, 2009. [2] Gonnermann and Mukhopadhyay, Nature, 2009. [3] Kunz et al., Science, 1998.

  7. Fluorine and chlorine in mantle minerals and the halogen budget of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Urann, B. M.; Le Roux, V.; Hammond, K.; Marschall, H. R.; Lee, C.-T. A.; Monteleone, B. D.

    2017-07-01

    The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth's upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4-31 µg/g F and 0.14-0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1-9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that nearly all MORB may be somewhat contaminated by seawater-rich material and that the Cl content of DMM could be overestimated. With this study, we demonstrate that the halogen contents of natural peridotite minerals are a unique tool to understand the cycling of halogens, from ridge settings to subduction zones.

  8. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; O'Hara, Michael J.

    2009-09-01

    We have examined the high quality data of 306 mid-ocean ridge basalt (MORB) glass samples from the East Pacific Rise (EPR), near-EPR seamounts, Pacific Antarctic Ridge (PAR), near-PAR seamounts, Mid-Atlantic Ridge (MAR), and near-MAR seamounts. The data show a correlated variation between Eu/Eu* and Sr/Sr*, and both decrease with decreasing MgO, pointing to the effect of plagioclase crystallization. The observation that samples with MgO > 9.5 wt.% (before plagioclase on the liquidus) show Eu/Eu* > 1 and Sr/Sr* > 1 and that none of the major phases (i.e., olivine, orthopyroxene, clinopyroxene, spinel and garnet) in the sub-ridge mantle melting region can effectively fractionate Eu and Sr from otherwise similarly incompatible elements indicates that the depleted MORB mantle (DMM) possesses excess Sr and Eu, i.e., [Sr/Sr*]DMM > 1 and [Eu/Eu*]DMM > 1. Furthermore, the well-established observation that DNb ≈ DTh, DTa ≈ DU and DTi ≈ DSm during MORB mantle melting, yet primitive MORB melts all have [Nb/Th]PMMORB > 1, [Ta/U]PMMORB > 1 and [Ti/Sm]PMMORB > 1 (where PM indicates primitive mantle normalized), also points to the presence of excess Nb, Ta and Ti in the DMM, i.e., [Nb/Th]PMDMM > 1, [Ta/U]PMDMM > 1 and [Ti/Sm]PMDMM > 1. The excesses of Eu, Sr, Nb, Ta and Ti in the DMM complement the well-known deficiencies of these elements in the bulk continental crust (BCC). These new observations, which support the notion that the DMM and BCC are complementary in terms of the overall abundances of incompatible elements, offer new insights into the crust-mantle differentiation. These observations are best explained by partial melting of amphibolite of MORB protolith during continental collision, which produces andesitic melts with a remarkable compositional (major and trace element abundances as well as key elemental ratios) similarity to the BCC, as revealed by andesites in southern Tibet produced during the India-Asia continental collision. An average amphibolite of MORB protolith consists of ~ 66.4% amphibole, ~ 29.2% plagioclase and 4.4% ilmenite. In terms of simple modal melting models, the bulk distribution coefficient ratios D2Eu/(Sm + Gd) = 1.21, D2Sr/(Pr + Nd) = 1.04, DNb/Th = 44, DTa/U = 57, DTi/Sm = 3.39 and DNb/Ta = 1.30 readily explains the small but significant negative Eu and Sr anomalies, moderate negative Ti anomaly and huge negative Nb and Ta anomalies as well as the more sub-chondritic Nb/Ta ratio in the syncollisional andesitic melt that is characteristic of and contributes to the continental crust mass. These results support the hypothesis that continental collision zones are primary sites of net continental crust growth, whereas the standard "island arc" model has many more difficulties than certainties. That is, it is the continental collision (vs. "island arc magmatism" or "episodic super mantle avalanche events") that produces and preserves the juvenile crust, and hence maintains net continental growth. The data also allow us to establish the robust composition of depleted and most primitive (or "primary") MORB melt with 13% MgO. This, together with the estimated positive Eu and Sr anomalies in the DMM, further permits estimation that the DMM may occupy the uppermost ~ 680 km of the convective mantle following the tradition that the DMM lies in the shallowest mantle. However, the tradition may be in error. The seismic low velocity zone (LVZ) may be compositionally stratified with small melt fractions concentrated towards the interface with the growing lithosphere because of buoyancy. Such small melt fractions, enriched in volatiles and incompatible elements, continue to metasomatize the growing lithosphere before it reaches the full thickness after ~ 70 Myrs. Hence, the oceanic mantle lithosphere is a huge enriched geochemical reservoir. On the other hand, deep portions of the LVZ, which are thus relatively depleted, become the primary source feeding the ridge because of ridge-suction-driven lateral material supply to form the crust and much of the lithosphere at and in the vicinity of the ridge.

  9. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of enriched mid-ocean ridge basalts (E-MORB) erupted today at the southern end of the Explorer Ridge in northeastern Pacific Ocean. The isotopic similarity between the Middle-Late Triassic ambient mantle under Stikinia, and mantle presently tapped at the southern Explorer Ridge suggests that enriched domains in the northeastern Pacific mantle are long-lived (≥222 million years).

  10. NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites

    NASA Astrophysics Data System (ADS)

    Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.

    2006-12-01

    Olivines from mantle peridotites have a narrow range of NiO (0.36±0.03 [1σ] wt%), but NiO of olivines in basalts suggest NiO in mantle olivines is actually more variable: e.g., Hawaiian phenocrysts (Fo>90) have NiO >0.55%, and olivines from continental flood basalts can have >0.5% NiO. At the other end of the spectrum, some basaltic suites (e.g., Iceland, MORBs) have Fo>90 olivines with NiO >0.2%. Partial melting calculations on peridotites show it is difficult to generate liquids that crystallize Fo>90 olivines with >0.4% NiO without resorting to complex processes. Hypotheses to explain the variability of NiO in mantle-derived olivines include (1) reaction of peridotite with silica-rich melts of eclogite results in decreasing modal abundance of olivine and increasing NiO in olivine [1,2]; (2) magmas with NiO-rich olivines come from sources enriched in NiO due to a core-derived component [3]. [4] proposed that high Fe/Mn of Hawaiian vs. Icelandic and MORB lavas reflect a core-derived component in their sources. Possible core incorporation is poorly constrained but FeO and NiO are expected to increase by such processes, leading to correlations between NiO and Fe/Mn in mantle rocks with significant core-derived components. We present high-precision analyses of Fo-rich olivines from OIBs, MORBs, komatiites, and mantle peridotites, focusing on NiO contents and Fe/Mn ratios. Our goal is to test hypotheses to explain elevated NiO of Fo-rich olivines in basalts. Olivines are Fo85.1-93.4; more were analyzed, but we focused on this range to avoid complications due to decreasing NiO in olivine with crystallization. Errors (1σ) are 0.01 wt% in NiO and 1.5 in Fe/Mn (wt). Our data show several features: (1) NiO contents and Fe/Mn ratios of Fo>88 olivines are positively correlated, with the low end of the trend (NiO ~0.23%, Fe/Mn ~61) defined by MORB and Iceland and the high end of the trend (NiO ~0.55%, Fe/Mn ~80) by Reunion and Hawaii. Between these end points, there is a regular trend from MORB/Iceland, to Baffin Isl, to mantle peridotites/Juan Fernandez, to Reunion/Hawaii. This array can't be explained by simple crystallization (all have similar Fo) or by variable degrees of partial melting of a single source. The NiO-Fe/Mn correlation can be modeled by quantitative addition of 1-2% oxidized core to depleted mantle and thus is consistent with the core-addition hypothesis. However, more complex core-mantle interactions/fractionations would still be required to explain trace siderophile and chalcophile elements and isotopes. Moreover, other hypotheses to explain the observed trend (including addition of silicic melts to peridotite) cannot be ruled out. (2) The Hawaiian data, although clearly defining with Reunion the upper end of the overall NiO-Fe/Mn array, are more complex. For example, a single Mauna Kea sample has ~Fo90 phenocrysts with NiO from 0.30 to 0.54%, all with Fe/Mn=72-80, and North Arch and Loihi olivines have relatively low NiO at Fe/Mn ratios comparable to other Hawaiian olivines. Although Loihi and North Arch lavas are low in SiO2, in detail the NiO of Hawaiian olivines are not well predicted by SiO2 contents of the host lavas. (3) The Gorgona Isl komatiites fall off the overall trend, extending to NiO >0.5 wt% at Fe/Mn ~62, perhaps reflecting different sources, processes, or anomalous degrees of melting. [1] Kelemen et al (1998) EPSL 164, 387-406 [2] Sobolev et al (2005) Nature 434, 590-597 [3] Ryabchikov (2003) Doklady Earth Sci. 389A, 437-439 [4] Humayun et al (2004) Science 306, 91-94

  11. Thorium-uranium fractionation by garnet - Evidence for a deep source and rapid rise of oceanic basalts

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.

    1993-01-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  12. Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.

    2013-04-01

    The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.

  13. Interaction of ultra-depleted MORBs with plagioclase: implications for CO2/Ba ratios

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Hauri, E.; Saal, A. E.; Perfit, M. R.; Hekinian, R.

    2017-12-01

    Carbon in Earth's upper mantle can significantly reduce its solidus temperature, which in turn can affect other physical properties through generation of partial melt. Carbon content in the depleted upper mantle can be estimated using ultra-depleted mid-ocean ridge basalt (UD-MORB) glasses and melt inclusions that are undersaturated in CO2. CO2 has been shown to behave as a highly incompatible element during mantle melting both through natural samples and experiments. Given its highly incompatible behavior, CO2/Ba and CO2/Nb ratios in CO2 undersaturated UD-MORBs have been used to estimate the CO2/Ba and CO2/Nb ratios and carbon content in Earth's upper mantle. A potential issue with part of this approach is the effect of melt-plagioclase chemical interaction on the CO2/Ba ratios in UD-MORBs. Plagioclase is ubiquitous in the oceanic crust and is enriched in Ba relative to other phases. Chemical interactions (assimilation and/or diffusion) between MORB melts and plagioclase bearing rocks have been shown to affect the Ba (and Sr and Eu) concentrations in MORBs, implying that such processes may also affect their CO2/Ba ratio. Hence, understanding the effect of chemical interaction between plagioclase and UD-MORBs is important for having better constraints on CO2/Ba ratio and carbon content in Earth's upper mantle. In this study, we report on the compositions of olivine-hosted melt inclusions and glasses from the Siqueiros and Garrett transform faults. A subset of melt inclusions in lavas from both transform faults show potential signatures of chemical interaction with plagioclase such as low CO2/Ba, Nb/Ba, and Nd/Sr. CO2 degassing cannot explain the low CO2/Ba ratio in the samples as they are undersaturated in CO2. To better understand the effect of chemical interaction with plagioclase on the composition of UD-MORBs, we model end-member scenarios, which are (1) assimilation of plagioclase and (2) diffusion of elements from plagioclase into the UD-MORBs. In general, the trends produced by these end-member scenarios bracket those observed in the samples (trends between CO2/Ba, Nb/Ba, and Nd/Sr as well as between Al2O3, FeO, and MgO). Hence, chemical interaction with plagioclase may affect the CO2/Ba ratio in UD-MORBs, and care should be taken to evaluate this effect using Nd/Sr and Nb/Ba ratios.

  14. Chemostratigraphy of Subduction Initiation: Boninite and Forearc Basalt from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Shervais, John; Haugen, Emily; Godard, Marguerite; Ryan, Jeffrey G.; Prytulak, Julie; Li, Hongyan; Chapman, Timothy; Nelson, Wendy R.; Heaton, Daniel E.; Kirchenbaur, Maria; Shimizu, Kenji; Li, Yibing; Whattam, Scott A.; Almeev, Renat; Sakuyama, Tetsuya; Reagan, Mark K.; Pearce, Julian A.

    2017-04-01

    The Izu-Bonin forearc has been the focus of several recent IODP (International Ocean Discovery Program) expeditions studying the geophysical, petrologic, and chemical response to subduction initiation and its potential relationship to ophiolite genesis. IODP Expedition 352 cored four holes in the Izu-Bonin forearc near Chichi Jima in order to document the petrologic and chemical evolution of nascent subduction zones. Holes U1440 and U1441, drilled closest to the trench, sampled forearc basalt (FAB). U1439 and U1442, drilled stratigraphically up-section and farther from the trench, sampled boninite, high-Mg andesite, and basalt. FAB are characterized by MORB-like compositions, with relatively constant Ti, Zr, and Ti/Zr. In general, more primitive FAB are found in the lower part of the section. In detail, FAB have lower Na, Ti, P, and Zr, lower Ti/V ratios, and are LREE-depleted relative to MORB. Best fit models for the least evolved FAB and a depleted MORB mantle (DMM) source require extraction of 1% melt in the garnet lherzolite field and 19% melt extraction in the spinel lherzolite field (relative to 8-10% melt of DMM to produce MORB). Three types of boninite were found: high silica boninite (HSB), low silica boninite (LSB), and basaltic boninite (BB), as well as high Mg andesites (HMA). HSB, the youngest unit in both U1439 and U1442, is underlain by LSB-BB-HMA lavas, which often occur in mixed magma zones with evolved boninite and basalt. Boninites are distinguished by co-variations in SiO2-MgO and TiO2-MgO, and by Ti/Zr ratios, which increase from HSB through LSB to BB. HSB, LSB and BB define parallel trends in TiO2-MgO space: a low Ti trend represented by LSB and BB, and a lower Ti trend represented by HSB. All of the boninite suite rocks are slightly LREE-rich relative to MORB. LSB and BB have flat REE patterns relative to primitive mantle, whereas HSB are slightly LREE-rich. These trends require distinct source compositions in HSB relative to LSB/BB. The decrease in Ti/Zr from BB to HSB suggests a slab melt component. Melting models (non-modal, fractional) for boninites require additional partial melting of a residual source more depleted than DMM, and mixing with less depleted melts. The data require a heterogeneous source during subduction initiation, tapping progressively more refractory mantle through time, and showing progressive enrichment in slab components.

  15. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    NASA Astrophysics Data System (ADS)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in volatile and trace element contents. Our results are consistent with previously proposed geodynamical processes acting at mid-ocean ridges and with the generation of the E-DMM. Our observations indicate that the D-DMM and E-DMM have (1) a relatively constant CO2/Cl ratio of ∼57 ± 8, and (2) volatile and ITE element abundance patterns that can be related by a simple melting event, supporting the hypothesis that the E-DMM is a recycled oceanic lithosphere mantle metasomatized by low degree melts. Our calculation and model give rise to a Pacific upper mantle with volatile content of CO2 = 235 ppm, H2O = 191 ppm, F = 13 ppm, Cl = 5 ppm, and S = 114 ppm.

  16. The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Greaney, Allison T.; Rudnick, Roberta L.; Helz, Rosalind T.; Gaschnig, Richard M.; Piccoli, Philip M.; Ash, Richard D.

    2017-08-01

    We quantify the behavior of Cu, Ga, Ge, As, Mo, Ag, Cd, In, Sn, Sb, W, Tl, Pb, and Bi during the differentiation of a picritic magma in the Kilauea Iki lava lake, Hawaii, using whole rock and glass differentiation trends, as well as partition coefficients in Cu-rich sulfide blebs and minerals. Such data allow us to constrain the partitioning behavior of these elements between sulfide and silicate melts, as well as the chalcophile element characteristics of the mantle source of the Kilauea lavas. Nearly all of the elements are generally incompatible on a whole-rock scale, with concentrations increasing exponentially below ∼6 wt% MgO. However, in-situ laser ablation data reveal that Cu, Ag, Bi, Cd, In, Pb, and Sn are chalcophile; As, Ge, Sb, and Tl are weakly chalcophile to lithophile; and Mo, Ga, and W are lithophile. The average Dsulfide/silicate melt values are: DAg = 1252 ± 1201 (2SD), DBi = 663 ± 576, DCd = 380 ± 566, DIn = 40 ± 34, DPb = 34 ± 18, DSn = 5.3 ± 3.6, DAs = 2.4 ± 7.6, DGe = 1.6 ± 1.4, DSb = 1.3 ± 1.5, DTl = 1.1 ± 1.7, DMo = 0.56 ± 0.6, DGa = 0.10 ± 0.3, and DW = 0.11 ± 0.1. These findings are consistent with experimental partitioning studies and observations of Ni-rich sulfide liquid in mid-ocean ridge basalts (MORB), despite the different compositions of the KI sulfides. The KI glasses and whole rocks are enriched in As, Ag, Sb, W, and Bi, relative to elements of similar compatibility (as established by abundances in MORB), mimicking enrichments found in basalts from the Manus back arc basin (Jenner et al., 2012) and the upper continental crust (UCC). These enrichments suggest the presence of terrigenous sediments in the Kilauea mantle source. The KI source is calculated to be a mixture of depleted MORB mantle (DMM) and 10-20% recycled crust composed of MORB and minor terrigenous sediments.

  17. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    NASA Astrophysics Data System (ADS)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-05-01

    Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.

  18. Subduction-modified oceanic crust in the sources of continental picrite dikes from the Karoo LIP?

    NASA Astrophysics Data System (ADS)

    Heinonen, J. S.; Carlson, R. W.; Riley, T. R.; Luttinen, A. V.; Horan, M. F.

    2013-12-01

    The Ahlmannryggen mountain range in East Antarctica hosts unusual LILE-depleted, but Fe- and Ti-enriched ultramafic dikes (Group 3) that belong to the Jurassic (~180 Ma) Karoo continental flood basalt (CFB) province. Their high initial ɛNd (+5 to +9) indicates their origin within the sublithospheric mantle beneath the Gondwana supercontinent. Using the new Pb and Os isotopic data and previously published geochemical and mineral chemical data, we try to constrain their mantle sources. The dikes that lack evidence of crustal contamination exhibit very radiogenic ɛNd (+8.6 to +9.0), relatively radiogenic 206Pb/204Pb (18.2-18.4) and 87Sr/86Sr (0.7035-0.7037), and unradiogenic 187Os/188Os (0.124-0.125) at 180 Ma. These isotopic compositions are unlike those typical of MORBs, excluding depleted mantle as the sole source contributor. The Pb isotopic composition of the dikes plots close to the 4.43 Ga geochron and hence is compatible with derivation from an early-depleted reservoir (EDR), recently suggested to be a major source component in CFBs. However, the high ɛNd of the dikes exceeds the ɛNd estimated for EDR (+4.9 to +8.5 at 180 Ma) and the relative Nb, Fe, and Ti enrichment (pyroxenite fingerprint) of the dikes is not readily ascribed to EDR source. Based on our isotopic and trace element modeling, we regard that the mantle source of the picrite dikes contained seawater-altered and subduction-modified MORB with a recycling age of 0.8 Ga. Such a source component would explain the unusual combination of elevated initial 87Sr/86Sr, ɛNd, and 206Pb/204Pb, relative depletion in fluid-mobile LILE, U, Th, Pb, and LREE, and relative enrichment in Nb, Fe, Ti, and other HFSE. Behavior of Re and Os in subduction environments is not well constrained, but loss of Re from recycled MORB, as observed in some subduction-associated eclogites and blueschists, and predominant contribution of Os from depleted peridotite matrix could have produced the observed low 187Os/188Os. Pyroxenite sources also are consistent with mineral chemical data (e.g., high-Ni olivine) for the picrite dikes. Such peculiar sources were likely not a predominant component in Karoo magmatism in general. Nevertheless, less subduction-modified or more enriched (e.g., additional sediment component) recycled crustal signatures would be difficult to distinguish from the 'lithospheric signatures' of many common CFBs. In addition to depleted mantle or EDR components that have been identified in the high-Mg dikes of the adjacent Vestfjella mountain range, a variety of recycled source components could thus be hiding in the geochemical jungle of the Karoo (and other) CFBs.

  19. The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Shorttle, O.; Maclennan, J.

    2016-11-01

    New crystallization temperatures for four eruptions from the Northern Volcanic Zone of Iceland are determined using olivine-spinel aluminum exchange thermometry. Differences in the olivine crystallization temperatures between these eruptions are consistent with variable extents of cooling during fractional crystallization. However, the crystallization temperatures for Iceland are systematically offset to higher temperatures than equivalent olivine-spinel aluminum exchange crystallization temperatures published for MORB, an effect that cannot be explained by fractional crystallization. The highest observed crystallization temperature in Iceland is 1399 ± 20°C. In order to convert crystallization temperatures to mantle potential temperature, we developed a model of multilithology mantle melting that tracks the thermal evolution of the mantle during isentropic decompression melting. With this model, we explore the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived. Large differences (200°C) in crystallization temperature can be generated by variations in mantle lithology, a magma's inferred depth of origin, and its thermal history. Combining this model with independent constraints on the magma volume flux and the effect of lithological heterogeneity on melt production, restricted regions of potential temperature-lithology space can be identified as consistent with the observed crystallization temperatures. Mantle potential temperature is constrained to be 1480-30+37 °C for Iceland and 1318-32+44 °C for MORB.

  20. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise

    NASA Astrophysics Data System (ADS)

    Gao, Changgui; Dick, Henry J. B.; Liu, Yang; Zhou, Huaiyang

    2016-03-01

    This paper works on the trace and major element compositions of spatially associated basalts and peridotites from the Dragon Bone amagmatic ridge segment at the eastern flank of the Marion Platform on the ultraslow spreading Southwest Indian Ridge. The rare earth element compositions of basalts do not match the pre-alteration Dragon Bone peridotite compositions, but can be modeled by about 5 to 10% non-modal batch equilibrium melting from a DMM source. The Dragon Bone peridotites are clinopyroxene-poor harzburgite with average spinel Cr# 27.7. The spinel Cr# indicates a moderate degree of melting. However, CaO and Al2O3 of the peridotites are lower than other abyssal peridotites at the same Mg# and extent of melting. This requires a pyroxene-poor initial mantle source composition compared to either hypothetical primitive upper mantle or depleted MORB mantle sources. We suggest a hydrous melting of the initial Dragon Bone mantle source, as wet melting depletes pyroxene faster than dry. According to the rare earth element patterns, the Dragon Bone peridotites are divided into two groups. Heavy REE in Group 1 are extremely fractionated from middle REE, which can be modeled by 7% fractional melting in the garnet stability field and another 12.5 to 13.5% in the spinel stability field from depleted and primitive upper mantle sources, respectively. Heavy REE in Group 2 are slightly fractionated from middle REE, which can be modeled by 15 to 20% fractional melting in the spinel stability field from a depleted mantle source. Both groups show similar melting degree to other abyssal peridotites. If all the melt extraction occurred at the middle oceanic ridge where the peridotites were dredged, a normal 6 km thick oceanic crust is expected at the Dragon Bone segment. However, the Dragon Bone peridotites are exposed in an amagmatic ridge segment where only scattered pillow basalts lie on a partially serpentinized mantle pavement. Thus their depletion requires an earlier melting occurred at other place. Considering the hydrous melting of the initial Dragon Bone mantle source, we suggest the earlier melting event occurred in an arc terrain, prior to or during the closure of the Mozambique Ocean in the Neproterozoic, and the subsequent assembly of Gondwana. Then, the Al2O3 depleted and thus buoyant peridotites became the MORB source for Southwest Indian Ridge and formed the Marion Rise during the Gondwana breakup.

  1. Stretching and smearing of chemical heterogeneity by melting and melt migration beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liang, Y.

    2017-12-01

    The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.

  2. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, Rosemary

    1998-09-01

    Basalts erupted from spreading centers on the Philippine Sea plate between 50 Ma and the present have the distinctive isotopic characteristics of Indian Ocean mid-ocean ridge basalt (MORB), such as high 208Pb/204Pb and low 143Nd/144Nd for a given 206Pb/204Pb compared with Pacific and Atlantic Ocean MORB. This feature may indicate that the upper mantle of the Philippine Sea plate originated as part of the existing Indian Ocean upper mantle domain, or, alternatively, that local processes duplicated these isotopic characteristics within the sub-Philippine Sea plate upper mantle. Synthesis of new and published isotopic data for Philippine Sea plate basin basalts and island arc volcanic rocks, radiometric ages, and tectonic reconstructions of the plate indicates that local processes, such as contamination of the upper mantle by subducted materials or by western Pacific mantle plumes, did not produce the Indian Ocean-type signature in Philippine Sea plate MORB. It is more likely that the plate originated over a rapidly growing Indian Ocean upper mantle domain that had spread into the area between Australia/New Guinea and southeast Asia before 50 Ma.

  3. Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites

    PubMed

    Parkinson; Hawkesworth; Cohen

    1998-09-25

    Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.

  4. Helium and carbon isotope systematics of Rungwe geothermal gases and fluids; southern Tanzania

    NASA Astrophysics Data System (ADS)

    Barry, P. H.

    2009-12-01

    P. H. BARRY1*, D. R. HILTON1, T. P. FISCHER2, J. M. DE MOOR2, F. MANGASINI3 C. RAMIREZ4 1 Geosciences Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0244, USA (*Correspondence: pbarry@ucsd.edu) 2 Department of Earth and Planetary Sciences, MSC 03 2040, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA. 3 Department of Mining and Mineral Processing Engineering, University of Dar Es Salaam, PO Box 35131, Dar Es Salaam, Tanzania. 4 Centro de Investigaciones en Ciencias Geologicas, Escuela Centroamericana de Geologia, Universidad de Costa Rica. The East African Rift (EAR) is the largest modern example of continental rifting, extending from the Afar depression in the north to the Rungwe region in southern Tanzania. EAR volcanism is attributed to the presence of one or more mantle plumes [1]. Late Miocene to recent volcanism and geothermal activity mark the Rungwe region [2], with mafic eruptions as recently as 200 years ago. Our aim is to delineate the southern geographical extent of plume influence on the propagating EAR by investigating the He-CO2 characteristics of geothermal fluids in the Rungwe region. We report new helium (He) and carbon (C) isotopes (3He/4He, δ13C) and relative abundance (CO2/3He) characteristics for a suite of 20 geothermal gas and fluid samples from 11 different localities in the Rungwe region. He-isotopes are in good agreement with previous reports [3], and range from ~1 RA to ~7 RA (MORB-like values), indicating admixture between upper mantle He and variable proportions of radiogenic He. C-isotopes ranges from -2.8 to -6.5 ‰ (vs. PDB) with all falling in the MORB range (~4.5 ± 2‰). CO2/3He ratios vary over 5 orders of magnitude from ~3 x 10^9 (MORB-like) to higher values (up to ~3 x 10^13) normally associated with crustal lithologies. Taken together, the He-CO2 data can be explained by 2-component mixing of a deep-seated mantle source with crustal component(s). There are no observed latitudinal isotopic trends in He-CO2. However, the two localities with MORB-like 3He/4He ratios ~6 to 7 RA, δ13C ~ -4 to -5 ‰ and CO2/3He ~ 4 x10^9 are both cold temperature (~ 15°C) CO2 gas vents. The MORB-like characteristics of these cold vents are comparable to MORB-like values observed at Oldoinyo Lengai in northern Tanzania [4], suggesting that both Rungwe region and Oldoinyo Lengai may derive their volatile compositions from a homogeneous (MORB-like) mantle source common to the entire segment of the southern EAR. [1] Furman (2007) Journal of African Earth Sciences 48, 147-160. [2] Ebinger et al. (1989) Journal of Geophysical Research 94, 15,785-15,803. [3] Pik et al. (2006) Chemical Geology 226, 100-114. [4] Fisher et al. (2009) Nature 459, 77-80.

  5. CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite

    NASA Astrophysics Data System (ADS)

    Eguchi, James; Dasgupta, Rajdeep

    2017-03-01

    We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1-3 GPa, 1375-1550 °C, and fO2 of FMQ -3.2 to FMQ -2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln( K 0) = -21.79 ± 0.04, Δ V 0 = 32.91 ± 0.65 cm3mol-1, Δ H 0 = 107 ± 21 kJ mol-1, and dissolution of CO2 as CO3 2-: ln (K 0 ) = -21.38 ± 0.08, Δ V 0 = 30.66 ± 1.33 cm3 mol-1, Δ H 0 = 42 ± 37 kJ mol-1, where K 0 is the equilibrium constant at some reference pressure and temperature, Δ V 0 is the volume change of reaction, and Δ H 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.

  6. Geochemistry of the Seamounts at the Southeast Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolis, E. M.; Hoernle, K.; Hauff, F.; Garbe-Schönberg, D.; Werner, R.; Gohl, K.

    2017-12-01

    The submarine Chatham Rise, east Zealandia, is a key location of the early continental breakup of the eastern Gondwana (< 100 Ma; [1]). It has been suggested that a mantle plume beneath Zealandia and West Antarctica existed and that a slab window formed as a consequence of the collision of the Hikurangi oceanic plateau with the Chatham Rise, allowing deeper mantle material to upwell and hence cause the rifting. However, the exact processes that have led to this rifting and the sequence of reorganization in the upper mantle in course of and after the breakup of Zealandia from West Antarctica are still unclear. We present new major and trace element and Sr-Nd and high-precision Pb isotope data from submarine samples recovered during the R/V Sonne research expedition SO246 at the southeast Chatham Rise, covering the Chatham Rise Terrace and adjacent areas of the margin and the abyssal plain. The samples include alkali and tholeiitic basalts and minor basanite and trachybasalt, all of which have a composition between ocean island basalt (OIB) and mid-ocean-ridge basalt (MORB). Trace element ratios (e.g., Th/Yb, Nb/Yb) indicate that all but one seamount were derived from enriched sources at a low degree of melting, while one of the seamounts close to the abyssal plain was derived from a depleted mantle source at a high degree of melting. Sr-Nd-Pb isotope variations further support contribution of at least three distinct mantle source components, including a HIMU (high time-integrated U/Pb)-type sources, an enriched mantle (EM)-type sources, and a depleted mantle (N-MORB)-type source. These observations appear to be consistent with previous published data and models proposed by [2] and [3]. These sources will be placed in a chronological framework by incorporating further geochemical data and 40Ar-39Ar ages, providing us better insights into the sequence of events and magmatic processes that occurred at this region. References:[1] Davy et al. (2008), Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history, G3, 9, Q07004. [2] Hoernle et al. (2006), Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal, EPSL, 248, 350-367. [3] Timm et al. (2010), Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia, Earth-Sci. Rev., 98, 38-64.

  7. Phase transformation of Ca-perovskite in MORB at D" region

    NASA Astrophysics Data System (ADS)

    Nishitani, N.; Ohtani, E.; Sakai, T.; Kamada, S.; Miyahara, M.; Hirao, N.

    2012-12-01

    Seismological studies indicate the presence of seismic anomalies in the Earth's deep interior. To investigate the anomaly, the physical property of the major minerals in lower mantle such as MgSiO3-perovskite, MgSiO3 post-perovskite and MgO periclase were studied well. Other candidate, CaSiO3 perovskite (Ca-perovskite) exists in peridotitic mantle and basaltic oceanic crust (mid-ocean ridge basalt; MORB). Previous studies indicate the abundance of Ca-perovskite is up to ~9 vol.% in the pyrolite mantle and ~24 vol.% in the MORB oceanic crust. However, the pressure range of previous works are still not enough to understand the D" region. In this study, natural MORB was compressed in double sided laser heated DAC. Au was used as a pressure maker and a laser absorber. NaCl was used as the thermal insulator and pressure medium. The phase relation of Ca-perovskite in MORB was investigated from 36 to 156 GPa and 300 to 2600 K by the in situ X-ray diffraction measurements at SPring-8 (BL10XU). The transition of Ca-perovskite from a tetragonal structure to a cubic structure occurred at about 1800 K up to about 100 GPa and below 1500 K at pressures above 100 GPa. This suggests that the tetragonal-cubic transition of Ca-perovskite could occur in MORB, associating with Al2O3 contents. The present results suggest that the seismic anomaly at D" layer could be caused by the transition in Ca-perovskite.

  8. Osmium isotopes suggest fast and efficient mixing in the oceanic upper mantle.

    NASA Astrophysics Data System (ADS)

    Bizimis, Michael; Salters, Vincent

    2010-05-01

    The depleted upper mantle (DUM; the source of MORB) is thought to represent the complementary reservoir of continental crust extraction. Previous studies have calculated the "average" DUM composition based on the geochemistry of MORB. However the Nd isotope compositions of abyssal peridotites have been shown to extend to more depleted compositions than associated MORB. While this argues for the presence of both relatively depleted and enriched material within the upper mantle, the extent of compositional variability, length scales of heterogeneity and timescales of mixing in the upper mantle are not well constrained. Model calculations show that 2Ga is a reasonable mean age of depletion for DUM while Hf - Nd isotopes show the persistence of a depleted terrestrial reservoir by the early Archean (3.5-3.8Ga). U/Pb zircon ages of crustal rocks show three distinct peaks at 1.2, 1.9, and 2.7Ga and these are thought to represent the ages of three major crustal growth events. A fundamental question therefore is whether the present day upper mantle retains a memory of multiple ancient depletion events, or has been effectively homogenized. This has important implications for the nature of convection and time scales of survival of heterogeneities in the upper mantle. Here we compare published Os isotope data from abyssal peridotites and ophiolitic Os-Ir alloys with new data from Hawaiian spinel peridotite xenoliths. The Re-Os isotope system has been shown to yield useful depletion age information in peridotites, so we use it here to investigate the distribution of Re-depletion ages (TRD) in these mantle samples as a proxy for the variability of DUM. The probability density functions (PDF) of TRD from osmiridiums, abyssal and Hawaiian peridotites are all remarkably similar and show a distinct peak at 1.2-1.3 Ga (errors for TRD are set at 0.2Ga to suppress statistically spurious age peaks). The Hawaiian peridotites further show a distinct peak at 1.9-2Ga, but no oceanic mantle samples with TRD older than 2Ga have been reported. The TRD age peaks overlap with two major crustal building events recorded in the U/Pb crustal zircon ages. Therefore, peridotites from the convecting upper mantle can retain some memory of ancient depletion events, and these depletions are perhaps linked to major crustal building or large-scale mantle melting events. In the case of the Hawaiian peridotites, an ancient depletion event is further supported by some extremely radiogenic Hf isotope compositions. However, the vast majority of oceanic mantle samples show a narrow rage of Os isotope compositions (187Os/188Os = 0.123-0.126) with TRDs at 300-600 Ma. If the upper mantle has been produced continuously (or episodically) since at least the early Archean, it is then surprising that almost all oceanic mantle samples record such young depletion ages. We suggest that convective mixing in the mantle is rigorous enough that effectively re-homogenizes and resets the Os isotope composition of previously depleted peridotites within short time scales (<500Ma). Similarly recent ages have been derived from modeling the Sr, Nd, Hf, Pb isotopic composition of MORBs. This resetting and homogenization can be due to re-equilibration of depleted mantle with enriched components, e.g. recycled basaltic crust or more fertile mantle. Ancient depletion events are only effectively preserved in the sublithospheric mantle samples (e.g. Kaapval, Slave, Wyoming cratons) because they remain isolated from the convective mantle.

  9. Concentration, behavior and storage of H/sub 2/O in the suboceanic upper mantle: implications for mantle metasomatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, P.J.

    1988-02-01

    Mid-ocean ridge basalt glasses from the Pacific-Nazca Ridge and the northern Juan de Fuca Ridge were analyzed for H/sub 2/O by gas chromatography. Incompatible element enriched (IEE) glasses have higher H/sub 2/O contents than depleted (IED) glasses. H/sub 2/O increases systematically with decreasing Mg/Mg + Fe/sup 2 +/ within each group. Near-primary IED MORBs have an average of about 800 ppm H/sub 2/O, while near-primary IEE MORBs (with chondrite normalized Nb/Zr or La/Sm approx. 2) have about 2100 ppm H/sub 2/O. If these basalts formed by 10-20% partial melting then the IED mantle source had 100-180 ppm H/sub 2/O, whilemore » the IEE source had 250-450 ppm H/sub 2/O. The ratio H/sub 2/O/(Ce + Nd) is fairly constant at 95 +/- 30 for all oceanic basalts from the Pacific. During trace element fractionation in the suboceanic upper mantle, H/sub 2/O behaves more compatibly than K, Rb, Nb, and Cl, but less compatibly than Sm, Zr and Ti. H/sub 2/O is contained mostly in amphibole in the shallow upper mantle. At pressures greater than the amphibole stability limit, it is likely that a significant proportion of H/sub 2/O is contained in a mantle phase which is more refractory than phlogopite at these pressures. The role of H/sub 2/O in mantle enrichment processes is examined by assuming that an enriched component was added. The modeled concentrations of K, Na, Ti and incompatible trace elements in this component are high relative to H/sub 2/O, indicating that suboceanic mantle enrichment is caused by silicate melts such as basanites and not by aqueous fluids.« less

  10. Helium and neon isotopes in the mantle: constraints on the origin of volatiles on Earth

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.

    2005-12-01

    It is now obvious that the mantle neon is solar-like. The possibility that the origin of this solar flavor is due to incorporation of irradiated parent bodies during accretion (e.g. gas rich meteorites) has been evoked by Trieloff and collaborators. The main argument is the fact there are no precise 20Ne/22Ne measured ratios above 13 in oceanic basalts, whereas the solar wind has a 20Ne/22Ne of 13.8 and the "neon B" neon shows a ratio of 12.6-12.8. The second argument for an irradiated origin is the air-like 38Ar/36Ar in mantle-derived samples (the "neon B" argon is close to air), distinct from the solar argon. Here we present another argument for an irradiated origin of the rare gases in the Earth. The global correlation in oceanic basalts (MORB and OIB) between 4He/3He and 21Ne/22Ne (corrected for air contamination) gives a mixing hyperbolae with a r parameter (r=(3He/22Ne)MORB/(3He/22Ne)PM) close to 10. It is now clear that 3He/22Ne ratio in the MORB source is around 7, giving for the primitive mantle (PM) a 3He/22Ne of 0.7. The solar 3He/22Ne ratio is estimated at 5-6 whereas the gas rich meteorites show a ratio of 0.3. Therefore, the global correlation in oceanic basalts between the helium and neon isotopic ratios suggests that (some) parent bodies of the Earth were gas rich meteorites, irradiated by an energetic solar wind during the planetary accretion.

  11. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    PubMed

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  12. Basement Basalts from IODP Site 1438, Amami-Sankaku Basin: Implications for Sources and Melting Processes during Subduction Initiation in the Izu-Bonin-Mariana System

    NASA Astrophysics Data System (ADS)

    McCarthy, A. J.; Hickey-Vargas, R.; Yogodzinski, G. M.; Ishizuka, O.; Hocking, B.; Bizimis, M.; Savov, I. P.; Kusano, Y.; Arculus, R. J.

    2016-12-01

    IODP Expedition 351 Site 1438 is located in the Amami-Sankaku basin, just west of the Kyushu-Palau Ridge (KPR), a remnant of the early Izu-Bonin-Mariana (IBM) volcanic arc. 150 meters of basement basalt were drilled beneath 1460 m of volcaniclastic sediments and sedimentary rock. The age range inferred for these basalts is 51-52 Ma, close to the 48-52 Ma age of basalts associated with subduction initiation in the IBM forearc (forearc basalts or FABs). Site 1438 basement basalts form several distinct subunits, all relatively mafic (MgO = 6-14 %; Mg# = 51-83). Non-fluid-mobile incompatible trace element patterns are profoundly depleted. Sm/Nd (0.34-0.43) and Lu/Hf (0.18-0.37) reach values higher than most normal MORBs while La/Yb (0.31-0.98) and Ti/V (15.8-27.0) are lower. These features are shared with basalts drilled just west of the KPR at ODP Site 1201 and DSDP Site 447, and many FABs. Abundances of fluid-mobile incompatible elements vary together and are correlated with subunits defined by flow margins and rock physical properties, suggesting control by post-eruptive seawater alteration rather than varying inputs of subduction fluids. Hf-Nd isotopes for Site 1438 basement basalts range from (present-day) ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 in a well-correlated array. Their more radiogenic Hf-isotope character could indicate an Indian-type MORB source, however, basalts with ɛHf >16.5, are more radiogenic than many Indian MORB. Pb isotope data will help distinguish differing mantle source domains and origins for fluid-mobile elements. Overall, the combined geochemical data indicate that the mantle source of basement basalts in drill sites west of the KPR (1438, 1201, 447) are closely similar to those for FAB, and that as a group, these rocks are more depleted than more than 90% of global MORB. Our interpretation is that both IBM forearc basalts and basalts from drill sites immediately west of the KPR formed by melting of the same uniquely depleted mantle source during subduction initiation. Melting may have been promoted by rapid decompression and by flux melting with a solute-poor hydrous subduction fluid. These basalts were erupted over a broad area in an extensional setting, which later narrowed as subduction and the subduction-related IBM volcanic arc became established.

  13. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei

    2018-03-01

    Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the Paleotethyan subduction channel plays the key role in transferring the geochemical signatures from the subducted Paleotethyan oceanic crust to the alkali basalts in the fossil convergent plate margin.

  14. The Complex History of Alarcon Rise Mid-Ocean Ridge Rhyolite Revealed through Mineral Chemistry

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Portner, R. A.; Clague, D. A.; Daczko, N. R.; Castillo, P.; Bindeman, I. N.

    2014-12-01

    A suite of basalts to rhyolites recovered from the Alarcon Rise, the northern extension of the intermediate spreading-rate East Pacific Rise, provides an unparalleled test of established mechanisms for high-Si lava formation at ridges. Rhyolites are ≤35% phyric and poorly vesicular. Mafic xenoclasts are common, and plagioclase is the dominant phase. Olivine and clinopyroxene are also common, and orthopyroxene, FeTi-oxides, zircon, and rare pyrite blebs are present. Major and trace element glass data are consistent with MELTS models of fractional crystallization from a parental melt, but a diverse mineral population records added complexity. Olivine and plagioclase compositions are broadly consistent with models, with the exception of more variable Fo52-77 and An87-28 in a basaltic andesitic composition where pigeonite is predicted to replace olivine in the crystallizing assemblage between ~1085-1015°C; pigeonites analyzed in an andesite have lower Ca and Fe than predicted. Clinopyroxene variability generally increases with host melt SiO2, from Mg# 86-84 in basalts to Mg# 80-21 in rhyolites, and zoning is common with higher-MgO anhedral cores mantled by lower-MgO euhedral rims. Cooler magmas aided the preservation of disequilibrium and are supported by ~715-835°C Ti-in-zircon and ilmenite-magnetite thermometry in rhyolites. Despite a well-predicted liquid line of decent, multiple signals of chemical disequilibrium in intermediate to silicic melts support mixing of magmatic batches and/or assimilation of partially hydrous crust. Assimilation is permissible given δ18O values that are lower than expected solely from fractional crystallization (i.e., <6.3‰ at 77% SiO2), but assimilation extent is limited on the basis of δD ~82±8 and Pacific MORB-like 87Sr/86Sr. Zircon Hf-isotopes and trace element patterns support a juvenile oceanic crustal source. Whereas depleted Pacific MORB mantle source reservoir is supported by whole rock Sr-Nd isotopes, slight enrichments in zircon 176Hf/177Hf and whole rock 207,206Pb/204Pb may indicate an enriched MORB mantle component. In conclusion, mid-ocean rhyolite at Alarcon formed from a variety of petrogenetic processes including magma-mixing, assimilation, and crystallization following partial melting of slightly heterogeneous mantle source(s).

  15. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; Warren, Jessica M.

    2017-03-01

    Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history. Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ± 21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ± 20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ± 25), and 186Os/188Os of 0.1198388 ± 29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield supra-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behavior of Ru at high pressure and temperature.

  16. Iron isotopic systematics of oceanic basalts

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  17. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165, Site 1001 basalts

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Pearson, G.; Nowell, G.

    2008-12-01

    Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.

  18. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle

    NASA Astrophysics Data System (ADS)

    Burgess, Ray; Cartigny, Pierre; Harrison, Darrell; Hobson, Emily; Harris, Jeff

    2009-03-01

    In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios ( 3He/ 4He = 4-6 Ra, 40Ar/ 36Ar = 20,000-30,000, δ 13C = -4.5‰ to -6.9‰ and δ 15N = -1.2‰ to -8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10 -9 cm 3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ˜0.6 × 10 -12 cm 3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.

  19. Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Budahn, J.R.; Lanphere, M.A.; Brew, D.A.

    1994-01-01

    Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. Rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, are modelled by 10-15% partial melting of fertile spinel-plagioclase lherzolite followed by removal of 8-13% olivine. It is concluded that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. -from Authors

  20. Archean crust-mantle geochemical differentiation

    NASA Astrophysics Data System (ADS)

    Tilton, G. R.

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  1. Archean crust-mantle geochemical differentiation

    NASA Technical Reports Server (NTRS)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  2. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    PubMed Central

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  3. Helium in the Archaean komatiites revisited: significantly high 3He/4He ratios revealed by fractional crushing gas extraction

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Seta, A.; Matsuda, J.; Chen, Y.; Arai, S.

    2001-12-01

    In order to provide constraints on 3He/4He ratios in the Archaean mantle source, we have analysed helium isotopic compositions in 2.7Ga old Archaean komatiites from the Abitibi green stone belt, Ontario, Canada. Two spinifex-textured komatiites yielded significantly high 3He/4He ratios of about 30Ra (where Ra denotes the atmospheric 3He/4He ratio) in fractions released by sequential crushing. These results are the first confirmation of the occurrence of high 3He/4He component in Archaean komatiites after the intriguing finding by [Richard et al., Science 273 (1996) 93-95] in komatiites from a nearby locality, Alexo. We also found that the crystal structure of the komatiites was significantly enriched in a radiogenic component (4He) and that the radiogenic 4He in the crystal structure was actually degassed by a crushing gas extraction, indicating that the nominal 3He/4He ratios measured by crushing are lower limits for the 3He/4He ratio of an intrinsic component. By constraining the release behaviour of radiogenic 4He by crushing, we have estimated the initial 3He/4He ratio of an inclusion-trapped component to be 73 (+7.8/-5.5) Ra. A mantle source with such a high 3He/4He ratio at 2.7Ga would, if evolved in a closed-system, have present-day 3He/4He ratio of 46-60Ra, indicating that the komatiites from Munro had been trapped their helium from a mantle reservoir with very high 3He/4He ratio in the context of the present-day value. However, whether or not such a source can be considered as the one that is equivalent to the primitive mantle source (such that sampled at hotspots) is highly model-dependent. If a closed-system evolution model were assumed, helium in the Munro komatiites is not likely to be derived from the MORB-source-like reservoir. However, the notion that the komatiites may be derived from a depleted reservoir in terms of trace elemental and isotopic geochemistry might requires an alternative view for the evolution of 3He/4He ratio in ancient mantle reservoirs, as has been demonstrated by a recent model calculation by [Seta et al., Earth Planet. Sci. Lett. 188 (2001) 211-219] in which the 3He/4He ratios in the MORB mantle source could have been as high as those in the primitive (less-degassed) mantle source in Archaean.

  4. Helium in the Archean komatiites revisited: significantly high 3He/ 4He ratios revealed by fractional crushing gas extraction

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Seta, Akihiro; Matsuda, Jun-ichi; Takebe, Masamichi; Chen, Yuelong; Arai, Shoji

    2002-03-01

    In order to provide constraints on 3He/ 4He ratios in the Archean mantle source, we have analyzed helium isotopic compositions in 2.7 Ga old Archean komatiites from the Abitibi green stone belt, Ontario, Canada. Two spinifex-textured komatiites yielded significantly high 3He/ 4He ratios of about 30 Ra (where Ra denotes the atmospheric 3He/ 4He ratio) in fractions released by sequential crushing. These results are the first confirmation of the occurrence of high 3He/ 4He ratios in Archean komatiites after the intriguing finding by Richard et al. [Science 273 (1996) 93-95] in komatiites from a nearby locality, Alexo. We also found that the crystal structure of the komatiites was significantly enriched in a radiogenic component ( 4He) and that this 4He was actually degassed by crushing gas extraction, indicating that the nominal 3He/ 4He ratios measured by crushing are lower limits for the 3He/ 4He ratio of the intrinsic component. By constraining the release behavior of radiogenic 4He by crushing, we have estimated the initial 3He/ 4He ratio of the inclusion-trapped component to be 73.0 +7.8-5.5 Ra. A mantle source with such a high 3He/ 4He ratio at 2.7 Ga, if evolved in a closed system, would have a present-day 3He/ 4He ratio of 46-60 Ra, indicating that the komatiites from Munro have trapped their helium from a mantle reservoir with a very high 3He/ 4He ratio in the context of the present-day value. However, whether or not such a source can be considered as equivalent to the primitive mantle source (such that sampled at hotspots) is highly model-dependent. If a closed system evolution model is assumed, helium in the Munro komatiites is not likely to be derived from the mid-ocean ridge basalt (MORB) source-like reservoir. However, the notion that the komatiites may be derived from a depleted reservoir in terms of trace elemental and isotopic geochemistry might require an alternative view for the 3He/ 4He evolution in ancient mantle reservoirs, as has been demonstrated by a recent model calculation by Seta et al. [Earth Planet. Sci. Lett. 188 (2001) 211-219] in which the 3He/ 4He ratios in the MORB mantle source could have been as high as those in the primitive (less degassed) mantle source in the Archean.

  5. Potential Temperatures of Sources of MORB, OIB and LIPs Based on AL Partitioning Between Olivine and Spinel

    NASA Astrophysics Data System (ADS)

    Sobolev, A. V.; Batanova, V. G.; Krasheninnikov, S.; Borisov, A.; Arndt, N.; Kuzmin, D.; Krivolutskaya, N.; Sushevskaya, N.

    2013-12-01

    Knowledge of potential temperatures of convecting mantle is required for the understanding the global processes on the Earth [1]. The common way to estimate these is the reconstruction of primary melt compositions and liquidus temperatures based on the Fe-Mg partitioning between olivine and melt. This approach requires knowledge of the compositions of primitive melts in equilibrium with olivine alone as well as composition of olivine equilibrium with primary melts. This information is in most cases unavailable or of questionable quality. Here we report a new approach to obtain crystallization temperatures of primary melts based on the olivine-spinel Al-Cr geothermometer [2]. The advantages of this approach are: (1) low rate of diffusion of Al in the olivine, which promises to preserve high magmatic temperatures and (2) common presence of spinel in assemblage with high-Mg olivine. In order to decipher influence of elevated Ti concentrations in spinel we have run several experiments at high temperatures (1400-1200 degree C), atmospheric pressure and controled oxygen fugacity. We also analysed over two thousand spinel inclusions and high-Mg host olivines from different MORB, OIB, LIP and Archean komatiites on the JXA-8230 EPMA at ISTerre, Grenoble, France. Concentrations of Al, Ti, Na, P, Zn, Cr, Mn, Ca, Co, Ni were determined with a precision of 10 ppm (2 standard errors) using a newly developed protocol [3]. When available, we also analysed matrix glass and glass inclusions in olivine and found that temperature estimations from olivine-spinel (Al-Cr) and olivine-melt (Fe-Mg) [4] equilibrium match within (+/-30 degree C). The results show contrasting crystallization temperatures of Mg-rich olivine of the same Fo content from different types of mantle-derived magmas, from the lowest (down to 1220 degree C) for MORB to the highest (up to 1550 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and confirm the relatively low temperature of the convecting mantle source of MORB and higher temperatures in the mantle plumes that produce the OIB of Iceland, Hawaii, Gorgona, Archean komatiites and several LIPs (e.g. Siberian, Decan). [1] McKenzie & Bickle, 1988, J. Petr. 29, p 625-679. [2] Wan et al, 2008, Am. Min. 93, p1142-1147. [3] Batanova & Sobolev, 2013, Min. Mag.,p 667, DOI :10.1180/minmag2013.077.5.2 [4] Ford et al, 1983, J. Petr. 24, p 256-265.

  6. Helium-strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy

    NASA Astrophysics Data System (ADS)

    Martelli, M.; Nuccio, P. M.; Stuart, F. M.; Burgess, R.; Ellam, R. M.; Italiano, F.

    2004-08-01

    A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP), Italy, is presented together with 87Sr/ 86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/ 4He=5.2 Ra and 87Sr/ 86Sr=0.7056 in south Campania, to 3He/ 4He=0.44 Ra and 87Sr/ 86Sr=0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/ 4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma-crust interaction. The 3He/ 4He- 87Sr/ 86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (˜30 Ma), can ingrowth in the mantle wedge account for the 3He/ 4He of the most radiogenic basalts.

  7. Fossil plume head beneath the Arabian lithosphere?

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are temporarily trapped at the base of the lithosphere, may explain why the uppermost mantle normally appears enriched when it is sampled by continental rift zones but depleted when it is sampled by MORB.

  8. The behavior and concentration of CO2 in the suboceanic mantle: Inferences from undegassed ocean ridge and ocean island basalts

    NASA Astrophysics Data System (ADS)

    Michael, Peter J.; Graham, David W.

    2015-11-01

    In order to better determine the behavior of CO2 relative to incompatible elements, and improve the accuracy of mantle CO2 concentration and flux estimates, we determined CO2 glass and vesicle concentrations, plus trace element contents for fifty-one ultradepleted mid-ocean ridge basalt (MORB) glasses from the global mid-ocean ridge system. Fifteen contained no vesicles and were volatile undersaturated for their depth of eruption. Thirty-six contained vesicles and/or were slightly oversaturated, and so may not have retained all of their CO2. If this latter group lost some bubbles during emplacement, then CO2/Ba calculated for the undersaturated group alone is the most reliable and uniform ratio at 98 ± 10, and CO2/Nb is 283 ± 32. If the oversaturated MORBs did not lose bubbles, then CO2/Nb is the most uniform ratio within the entire suite of ultradepleted MORBs at 291 ± 132, while CO2/Ba decreases with increasing incompatible element enrichment. Additional constraints on CO2/Ba and CO2/Nb ratios are provided by published estimates of CO2 contents in highly vesicular enriched basalts that may have retained their vesicles e.g., the Mid-Atlantic Ridge "popping rocks", and from olivine-hosted melt inclusions in normal MORBs. As incompatible element enrichment increases, CO2/Nb increases progressively from 283 ± 32 in ultradepleted MORBs to 603 ± 69 in depleted melt inclusions to 936 ± 132 in enriched, vesicular basalts. In contrast, CO2/Ba is nearly uniform in these sample suites at 98 ± 10, 106 ± 24 and 111 ± 11 respectively. This suggests that Ba is the best proxy for estimating CO2 contents of MORBs, with an overall average CO2/Ba = 105 ± 9. Atlantic, Pacific and Indian basalts have similar values. Gakkel Ridge has lower CO2/Ba because of anomalously high Ba, and is not included in our global averages. Using the CO2/Ba ratio and published compilations of trace elements in average MORBs, the CO2 concentration of a primary, average MORB is 2085+ 473/- 427 ppm, while primary NMORB magmas (> 500 km from ocean island hotspots) have 1840 ppm CO2. The annual flux of CO2 from mid-ocean ridges is 1.25 ± 0.16 × 1014 g/yr, with possible values as low as 0.93 and as high as 1.61 × 1014 g/yr. This amount is equivalent to approximately 0.3% of the anthropogenic addition of CO2 to Earth's atmosphere. NMORB mantle has 183 ppm CO2 (50 ppm C) based on simple melting models and 13% melting. More realistic estimates of incompatible element concentrations in the depleted mantle that are consistent with complex melting models yield much lower estimates for CO2 in the depleted mantle: around 60-130 ppm CO2, with large uncertainties that are more related to melting models than to CO2/Ba. CO2/Ba is not correlated with isotopic or trace element ratios, but there may be systematic regional mantle variations. Iceland melt inclusions and Gakkel Ridge MORBs have lower CO2/Ba ratios, showing that these regional high Ba anomalies are not accompanied by correspondingly high CO2 concentrations.

  9. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Luo, Qing; Zhao, Jian; Jackson, Matthew G.; Guo, Li-Shuang; Zhong, Li-Feng

    2018-05-01

    The Indian-type mantle (i.e., above the north hemisphere reference line on the plot of 208Pb/204Pb vs. 206Pb/204Pb) has been considered as a "Southern Hemisphere" geochemical signature, whose origin remains enigmatic. The South China Sea is an extensional basin formed after rifting of the Euro-Asia continent in the Northern Hemisphere, however, the geochemical nature of the igneous crust remains unexplored. For the first time, IODP Expedition 349 has recovered seafloor basalts covered by the thick sediments in the Southwest sub-basin (Sites U1433 and U1434) and the East sub-basin (Site U1431). The Southwest sub-basin consists of enriched (E)-MORB type basalts, and the East sub-basin consists of both normal (N)-MORB-type and E-MORB-type basalts based on trace element compositions. The basalts of the two sub-basins are Indian-type MORBs based on Sr-Nd-Pb-Hf isotope compositions, and the Southwest sub-basin basalts show isotopic compositions (i.e., 206Pb/204Pb of 17.59-17.89) distinctly different from the East sub-basin (i.e., 206Pb/204Pb of 18.38-18.57), suggesting a sub-basin scale mantle compositional heterogeneity and different histories of mantle compositional evolution. Two different enriched mantle end-members (EM1 and EM2) are responsible for the genesis of the Indian-type mantle in the South China Sea. We have modeled the influences of Hainan mantle plume and lower continental crust based on Sr-Nd-Pb-Hf isotope compositions. The results indicate that the influence of Hainan plume can explain the elevated 206Pb/204Pb of the East sub-basin basalts, and the recycling of lower continental crust can explain the low 206Pb/204Pb of the Southwest sub-basin basalts. Based on the strong geochemical imprints of Hainan plume in the ridge magmatism, we propose that the Hainan plume might have promoted the opening of the South China Sea, during which the Hainan plume contributed enriched component to the sub-ridge mantle and caused thermal erosion and return of lower continental crust to the convective mantle. These results imply an in situ origin of the Indian-type mantle that can help understand the genesis of the "Southern Hemisphere" geochemical anomaly in the Northern Hemispheric extensional basin.

  10. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal peridotites and MORB from very slow-spreading ridges. Instead, the distinctive compositions of abyssal peridotites and MORB from very slow-spreading ridges could result from the presence of a thick lithospheric lid, leading to a lower average degree of melting, and a higher contribution to melting from more fertile mantle lithologies. Alternatively, spreading rate influences the thermal structure of the upper mantle such that the mantle beneath very slow-spreading ridges is cooler.

  11. Boron content and isotopic composition of ocean basalts: Geochemical and cosmochemical implications

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Jambon, Albert

    1994-02-01

    Ion microprobe determination of boron content and delta B-11 values has been performed for a set of 40 oceanic basalt glasses (N-MORB, E-MORB, BABB and OIB) whose chemical characteristics (major and trace elements and isotopic ratios) are well documented. Boron contents, determined at +/- 10% relative, range from 0.34 to 0.74 ppm in N-MORB, whereas E-MORB, BABB and OIB extend to higher concentrations (0.5-2.4 ppm). After correction for crystal fractionation, this range is reduced to 0.5-1.3 ppm. N-MORB and E-MORB also exhibit different B/K ratios, 1.0 +/- 0.3 x 10(exp -3) and 0.2 to 1.4 x 10(exp -3) respectively. This can be interpreted as resulting from the incorporation into the upper mantle of a K-rich and B-poor component (e.g., subducted oceanic crust having lost most of its initial boron). Delta B-11 values range between -7.40 +/- 2 and +0.6 +/- 2 per mill, with no significant difference between N-MORB, E-MORB, OIB or BABB. The Hawaiian samples define a strong linear correlation between boron contents, delta B-11 values, MgO and water contents and delta D values. This is interpreted as resulting from assimilation-fractionation processes which occurred within a water-rich oceanic crust, and which produced high delta B-11 values associated with high delta D values. The low level of B-11 enrichment in the upper mantle constraints the amount of boron reinjected by subduction to a maximum of about 2% of the boron present in the subducted slab. This in turn corresponds to a maximum net Boron transfer of about 3 x 10(exp 10) g/a towards the surface reservoirs. Finally, a boron content of 0.25 +/- 0.1 ppm is estimated for the bulk silicate Earth (i.e., primitive mantle), corresponding to a depletion factor relative to C1 chondrites of about 0.15 and suggesting that B was moderately volatile upon terrestrial accretion.

  12. New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid

    NASA Astrophysics Data System (ADS)

    Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.

    2018-03-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite element code ASPECT, which we use to compute the velocity, pressure, and temperature associated with the underlying flow field. We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra =105 with buoyancy numbers B that vary from no stratification at B = 0 to stratified flow at large B .

  13. Stability of carbonated basaltic melt at the base of the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Litasov, K.; Ohtani, E.; Suzuki, A.

    2006-12-01

    Seismological observations of low velocity zones (LVZ) at the top of the 410-km discontinuity reveal possible existence of dense melt at this boundary (e.g. Reveanugh and Sipkin, 1994). Density measurements of anhydrous basaltic melts indicate that it is denser than surrounding mantle near 410-km depth (Ohtani and Maeda, 2001). However, melting temperature of peridotite is much higher than about 1400°C, estimated at 410-km depth. It has been shown recently that hydrous basaltic melt containing up to 2 wt.% H2O is denser than peridotite atop 410-km and therefore can be accumulated at the base of the upper mantle (Sakamaki et al., 2006). CO2 is another major volatile component in the mantle and it could be also important for explanation of LVZ near 410 km. In the present study, we have measured the density of carbonated basaltic melt at high pressures and high temperatures and discussed its possible stability at the base of the upper mantle. The density of the melt was determined using sink/float technique. The starting material was synthetic MORB glass. 5 and 10 wt.% CO2 was added to the glass as CaCO3 and Na2CO3, adjusting to proportions of related oxides. Experiments were carried out at 16-22 GPa and 2200-2300°C using a multianvil apparatus at Tohoku University, Japan. We observed neutral buoyancy of diamond density marker in MORB + 5 wt.% CO2 at 18 GPa and 2300°C, whereas, diamond was completely dissolved in the carbonated MORB melt containing 10 wt.% CO2 in 0.5-1 minute experiments. Based on the buoyancy test, the density of the carbonated basaltic melt, containing 5 wt.% CO2, is 3.56 g/cm3 at 18 GPa and 2300°C using an equation of state of diamond. To calculate the bulk modulus we assume that the pressure derivative of the isothermal bulk modulus is the same as that of the dry MORB melt, dKT/dP=5.0 and zero-pressure partial molar volume of CO2 is 32 cm3/mol (based on low-pressure experiments on carbonated basaltic melts and carbonatites, e.g. Dobson et al., 1996; Liu and Lange, 2003). Accordingly, the isothermal bulk modulus (KT) of the carbonated MORB melt containing 5 wt.% CO2 calculated using the Birch-Murnaghan equation of state is 16.3 ± 1 GPa. This value is close to that of dry MORB (KT=18 GPa) and indicates that addition of 5 wt.% CO2 to basaltic melt has minor influence on its compressibility. Density of MORB + 5 wt.% CO2 is almost same with the density of MORB + 2 wt.% H2O at 15-20 GPa. Comparison of the density of carbonated basaltic melt with PREM density profile at 1600°C indicates that it is buoyant above the 410 km discontinuity in the mantle only if it contains more than about 5 wt.% CO2.

  14. The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales

    NASA Astrophysics Data System (ADS)

    Babechuk, Michael G.; Kamber, Balz S.; Greig, Alan; Canil, Dante; Kodolányi, János

    2010-02-01

    Tungsten is a moderately siderophile high-field-strength element that is hydrophile and widely regarded as highly incompatible during mantle melting. In an effort to extend empirical knowledge regarding the behaviour of W during the latter process, we report new high-precision trace element data (W, Th, U, Ba, La, Sm) that represent both terrestrial and planetary reservoirs: MORB (11), abyssal peridotites (8), eucrite basalts (3), and carbonaceous chondrites (8). A full trace element suite is also reported for Cordilleran Permian ophiolite peridotites (12) to better constrain the behaviour of W in the upper mantle. In addition, we report our long-term averages for a number of USGS (BIR-1, BHVO-1, BHVO-2, PCC-1, DTS-1) and GSJ (JA-3, JP-1) standard reference materials, some of which we conclude to be heterogeneous and contaminated with respect to W. The most significant finding of this study is that many of the highly depleted upper mantle peridotites contain far higher W concentrations than expected. In the absence of convincing indications for alteration, re-enrichment or contamination, we propose that the W excess was caused by retention in an Os-Ir alloy phase, whose stability is dependent on fO 2 of the mantle source region. This explanation could help to account for the particularly low W content of N-MORB and implies that the lithophile behaviour of W in basaltic rocks is not an accurate representation of the behaviour in the melt source. These findings then become relevant to the interpretation of W-isotopic data for achondrites, where the fractionation of Hf from W during melting is used to infer the Hf/W of the parent body mantle. This is exemplified by the differentiation chronology of the eucrite parent body (EPB), which has been modeled with a melt source with high Hf/W. By contrast, we explore the alternative scenario with a low mantle Hf/W on the EPB. Using available eucrite literature data, a maximum core segregation age of 1.2 ± 1.2 Myr after the closure of CAIs is calculated with a more prolonged time between core formation and mantle fractionation of ca. 2 Myr. This timeline is consistent with most recent published chronologies of the EPB differentiation based on the 53Mn- 53Cr and 26Al- 26Mg systems.

  15. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei

    2017-02-01

    The zinc (Zn) stable isotope system has great potential for tracing planetary formation and differentiation processes due to its chalcophile, lithophile and moderately volatile character. As an initial approach, the terrestrial mantle, and by inference, the bulk silicate Earth (BSE), have previously been suggested to have an average δ66Zn value of ∼+0.28‰ (relative to JMC 3-0749L) primarily based on oceanic basalts. Nevertheless, data for mantle peridotites are relatively scarce and it remains unclear whether Zn isotopes are fractionated during mantle melting. To address this issue, we report high-precision (±0.04‰; 2SD) Zn isotope data for well-characterized peridotites (n = 47) from cratonic and orogenic settings, as well as their mineral separates. Basalts including mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) were also measured to avoid inter-laboratory bias. The MORB analyzed have homogeneous δ66Zn values of +0.28 ± 0.03‰ (here and throughout the text, errors are given as 2SD), similar to those of OIB obtained in this study and in the literature (+0.31 ± 0.09‰). Excluding the metasomatized peridotites that exhibit a wide δ66Zn range of -0.44‰ to +0.42‰, the non-metasomatized peridotites have relatively uniform δ66Zn value of +0.18 ± 0.06‰, which is lighter than both MORB and OIB. This difference suggests a small but detectable Zn isotope fractionation (∼0.1‰) during mantle partial melting. The magnitude of inter-mineral fractionation between olivine and pyroxene is, on average, close to zero, but spinels are always isotopically heavier than coexisting olivines (Δ66ZnSpl-Ol = +0.12 ± 0.07‰) due to the stiffer Zn-O bonds in spinel than silicate minerals (Ol, Opx and Cpx). Zinc concentrations in spinels are 11-88 times higher than those in silicate minerals, and our modelling suggests that spinel consumption during mantle melting plays a key role in generating high Zn concentrations and heavy Zn isotopic compositions of MORB. Therefore, preferential melting of spinel in the peridotites may account for the Zn isotopic difference between spinel peridotites and basalts. By contrast, the absence of Zn isotope fractionation between silicate minerals suggests that Zn isotopes are not significantly fractionated during partial melting of spinel-free garnet-facies mantle. If the studied non-metasomatized peridotites represent the refractory upper mantle, mass balance calculation shows that the depleted MORB mantle (DMM) has a δ66Zn value of +0.20 ± 0.05‰ (2SD), which is lighter than the primitive upper mantle (PUM) estimated in previous studies (+0.28 ± 0.05‰, 2SD, Chen et al., 2013b; +0.30 ± 0.07‰, 2SD, Doucet et al., 2016). This indicates that the Earth's upper mantle has a heterogeneous Zn isotopic composition vertically, which is probably due to shallow mantle melting processes.

  16. Variations in Fe and S redox states in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Brounce, M. N.; Peterson, M. E.; Stolper, E. M.; Eiler, J. M.

    2016-12-01

    The chemical and isotopic compositions of ocean island basalts (OIB) suggest that their mantle sources contain imprints of subducted sediments, altered oceanic crust, undegassed mantle, and/or residues of continental crust formation. By comparing the oxygen fugacities (fO2) of OIBs to the extent to which they contain these imprints, it may be possible to relate specific compositions to spatial and temporal variations in source fO2. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S from pillow glass and olivine-hosted melt inclusions from the Reykjanes Ridge, Mauna Kea, Kilauea, Loihi, Hawaiian South Arch, Reunion Island, and the Ontong Java Plateau; we then compare these measurements with previous determinations of the chemical and isotopic compositions of these OIBs. Reykjanes Ridge and Ontong Java glasses have Fe and S redox states that are similar to MORBs; although these glasses show evidence for assimilation of seawater or crustal components, there is no relationship between indices of assimilation (18O/16O, Cl) and Fe or S redox states. This indicates that assimilation in these settings does not have a major effect on magmatic fO2. Mauna Kea and Kilauea glasses affected by S+H2O degassing have decreased Fe and S redox states, but the least degassed samples from both volcanoes are similar to each other and more oxidized than MORB, Reykjanes Ridge, and Ontong Java glasses. Loihi and South Arch glasses have not lost significant S and H2O to degassing, and they record fO2s similar to the least degassed Mauna Kea and Kilauea glasses. Olivine-hosted melt inclusions from Reunion range in Fe redox from similar to MORBs to more oxidized than Hawaiian volcanoes. These data demonstrate that OIBs are heterogeneous in Fe and S redox states. Although more data are needed for the various OIB end members, with the exception of the two most reduced glasses from Reunion, the data thus far suggest a rough positive correlation between 87Sr/86Sr ratios and Fe and S redox states. If this correlation holds up, it would be consistent with EMI and/or EMII end members having fO2s more oxidized than the upper mantle sources of MORBs, perhaps because these end members contain subducted sediments and/or oceanic crust that were previously oxidized during exposure to the H2O- and O2-rich conditions at Earth's surface.

  17. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook-Austral islands, suggest an Archean source component in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Arculus, Richard J.; van Westrenen, Wim; Woodhead, Jon D.; Jenner, Frances E.; Nebel-Jacobsen, Yona J.; Wille, Martin; Eggins, Stephen M.

    2013-07-01

    Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with μ = 238U/204Pb), and exhibit unique Hf-Nd isotopic characteristics, defined as ΔɛHf, deviant from a terrestrial igneous rock array that includes all other OIB types. Here we combine new Hf isotope data with previous Nd-Pb isotope measurements to assess the coupled, time-integrated Hf-Nd-Pb isotope evolution of the most extreme HIMU location (Mangaia, French Polynesia). In comparison with global MORB and other OIB types, Mangaia samples define a unique trend in coupled Hf-Nd-Pb isotope co-variations (expressed in 207Pb/206Pb vs. ΔɛHf). In a model employing subducted, dehydrated oceanic crust, mixing between present-day depleted MORB mantle (DMM) and small proportions (˜5%) of a HIMU mantle endmember can re-produce the Hf-Nd-Pb isotope systematics of global HIMU basalts (sensu stricto; i.e., without EM-1/EM-2/FOZO components). An age range of 3.5 to <2 Ga is required for HIMU endmember(s) that mix with DMM to account for the observed present-day HIMU isotope compositions, suggesting a range of age distributions rather than a single component in the mantle. Our data suggest that mixing of HIMU mantle endmembers and DMM occurs in the mantle transition zone by entrainment in secondary plumes that rise at the edge of the Pacific Large Low Seismic Velocity Zone (LLSVP). These create either pure HIMU (sensu stricto) or HIMU affected by other enriched mantle endmembers (sensu lato). If correct, this requires isolation of parts of the mantle transition zone for >3 Gyr and implies that OIB chemistry can be used to test geodynamic models.

  18. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, M.D.; O'Brien, P.A.; Garcia, M.O.

    Helium isotope ratios in basalts spanning the subaerial eruptive history of Mauna Loa and Haleakala vary systematically with eruption age. In both volcanoes, olivine mineral separates from the oldest samples have the highest {sup 3}He/{sup 4}he ratios. The Haleakala samples studied range in age from roughly one million years to historic time, while the Mauna Loa samples are radiocarbon dated flows younger than 30,000 years old. The Honomanu tholeiites are the oldest samples from Haleakala and have {sup 3}He/{sup 4}he ratios that range from 13 to 16.8X atmospheric, while the younger Kula and Hana series alkali basalts all have {supmore » 3}He/{sup 4}He close to 8X atmospheric. A similar range is observed on Manua Loa; the oldest samples have {sup 3}He/{sup 4}He ratios of 15 to 20X atmospheric, with a relatively smooth decrease to 8X atmospheric with decreasing age. The consistent trend of decreasing {sup 3}He/{sup 4}he ratio with time in both volcanoes, coherence between the helium and Sr and Nd isotopes (for Haleakala), and the similarity of {sup 3}He/{sup 4}He in the late stage basalts to depleted mid-ocean ridge basalt (MORB) helium, argue against the decrease being the result of radiogenic ingrowth of {sup 4}He. The data strongly suggest an undegassed mantle source for the early shield building stages of Hawaiian volcanism, and are consistent with the hotspot/mantle plume model. The data are difficult to reconcile with models for Hawaiian volcanism that require recycled oceanic crust or derivation from a MORB-related upper mantle source. The authors interpret the decrease in {sup 3}He/{sup 4}He with volcano evolution to result from an increasing involvement of depleted mantle and/or lithosphere during the late stages of Hawaiian volcanism.« less

  20. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  1. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.

    2000-01-01

    Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ˜3×10 6 km 2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96±0.16, n=64 out of 79 samples, 2σ) and initial Nd-Pb isotopic compositions (e.g. 143Nd/ 144Nd in=0.51291±3, ɛNdi=7.3±0.6, 206Pb/ 204Pb in=18.86±0.12, n=54 out of 66, 2σ). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/ 4He in olivines of enriched picrites at Quepos are ˜12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been ≤500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

  2. Nitrogen isotope geochemistry as a volatile tracer of the deep mantle: insights from Iceland

    NASA Astrophysics Data System (ADS)

    Prade, K. C.; Fischer, T. P.; Sharp, Z. D.; Hilton, D. R.; Gronvold, K.; Fueri, E.; Halldorsson, S.; Barry, P. H.

    2009-12-01

    Nitrogen isotope geochemistry can be used to identify sedimentary input (δ15N=+8‰) in volcanic arc systems, but its use as an indicator of deep mantle volatile contributions is limited. Consequently, we target the neovolcanic zones of Iceland where He isotope work has revealed a distinct region of elevated 3He/4He ratios (>20RA, where RA=air 3He/4He) correlated to the presumed location of the plume in central Iceland (Breddam et al., 2000). In contrast, the rift zones are characterized by intermediate (10-20RA; Western Rift Zone) and MORB-like (8RA; Northern Rift Zone) 3He/4He ratios indicating these regions sample plume He increasingly dominated by MORB-like He. One principal objective is to investigate the relationship between nitrogen and helium isotope systematics throughout Iceland in order to apply nitrogen isotopes to non-arc volcanic systems and constrain the relative contributions of volatiles from the deep and shallow (MORB) mantle. A predominantly positive δ15N may imply a surface-derived N component in the source of deep mantle volatiles (Marty and Dauphas, 2003) whereas shallow mantle is characterized by δ15N=-5±3‰. We report data obtained using geothermal gas and water samples collected in 2006, 2007 and 2008. Samples show variations in gas content, notably CO2, N2 and H2. Some samples contain no CO2, while others have values ranging from 122 to 997 mmol/mol dry gas. All samples contain N2, with values ranging from 2 to 987 mmol/mol dry gas. Most samples had insignificant amounts of H2 but some had large quantities up to 690 mmol/mol dry gas. The δ15N and 3He/4He ratios range from -7.2‰ to +3.4‰ and 2.2RA to 26.4RA, respectively and show no linear correlation. For example, Krafla had a MORB-like 3He/4He of 8.9RA and δ15N=-2.4‰, and Theistareykir with 8.6RA has δ15N=+1.3‰. Additionally, there was no systematic variation in δ15N along the rift zones in contrast to He. The only distinctly positive δ15N value (3.4‰) is in the SISZ, where the highest 3He/4He ratios are found. Almost all negative δ15N were measured in the ERZ (as low as -5.2‰), and WRZ (-5.6‰). Extremely high 3He/4He ratios (up to 37RA) are also prominent in the northwest peninsula of Iceland, a region with no recent volcanism (Hilton et al., 1999). In this region the gas chemistry and N isotopes are dominated by air-like signatures, consistent with extensive mixing of any mantle component and the atmosphere. The relationship between 3He/4He vs. δ15N data can be explained by mixing of MORB-like values (8RA and δ15N=-5‰), air (1RA and δ15N=0‰) and a component with high 3He/4He ratios and positive δ15N. Therefore, our results are consistent with the presence of surface-derived nitrogen in the relatively undegassed mantle beneath Iceland. References: Breddam, K. et al. Earth Planet. Sci. Lett. 176 (2000) 45-55.; Hilton, D.R. et al. Earth Planet. Sci. Lett. 173 (1999) 53-60.; Marty, B. & Dauphas, N. Earth Planet. Sci. Lett. 206 (2003) 397-410.

  3. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: for axis and off-axis (seamounts) melting application

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di=f(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO=10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt% in order to interpret natural MORB liquids. This model allows us to calculate Po, Pf, To, Tf, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR) 8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lamont seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (~100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading Center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lamont seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and a adiabatic temperature gradient in the subaxial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.

  4. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO = 10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (-100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and an adiabatic temperature gradient in the sub axial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.

  5. Mantle transition zone input to kimberlite magmatism near a subduction zone: Origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Graham Pearson, D.; Kjarsgaard, Bruce A.; Nowell, Geoff; Dowall, David

    2013-06-01

    Late Cretaceous-Eocene kimberlites from the Lac de Gras area, central Slave craton, show the most extreme Nd-Hf isotope decoupling observed for kimberlites worldwide. They are characterized by a narrow range of moderately enriched Nd isotope compositions (ɛNd(i)=-0.4 to -3.5) that contrasts strongly with their moderately depleted to highly enriched ɛHf(i) values (+3.9 to -9.9). Although digestion of cratonic mantle material in proto-kimberlite melt can theoretically produce steep arrays in Nd-Hf isotope space, the amount of contaminant required to explain the Lac de Gras data is unrealistic. Instead, it is more plausible that mixing of compositionally discrete melt components within an isotopically variable source region is responsible for the steep Nd-Hf isotope array. As development of strongly negative ΔɛHf requires isotopic aging of a precursor material with Sm/Nd≫Lu/Hf for billion-year timescales, a number of models have been proposed where ancient MORB crust trapped in the mantle transition zone is the ultimate source of the extreme Hf isotope signature. However, we provide a conceptual modification and demonstrate that OIB-type domains within ancient subducted oceanic lithosphere can produce much stronger negative ΔɛHf during long-term isolation. Provided that these OIB-type domains have lower melting points compared with associated MORB crust, they are among the first material to melt within the transition zone during thermal perturbations. The resulting hydrous alkali silicate melts react strongly with depleted peridotite at the top of the transition zone and transfer negative ΔɛHf signatures to less dense materials, which can be more easily entrained within upward flowing mantle. Once these entrained refertilized domains rise above 300 km depth, they may become involved in CO2- and H2O-fluxed redox melting of upper mantle peridotite beneath a thick cratonic lid. We argue that incorporation of ancient transition zone material, which includes ultradeep diamonds, into the convecting upper mantle source region of Lac de Gras kimberlites was due to vigorous mantle return flow. This occurred in direct response to fast and complex subduction along the western margin of North America during the Late Cretaceous.

  6. New Numerical Approaches for Modeling Thermochemical Convection in a Compositionally Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Puckett, E. G.; Turcotte, D. L.; He, Y.; Lokavarapu, H. V.; Robey, J.; Kellogg, L. H.

    2017-12-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions.Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB.These regions have been associated with lower mantle structures known as large low shear velocity provinces below Africa and the South Pacific.The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves.Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle.Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods.Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or `artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm.We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method.We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra = 105 with buoyancy numbers {B} that vary from no stratification at B = 0 to stratified flow at large B.

  7. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    NASA Technical Reports Server (NTRS)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  8. Copper systematics during mantle melting and crustal differentiation in arcs: implications for S and Pb budgets of the continental crust

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chin, E. J.; Dasgupta, R.; Luffi, P. I.; Le Roux, V.

    2010-12-01

    During mid-ocean ridge melting, Cu behaves like Sc and is therefore moderately incompatible, as evidenced by the twofold increase in Cu content in MORBs compared to the mantle. However, Cu content in the continental crust is comparable to that of the mantle, implying that during continental crust formation, Cu becomes effectively compatible. Cu is one of the only elements that exhibits Jekyll and Hyde behavior. This switch to being compatible is consistent with the observation that for the majority of arc magmas (as well as MORBs), Cu decreases with increasing SiO2 and decreasing MgO. Using natural samples, we infer new partition coefficients that indicate Cu is incompatible in olivine, pyroxenes, amphiboles, and biotite. The only mineral to exert significant control on Cu partitioning is sulfide. Cu behaves incompatibly during mantle melting because the modal abundance of sulfides relative to silicate minerals is extremely low. The monotonic decrease in Cu in most differentiating arc magmas requires sulfide saturation. In addition, the similar abundances of Cu in many primitive arc magmas compared to MORBs suggests that mantle melting in both environments occurs not only at sulfide saturation but without the need for excess Cu (or S). In a few cases, however, primitive arc magmas begin with high Cu or show increases in Cu with differentiation, which most likely requires unusually high oxygen fugacities in the source or magmatic evolution towards high oxygen fugacity. Such cases may be important for the origin of Cu porphyry deposits, but are generally rare. Because of the close link between Cu and sulfide during magma differentiation, Cu can be used as a proxy for the pre-degassed S content of arc magmas. The S content of continental crust, like many volatile elements, is basically unconstrained, but it can be inferred from Cu, which is much better constrained. Finally, the fact that the continental crust is highly depleted in Cu implies that there is a missing reservoir rich in Cu and by necessity sulfide. Cumulate xenoliths in arc settings fit this persona. Delamination of these cumulates, embedded with sulfides, will have profound implications for the Pb isotopic evolution of the mantle by linking the Pb paradox to continent formation.

  9. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The leastmore » degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.« less

  10. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

    PubMed

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    2017-08-22

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity ( f O 2 ). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle f O 2 may influence the f O 2 at Earth's surface. However, degassing can impact magmatic f O 2 before or during eruption, potentially obscuring relationships between the f O 2 of the solid Earth and of emitted gases and their impact on surface f O 2 We show that low-pressure degassing resulted in reduction of the f O 2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher f O 2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower f O 2 than modern magmas. Estimates of f O 2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  11. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation

    PubMed Central

    Stolper, Edward; Eiler, John

    2017-01-01

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere. PMID:28784788

  12. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation

    NASA Astrophysics Data System (ADS)

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    2017-08-01

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  13. The role of the metasomatized oceanic lithosphere on the composition of mid-ocean ridge basalts from the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Saal, A. E.

    2016-12-01

    In the present study, we evaluate the effect of melting of a metasomatized oceanic lithosphere on the chemical composition of MORB using the East Pacific Rise (EPR) mid-ocean ridge basalts (MORB) from the Quebrada-Discovery-GoFar (QDG) transform fault system, Northern EPR seamounts, and Macquarie Island [1-3]. EMORB from the QDG have trace element and volatile-refractory element ratios different from those measured in NEPR seamounts and Macquarie EMORB. The unique chemical composition of the QDG EMORB might indicate contribution from the oceanic lithosphere during the formation of intra-transform spreading centers due to clockwise rotation in Pacific-Nazca plate relative motion. In addition, the compositions of some of the Petit-spot lavas recently erupted along lithospheric fractures in the Pacific Plate in response to its flexure near the Japan Trench [4] have geochemical signatures that might suggest melts derived from a metasomatized oceanic mantle lithosphere. We evaluate this hypothesis using a geochemical model assuming a two-component asthenospheric mantle (DDMM and EDMM) and formation of hydrous cumulates in the oceanic mantle lithosphere by crystallization of low degree melts of the EDMM [3, 5]. The model suggests that melting of the hydrous cumulates can reproduce the composition of EMORB from QDG transform fault and some of the Petit-spot lavas. The process of melting the metasomatized oceanic lithosphere may significantly affect the chemical composition of MORB, and the common assumption for the purely asthenosphere origin of MORB could lead to inaccurate estimates of the Earth's upper mantle composition. We also show that similar process might affect not only oceanic, but also off-craton sub continental mantle lithosphere. References: [1] Niu et al., 2002 EPSL 199. [2] Kamenetsky et al., 2002 J Petrol 43. [3] Shimizu et al., 2016 GCA 176. [4] Hirano et al., 2006 Science 313. [5] Pilet et al., 2011 J Petrol 52.

  14. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of partial melting, (ii) both MSS and sulfide liquid are precipitated during fractional crystallization of MORB, and (iii) fractional crystallization of arc magmas is strongly dominated by MSS.

  15. Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.; Hirschmann, M. M.

    2017-12-01

    The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.

  16. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough

    USGS Publications Warehouse

    Alt, J.C.; Shanks, Wayne C.; Jackson, M.C.

    1993-01-01

    The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (??34S = 21???) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in 34S (??34S = up to 10.3???, mean = 3.8???) and depleted in S (20-290 ppm, mean = 100 ppm) relative to MORB (850 ppm S, ??34S = 0.1 ?? 0.5???). The back-arc trough basalts contain 200-930 ppm S and have ??34S values of 1.1 ?? 0.5???, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at f{hook}O2 ??? NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of ??34S with 87Sr 86Sr, LILE and LREE contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a 34S-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O, with minor CO2 and traces of H2S and SO2. CO2 in the arc and back-arc rocks has ??13C values of -2.1 to -13.1???, similar to MORB. These data suggest that degassing of CO2 could explain the slightly lower ??13C values for some Mariana Trough volcanic glasses, and that incorporation of subduction-derived organic carbon into the Mariana Trough mantle source may not be necessary. More analyses are required to resolve this question, however. ?? 1993.

  17. Inferring the Behavior, Concentration and Flux of CO2 from the Suboceanic Mantle from Undegassed Ocean Ridge and Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Michael, P. J.; Graham, D. W.

    2015-12-01

    We determined glass and vesicle CO2 contents, plus trace element contents for fifty-one ultradepleted mid-ocean ridge basalt (MORB) glasses distributed globally. Sixteen had no vesicles and were volatile undersaturated. Thirty-five had vesicles and were slightly oversaturated. If this latter group lost bubbles during emplacement, then CO2/Ba calculated for the undersaturated group alone is the most reliable and uniform ratio at 98±10, and CO2/Nb is 283±32. If they did not lose bubbles, then CO2/Nb is the most uniform ratio for the entire suite of ultradepleted MORBs at 291±132, while CO2/Ba decreases with incompatible element enrichment. For a wider range of compositions, we used published estimates of CO2 in enriched basalts that retained vesicles e.g., "popping rocks", and from melt inclusions in normal MORBs. As incompatible element enrichment increases, CO2/Nb increases from 283±32 in ultradepleted MORBs to 603±69 in depleted melt inclusions to 936±132 in enriched basalts. In contrast, CO2/Ba is nearly constant at 98±10, 106±24 and 111±11 respectively. This suggests that Ba is the best proxy for estimating CO2 contents of MORBs, with an overall average CO2/Ba = 105±9. Atlantic, Pacific and Indian basalts have similar values. Gakkel ridge has anomalously high Ba and low CO2/Ba. Using the CO2/Ba ratio and an average MORB composition, the CO2 concentration of a primary, average MORB is 2085+473/-427 ppm while primary NMORB has 1840ppm CO2. The annual flux of CO2 from mid-ocean ridges is 1.25±0.16 x 1014 g/yr (0.93 - 1.61 x 1014 g/yr is possible): higher than published estimates that use CO2/3He in MORB and the abyssal ocean 3He flux. This may be accounted for by a CO2/3He ratio that is higher than the commonly accepted MORB ratio of 2x109 due to leverage by more enriched basalts. NMORB mantle has 183 ppm CO2 based on simple melting models. More realistic estimates of depleted mantle composition yield lower estimates of ~60-130ppm, with large uncertainties that depend more on melting models than on CO2/Ba. CO2/Ba is not correlated with isotopic or trace element ratios.

  18. Petrology and trace element geochemistry of the Honolulu volcanics, Oahu: implications for the oceanic mantle below Hawaii.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.

    1982-01-01

    These volcanic rocks are the products of small-volume, late-stage vents along rifts cutting the older massive Koolan tholeiitic shield on Oahu. Most of the lavas and tuffs have the geochemical features expected of near-primary magmas derived from a peridotite source with olivine Fo87-89, e.g. 100 Mg/(Mg + Fe2+) > 65, Ni > 250 p.p.m. and the presence of ultramafic mantle xenoliths at 18 of the 37 vents. Thus the geochemistry of the alkali olivine basalt, basanite, nephelinite and nepheline melilitite lavas and tuffs of these Honolulu volcanic rocks has been used to deduce the composition of their mantle source and the conditions under which they were generated by partial melting in the mantle. New major- and trace-element analyses for 31 samples are tabulated and indicate derivation by partial melting of a garnet (<10%) lherzolite source which was isotopically homogeneous and compositionally uniform for most major and trace elements, though apparently heterogeneous in TiO2, Zr, Hf, Nb and Ta (due perhaps to the low inferred degrees of melting which failed to exhaust the source in minor residual phases). In comparison with estimates of a primordial mantle composition and the mantle source of MORB, the garnet peridotite source of these Honolulu volcanics was increasingly enriched in the sequence heavy REE, Y, Tb, Ti, Sm, Zr and Hf, for which a multi-stage history is required. This composition differs from the source of the previously erupted tholeiitic shield, nor is it represented in the upper-mantle xenoliths in the lavas and tuff of the unit.-R.A.H.

  19. Petrogenesis of Late Triassic ultramafic rocks from the Andong Ultramafic Complex, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Nak Kyu; Choi, Sung Hi

    2016-11-01

    To constrain the source and tectonomagmatic processes that gave rise to the Andong Ultramafic Complex (AUC) in South Korea, we determined the clinopyroxene Sr-Nd-Hf-Pb isotope and trace element compositions as well as the whole-rock and mineral compositions for the Late Triassic (ca. 222 Ma) ultramafic rocks from the complex. They are composed of dunites, wehrlites, pyroxene/hornblende peridotites, and pyroxenites. The constituent minerals are olivines, diopsides/augites, bronzites, calcic-amphiboles, and spinels. Clinopyroxenes exhibit a convex-upward rare earth element (REE) pattern, with an apex at Sm. The whole-rock compositions plot away from the residual mantle peridotite trends, with variable but lower Al2O3 and SiO2 contents, and higher CaO, FeO*, and TiO2 contents at a given value of MgO. Estimated equilibrium temperatures for the AUC rocks range from 420 to 780 °C. These observations, together with the absence of reaction or melt impregnation textures, indicate that the AUC ultramafic rocks are magmatic cumulates emplaced within the crust rather than residual mantle or mantle-melt reaction products. The AUC clinopyroxenes have compositions intermediate between the oceanic island basalt- and arc basalt-related cumulate clinopyroxenes. The AUC spinels have lower Cr#s than the arc-related magmatic cumulate spinels. They plot within the field for spinels from mid-ocean ridge basalts (MORB) on a TiO2 vs. Cr# diagram. However, the AUC clinopyroxenes have much more radiogenic Sr ([87Sr/86Sr]i = 0.70554 to 0.70596), unradiogenic Nd ([εNd]i = - 1.0 to - 0.3), and Hf ([εHf]i = + 4.4 to + 6.6) isotopic compositions than those of the MORB or fore-arc basalts (FAB). In the Sr-Nd isotopic correlation diagram, the AUC clinopyroxenes plot in the enriched extension of the "mantle array". They also have more elevated 207Pb/204Pb ratios at a given 206Pb/204Pb than those of the MORB or FAB. In the Nd-Hf isotope space, the AUC clinopyroxenes have somewhat elevated 176Hf/177Hf ratios at a given 143Nd/144Nd compared to the "mantle-crust" array. These observations indicate that the sub-continental lithospheric mantle (SCLM) overprinted by secondary volatile-rich silicate melts might be the principal source of the AUC magmatism. Heat from the upwelling asthenosphere, through the slab window produced by detachment of the oceanic slab from the buoyant continental lithosphere during continental collision between the North and South China Cratons, might lead to partial melting of the overlying metasomatized SCLM, resulting in the post-collisional Triassic magmatism in South Korea.

  20. Mantle heterogeneity in the source region of mid-ocean ridge basalts along the northern Central Indian Ridge (8°S-17°S)

    NASA Astrophysics Data System (ADS)

    Kim, Jonguk; Pak, Sang-Joon; Moon, Jai-Woon; Lee, Sang-Mook; Oh, Jihye; Stuart, Finlay M.

    2017-04-01

    The northern Central Indian Ridge (CIR) between 8°S and 17°S is composed of seven segments whose spreading rates increase southward from ˜35 to ˜40 mm/yr. During expeditions of R/V Onnuri to study hydrothermal activity on the northern CIR in 2009-2011, high-resolution multibeam mapping was conducted and ridge axis basalts were dredged. The major and trace element and Sr-Nd-Pb-He isotopic compositions of basaltic glasses dredged from the spreading axis require three mantle sources: depleted mantle and two distinct enriched mantle sources. The southern segments have Sr, Nd, and Pb that are a mix of depleted mantle and an enriched component as recorded in southern CIR MORB. This enrichment is indistinguishable from Rèunion plume mantle, except for He isotopes. This suggests that the southern segments have incorporated a contribution of the fossil Rèunion plume mantle, as the CIR migrated over hot-spot-modified mantle. The low 3He/4He (7.5-9.2 RA) of this enriched component may result from radiogenic 4He ingrowth in the fossil Rèunion mantle component. Basalts from the northern segments have high 206Pb/204Pb (18.53-19.15) and low 87Sr/86Sr (0.70286-0.70296) that are distinct from the Rèunion plume but consistent with derivation from mantle with FOZO signature, albeit with 3He/4He (9.2-11.8 RA) that are higher than typical. The FOZO-like enriched mantle cannot be attributed to the track of a nearby mantle plume. Instead, this enrichment may have resulted from recycling oceanic crust, possibly accompanied by small plume activity.

  1. Ridge suction drives plume-ridge interactions

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hékinian, R.

    2003-04-01

    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and geochemical anomalies extend < 400 km along the slower (20 to 13 mm/yr northward) spreading South Kolbeinsey Ridge, but > 1500 km along the faster (20 to 25 mm/yr southward) spreading Reykjanes Ridge. 4. The spreading-rate dependent ridge suction force also explains the first-order differences between the fast-spreading East Pacific Rise (EPR) and the slow-spreading Mid-Atlantic Ridge (MAR). Identified mantle plumes/hotspots are abundant near the MAR (e.g., Iceland, Azores, Ascension, Tristan, Gough, Shona and Bouvet), but rare along the entire EPR (notably, the Easter hotspot at ˜27^oS on the Nazca plate). Such apparent unequal hotspot distribution would allow a prediction of more enriched MORB at the MAR than at the EPR. However, the mean compositions between MAR-MORB and EPR-MORB are the same in terms of incompatible element abundances, and are identical in terms of Sr-Nd-Pb isotopic ratios. This suggests similar extents of mantle plume contributions to EPR and MAR MORB. We consider that the apparent rarity of near-EPR plumes/hotspots results from fast spreading. The fast spreading creates large ridge suction forces that do not allow the development of surface expressions of mantle plumes as such, but draw plume materials to a broad zone of sub-ridge upwelling, giving rise to random distribution of abundant enriched MORB and elevated and smooth axial topography along the EPR (vs. MAR). One of the important implications is that the asthenospheric flow is necessarily decoupled from its overlaying oceanic lithospheric plate. This decoupling increases with increasing spreading rate.

  2. A 1.5 Ma record of plume-ridge interaction at the Western Galápagos Spreading Center (91°40‧-92°00‧W)

    NASA Astrophysics Data System (ADS)

    Herbrich, Antje; Hauff, Folkmar; Hoernle, Kaj; Werner, Reinhard; Garbe-Schönberg, Dieter; White, Scott

    2016-07-01

    Shallow (elevated) portions of mid-ocean ridges with enriched geochemical compositions near hotspots document the interaction of hot, geochemically-enriched plume mantle with shallow depleted upper mantle. Whereas the spatial variations in geochemical composition of ocean crust along the ridge axis in areas where plume-ridge interaction is taking place have been studied globally, only restricted information exists concerning temporal variations in geochemistry of ocean crust formed through plume-ridge interaction. Here we present a detailed geochemical study of 0-1.5 Ma ocean crust sampled from the Western Galápagos Spreading Center (WGSC) axis to 50 km north of the axis, an area that is presently experiencing a high influx of mantle material from the Galápagos hotspot. The tholeiitic to basaltic andesitic fresh glass and few bulk rock samples have incompatible element abundances and Sr-Nd-Pb isotopic compositions intermediate between depleted normal mid-ocean-ridge basalt (N-MORB) from >95.5°W along the WGSC and enriched lavas from the Galápagos Archipelago, displaying enriched (E-)MORB type compositions. Only limited and no systematic geochemical variations are observed with distance from the ridge axis for <1.0 Ma old WGSC crust, whereas 1.0-1.5 Ma old crust trends to more enriched isotopic compositions in 87Sr/86Sr, 143Nd/144Nd, 207Pb/204Pb and 208Pb/204Pb isotope ratios. On isotope correlation diagrams, the data set displays correlations between depleted MORB and two enriched components. Neither the geographically referenced geochemical domains of the Galápagos Archipelago nor the end members used for principal component analysis can successfully describe the observed mixing relations. Notably an off-axis volcanic cone at site DR63 has the appropriate composition to serve as the enriched component for the younger WGSC and could represent a portion of the northern part of the Galápagos plume not sampled south of the WGSC. Similar compositions to samples from volcanic cone DR63 have been found in the northern part of the 11-14 Ma Galápagos hotspot track offshore Costa Rica, indicating that this composition is derived from the northern portion of the Galápagos plume. The older WGSC requires involvement of an enriched mantle two (EMII) type source, not recognized thus far in the Galápagos system, and is interpreted to reflect entrained material either from small-scale heterogeneities within the upper mantle or from the mantle transition zone. Overall the source material for the 0-1.5 Ma WGSC ocean crust appears to represent mixing of depleted upper mantle with Northern Galápagos Plume material of relatively uniform composition in relatively constant proportions.

  3. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.

    2016-06-01

    Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I/Cl ratios higher than MORB values can be explained by the addition of organic-rich sediments or the presence of organic detritus, both known to efficiently sequester I. Concentrations of 36Ar of the pre-subducting materials are sufficient to account for the 36Ar and composition of the mantle in the context of existing subduction-flux models. We find the Cl subduction flux of the oceanic crust to be about three times higher than the previous estimates and that sufficient Cl and Br can potentially be delivered by subduction over the last 3 Ga to account for mantle source compositions.

  4. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust

    NASA Astrophysics Data System (ADS)

    Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup; Nielsen, Mia Rohde

    2014-05-01

    Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr-Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb-Sr-Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.

  5. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    NASA Astrophysics Data System (ADS)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the ITSCs at Siqueiros to the large ridges bounding the fracture zone provide a good opportunity to model this phenomenon and may help explain the variable ITE ratios found between samples collected within the transform and those near the ridges.

  6. Isotopic evidence for a large-scale plume-derived mantle domain between the Indian and Pacific mantles beneath the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Langmuir, C. H.; Scott, S. R.; Sims, K. W. W.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Choi, H.; Yang, Y. S.; Michael, P. J.

    2017-12-01

    Earth's upper mantle is characterized by Indian- and Pacific-type domains with distinctive isotope characteristics. The boundary between these two mantle regions has been hypothesized to be located at the Australian-Antarctic-Discordance (AAD), where regions west and east of the AAD are Indian- and Pacific-type, respectively. It was further posited that the Pacific mantle feeds into the Indian mantle as the boundary is moving westward. These scenarios have important implications for the dynamics of mantle convection in the area. In the present model, regions east of the AAD are assumed to be entirely Pacific-type mantle, but our recent recovery of basalts from a 2,000-km sampling gap along the Australian-Antarctic Ridge (AAR), located east of the AAD on the Pacific side, challenges this picture. Here we show that the Hf, Nd, Pb, and Sr isotopic compositions of AAR MORB are distinct from those of Pacific and Indian MORB. Rather, the AAR lavas show mixing relationships with volcanoes from the Hikurangi seamounts, the Balleney and Scott Islands, the West Antarctic Rift System, New Zealand, and east Australia. According to tectonic reconstruction models, these volcanoes are related to super-plume activity that caused Gondwana to break up at 90 Ma. These results imply that a large-scale plume-derived mantle domain exists between the Indian and Pacific mantle domains, and that mantle dynamics along the AAD should be reinterpreted in light of interaction with a super-plume.

  7. Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian Tholeiites, U.S.A.

    NASA Astrophysics Data System (ADS)

    Pegram, William J.

    1990-03-01

    Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial ɛ Nd = +3.8 to -5.7; initial 87Sr/ 86Sr= 0.7044-0.7072; 206Pb/ 204Pb= 17.49-19.14; 207Pb/ 204Pb= 15.55-15.65; 208Pb/ 204Pb= 37.24-39.11. In Pb sbnd Pb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary Pb sbnd Pb isochron age of ≈ 1000 Ma (μ 1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226-0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19-75) that are significantly greater than those of MORB, and low TiO 2 (0.39-0.69%)]. Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the Pb sbnd Pb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2-3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).

  8. Petrology and geochemistry of the Tasse mantle xenoliths of the Canadian Cordillera: A record of Archean to Quaternary mantle growth, metasomatism, removal, and melting

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Thorkelson, Derek J.; Friedman, Eyal

    2018-07-01

    Mantle xenoliths hosted by the Quaternary Tasse alkaline basalts in the Canadian Cordillera, southeastern British Columbia, are mostly spinel lherzolite originating from subcontinental lithospheric mantle. The xenoliths contain abundant feldspar veins, melt pockets and spongy clinopyroxene, recording extensive alkaline metasomatism and partial melting. Feldspar occurs as veins and interstitial crystal in melt pockets. Melt pockets occur mainly at triple junctions, along grain boundaries, and consist mainly of olivine, cpx, opx and spinel surrounded by interstitial feldspar. The Nd, Sr and Pb isotopic compositions of the xenoliths indicate that their sources are characterized by variable mixtures of depleted MORB mantle and EM1 and EM2 mantle components. Large variations in εNd values (-8.2 to +9.6) and Nd depleted mantle model ages (TDM = 66 to 3380 Ma) are consistent with multiple sources and melt extraction events, and long-term (>3300 Ma) isolation of some source regions from the convecting mantle. Samples with Archean and Paleoproterozoic Nd model ages are interpreted as either have been derived from relict Laurentian mantle pieces beneath the Cordillera or have been eroded from the root of the Laurentian craton to the east and transported to the base of the Cordilleran lithosphere by edge-driven convection currents. The oxygen isotope compositions of the xenoliths (average δ18O = +5.1 ± 0.5‰) are similar to those of depleted mantle. The average δ18O values of olivine (+5.0 ± 0.2‰), opx (+5.9 ± 0.6‰), cpx (+6.0 ± 0.6‰) and spinel (+4.5 ± 0.2‰) are similar to mantle values. Large fractionations for olivine-opx, olivine-cpx and opx-cpx pairs, however, reflect disequilibrium stemming from metasomatism and partial melting. Whole-rock trace element, Nd, Sr, Pb and O isotope compositions of the xenoliths and host alkaline basalts indicate different mantle sources for these two suites of rocks. The xenoliths were derived from shallow lithospheric sources, whereas the alkaline basalts originated from a deeper asthenospheric mantle source.

  9. Fe-based redox state of mantle eclogites: Inherited from oceanic protoliths, modified during subduction or overprinted during metasomatism?

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Woodland, A. B.; Vasilyev, P.; Viljoen, F.

    2016-12-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the convecting mantle source that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon subduction (if a plate tectonic regime existed) and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. Data are as yet sparse, but new Fe-based oxybarometry shows mantle eclogites to have highly variable fO2 (FMQ-3 to FMQ), whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2,3]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4), leading to a shallower depth of redox melting [4]. Although higher Fe contents of eclogites compared to peridotites may translate into greater robustness during metasomatism after emplacement into the cratonic lithosphere, it is possible that this is at least in part responsible for their highly variable Fe-based fO2. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we are currently measuring Fe3+/Fetotal by Mössbauer in garnet from two compositionally well-characterised mantle eclogite suites (Kaapvaal craton and West African craton), with the aim to use recently calibrated oxybarometers [2,3] to calculate fO2. The results will bear on the speciation and hence mobility of carbon during a variety of mantle processes ranging from partial melting of the convecting mantle to metamorphic reactions upon subduction and metasomatic interactions. [1] Aulbach and Jacob (in press) Lithos; [2] Stagno et al. (2015) Contrib Mineral Petrol 42: 207-219; [3] Vasilyev (2016) PhD Thesis, Australian Nat Univ; [4] Aulbach and Stagno (in press) Geology

  10. Mantle Sources Beneath the SW Indian Ridge - Remelting the African Superplume

    NASA Astrophysics Data System (ADS)

    Dick, H. J. B.; Zhou, H.

    2012-04-01

    The SW Indian Ridge runs some 7700 km from the Bouvet to the Rodgriguez Triple Junction, crossing over or near two postulated mantle plumes. The latter are associated with large oceanic rises where the ridge axis shoals dramatically in the vicinity of the mantle hotspot. The Marion Rise, extends 3100 km from the Andrew Bain FZ to near the Rodriguez TJ, with an along axis rise of 5600-m to it crest north of Marion Island. The rise has thin crust inferred on the basis of abundant exposures of mantle peridotites along its length. We suggest that this is the result of its sub-axial mantle source, which is a depleted residue originally emplaced by the African Superplume into the asthenosphere beneath southern Africa during the Karoo volcanic event ~185 Ma. Based on shallow mantle anisotropy, plate reconstructions, and hotspot traces, it now forms the mantle substrate for the SW Indian Ridge due to the breakup of Gondwanaland. The Marion Rise is associated with Marion Island, the present location of the Marion Hotspot, some 256 km south of the modern ridge. This plume is a vestigial remnant of the African Superplume now imbedded in and centered on asthenospheric mantle derived from the Karoo event. Based on the numerous large offset fracture zones, which would dam sub-axial asthenospheric flow along the ridge, the low postulated flux of the Marion plume, its off-axis position, and the thin crust along the ridge it is clear that the present day plume does not support the Marion Rise. Instead, this must be supported isostatically by the underlying mantle residue of the Karoo event. The Bouvet Rise is much shorter than the Marion Rise, extending ~664 km from the Conrad FZ on the American-Antarctic Ridge to the Shaka FZ on the SW Indian Ridge. It has ~3000-m of axial relief, peaking at Speiss Smt at Speiss Ridge: the last spreading segment of the SW Indian Ridge adjacent to the Bouvet TJ. Unlike the Marion plume, Bouvet is ridge-centered, and much of its rise is likely supported by sub-axial flow of hot mantle from the present-day plume. It is also clear from the isotopic composition of the Bouvet Plume that while it may also be a manifestation of the underlying seismic anomaly situated above D" that gave rise to the Marion Plume, this source must be compositionally heterogeneous at a very large scale. Secondary mantle heterogeneities are evident beyond those associated with the Marion and Bouvet Plumes. These likely explain the frequently extreme local isotopic variability of MORB along the SW Indian Ridge, and are likely due to entrainment of cratonic lithosphere from beneath Africa into the asthenosphere (e.g.: Meyzen et al., Nature, 2003). This is supported by major element anomalies in peridotites from adjacent to the 750-km offset Andrew Bain FZ, and by anomalously thick crust situated at Atlantis Bank, the site of an abrupt MORB isotopic anomaly, that suggest anomalously fertile mantle sources inconsistent with the regional basalt and peridotite major element compositional gradients attributed to the Superplume.

  11. The nephelinitic-phonolitic volcanism of the Trindade Island (South Atlantic Ocean): Review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites

    NASA Astrophysics Data System (ADS)

    Pires, Gustavo Luiz Campos; Bongiolo, Everton Marques

    2016-12-01

    Trindade Island is located in the South Atlantic Ocean, 1170 km from the Brazilian coast, and represents the eastern end of the E-W Vitória-Trindade Chain. It shows the youngest plume-induced (ca. 3.7 to <0.17 Ma) subaerial volcanism on the South American plate, associated with the Trindade plume activity. Almeida (1961) recognized five volcanogenic successions at Trindade (in decreasing age): the Trindade Complex (TC, >2.4 Ma) and the Desejado (DF, ∼2.4 to 1.5 Ma), Morro Vermelho (MV, <0.17 Ma), Valado (VF, no age) and Paredão (PF, no age) formations, composed of effusive-pyroclastic deposits and subvolcanic intrusions associated with nephelinite-phonolite volcanic episodes. We revised the original Almeida's (1961) stratigraphy with additional field work and petrography to recognize eruptive styles and processes within the nephelinite-phonolite volcanism. Also, available geochemical databases were used to improve the stratigraphic correlation between nephelinites from different units and to characterize their mantle sources. The nephelinitic volcanism may represent Strombolian and Hawaiian-type activity of low viscosity and volatile-rich lavas interlayered with pyroclastic successions (fall-out deposits). Phonolitic deposits record explosive Vulcanian-style episodes of volatile-rich and higher-viscosity lavas interlayered with pyroclastic deposits (mostly pyroclastic flows). Geochemical data allowed the individualization of nephelinites as follows: (1) MV olivine-rich nephelinites and all olivine-free varieties are low K2O/Na2O, K2O/TiO2 and intermediate CaO/Al2O3 that may be derived from N-MORB and HIMU mantle components; (2) the VF olivine-rich nephelinites have high K2O/Na2O, K2O/TiO2 and CaO/Al2O3 that indicates both EM and HIMU mantle sources and; (3) the PF olivine-rich nephelinites show high K2O/TiO2 similar to those from VF, and intermediate CaO/Al2O3 as nephelinites from MV rocks, suggesting a mixed source with EM + HIMU > N-MORB components. We suggest that the HIMU and EM mantle types resulted from metasomatic episode(s) in the peridotitic mantle beneath the Trindade Island during the Brasiliano Orogeny and later, as previously pointed out by Marques et al. (1999). Thus, the major HIMU component would relate to recycled oceanic crust or lithospheric mantle (mostly CO2-eclogites) whereas the less important EM component to recycled marine or continental sediments.

  12. Diffusion of Helium in the mantle: an explanation for MORB-OIB patterns of 3He/4He ratios

    NASA Astrophysics Data System (ADS)

    Morgan, W. J.; Morgan, J. P.

    2011-12-01

    OIBs have a wide range of 3He/4He ratios, MORBs have a much narrower range peaked at 3He/4He ≈ 8 Ra. In addition, the ratio of 3He/20Ne (both stable isotopes) is significantly higher in MORB than in OIB, likewise the ratio of 4He/21Ne (both daughter isotopes produced by U and Th decay) are similarly higher in MORB than OIB. (Stable 3He/36Ar and radiogenic 4He/40Ar have the same pattern as the He/Ne plots, only with more scatter.) [See Honda and Patterson, GCA 63, 1999.] We assume the rising mantle plumes are 'lumpy'; a mixture that includes lumps of primordial mantle (which will be rich in 3He, 20Ne, 22Ne, 36Ar, etc.) as well as lumps containing the EM1, EM2, HIMU components, all in a general matrix of relatively-barren, previously-melted 'harzburgite'. When the rising lumps (plums) melt, the He, Ne, Ar, and most of the other incompatible elements will go into the melts that are known as OIB. But not all of the lumps melt (near the edge, some don't rise shallow enough to pressure-release melt); those that don't melt go into the asthenosphere, flowing horizontally away from the rising column. At a spreading center, this asthenosphere contributes the 'plums' it has left but also some of the more barren matrix that the plums are embedded in becomes part of the melt because of the higher extents of partial melting that occur when making MORB. What is the effect of diffusion? If the helium, because of its small size, can diffuse a distance of 100 m or 1000 m in a billion-plus years (the 'age' of a lump) whereas neon or argon diffuse only decimeters or centimeters in this time because of their larger radii (i.e., not much more than non-noble incompatible elements like K, Rb, or U can diffuse), then the 3He and 4He (and H) can diffuse far out into the 'barren harzburgite' matrix. Thus when the lumps in a plume melt there will be a shortage of 3He and 4He relative to the 20Ne, 21Ne, or argon. With the extensive melting that occurs to make MORB, fluxing causes some of the barren matrix to contribute its 3He and 4He to the MORB melt which results in an excess of helium relative to neon and argon. This extraction of helium from the longtime-diffused-into barren matrix also can explain the uniformity of the 3/4 ratio in MORB as opposed to the variability of 3/4 in OIB where the individual lumps each contribute their own variable contents. What is lacking in this explanation are data on diffusion rates of the noble gases under deep mantle conditions. What experimental data exists suggest helium diffuses sufficiently fast, but published data only go up to ≈1300 °C, and at only uppermost mantle pressures. Can experiments in diamond anvils or calculations that include 'helium atoms' in molecular dynamics models give diffusion constants to test this hypothesis?

  13. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component

    NASA Astrophysics Data System (ADS)

    Tolstikhin, I. N.; Kamensky, I. L.; Marty, B.; Nivin, V. A.; Vetrin, V. R.; Balaganskaya, E. G.; Ikorsky, S. V.; Gannibal, M. A.; Weiss, D.; Verhulst, A.; Demaiffe, D.

    2002-03-01

    During the Devonian magmatism (370 Ma ago) ∼20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ∼300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ∼70 samples. 4He/3He ratios in He released by fusion vary from pure radiogenic values ∼108 down to 6 × 104. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10-9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/3He = 3 × 104, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 104, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay. Similar 4He/3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source. The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/22Ne versus 21Ne/22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/22Ne ratios (up to 12.1) correlate well with 40Ar/36Ar ones, allowing to infer a source 40Ar/36Ar ratio of about 4000 for the mantle end-member, which is 10 times lower than that of the MORB source end-member. In (3He/22Ne)PRIM versus (4He/21Ne)RAD plot the Kola samples are within array established for plume and MORB samples; almost constant production ratio of (4He/21Ne)RAD ≅ 2 × 107 is translated via this array into (3He/22Ne)PRIM ∼ 10. The latter value approaches the solar ratio implying the non-fractionated solar-like rare gas pattern in a plume source. The Kola UACC show systematic variations in the respective contributions of in situ-produced radiogenic isotopes and mantle-derived isotopes. Since these complexes were essentially plutonic, we propose that the depth of emplacement exerted a primary control on the retention of both trapped and radiogenic species, which is consistent with geological observations. The available data allow to infer the following sequence of processes for the emplacement and evolution of Kola Devonian UACC: 1) Ascent of the plume from the lower mantle to the subcontinental lithosphere; the plume triggered mantle metasomatism not later than ∼700 to 400 Ma ago. 2) Metasomatism of the lithosphere (beneath the central part of the Kola Peninsula), including enrichment in volatile (e.g., He, Ne) and in incompatible (e.g., U, Th) elements. 3) Multistage intrusions of parental melts, their degassing, and crystallisation differentiation ∼370 Ma ago. 4) Postcrystallisation migration of fluids, including loss of radiogenic and of trapped helium. Based on model compositions of the principle terrestrial reservoirs we estimate the contributions (by mass) of the plume material, the upper mantle material, and the atmosphere (air-saturated groundwater), into the source of parent melt at ∼2%, 97.95%, and ∼0.05%, respectively.

  14. Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.

    2015-12-01

    Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure represents a global mechanism in subduction zone, a portion of oceanic lithospheric mantle is likely to be metasomatized; recycling of these enriched domains into the convecting mantle is fundamental to understand the generation of small scale mantle isotopic and volatile heterogeneities sampled by OIBs and MORBs.

  15. Temporal helium isotopic variations within Hawaiian volcanoes: Basalts from Mauna Loa and Haleakala

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Garcia, Michael O.; Frey, Fred A.; O'Brien, P. A.

    1987-11-01

    Helium isotope ratios in basalts spanning the subaerial eruptive history of Mauna Loa and Haleakala vary systematically with eruption age. In both volcanoes, olivine mineral separates from the oldest samples have the highest 3He /4He ratios. The Haleakala samples studied range in age from roughly one million years to historic time, while the Mauna Loa samples are radiocarbon dated flows younger than 30.000 years old. The Honomanu tholeiites are the oldest samples from Haleakala and have 3He /4He ratios that range from 13 to 16.8× atmospheric, while the younger Kula and Hana series alkali basalts all have 3He /4He close to 8×atmospheric. A similar range is observed on Mauna Loa; the oldest samples (roughly 30,000 years) have 3He /4He ratios of 15 to 20 × atmospheric, with a relatively smooth decrease to 8 × atmospheric with decreasing age. The consistent trend of decreasing 3He/ 4He ratio with time in both volcanoes, coherence between the helium and Sr and Nd isotopes (for Haleakala), and the similarity of 3He /4He in the late stage basalts to depleted mid-ocean ridge basalt (MORB) helium, argue against the decrease being the result of radiogenic ingrowth of 4He. The data strongly suggest an undegassed ( i.e., high 3He/(Th + U)) mantle source for the early shield building stages of Hawaiian volcanism. and are consistent with the hotspot/mantle plume model. The data are difficult to reconcile with models for Hawaiian volcanism that require recycled oceanic crust or derivation from a MORB-related upper mantle source. We interpret the decrease in 3He /4He with volcano evolution to result from an increasing involvement of depleted mantle and/or lithosphere during the late stages of Hawaiian volcanism.

  16. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    USGS Publications Warehouse

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  17. Petrology of the axial ridge of the Mariana Trough backarc spreading center

    NASA Astrophysics Data System (ADS)

    Hawkins, J. W.; Lonsdale, P. F.; Macdougall, J. D.; Volpe, A. M.

    1990-10-01

    The axial ridge of the Mariana Trough backarc basin, between 17°40'N and 18°30'N rises as much as 1 km above the floor of a 10-15 km wide rift valley. Physiographic segmentation, with minor ridge offsets and overlaps, coincides with a petrologic segmentation seen in trace element and isotope chemistry. Analyses of 239 glass and 40 aphyric basalt samples, collected with ALVIN and by dredging, show that the axial ridge is formed largely of (olivine) hypersthene-normative tholeiitic basalt. About half of these are enriched in both LIL elements and volatiles, but are depleted in HFS elements like other rocks found throughout much of the Mariana Trough. The LIL enrichments distinguish these rocks from N-MORB even though Nd and Sr isotope ratios indicate that much of the crust formed from a source similar to that for N-MORB. In addition to LIL-enriched basalt there is LIL depleted basalts even more closely resembling N-MORB in major and trace elements as well as Sr, Nd and Pb isotopes. Both basalt varieties have higher Al and lower total Fe than MORB at equivalent Mg level. Mg# ranges from relatively "primitive" (e.g. Mg# 65-70) to more highly fractionated (e.g. Mg# 45-50). Highest parts of the axial ridge are capped by pinnacles with elongated pillows of basaltic andesite (e.g. 52-56%) SiO 2. These are due to extreme fractional crystallization of basalts forming the axial ridge. Active hydrothermal vents with chimneys and mats of opaline silica, barite, sphalerite and lesser amounts of pyrite, chalcopyrite and galena formed near these silicic rocks. The vents are surrounded by distinctive vent animals, polychaete worms, crabs and barnacles. Isotope data indicate that the Mariana Trough crust was derived from a heterogeneous source including mantle resembling the MORB-source and an "arc-source" component. The latter was depleted in HFS elements in previous melting events and later modified by addition of H 2O and LIL elements.

  18. Constraints on the origin of Os-isotope disequilibrium in included and interstitial sulfides in mantle peridotites: Implications for the interpretation of Os-isotope signatures in MORB and Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2016-12-01

    The use of isotope variations in basalts to probe the composition and evolution of the mantle is predicated on the assumption of local (i.e., grain-scale) isotopic equilibrium during mantle melting (Hofmann & Hart, 1978). However, several studies report Os-isotope disequilibrium in distinct populations of sulfides in some peridotites. In principle, grain-scale isotopic heterogeneity could reflect variable radiogenic ingrowth in ancient sulfides with variable Re/Os, or partial re-equilibration of low-Re/Os sulfides with high-Re/Os silicate phases along grain boundaries during mantle melting (e.g., Alard et al., 2005). Both cases require that sulfides fail to maintain isotopic equilibrium with neighboring phases over geologically long ( Ga) time scales. The preservation of Os-isotope disequilibrium in peridotites has been ascribed to the armoring effect of low-[Os] silicates, which limit diffusive exchange between isolated Os-rich phases. This raises the prospect that peridotite-derived melts may not inherit the Os-isotope composition of their source. The timescale required for diffusive equilibration between separate sulfide grains or between Os-rich sulfides and Os-poor silicates is a function of average sulfide size and spacing, Os diffusivity in armoring silicate minerals, and Os partitioning between silicate and sulfide phases. For typical sulfide abundances and sizes in mantle peridotites, neighboring sulfides are expected to re-equilibrate in less than a few 10s of m.y. at adiabatic mantle temperatures, even for very high (>106) sulfide/silicate KD values. Maintenance of disequilibrium requires very large sulfides (>100 um) separated by several mm and diffusion rates (D < 10-20 m2/s) slower than for most other elements in olivine. Equilibration timescales between sulfides and surrounding silicates are similar, so that large-scale isotopic disequilibrium between sulfides and silicates is also unlikely within the convecting mantle. Instead, observed grain-scale Os-isotope disequilibrium in mantle peridotites likely reflects recent sulfide metasomatism linked to interaction with eclogite- or pyroxenite-derived melts. Interstitial sulfides with radiogenic Os-isotopes provide further evidence for a role of eclogite melting in MORB genesis.

  19. Water content within the oceanic upper mantle of the Southwest Indian Ridge: a FTIR analysis of orthopyroxenes of abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Li, W.; Li, H.; Tao, C.; Jin, Z.

    2013-12-01

    Water can be present in the oceanic upper mantle as structural OH in nominally anhydrous minerals. Such water has marked effects on manlte melting and rheology properties. However, the water content of MORB source is mainly inferred from MORB glass data that the water budget of oceanic upper mantle is poorly constrained. Here we present water analysis of peridotites from different sites on the Southwest Indian Ridge. The mineral assemblages of these peridotites are olivine, orthopyroxene, clinopyroxene and spinel. As the peridotites have been serpentinized to different degrees, only water contents in orthopyroxnene can be better determined by FTIR spectrometry. The IR absorption bands of all measured orthopyroxenes can be devided into four different groups: (1)3562-3596 cm-1, (2)3515-3520 cm-1, (3)3415-3420 cm-1, (4)3200-3210 cm-1. The positions of these absorption bands are in good agreement with perivious reports. Hydrogen profile measurements performed on larger opx grains in each suite of samples show no obvious variations between core and rims regions, indicating that diffusion of H in orthopyroxene is insignificant. Preliminary measured water contents of orthopyroxene differ by up to one order of magnitude. Opx water contents (80-220 ppm) of most samples are within the range of those found in mantle xenoliths of contentinal settings [1]. Opx water contents of one sample (VM-21V-S9-D5-2: 38-64 ppm) are similar to those from Gakkel Ridge abyssal peridotites (25-60 ppm) [2] but higher than those from Mid-Atlantic Ridge ODP-Leg 209(~15 ppm) [3]. Two other samples show high water concentrations (VM-19ΙΙΙ-S3-TVG2-4: 260-275 ppm, Wb-18-b: 190-265 ppm) which compare well with those from Mid-Atlantic Ridge ODP-Leg 153(160-270 ppm) [4]. Most opx water contents decrease with increasing depletion degree (spl Cr#) consistent with an incompatible behavior of water during partial melting. Recalculated bulk water contents (27-117 ppm) of these peridotites overlap estimates for MORB source. However, estimated original bulk water contents prior to partial melting of some samples are very high (e.g. wb-18-b: 540-770 ppm) and can not simply be explained by melt extraction. Our data suggest that the water contents in the oceanic upper mantle of SWIR are heterogeneous or different post-melt depletion histories are involved. Reference [1] Peslier (2010) JVGR 197, 239-258. [2] Peslier et al. (2007) Goldschmidt. [3] Gose et al. (2009) Geology 37,543-546 [4] Schmädicke et al. (2011) Lithos 125, 308-320.

  20. Mantle reservoirs (EM-1, OIB, E-MORB and N-MORB), long duration and polystages history for PGE-bearing paleoproterozoic layered intrusions in the N-E part of Fennoscandian Shield.

    NASA Astrophysics Data System (ADS)

    Bayanova, Tamara; Nerovich, Ludmila; Serov, Pavel; Kunakkuzin, Evgeniy; Elizarov, Dmitriy

    2015-04-01

    Paleoproterozoic layered PGE -bearing intrusions located in the N-E part of the Fennoscandian Shield and have a total are about 2000 km2. Long multidisciplinary studies using isotope Nd-Sr, U-Pb and 3He/4He systematics permit create a big bank of geochemistry data for different part of the intrusions: barren and main Cu-Ni-Cr-Ti-V and PGE phases, dykes complexes and host rocks. Based on U-Pb isotope data (on baddeleyite and zircon) and Sm-Nd mineral isochrones (on rock-forming and sulphides minerals) there is distinguished long magmatic duration from 2.53 to 2.40 Ga. Using precise U-Pb and Sm-Nd data for different part of the intrusions there are established four main impulses: 2.53, 2.50, 2.45, and 2.40 Ga of magmatic (LIP) activities for gabbronorite, anothosite et.set. rocks. The primary reservoir for all precious and multimetal massifs are considered as enriched mantle EM-1 using ɛNd- ISr system with negative ɛNd values and low ISr data for whole rocks of the intrusions. Dyke complexes are presented as three groups: high Ti-ferrodolerites, low Ti and low Fe-gabbronorites. Complex isotope (U-Pb, Sm-Nd) and geochemistry (REE, ɛNd, ISr) data investigations reflect OIB, E-MORB and N-MORB reservoirs for its origin (Nerovich et all., 2014). Isotope 3He/4He and 3He concentrations for accessory minerals ( ilmenite, magnetite et. set ) from the layered paleoproterozoic intrusions reflect significant lower mantle component and upper mantle contribution. According to the model of binary mixing (Jahn et all, 2000) there were calculated mantle and core component into plume magmatic reservoir connected with the origin of the PGE paleoproterozoic intrusions. The mantle contributions lie in the interval from 85 to 93% and core component are very less. All investigations are devoted to memory of academician RAS, professor F.Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies are contribution by RFBR OFI-M 13-05-12055, 13-05-00493, Department of Earth Sciences RAS (programs 2 and 4) and IGCP-SIDA 599.

  1. Rift-plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas

    NASA Astrophysics Data System (ADS)

    Béguelin, Paul; Bizimis, Michael; Beier, Christoph; Turner, Simon

    2017-12-01

    We present 176Hf/177Hf isotope ratios on 41 previously well-characterized subaerial and submarine samples from the Azores islands of São Miguel, Terceira, Graciosa, Faial, Pico and the João de Castro seamount (on the Terceira Rift). In εNd-εHf isotope space all Azores lavas fall below the mantle array reference line and do not overlap the proximal Atlantic MORB. Lavas from São Miguel and João de Castro form two distinct and well defined arrays extending below the mantle array, which has not been previously documented in other oceanic magmatic provinces. The Nd-Hf isotope compositions of João de Castro overlap those of HIMU type lavas, yet they lack the characteristically radiogenic Pb isotope ratios of HIMU. The combined Nd-Hf-Pb-Sr isotope systematics of both São Miguel and João de Castro endmembers can be explained by recycling of a single package of heterogeneous oceanic crust ranging from D-MORB to E-MORB in composition, with an age between 2.5 and 3.0 Ga, with no requirement for parent-daughter ratio modification during subduction. In contrast the Nd-Hf-Pb isotope systematics of lavas from São Jorge, Terceira, Graciosa, Pico and Faial are consistent with the presence of younger (<700 Ma) recycled crust that underwent low-temperature alteration and dehydration during subduction. There is no evidence in the erupted lavas for direct mixing between these two generations of recycled material within the plume. These data suggest that old recycling age and absence of sediments along with recycled oceanic crust are both required to develop isotopic compositions below the mantle array in εNd-εHf space. Our modeling shows that the compositional variability of erupted MORB is large enough that, given enough time, they can generate a wide range of isotope compositions such as observed in OIB. Lastly, lava compositions along the Terceira rift can be explained by a westward asthenospheric flux along a tilted lithosphere/asthenosphere boundary, where fertile components are exhausted by partial melting after ∼70 km of transport along the Terceira Rift. While this observation is broadly consistent with the plume source-ridge sink model, it also suggests that the lithosphere/asthenosphere boundary geometry can smear the view of the plume heterogeneity.

  2. Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey)

    NASA Astrophysics Data System (ADS)

    Çelik, Ömer Faruk; Chiaradia, Massimo; Marzoli, Andrea; Özkan, Mutlu; Billor, Zeki; Topuz, Gültekin

    2016-03-01

    The Kızılırmak accretionary complex near Kargı is tectonically bounded by the Jurassic and Early Cretaceous metamorphic massives of the Central Pontides. It consists mainly of serpentinite, serpentinized peridotite, gabbro, basalt, metabasite and deep-marine sedimentary rocks. The metabasites in the Kızılırmak accretionary complex are tectonically located within a serpentinite, radiolarian chert, spilitized basalt, gabbro association and commonly display a steep contact with serpentinites. Amphiboles from metabasites yielded robust 40Ar/39Ar plateau ages ranging between 159.4 ± 0.4 Ma and 163.5 ± 0.8 Ma. These are interpreted as cooling ages of the metabasites. The metabasites have 87Sr/86Sr(i) between 0.7035 and 0.7044 and 206Pb/204Pb(i) ranging between 18.18 and 18.92. The gabbros have higher 87Sr/86Sr(i) between 0.7044 and 0.7060 and 206Pb/204Pb(i) ranging between 17.98 and 18.43. Three basalt samples display 87Sr/86Sr(i) between 0.7040 and 0.7059. Their 206Pb/204Pb(i) are unrealistically low (15.42 and 15.62), suggesting, most likely, Pb loss which results in over-corrected values for decay through time. Pb-Sr-Nd isotopic compositions for all samples consistently plot between the fields of MORB or the Depleted MORB Mantle reservoirs and enriched mantle reservoirs (EMII rather than EMI). All the samples (except one dolerite dike) have negative ɛNdDM(t = 160 Ma) values, suggesting derivation from a reservoir more enriched than the depleted mantle. The protoliths of metabasites correspond to diverse sources (N-MORB, E-MORB, OIB and IAT) based on whole rock major and trace element composition. An IAT-like protolith for the metabasites indicates that the İzmir-Ankara-Erzincan ocean domain was subducting and the tectonic regime was compressional during Late Jurassic and before. The protoliths of these rocks were metamorphosed during the subduction/accretion processes, as observed in the metamorphic rocks located along the Balkan, Northern Turkey and Armenia/Iran ophiolites and/or accretionary complexes. IAT-like geochemistry for the gabbro/dolerites indicates that the non-metamorphosed basaltic rocks occurred in a supra-subduction tectonomagmatic environment and is in agreement with their radiogenic isotope compositions.

  3. Geochemical and Fluid Dynamic Investigations into the Nature of Chemical Heterogeneity in the Earth’s Mantle

    DTIC Science & Technology

    1992-09-01

    21 ’ N on the East Pacific Rise . Earth Planet. Sci. Lett., 65, 17-33. Newsom, H. E., W. M. White, K. P. Jochum and A. W...peridotites. In addition, abyssal peridotites from the fast-spreading East Pacific Rise have not been analyzed for their trace element compositions. Given...Garcia, and D.W. Muenow (1986) Volatiles in basaltic glasses from the East Pacific Rise at 2 IN: implications for MORB sources and submarine lava

  4. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt.

    PubMed

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J

    2017-01-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H 2 O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H 2 O (D Cl ol/melt = 1.6 ± 0.9 × 10 -4 ) to 0.33 (6) wt% H 2 O (D Cl ol/melt = 2.2 ± 1.1 × 10 -4 ). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H 2 O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2  = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.

  5. Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Robinson, F. A.; Foden, J. D.; Collins, A. S.

    2015-04-01

    The Arabian Shield preserves a protracted magmatic record of repeated amalgamation of juvenile subduction terranes that host granite intrusions ranging in age from the early Neoproterozoic to the Cambrian, which were emplaced into convergent and within-plate settings. Geochronology and whole-rock geochemistry of sampled Saudi Arabian granitoids define and distinguish four discrete age groups: 1) ~ 845-700 Ma island arc and synorogenic granitoids (IA + Syn), 2) ~ 640-610 Ma granitoids from the Nabitah and Halaban Suture (NHSG), 3) ~ 610-600 Ma post-orogenic perthitic (hypersolvus) granitoids (POPG), and 4) < 600 Ma anorogenic aegirine-bearing perthitic (hypersolvus) granitoids (AAPG). Groups 1, 2 and 3 include suites ranging from I-S- to A-type granites that have REE signatures typical of volcanic arc settings and show intra-suite variation that could be controlled by a combination of crustal assimilation and fractional crystallisation. Their mafic parental magmas have N-MORB-, or arc-tholeiite-like geochemistry. By contrast, group 4 A-type granites are more enriched in HREE and in incompatible elements such as Nb, Rb, Ga, Nd, Zr and Y and have lower Ce/Yb and higher Y/Nb ratios. These granitoids are interpreted to have been emplaced into within-plate and back-arc settings. Granitoid data also provide evidence that there may be two distinct mantle sources to the mafic parents of the granite suites. These are distinguished as contaminated and enriched mantle using Nb and Y and Nd isotopes. All granitoid suites are isotopically juvenile (ɛNd + 3 to + 6) and fall between the upper field crustal values of the Paleoproterozoic Khida terrane (ɛNd + 1) and contemporary depleted mantle. However, Nd isotopes distinguish contamination in group 1-3 mafic end-members beneath sutures which are interpreted to be derived from the contemporary MORB-type mantle wedge with subsequent crustal assimilation and fractionation to I- and A-type granitoids. The youngest (after 600 Ma) A-types (group 4) emplaced into extensional within-plate and back-arc settings require a new enriched mantle source that this study interprets to be associated with delamination.

  6. Determination of Oxygen Fugacity using Olivine-Melt Equilibrium: Implications for the Redox States of Mid-Ocean Ridge Basalt, Ocean Island Basalt, and Island Arc Basalt Mantle Source Regions

    NASA Astrophysics Data System (ADS)

    Peterman, K. J.; Bryson, S.; Rilling-Hall, S.; Barton, M.

    2017-12-01

    In order to connect volcanic rocks to their mantle sources, it is essential to consider redox equilibria and their dependence on temperature, pressure, chemical composition, and oxygen fugacity. Oxygen fugacity (fO2) is an intensive variable that strongly affects the behavior of those elements in magmas that are sensitive to changes in redox state, such as Fe, and therefore Mg-Fe silicates, such as olivine. Since fO2 plays an important role in fractional crystallization, in principle it is possible to estimate fO2 from analyses of olivine in equilibrium with the melt. This research describes a new method based on this principle called the Olivine-Melt Equilibrium Method. The Fe3+ and Fe2+ contents of melt in equilibrium with olivine are calculated from the relationship of Gee and Sack (1988) that describes the partitioning of Mg and Fe2+ between olivine and melt. The Fe3+ and Fe2+ contents of the melt are then used to calculate the fO2 at which olivine and melt are in equilibrium using the model of Kress and Carmichael (1991) for the relationship between Fe3+/Fe2+ , fO2, T, P, and melt composition. We have calculated oxygen fugacities from published analyses of coexisting glass and olivine pairs in 1020 samples from three different tectonic settings. The results (expressed as ΔFMQ) for Mid-Ocean Ridge Basalts from the Mid-Atlantic Ridge (-1.55 ± 0.75), the East Pacific Rise (-0.65 ± 0.51), the Juan de Fuca Ridge (-0.77 ± 0.42), and the Galápagos Spreading Center (+0.08 ± 0.48) agree with results obtained using other methods and average -1.09 ± 0.89. Ocean Island Basalts from Iceland and the Galápagos Islands (ΔFMQ = -0.43 ± 0.71 and -0.33 ± 0.35 respectively) also yield values consistent with those obtained by other methods and fall in the same range as MORB. However, lavas from the Canary Islands are more oxidized than typical MORB and OIB, with values (average = +0.68 ± 0.52) approaching those for island arc magmas. We obtain ΔFMQ = +1.03 ± 0.52 for olivine-melt pairs from Sunda arc basalts. The results for MORB and OIB potentially provide evidence for redox heterogeneity in the mantle, possibly as the result of crustal recycling. However it is necessary to evaluate the possibility that fO2 changes during magma ascent before concluding that the oxygen fugacities of erupted magmas directly reflect those of the mantle source regions.

  7. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough

    NASA Astrophysics Data System (ADS)

    Alt, Jeffrey C.; Shanks, Wayne C., III; Jackson, Michael C.

    1993-10-01

    The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (delta S-34 = 21 parts per thousand) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in S-34(delta S-34 = up to 10.3 parts per thousand, mean = 3.8 parts per thousand) and depleted in S(20-290 ppm, mean = 100 ppm) relative to mid ocean ridge basalt (MORB)(850 ppm S, delta S-34 = 0.1 +/- 0.5 parts per thousand). The bac-arc trough basalts contain 200-930 ppm S and have delta S-34 values of 1.1 +/- 0.5 parts per thousand, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at fO2 is approximately equal to NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of delta S-34 with Sr-87/Sr-86 large ion lithophile element (LILE) and Light rare earth elements (LREE) contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a S-34-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O, with minor CO2 and traces of H2S and SO2.CO2 in the arc and back-arc rocks has delta C-13 values of -2.1 to 13.1 parts per thousand, similar to MORB. These data suggest that degassing of CO2 could explain the slightly lower delta C-13 values for some Mariana Trough volcanic glasses, and that incorporation of subduction-derived organic carbon into the Mariana trough mantle source may not be necessary. More analyses are required to resolve this question, however.

  8. Isotopic Equilibrium in Mature Oceanic Lithosphere: Insights From Sm-Nd Isotopes on the Corsica (France) Ophiolites

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Hofmann, A. W.; Raczek, I.; Romairone, A.

    2003-12-01

    In mature oceanic lithosphere, formed at mid-ocean ridges, residual mantle peridotites and associated magmatic crust are, in principle, linked by a cogenetic relationship, because the times of asthenospheric mantle melting and magmatic crust production are assumed to be roughly coheval. This implies that oceanic peridotites and associated magmatic rocks should have similar isotopic compositions. Few isotope studies have been devoted to test this assumption. At mid-ocean ridges, similar Nd isotopic compositions in basalts and abyssal peridotites have been found by Snow et al. (1994), thus indicating that oceanic peridotites are indeed residues of MORB melting. By contrast, Salters and Dick (2002) have documented Nd isotope differences between abyssal peridotites and associated basalts, with peridotites showing higher 143Nd/144Nd values, and they concluded that an enriched pyroxenitic source component is required to explain the low end of the 143Nd/144Nd variation of the basalts. Here we present Sm/Nd isotope data on ophiolitic mantle peridotites and intruded gabbroic rocks from Mt.Maggiore (Corsica, France), interpreted as lithosphere remnants of the Jurassic Ligurian Tethys ocean. The peridotites are residual after low-degree (<10%) fractional melting. In places, spinel peridotites grade to plagioclase-rich impregnated peridotites. Clinopyroxene separates from both spinel- and plagioclase- peridotites display high 147Sm/144Nd (0.49-0.59) and 143Nd/144Nd (0.513367-0.513551) ratios, consistent with their depleted signature. The associated gabbros have Nd isotopic compositions typical of MORB (143Nd/144Nd = 0.51312-0.51314). Sm/Nd data on plag, whole rock and cpx from an olivine gabbro define an internal isochron with an age of 162 +/- 10 Ma, and an initial epsilon Nd value (9.0) indicating a MORB-type source. In the Sm-Nd isochron diagram, the peridotite data also conform to the above linear array, their initial (160 Ma) epsilon Nd values varying in the range 7.6-8.9. Sm/Nd isotopic compositions of the peridotites are therefore consistent with a Jurassic age of melting and melt impregnation, and point to isotopic compositional similarities between depleted peridotites and associated magmatic rocks. In a regional geodynamic context, Sm/Nd isotope data for the Mt.Maggiore gabbro-peridotite association represent the first record of the attainment of a mature oceanic stage of the Ligurian Tethys ocean. Also, the data presented provide striking evidence of the existence of isotopic equilibrium between melts and their mantle residue. References Snow et al. (1994), Nature 371, 57-60. Salters and Dick (2002), Nature 418,68-72.

  9. Archean recycled oceanic crust sampled in Azores lavas

    NASA Astrophysics Data System (ADS)

    Beguelin, P.; Bizimis, M.; Beier, C.; Turner, S.

    2016-12-01

    Azores lava compositions extend below the mantle array in ɛNd-ɛHf space and define the steepest slope of all plume provinces [1], but this pattern is largely controlled by low ɛHf lavas from Eastern São Miguel island (SM). Here we present new Hf isotope data on well-characterized on-land and submarine Azores lavas from several islands, the Terceira Rift and João do Castro seamount (JdC), in order to further constrain this trend. While Azores lavas fall along the mantle array with relatively steep slopes (e.g. São Jorge slope = 2.1), both SM and JdC fall below the mantle array as two distinct steep arrays with slopes of 2.0 and 2.6 respectively, extending to ɛHf = 0 at ɛNd = 2 (SM) and 4 (JdC). This is a unique feature in OIBs. The new Hf-Nd data overlaps the HIMU-type Mangaia and St Helena compositions. However, SM and JdC have distinctly less radiogenic and more variable Pb isotopes (e.g. 206Pb/204Pb = 18.8 to 20.2) than HIMU. Hf-Nd isotope decoupling below the mantle array is therefore not an exclusive HIMU signature. The coupled Hf-Nd-Pb-Sr isotope compositions of the enriched SM and JdC end-members can be modeled by recycled 2.5-3.0 Ga N-MORB, with some E-MORB affinity for SM. Unlike HIMU however, no Pb-loss during subduction is required for recycled MORB to explain their Pb isotopes. The relatively high κ (232Th/238U 4.3) required by the Azores data is also consistent with a high Th/U Archean mantle [2]. Aged, metasomatised mantle lithosphere based on a global peridotite and pyroxenite compilation is too variable and only fortuitously could explain the Azores compositions. Both enriched JdC and SM endmembers can therefore be explained by a recycled Archean oceanic crust that is locally heterogeneous, as presently observed in some MOR segments where N-and E-MORB exist closely [3, 4]. The lack of mixing between SM and JdC end-members some 100 km apart further implies that this recycled crust has retained its distinct signature through mantle convection and stirring for 2.5-3.0 Ga. [1] Salters et al. (2011) G3 12(8): Q08001. [2] Elliott et al. (1999) EPSL 169(1), 129-145. [3] Donnelly et al. (2004) EPSL 226(3), 347-366. [4] Gale et al. (2013) EPSL 365, 209-220.

  10. SrNdPb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen

    NASA Astrophysics Data System (ADS)

    Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.

    1996-07-01

    Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.

  11. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  12. Noble gas models of mantle structure and reservoir mass transfer

    NASA Astrophysics Data System (ADS)

    Harrison, Darrell; Ballentine, Chris J.

    Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble gases in the convecting mantle to be sourced from such a deep hidden reservoir. This "zero paradox" concentration [Ballentine et al., 2002] is then consistent with the different mantle source 3He/22Ne and 20Ne/22Ne heterogeneities. Higher convecting mantle noble gas concentrations also eliminate the requirement for a hidden mantle 40Ar rich-reservoir and enables the heat/4He imbalance to be explained by temporal variance in the different mechanisms of heat vs. He removal from the mantle system—two other key arguments for mantle layering. Confirmation of higher average convecting mantle noble gas concentrations remains the key test of such a concept.

  13. Can the composition and structure of the lower ocean crust and upper mantle be known without deep ocean drilling?

    NASA Astrophysics Data System (ADS)

    Dick, H.; Natland, J.

    2003-04-01

    No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.

  14. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Liu, Chuan-Zhou; Wu, Fu-Yuan; Zhang, Chang; Ji, Wei-Qiang; Wang, Jian-Gang

    2016-08-01

    The Cretaceous Xigaze ophiolite is best exposed at the central part of the Yarlung-Zangbo Suture Zone, Tibet Plateau. It consists of a thick section of mantle peridotites, but a relatively thin mafic sequence. This study presents geochronological and geochemical data for intrusive dykes (both mafic and felsic) and basalts to revisit the formation setting of the Xigaze ophiolite. The rodingites are characterized by high CaO and low Na2O contents relative to mafic dykes and show big variations in trace element compositions. Both gabbros and diabases have similar geochemical compositions, with MgO contents of 6.42-11.48 wt% and Mg# of 0.56-0.71. They display REE patterns similar to N-MORB and are variably enriched in large ion lithophile elements. Basalts have fractionated compositions and display LREE-depleted patterns very similar to N-MORB. They do not show obvious enrichment in LILE and depletion in high-field-strength elements, but a negative Nb anomaly is present. The studied plagiogranites have compositions of trondhjemite to tonalite, with high Na2O and low K2O contents. They have low TiO2 contents less than 1 wt%, consistent with melts formed by anatexis of gabbros rather than by differentiation of basalts. Zircons from seven samples, including three rodingites, three plagiogranites, and one gabbro, have been dated and yielded U-Pb ages of 124.6 130.5 Ma, indicating the Xigaze ophiolite was formed during the Early Cretaceous. They have mantle-like δ18O values of + 4.92 + 5.26‰ and very positive εHf(t) values of + 16 + 13.3. Ages of the rodingites and less altered gabbros indicate that serpentinization was occurred at 125 Ma. Occurrence of both gabbroic and diabase dykes within the serpentinites suggests that the mantle lithosphere of the Xigaze ophiolite was rapidly exhumed. Both mafic and felsic dykes have slightly more radiogenic 87Sr/86Sr ratios relative to MORB, but depleted Hf-Nd isotpe compositions. They have a limited range of εNd(t) values of + 7.9 + 8.9 but variable εHf(t) values ranging from + 9.9 to + 16.7, which are similar to the global MORB. This indicates that the intrusive dykes within the Xigaze ophiolite were derived from a depleted mantle source, which has not been obviously affected by recycling of subducted materials. The MOR-type basalts in this study, combined with the basalts with SSZ signatures previous reported in the literature indicate the diversity of basalts in the Xigaze ophiolite. We apply the forearc hyperextension model to reconcile the occurrence of both MOR- and SSZ-type basalts in the Xigaze ophiolite. In this model, the SSZ-type basalts were produced by melting of the metasomatized mantle wedge during exhumation, whereas the MOR-type basalts were derived from the upwelling asthenosphere triggered by forearc hyperextension.

  15. Oxygen Fugacity Variation From Mantle Transition Zone To Ocean Ridges Recorded By In Situ Diamond-Bearing Peridotite Of Indus Ophiolite

    NASA Astrophysics Data System (ADS)

    Das, S.; Basu, A. R.

    2017-12-01

    Our recently discovered transition zone ( 410 - 660 Km) -derived peridotites in the Indus Ophiolite, Ladakh Himalaya [1] provide a unique opportunity to study changes in oxygen fugacity from shallow mantle beneath ocean ridges to mantle transition zone. We found in situ diamond, graphite pseudomorphs after diamond crystals, hydrocarbon (C - H) and hydrogen (H2) fluid inclusions in ultra-high pressure (UHP) peridotites that occur in the mantle - section of the Indus ophiolite and sourced from the mantle transition zone [2]. Diamond occurs as octahedral inclusion in orthoenstatite of one of these peridotites. The graphite pseudomorphs after diamond crystals and primary hydrocarbon (C-H), and hydrogen (H2) fluids are included in olivine of this rock. Hydrocarbon fluids are also present as inclusions in high pressure clinoenstatite (> 8 GPa). The association of primary hydrocarbon and hydrogen fluid inclusions in the UHP peridotites suggest that their source-environment was highly reduced at the base of the upper mantle. We suggest that during mantle upwelling beneath Neo Tethyan spreading center, the hydrocarbon fluid was oxidized and precipitated diamond. The smaller diamonds converted to graphite at shallower depth due to size, high temperature and elevated oxygen fugacity. This process explains how deep mantle upwelling can oxidize reduced fluid carried from the transition zone to produce H2O - CO2. The H2O - CO2 fluids induce deep melting in the source of the mid oceanic ridge basalts (MORB) that create the oceanic crust. References: [1] Das S, Mukherjee B K, Basu A R, Sen K, Geol Soc London, Sp 412, 271 - 286; 2015. [2] Das S, Basu A R, Mukherjee B K, Geology 45 (8), 755 - 758; 2017.

  16. Pb sbnd Sr sbnd Nd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities

    NASA Astrophysics Data System (ADS)

    Hamelin, Bruno; Dupré, Bernard; Allègre, Claude J.

    1986-01-01

    A Pb sbnd Sr sbnd Nd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other. The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the "central Indian Ocean" islands (Amsterdam, St. Paul, Marion, Prince Edward, Réunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportions over time.

  17. Iron isotope composition of depleted MORB

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Sio, C. K. I.; Shahar, A.

    2015-12-01

    In terrestrial basalts, iron isotope ratios are observed to weakly fractionate as a function of olivine and pyroxene crystallization. However, a ~0.1‰ difference between chondrites and MORB had been reported (Dauphas et al. 2009, Teng et al. 2013 and ref. therein). This observation could illustrate an isotope fractionation occurring during partial melting, as a function of the Fe valence in melt versus crystals. Here, we present high-precision Fe isotopic data measured by MC-ICP-MS on well-characterized samples from the Pacific-Antarctic Ridge (PAR, n=9) and from the Garrett Transform Fault (n=8). These samples allow exploring the Fe isotope fractionation between melt and magnetite, and the role of partial melting on Fe isotope fractionation. Our average δ56Fe value is +0.095±0.013‰ (95% confidence, n=17), indistinguishable from a previous estimate of +0.105±0.006‰ (95% confidence, n=43, see ref. 2). Our δ56Fe values correlate weakly with MgO contents, and correlate positively with K/Ti ratios. PAC1 DR10 shows the largest Ti and Fe depletion after titanomagnetite fractionation, with a δ56Fe value of +0.076±0.036‰. This is ~0.05‰ below other samples at a given MgO. This may illustrate a significant Fe isotope fractionation between the melt and titanomagnetite, in agreement with experimental determination (Shahar et al. 2008). GN09-02, the most incompatible-element depleted sample, has a δ56Fe value of 0.037±0.020‰. This is the lowest high-precision δ56Fe value recorded for a MORB worldwide. This basalt displays an incompatible-element depletion consistent with re-melting beneath the transform fault of mantle source that was depleted during a first melting event, beneath the ridge axis (Wendt et al. 1999). The Fe isotope observation could indicate that its mantle source underwent 56Fe depletion after a first melting event. It could alternatively indicate a lower Fe isotope fractionation during re-melting, if the source was depleted of its Fe3+, likely producing a relatively reduced melt. These hypotheses are testable, and will be discussed in detail at the conference.

  18. The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the Southernmost Cascades, California

    USGS Publications Warehouse

    Borg, L.E.; Clynne, M.A.; Bullen, T.D.

    1997-01-01

    The compositional continuum observed in primitive calc-alkaline lavas erupted from small volcanoes across the southernmost Cascade arc is produced by the introduction of a variable proportion of slab-derived fluid into the superjacent peridotite layer of the mantle wedge. Magmas derived from fluid-rich sources are erupted primarily in the forearc and are characterized by Sr and Pb enrichment (primitive mantle-normalized Sr/P > 5.5), depletions of Ta and Nb, low incompatible-element abundances, and MORB-like Sr and Pb isotopic ratios. Magmas derived from fluid-poor sources are erupted primarily in the arc axis and behind the arc, and are characterized by weak enrichment in Sr [1.0 < (Sr/P)N < 1.3], weak depletions in Ta and Nb, higher incompatible-element abundances, and OIB-like Sr, Nd, and Pb isotopic ratios. Fluxing the mantle wedge above the subducting slab with H2O-rich fluid stabilizes amphibole and enriches the wedge peridotites in incompatible elements, particularly unradiogenic Sr and Pb. The hydrated amphibole-bearing portion of the mantle wedge is downdragged beneath the forearc, where its solidus is exceeded, yielding melts that are enriched in Sr and Pb, and depleted in Ta and Nb (reflecting both high Sr and Pb relative to Ta and Nb in the fluid, and the greater compatibility of Ta and Nb in amphibole compared to other silicate phases in the wedge). A steady decrease of the fluid-contributed geochemical signature away from the trench is produced by the progressive dehydration of the downdragged portion of the mantle wedge with depth, resulting from melt extraction and increased temperature at the slab-wedge interface. Inverse correlation between incompatible-element abundances and the size of the fluid-contributed geochemical signature is generated by melting of more depleted peridotites, rather than by significant differences in the degree of melting. High-(Sr/P)N lavas of the forearc are generated by melting of a MORB-source-like peridotite that has been fluxed with a greater proportion of slab-derived fluid, and low (Sr/P)N lavas of the arc axis are produced by melting of an OIB-source-like peridotite in the presence of a smaller proportion of slab-derived fluid. This study documents the control that a slab-derived fluid can have on incompatible element and isotopic systematics of arc magmas by 1) the addition of incompatible elements to the wedge, 2) the stabilization of hydrous phases in the wedge, and 3) the lowering of peridotite solidi.

  19. Local Prediction Models on Mid-Atlantic Ridge MORB by Principal Component Regression

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Chin, W.

    2017-12-01

    The isotopic compositions of the daughter isotopes of long-lived radioactive systems (Sr, Nd, Hf and Pb ) can be used to map the scale and history of mantle heterogeneities beneath mid-ocean ridges. Our goal is to relate the multidimensional structure in the existing isotopic dataset with an underlying physical reality of mantle sources. The numerical technique of Principal Component Analysis is useful to reduce the linear dependence of the data to a minimum set of orthogonal eigenvectors encapsulating the information contained (cf Agranier et al 2005). The dataset used for this study covers almost all the MORBs along mid-Atlantic Ridge (MAR), from 54oS to 77oN and 8.8oW to -46.7oW, including replicating the dataset of Agranier et al., 2005 published plus 53 basalt samples dredged and analyzed since then (data from PetDB). The principal components PC1 and PC2 account for 61.56% and 29.21%, respectively, of the total isotope ratios variability. The samples with similar compositions to HIMU and EM and DM are identified to better understand the PCs. PC1 and PC2 are accountable for HIMU and EM whereas PC2 has limited control over the DM source. PC3 is more strongly controlled by the depleted mantle source than PC2. What this means is that all three principal components have a high degree of significance relevant to the established mantle sources. We also tested the relationship between mantle heterogeneity and sample locality. K-means clustering algorithm is a type of unsupervised learning to find groups in the data based on feature similarity. The PC factor scores of each sample are clustered into three groups. Cluster one and three are alternating on the north and south MAR. Cluster two exhibits on 45.18oN to 0.79oN and -27.9oW to -30.40oW alternating with cluster one. The ridge has been preliminarily divided into 16 sections considering both the clusters and ridge segments. The principal component regression models the section based on 6 isotope ratios and PCs. The prediction residual is about 1-2km. It means that the combined 5 isotopes are a strong predictor of geographic location along the ridge, a slightly surprising result. PCR is a robust and powerful method for both visualizing and manipulating the multidimensional representation of isotope data.

  20. A Mantle Domain With a Helium Isotope Ratio of 11Ra at the Margins of the North Atlantic Igneous Province

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hilton, D. R.

    2005-12-01

    New data for basaltic glasses from Kolbeinsey Ridge demonstrate that for 600km north of Iceland the Mid-Atlantic Ridge samples mantle with 3He/4He of ~11 Ra (Macpherson et al., 2005). Further from Iceland, north of the Jan Mayen Fracture Zone, 3He/4He values are more typical of N-MORB. A mantle component with 11 Ra has previously been proposed to exist at around 58°N at the southern end of the Reykjanes Ridge (Hilton et al., 2000). Comparison with previous work suggests that mantle with 11 Ra may extend a further 400km south of 58°N to the Charlie Gibbs Fracture Zone, south of which 3He/4He values resemble N-MORB. The similarity in 3He/4He is mirrored in radiogenic isotope ratios suggesting that Kolbeinsey Ridge and the Charlie Gibbs to 58°N segment represent a distinct mantle domain at the margins of the North Atlantic Igneous Province. Both helium and radiogenic isotope ratios are consistent with contamination of depleted mantle by a small proportion of helium-rich material possessing high 3He/4He. There are substantial 3He/4He variations between 58°N and Iceland suggesting that any outflow of mantle from beneath Iceland has been highly asymmetric. Furthermore, if mantle outflow is responsible for high 3He/4He values on the Mid-Atlantic Ridge around Iceland then the northward flux has been negligible for a considerable period. The 11 Ra mantle domain may have been emplaced when the Kolbeinsey Ridge was initiated during the early Miocene. Alternatively, it may date from the Paleocene when magmatism became widespread throughout the North Atlantic Igneous Province. Hilton, D.R., Thirlwall, M.F., Taylor, R.N., Murton, B.J. and Nichols, A.J. (2000) Controls on magmatic degassing along the Reykjanes Ridge with implications for the helium paradox. Earth Planet. Sci. Lett. 183, 43-50. Macpherson, C.G., Hilton, D.R., Mertz, D.F., and Dunai, TJ (2005) Sources, degassing and contamination of CO2, H2O, He, Ne and Ar in basaltic glasses from Kolbeinsey Ridge, North Atlantic. Geochim Cosmochim. Acta, in press.

  1. Mantle Degassing and Atmosphere Evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2011-12-01

    Noble gas isotopes have provided much of our understanding of Earth's early history [1-3]. Various degassing models have been developed, including degassing of the whole mantle, degassing of all gases at similar relative rate [1], solubility-controlled degassing [2], and steady-state degassing models [4]. This report will evaluate various degassing models using recent data. For example, helium outgassing flux has been lowered by more than a factor of two based on sophisticated ocean general circulation models [5], which also impacts on the estimated degassing flux of carbon. Years of measurements and progress have allowed isotopic ratios of various mantle reservoirs being pieced together [6]. For example, 129Xe/130Xe in OIB mantle is found to be lower than that in MORB mantle [7]. Missing Xe has been found to be a non-issue [8]. Nucleogenic 21Ne production rate relative radiogenic 4He has been revised [9-10], which leads to an interesting neon paradox that nucleogenic 21Ne production in the whole silicate Earth is barely enough to supply nucleogenic 21Ne in air. 40Ar/36Ar ratio in BSE seems to be much lower than any OIB samples, another interesting paradox. Although non-nucleogenic mantle neon is solar, nonradiogenic mantle argon is atmospheric [11]. For Kr and Xe, the jury is still out. When mantle degassing models are evaluated using volatile data of the MORB and OIB, solubility-controlled degassing is able to reconcile more data than other degassing models. On the other hand, the vailable data seem to indicate that atmosphere evolution is more than mantle degassing; there may be significant contribution to the atmosphere from impact degassing and other sources. Furthermore, we are now suffering from too many data so that understanding the whole picture is elusive. [1] Allegre et al. (1986/87) EPSL 81, 127-150. [2] Zhang & Zindler (1989) J. Geophys. Res. 94, 13719-13737. [3] Zhang (1998) Geochim. Cosmochim. Acta 62, 3185-3189. [4] Pocelli & Wasserburg (1995) Geochim. Cosmochim. Acta 59, 4921-4937. [5] Bianchi et al. (2010) EPSL 297, 379-386. [6] Jackson et al. (2009) EPSL 287, 519-528. [7] Graham (2002) Rev. Mineral. Geochem. 47, 247-317. [8] Zhang (2002) Earth-Sci. Rev. 59, 235-263. [9] Yatsevich and Honda (1997).

  2. Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection

    NASA Astrophysics Data System (ADS)

    Iwamori, Hikaru; Albaréde, Francis; Nakamura, Hitomi

    2010-11-01

    In order to further our understanding of the global geochemical structure and mantle dynamics, a global isotopic data set of oceanic basalts was analyzed by Independent Component Analysis (ICA), a relatively new method of multivariate analysis. The data set consists of 2773 mid-ocean ridge basalts (MORB) and 1515 ocean island basalts (OIB) with five isotopic ratios of Pb, Nd and Sr. The data set spatially covers the major oceans and enables us to compare the results with global geophysical observations. Three independent components (ICs) have been found, two of which are essentially identical to those previously found for basalts from the Atlantic and Indian Oceans. The two ICs (IC1 and IC2) span a compositional plane that accounts for 95.7% of the sample variance, while the third IC (IC3) accounts for 3.7%. Based on the geochemical nature of ICs and a forward model concerning trace elemental and isotopic compositions, the origin of the ICs is discussed. IC1 discriminates OIB from MORB, and may be related to elemental fractionation associated with melting and the subsequent radiogenic in growth with an average recycling time of 0.8 to 2.4 Ga. IC2 tracks the regional provenance of both MORB and OIB and may be related to aqueous fluid-rock interaction and the subsequent radiogenic ingrowth with an average recycling time of 0.3 to 0.9 Ga. IC3 fingerprints upper continental crustal material and its high value appears in limited geographical and tectonic settings. Variations in the melt component (IC1) and in the aqueous fluid component (IC2) inherited in the mantle most likely reflect mid-ocean ridge and subduction zone processes, respectively. Long-term accumulation of dense materials rich in the IC1 melt component at the base of the convective mantle accounts for its longer recycling time with respect to that for less dense materials rich in the aqueous fluid component (IC2). IC2 broadly correlates with the seismic velocity structures of the lowermost mantle and electric conductivity around the mantle transition zones. We propose that IC2 reflects hydrogen distribution within the mantle and that several global domains enriched in hydrogen could exist as vertical sectors extending all the way down to the core-mantle boundary.

  3. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    USGS Publications Warehouse

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and trace element characteristics are similar to those of ocean island basalts (OIB), including enrichment in alkalis and incompatible trace elements. These characteristics are interpreted to indicate that their mantle source experienced an ancient melt-removal event that is reflected in depleted radiogenic isotopic compositions and was then re-enriched by metasomatism that elevated incompatible trace element contents, but was too young to produce a time-integrated change in radiogenic isotopic ratios. Evidence suggests that the Pribilof Island basalts did not form in either a plume or a back-arc basin tectonic setting. Rather, they were produced by melting of metasomatically hydrated upper mantle peridotite at relatively low temperatures and were able to erupt at the surface through extensional or transtensional faults that served as conduits for the magmas. ?? The Author 2009. Published by Oxford University Press.

  4. Nitrogen isotope geochemistry of basaltic glasses: implications for mantle degassing and structure?

    NASA Astrophysics Data System (ADS)

    Exley, R. A.; Boyd, S. R.; Mattey, D. P.; Pillinger, C. T.

    1987-01-01

    The nitrogen isotope geochemistry of 15 basaltic glasses has been investigated using stepped heating and high sensitivity static vacuum mass spectrometry. At low temperature (< 600°C) the glasses release small amounts of nitrogen with δ 15N AIR, averaging -0.3‰, suggesting surficial adsorption of atmospheric nitrogen. At high temperature, usually with a maximum at 1000°C, indigenous nitrogen with a concentration ranging from 0.2 to 2.1 ppm is released. The δ 15N values of this high temperature release show a wide range from -4.5‰ to +15.5‰. There is no correlation between N ppm and δ 15N, and the samples apparently form 3 groups with distinctive δ 15N. Six MORB glasses from the Mid-Atlantic Ridge, East Pacific Rise and Juan de Fuca Ridge define a group with δ 15N = +7.5 ± 1.3‰. In contrast two Indian Ocean MORB glasses (Carlsberg Ridge and Gulf of Aden) gave negative δ 15N averaging -3.2‰. Glasses from Loihi Seamount have high δ 15N averaging +14.0 ± 1.0‰. Comparison of the δ 15N data with the mantle models derived from helium and argon isotope studies suggests that the wide range in δ 15N may reflect in part heterogeneities in the mantle related to its degassing history. It is possible, however, that magmatic degassing processes have also affected nitrogen isotopic compositions, and the data cannot yet be unambiguously interpreted in terms of source variations.

  5. Recycling of volatiles at subduction zones: Noble gas evidence from the Tabar-Lihir-Tanga-Feni arc of papua New Guinea

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth; Mcinnes, Brent; Patterson, Desmond

    1994-01-01

    Convergent margin processes play an important but poorly understood role in the distribution of terrestrial volatile species. For example, subduction processes filter volatiles from the subducting package, thereby restricting their return to the mantle. In addition, once extracted from the downgoing slab, volatiles become an essential component in the petrogenesis of island arc magmas. The noble gases, with their systematic variation in physical properties and diversity of radiogenic isotopes, should carry a uniquely valuable record of these processes. However, thus far studies of noble gases in arc volcanics have achieved only limited success in this regard. Subduction-related lavas and geothermal fluids carry (3)He/(4)He ratios equal to or slightly lower than those found in the depleted upper mantle source of mid-ocean ridge basalts. Apparently slab-derived helium (which should have (3)He/(4)He much less than MORB) is extensively diluted by MORB-like helium from the mantle wedge, making it difficult to use helium as a tracer of convergent margin processes. Interpretation of the heavier noble gases (Ne-Ar-Kr-Xe) in arc lavas has also proven difficult, because the lavas carry low noble gas concentrations and hence are subject to pervasive atmospheric contamination. The low noble gas concentrations may be a consequence of degassing in the high level magma chambers characteristic of arc stratovolcanos. We have recently initiated a project to better constrain the behavior of volatiles in subduction zones through geochemical studies of the tectonically unusual volcanoes of the Tabar-Lihir-Tanga-Feni (TLTF) arc in the Bismarck Archipelago, Papua New Guinea.

  6. Volatiles in the Earth: All shallow and all recycled

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1994-01-01

    A case can be made that accretion of the Earth was a high-temperature process and that the primordial Earth was dry. A radial zone-refining process during accretion may have excluded low-melting point and volatile material, including large-ion lithophile elements toward the surface, leaving a refractory and zoned interior. Water, sediments and altered hydrous oceanic crust are introduced back into the interior by subduction, a process that may be more efficient today than in the past. Seismic tomography strongly suggests that a large part of the uppermantle is above the solidus, and this implies wet melting. The mantle beneath Archean cratons has very fast seismic velocities and appears to be strong to 150 km or greater. This is consistent with very dry mantle. It is argued that recycling of substantial quantities of water occurs in the shallow mantle but only minor amounts recycle to depths greater than 200 km. Recycling also oxidizes that mantle; ocean island ('hotspot') basalts are intermediate in oxidation state to island-arc and midocean ridge basalts (MORB). This suggests a deep uncontaminated reservoir for MORB. Plate tectonics on a dry Earth is discussed in order to focus attention on inconsistencies in current geochemical models of terrestrial evolution and recycling.

  7. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    NASA Astrophysics Data System (ADS)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  8. Iron Spin Crossover in the New Hexagonal Aluminous (NAL) Phase

    NASA Astrophysics Data System (ADS)

    Hsu, H.

    2017-12-01

    The new hexagonal aluminous (NAL) phase, chemical formula AB2C6O12 (A = Na+, K+, Ca2+; B = Mg2+, Fe2+, Fe3+; C = Al3+, Si4+, Fe3+), is considered a major component ( 20 vol%) of mid-ocean ridge basalt (MORB) at lower-mantle conditions. Given that MORB can be transported back into the Earth's lower mantle via subduction, a thorough knowledge of the NAL phase is essential to fully understand the fate of subducted MORB and its role in mantle dynamics and heterogeneity. In this presentation, the complicated spin crossover of the Fe-bearing NAL phase will be discussed based on a series of first-principles calculations [1], in which the local density approximation + self-consistent Hubbard U (LDA+Usc) method was adopted. As revealed by these calculations, only the ferric iron (Fe3+) substituting Al/Si in the octahedral (C) site undergoes a crossover from the high-spin (HS) to the low-spin (LS) state at 40 GPa, while iron substituting Mg in the trigonal-prismatic (B) site remains in the HS state, regardless of its oxidation state (Fe2+ or Fe3+). The volume/elastic anomalies, iron nuclear quadrupole splittings, and crystal field spltting determined by calculations are in great agreement with experiments [2,3]. The calculations further predict that the HS-LS transition pressure of the NAL phase barely increases with temperature due to the three nearly degenerate LS states of Fe3+, suggesting that the elastic anomalies of this mineral can occur at the top lower mantle. [1] H. Hsu, Phys. Rev. B 95, 020406(R) (2017). [2] Y. Wu et al. Earth Planet. Sci. Lett. 434, 91-100 (2016). [3] S. S. Lobanov et al., J. Geophys. Res. Solid Earth 122, 3565 (2017).

  9. Constraints of lithium isotopes on petrogenesis of the Northern Luzon arc in Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, C. C.; Chu, M. F.; Lai, Y. M.; Lin, T. H.

    2017-12-01

    Lithium stable isotopes have great potential as a tracer of terrestrial materials in crust-mantle recycling. However, the causes of their variations in arc magmatism remain controversial. The Northern Luzon arc has long been demonstrated incorporation of the sediment melt into its sub-arc mantle. The Li isotopes of volcanic rocks in the Coastal Range, located in Eastern Taiwan, thus are studied to examine the effects of sediment melt on the evolution of Li isotopes in subduction zone and also to constrain the petrogenesis of the northernmost part of Northern Luzon arc. It is worth to note that we had ruled out samples that were significantly influenced by crustal contamination according to the proportion of inherited zircons, trace-elemental and Sr-Nd isotopic geochemistry. Concerning that Li isotopic fractionation is negligible during fractional crystallization and partial melting, the variation of Li/Y and δ7Li in rock samples of this study mainly reflects the geochemistry of magma sources. The overall range of δ7Li is very restricted (δ7Li = +2.9 +5.8) and consistent with that of N-MORB. In addition, ɛNd of the Coastal Range volcanic rocks lowers not only with increasing values of sediment-melt indicators (e.g., Th/Ce, Th/Yb and La/Sm), but also Li/Y (from 0.5 to 1.1 ppm). This suggests the involvement of sediment melt with equivalent δ7Li to and higher Li/Y than those of N-MORB, in magma source of the Coastal Range arc volcanism. In summary, the Li isotopic compositions of the Coastal Range volcanic rocks demonstrate that (1) Li/Y commonly treated as a tracer of fluid in arc magmatism indeed can be significantly affected by the input of sediment melt as well, and (2) sediment melt played a key role in the evolution of Li/Y and lithium isotopes in the mantle wedge, but showed least influence on Li isotopic variation possibly as a result of the similarity between δ7Li of sediments subducted and of the upper mantle.

  10. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep into the mantle through subduction of oceanic crust, possibly via marine pore fluids (Sumino et al. 2010). The OIB source region is, however, significantly enriched in fluorine relative to the primitive mantle by a factor of 1.4-3.6, which indicates that significantly larger amounts of fluorine are transported deep into the Earth's mantle through subduction. An explanation for the partial separation of chlorine and fluorine during subduction is that the heavy halogens are more likely to escape from the subducting slab in hydrous fluids at an early subduction stage whereas significant amounts of fluorine are likely to remain in the slab, possibly incorporated in the lattice of hydrous amphibole or mica, or in anhydrous high-pressure phases of eclogite. The MORB source mantle is degassed in fluorine (17-88%) and chlorine (22-99%) relative to primitive mantle estimates. Preliminary data suggest that the bromine partitioning behaviour between forsterite and melt is roughly comparable to the behaviour of fluorine and chlorine. If true, this would imply that the Earth's upper mantle is presumably degassed of all halogens despite the more likely escape of heavy halogens from the slab at an early subduction stage, implying that these halogens are at least partly accumulating in the crust after leaving the slab. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Earth Planet Sci. Lett. 337-338, pp. 1-9. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Contrib. Mineral. Petrol. 163, pp. 591-609. Palme H, O'Neill HSTC (2003) Treatise Geochem. 2, pp. 1-38. Ruzié L, Burgess R, Hilton DR, Ballentine CJ (2012) AGU Fall Meeting 2012. V31A-2762 (abstr.). Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Earth Planet. Sci. Lett. 294, pp. 163-172.

  11. In-situ arc crustal section formed at the initial stage of oceanic island arc -Diving survey in the Izu-Bonin forearc-

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Yuasa, M.; Tani, K.; Umino, S.; Reagan, M. K.; Kanayama, K.; Harigane, Y.; Miyajima, Y.

    2009-12-01

    The Bonin Ridge is an unusually prominent forearc massif in the Izu-Bonin arc that exposes early arc volcanic rocks on Bonin Islands. Submarine parts of the ridge, which could complement the record of volcanism preserved on the islands, had not been extensively investigated. In 2007, dredge sampling in the Izu-Bonin forearc brought us ample evidence of exposure of arc crustal section formed at initial stage of this arc along the landward slope of Izu-Ogasawara trench. Based on this discovery, we conducted Shinkai 6500 submersible survey in May, 2009. This expedition enabled us to obtain general understanding of the crustal section that formed when this oceanic arc began. We investigated 3 areas of the Bonin Ridge. Near 28o25’N, 4 dives were used to look at the lower to upper crustal section. The deepest dive observed both gabbro and basalt/dolerite, and appears to have passed over the boundary between the two. Lower slope is composed of fractured gabbro, whereas pillow lava was observed in the uppermost part of this dive track. Two dives surveyed up-slope of the previous dive found outcrop of numerous doleritic basalt dykes and fractured basaltic lava cut by dykes between water depth of 6000 and 5500m. The shallowest dive recovered volcanic breccia and conglomerate with boninitic and basaltic clasts. Combined with results from other dives and dredging, the members of forearc crustal section are from bottom to top: 1) gabbroic rocks, 2) a sheeted dyke complex, 3) basaltic lava flows, 4) volcanic breccia and conglomerate with boninitic and basaltic clasts, 5) boninite and tholeiitic andesite lava flows and dykes (on the Bonin Islands). In addition to this crustal section, dredge sampling and ROV Kaiko dives recovered mantle peridotite below the gabbro. These observations indicate that almost all of the forearc crust down to Moho has been preserved. Preliminary data indicate that basaltic rocks made of sheeted dykes and lava flows and lower gabbros are generally comagmatic. These basalts show chemical characteristics similar to MORB (i.e., with no slab signature). These basalts have lower Ti, LREE, LREE/HREE, Nb/Zr and Zr/Y than Philippine Sea MORB, but with comparable or slightly lower 143Nd/144Nd. Even though the likely source of these MORB-like basalts can be linked to an Indian Ocean-type mantle, the source for these basalt could be more depleted due to previous event of melt extraction. These basalts also have distinctly higher 87Sr/86Sr and 206Pb/204Pb than Philippine Sea MORB, which may imply the presence of lithospheric mantle with ancient enrichment. Age determination of basalt and gabbro by Ar/Ar and U-Pb methods has confirmed that these rocks predate boninite and could be older than 50Ma. Chemically and petrographically they are similar to tholeiites from the Mariana forearc that predate boninitic volcanism in that region that are considered to be related to subduction (Reagan et al., in prep). This strongly implies that MORB-like tholeiitic magmatism was associated with forearc spreading along the length of the Izu-Bonin-Mariana arc.

  12. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides

    NASA Astrophysics Data System (ADS)

    Kiseeva, Ekaterina S.; Wood, Bernard J.

    2015-08-01

    We develop a comprehensive model to describe trace and minor element partitioning between sulphide liquids and anhydrous silicate liquids of approximately basaltic composition. We are able thereby to account completely for the effects of temperature and sulphide composition on the partitioning of Ag, Cd, Co, Cr, Cu, Ga, Ge, In, Mn, Ni, Pb, Sb, Ti, Tl, V and Zn. The model was developed from partitioning experiments performed in a piston-cylinder apparatus at 1.5 GPa and 1300 to 1700 °C with sulphide compositions covering the quaternary FeSsbnd NiSsbnd CuS0.5sbnd FeO. Partitioning of most elements is a strong function of the oxygen (or FeO) content of the sulphide. This increases linearly with the FeO content of the silicate melt and decreases with Ni content of the sulphide. As expected, lithophile elements partition more strongly into sulphide as its oxygen content increases, while chalcophile elements enter sulphide less readily with increasing oxygen. We parameterised the effects by using the ε-model of non-ideal interactions in metallic liquids. The resulting equation for partition coefficient of an element M between sulphide and silicate liquids can be expressed as We used our model to calculate the amount of sulphide liquid precipitated along the liquid line of descent of MORB melts and find that 70% of silicate crystallisation is accompanied by ∼0.23% of sulphide precipitation. The latter is sufficient to control the melt concentrations of chalcophile elements such as Cu, Ag and Pb. Our partition coefficients and observed chalcophile element concentrations in MORB glasses were used to estimate sulphur solubility in MORB liquids. We obtained between ∼800 ppm (for primitive MORB) and ∼2000 ppm (for evolved MORB), values in reasonable agreement with experimentally-derived models. The experimental data also enable us to reconsider Ce/Pb and Nd/Pb ratios in MORB. We find that constant Ce/Pb and Nd/Pb ratios of 25 and 20, respectively, can be achieved during fractional crystallisation of magmas generated by 10% melting of depleted mantle provided the latter contains >100 ppm S and about 650 ppm Ce, 550 ppm Nd and 27.5 ppb Pb. Finally, we investigated the hypothesis that the pattern of chalcophile element abundances in the mantle was established by segregation of a late sulphide matte. Taking the elements Cu, Ag, Pb and Zn as examples we find that the Pb/Zn and Cu/Ag ratios of the mantle can, in principle, be explained by segregation of ∼0.4% sulphide matte to the core.

  13. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt

    NASA Astrophysics Data System (ADS)

    Park, Keunsu; Choi, Sung Hi; Cho, Moonsup; Lee, Der-Chuen

    2017-08-01

    Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine (Fo89.3-91.0), enstatite (Wo1-2En88-90Fs8-11), diopside (Wo45-50En45-51Fs4-6), and spinel (Cr# = 8.8-54.7). The peridotite residues underwent up to 25% partial melting in fertile mid-ocean-ridge basalt (MORB) mantle. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1010 °C, reflecting their lithospheric mantle origin. The rare earth element (REE) patterns in clinopyroxenes of the peridotites varied from light REE (LREE) depleted to spoon shaped to LREE enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in large-ion lithophile elements, Th and U together with slight fractionation in heavy REEs (HREEs) and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying well above the mantle array. The Lu-Hf and Sm-Nd model ages of residual clinopyroxenes yielded Early Proterozoic to Phanerozoic ages. No signature of Archean cratonic mantle was present. Therefore, Mt. Baekdu peridotite is residual lithospheric mantle that has undergone variable degrees of diachronous melt extraction and infiltration metasomatism involving subduction-related, fluid-bearing silicate melts. The predominance of Phanerozoic Hf model ages indicates that the lherzolites represent lithospheric mantle fragments newly accreted underneath the eastern NCC.

  14. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia)

    NASA Astrophysics Data System (ADS)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel

    2017-12-01

    The 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by 2 km of hornblende-gabbros and gabbronorites and by a 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 ( X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2 σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4-5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally, the multiply documented occurrence of highly depleted boninites during subduction initiation suggests a causal relationship of subduction initiation and highly depleted mantle. Possibly, a discontinuity between dense fertile and buoyant depleted mantle contributes to the sinking of the future dense subducting plate, while the buoyant depleted mantle of the future overriding plate forms the infant mantle wedge.

  15. Helium and Carbon Isotope and Relative Abundance Relationships in Lau Basin Basalts: Resolving Mantle Source Composition from Degassing and Contamination Effects

    NASA Astrophysics Data System (ADS)

    Vukajlovich, D. J.; Hilton, D. R.; Castillo, P. R.; Hawkins, J. W.

    2005-12-01

    The Lau Basin has multiple mantle source components including contributions from the Indian and Pacific MORB sources, Tonga-Kermadec Arc and Samoan plume. In order to characterize the volatile systematics of these various sources and to map their spatial distribution, we have sampled basaltic glasses from over 50 dredge sites covering all known spreading centers in the basin as well as many off-axis seamounts. Here, we report He abundance and isotope results obtained by crushing, in addition to CO2 released through stepped heating, from sites at the Mangatolu Triple Junction (MTJ), Rochambeau Bank (RB), Peggy Ridge, and the Northern, Eastern and Central Lau Spreading Centers. High 3He/4He ratios from RB (up to 23 RA, where RA = air 3He/4He) confirm the presence of a plume component in the northwestern Lau Basin (Poreda, EPSL, 1985). Central and Eastern Lau Spreading Center basalts have 3He/4He ratios between 8.3 and 9.4 RA, consistent with a depleted, MORB-like mantle source with little influence from slab or crustal helium. In contrast, the large range in helium isotope ratios of MTJ samples (0.85 to 7.9 RA) and the correlation between low He abundances (~2 - 3 × 10-9 cm3/g) and low helium isotope ratios suggests the volatiles in this region have been severely affected by degassing and additions of radiogenic (crustal) He. CO2 abundances and carbon isotopes for samples from RB vary from 70 to 119 ppm ([CO2]total) with δ13Cvesicle falling between -12.3 to -14.8 ‰ and δ13Cdissolved lying between -9.3 to -10.7 ‰. In the MTJ, low helium concentration samples have δ13C as low as -27.4 ‰ and [CO2]total as low as 7.6ppm; interestingly, this region also has samples with the highest measured values (up to -6.3 ‰ and 132ppm total C). Combining the carbon and helium data, CO2/3He ratios in the MTJ range from arc-like values (~1010) to sediment or crustal values (~1013) showing the superimposition of degassing and/or contamination effects on a predominant slab-like signature. High 3He/4He samples from RB have CO2 /3He ratios similar to the upper mantle value (2 × 109), as at other back-arc localities exhibiting a high 3He/4He (plume) component (e.g. the Manus Basin; Shaw et al., GCA, 2004). Continuing analytical work will complete our He-C survey of the Lau Basin, identifying samples suitable for further effort involving Ne, Ar, H2O plus other tracers of interest. Presently, we are modeling degassing/contamination effects to identify the nature and distribution of mantle source components throughout the Lau Basin. The volatile characteristics of the high 3He/4He samples are of particular interest as they provide insight into the different recycling and storage histories of volatiles between distinct mantle reservoirs.

  16. Barium isotopic compositions of oceanic basalts from São Miguel, Azores Archipelago

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, F.

    2016-12-01

    Oceanic island basalts (OIB) provide important information to decipher the processes of mantle convection and crustal material recycling1. OIBs from São Miguel, Azores Archipelago have extreme radiogenic isotope compositions2-3, representing an enriched component in their mantle source. However, the origins of the enriched mantle are still in debate. Previous studies proposed that the enriched component could be subducted terrigenous sediments2,4, delaminated subcontinental lithosphere5-6, recycled oceanic crust with evolved compositions (such as a subducted seamount)7, or enriched (E-MORB type) under-plated basalts which infiltrated the oceanic mantle lithosphere8. In this study, we use Ba isotopes to constrain the origin of enriched component beneath São Miguel because Ba isotopes can be significantly fractionated at the Earth's surface with low temperature environment than in the mantle with high temperature9-10. We analyzed Ba isotopes of 15 basalts from São Miguel. Although these samples have large variations of 87Sr/86Sr (0.703440-0.705996), 206Pb/204Pb (19.319-20.095) and 187Os/188Os (0.127-0.161), they have limited variation of 137Ba/134Ba (-0.003 to +0.048‰). The average 137Ba/134Ba of São Miguel basalts is 0.019±0.033‰ (n=15, 2SD), which is in the range of mantle (0.026±0.090‰, n=32, 2SD)9, indicating there is no surface material in the mantle source of São Miguel. The enriched source of São Miguel could be evolved material from the mantle. 1. Hofmann, 1997, Nature; 2. Hawkesworth et al., 1979, Nature; 3. White et al., 1979, CMP; 4. Turner et al., 1997, CG; 5. Widom et al., 1997, CG; 6. Moreira et al., 1999, EPSL; 7. Beier et al., 2007, EPSL; 8. Elliott et al., 2007, GCA; 9. Huang et al., 2015, Goldschmidt abs 1331; 10. Nan et al., 2016, Goldschmidt abs 2246.

  17. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive subduction are mixed efficiently through the convecting mantle. The global SCLM therefore represents a potentially important reservoir for the long term residence of subducted volatiles.

  18. Hydrogen Isotope Geochemistry of Mariana Trough Lavas

    NASA Astrophysics Data System (ADS)

    Oleary, J.; Kitchen, N.; Eiler, J.

    2002-12-01

    Basaltic lavas from the Marianas trough vary in water content from values similar to mid-ocean ridge basalts (MORBs) to ten times those values. These variations plausibly reflect addition of subducted water to the mantle wedge, but must also reflect variations in extent of melting and crystallization-differentiation. We report hydrogen isotope data for 18 samples of lavas from the Mariana trough; these measurements, when combined with other geochemical data, constrain the relative proportions of subducted vs. 'primitive' water in their mantle sources. Previous measurements of the hydrogen isotope composition of Mariana trough lavas [1] found a correlation between dD and measured water content, consistent with two-component mixing between water in the ambient MORB source and water from the subducted slab, but include only four samples, only two of which have known major and minor element geochemistry. Our purpose is to confirm this result and expand it to include a more representative sampling. Our measurements made use of a recently developed technique for on-line stepped heating, water reduction and hydrogen isotope mass spectrometry [2]. This method is appropriate for relatively small samples of basaltic glass (ca. 100 μg to 1 mg) and up to 10 analyses can be performed per day. Its principle advantages for our purposes are that it can be applied to even small or glass-poor samples and it is fast enough to permit replication of all data and analysis of relatively large numbers of standards. Hydrogen isotope compositions of Mariana trough lavas vary between -74 per mil and -34 per mil (SMOW); this compares with a range of -46 to -32 per mil for related lavas in [1] and is similar to the previously observed range for back-arc-basin basalts generally (-70 to -32 per mil). Two-thirds of our sample suite span a small range in dD (-40+/-4 ). We suggest this average is the most representative value for back arc basin basalts measured to-date. Our data are inconsistent with the correlation between dD and measured water content suggested for back-arc basin basalts by [ref], even considering only lavas spanning a small range in MgO. This suggests one or both of two things: (1) melting and/or crystallization differentiation produce variations in water abundance unrelated to the abundance and dD of water in the mantle source; (2) there are three or more reservoirs in the mantle wedge of the Mariana arc, all of which differ in dD and water content (i.e., such that data do not define a simple line in a plot of dD vs. 1/H2O). The first of these is significant, but there is also evidence for the second. In particular, dD values decrease monotonically with increasing abundance of highly incompatible trace elements and with increasing La/Sm and K2O/H2O ratios; the lowest dD sample in our suite is an enriched basalt (La/Sm = 3.6) with an 'arc like' K2O content (0.71 wt. %). These data suggest that water in the mantle wedge of the Mariana arc is derived from three sources: ambient water common to the MORB source (ca. 0.02 wt. % H2O; dD ~ -65 to -75 per mil), subducted water (dD ~ -30 per mil) and an enriched source having high abundances of water and other incompatible trace elements and a dD value of ca. -80 per mil. [1] Poreda, 1985, EPSL 73, 244-254 [2] Eiler and Kitchen, 2001, GCA 65, 24, 4467-4479

  19. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.

    2018-01-01

    Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.

  20. St Paul fracture zone intratransform ridge basalts (Equatorial Atlantic): Insight within the mantle source diversity

    NASA Astrophysics Data System (ADS)

    Hemond, C.; Brunelli, D.; Maia, M.; Prigent, S.; Sichel, S. E.

    2017-12-01

    The St Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four Major faults separating three intra transform ridge axes. Volcanic glassy samples were collected inside two intratransform ridge (ITR) segments during the COLMEIA cruise (Maia et al ; 2016) and samples from the third ITR available from a previous cruise ST PAUL (Hékinian et al. 2000). Major, trace elements and Hf, Pb, Sr and Nd isotopes were determined on selected hand picked glass chips. Few glassy samples recovered and analysed from abyssal hill samples open a time window of about 4.5 million years in the chemistry of the northern ITR. Results show that all samples are basaltic in composition but trace elements display contrasting images for the three ITR. The northern ITR samples are all light REE and highly incompatible enriched and are E-MORB; the central ITR samples display rather flat REE pattern with a level on enrichment of the HREE higher than the other two ITR and are T-MORB. Southern ITR samples are more heterogeneous N-MORB to T-MORB with a lower level of HREE. Isotopes reveal that the ITRs sample distinct mantle sources. In various isotope plans, the northern ITR samples plot together with published results from the MAR directly north of the St Paul F.Z. Therefore they exhibit some flavor of the Sierra Leone hotspot interacting with the MAR at 1.7°N. Central and southern ITR samples have very distinct composition from the northern ITR but resemble each other. However, for identical 206Pb/204Pb ratios, central ITR has slightly but significantly higher 207Pb/204Pb and 208Pb/204Pb, also higher 143Nd/144Nd for a given 87Sr/86Sr. Southern ITR is in chemical continuity of the MAR southward. So that central ITR samples display a rather specific composition. Off axis samples corresponding to the activity of the northern ITR up to 4.6 m.y. show that the hotspot contribution was even bigger on the spreading axis than today and might be fading with time as the MAR gets away from the Hotspot. It remains to explain how the flow of enriched material derived from the Sierra Leone hotspot passed through the large transform fault that limits the St Paul zone to the north. It is also of interest to explain the peculiar compositions of the central ITR samples that reflect neither the northern adjacent MAR composition nor the southern one.

  1. Markov Chain Monte Carlo Inversion of Mantle Temperature and Composition, with Application to Iceland

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Petersen, Kenni; Lesher, Charles

    2017-04-01

    Basalts are formed by adiabatic decompression melting of the asthenosphere, and thus provide records of the thermal, chemical and dynamical state of the upper mantle. However, uniquely constraining the importance of these factors through the lens of melting is challenging given the inevitability that primary basalts are the product of variable mixing of melts derived from distinct lithologies having different melting behaviors (e.g. peridotite vs. pyroxenite). Forward mantle melting models, such as REEBOX PRO [1], are useful tools in this regard, because they can account for differences in melting behavior and melt pooling processes, and provide estimates of bulk crust composition and volume that can be compared with geochemical and geophysical constraints, respectively. Nevertheless, these models require critical assumptions regarding mantle temperature, and lithologic abundance(s)/composition(s), all of which are poorly constrained. To provide better constraints on these parameters and their uncertainties, we have coupled a Markov Chain Monte Carlo (MCMC) sampling technique with the REEBOX PRO melting model. The MCMC method systematically samples distributions of key REEBOX PRO input parameters (mantle potential temperature, and initial abundances and compositions of the source lithologies) based on a likelihood function that describes the 'fit' of the model outputs (bulk crust composition and volume and end-member peridotite and pyroxenite melts) relative to geochemical and geophysical constraints and their associated uncertainties. As a case study, we have tested and applied the model to magmatism along Reykjanes Peninsula in Iceland, where pyroxenite has been inferred to be present in the mantle source. This locale is ideal because there exist sufficient geochemical and geophysical data to estimate bulk crust compositions and volumes, as well as the range of near-parental melts derived from the mantle. We find that for the case of passive upwelling, the models that best fit the geochemical and geophysical observables require elevated mantle potential temperatures ( 120 °C above ambient mantle), and 5% pyroxenite. The modeled peridotite source has a trace element composition similar to depleted MORB mantle, whereas the trace element composition of the pyroxenite is similar to enriched mid-ocean ridge basalt. These results highlight the promise of this method for efficiently exploring the range of mantle temperatures, lithologic abundances, and mantle source compositions that are most consistent with available observational constraints in individual volcanic systems. 1 Brown and Lesher (2016), G-cubed, 17, 3929-3968

  2. Chemically diverse, sporadic volcanism at seamounts offshore southern and Baja California

    USGS Publications Warehouse

    Davis, A.S.; Gunn, S.H.; Bohrson, W.A.; Gray, L.-B.; Hein, J.R.

    1995-01-01

    Compositions of lavas from seven small to medium-sized seamounts offshore southern and Baja California, include low-K2O tholeiitic, transitional, and mildly to moderately alkalic basalt and their differentiates. The seamounts with these MORB-like lavas are inferred to have formed at or near the spreading center. Based on 40Ar/39Ar laser fusion techniques, MORB-like lava from one of the northern edifices is as old as the underlying oceanic crust (>20 Ma), indicating that it originated at a spreading center. Other seamount lava ages are much younger than the oceanic crust on which they reside. Some of the seamounts with transitional and alkalic lavas may have formed as part of a short, age-progressive chain formed by a short-lived mantle plume. Many others, may have resulted from upwelling mantle diapirs in response to localized extension. -from Authors

  3. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H 2O/Ce, δD, CO 2/Nb) in the North Atlantic mantle (14° N and 34° N)

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Pineau, Françoise; Aubaud, Cyril; Javoy, Marc

    2008-01-01

    In order to better characterise mantle CO 2/Nb-variability, we obtained and compiled major and trace elements, content and isotope composition of both CO 2 and water on two series of mid-ocean ridge basalt (MORB) samples dredged at ˜ 14° N ( n = 6) and 34° N ( n = 11) on the mid-Atlantic ridge. All samples are carbon-saturated. One, the so-called popping rock 2ΠD43 kept its vesicles, the initial (pre-degassing) C-contents of the 16 other samples being reconstructed from their assumed degassing history. For water, the samples show large variations, from 1300 to 6900 ppm and from 1900 to 7900 ppm with associated δD-values ranging from - 55 to - 79‰ and from - 55 to - 88‰ for samples at 14° N and 34° N respectively. For carbon, the inferred initial predegassing contents vary greatly, from 660 to 14,700 ppmCO 2 and from 1400 to 57,600 ppmCO 2 for samples at 14° N and 34° N respectively. Measured Nb-contents range from 4.5 to 29.6 ppm show both good agreement with previously published data and positive correlations with reconstructed initial CO 2-contents. The mean CO 2/Nb range from ˜ 570 to ˜ 730 at 14° N and 34° N respectively. CO 2 and Nb data for the two undegassed samples available so far (i.e. the popping rock of the present study and the basaltic glasses from the Siqueiros transform fault from the study of Saal et al., 2002) show significant variations in CO 2/Nb over a factor of 2 and thus questions the constant CO 2/Nb previously emphasised for these two samples, this view being supported by CO 2/Nb-ratios of samples whose initial C-contents were reconstructed. For incompatible elements such as Ce, K and including water, a comparison of the geochemical characteristics of transform fault basaltic magmatism with other MORB systems shows magma transform fault magmatism to be unrepresentative of mantle compositions. Assuming a more appropriate average MORB CO 2/Nb-ratio of ˜ 530 and a mean MORB Nb-content of 3.31-1.8+3.99, we computed a mantle carbon flux of 2.3-1.3+2.7 × 10 12 mol/yr, a value actually consistent with that derived from C/ 3He systematics.

  4. Bubble formation, vesicularity and fractionation of noble gases during MORB degassing

    NASA Astrophysics Data System (ADS)

    Sator, N.; Guillot, B. B.; Aubry, G.

    2012-12-01

    The fractionation of noble gases in oceanic basalts gives information on the source region and on the transport of volatiles up to the seafloor. For instance, the large distribution (~1-1,000) of the 4He/40Ar* ratio in mid-ocean ridge basalts (MORB), is interpreted as the signature of different degassing scenarios taking place at depth. Thus, a low value of this ratio is explained by a closed system degassing whereas a high value is assigned either to an open system degassing (where vesicles are lost in a magma chamber or at depth during magma ascent) or to a kinetic disequilibrium induced by a rapid magma ascent just prior eruption. Unfortunately, CO2 has a very low solubility in basaltic melts at pressure corresponding to the seafloor and an overwhelming majority of erupted lavas have lost their pristine volatile contents. However notable exceptions are the popping rocks characterized by a large vesicularity, a high CO2 content and a 4He/40Ar* ratio compatible with the expected U/K ratio of the upper mantle. Those samples likely have experienced a CO2 exsolution at about 35 km depth in the oceanic mantle. So, the very existence of these exceptional MORB samples suggests that CO2-rich melts could be present at a greater depth. Thus, explosive eruptions near ocean spreading centers are well documented (Hekinian et al., 2000) and are associated with volcaniclastic deposits containing highly vesicular basalts, a feature which suggests that this volcanism is driven by CO2-rich magmas (Helo et al., 2011). But how much CO2-rich are these magmas, that is the question. The objective of this study is to use molecular dynamics simulation (MD) to evaluate the vesicularity and the fractionation of noble gases in a degassing MORB melt. A previous simulation study (Guillot and Sator, 2011) has shown that the solubility of CO2 in basaltic melts increases steadily with the pressure and deviates significantly from the Henry's law at high pressures. From the CO2 solubility curve and the equations of state of the two coexisting phases, deduced from the MD simulation, we have evaluated the evolution of the vesicularity of a MORB melt at depth as function of its initial CO2 contents. An excellent agreement is obtained between our results and data on MORB samples collected at oceanic ridges. A conclusion is that CO2-rich magmas may exist at 100 km depth or more in the oceanic mantle. Moreover, we have evaluated the partitioning and the fractionation of noble gases between the CO2-saturated melt and supercritical CO2 vesicles as function of the pressure. We show that the large distribution of the 4He/40Ar* ratio reported in the literature can be explained if the magma experiences a suite of vesiculation and vesicle loss during ascent. Finally, by applying a pressure drop to a volatile bearing melt (CO2+noble gas), the MD simulation reveals the main steps of bubble formation and noble gas transfer at the nanometric scale. A key result is that the transfer of noble gases is found to be concomitant with CO2 bubble nucleation, a finding which suggests that the difference in diffusivity between He and Ar in the degassing melt has practically no effect on the 4He/40Ar* ratio measured in the vesicles. Guillot B., Sator N. (2011), GCA 75, 1829-1857 Hekinian et al. (2000), J. Volcanol. Geotherm. Res. 98, 49-77 Helo et al. (2011), Nature Geoscience 4, 260-263

  5. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus

    2017-04-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation (exclusion of TiO2 and REE). NMORB-normalised Nd/Yb, as a proxy of partial melt loss from subducting oceanic crust (<1) and metasomatism by typically LREE-enriched liquids (>1), shows no relationship with Fe3+/ΣFe. ΔFMQ, calculated using recently calibrated oxybarometers [2,4], broadly decreases with increasing pressure, which is ascribed to increasing garnet modes in metabasalts into which Fe3+ can be sequestered, similar to peridotite. The very low Fe3+/ΣFe, like V/Sc, appears to be a relatively robust indicator of low-pressure igneous processes and, potentially, the redox state of the ambient convecting mantle source to the protoliths of mantle eclogites. In contrast, Fe-based fO2 predominantly reflects pressure and bulk composition, and controls the speciation and mobility of volatiles in mafic heterogeneities during subduction and after emplacement in the cratonic mantle. The highly reduced nature of Archaean oceanic crust combined with further reduction upon pressure increase suggests that refractory graphite/diamond will be the stable carbon species. This may have prevented significant carbon output in Archaean subduction zones. [1] Aulbach and Jacob (2016) Lithos 262: 586-605; [2] Stagno et al. (2015) Contrib Mineral Petrol 42: 207-219; [3] Aulbach and Stagno (2016) Geology 44: 751-754; [4] Vasilyev (2016) PhD Thesis, Australian Nat Univ

  6. Tungsten Abundances in Hawaiian Picrites: Implications for the Mantle Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Arevalo, R. D.; Walker, R. J.; McDonough, W. F.

    2008-12-01

    Tungsten abundances have been measured in a suite of Hawaiian picrites (MgO >13 wt.%) from nine Hawaiian shield volcanoes (Mauna Kea, Mauna Loa, Hualalai, Loihi, Koolau, Kilauea, Kohala, Lanai and Molokai). Tungsten concentrations in the parental melts for these volcanoes have been estimated via the intersection of linear W-MgO trends with the putative MgO content of the parental melt (~16 wt.%). Tungsten behaves as a highly incompatible trace element in mafic to ultramafic systems; thus, given an independent assessment of the degree of partial melting for each volcanic center, the W abundances in their mantle sources can be determined. The mantle sources for Hualalai, Kilauea, Kohala and Loihi have non- uniform estimated W abundances of 11, 13, 16 and 27 ng/g, respectively, giving an average source abundance of 17±5 ng/g. This average source abundance is nearly six times more enriched than Depleted MORB Mantle (DMM: 3.0±2.3 ng/g) and slightly elevated relative to the Bulk Silicate Earth (BSE: 13±10 ng/g). The relatively high abundances of W in the Hawaiian sources relative to the DMM can potentially be explained as a consequence of crustal recycling. For example, incorporation of 30% oceanic crust (30 ng/g W), including 3% sediment (1500 ng/g W), into a DMM source could create the W enrichment observed in the Loihi source, consistent with estimates from earlier models based on other trace elements and isotope systems. The Hualalai source, however, has also been suggested to contain a substantial recycled component, as implied by similarly radiogenic 187Os/188Os, yet this source has the lowest estimated W abundance among the volcanic centers studied. The conflict between these results may: 1) reflect chemical differences among recycled components, 2) indicate a more complex history for Hualalai samples, e.g. involvement of a melt percolation component, or 3) implicate other sources of W.

  7. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.

    2016-09-01

    The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

  8. Solar helium and neon in the Earth

    NASA Technical Reports Server (NTRS)

    Honda, M.; Mcdougall, I.; Patterson, D. B.

    1994-01-01

    Neon isotopic compositions in mantle-derived samples commonly are enriched in (20)Ne and (21)Ne relative to (22)Ne compared with atmospheric neon ((20)Ne/(22)Ne and (21)Ne/(22)Ne ratios in atmospheric neon are 9.8 and 0.029, respectively), together with significant primordial (3)He. Such results have been obtained on MORB's, intraplate plume-related oceanic island basalts, backarc basin basalts, mantle xenoliths, ancient diamonds and CO2 well gases (e.g., 1 - 8). The highest (20)Ne/(22)Ne ratio observed in MORB glasses (= 13.6 plus or minus 1.3 is close to the solar value (= 13.6, as observed in solar wind). In order to explain the enrichment of (20)Ne and (21)Ne relative to atmospheric neon for samples derived from the mantle, it is necessary to postulate the presence of at least two distinct non-atmospheric components. The two most likely candidates are solar and nucleogenic ((20)Ne/(22)Ne solar = 13.6 (21)Ne/(22)Ne solar = 0.032, (20)Ne/(22)Ne nucleogenic = 2.5 and (21)Ne/(22)Ne nucleogenic = 32). This is because solar neon is the only known component with a (20)Ne/(22)Ne ratio greater than both the atmospheric value and that observed in samples derived from the mantle. Nucleogenic neon is well known to elevate (21)Ne/(22)Ne ratios. Neon isotopic signatures observed in mantle-derived samples can be accounted for by mixing of the three neon end members: solar, nucleogenic and atmospheric.

  9. Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?

    USGS Publications Warehouse

    Meibom, A.; Anderson, D.L.; Sleep, Norman H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L.

    2003-01-01

    The existence of a primordial, undegassed lower mantle reservoir characterized by high concentration of 3He and high 3He/4He ratios is a cornerstone assumption in modern geochemistry. It has become standard practice to interpret high 3He/4He ratios in oceanic basalts as a signature of deep-rooted plumes. The unfiltered He isotope data set for oceanic spreading centers displays a wide, nearly Gaussian, distribution qualitatively similar to the Os isotope (187Os/188 Os) distribution of mantle-derived Os-rich alloys. We propose that both distributions are produced by shallow mantle processes involving mixing between different proportions of recycled, variably aged radiogenic and unradiogenic domains under varying degrees of partial melting. In the case of the Re-Os isotopic system, radiogenic mid-ocean ridge basalt (MORB)-rich and unradiogenic (depleted mantle residue) endmembers are constantly produced during partial melting events. In the case of the (U+Th)-He isotope system, effective capture of He-rich bubbles during growth of phenocryst olivine in crystallizing magma chambers provides one mechanism for 'freezing in' unradiogenic (i.e. high 3He/4He) He isotope ratios, while the higher than chondritic (U+Th)/He elemental ratio in the evolving and partially degassed MORB melt provides the radiogenic (i.e. low 3He/4He) endmember. If this scenario is correct, the use of He isotopic signatures as a fingerprint of plume components in oceanic basalts is not justified. Published by Elsevier Science B.V.

  10. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  11. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    NASA Astrophysics Data System (ADS)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  12. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  13. The He isotope composition of the earliest picrites erupted by the Ethiopia plume, implications for mantle plume source

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Rogers, Nick; Davies, Marc

    2016-04-01

    The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a common depletion history and that they do not mix with shallower mantle reservoirs to the same extent.

  14. The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences

    NASA Astrophysics Data System (ADS)

    Ribeiro, Luisa Pinto; Martins, Sofia; Hildenbrand, Anthony; Madureira, Pedro; Mata, João

    2017-12-01

    New geochemical, isotopic (Sr-Nd-Hf-Pb) and K-Ar data, are presented here on samples from the Southern Azores Seamount Chain (SASC) located south of the Azores Plateau. The SASC also includes the Great Meteor, Small Meteor and Closs seamounts, morphologically connected by a saddle at - 4100 m deep. We conclude that the SASC are characterized by a narrow isotopic variability that falls within the Azores isotopic field. Although each seamount has its own isotopic signature, their mantle source must comprise four local mantle end-members, three of which are common to the Azores, e.g. Plato isotopic signature results from the mixing between HIMU and N-MORB while Great Meteor signature results from this mix with the Azores Common Component (AzCC). A fourth end-member with high 208Pb/204Pb and decoupled Th/U ratios (Δ8/4 up to 59.2) is identified on Great Meteor northern flank. New K-Ar ages on Plato (33.4 ± 0.5 Ma) and Small Hyeres (31.6 ± 0.4 Ma) show nearly coeval volcanism, which is contemporaneous with the E-MORBs erupted at the MAR, drilled on oceanic crust with 30-34 Ma (DSDP82). This study endorses the genetic link between the Azores Archipelago and the SASC to the long-term activity of the Azores plume and the large-scale ridge-hotspot interaction, contributing to better constrain the temporal-spatial evolution of this region of the North Atlantic.

  15. Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB

    NASA Astrophysics Data System (ADS)

    Bani, Philipson; Tamburello, Giancarlo; Rose-Koga, Estelle F.; Liuzzo, Marco; Aiuppa, Alessandro; Cluzel, Nicolas; Amat, Iwan; Syahbana, Devy Kamil; Gunawan, Hendra; Bitetto, Marcello

    2018-01-01

    Located on Halmahera island, Dukono is among the least known volcanoes in Indonesia. A compilation of the rare available reports indicates that this remote and hardly accessible volcano has been regularly in eruption since 1933, and has undergone nearly continuous eruptive manifestation over the last decade. The first study of its gas emissions, presented in this work, highlights a huge magmatic volatile contribution into the atmosphere, with an estimated annual output of about 290 kt of SO2, 5000 kt of H2O, 88 kt of CO2, 5 kt of H2S and 7 kt of H2. Assuming these figures are representative of the long-term continuous eruptive activity, then Dukono is the current most prominent volcanic gas discharge point in Indonesia and ranks among the top-ten volcanic SO2 sources on earth. Combining our findings with other recent volcanic SO2 flux results, obtained during periodic campaigns at a number of volcanoes with DOAS and UV-Cameras, the SO2 emission budget for Indonesia is estimated at 540 kt year-1, representing 2-3% of the global volcanic SO2 contribution into the atmosphere. This figure should be considered as minimum as gas emissions from numerous other active volcanoes in Indonesia are yet to be evaluated. This voluminous degassing output from Dukono is sustained by a depleted Indian-MORB (I-MORB) mantle source. This latter is currently undergoing lateral pressure from the steepening of the subducted slab, the downward force from the Philippine Sea plate and the westward motion of a continental fragments along the Sorong fault, leading to high fluid fluxes to the surface. Over the course of Dukono eruptive activity, the magma reservoir has changed from a less differentiated source that fed the past voluminous lava flows to a more evolved melt that sustained the current ongoing explosive activity.

  16. Carbon isotope composition of CO2-rich inclusions in cumulate-forming mantle minerals from Stromboli volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Gennaro, Mimma Emanuela; Grassa, Fausto; Martelli, Mauro; Renzulli, Alberto; Rizzo, Andrea Luca

    2017-10-01

    We report on measurements of concentration and carbon isotope composition (δ13CCO2) of CO2 trapped in fluid inclusions of olivine and clinopyroxene crystals separated from San Bartolo ultramafic cumulate Xenoliths (SBX) formed at mantle depth (i.e., beneath a shallow Moho supposed to be at 14.8 km). These cumulates, erupted about 2 ka ago at Stromboli volcano (Italy), have been already investigated by Martelli et al. (2014) mainly for Sr-Nd isotopes and for their noble gases geochemistry. The concentration of CO2 varies of one order of magnitude from 3.8·10- 8 mol g- 1 to 4.8·10- 7 mol g- 1, with δ13C values between - 2.8‰ and - 1.5‰ vs V-PDB. These values overlap the range of measurements performed in the crater gases emitted at Stromboli (- 2.5‰ < δ13CCO2 < - 1.0‰). Since SBX formed from relatively primitive mantle-derived basic magmas, we argue that the isotope composition displayed by fluid inclusions and surface gases can be considered representative of the magma volatile imprinting released by partial melting of the mantle source beneath Stromboli (- 2.8‰ < δ13C < - 1.0‰). In addition, the δ13C signature of CO2 is not significantly modified by fractionation due to magmatic degassing or intracrustal contamination processes owing to magma ascent and residence within the volcano plumbing system. Such δ13C values are higher than those commonly reported for MORB-like upper mantle (- 8 ÷ - 4‰) and likely reflect the source contamination of the local mantle wedge by CO2 coming from the decarbonation of the sediments carried by the subducting Ionian slab with a contribution of organic carbon up to 7%.

  17. Investigating the Mantle Source of the Lunar Crater Volcanic Field, Nevada: Evidence of a Thermal Plume?

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Roden, M.

    2016-12-01

    The Easy Chair Crater (ECC), located within the Lunar Crater Volcanic Field (LCVF) in central Nevada is particularly interesting because of the unusually high equilibrium temperatures and strain recorded by the mantle-derived xenoliths at LCVF1. In addition, a gravity and elevation anomaly suggests the possibility of an underlying thermal plume in the region2. In order to determine if the rocks at ECC are geochemically similar to rocks from other plume-related regions, we analyzed melt inclusions and olivine phenocrysts collected from basalts near the crater. Chlorine amounts in melt inclusions were normalized to the highly incompatible K to produce a ratio that is insensitive to crystallization within or along the walls of the inclusion3. Because Cl is implicated in lithosphere recycling, the Cl/K ratio can be used to differentiate magmatic source components. Initial results (Fig. 1) indicate that basalts from ECC are geochemically more similar to ocean island basalts than to MORB or arc basalts. Elemental ratios in olivine phenocrysts from basaltic magmas can be used to determine the petrology of the source rock for particular silicate melts. In turn, petrology of mantle sources is thought to correlate with source nature (e.g., plume versus upper mantle)4. Specifically, Ni and Mn amounts were evaluated in order to determine if magma sources were pyroxenite-rich. Preliminary calculations of the wt. fraction of pyroxenite in the source of ECC basalts ranged from 0.13 to 0.68 indicating the possibility of a significant amount of pyroxenite in the magmatic source which would be expected if a plume was present beneath LCVF. References:1Smith, D. (2000) JGR 105: 16769; 2Saltus, R.W. & Thompson, G.A. (1995) Tectonics 14:1235; 3Patiño Douce, A.E. & Roden, M.F. (2006) Geochim Cosmochim Acta 70: 3173; 4Gurenko et al. (2010) Contrib Mineral Petrol 159: 689

  18. A comparison of chemical compositions of reported altered oceanic crusts and global MORB data set: implication for isotopic heterogeneity of recycled materials

    NASA Astrophysics Data System (ADS)

    Shimoda, G.; Kogiso, T.

    2017-12-01

    Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic crusts based on reported bulk chemical compositions of altered oceanic crusts and global data sets of MORB. On the basis of the chemical variation, we will discuss isotopic evolution of altered oceanic crusts to delineate isotopic variation of recycled oceanic crusts.

  19. Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan; Song, Maoshuang; Li, Li; Sun, Weidong; Ding, Xing

    2014-01-01

    Previously published Cu partition coefficients (DCu) between silicate minerals and melts cover a wide range and have resulted in large uncertainties in model calculations of Cu behavior during mantle melting. In order to obtain true DCumineral/melt values, this study used Pt95Cu05 alloy capsules as the source of Cu to experimentally determine the DCu between olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), spinel (spl), garnet (grt) and hydrous silicate melts at upper mantle conditions. Three synthetic silicate compositions, a Komatiite, a MORB and a Di70An30, were used to produce these minerals and melts. The experiments were conducted in piston cylinder presses at 1.0-3.5 GPa, 1150-1300 °C and oxygen fugacities (fO2) of from ∼2 log units below to ∼5 log units above fayalite-magnetite-quartz (FMQ). The compositions of minerals and quenched melts in the run products were measured with EMP and LA-ICP-MS. Attainment of equilibrium is verified by reproducible DCu values obtained at similar experimental conditions but different durations. The results show that DCu for ol/, opx/, spl/ and possibly cpx/melt increase with increasing fO2 when fO2 > FMQ + 1.2, while DCu for cpx/ and spl/melt also increase with increasing Na2O in cpx and Fe2O3 in spinel, respectively. In the investigated P-T-fO2 conditions, the DCumineral/melt values are 0.04-0.14 for ol, 0.04-0.09 for opx, 0.02-0.23 for cpx, 0.19-0.77 for spl and 0.03-0.05 for grt. These results confirm that Cu is highly incompatible (DCu < ∼0.2) in all the silicate minerals and oxides of the upper mantle with the exception of the high-Fe spinel, in which Cu is moderately incompatible (DCu = 0.4-0.8) and thus Cu will be enriched in the derived melts during mantle partial melting and magmatic differentiation if sulfide is absent. These experimental DCu values are used to assess the controls on Cu behavior during mantle melting. The model results suggest that MORBs and most arc basalts must form by sulfide-present melting at relatively reduced conditions, while high Cu (>70 ppm) arc basalts may form at oxidized, sulfide-absent conditions, which is consistent with the possibility of some high fO2 regions present in the arc mantle.

  20. Petrogenesis of ultramafic xenoliths from Hawaii inferred from Sr, Nd, and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Okano, Osamu; Tatsumoto, Mitsunobu

    Isotopic compositions of Nd, Sr, and Pb in xenoliths in the Honolulu volcanic series from the Salt Lake Crater (H-type) are similar to those of the host post-erosional basalts, but are distinct from the magma sources of Koolau shield tholeiites and MORB. In contrast, one spinel Iherzolite (K-type) has isotopic compositions of Nd and Sr that are close to those of Koolau tholeiite rather than to the other Hawaiian basalts. Previous studies have shown that Sr isotopic composition of the xenoliths and the host basalt and that trace element concentrations in minerals of garnet Iherzolites from Honolulu basalt were nearly in equilibrium with the host magma, indicating that Honolulu volcanics were derived from garnet Iherzolite or similar material. However, differences exist among the isotopic compositions (especially Nd) of the xenoliths indicating that they are accidental inclusions from upper layers. The similarity in isotopic compositions between xenoliths and Honolulu basalt suggests that the source areas in the mantle are chemically similar. Correlation of 238U/204Pb vs. 206Pb/204Pb of chrome diopside separated from the H-type spinel Iherzolites indicates that the xenoliths are 80±36 Ma, which corresponds to the lithosphere age of the Hawaiian site. This age is consistent with petrological studies [e.g., Sen and Leeman, 1991] which have found that the spinel Iherzolite inclusions are derived from the lithosphere wall rocks. The ɛNd = ˜+8 of the H-xenoliths is slightly lower than that for the East Pacific Rise MORB indicating that the xenoliths are derived from a trace element depleted source similar to the MORB residue. If the garnet Iherzolite xenoliths are derived from mixture of spinel Iherzolite with intrusive pyroxenite, then the source of the pyroxenite contained little plume component. The one exceptional spinel Iherzolite xenolith may be a residue of Koolau-like tholeiitic magma or may have been metasomatized by Koolau volcanism in the deep lithosphere. Isotopic compositions of gabbro in Kaupulehu are similar to MORB, indicating its derivation from the oceanic crust. The Sr and Nd isotopic compositions of dunite are similar to those of Hualalai alkaline magma, consistent with the theory that the dunite is a cumulate from the Hualalai magma.

  1. Os-186 and Os-187 Enrichments and High-He-3/He-4 sources in the Earth's Mantle: Evidence from Icelandic Picrites

    NASA Technical Reports Server (NTRS)

    Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni

    2007-01-01

    Picrites from the neovolcanic zones in Iceland display a range in Os-187/Os-188O from 0.1297 to 0.1381 ((gamma)Os = 0.0 to 6.5) and uniform Os-186/Os-188 of 0.1198375+/-32 (2 (sigma)). The value for Os-186/Os-188 is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398+/-16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in Os-186/Os-188 and Os-187/Os-188 from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high He-3/He-4, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between Os-187/Os-188 and He-3/He-4 from 9.6 to 19 RA in Iceland picrites is best modeled as mixtures of 500 Ma or older ancient recycled crust mixed with primitive mantle, creating a hybrid source region that subsequently mixes with the convecting MORB mantle during ascent and melting. This multistage mechanism to explain these isotope systematics is consistent with ancient recycled crust juxtaposed with more primitive, relatively He-rich mantle, in convective isolation from the upper mantle, most likely in the lowermost mantle. This is inconsistent with models that propose random mixing between heterogeneities in the convecting upper mantle as a mechanism to explain the observed isotopic variation in oceanic lavas or models that produce a high He-3/He-4 signature in melt depleted and strongly outgassed, He-poor mantle. Instead these systematics require a deep mantle source to explain the 3He/4He signature in Iceland lavas. The He-3/He-4 of lavas derived from the Iceland plume changed over time, from a maximum of 50 RA at 60 Ma, to approximately 25-27 RA at present. The changes are coupled with distinct compositional gaps between the different aged lavas when H-3/He-4 is plotted versus various geochemical parameters such as Nd-143/Nd-144 and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.

  2. Delta Niobium or Delta VICE?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.

    2006-12-01

    Delta Niobium or Delta VICE? Niobium is one of a few chemical elements that can be used to discriminate between melts derived from upwelling mantle, represented by MORBs and OIBs, and those derived from subduction and continental crust environments. The Nb/U ratio was introduced because these two elements appear to partition nearly identically in upwelling environments, but very differently (from one another) in subduction and continental environments (Hofmann et al., 1986). Fitton et al. (1997, 2003) have taken a radically different approach, using log(Nb/Y)-log(Zr/Y) correlations that appear to discriminate between MORB and OIB (or plume) environments. MORB correlations are parallel to, and at lower Nb/Y ratios than, Iceland basalt correlations. This is expressed by a discrimination parameter defined as Delta Nb = 1.74 + log(Nb/Y) - 1.92 log(Zr/Y). N-MORB have negative Delta-Nb values, whereas Iceland and other OIBs have positive values. Fitton et al. interpret this in terms of a niobium deficiency in MORB that is balanced by a Nb excess in OIBs. This interpretation conflicts with evidence based on Nb/U ratios (Hofmann et al., 1986), that MORB and OIB are parts of a common reservoir, which is different from, and complementary to, the continental crust. Both parts of this MORB-OIB reservoir are characterized by higher-than-primitive Nb/U and Nb/Th ratios, whereas continental crust has dramatically lower Nb/U and Nb/Th ratios. The use of VICE/MICE (very-incompatible- element to moderately-incompatible-element) ratios, such as Nb/Y, obscures this. The significance of the VICE/MICE plot becomes clear if one replaces Nb by other VICEs in the log(Nb/Y)-log(Zr/Y) plot. This shows that any of these VICEs yield similar topologies as Nb/Y. Thus for a given Zr/Y ratio, depleted MORB have consistently lower Ba/Y, Th/Y, and La/Y ratios than do Iceland basalts, even the most incompatible-element- depleted Iceland picrites. This is caused by a less extreme depletion of Icelandic picrites (and tholeiites) in VICEs relative to Y, causing their spidergram patterns to be flatter than those of depleted MORB, which "drop off" more steeply. The important point is that there is no special Nb effect. The difference between Iceland-style and MORB-style depletion might therefore be called "Delta VICE" rather than "Delta Niobium." This assessment of Nb geochemistry is confirmed by new compilations for several MORB and OIB suites, which shows that in some of these suites, Nb and Th yield the most uniform ratios, whereas Nb/U is more uniform in others (including Iceland). Similarly, Ta is similar to Nb in some suites, whereas it is slightly more compatible than Nb in others. These slight regional differences are of minor consequence in the present context. The cause of the greater depletion in VICEs relative to MICEs in N-MORB compared with the most depleted Icelandic is most likely related to the roles of garnet and clinopyroxene during source depletion processes.

  3. Stable Vanadium Isotopes as a Redox Proxy at High Temperatures?

    NASA Astrophysics Data System (ADS)

    Prytulak, J.; Sossi, P.; Halliday, A.; Plank, T. A.; Savage, P.; Woodhead, J. D.

    2016-12-01

    There is currently no consensus on the relative oxygen fugacity (fO2) of the mantle source of mid-ocean ridge basalts compared to the sub-arc mantle, the region that is central to the mediation of crust-mantle mass balances. Vanadium is a multivalent transition metal whose stable isotope fractionation may reflect oxygen fugacity (fO2). However, a direct link between V isotope composition and fO2 is currently far from convincingly demonstrated. Furthermore, differences in co-ordination environment also play a large role in causing stable isotope fractionation. Here we present V isotope measurements of two suites of co-genetic magmas from contrasting tectonic settings: the Mariana arc and Hekla volcano, Iceland. We use this data alongside the tightly constrained V isotope composition of MORB [1] to assess the effects of fO2 and crystal fractionation on stable vanadium isotopes. We show that, for a given MgO content, V isotopes are identical within analytical error between arc basalts from the Marianas, lavas from Hekla, and MORB. The most striking aspect of our igneous, high temperature V isotope data is the large isotope fractionation (on the order of 2 ‰) towards heavier values in magmatic suites from both Hekla and the Marianas with progressive differentiation. We use a self consistent model of fractionating cotectic phases in both igneous suites to match major, trace and V isotope data. Vanadium partition coefficients required for (titano)magnetite are significantly higher in Hekla (DVmag = 42) than Mariana lavas (DVmag = 32), consistent with a more oxidised source in the latter. Calculated Rayleigh fractionation factors are similar in both suites (Δ51Vmin-melt of -0.4 to -0.5‰) and strongly implicate co-ordination differences between oxides and melt are the dominant driving force for V isotope fractionation. Thus, although fO2likely has a second order effect on V isotopes, they are not a direct proxy for oxygen fugacity in magmatic systems. [1] Prytulak, et al. 2013. EPSL 365, 177-189

  4. Melting mode and source lithology inferred from trace element systematic in historical olivine from Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.

    2017-04-01

    Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and basanite magma were reproduced approximately a century later may reflect episodic carbonatic fluxing in the slowly uprising Canarian mantle plume.

  5. Physiognomy and timing of metasomatism in the southern Vourinos ultramafic suite, NW Greece: a chronicle of consecutive episodes of melt extraction and stagnation in the Neotethyan lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Kapsiotis, Argyrios N.

    2016-04-01

    The southern Vourinos massif, located in the Hellenides orogenic belt, forms part of the mantle section of the homonymous Neotethyan ophiolite complex in the NW Greek mainland. The southern domain of the massif is comprised voluminous and strained peridotite outcrops with variable pyroxene and olivine modal abundances, ranging from harzburgite (sensu stricto) to olivine-rich harzburgite and fine- to coarse-grained dunite. These peridotites are intruded by a complex network of undeformed websterite to olivine-rich websterite dykes. The peridotite lithologies are characterized by high Cr# [=Cr/(Cr + Al)] values in Cr-spinel (0.54-0.80), elevated Mg# [=Mg/(Mg + Fe2+)] ratios in olivine (0.91-0.94), poor Al2O3 content in clinopyroxene (up to 1.85 wt%) and very low bulk-rock abundances of Al2O3 (up to 0.66 wt%), CaO (up to 0.84 wt%), V (up to 45 ppm), Sc (up to 11 ppm) and REE, which are suggestive of their strongly depleted nature. They also display a wide range of fO2 values that vary between the fayalite-magnetite-quartz (FMQ-2) and FMQ+1 buffers, signifying their genesis under anoxic to oxidizing conditions. Simple batch and fractional melting models cannot satisfactorily explain their ultradepleted composition, whereas whole-rock Ni/Yb versus Yb systematics can be simulated by up to 27 % closed-system, non-modal, dynamic melting of a primitive mantle source, implying their multifarious origin in a progressively changing, in space and time, geotectonic setting. Chromian spinel chemistry (Cr# vs. TiO2) provides evidence for two consecutive melt-peridotite interaction events pertaining to patent metasomatism. The first incident is related to the release of IAT melts from the deep parts of the southern Vourinos mantle segment, which reacted with harzburgites transforming them into olivine-rich harzburgites and replacive dunites, whereas mixing of different pulses of IAT melts with distinct SiO2 activities generated heterogeneously deformed, cumulitic dunites. The second event is linked to the genesis of MORB/IAT magmas that originally invaded harzburgites. The MORB/IAT melts, although intensely reactive at the stage of harzburgite impregnation, lost their ability to react and stagnated in the peridotite groundmass as they approached the conceivable boundary with olivine-rich harzburgite. Microtextural observations and compositional data support that the interstitial, unstrained clinopyroxene ± olivine aggregates recognized in the harzburgite varieties represent intergranular melt blebs that `chilled' in the mantle during an episode of rapid lithosphere exhumation. This is further corroborated by the absence of lavas with MORB/IAT geochemical affinities from the Vourinos extrusive sequence. Microstructural features of websterite veins suggest that their genesis cannot be ascribed to the melts that penetrated the peridotites that cross cut. In contrast, they retain marks of olivine assimilation from the wall rocks that was facilitated by interaction with olivine-undersaturated, arc-derived tholeiitic melts released at a late phase from the ultradepleted southern Vourinos mantle suite.

  6. Oceanic Volcanism from the Low-Velocity Zone - Without Mantle Plumes (Invited)

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Gudfinnsson, G. H.

    2010-12-01

    The existence of hot mantle plumes is addressed by using a combination of regional and global shear-wave data, major-element compositions of Hawaiian and MORB glasses (including Iceland), and phase relations for natural lherzolite and the systems CaO-MgO-Al2O3-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-Na2O-FeO. At the East Pacific Rise, the depth of minimum shear wave velocity (Vsv), which we interpret to be the depth of maximum melting, occurs at ~65 km (Webb & Forsyth, 1998, Science, 280, 1229; Conder et al., 2002, JGR, 107, 2344)). This depth increases with lithospheric age and stabilizes at ~150 km (~5 GPa) for ages > ~75 my (Maggi et al., 2006, GJI, 166, 1384). Variations in shear wave anisotropy follow the same pattern (Ekström, 2000, Geophys. Mon. 121, 239) but with a slightly shallower depth of ~130 km for the maximum shear wave anisotropy of the mature Pacific. For a given volcano, the classical Hawaiian sequence of volcanism is early alkalic lavas extracted at ~3 GPa, 1350°C (Sisson et al., 2009, CMP, 158, 803), then voluminous tholeiitic lavas at ~ 4-5 GPa, 1450-1560°C (~150 km), and final alkalic lavas that contain, on Oahu, nanodiamond-bearing xenoliths (Wirth & Rocholl, 2003, EPSL, 211, 357; Frezotti & Peccerillo, 2007, EPSL, 262, 273) and require melt extraction at a pressure slightly > 6 GPa. This progressive increase in P-T conditions of the Hawaiian source matches the equilibrium magma-stratigraphy vs depth indicated by phase relations along a mature-ocean geotherm. This consistency indicates that Hawaiian volcanism occurs by progressively deeper extraction of magmas from a mature LVZ by fracturing of the overlying LID. No decompression melting or enhanced temperature is indicated. At spreading ridges, including Iceland, the absence of glass compositions that define olivine-controlled crystallization trends and the phase equilibrium constraint that all MORBs are extracted at ~1250-1280°C, 1.2-1.5 GPa (Presnall & Gudfinnsson, 2008, JPet., 49, 615) are in excellent agreement with the seismic observation of minimum shear-wave velocity and maximum shear-wave anisotropy (maximum melting) beneath ridges at ~ 65 km. Thus, all MORBs, including those at Iceland, are extracted within the thermal boundary layer along a perturbed geotherm at temperatures cooler than magma-extraction temperatures at Hawaii. This requires a steepened dT/dP slope of the conductive portion of the geotherm at ridges, which is consistent with oceanic heat-flow data vs crustal age. Mantle temperatures for the strongest plume candidate, Hawaii, are consistent with temperatures of oceanic mantle elsewhere of a corresponding age. Temperatures of magma-extraction along all oceanic ridges are far below temperatures consistent with hot mantle plumes.

  7. Fore-arc mantle peridotites and back-arc basin basalts from the Izu-Bonin-Mariana subduction factory (ODP LEGs 125 and 195): a modern analogue for Mediterranean ophiolites

    NASA Astrophysics Data System (ADS)

    Zanetti, A.; D'Antonio, M.; Vannucci, R.; Raffone, N.; Spadea, P.

    2009-04-01

    Serpentinites, basaltic lavas and calc-alkaline volcanoclastic sequences sampled during recent Ocean Drilling Program cruises in the western Pacific Ocean allow comparisons with ophiolites from eastern Mediterranean area, which are believed to be related to marginal seas characterised by rapidly propagating back-arc extension and slab rollback (e.g. Albania and Cyprus). Serpentinites recovered at the Torishima, Conical and South Chamorro Seamounts (ODP Legs 125 and 195), located on the Izu-Bonin-Mariana (IBM) forearc, still record complex petrochemical features acquired during their high-T mantle evolution. This latter has been referred to a three-stages-model, involving in chronological sequence: 1) adiabatic mantle upwelling accompanied by 20-25% polybaric partial melting; 2) local depletion in modal orthopyroxene determined by reactive melt migration; 3) late interstitial crystallisation of ultra-depleted to depleted melts. The record of the first stage is preserved in the less-refractory IBM forearc peridotites, which compositions lie on trends describing the decompression melting of uprising asthenospheric mantle. During this stage, the peridotites were actual melt sources. The large average degree of depletion suggests that partial melting events were assisted by particularly hot geotherms. The second stage occurred at relatively lower pressures, according to the large orthopyroxene dissolution, and is guessed to be firmly related to arc volcanism. Nevertheless, the progressive change of oxidation state of the mantle minerals, which decreases from the Torishima (N Izu-Bonin forearc) through the Conical (N Mariana forearc) to the South Chamorro Seamount (S Mariana forearc), highlights a marked gradient in terms of contribution to the uprising melts from slab-derived component. It is argued that the melt compositions changed from boninitic (at Torishima) to depleted-MORB at (South Chamorro). The third stage determined the petrographic and mineralogical features occurring in all IBM forearc peridotites (e.g. crystallisation of late cpx, embayment of opx porphyroclasts), and likely marks the accretion of the mantle sequence to the thermal boundary layer. It was accompanied by the devolopment of transient geochemical gradients in the migrating liquids mainly governed by chromatographic-type chemical exchange with the peridotite. The West Philippine Basin (WPB) is a back-arc basin that opened in the Philippine Sea Plate (PSP) between the current position of the Palau-Kyushu Ridge (PKR) and the margin of East Asia. Spreading occurred at the Central Basin Fault (CBF) from 54 to 30 Ma. The PKR was active since ~48 to 35 Ma constituting a single volcanic arc with the Izu-Bonin-Mariana Arc. ODP Leg 195 Site 1201 is located in the WPB, ~100 km west of the PKR, on 49 Ma basaltic crust formed by NE-SW spreading at the CBF. From ~35 to 30 Ma, pelagic sedimentation at Site 1201 was followed by turbidite sedimentation, fed mostly by early Mariana Arc (PKR)-derived volcanic clasts. These volcanics are calc-alkaline, whereas PKR rocks from literature have mostly boninitic and arc tholeiitic affinity; the WPB basement basalts have MORB to arc-like affinity, as expected for a back-arc basin. Sr, Nd, Pb and Hf isotope data highlight the Indian Ocean MORB-like character of WPB basement basalts, suggesting an upper mantle domain distinct from that underlying the Pacific Plate. The geochemical and isotopic features of PKR volcanics reflect higher amounts of subduction-derived components, added mostly as siliceous melts, in the source of arc magmas relative to that of basement basalts. In that respect, Site 1201 PKR volcanics resemble calc-alkaline volcanics of the currently active Mariana Arc. In addition, their calc-alkaline affinity, unradiogenic neodymium, and inferred Middle Oligocene age, suggest they might represent an evolved stage of arc volcanism at Palau-Kyushu Ridge, perhaps shortly before the end of its activity.

  8. Petrogenesis of basalts from the Archean Matachewan Dike Swarm Superior Province of Canada

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1987-01-01

    The Matachewan Dike swarm of eastern Ontario comprises Archean age basalts that were emplaced in the greenstone, granite-greenstone, and metasedimentary terrains of the Superior Province of Canada. The basalts are Fe-rich tholeiites, characterized by the near ubiquitos presence of large, compositionally uniform, calcic plagioclase. Major and trace element whole-rock compositions, along with microprobe analyses of constituent phases, from a group of dikes from the eastern portion of the province, were evaluated to constrain petrological processes that operated during the formation and evolution of the magmas. Three compositional groupings, were identified within the dikes. One group has compositional characteristics similar to modern abyssal tholeiites and is termed morb-type. A second group, enriched in incompatible elements and light-REE enriched, is referred to as the enriched group. The third more populated group has intermediate characteristics and is termed the main group. The observation of both morb-type and enriched compositions within a single dike strongly argues for the contemporaneous existence of magmas derived through different processes. Mixing calculations suggest that two possibilities exist. The least evolved basalts lie on a mixing line between the morb-type and enriched group, suggesting mixing of magmas derived from heterogeneous mantle. Mixing of magmas derived from a depleted mantle with heterogeneous Archean crust can duplicate certain aspects of the Matachewan dike composition array.

  9. D/H and Water Concentrations of Submarine MORB Glass Around the World: Analytical Aspects, Standardization, and (re)defining Mantle D/H Ranges

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Dixon, J. E.; Langmuir, C. H.; Palandri, J. L.

    2015-12-01

    The advent and calibration of the Thermal Combustion Element Analyzer (TCEA) continuous flow system coupled with the large-radius mass spectrometer MAT253 permits precise (±0.02 wt.% H2O, ±1-3‰ D/H) measurements in 1-10 mg of volcanic glass (0.1 wt.% H2O requires ~10 mg glass), which permits the targeting of small amounts of the freshest concentrate. This is a >100 factor reduction in sample size over conventional methods, four times over more common Delta series instruments. We investigated in triplicate 115 samples of submarine MORB glasses ranging from water-poor (0.1-0.2wt%) to water-rich (1.2-1.5wt%). These samples were previously investigated for major and trace elements, radiogenic isotopes; a large subset of these samples coming from the FAZAR expedition were studied previously by FTIR for water concentration. We also ran samples previously studied by the conventional off-line technique: MORB glass including those from the Easter Platform and the Alvin 526-1 standard (0.2wt% H2O). We observe excellent 1:1 correspondence (1.02x+0.02, R2=0.94) of wt% water by FTIR and TCEA suggesting complete extraction of water and no dependence on water concentration. We measure 51‰ total range in D/H that correlates with all other chemical and isotopic indicators of mantle enrichment, with the heaviest values occurring in the most enriched samples. When used uncorrected values of H2 gas run against H2 gas of known composition, this range agrees nicely with previous D/H range for MORB (-30 to -90‰), measured for samples run conventionally. Uncorrected analyses of Alvin glass 526-1 gives -66‰. When run against SMOW, SLAP and -41‰ water sealed in silver cups, the range is shifted by -15‰; when standardization is done by with three commonly used mica standards as is done most commonly in different labs, the range is shifted downward by -30-32‰. There are no isotopic offsets related to total water or D/H range requiring different slope or non-linear correction. The NBS30 mica standard has been recently shown to be heavier and more heterogeneous than previously thought, and older conventional methods that relied on Pt reduction unreliable. Based on these new TCEA results, the D/H values of MORB and mantle samples may need to be revised to lighter values by 15‰.

  10. Olivine-Rich Troctolite from the Southwest Indian Ridge: Constrains on Melt-Rock Reaction beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Yang, A. Y.

    2017-12-01

    The origin of olivine-rich troctolite, which have been recovered in the plutonic sample suites from the fast-spreading East Pacific Rise, and slow-spreading Mid-Atlantic Ridge and Central Indian Ridge, has been highly debated. They can form either by fractionation of primitive mid-ocean ridge basalt (MORB) melts or by melt migrating through pre-existing (possibly mantle) olivine matrix, thus recording valuable information of magmatic process at mantle-crust transition. This study presents in situ major and trace element study on the olivine-rich troctolite first reported from the ultraslow-spreading Southwest Indian Ridge (SWIR), together with a series of samples from peridotite, gabbro to basalt from an amagmatic segment at 53°E during Dayangyihao Cruises, to investigate the magmatic processes occurred at mantle-crust transition and origin of olivine-rich troctolite. The olivine in the troctolite shows cumulate textures with interstitial clinopyroxene, plagioclase and minor spinel, which is cross-cut by an olivine gabbro vein. Olivine in the troctolite show only mildly decreasing NiO contents (from 0.31-0.25 wt.%) with decreasing Fo (from 86 to 81), and even olivine in the gabbro have NiO up to 0.24 wt.% with Fo of 75. The Fo vs. Ni correlation of olivine is shifted to uniquely higher NiO at a certain Fo compared to the trends defined by either olivine from other lower oceanic crust (LOC) cumulates worldwide or olivine compositions from classic fractionation model for primitive MORB magma. Interstitial clinopyroxene in the troctolite have high Mg# (88-90), Cr2O3 (up to 1.51 wt.%) and TiO2 contents (up to 1.01 wt.%) with Eu/Eu* from 0.4-0.6. Such high-Ti-Cr-Mg# clinopyroxene is rare among global LOC cumulates, and cannot result from simple fractionation of MORB magma. The mineral compositions in the olivine-rich troctolite could be modeled by reaction between a primitive olivine matrix and a highly evolved melt (with 2.4 wt.% TiO2), and such a melt composition is not identified in MORB in this segment. The presence of olivine-rich troctolite from fast- to ultraslow-spreading ridges suggests MORB melt migrating though and reacting with an olivine-rich rock or mush is a universal process beneath MOR and would have an important control in the formation of the lower oceanic crust.

  11. Melting and Crystallization at Core Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams & Garnero (1996) Science 273, 1528. [2] Andrault et al. (2011), EPSL 304, 251. [3] Nomura et al. (2014) Science 343, 522. [4] Andrault et al. (2014) Science 344, 892. [5] Boukaré et al (2015) J.Geophys. Res, in press.

  12. Synthetic receiver function profiles through the upper mantle and the transition zone for upwelling scenarios

    NASA Astrophysics Data System (ADS)

    Nagel, Thorsten; Düsterhöft, Erik; Schiffer, Christian

    2017-04-01

    We investigate the signature relevant mantle lithologies leave in the receiver function record for different adiabatic thermal gradients down to 800 kilometers depth. The parameter space is chosen to target the visibility of upwelling mantle (a plume). Seismic velocities for depleted mantle, primitive mantle, and three pyroxenites are extracted from thermodynamically calculated phases diagrams, which also provide the adiabatic decompression paths. Results suggest that compositional variations, i.e. the presence or absence of considerable amounts of pyroxenites in primitive mantle should produce a clear footprint while horizontal differences in thermal gradients for similar compositions might be more subtle. Peridotites best record the classic discontinuities at around 410 and 650 kilometers depth, which are associated with the olivin-wadsleyite and ringwoodite-perovskite transitions, respectively. Pyroxenites, instead, show the garnet-perovskite transition below 700 kilometers depth and SiO2-supersaturated compositions like MORB display the coesite-stishovite transition between 300 and 340 kilometers depth. The latter shows the strongest temperature-depth dependency of all significant transitions potentially allowing to infer information about the thermal state if the mantle contains a sufficient fraction of MORB-like compositions. For primitive and depleted mantle compositions, the olivin-wadsleyite transition shows a certain temperature-depth dependency reflected in slightly larger delay times for higher thermal gradients. The lower-upper-mantle discontinuity, however, is predicted to display larger delay times for higher thermal gradients although the associated assemblage transition occurs at shallower depths thus requiring a very careful depth migration if a thermal anomaly should be recognized. This counterintuitive behavior results from the downward replacement of the assemblage wadsleyite+garnet with the assemblage garnet+periclase at high temperatures. This transition causes even lower seismic velocities with greater depth (following an adiabatic gradient), the highly continuous nature of the reaction, however, should produce only a smooth negative conversion. In contrast, a small positive conversion is expected at normal thermal gradients in the same depth range between 500 and 550 kilometers because of the wadsleyite-ringwoodite-transition. Hence, the polarity of the 520 discontinuity also offers a possibility to recognize the thermal state of the upper mantle.

  13. Chemistry of amphiboles and clinopyroxenes from Euganean (NE Italy) cumulitic enclaves: implications for the genesis of melts in an extensional setting

    NASA Astrophysics Data System (ADS)

    Bartoli, O.; Meli, S.; Sassi, R.; Magaraci, D.

    2009-04-01

    The magmatism of the Euganean Volcanic District (Veneto Volcanic Province, VVP) developed in the last phases of the Alpine orogenesis; the geochemical and geophysical data are consistent with an extensional geodynamic context (Milani et al., 1999). Cumulitic gabbroic enclaves occur within the Euganean trachytes, and Bartoli et al. (2008) pointed to their cogenetic origin with the Euganean host lavas. Sr isotopic data suggest that these cumulates derived from uncontaminated mantle-derived liquids. We analysed both cumulus and intercumulus amphiboles and clinopyroxenes by electron microprobe and LA-ICP-MS. The cumulus-intercumulus Cpx are diopsides and augites. The Mg#Cpx varies in a wide range (Mg#cumulus-Cpx= 0.74-0.84 and Mg#intercumulus-Cpx= 0.67-0.68). They show a MREE enrichment relative to LREE and HREE (LaN/SmN= 0.46-0.68 and TbN/YbN= 2.18-4.77). No significant Eu anomaly (Eu/Eu* = 0.78-1.23) was observed. On a chondrite-normalized spiderdiagram Cpx exhibits significant Pb and Co negative anomalies, and less evident negative anomalies for Sr and Zr. La, Sm and HREE increase, whereas Ba, Ti, Li and V decrease from core to rim. These Cpx exhibit high Cr contents (701-2958 ppm). Moreover, they display trace element differences when compared to Cpx from MORB gabbros. We analyzed also amphiboles: pargasites, edenites and kaersutites. In the cumulus Amph Mg# varies in the range 0.60-0.69, whereas in the intercumulus assemblage from 0.57 to 0.63. The high K2O and TiO2 contents are distinct from that of amphiboles in MORB gabbros. LREE are enriched relative to HREE (LaN/YbN = 5.07-7.56). Moreover, TbN/YbN = 2.50-4.02 indicates a HREE depletion relative to MREE. REE patterns lack a significant Eu anomaly (Eu/Eu* = 1.06-1.19). From core to rim Th and U decrease in cumulus crystals, but they increase in the intercumulus Amph. Ba (258-282 ppm) is enriched relative to other LILE and Nb-Ta are enriched relative to LREE. Cr varies in the range 423-594 ppm. The similar REE and HFSE content of intercumulus and cumulus Amph may suggest the existence of some post-cumulus processes. We calculated the chemistry of the liquids which should have been in equilibrium with cumulus phases, employing a set of Ds•l. In the liquid in equilibrium with Cpx LREE and MREE are enriched up to 40 and 11 times respectively relative to HREE, which are at about N-MORB concentrations (LaN/YbN = 42.5 and SmN/YbN = 11). Some LILE (i.e., Rb and Ba), Th and U are enriched relative to HFSE and REE. The theoretical composition of the liquid in equilibrium with Amph differs from Cpx-liquid in the marked enrichment of U and Th over LILE and HFSE. A LREE and MREE enrichment is observed (LaN/YbN = 35.4 and SmN/YbN = 3.6). The discrepancies of calculated liquid compositions cannot be ascribed only to the uncertainty in the choice of Ds•l. This may indicate trace element modifications in response to post-cumulus processes involving the amphiboles. The concentrations of HFSE in the calculated liquids (Zr/Hf = 60.2-72.7, Zr/Nb = 1.7-6.5 and Th/Hf = 3.8-6.9) and the incompatible element ratios, (e.g., La/Nb = 0.5-0.7, Pb/Ce = 0.01-0.05, La/Y = 2.3-2.8 and Ce/Nd = 1.9-2.8), are not comparable to those of N-MORB but to those of HIMU-OIB suggesting that typical MORB-type mantle couldn't be the source of these liquids. Nb and Ta are variable, possibly due to an heterogeneity in the lithospheric mantle. The existence of some peculiar trace element signatures of the recalculated liquids (LILE enrichment, high LREE/HREE ratio and abrupt enrichment in U and Th) has been attributed to slab-derived melts/fluids with an abundant sedimentary component. Our estimates are in agreement with the geodynamic scenario proposed by Macera et al. (2007), who explained the occurrence of both HIMU-OIB-type magmatism and subduction-related metasomatism in the VVP mantle lithosphere. According to their model, a mantle plume with HIMU-OIB geochemical signature rose from the deep mantle twice with subsequent partial melting episodes of the plume material: the first time during Paleocene, before the subducted European lithospheric slab (from which the LILE-, U- and Th-enriched fluids/melts derived) intercepted the mantle plume, and the second time during middle Eocene, after slab detachment and opening of a plate window. The liquids we have modeled can derive from partial melting of a subcontinental mantle source percolated by HIMU-OIB- and subduction-related fluids/melts with an abundant sedimentary component. Similarly, our recalculated liquids display some trace element signatures close to those shown by the liquids computed by Tiepolo & Tribuzio (2005) for cumulates of the Adamello batholith during alpine orogeny.

  14. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar

    NASA Astrophysics Data System (ADS)

    Melluso, L.; Cucciniello, C.; le Roex, A. P.; Morra, V.

    2016-07-01

    The Ankaratra volcanic complex in central Madagascar consists of lava flows, domes, scoria cones, tuff rings and maars of Cenozoic age that are scattered over 3800 km2. The mafic rocks include olivine-leucite-nephelinites, basanites, alkali basalts and hawaiites, and tholeiitic basalts. Primitive samples have high Mg# (>60), high Cr and Ni concentrations; their mantle-normalized patterns peak at Nb and Ba, have troughs at K, and smoothly decrease towards the least incompatible elements. The Ankaratra mafic rocks show small variation in Sr-Nd-Pb isotopic compositions (e.g., 87Sr/86Sr = 0.70377-0.70446, 143Nd/144Nd = 0.51273-0.51280, 206Pb/204Pb = 18.25-18.87). These isotopic values differ markedly from those of Cenozoic mafic lavas of northern Madagascar and the Comoro archipelago, typical Indian Ocean MORB and oceanic basalt end-members. The patterns of olivine nephelinitic magmas can be obtained through 3-10% partial melting of a mantle source that was enriched by a Ca-rich alkaline melt, and that contained garnet, carbonates and phlogopite. The patterns of tholeiitic basalts can be obtained after 10-12% partial melting of a source enriched with lower amounts of the same alkaline melt, in the spinel- (and possibly amphibole-) facies mantle, hence in volumes where carbonate is not a factor. The significant isotopic change from the northernmost volcanic rocks of Madagascar and those in the central part of the island implicates a distinct source heterogeneity, and ultimately assess the role of the continental lithospheric mantle as source region. The source of at least some volcanic rocks of the still active Comoro archipelago may have suffered the same time-integrated geochemical and isotopic evolution as that of the northern Madagascar volcanic rocks.

  15. Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios

    NASA Astrophysics Data System (ADS)

    Frey, F. A.; Huang, S.; Blichert-Toft, J.; Regelous, M.; Boyet, M.

    2005-02-01

    The radiogenic isotopic ratios of Sr, Nd, Hf, and Pb in basaltic lavas associated with major hot spots, such as Hawaii, document the geochemical heterogeneity of their mantle source. What processes created such heterogeneity? For Hawaiian lavas there has been extensive discussion of geochemically enriched source components, but relatively little attention has been given to the origin of depleted source components, that is, components with the lowest 87Sr/86Sr and highest 143Nd/144Nd and 176Hf/177Hf. The surprisingly important role of a depleted component in the source of the incompatible element-enriched, rejuvenated-stage Hawaiian lavas is well known. A depleted component also contributed significantly to the ˜76-81 Ma lavas erupted at Detroit Seamount in the Emperor Seamount Chain. In both cases, major involvement of MORB-related depleted asthenosphere or lithosphere has been proposed. Detroit Seamount and rejuvenated-stage lavas, however, have important isotopic differences from most Pacific MORB. Specifically, they define trends to relatively unradiogenic Pb isotope ratios, and most Emperor Seamount lavas define a steep trend of 176Hf/177Hf versus 143Nd/144Nd. In addition, lavas from Detroit Seamount and recent rejuvenated-stage lavas have relatively high Ba/Th, a characteristic of lavas associated with the Hawaiian hot spot. It is possible that a depleted component, intrinsic to the hot spot, has contributed to these young and old lavas related to the Hawaiian hot spot. The persistence of such a component over 80 Myr is consistent with a long-lived source, i.e., a plume.

  16. Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington

    USGS Publications Warehouse

    Jicha, B.R.; Hart, G.L.; Johnson, C.M.; Hildreth, Wes; Beard, B.L.; Shirey, S.B.; Valley, J.W.

    2009-01-01

    Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P)n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. ??18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust. ?? Springer-Verlag 2008.

  17. Pb-isotopic compositions of volcanic rocks in the West and East Philippine island arcs: presence of the Dupal isotopic anomaly

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; McCabe, Robert; Gill, James B.

    1987-07-01

    The Philippine islands are situated between two oppositely dipping zones of seismicity. With the exception of a few areas, such as in the west central Philippines where the North Palawan continental terrane (NPCT) has collided with the archipelago, these seismic zones are well defined to depths of 200 km. Active volcanic chains overlay segments in each of these zones, suggesting that subduction is presently taking place both east and west of the islands. Lavas we have studied are thus divided between what has been termed the West Philippine arc and the East Philippine arc. West Philippine arc volcanic rocks which were extruded before the Philippine archipelago collided with the NPCT, or which are younger than the collision but crop out hundreds of kilometers from the collision zone, and all but one of the rocks from the East Philippine arc fall in the MORB field on 207Pb/ 204Pb versus 206Pb/ 204Pb covariation diagrams. This is surprising considering the frequency with which arc materials have 207Pb/ 204Pb ratios higher than those of MORB, the highBa/REE and Sr/REE ratios in the lavas and the possibility of sediment subduction given the small accretionary prisms. All of these rocks have high 208Pb/ 204Pb ratios with respect to Pacific and Atlantic Ocean MORB, but are similar to Indian Ocean MORB and IOB. Thus the Philippines consist of island arcs with the peculiar Dupal isotopic anomaly documented between 0° and 60°S in the southern hemisphere and particularly in the Indian Ocean region. This demonstrates that the Dupal isotopic anomaly is not restricted to the southern hemisphere, or to MORB and OIB. Post-collision rocks cropping out near the NPCT, in the West Philippine arc, have elevated 208Pb/ 204Pb and 207Pb/ 204Pb ratios that could be attributed to assimilation of the newly introduced continental crust (NPCT) by mantle-derived magmas or to the addition of a sedimentary component to mantle-derived magmas.

  18. Early and long-term mantle processing rates derived from xenon isotopes

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Parai, R.; Tucker, J.; Middleton, J. L.; Langmuir, C. H.

    2015-12-01

    Noble gases, particularly xenon (Xe), in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. The combination of extinct and extant radioactive species in the I-Pu-U-Xe systems shed light on the degassing history of the early Earth throughout accretion, as well as the long-term degassing of the Earth's interior in association with plate tectonics. The ubiquitous presence of shallow-level air contamination, however, frequently obscures the mantle Xe signal. In a majority of the samples, shallow air contamination dominates the Xe budget. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Thus, the extent of variability in mantle source Xe composition is not well-constrained. Here, we present new MORB Xe data and explore constraints placed on mantle processing rates by the Xe data. Ten step-crushes were obtained on a depleted popping glass that was sealed in ultrapure N2 after dredge retrieval from between the Kane-Atlantis Fracture Zone of the Mid Atlantic Ridge in May 2012. 9 steps yielded 129Xe/130Xe of 7.50-7.67 and one yielded 7.3. The bulk 129Xe/130Xe of the sample is 7.6, nearly identical to the estimated mantle source value of 7.7 for the sample. Hence, the sample is virtually free of shallow-level air contamination. Because sealing the sample in N2upon dredge retrieval largely eliminated air contamination, for many samples, contamination must be added after sample retrieval from the ocean bottom. Our new high-precision Xe isotopic measurements in upper mantle-derived samples provide improved constraints on the Xe isotopic composition of the mantle source. We developed a forward model of mantle volatile evolution to identify solutions that satisfy our Xe isotopic data. We find that accretion timescales of ~10±5 Myr are consistent with I-Pu-Xe constraints, and the last giant impact occurred 45-70 Myr after the start of the solar system. After the giant impact stage, the Pu-U-Xe system indicates that degassing of the planet via solid-state mantle convection and plate tectonics continued to liberate volatiles to the atmosphere and has led to between ~5-8 mantle turnovers over the age of the Earth.

  19. Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS

    NASA Astrophysics Data System (ADS)

    Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.

    2007-12-01

    A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic rocks in the region indicate that 1) the enriched basalts have positive Ta-Nb anomalies, enriched relative to U, Th, and La 2) basalts have relatively high SiO2 abundances compared to the global average, 3) basalts show a HIMU isotopic signature, and 4) bulk major element abundances and mineral chemistry in mantle rocks indicate that they are among the most depleted,although variably refertilized, residual mantle assemblages sampled to date along MORs.We suggest that much of the regional variation in major and trace element data, as well as isotopic data and the unusual regional geology (multiple core complexes) can be explained by melting of a sub-axial mantle that contains two end members, one highly depleted and the other enriched. These components appear to involve ancient recycled ocean crust and lithospheric mantle.

  20. Geochemistry of Volcanic Rocks from International Ocean Discovery Program (IODP) Site 1438, Amami Sankaku Basin: Implications for Izu-Bonin-Mariana (IBM) Arc Initiation

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Ishizuka, O.; Yogodzinski, G. M.; Bizimis, M.; Savov, I. P.; McCarthy, A. J.; Arculus, R. J.; Bogus, K.

    2015-12-01

    IODP Expedition 351 drilled 150 m of volcanic basement overlain by 1461 m of sedimentary material at Site 1438 in the Amami Sankaku basin, just west of the Kyushu Palau Ridge, the locus of IBM arc initiation. Age interpretations based on biostratigraphy (Arculus et al., Nat. Geosci., in-press) determined that the age of the basement section is between 64 and 51 Ma, encompassing the age of the earliest volcanic products of the IBM arc. The Site 1438 volcanic basement consists of multiple flows of aphyric microcrystalline to finely crystalline basalts containing plagioclase and clinopyroxene with rare olivine pseudomorphs. New XRF major and ICPMS trace element data confirm findings of shipboard analysis that the basalts are moderately differentiated (6-14 % MgO; Mg# = 51-83; 73-490 ppm Cr and 58-350 ppm Ni) with downcore variations related to flow units. Ti/V and Ti/Sc ratios are 16-27 and 75-152, respectively, with lowest values at the base of the core. One prominent characteristic of the basalts is their depletion of immobile highly incompatible elements compared with MORB. Basalts have MORB-normalized La/Nd of 0.5 to 0.9, and most have Th/La < 0.05. Although all basalts are LREE-depleted, La/Nd ratios increase slightly upcore, and Th enrichment compared with LREE occurs in the uppermost 5 meters. Cs, Rb, K, Ba and U are concomitantly enriched relative to LREE in several intervals as a probable result of seawater alteration, but ratios less than those of MORB are found in other areas. In contrast to basement, andesites from three sills in the lowermost sedimentary unit have arc-like trace element patterns with La/Nb > 3 and primitive mantle normalized La/Yb > 1. Our results suggest that mantle melting at the onset of subduction involved exceptionally depleted sources. Enrichment over time may be related to increasing subduction inputs and/or other processes, such as entrainment of fertile asthenosphere during extension of the overriding plate.

  1. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The second scenario is unlikely on Moon because there was unlikely plate tectonics, and because there is no similar H2O-rich transition zone or D" layer due to the much lower maximum pressure in Moon. In the third scenario, volatiles from an extralunar source would likely be lost from the high vacuum environment of the lunar surface, meaning that it would not impact on the H2O content estimation. [1] McDonough & Sun (1995) Chem. Geol. 120, 223. [2] Palme & O'Neill (2014) Treatise on Geochemistry 3, 1. [3] Zhang (2014) Treatise on Geochemistry 6, 37. [4] Zhang & Zindler (1989) JGR 94, 13719. [5] Hui et al. (2013) Nature Geosci. 6, 177. [6] Chen et al. (2015) EPSL 427, 37. [7] Albarede et al. (2015) MPS 50, 568. [8] Sobolev et al. (2016) Nature 531, 628. [9] Chyba (1987) Nature 330, 632. [10] Hartogh et al. (2011) Nature 478, 218. [11] Hui et al. (2016) Goldschmidt Conf. Abstr.

  2. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron

    NASA Astrophysics Data System (ADS)

    Noll, P. D.; Newsom, H. E.; Leeman, W. P.; Ryan, J. G.

    1996-02-01

    In order to evaluate the processes responsible for the enrichments of certain siderophile/ chalcophile trace elements during the production of subduction-related magmas, representative lavas from seven subduction zones have been analyzed for Pb, As, Sb, Sn, W, Mo, Tl, Cu, and Zn by inductively coupled plasma-mass spectrometry (ICP-MS), radiochemical epithermal neutron activation analysis (RENA), and atomic absorption (AA). The siderophile/chalcophile elements are compared to the highly fluid-mobile element B, the light rare earth elements (LREEs), U, and Th in order to place constraints on their behavior in subduction zones. Boron, As, Sb, and Pb are all enriched in arc lavas and continental crustal rocks more so than expected assuming normal magmatic processes (melting and crystallization). Tin, W, and Mo show little evidence of enrichment. Correlations of Pb/Ce, As/Ce, and Sb/Ce with B/La are statistically significant and have high correlation coefficients (and, more importantly, slopes approaching one) suggesting that Pb, As, and Sb behave similarly to B (i.e., that they are fluid-mobile). In addition, across-arc traverses show that B/La, As/Ce, Pb/Ce, and Sb/Ce ratios decrease dramatically with distance towards the back-arc basin. W/Th, Tl/La, Sn/Sm, and Mo/Ce ratios and Cu and Zn concentrations have much less systematic across-arc variations and correlations with B/La are not as strong (and in some cases, not statistically significant) and the regression lines have much lower slopes. Mixing models between upper mantle, slab-derived fluid, and sediment are consistent with a fluid-derived component in the arcs displaying extra enrichments of B, Pb, As, and Sb. These observations imply efficient mobilization of B, Pb, As, Sb, and possibly Tl into arc magma source regions by hydrothermal fluids derived from metamorphic dehydration reactions within the slab. Tin, W, and Mo show little, if any, evidence of hydrothermal mobilization. Copper appears to be slightly enriched in arc lavas relative to mid-ocean ridge basalts (MORBs) whereas Zn contents of arc lavas, MORB, ocean island basalts (OIBs), and continental crustal samples are similar suggesting that the bulk partition coefficient for Zn is approximately equal to one. However, Zn contents of the upper mantle are lower than these reservoirs implying an enrichment of the source region in Zn prior to melting. These nonigneous enrichments have implications not only for arc magma genesis but also for continental crust formation and crust-mantle evolution. The mobility of Pb, As, Sb, and B in hot, reducing, acidic hydrothermal fluids may be greatly enhanced relative to the large-ion lithophile elements (LILEs; including U) as a result of HS -, H 2S, OH -, or other types of complexing. In the case of Pb, continued transport of Pb from subducted slabs into arc magma source regions throughout Earth history coupled with a U fluxing of the mantle a the end of the Archean may account for the depletion of Pb in the upper mantle, the low U/Pb of most arc volcanics and continental crustal rocks, and provide an explanation for the Pb- Paradox (Hofmann et al., 1986;McCulloch, 1993;Miller et al., 1994). Recycled slabs will then retain high U/Pb ratios upon entering the deep mantle and may eventually become incorporated into the source regions of many OIBs; some with HIMU (high 238U/ 204Pb) signatures.

  3. Hf-Nd isotope constraints on the origin of the Cretaceous Caribbean plateau and its relationship to the Galápagos plume

    NASA Astrophysics Data System (ADS)

    Thompson, P. M. E.; Kempton, P. D.; White, R. V.; Kerr, A. C.; Tarney, J.; Saunders, A. D.; Fitton, J. G.; McBirney, A.

    2004-01-01

    Formation of the Cretaceous Caribbean plateau, including the komatiites of Gorgona, has been linked to the currently active Galápagos hotspot. We use Hf-Nd isotopes and trace element data to characterise both the Caribbean plateau and the Galápagos hotspot, and to investigate the relationship between them. Four geochemical components are identified in the Galápagos mantle plume: two 'enriched' components with ɛHf and ɛNd similar to enriched components observed in other mantle plumes, one moderately enriched component with high Nb/Y, and a fourth component which most likely represents depleted MORB source mantle. The Caribbean plateau basalt data form a linear array in Hf-Nd isotope space, consistent with mixing between two mantle components. Combined Hf-Nd-Pb-Sr-He isotope and trace element data from this study and the literature suggest that the more enriched Caribbean end member corresponds to one or both of the enriched components identified on Galápagos. Likewise, the depleted end member of the array is geochemically indistinguishable from MORB and corresponds to the depleted component of the Galápagos system. Enriched basalts from Gorgona partially overlap with the Caribbean plateau array in ɛHf vs. ɛNd, whereas depleted basalts, picrites and komatiites from Gorgona have a high ɛHf for a given ɛNd, defining a high- ɛHf depleted end member that is not observed elsewhere within the Caribbean plateau sequences. This component is similar, however, in terms of Hf-Nd-Pb-He isotopes and trace elements to the depleted plume component recognised in basalts from Iceland and along the Reykjanes Ridge. We suggest that the Caribbean plateau represents the initial outpourings of the ancestral Galápagos plume. Absence of a moderately enriched, high Nb/Y component in the older Caribbean plateau (but found today on the island of Floreana) is either due to changing source compositions of the plume over its 90 Ma history, or is an artifact of limited sampling. The high- ɛHf depleted component sampled by the Gorgona komatiites and depleted basalts is unique to Gorgona and is not found in the Caribbean plateau. This may be an indication of the scale of heterogeneity of the Caribbean plateau system; alternatively Gorgona may represent a separate oceanic plateau derived from a completely different Pacific plume, such as the Sala y Gomez.

  4. Review of the Cambrian volcanic activity in Morocco: geochemical fingerprints and geotectonic implications for the rifting of West Gondwana

    NASA Astrophysics Data System (ADS)

    Pouclet, André; El Hadi, Hassan; Álvaro, J. Javier; Bardintzeff, Jacques-Marie; Benharref, Mohammed; Fekkak, Abdelilah

    2018-03-01

    Volcanic activities related to the opening of a Cambrian rift in Morocco were widespread from the Fortunian to the Cambrian Epoch 3. Numerous data are available from northwestern volcanic sites, particularly in the western High Atlas, but they are scarce from the southeastern sites. New data are documented here from the volcanic formations exposed in the Jbel Tazoult n'Ouzina of the Tafilalt Province, eastern Anti-Atlas and dated to Cambrian Epoch 2-3. The Cambrian volcanic activities recorded in the High Atlas, Anti-Atlas, and Coastal Meseta are synthesized to refine their stratigraphic setting and to characterize their magmatic affinities and fingerprints. Six volcanic pulses are determined as tholeiitic, transitional, and alkaline suites. The tholeiitic and transitional magmas originated from primitive mantle and E-MORB-type sources with a spinel- and garnet-bearing lherzolite composition. Some of them were modified by assimilation-fractional crystallisation processes during crust-mantle interactions. The alkaline magmas fit with an OIB-type and a garnet-bearing lherzolite source. The palaeogeographic distribution of the magmatic suites was controlled by the lithospheric thinning of the Cambrian Atlas Rift and lithospheric constraints of the Pan-African metacraton and West African craton.

  5. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  6. Slab melting and magma formation beneath the southern Cascade arc

    USGS Publications Warehouse

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the slab (∼7–9 km below the slab top) cause flux melting of the subducted oceanic crust, producing hydrous slab melts that migrate into the overlying mantle, where they react with peridotite to induce further melting.

  7. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan)

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Park, K.; Cho, M.; Lee, D. C.

    2017-12-01

    Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine, enstatite, diopside and spinel. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1,010°C, reflecting their lithospheric mantle origin. The REE patterns in clinopyroxenes of the peridotites varied from LREE-depleted to spoon shaped to LREE-enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in LILEs, Th and U together with slight fractionation in HREEs and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying well above the mantle array. The Lu-Hf and Sm-Nd model ages of residual clinopyroxenes yielded Early Proterozoic to Phanerozoic ages. No signature of Archean cratonic mantle was present. Therefore, Mt. Baekdu peridotite is residual lithospheric mantle that has undergone variable degrees of diachronous melt extraction and infiltration metasomatism involving subduction-related, fluid-bearing silicate melts. The predominance of Phanerozoic Hf model ages indicates that the lherzolites represent lithospheric mantle fragments newly accreted underneath the eastern NCC.

  8. Pb-isotopic Features of Primitive Rocks from Hess Deep: Distinguishing between EPR and Cocos-Nazca Mantle Source(s)

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Falloon, T.; Gillis, K. M.

    2014-12-01

    We have acquired high-precision Pb-isotopic signatures of primitive lithologies (basalts/gabbros) recovered from IODP Expedition 345.The Hess Deep Rift, located in the vicinity of the Galapagos triple junction (Cocos, Nazca, and Pacific), is viewed as one the best-studied tectonic windows into fast-spreading crust because a relatively young (<1.5 Ma) cross section of oceanic crust. This allows for (1) characterization of the mantle source(s) at Hess Deep, (2) insight into the extent of isotopic homogeneity or heterogeneity in the area, and (3) constrain the relative contributions from the intruding Cocos-Nazca spreading center. The observed Pb-isotopic variation at Hess Deep covers almost the entire range of EPR MORB (10°N to -5°S). Hess Deep samples range from 208Pb (37.3-38.25), 207Pb (15.47-15.58), 206Pb (17.69-18.91). These compositions suggest that this part of Hess Deep mantle is no more isotopically homogeneous than EPR mantle. Two distinct arrays are also observed: 208Pb-enriched (r2=0.985; n=30) and 208Pb-depleted (r2=0.988; n=6). The 208Pb/204Pb isotopes indicates that the Pb-source for some of the samples at Hess Deep had very low Th/U ratios, whereas other areas around the Galapagos microplate seem to have more "normal" ratios. These trends are less apparent when viewed with 207Pb-isotopes. Instead, the majority of basalts and gabbros follow the NHRL, however, at the depleted-end of this array a negative excursion to more enriched compositions is observed. This negative but linear trend could signify an alteration trend or mixing with an EMI-type mantle source, yet this mixing is not observed with 208Pb. This trend is also observed at Pito Deep, which has similar origins to Hess Deep (Barker et al., 2008; Pollack et al., 2009). The Galapagos region has been considered a testing ground for mixing of HIMU, Enriched Mantle, and Depleted Mantle reservoirs (e.g., Schilling et al., 2002). According to our data, however, an EPR-component must also be considered. We model Hess Deep Pb-isotopes as a 4-component system. EPR-DM-EM comprise a 'local' reservoir, but the majority of samples contain a mixture of modified-HIMU-EM-EPR, a product of incoming plume material entrained within the Galapagos Spreading Center.

  9. Melt Inclusion Evidence for Subduction-modified Mantle Beneath the Woodlark Spreading Center, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Chadwick, J.; Turner, A.; Collins, E.

    2015-12-01

    The Woodlark Spreading Center (WSC) to the east of Papua New Guinea separates the Indo-Australian plate and Solomon Sea microplate. At its eastern terminus, the WSC is being subducted at the New Britain trench, forming a triple junction near the New Georgia Group arc in the Solomon Islands. Previous studies have shown that lavas recovered from greater than 100 km from the trench on the WSC are N-MORB, but closer to the trench they have arc-like Sr-Nd-Pb isotopic ratios, enrichments in LILE, and depletions in HFSE. In the complex triple junction area of the WSC on the Simbo and Ghizo Ridges, island arc tholeiites to medium-K calc-alkaline andesites and dacites have been recovered, many with trace element and isotopic characteristics that are similar to the true arc lavas in the New Georgia Group on the other side of the trench. We suggest that subduction-modified arc mantle migrates through slab windows created by the subduction of the WSC as the plates continue to diverge after subduction. This transfer of mantle across the plate boundary leads to variable mixing between arc and N-MORB end-members, forming the hybrid to arc-like lavas recovered on the WSC. To test this hypothesis and to characterize the end-member compositions, we have analyzed melt inclusions in olivine, pyroxene, and plagioclase phenocrysts in Simbo and Ghizo Ridge lava samples. Major elements were analyzed using the electron microprobe facility at Fayetteville State University and volatiles were analyzed on the ion probe facility at Woods Hole Oceanographic Institution. The melt inclusions show a wide diversity of magmas from basalts to dacites, and mixing modeling shows that most Woodlark Spreading Center lava compositions are explained by mixing between the most extreme mafic (MORB) and felsic (arc) inclusion compositions.

  10. Isotope and trace element insights into heterogeneity of subridge mantle

    NASA Astrophysics Data System (ADS)

    Mallick, Soumen; Dick, Henry J. B.; Sachi-Kocher, Afi; Salters, Vincent J. M.

    2014-06-01

    Geochemical data for abyssal peridotites are used to determine the relationship to mid-ocean ridge basalts from several locations at ridge segments on the SW Indian Ridge (SWIR), the Mid-Cayman-Rise (MCR), and the Mid-Atlantic Ridge (MAR). Based on chemical and petrological criteria peridotites are categorized as being either dominantly impregnated with melt or being residual after recent melting. Those that are considered impregnated with melt also have isotopic compositions similar to the basalts indicating impregnation by an aggregate MORB melt. A SWIR and MCR residual peridotite Nd-isotopic compositions partly overlap the Nd-isotopic compositions of the basalts but extend to more radiogenic compositions. The differences between peridotite and basalt Nd-isotopic compositions can be explained by incorporating a low-solidus component with enriched isotopic signature in the subridge mantle: a component that is preferentially sampled by the basalts. At the MAR, peridotites and associated basalts have overlapping Nd-isotopic compositions, suggesting a more homogeneous MORB mantle. The combined chemistry and petrography indicates a complex history with several depletion and enrichment events. The MCR data indicate that a low-solidus component can be a ubiquitous component of the asthenosphere. Residual abyssal peridotites from limited geographic areas also show significant chemical variations that could be associated with initial mantle heterogeneities related to events predating the ridge-melting event. Sm-Nd model ages for possible earlier depletion events suggest these could be as old as 2.4 Ga. This article was corrected on 9 JULY 2014. See the end of the full text for details.

  11. Spin transition of ferric iron in the calcium-ferrite type aluminous phase: Fe 3+ Spin Transition in the CF Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ye; Qin, Fei; Wu, Xiang

    2017-08-01

    We investigated Fe-free and Fe-bearing CF phases using nuclear forward scattering and X-ray diffraction coupled with diamond anvil cells up to 80 GPa at room temperature. Octahedral Fe3+ ions in the Fe-bearing CF phase undergo a high-spin to low-spin transition at 25–35 GPa, accompanied by a volume reduction of ~2.0% and a softening of bulk sound velocity up to 17.6%. Based on the results of this study and our previous studies, both the NAL and CF phases, which account for 10–30 vol % of subducted MORB in the lower mantle, are predicted to undergo a spin transition of octahedral Fe3+more » at lower mantle pressures. Spin transitions in these two aluminous phases result in an increase of density of 0.24% and a pronounced softening of bulk sound velocity up to 2.3% for subducted MORB at 25–60 GPa and 300 K. The anomalous elasticity region expands and moves to 30–75 GPa at 1200 K and the maximum of the VΦ reduction decreases to ~1.8%. This anomalous elastic behavior of Fe-bearing aluminous phases across spin transition zones may be relevant in understanding the observed seismic signatures in the lower mantle.« less

  12. Mantle Sulfur Cycle: A Case for Non-Steady State ?

    NASA Astrophysics Data System (ADS)

    Cartigny, Pierre; Labidi, Jabrane

    2016-04-01

    Data published over the last 5 years show that the early inference that mantle is isotopically homogeneous is no more valid. Instead, new generation data on lavas range over a significant 34S/32S variability of up to 5‰ with δ 34S values often correlated to Sr- and Nd-isotope compositions. This new set of data also reveals the Earth's mantle to have a sub-chondritic 34S/32S ratio, by about ˜ 1‰. We will present at the conference our published and unpublished data on samples characterizing the different mantle components (i.e. EM1, EM2, HIMU and LOMU). All illustrate 34S-enrichments compared to MORB with Δ 33S and Δ 36S values indistinguishable from CDT or chondrites at the 0.03‰ level. These data are consistent with the recycling of subducted components carrying sulfur with Δ 33S and Δ 36S-values close to zero. Archean rocks commonly display Δ 33S and Δ 36S values deviating from zero by 1 to 10 ‰. The lack of variations for Δ 33S and Δ 36S values in present day lava argue against the sampling of any subducted protolith of Archean age in their mantle source. Instead, our data are consistent with the occurrence of Proterozoic subducted sulfur in the source of the EM1, EM2, LOMU and HIMU endmember at the St-Helena island. This is in agreement with the age of those components early derived through the use of the Pb isotope systematic. Currently, the negative δ 34S-values of the depleted mantle seem to be associated with mostly positive values of enriched components. This would be inconsistent with the concept a steady state of sulfur. Assuming that the overall observations of recycled sulfur are not biased, the origin of such a non-steady state remains unclear. It could be related to the relatively compatible behavior of sulfur during partial melting, as the residue of present-day melting can be shown to always contain significant amounts of sulfide (50{%} of what is observed in a fertile source). This typical behavior likely prevents an efficient extraction of mantle S over time, hence inhibiting quantitative mixing between surface and mantle S. This also allows the preservation of any primitive signature of the deep sulfur cycle to be potentially recorded.

  13. Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X

    NASA Astrophysics Data System (ADS)

    Hart, Stanley R.; Gaetani, Glenn A.

    2016-07-01

    We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250-1523 °C, pressures of 1.0-3.5 GPa and oxygen fugacities at iron-wustite and wustite-magnetite. The total observed range of KdPb is 4.0-66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2-39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 - 119*P in GPa)*(1/FeO - 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the ;natural; partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.

  14. Role of melting process and melt-rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites)

    NASA Astrophysics Data System (ADS)

    Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew

    2018-04-01

    This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.

  15. Geochemistry of pillow lavas and sheeted dikes from Nain and Ashin ophiolites (Central Iran)

    NASA Astrophysics Data System (ADS)

    Saccani, Emilio; Pirnia Naeini, Tahmineh; Torabi, Ghodrat

    2017-04-01

    An extensive, worldwide database on the geochemistry of basalts from well-known tectonic settings is available. Knowing the chemistry of basalts on one hand, and the tectonic setting of their origin on the other hand, resulted in the development of tectonic discrimination diagrams. Recently developed discrimination diagrams allow us to determine the tectonic setting of volcanics with almost neglectable probability of misclassification (<1%). One major application of these diagrams lies in discriminating the tectonic setting of formation of ophiolites, particularly in poorly-known areas. A good example is the Inner ophiolite belt of Iran, located in Central Iran. The geodynamic significance of the inner ophiolites is still poorly known. From the Inner ophiolites, either no volcanic section is reported, or, the data are highly limited and poorly-reliable due the high degree of alteration of the studied samples. We have been able to overcome this problem by spotting relatively well-preserved outcrops of pillow lavas and sheeted dikes from two ophiolite mélanges of Central Iran, Nain and Ashin ophiolites. The two mélanges are located in the west of Central-East Iranian microplate. In total, 28 samples have been collected from the pillow lavas and sheeted dikes outcrops. The studied volcanic rocks consist mainly of basalts and minor ferrobasalts and basaltic andesites, all showing a clear subalkaline nature (e.g., Nb/Y = 0.03-0.21). Two samples from the Nain ophiolite are characterized by N-MORB normalized incompatible element patterns showing marked Th positive anomalies and Ta, Nb, Ti negative anomalies. Chondrite-normalized REE patterns show LREE/HREE (light REE/heavy REE) enrichment, with LaN/YbN=3.2-4.3. These rocks are chemically similar to the calc-alkaline basalts (CAB), as also highlighted by many discrimination diagrams. These rocks are interpreted to have generated in a cordilleran-type volcanic arc setting. All other samples from both the Nain and Ashin ophiolites display a wide range of chemical composition. However, the relatively less fractionated basalts are characterized by low TiO2 (0.60-1 wt%), P2O5 (0.03-0.08 wt%), Zr (23-75 ppm) and Y (9-27) contents. Cr (38-619 ppm) and Ni (22-220 ppm) contents show a wide range of variation. N-MORB normalized incompatible element patterns show rather flat trends and a general depletion (from 0.4 to 0.8 times N-MORB composition) coupled with a slight Th enrichment (1-3 times N-MORB). Chondrite-normalized REE patterns are generally flat and are characterized by either a slight depletion or a slight enrichment in LREE compared to HREE (LaN/YbN=0.7-1.2). These overall chemical features resemble those of island arc tholeiites from many ophiolitic complexes. The depletion in incompatible elements compared to N-MORB suggest that these rocks were derived from partial melting of a depleted mantle source. Th enrichment with respect to Nb (ThN/NbN = 2.6-12.4) suggests that mantle sources underwent enrichment in subduction-derived chemical components prior melting. Our data suggest that the Nain and Ashin ophiolites were formed in a subduction-related tectonic setting during the Late Cretaceous. The chemistry of the studied rocks is compatible with transition zone either from forearc to arc or from arc to backarc.

  16. Tectonic affinities of the accreted basalts in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Yang, Huai-Jen; Liu, Yung-Hsin; Huang, Kuo-Fang; Takazawa, Eiichi

    2018-06-01

    Tectonic affinities of accreted basalts provide constraints on mass transport in convergent boundaries, improving our understandings on the evolution of regional geology. In this study, nineteen accreted basalts from the southernmost tip of Taiwan Island, which is on the convergent boundary between the Eurasian and Philippine Sea Plates, were analyzed for element concentrations as well as Sr, Nd, Hf, and Pb isotope ratios to investigate their tectonic affinities. All the samples contain > 3% LOI, reflecting post-magmatic alteration. LOI and Nb variation diagrams together with comparisons to oceanic basalt compositions indicated that the concentrations of most major elements and Rb, Sr, and Ba were modified by post-magmatic processes to varying extents, while P2O5, REE and HFSE remained immobile. Although some samples show Pb loss, most samples have Pb concentrations not affected by post-magmatic processes. Isotope ratios of Pb, Nd and Hf, generally reflect the mantle source characteristics. The εNd-εHf relationship and trace element abundance ratios indicated that the LREE-depleted samples were mostly scraped off the subducting South China Sea floor, reflecting the volumetric dominance of N-MORB on ocean floors. The overriding Philippine Sea Plate contributed both N-MORB and E-MORB to the accretionary prism. The tectonic affinities of the LREE-enriched samples, however, could not be unambiguously determined for the large geochemical variability of OIB from both subducting and overlying slabs. Based on our results, it is proposed that the tectonic affinity of the basalts in an accretionary prism can indicate the subduction polarity of the associated convergent boundary, providing a constraint for regional geology evolution.

  17. Volatile, Trace Element and Isotopic Variations of Mafic Arc Volcanic Rocks from Nicaragua and Costa Rica

    NASA Astrophysics Data System (ADS)

    Hoernle, K.; Sadofsky, S.; Nichols, H.; Portnyagin, M.; van den Bogaard, P.; Alvarado, G.

    2003-12-01

    Quaternary volcanic rocks from the Central American Volcanic Arc in central Nicaragua and central Costa Rica exhibit major differences in their volatile, trace element and isotopic compositions. Olivine-hosted melt inclusions in Nicaraguan volcanic rocks with high Fo contents (>73) extend to high H2O (up to 5.3%), S (10-6860 ppm) and Cl (490-2340 ppm) contents. The volcanic rocks have high ratios of fluid mobile to fluid immobile elements such as Ba/La (65-122), Ba/Th (484-1304) and U/La (0.08-0.17). Additionally, they have 143Nd/144Nd (0.51300-0.51307) similar to normal mid-ocean-ridge basalts (N-MORB) from the East Pacific Rise (EPR), but 87Sr/86Sr (0.7035-0.7042) ratios are much higher than those found in fresh EPR glasses. Pb isotopic compositions of the samples (e.g. 206Pb/204Pb = 18.5-19.0, 207Pb/204Pb = 15.52-15.58) form an array between EPR basalts and subducted sediments. The volatile, trace element and isotope data are consistent with mixing of fluids highly enriched in fluid-mobile elements from subducted sediments with a N-MORB-type mantle wedge to produce the Nicaraguan volcanic rocks. In contrast, olivine-hosted melt inclusions (Fo >82) in Costa Rican volcanic rocks show a similar range in H2O (up to 5.1%) to Nicaraguan inclusions but overall have lower S (0-1340 ppm) and Cl (10-790 ppm) contents. Costa Rican lavas also have lower Ba/La (7-35), Ba/Th (55-338), U/La (0.02-0.12), 87Sr/86Sr (0.7035-0.7038) and 143Nd/144Nd (0.51292-0.51301) than Nicaraguan lavas, but 87Sr/86Sr and Pb isotope ratios (e.g. 206Pb/204Pb = 19.02-19.32) are more radiogenic than in Nicaragua and than usually found in fresh EPR MORB. Our data are consistent with the presence of Galapagos Hotspot-type components in the source of the central Costa Rican volcanic rocks, derived from the subducting Galapagos Hotspot Track and from Galapagos-type material entering the mantle wedge through a slab tear or window (Abratis and Worner, 2000; Geology). The estimated volume of volcanic rocks erupted in the last 100,000 years (Carr et al., 1990, Contrib. Min. Pet.; in press, AGU Spec. Pub.) are substantially higher in central Costa Rica than in Nicaragua, suggesting greater productivity of melting beneath Costa Rica. Since the flux of hydrous fluids appears to be similar beneath both arc segments, higher melt productivity beneath Costa Rica could reflect the presence of larger volumes of more fertile, hotter Galapagos-type mantle upwelling through a slab tear or window into the Costa Rican mantle wedge.

  18. Devonian volcanic rocks of the southern Chinese Altai, NW China: Petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis

    NASA Astrophysics Data System (ADS)

    Ma, Xiaomei; Cai, Keda; Zhao, Taiping; Bao, Zihe; Wang, Xiangsong; Chen, Ming; Buslov, M. M.

    2018-07-01

    Ridge-trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate "slab-window" magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3-58.3 wt%), low K2O (0.02-0.07 wt%) and total alkaline contents (2.16-5.41 wt%), as well as Fe2O3T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90-2.57) and (Ga/Yb)N = 0.97-1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26-3.69), Dy/Yb (1.51-1.77) and Sm/Yb (0.83-1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin.

  19. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore, although the flood basalts and lithospheric mantle bear some isotopic similarities, the basalts were not derived from this portion of the lithospheric mantle, nor are the peridotites crystalline cumulates derived from asthenosphere -derived magmas. The isotopic variations in these peridotites demonstrate that the Afro-Arabian lithosphere contains anciently depleted mantle, created during or prior to the late Proterozoic Pan-African orogeny.

  20. The planet beyond the plume hypothesis

    NASA Astrophysics Data System (ADS)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for intraplate volcanism evolve from the source residues of arc volcanism located along sutures in the continental mantle. Continental rifting and the lateral distribution of intraplate sources in the asthenosphere are controlled by Earth rotation. Shear induced on the base of the asthenosphere from the mesosphere as the Earth rotates is transmitted to the lithosphere as basal drag. Attenuation of the drag due to the low viscosity of the asthenosphere, in conjunction with plate motions from boundary forces, results in a rotation differential of up to 5 cm yr -1 between the lithosphere and mesosphere manifest as westward plate lag/eastward mantle flow. Continental rifting results from basal drag supplemented by local convection induced by lithospheric architecture. Large continental igneous provinces are generated by convective melting, with passive margin volcanic sequences following the axis of rifting and flood basalts overlying the intersection of sutures in the continental mantle. As rifting progresses, the convection cells expand, cycling continental mantle from sutures perpendicular to the rift axis to generate intraplate tracks in the ocean basin. Continental mantle not melted on rifting, or delaminated on continental collision, becomes displaced to the east of the continent by differential rotation, which also sets up a means for tapping the material to give fixed melting anomalies. When plates move counter to the Earth's rotation, as in the example of the Pacific plate, asthenospheric flow is characterised by a counterflow regime with a zero velocity layer at depths within the stability field for volatile-bearing minerals. Intraplate volcanism results when melts are tapped from this stationary layer along lithospheric stress trajectories induced by stressing of the plate from variations in the subduction geometry around the margins of the plate. Plate boundary forces acting in the same direction as Earth rotation, as for the Nazca plate, produce fast plate velocities but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction in size of crust and continental mantle roots, the latter becoming a source for intraplate volcanism while the crust was incorporated into the convecting mantle.

  1. New Estimates of Rhenium in the Crust: Implications for Mantle Re-Os Budgets

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Sun, W.

    2002-12-01

    The 187Re-187Os isotopic system has provided a new probe of mantle chemical structure with, for example, now numerous studies balancing estimates of the Os isotopic compositions of the upper modern mantle with sizes and ages of proposed conjugate reservoirs stored within the deep mantle. This style of modeling is dependent upon estimates of the parent Re in the various reservoirs including total crust, upper mantle, MORB and ocean island basalts. New laser ICP-MS in situ and ID whole rock results from OIB, arc and back-arc basalts suggest Re concentrations in oceanic and crustal domains may have been greatly underestimated. For example Hawaiian OIBs show a clear distinction between subaerial and submarine erupted samples with the latter having Re much closer to the higher MORB estimates (1) than to previous OIB estimates. This difference has been attributed to Re volatility and loss during syn- and post-eruption degassing of subaerial samples. Recent work has produced similar results for submarine arc samples using both dredged glasses and melt inclusions in olivines from primitive basalts. Both have much higher average Re (ca. 1.5 and 3.4 ppb; 2,3) than literature values for arcs (ca. 0.30ppb) determined largely from sub-aerial samples, or for average crust estimated from loess (0.2 ppb; 4). If the undegassed arc samples are representative, then the total crust may have more than 5 times the Re previously estimated. Re lost during arc eruptions may ultimately be concentrated in anoxic seafloor sediments. Prior under-estimates may be linked to the extremely heterogeneous concentration (> 5 orders of magnitude) of the chalcophile, redox sensitive Re in crustal environments. If the residence time of high Re in the crust is long (>1 Ga) then, 1) much smaller reservoirs of stored Re in the deep mantle are required to balance Re depletions in the upper mantle, and 2) significant portions of the upper mantle are likely Re depleted. Alternatively Re may be rapidly recycled in oceanic sediments (short residence time) resulting in a smaller affect on Re-Os budgets, but creating areas of extreme Re heterogeneity in the upper mantle. Refs: 1. Bennett, Norman and Garcia, EPSL 2000. 2. Sun et al. (in press, Chemical Geology) 3. Sun et al. (submitted). 4. Peucker-Ehrenbrink and Jahn, G3, 2001.

  2. Zinc, copper, and lead in mid-ocean ridge basalts and the source rock control on Zn/Pb in ocean-ridge hydrothermal deposits

    USGS Publications Warehouse

    Doe, B.R.

    1994-01-01

    The contents of Zn, Cu, and Pb in mid-ocean ridge basalts (MORB) and the MORB source-rock control on Zn/Pb in ocean-ridge hydrothermal deposits are examined. The values of Zn, Cu, and Pb for submarine mid-ocean ridge basalts (MORB) are, respectively (in ppm): average MORB-75, 75, and 0.7; West Valley, Juan de Fuca Ridge (JFR)-87, 64, and 0.5; southern JFR-120 and 0.5; and 21??N, East Pacific Rise (EPR)-73, 78, and 0.5. Values of Zn/Pb range from about 100-240 and Cu/ Pb from 100-156. In this study, Zn is found to correlate positively with TiO2 + FeO (mean square of weighted deviates, MSWD, of 1.6 for JFR basalt), and inversely with Mg number (MSWD of 3.5). Therefore, contrary to statements in the literature that Zn should be compatible in MORB, Zn is a mildly incompatible element and must be enriched in the glass phase relative to olivine as Zn does not fit into the other major phenocryst phase, plagioclase. In the source of MORB, Zn likely is most enriched in oxides: spinel, magnetite, and titanomagnetite. Copper generally does not correlate well with other elements in most MORB data examined. When differentiation is dominated by olivine, Cu has a tendency to behave incompatibly (e.g., at Mg numbers > 70), but, overall, Cu shows some tendency towards being a compatible element, particularly along the Mid-Atlantic Ridge, a behavior presumably due to separation of sulfides in which Cu (but not Zn) is markedly enriched. Copper thus may be in dispersed sulfides in the source of MORB. Ocean ridges provide important data on source-rock controls for sulfide deposits because, in sediment-starved ridges, much is known about the possible source rocks and mineralization is presently occurring. In contrast to Zn/Pb ~5 in continental hot Cl-rich brines, Zn/Pb in the hottest sediment-starved ridge black smoker hydrothermal fluids at 21 ??N, EPR is about 110, similar to local MORB (145), but Cu/Pb is closer to 30, possibly due to subsurface deposition of Cu. At the JFR, the best value of Zn/Pb in the hydrothermal fluids is about 175, again similar to local MORB (240), but Cu is very low in the fluids that are at temperatures less than 300??C. The large MORB-like Zn/Pb in the hottest black-smoker fluids suggests a source-rock control for the metals that prohibits significant galena in the black-smoker deposits of sediment-starved ridges. In contrast, exhalative deposits on sediment-swamped ridges have significant galena; its presence is suggestive of Pb derivation from sediments, an origin supported by Pb isotope studies of LeHuray and colleagues in 1988. ?? 1994.

  3. Unexpected HIMU-type late-stage volcanism on the Walvis Ridge

    NASA Astrophysics Data System (ADS)

    Homrighausen, S.; Hoernle, K.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Portnyagin, M.; Werner, R.; van den Bogaard, P.; Garbe-Schönberg, D.

    2018-06-01

    Volcanic activity at many oceanic volcanoes, ridges and plateaus often reawakens after hiatuses of up to several million years. Compared to the earlier magmatic phases, this late-stage (rejuvenated/post-erosional) volcanism is commonly characterized by a distinct geochemical composition. Late-stage volcanism raises two hitherto unanswered questions: Why does volcanism restart after an extended hiatus and what is the origin of this volcanism? Here we present the first 40Ar/39Ar age and comprehensive trace element and Sr-Nd-Pb-Hf isotopic data from seamounts located on and adjacent to the Walvis Ridge in the South Atlantic ocean basin. The Walvis Ridge is the oldest submarine part of the Tristan-Gough hotspot track and is famous as the original type locality for the enriched mantle one (EM I) end member. Consistent with the bathymetric data, the age data indicates that most of these seamounts are 20-40 Myr younger than the underlying or nearby Walvis Ridge basement. The trace element and isotope data reveal a distinct compositional range from the EM I-type basement. The composition of the seamounts extend from the St. Helena HIMU (high time-integrated 238U/204Pb mantle with radiogenic Pb isotope ratios) end member to an enriched (E) Mid-Ocean-Ridge Basalt (MORB) type composition, reflecting a two-component mixing trend on all isotope diagrams. The EMORB end member could have been generated through mixing of Walvis Ridge EM I with normal (N) MORB source mantle, reflecting interaction of Tristan-Gough (EM I-type) plume melts with the upper mantle. The long volcanic quiescence and the HIMU-like geochemical signature of the seamounts are unusual for classical hotspot related late-stage volcanism, indicating that these seamounts are not related to the Tristan-Gough hotspot volcanism. Two volcanic arrays in southwestern Africa (Gibeon-Dicker Willem and Western Cape province) display similar ages to the late-stage Walvis seamounts and also have HIMU-like compositions, suggesting a larger-scale event at ∼77-49 Ma. We propose that the EM I-like mantle plumes rise from the edges of the African Large Low Shear Velocity Province (LLSVP; Tristan-Gough, Discovery and Shona hotspot), whereas the HIMU-dominated intraplate lavas (St. Helena, Gibeon-Dicker Willem and Western Cape province) and the late-stage Walvis seamounts tap material from internal portions of the African LLSVP, suggesting possible lateral and/or vertical chemical zonation of the African LLSVP.

  4. Structure and Geochemistry of the Continental-Oceanic Crust Boundary of the Red Sea and the Rifted Margin of Western Arabia

    NASA Astrophysics Data System (ADS)

    Dilek, Y.; Furnes, H.; Schoenberg, R.

    2009-12-01

    The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.

  5. Volatile (H2O, CO2) and Halogen (Cl) Systematics of SMAR MORB (44-52.5 ° S)

    NASA Astrophysics Data System (ADS)

    le Roux, P. J.; le Roex, A. P.; Hauri, E. H.

    2013-12-01

    New SIMS volatile (H2O, CO2) and halogen (Cl) concentration data are presented for fresh MORB glasses (>6wt% MgO) from the slow-spreading southern Mid-Atlantic Ridge (SMAR; 44-52.5 ° S). This data set complements previous data from the faster-spreading northern East Pacific Rise (EPR; 8-10 ° N and 12-14 ° N; le Roux et al., 2006). The selected MORB samples span the previously observed compositional range between enriched and depleted mantle source regions along this section of the SMAR (le Roux et al., 2002b), as well as the range of magma crystallization characteristics (le Roux et al., 2002a). The pre-eruption transit of MORB magmas through the upper oceanic crust can potentially result in compositional contamination through assimilation of e.g. sea-water altered crustal material and/or saline brines. This would most-noticeable through significant addition of sea-water derived Cl to a magma, resulting in excess Cl concentrations and elevated Cl/Nb ratios (>50) in erupted MORB lavas (le Roux et al., 2006; Michael & Cornell, 1998). Dissolved H2O (0.12-0.61wt%) and CO2 (69-230ppm) concentrations in the MORB glass samples provide pressure estimates of eruption initiation, and therefore the final crustal depth at which significant magma compositional modification occurred (Dsat; le Roux et al., 2006). Unlike the northern EPR region, no geophysical data are available for this section of the SMAR. A comparison of Dsat with the depth of imaged magma chambers, similar to results from the northern EPR (le Roux et al., 2006), is therefore not directly possible. However, estimates of the calculated pressures of MORB magma crystallization for these SMAR samples (le Roux et al., 2002a) can be compared with Dsat. The dissolved H2O and CO2 contents of the SMAR basalts are consistent with slow magma ascent allowing degassing to keep pace with decompression (Dsat 0-550m.b.s.l.). Observed Cl contents (15-170ppm) of these SMAR basalts are well-correlated with Nb and indicate the near absence of interaction of the magmas with hydrothermally-altered rocks in the crust (Cl/Nb 5.67-14.2). This may be due to the absence of long-lived hydrothermal systems linked to established sub-ridge magma chambers, as observed at the northern EPR where spreading rates and magma supply are both higher. le Roux et al. (2002a) CMP, 142, 582-602 le Roux et al. (2002b) EPSL, 203, 479-498 le Roux et al. (2006) EPSL, 251, 209-231 Michael; Cornell (1998) JGRes, 103, 18325-18356

  6. Undegassed Carbon Content from a Highly Depleted Segment of the Mid-Atlantic Ridge (1-5°S): Evidence from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Le Voyer, M.; Kelley, K. A.; Cottrell, E.; Hauri, E. H.

    2014-12-01

    As carbon solubility is low in basalts, MORB contain little dissolved CO2 (189±61 ppm, 1σ, n=600 [1]). A global negative correlation between CO2/Nb (proxy for amount of CO2 lost by degassing) and Ba/La (proxy for source enrichment) indicates that depleted MORB are less affected by degassing than enriched MORB: CO2/Nb ratios range from 0-100 for samples with Ba/La>4, while CO2/Nb range from 50 to 400 for samples with Ba/La<4 [1]. To assess the CO2 content of undegassed MORB, we analyzed the volatile content of 70 olivine-hosted, glassy melt inclusions (MIs) from four basalts dredged along MAR 1-5°S, a ridge segment that produces highly depleted MORB in terms of trace element enrichment and radiogenic isotopes [2, 3]. MIs contain CO2 contents (180-1420 ppm) that are higher than their respective matrix glasses (130-220 ppm, typical for vapor-saturated melts erupted at 3-5 km b.s.l.). One of the four dredges (EN061 5D-3Ag) contains MIs that do not exhibit shrinkage bubbles. For this sample only, we find a positive correlation between the CO2 content (240-770 ppm) and the Cl content (6-20 ppm) of the MIs that is not found in the matrix glasses (see Fig.). We infer that the correlation between CO2 and Cl, both highly incompatible in silicate minerals during fractional crystallization, is strong evidence for vapor-undersaturation, as any CO2 degassing would have erased the correlation. Together with MIs from the Siqueiros Fracture Zone [4] and from northern Iceland [5], the MIs from EN061 5D-3Ag may represent another occurrence of carbon-undersaturated MORB. Our results will be used to model the primary carbon content of MORB and of the depleted upper mantle. Note that the average Cl content of the matrix glasses (20±1 ppm) is higher than those of the MIs (12±3 ppm, see Fig.). This indicates either that the matrix glasses assimilated a small amount of seawater Cl, or that the MIs are all more depleted than the matrix glass. We will acquire major and trace element data in order to further investigate the origin of the low Cl and high CO2 contents in these MIs. Ref. [1] Le Voyer et al. 2014 Goldschmidt abstr. [2] Schilling et al. 1994 JGR 99 [3] Kelley et al. 2013 G3 [4] Saal et al. 2002 Nature 419 [5] Hauri and Saal 2009 EOS Fall suppl. AGU abstr.

  7. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.

  8. Constraints from Earth's heat budget on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Ferrachat, S.

    2006-12-01

    Recent years have seen an increase in the number of proposed models to explain Earth's mantle dynamics: while two end-members, pure layered convection with the upper and lower mantle convecting separately from each other, and pure, whole mantle convection, appear not to satisfy all the observations, several addition models have been proposed. These models include and attempt to characterize least one reservoir that is enriched in radiogenic elements relative to the mid-ocean ridge basalt (MORB) source, as is required to account for most current estimates of the Earth's heat budget. This reservoir would also be responsible for the geochemical signature in some ocean island basalts (OIBs) like Hawaii, but must be rarely sampled at the surface. Our current knowledge of the mass- and heat-budget for the bulk silicate Earth from geochemical, cosmochemical and geodynamical observations and constraints enables us to quantify the radiogenic heat enrichment required to balance the heat budget. Without assuming any particular model for the structure of the reservoir, we first determine the inherent trade-off between heat production rate and mass of the reservoir. Using these constraints, we then investigate the dynamical inferences of the heat budget, assuming that the additional heat is produced within a deep layer above the core-mantle boundary. We carry out dynamical models of layered convection using four different fixed reservoir volumes, corresponding to deep layers of thicknesses 150, 500 1000 and 1600 km, respectively, and including both temperature-dependent viscosity and an instrinsic viscosity jump between upper and lower mantle. We then assess the viability of these cases against 5 criteria: stability of the deep layer through time, topography of the interface, effective density profile, intrinsic chemical density and the heat flux at the CMB.

  9. Temporal Variations in the Mantle Source of MORB near the Vema Fracture Zone (Central Atlantic): Nd and Sr Isotopes in Peridotites and Basaltic Glasses

    NASA Astrophysics Data System (ADS)

    Cipriani, A.; Cipriani, A.; Brunelli, D.; Brueckner, H. K.; Brueckner, H. K.; Bonatti, E.; Bonatti, E.

    2001-12-01

    Sr-Nd-Pb isotopic ratios of zero age basalts sampled along Mid-Ocean Ridges (MOR) have demonstrated that the mantle is heterogeneous at a regional scale. However, how the mantle evolves through time below a single segment of MOR it is still matter of debate. Peridotites and basaltic glasses were collected along a lithospheric section uplifted and exposed on the southern side of the Vema transform (10o North, Atlantic Ocean) along a seafloor spreading flow line for a stretch of almost 200 km (corresponding to roughly 10 my). This set of samples offers a unique opportunity to detect changes through time of the mantle signature in a segment of Mid Atlantic Ridge, by analyzing radiogenic isotopes in the clinopyroxenes (cpx) from peridotites and glasses from the overlying basalts. Work is in progress; initial Sr and Nd measurements from cpxs within peridotites indicate several things. First, the cpxs display "depleted" mantle signatures. Second, there is a considerable variation of the isotopic ratios along the exposed section (143Nd/144Nd varies from 0.51293 to 0.51345, 87Sr/86Sr varies from 0.70228 to 0.70422) and these variations occur over a short time scale (some occur within an interval of one million year). Next, the Sr and Nd ratios are inversely correlated and fall along the mantle array. Finally, cpx Nd ratios are inversely correlated with the Cr/Al ratio of the spinel and ortopyroxene (opx) from the peridotites while Sr ratios are positively correlated. Thus, the chemically most depleted peridotite with high Cr/Al ratios show the most enriched isotopic signatures, a pattern that has also been observed in alpine-type peridotites and peridotite nodules and that is generally interpreted as metasomatism by enriched fluids affecting depleted peridotite more extensively than less depleted peridotite. This may indicate that the temporal variations in the extent of melting detected by Cr/Al ratio in spinel and opx (Bonatti et al., Variations with age of mantle ultramafic composition near the Vema Fracture Zone, Central Atlantic. EOS, Vol.79, No.45, F919) are related to rapid changes in the degree of depletion of the upwelling mantle sources and that the degree of depletion of these mantle sources is an inherited feature from earlier processes rather than the result of melting at the MOR.

  10. Sublatitudinal Isotope Heterogeneity of The Atlantic and Adjacent Continents: A Relation To The Litospheric Plates and Superplums

    NASA Astrophysics Data System (ADS)

    Mironov, Yu. V.; Ryakhovsky, V. M.; Pustovoy, A. A.; Lapidus, I. V.

    Four Sr-Nd-Pb isotope sublatitudinal provinces are chosen in the Atlantic and on ad- jacent continents. They include mid-ocean ridges, oceanic rises and islands, as well as Late Mesozoic - Cenozoic continental rifts and traps. A modified Zindler-Hart "man- tle tetrahedron" (1986) have been used for rock systematics. Its major classification element alongside with known end-members (DM, HIMU, EM1, EM2) is any in- tratetrahedron component F ("focal") (Mironov et al., 2000; Rundquist et al., 2000; Ryakhovsky, 2000). It represents average characteristic of all known intratetrahedron components (FOZO, C, PREMA etc.), updated by methods of multidimensional statis- tics. Northern province includes Mid-Atlantic Ridge from a southern part of Reykjanes ridge up to 24S, numerous islands and rises, located at the same latitudes, Cameroon Line, African and European rifts, Aden and Red sea spreading centres, and also Co- mores in Indian ocean. The main composition dispersion of volcanics from withinplate oceanic and continental structures is determined by mixture of F and HIMU (rarely with admixture EM2). MORB within this area are characterized by stable admixture HIMU. Similar composition have the rocks in Bouvet-Antarctic province, within the limits of which the rises Spiss and Shona, the most southern part of Mid-Atlantic ridge, island Bouvet, an adjacent part of Southwest-Indian Ridge, and also traps and rifts on northern coast of Antarctic Continent are located. The Southern province lies in outlines of known Southern hemisphere DUPAL-anomaly (Hart, 1984). The with- inplate oceanic rocks (Gough, Tristan-da-Kunha, Walvis ridge, Rio Grande Plateau, Discovery) correspond to a mixture F + EM1 (sometimes F + EM1 + EM2) and are similar with traps of Southern America and Africa. Further to east this province is traced on islands and mid-ocean ridges in Indian ocean. MORB of Southern Atlantic and Indian ocean are enriched EM1. The Arctic province includes spreading ridges of Northern Atlantic, Norvegian-Greenland sea and Arctic ocean, islands Iceland and Jan-Mayen, Iceland-Faeroe Rise, and also traps of Norway, Britain, and Greenland. MORB and the island rocks correspond to the line of mixture F + DM. On major- ity of isotope characteristics they are similar with DUPAL-MORB (with admixture EM1), but on a ratio 206Pb and 207Pb are close to normal MORB (with admixture 1 HIMU). This specificity is connected to admixture of the special component ARC- TIC. This component represents one of end-components of trends, which are formed by compositions of continental rocks of the Arctic area and reach far beyond "mantle tetrahedron". Thus, transoceanic sublatitudinal isotope heterogeneity, which we have revealed earlier using data on oceanic structures (Mironov et al., 2000; Rundquist et al., 2000; Ryakhovsky, 2000), is traced and on continents. The specificity of main elements of this heterogeneity determine or end-members of "mantle tetrahedron" (HIMU or EM1), or component ARCTIC, located outside "tetrahedron". The main differences between types of structures are determined by mixture of specific compo- nent for given province (HIMU, EM1 or ARCTIC) or with intratetrahedron compo- nent F, or with depleted mantle (DM). The isotopic provinces are discordant to the lithospheric plate boundaries, to extended transform fault, and also to areas of low velosity mantle at the core boundary, which are considered as a places of superplume generating (Fukao et al., 1994). The work is supported by RFBR, and federal program "World Ocean". 2

  11. Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda ridges by 238U230Th disequilibrium

    USGS Publications Warehouse

    Goldstein, S.J.; Murrell, M.T.; Janecky, D.R.; Delaney, J.R.; Clague, D.A.

    1991-01-01

    A highly precise mass spectrometric method of analysis was used to determine 238U234U230Th232Th in axial and off-axis basalt glasses from Juan de Fuca (JDF) and Gorda ridges. Initial 230Th activity excesses in the axial samples range from 3 to 38%, but generally lie within a narrow range of 12 to 15%. Secondary alteration effects were evaluated using ??234U and appear to be negligible; hence the 230Th excesses are magmatic in origin. Direct dating of MORB was accomplished by measuring the decrease in excess 230Th in off-axis samples. 238U230Th ages progressively increase with distance from axis. Uncertainties in age range from 10 to 25 ka for UTh ages of 50 to 200 ka. The full spreading rate based on UTh ages for Endeavour segment of JDF is 5.9 ?? 1/2 cm/yr, with asymmetry in spreading between the Pacific (4.0 ?? 0.6 cm/yr) and JDF (1.9 ?? 0.6 cm/yr) plates. For northern Gorda ridge, the half spreading rate for the JDF plate is found to be 3.0 ?? 0.4 cm/yr. These rates are in agreement with paleomagnetic spreading rates and topographic constraints. This suggests that assumptions used to determine ages, including constancy of initial 230Th 232Th ratio over time, are generally valid for the areas studied. Samples located near the axis of spreading are typically younger than predicted by these spreading rates, which most likely reflects recent volcanism within a 1-3 km wide zone of crustal accretion. Initial 230Th/232Th ratios and 230Th activity were also used to examine the recent Th/U evolution and extent of melting of mantle sources beneath these ridges. A negative anomaly in 230Th 232Th for Axial seamount lavas provides the first geochemical evidence of a mantle plume source for Axial seamount and the Cobb-Eickelberg seamount chain and indicates recent depletion of other JDF segment sources. Large 230Th activity excesses for lavas from northern Gorda ridge and Endeavour segment indicate formation from a lower degree of partial melting than other segments. An inverse correlation between 230Th excess and 230Th 232Th for each ridge indicates that these lower degree melts formed from slightly less depleted sources than higher degree melts. Uniformity in 230Th excess for other segments suggests similarity in processes of melt formation and mixing beneath most of the JDF-Gorda ridge area. The average initial 230Th 232Th activity ratio of 1.31 for the JDF-Gorda ridge area is in agreement with the predicted value of 1.32 from the ThSr isotope mantle array. ?? 1991.

  12. Oxygen fugacity profile of the oceanic upper mantle and the depth of redox melting beneath ridges

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) of a mantle mineral assemblage, controlled primarily by Fe redox chemistry, sets the depth of the diamond to carbonated melt reaction (DCO3). Near-surface fO2 recorded by primitive MORB glasses and abyssal peridotites anchor the fO2 profile of the mantle at depth. If the fO2-depth relationship of the mantle is known, then the depth of the DCO3 can be predicted. Alternatively, if the DCO3 can be detected geophysically, then its depth can be used to infer physical and chemical characteristics of upwelling mantle. We present an expanded version of a model of the fO2-depth profile of adiabatically upwelling mantle first presented by Stagno et al. (2013), kindly provided by D. Frost. The model uses a chemical mass balance and empirical fits to experimental data to calculate compositions and modes of mantle minerals at specified P, T, and bulk Fe3+/ƩFe. We added P and T dependences to the partitioning of Al and Ca to better simulate the mineralogical changes in peridotite at depth and included majorite component in garnet to increase the depth range of the model. We calculate fO2 from the mineral assemblages using the grt-ol-opx oxybarometer (Stagno et al., 2013). The onset of carbonated melting occurs at the intersection of a Fe3+/ƩFe isopleth with the DCO3. Upwelling mantle is tied to the DCO3 until all native C is oxidized to form carbonated melts by reduction of Fe3+ to Fe2+. The depth of intersection of a parcel of mantle with the DCO3 is a function of bulk Fe3+/ƩFe, potential temperature, and bulk composition. We predict that fertile mantle (PUM) along a 1400 °C adiabat, with 50 ppm bulk C, and Fe3+/ƩFe = 0.05 after C oxidation begins redox melting at a depth of 250 km. The model contextualizes observations of MORB redox chemistry. Because fertile peridotite is richer in Al2O3, the Fe2O3-bearing components of garnet are diluted leading to lower fO2 at a given depth compared to refractory mantle under the same conditions. This may indicate that the negativecorrelation observed between enrichment and fO2 at ridges (Cottrell and Kelley, 2013) is a consequence of the increased fertility of remixing recycled crust into the mantle. Addition of reduced C to the mantle during subduction can also explain this observation. Geophysical detection of the depth of the DCO3 may resolve these hypotheses.

  13. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted hydrothermal sediments. The Trans-Mexican Volcanic Belt data confirm the two-step process of Pb enrichment in the arc lavas (and more generally in the continental crust). In the first step, hydrothermal processes at the East Pacific Rise preferentially transport Pb from the basaltic oceanic crust to surface sediments. In the second step, during subduction, these sediments are the main source of asthenospheric mantle-derived Pb to the lavas. Our data also confirm the importance of subduction contributions to the Quaternary Mexican arc, despite the >40 km thick continental crust. Ref: Hofmann et al. (1986) EPSL 79 p. 33-45.

  14. Melting and reactive flow of a volatilized mantle beneath mid-ocean ridges: theory and numerical models

    NASA Astrophysics Data System (ADS)

    Keller, Tobias; Katz, Richard F.

    2015-04-01

    Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x

  15. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2015-07-01

    Silver abundances in mantle peridotites and the behavior of Ag during high temperature mantle processes have received little attention and, as a consequence, the abundance of Ag in the bulk silicate Earth (BSE) has been poorly constrained. In order to better understand the processes that fractionate Ag and other chalcophile elements in the mantle, abundances of Ag and Cu in mantle peridotites from different geological settings (n = 68) have been obtained by isotope dilution ICP-MS methods. In peridotite tectonites and in a few suites of peridotite xenoliths which display evidence for variable extents of melt depletion and refertilization by silicate melts, Ag and Cu abundances show positive correlations with moderately incompatible elements such as S, Se, Te and Au. The mean Cu/Ag in fertile peridotites (3500 ± 1200, 1s, n = 38) is indistinguishable from the mean Cu/Ag of mid ocean ridge basalts (MORB, 3600 ± 400, 1s, n = 338) and MORB sulfide droplets. The constant mean Cu/Ag ratios indicate similar behavior of Ag and Cu during partial melting of the mantle, refertilization and magmatic fractionation, and thus should be representative of the Earth's upper mantle. The systematic fractionation of Cu, Ag, Au, S, Se and Te in peridotites and basalts is consistent with sulfide melt-silicate melt partitioning with apparent partition coefficients of platinum group elements (PGE) > Au ⩾ Te > Cu ≈ Ag > Se ⩾ S. Because of the effects of secondary processes, the abundances of chalcophile elements, notably S, Se, but also Cu and the PGE in many peridotite xenoliths are variable and lower than in peridotite massifs. Refertilization of peridotite may change abundances of chalcophile and lithophile elements in peridotite massifs, however, this seems to mostly occur in a systematic way. Correlations with lithophile and chalcophile elements and the overlapping mean Cu/Ag ratios of peridotites and ocean ridge basalts are used to constrain abundances of Ag and Cu in the BSE at 9 ± 3 (1s) ng/g and 30 ± 6 μg/g (1s), respectively. The very different extent of depletion of Ag and Cu in the BSE cannot be explained by low pressure-temperature core formation if currently available metal-silicate partitioning data are applied.

  16. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Edmonds, Marie; Scaillet, Bruno; Peters, Nial; Gennaro, Emanuela; Sides, Issy; Oppenheimer, Clive

    2016-09-01

    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer - hence preserving mantle conditions - or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai'i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2O and CO2 appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas-melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at Kīlauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath Kīlauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.

  17. Strontium and neodymium isotopic evidence for the heterogeneous nature and development of the mantle beneath Afar (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Betton, P. J.; Civetta, L.

    1984-11-01

    Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The 143Nd/ 144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the 87Sr/ 86Sr ratios display a distinctly greater range (0.70328-0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform 143Nd/ 144Nd ratios (ca. 0.5129) but varied 87Sr/ 86Sr ratios in the range 0.70427-0.70528. The Sr sbnd Nd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the "MORB-type" volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs. It is shown that the anomalous source with a high 87Sr/ 86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high 87Sr/ 86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high 87Sr/ 86Sr ratio.

  18. Geochemical Diversity of the Mantle: 50 Years of Acronyms

    NASA Astrophysics Data System (ADS)

    Hart, S. R.

    2014-12-01

    50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both cases the spidergrams are "enriched" with peaks at Nb-Ta of 2x and 4x bulk silicate earth, respectively, but with quite different shapes. As is typical with OIB, the derived source compositions are incompatible with the isotopic signatures, requiring a fairly recent "enrichment" event (possibly auto-metasomatism).

  19. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step-crushes in the aliquot left exposed to air display significantly more scatter, which makes it difficult to fit a two-component mixing hyperbola and obtain the mantle source value for this aliquot. In summary, our simple and inexpensive experiment demonstrates that at least in some samples, significant air contamination is added after dredge retrieval from the ocean floor. Bottling samples in ultrapure N2 upon dredge retrieval can largely eliminate this component of shallow-level air contamination. As a result, the number of step crushes required to characterize a sample decreases and estimating the mantle source compositions of the basalts becomes significantly easier, which in turn leads to more refined estimates of mantle degassing and regassing rates.

  20. Melting and Reactive Flow of Carbonated Peridotite Beneath Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.

    2015-12-01

    The mantle carbon reservoir is four orders of magnitude more massive than that of the atmosphere and ocean combined. The behaviour of carbon in the mantle, especially its transport and extraction, is thus of crucial importance to understanding the coupling between the deep interior and the surface environment of Earth. Laboratory experiments indicate that even small concentrations of carbon dioxide (and other volatiles like H2O) in the upper mantle significantly affect silicate melting [HK96,DH06] by stabilising carbon-rich melt at high pressure. The presence of carbon in the mantle substantially extends the region where partial melt is stable and has important consequences for the dynamics of magma transport and chemical differentiation [H10,DH10]. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+carbonated MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84]. The thermo-chemical formulation of the system is represented by a novel, disequilibrium, multi-component melting model based on thermodynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. First results show that carbon and other volatiles cause a qualitative difference to the style of melt transport, potentially enhancing its extraction efficiency - measured in the carbon mass flux arriving at the mid-ocean ridge axis - by at least an order of magnitude. The process that controls magma transport in our models is a volatile flux-induced reactive infiltration instability, causing carbonated melt to rise from depth in localized channels. These results add to our understanding of melt formation and transport at mid-ocean ridges (the most important magmatic system in the mantle) and may have important implications for subduction zones. REFERENCESHK96 Hirth & Kohlstedt (1996), EPSLDH06 Dasgupta & Hirschmann (2006), NatureH10 Hirschmann (2010), PEPI DH10 Dasgupta & Hirschmann (2010), EPSLMcK84 McKenzie (1984), J PetKW12 Katz & Weatherley (2012), EPSLRBS11 Rudge, Bercovici & Spiegelman (2011), GJI

  1. N-MORB crust beneath Fuerteventura in the easternmost part of the Canary Islands: evidence from gabbroic xenoliths

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Vannucci, Riccardo; Tiepolo, Massimo

    2005-09-01

    Gabbro xenoliths reported in this paper were collected in northern Fuerteventura, the Canary Island located closest to the coast of Africa. The xenoliths are very fresh and consist of Ti-Al-poor clinopyroxene + plagioclase (An87-67) + olivine (Fo72-86) ± orthopyroxene. Clinopyroxene and orthopyroxene are constantly and markedly depleted in light rare earth elements (LREE) relative to heavy REE (HREE), as expected for cumulus minerals formed from highly refractory N-MORB-type melts. In contrast, whole-rock Primordial Mantle-normalized trace element patterns range from mildly S-shaped (mildly depleted in Pr-Sm relative to both the strongly incompatible elements Rb-La and the HREE) to enriched. Estimates show that the trace element compositions of the rocks and their minerals are compatible with formation as N-MORB gabbro cumulates, which have been infiltrated at various extents (≤1% to >5%) by enriched alkali basaltic melts. The enriched material is mainly concentrated along grain boundaries and cracks through mineral grains, suggesting that the infiltration is relatively recent, and is thus associated with the Canary Islands magmatism. Our data contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean. No evidence of continental material that might reflect attenuated continental crust in the area has been found. Gabbro xenoliths with REE and trace element compositions similar to those exhibited by the Fuerteventura gabbros are also found among gabbro xenoliths from the islands of La Palma (western Canary Islands) and Lanzarote. The compositions of the most depleted samples from these islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. The presence of N-MORB oceanic crust beneath Fuerteventura implies that the continent-ocean transition in the Canary Islands area must be relatively sharp, in contrast to the situation both further north along the coast of Morocco, and along the Iberian peninsula.

  2. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and sediment. The basalts from south-central Vietnam (12°N-14°N) may be dominated by the lowest portion of the residual slab that contains rutile-bearing plagioclase-rich gabbroic eclogite, whereas the uppermost portion of the recycled slab, including sediment and basaltic material with small amounts of gabbro, may be a major constituent of the source for the basalts within the central region of Vietnam (14°N-16°N). Finally, the southern region (10°N-12°N) contains basalts sourced mainly from recycled upper oceanic crust that is basalt-rich and contains little or no sediment.

  3. Constraining pre-eruptive volatile contents and degassing histories in submarine lavas

    NASA Astrophysics Data System (ADS)

    Jones, M.; Soule, S. A.; Liao, Y.; Le Roux, V.; Brodsky, H.; Kurz, M. D.

    2017-12-01

    Vesicle textures in submarine lavas have been used to calculate total (pre-eruption) volatile concentrations in mid-ocean ridge basalts (MORB), which provide constraints on upper mantle volatile contents and CO2 fluxes along the global MOR. In this study, we evaluate vesicle size distributions and volatile contents in a suite of 20 MORB samples, which span the range of typical vesicularities and bubble number densities observed in global MORB. We demonstrate that 2D imaging coupled with traditional stereological methods closely reproduces vesicle size distributions and vesicularities measured using 3D x-ray micro-computed tomography (μ-CT). We further demonstrate that x-ray μ-CT provides additional information about bubble deformation and clustering that are linked to bubble nucleation and lava emplacement dynamics. The validation of vesicularity measurements allows us to evaluate the methods for calculating total CO2 concentrations in MORB using dissolved volatile content (SIMS), vesicularity, vesicle gas density, and equations of state. We model bubble and melt contraction during lava quenching and show that the melt viscosity prevents bubbles from reaching equilibrium at the glass transition temperature. Thus, we suggest that higher temperatures should be used to calculate exsolved volatile concentrations based on observed vesicularities. Our revised method reconciles discrepancies between exsolved volatile contents measured by gas manometry and calculated from vesicularity. In addition, our revised method suggests that some previous studies may have overestimated MORB volatile concentrations by up to a factor of two, with the greatest differences in samples with the highest vesicularities (e.g., `popping rock' 2πD43). These new results have important implications for CO2/Nb of `undegassed' MORB and global ridge CO2 fluxes. Lastly, our revised method yields constant total CO2 concentrations in sample suites from individual MOR eruptions that experienced syn-eruptive degassing. These results imply closed-system degassing during magma ascent and emplacement following equilibration at the depth of melt storage in the crust.

  4. Neon isotopes show that Earth was accreted from irradiated material

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.

    2015-12-01

    Since the 1980s, the notion that the Earth's mantle has a "solar" isotopic signature for neon has been favoured. Indeed, the 20Ne/22Ne ratio is above 12.5 in the mantle sources of OIB and MORB, close to the solar composition (13.4 for the Sun or 13.8 for the solar wind) and different from both atmospheric and chondritic compositions (Phase Q, Neon A). The most well accepted process invoked to explain this observed solar composition in the mantle is dissolution into a magma ocean of solar gases captured by gravity around the proto-Earth. However, Earth was accreted after gas from the proto-planetary disk had evaporated, suggesting that Earth itself could not have captured such a solar primordial atmosphere. Only planetary embryos were formed when the gas was still present in the disk. However, these planetary embryos with the mass of Mars are not massive enough to capture a solar dense atmosphere able to incorporate enough neon into the mantle. New estimates of the neon isotopic compositions of both the Earth's mantle and of the implanted solar wind into grains suggest that the origin of the neon on Earth is related to solar wind irradiation on μm grains before planetary accretion started and not dissolution. Although incorporation of solar ions by this process is only significant for very volatiles (depleted) elements, the irradiation by x-rays has important consequences for the bulk chemistry of irradiated grains as it has been demonstrated that it produces depletion in Mg and Si, relatively to O (e.g Bradley et al., 1994), a pattern also observed for the Bulk silicate Earth. References Bradley, J. (1994). "Chemically Anomalous, Preaccretionally irradiated Grains in Interplanetary fust from Comets." Science 265: 925-929.

  5. Constraints on Thermochemical Convection of the Mantle from Plume-related Observations

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2005-05-01

    Although geochemical observations have long suggested a layered mantle with more enriched mantle material in the bottom layer to provide a significant amount of heat to the top layer, the nature of such a layering remains unclear. An important observation that has been used to argue against the conventional layered mantle model (i.e., the layering at the 670 km depth) was the plume heat flux [Davies, 1999]. Plume heat flux is estimated as ~ 3.5 TW, or 10% of the surface heat flux [Davies, 1988; Sleep, 1990]. In this study, we demonstrate with 3-D spherical models of mantle convection with depth- and temperature-dependent viscosity that observed plume heat flux, plume excess temperature (<350°C), and upper mantle temperature (~ 1300°C) can pose important constraints on the layered mantle convection. We show that for a purely thermal convection model (i.e., a whole mantle convection), the observations of plume heat flux, plume excess temperature, and upper mantle temperature can be simultaneously explained only when internal heating rate is about 65%. For smaller internal heating rate, plume heat flux and plume excess temperature would be too large, and upper mantle temperature would be too small, compared with the observed. This suggests that for a whole mantle convection the CMB heat flux needs to be > 10 TW. For a core with no significant heat producing elements, such large CMB heat flux may lead to too rapid cooling of the core or a too young inner core. A layered mantle convection may help reduce the CMB heat flux. For layered convection models, we found that the top layer needs to be ~70% internally heated to explain the upper mantle temperature and plume-related observations, and this required internal heating ratio is insensitive to the layer thickness for the bottom layer (we used ~600 km and 1100 km thicknesses). This result suggests that heat generation rate for the bottom layer cannot be significantly larger (< a factor of 2) than that for the top layer. thus challenging the conventional geochemical inference for an significantly enriched bottom layer. However, this is more consistent with recent estimate of the MORB source composition that increases heat producing element concentration by a factor of three compared with the previously proposed.

  6. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth

    NASA Astrophysics Data System (ADS)

    Walzer, Uwe; Hendel, Roland

    2010-05-01

    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic. Independently of the varying individual runs, our model shows that the total mass of the present-day continents is not generated in a single process at the beginning of the thermal evolution of the Earth but in episodically distributed processes in the course of geological time. This is in accord with observation. Finally, we present results regarding the numerical method, implementation, scalability and performance. References [1] Condie, K. C., Episodie continental growth models: Afterthoughts and extensions, Tectonophysics, 322 (2000), 153-162. [2] Davidson, J. P. and Arculus, R. J., The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust, edited by M. Brown and T. Rushmer (2006), 135-172, Cambridge Univ. Press, Cambridge, UK. [3] Hofmann, A. W., Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements, in Treatise on Geochemistry, Vol. 2: The Mantle and the Core, edited by R. W. Carlson (2003), 61-101, Elsevier, Amsterdam. [4] Rollinson, H., Crustal generation in the Archean, in Evolution and Differentiation of the Continental Crust, edited by M. Brown and T. Rushmer (2006), 173-230, Cambridge Univ. Press, Cambridge, UK: [5] Taylor, S. R. and McLennan, S. M., Planetary Crusts. Their Composition, Origin and Evolution. (2009), 1-378, Cambridge Univ. Press, Cambridge, UK. [6] Walzer, U. and Hendel, R., Mantle convection and evolution with growing continents. J. Geophys. Res. 113 (2008), B09405, doi: 10.1029/2007JB005459 [7] http://www.igw.uni-jena.de/geodyn

  7. Mantle evolution on Mars: Constraints from Lu-Hf and Sm-Nd isotope systematics of SNC meteorites

    NASA Astrophysics Data System (ADS)

    Scherer, E. E.; Kurahashi, E.; Mezger, K.

    2012-12-01

    The long-lived 176Lu-176Hf and 147Sm-143Nd isotope systems are commonly employed to track the evolution of complementary mantle and crust reservoirs. The four elements involved are refractory and lithophile, and thus their relative abundances are not expected to have been changed by accretion or core formation. Subsequent silicate differentiation processes, however, e.g., the formation of crust by extraction of melts from the mantle, will fractionate Lu/Hf and Sm/Nd. This typically leaves a depleted mantle with higher Lu/Hf and Sm/Nd values than those of the undifferentiated, presumably chondritic parental reservoir. On the other hand, these same values in crustal rocks tend to be lower than those of their source. (Apparent exceptions are the Martian shergottites, which tend to have lower Lu/Hf as expected, but Sm/Nd higher than their presumed sources. Such decoupling of the two isotope systems may be explained by two-stage melting [e.g., 1, 5].) The ensuing chemical variability among secondary and later generation silicate reservoirs causes their isotopic compositions (e.g., 176Hf/177Hf and 143Nd/144Nd) to diverge from that of the bulk silicate planet over hundreds of millions of years. The resulting isotopic diversity preserved (SNC) meteorites is being used to constrain the differentiation history, melting mineralogy, and dynamics of the Martian mantle [e.g., 1-8]. However, interpretations based on the initial isotope compositions of Hf and Nd strongly depend on the accuracy of crystallization ages. The ages of shergottites in particular are debated (e.g., [3,4,7]). To resolve this issue and gain a better understanding of Martian mantle evolution, we are investigating the Lu-Hf and Sm-Nd systematics of bulk SNC meteorites and constructing internal (mineral) isochrons. Eleven bulk Martian meteorites (5 shergottites, 4 nakhlites, and 2 chassignites) were digested without prior leaching in high-pressure autoclaves for 5 days. Initial ɛ176Hf and ɛ143Nd values range from +49.0 to +51.3 and +34.7 to +47.8, respectively, for depleted shergottites, -13.3 to -17.4 and -6.3 to -6.5 for enriched shergottites, +1.8 to +14.5 and +13.4 to +15.6 for nakhlites, and +16.3 to +24.9 and +15.3 to +15.4 for chassignites. These data agree well with those of earlier studies [e.g., 2-8]. The initial ɛ143Nd of nakhlites and chassignites vary little relative to ɛ176Hf. The time-integrated 176Lu/177Hf and 147Sm/144Nd of all investigated source reservoirs form a narrow trend within the terrestrial MORB + OIB field, with the sources of nakhlites and chassignites located between those of depleted and enriched shergottites. Shergottites themselves display a large range of 147Sm/144Nd with higher values at a given 176Lu/177Hf relative to MORB + OIB. Evidence for both young (474-150 Ma) and old (> 4 Ga) shergottite ages will be evaluated and the effects of these disparate ages on models of silicate differentiation on Mars will be illustrated. [1] Borg et al., (1997) GCA 61:4915-4931. [2] Blichert-Toft J. et al. (1999) EPSL 173:25-39. [3] Bouvier A. et al. (2005) EPSL 240:221-233. [4] Bouvier A. et al. (2008) EPSL 266:105-124. [5] Debaille V. et al. (2008) EPSL 269:186-199. [6] Debaille V. et al. (2009) Nature Geosci. 2:548-552. [7] Shafer J. T. et al. (2010) GCA 74:7307-7328. [8] Lapen T. J. et al. (2010) Science 328:347-351.

  8. Imprints of an "Arc" Signature onto Subduction Zone Eclogites from Central Guatemala

    NASA Astrophysics Data System (ADS)

    Simons, K. K.; Sorensen, S. S.; Harlow, G. E.; Brueckner, H. K.; Goldstein, S. L.; Hemming, N. G.; Langmuir, C. H.

    2007-12-01

    High-pressure, low-temperature (HP-LT) rocks associated with the Motagua fault zone in central Guatemala occur as tectonic blocks in serpentinite mélange. Dismembered jadeitite and albitite veins within the melange are crystallization products of subduction fluids at <400° C and 0.4-1.4 GPa. Lawsonite eclogites represent the deepest, coldest rocks, with peak metamorphic conditions of approx. 2.6 GPa and 480°C. They contain a subduction fluid overprint acquired during retrogression to blue- and green-schist-facies conditions, seen mostly as hydrous phases (e.g. phengite, glaucophane) in veins and overgrowths. The low temperatures recorded in these rocks indicate they have only seen an aqueous fluid, not a melt, and therefore, could provide a window into the acquisition of an arc signature at a cold margin. Trace-element patterns for both eclogite and jadeitite resemble arc lavas, with large enrichments in the most fluid mobile elements (e.g. Cs, Tl, Ba, Pb), moderate enrichments in U, Th, Be and LREE and generally little to no enrichment in HFSE and HREE, although enriched Nb in jadeitite indicates some HFSE mobility. Trace-element patterns also have similarities to average subducting sediment (GLOSS), with enrichments in Th, Be, Ba and Li that suggest a sediment contribution. Nd versus Sr isotopes lie to the right of the mantle array, indicating a hydrous fluid contribution from altered ocean crust or sediment. Overall, Guatemalan eclogites resemble counterparts from the Franciscan Complex (CA) and the Dominican Republic. Guatemalan and Franciscan eclogites are interpreted to have had a MORB protolith despite the arc trace element signature because of: 1) similarities in major elements to MORB; 2) HREE and HFSE abundances similar to MORB; and 3) high 143Nd/144Nd that overlap MORB values. The modifications that transformed these eclogites from a MORB trace element pattern to an arc one can be attributed to an aqueous subduction fluid at moderate depths (<75km). This transformation may be due to the increased solubilities of some minerals (e.g., jadeite, albite, clays, sulfates) at high pressure, high water/rock ratios from dehydration reactions, and an abundance of alkali-aluminosilicate components in subduction fluids. Together these may act to dissolve and transport trace elements (including elements considered insoluble like Nb) out of the slab and into the mantle wedge. The Guatemala data thus indicate that the arc geochemical fingerprint may be achieved at cold margins without the need for melting.

  9. Temporal evolution of the Kerguelen plume: geochemical evidence from ˜38 to 82 Ma lavas forming the Ninetyeast Ridge

    NASA Astrophysics Data System (ADS)

    Frey, Frederick A.; Weis, Dominique

    1995-08-01

    Basaltic basement has been recovered by deep-sea drilling at seven sites on the linear Ninetyeast Ridge in the eastern Indian Ocean. Studies of the recovered lavas show that this ridge formed from ~ 82 to 38 Ma as a series of subaerial volcanoes that were created by the northward migration of the Indian Plate over a fixed magma source in the mantle. The Sr, Nd and Pb isotopic ratios of lavas from the Ninetyeast Ridge range widely, but they largely overlap with those of lavas from the Kerguelen Archipelago, thereby confirming previous inferences that the Kerguelen plume was an important magma source for the Ninetyeast Ridge. Particularly important are the ~ 81 Ma Ninetyeast Ridge lavas from DSDP Site 216 which has an anomalous subsidence history (Coffin 1992). These lavas are FeTi-rich tholeiitic basalts with isotopic ratios that overlap with those of highly alkalic, Upper Miocene lavas in the Kerguelen Archipelago. The isotopic characteristics of the latter which erupted in an intraplate setting have been proposed to be the purest expression of the Kerguelen plume (Weis et al. 1993a,b). Despite the overlap in isotopic ratios, there are important compositional differences between lavas erupted on the Ninetyeast Ridge and in the Kerguelen Archipelago. The Ninetyeast Ridge lavas are dominantly tholeiitic basalts with incompatible element abundance ratios, such as La/Yb and Zr/Nb, which are intermediate between those of Indian Ocean MORB (mid-ocean ridge basalt) and the transitional to alkalic basalts erupted in the Kerguelen Archipelago. These compositional differences reflect a much larger extent of melting for the Ninetyeast Ridge lavas, and the proximity of the plume to a spreading ridge axis. This tectonic setting contrasts with that of the recent alkalic lavas in the Kerguelen Archipelago which formed beneath the thick lithosphere of the Kerguelen Plateau. From ~ 82 to 38 Ma there was no simple, systematic temporal variation of Sr, Nd and Pb isotopic ratios in Ninetyeast Ridge lavas. Therefore all of the isotopic variability cannot be explained by aging of a compositionally uniform plume. Although Class et al. (1993) propose that some of the isotopic variations reflect such aging, we infer that most of the isotopic heterogeneity in lavas from the Ninetyeast Ridge and Kerguelen Archipelago can be explained by mixing of the Kerguelen plume with a depleted MORB-like mantle component. However, with this interpretation some of the youngest, 42-44 Ma, lavas from the southern Ninetyeast Ridge which have206pb/204Pb ratios exceeding those in Indian Ocean MORB and Kerguelen Archipelago lavas require a component with higher206Pb/204Pb, such as that expressed in lavas from St. Paul Island.

  10. Effects of spin crossover on iron isotope fractionation in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Qin, T.; Shukla, G.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Recent studies have revealed that the iron isotope composition of mid-ocean ridge basalts (MORBs) is +0.1‰ richer in heavy Fe (56Fe) relative to chondrites, while basalts from Mars and Vesta have similar Fe isotopic composition as chondrites. Several hypotheses could explain these observations. For instance, iron isotope fractionation may have occurred during core formation or Earth may have lost some light Fe isotope during the high temperature event in the early Earth. To better understand what drove these isotopic observations, it is important to obtain accurate Fe isotope fractionation factors among mantle and core phases at the relevant P-T conditions. In bridgmanite, the most voluminous mineral in the lower mantle, Fe can occupy more than one crystalline site, be in ferrous and/or ferric states, and may undergo a spin crossover in the lower mantle. Iron isotopic fractionation properties under spin crossover are poorly constrained, while this may be relevant to differentiation of Earth's magma ocean. In this study we address the effect of these multiple states on the iron isotope fractionation factors between mantle and core phases.

  11. Melt Transport and Mantle Assimilation at Atlantis Massif (IODP Site U1309): Evidence from Chemical Profiles along Olivine Crystallographic Axes

    NASA Astrophysics Data System (ADS)

    Ferrando, C.; Godard, M.; Ildefonse, B.; Rampone, E.

    2017-12-01

    Olivine-rich troctolites (Ol > 70%, Ol T) indicate that extensive melt impregnation of preexisting Ol rich lithologies participate to the building of slow spread crust. To constrain their origin and their impact on the structure and geochemistry of oceanic crust, we realized a multi-scale petro-structural, geochemical, and numerical modelling study of Ol T drilled at IODP Hole U1309D (Atlantis Massif, Exp. 304/305). Ol T display deformed (high temperature imprint) corroded coarse grained to undeformed fine grained Ol embayed in poikilitic Cpx and Plg. Ol crystallographic preferred orientations show [001] cluster suggesting formation after impregnation and assimilation of a deformed Ol rich matrix at high melt/rock ratios. Ol have variable major and minor element compositions, but similar fractionated REE (DyN/YbN = 0.04 - 0.11). Chemical traverses along principal crystallographic axes of Ol are flat suggesting local equilibrium between Ol and neighboring phases. 3 types of Ol T were distinguished. Ol T 1 - 2 display sharp contacts. Ol T 1 has Ol <75% (single grains) and primitive compositions (Mg# = 85-86; Ni = 1870-2840 ppm, Mn = 1570-1950 ppm; Li = 1.2 - 2.7 ppm). Ol T 2 have high Ol ( > 75%, dominantly aggregates) yet more evolved composition (Mg# = 83-84, Ni = 1790 - 2510 ppm, Mn = 1760 - 1990 ppm, Li = 1.5 - 3.9 ppm) in contrast to modal and composition trends predicted by MORB crystallization. Ol T 3 has diffusive contacts with gabbroic veins, variable modal Ol with the most evolved compositions and record late stages of Ol-T formation. Ol T compositions are best modelled assuming percolation of primitive MORB melts into Hole U1309B harzburgite, triggering Opx dissolution, followed by Ol assimilation and Plg + Cpx crystallization. Modelling shows that Ol Ni variations at constant Mg# in Ol T are mantle inherited. Ol T 1 compositions were fitted assuming higher Ol assimilation (Ma = 0.06 - 0.13) in contrast to Ol T 2 -3 (Ma = 0.01 - 0.02). Ol T 3 was `buffered' by more evolved melts and shows cooling of reacted melts. We interpret the 3 Ol T types as resulting from initial local spatial variations in mantle permeability (pyroxene distribution?) which in turn controlled melt transport and mantle-melt interactions. We expect that such reactive percolation processes will shift MORB compositions to apparent high pressure fractionation.

  12. Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Furman, T.; Hanan, B.

    2005-12-01

    Extension within the East African Rift is a function of the interaction between plume-driven uplift and far-field stresses associated with plate tectonic processes. Geochemical and isotopic investigation of primitive basalts from the Main Ethiopian Rift (MER) reveals systematic spatial variations in the contributions from distinct and identifiable source reservoirs that, in turn help identify the mechanisms by which along-axis rifting has progressed. The Sr-Nd-Pb isotopic characteristics of MER basalts can be described by a three-component mixing model involving the long-lived Afar plume, a depleted mantle component similar to the source region for Gulf of Aden MORB from east of 48° E and a reservoir that is likely lithospheric (sub-continental mantle lithosphere, magmatic underplate or lower crust). Quaternary basalts in the central MER exhibit a systematic decrease in plume influence southward from 9.5° N to 8° N, i.e., away from the modern surface expression of the Afar plume in Djibouti and Erta 'Ale. The composition of the Afar plume component is comparable to the "C" mantle reservoir. This southward decrease in plume influence is coupled with an increase in the influence of the lithospheric and depleted mantle components. Linear arrays observed within Pb-Pb isotopic space at each eruptive center require distinctive ratio of lithospheric + depleted mantle components mixing with variable amounts of the "C"-like plume component. This isotopic evidence suggests the depleted mantle and lithosphere mixed prior to the generation of the recent magmas. To the south, the Sr-Nd-Pb isotopic compositions of Turkana (Kenya) rift basalts record a mix of a similar "C"-like plume component and a fourth HIMU-like source component. Low 3He/4He values observed in the HIMU-dominated lavas from Turkana contrast with the higher ratios found in basalts associated with the "C"-like Afar plume. Further analysis of "C"-HIMU lavas at Turkana is required to fully constrain the He isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.

  13. Geochemical Constrains on MORB Composition and Magma Sources at East Pacific Rise Between 1°S and 2°S

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zeng, Zhigang; Cui, Lukai; Yin, Xuebo

    2018-04-01

    The East Pacific Rise (EPR) is a typical fast spreading ridge. To gain a better understanding of the magmatism under ridges, Mid Ocean Ridge Basalts (MORBs) with remarkably heterogeneous compositions are obtained from (EPR) 1°-2°S and multielement geochemical and radioisotope analyses are conducted. Results show that these MORBs have wide variation ranges in trace element concentrations and isotopic ratios. Sample 07 has low concentrations of incompatible elements, and very low 87Sr/86Sr, and high 143Nd/144Nd from 0.70213 to 0.702289 and 0.513234 to 0.513289, respectively. However, other samples show enrichment in incompatible elements to varying degrees, and medium values of 87Sr/86Sr and 143Nd/144Nd from 0.702440 to 0.702680 and 0.513086 to 0.513200, respectively. This study proposes that one depleted source and two enriched sources contribute to the formation of MORBs from EPR 1°-2°S. Samples 02 and 10 are formed by mixing between one enriched source and one depleted source, while sample 07 is crystallized from the depleted source with no mixing process involved. However, the formation of samples 06 and 11 are different, and thus further research is required to determine genesis.

  14. Predicting Global Rates and Distribution of Carbonate Melting Beneath the Ocean Basins: Implications for the Origin of the Gutenberg Discontinuity

    NASA Astrophysics Data System (ADS)

    Clerc, F.; Behn, M. D.; Parmentier, E. M.

    2017-12-01

    The pooling of carbonate melts beneath old ocean lithosphere is a proposed explanation for the seismic Gutenberg (G) discontinuity. However, while the G discontinuity is observed ubiquitously across the ocean basins, carbonate melting only occurs in regions of mantle upwelling. Here we examine the global distribution and extent of carbonate melting by coupling a mantle flow model with a thermodynamic parameterization for carbonate melting. We obtain global upwelling velocities from a convection model driven by plate motions and mantle density differences [1], and calculate melt fractions from the R_DMC carbonate solidus [2]. We find low-degree carbonate melts are produced pervasively throughout ocean basins, driven by passive upwelling in response to subduction. Assuming melt formed within 100 km of the ridge is focused to its axis, our model predicts a 6-km thick oceanic crust and a global CO2 ridge flux of 7 x 1011 mol/yr (for a mantle source concentration of 100 ppm CO2). This flux is consistent with other estimates of CO2 ridge fluxes [e.g.,3] over the inferred range of MORB-source mantle carbon concentrations [e.g.,4]. In addition to the ridge flux, off-axis carbonate melting results in a global CO2 flux of 1.6 x 1012mol/yr. To test for correlations between regions of upwelling-induced carbonate melting and seismic evidence for the LAB, we compare our results with a compilation of seismic G discontinuity observations [5]. While most observations of the G discontinuity are found in regions of predicted carbonate melting, some lie in regions of downwelling (where no melting occurs), suggesting that melt pooling does not conclusively explain these seismic signals. Further, we estimate off-axis porosities to be < 0.1%, indicating that the melt remaining in the mantle does not contribute substantially to a discontinuity of the observed magnitude. Carbonate melts pooled at the base of the lithosphere may refreeze within the thermal boundary layer and refertilize the lithosphere. We model the trace element compositions of these enriched melts and compare them with geochemical data from enriched mantle sources, such as petit-spot melts [e.g.,6]. [1] Naliboff et al., GRL, 2009; [2] Keller & Katz, J Pet, 2016; [3] Chavrit et al., EPSL, 2014; [4] Rosenthal et al., EPSL, 2015; [5] Schmerr, Sci, 2012; [6] Machida et al., EPSL, 2015

  15. The Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Callegaro, S.; Davies, J.; Chiaradia, M.; Reisberg, L. C.; Merle, R.; Jourdan, F.; Bertrand, H.; Youbi, N.

    2017-12-01

    Basaltic lava flows, dykes, sills, and layered intrusion of the CAMP (Central Atlantic magmatic province) crop out in Europe, Africa, North and South America over > 10 million square km, making this one of Earth's largest igneous provinces. CAMP is characterized by 100-400 m thick preserved lava piles and by huge shallow intrusions (e.g., > 1.5 million cubic km sills). Magmatism occurred mainly between 201.6 and 201.1 Ma (according to U-Pb and Ar/Ar ages) during the end-Triassic extinction event and a few Ma before break-up of Pangea. Pulsed emplacement seems consistent with high-precision geochronology, but needs further confirmation. All over the province, basalts with quite similar composition reflect a common mantle source. These basalts have low Ti contents (TiO2 ca. 1.0-1.3 wt.%), moderately enriched Sr-Nd-Pb isotopic compositions close to the EM-II mantle end-member, and 187Os/188Os close to 0.130. We attribute these characteristics to a dominant shallow asthenospheric mantle source that was enriched by subduction-related components. Assimilation of crustal rocks generally played a minor role and rarely exceed 5-10%. Instead, assimilation of the sub-continental lithospheric mantle (SCLM) was instead recognized in the high-Ti basalts (TiO2> 2.0 wt.%) that were emplaced in a restricted area around the Man and Amazonian cratons (Sierra Leone, Liberia, Brazil, Guyana). The SCLM-like signature of these basalts suggests assimilation of metasomatically enriched parts of the SCLM. Also early basalts emplaced north of the West African craton (Morocco, Mali) are contaminated by enriched SCLM components even if to a lesser degree, while later basalts from the same African regions have low 187Os/188Os (ca. 0.120) and probably tapped a more depleted cratonic SCLM. Calculated mantle potential temperatures are low (ca. 1450 °C) and geochemical data do not support a significant contribution from mantle-plume material. The only available He isotopic data are just slightly higher than those of MORB. This argues against a substantial contribution from mantle-plume material. The only basalts trending to isotopic compositions similar to those of present-day Atlantic island basalts are quite limited in volume and restricted to a small area of Morocco.

  16. Upper mantle oxygen fugacity recorded by peridotite xenoliths from oceanic islands

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Wall, K. T.; Cottrell, E.

    2017-12-01

    Oxygen fugacity (fO2) in Earth's mantle is a key variable influencing mineral and fluid stability, the onset of melting, and mantle rheology; but fO2 is not uniform across mantle spatial domains. Peridotite xenoliths erupted in oceanic island basalts (OIB) potentially record fO2 of their lithospheric source - the convecting upper mantle. Many of these xenoliths have reacted with OIB as they transited the lithosphere. These xenoliths may record fO2 of the OIB source, potentially recording fO2 heterogeneity within the upper mantle. We investigate fO2heterogeneity by analyzing coexisting olivine, opx, and spinel in 41 peridotite xenoliths from islands associated with four different hotspots: Oahu (Hawaii), Savai'i (Samoa), Tubuai (Austral), and Tahiti (Society). Elevated spinel TiO2 concentrations (TiO2 >0.2 wt.%) in xenoliths from Oahu, Tubuai, and Tahiti may indicate interaction with OIB magmas [1]. Such assemblages record higher fO2 on average (QFM+0.4 to QFM+1.0) than peridotites and lavas from mid-ocean ridges (QFM-2 to QFM) [2,3,4]. This suggests that Hawaiian, Society, and Austral basalts with fO2 ≥ QFM+0.4 are more oxidized than MORB. (None of the Samoan xenoliths have spinel TiO2 >0.05 wt.%). Xenoliths with TiO2 <0.2 wt.% that have not reacted with OIB show a great degree of fO2 heterogeneity (QFM-1.5 to QFM+1.0) reflective of heterogeneity in lithospheric fO2. Although some heterogeneity may indicate spatial variability in bulk mantle chemistry, it is likely that it is partly driven by metamorphic reactions as lithosphere cools or is reheated by a mantle plume. Increased temperature causes the (Mg,Fe)Al2O4 component of spinel to dissolve into pyroxene; this concentrates the magnetite component in spinel and increases fO2 [5]. We observed evidence of this reaction at the grain-scale. Spinels in spinel-cpx symplectites and rims of equant spinels are >1 log unit more oxidized and have lower Al2O3 concentrations than interiors of the equant spinels. These results indicate that fO2 of the oceanic lithosphere is affected by subsolidus metamorphic reactions, which must be considered when relating fO2 of peridotites to fO2 of the convecting upper mantle. [1] Pearce et al. 2000, CMP; [2] Bryndzia and Wood 1990, AJS; [3] Bézos and Humler 2005, GCA; [4] Cottrell and Kelley 2011, EPSL; [5] Canil and O'Neill 1996, JPet

  17. Neodymium, strontium, and oxygen isotopic variations in the crust of the western United States: Origin of Proterozoic continental crust and tectonic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, V.C.

    1989-01-01

    Initial Nd isotopic ratios of crystalline rocks from an area of about 1.5 {times} 10{sup 6} km{sup 2} of the western United States have been determined in order to map Precambrian age province boundaries and thus document the growth and modification of the North American continent in the Proterozoic. Three age provinces have been delineated. It is demonstrated that large regions of Early Proterozoic continental crust were formed with anomalous isotopic compositions ({sup 143}Nd/{sup 144}Nd ratios lower than Early Proterozoic depleted-mantle). The variations in the initial {epsilon}{sub Nd} and {delta}{sup 18}O values correlate with each other, and correspond to themore » previously determined Nd isotopic provinces. The Pelona, Rand, Chocolate Mountain and Orocopia Schists are represented by 15 lithologically and structurally similar schist bodies exposed along the San Andreas and Garlock faults in southern California. The grayschists have measured {epsilon}{sub Nd} values from -1.7 to -11.7 with depleted-mantle model ages of 0.9 to 1.7 Ga. The Nd isotopic compositions can be modeled as variable mixtures of Early Proterozoic continental crust with a Mesozoic are component. The measured {sup 87}Sr/{sup 86}Sr ratios are from 0.7087 to 0.7129 and reflect the presence of an old continental source. Independent of age, the high initial {epsilon}{sub Nd} values ({sup +}9 {plus minus} 1.5) are consistent with derivation at an oceanic spreading center, either at a MORB or in a back-arc basin environment. The presence of both Early Proterozoic continental detritus and a younger sedimentary component in the grayschist protolith, and the MORB affinity of the metabasalts are compatible with formation of the protoliths of the Pelona and related schists in a Mesozoic basin adjacent to the southwestern United States continental margin.« less

  18. Origin of Tungsten Excess in Komatiites

    NASA Astrophysics Data System (ADS)

    Becker, H.; Brandon, A. D.; Walker, R. J.

    2004-12-01

    The limited database available for W abundances in komatiites (n=7, Newsom et al., 1996) suggests that when melting and fractional crystallization effects are filtered out, these komatiites have about 10 times higher W, compared to other mantle-derived mafic-ultramafic magmas (MORB, OIB). The excess of W in the komatiites relative to lithophile highly incompatible elements becomes obvious when compared with the low concentrations of the light REE Ce and Nd (about 1-2 ug/g in many komatiites, compared to > 10 ug/g in most MORB and OIB). In order to increase the komatiite W database, komatiite samples from Phanerozoic (Gorgona Island) and Archean terraines (Boston Creek/Canada, Belingwe/South Africa, 2.7 Ga) were dissolved and W was separated in order to obtain W concentrations by isotope dilution. Except for one sample from Gorgona Island with low W (23 ng/g), samples from all three locales show high W (516 to 2643 ng/g), with most samples containing near 700 ng/g W. Three Hawaiian picrites (H23, LO-02-04, MK-1-6) were also analyzed for comparative purposes and contain 75, 163 and 418 ng/g W, respectively. The W concentrations in the Hawaiian picrites are comparable or lower than W concentrations in Hawaiian tholeiites (Newsom et al., 1996). Mass balance considerations suggest that it is unlikely that the W excess in komatiites reflects W contributions to the mantle sources of komatiites from the outer core. The W enrichment could result from shallow-level alteration processes if primary W abundances of komatiites were low and W was added via fluids, containing W and other fluid-mobile elements derived from crustal rocks. Because most W in such samples would be of crustal origin, small contributions from the outer core may be difficult to detect using 182W systematics (Schersten et al., 2003).

  19. Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle

    NASA Astrophysics Data System (ADS)

    Perez, Americus d. C.; Faustino-Eslava, Decibel V.; Yumul, Graciano P.; Dimalanta, Carla B.; Tamayo, Rodolfo A.; Yang, Tsanyao Frank; Zhou, Mei-Fu

    2013-03-01

    The volcanic section of the Middle Oligocene Amnay Ophiolite in Mindoro, Philippines has previously been shown to be of normalmid-oceanic ridge basalt (NMORB) composition. Here we report for the first time an enriched mantle component that is additionally recorded in this crustal section. New whole rock major and trace element data are presented for nine mafic volcanic rocks from a section of the ophiolite that has not been previously examined. These moderately evolved tholeiitic basalts were found to have resulted from the bulk mixing of ˜10% ocean island basalt components with depleted mantle. Drawing together various geochemical characteristics reported for different rock suites taken as representatives of the South China Sea crust, including the enriched MORB (EMORB) and NMORB of the East Taiwan Ophiolite, the NMORB from previous studies of the Amnay Ophiolite and the younger ocean floor eruptives of the Scarborough Seamount-Reed Bank region, a veined mantle model is proposed for the South China Sea mantle. The NMORB magmatic products are suggested to have been derived from the more depleted portions of the mantle whereas the ocean island basalt (OIB) and EMORB-type materials from the mixing of depleted and veined/enriched mantle regions.

  20. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng

    2016-12-01

    The Emeishan large igneous province (ELIP) is renowned for its world-class Ni-Cu-(PGE) deposits and its link with the Capitanian mass extinction. The ELIP is generally thought to be associated with a deep mantle plume; however, evidence for such a model has been challenged through geology, geophysics and geochemistry. In many large igneous province settings, olivine-melt equilibrium thermometry has been used to argue for or against the existence of plumes. However, this method involves large uncertainties such as assumptions regarding melt compositions and crystallisation pressures. The Al-in-olivine thermometer avoids these uncertainties and is used here to estimate the temperatures of picrites in the ELIP. The calculated maximum temperature (1440 °C) is significantly ( 250 °C) higher than the Al-in-olivine temperature estimated for the average MORB, thus providing compelling evidence for the existence of thermal mantle plumes in the ELIP.

  1. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.

    2004-12-01

    We report on the first combined Hf-Os isotope systematics of spinel peridotite xenoliths from the Salt Lake Crater (SLC), Pali and Kaau (PK) vents from the island of Oahu, Hawaii. These peridotites are thought to represent the Pacific oceanic lithosphere beneath Oahu, as residues of MORB-type melting at a paleo-ridge some 80-100Ma ago. Clinopyroxene mineral separates in these peridotites have very similar Nd and Sr isotope compositions with the post erosional Honolulu Volcanics (HV) lavas that bring these xenoliths to the surface. This and their relatively elevated Na and LREE contents suggest that these peridotites are not simple residues of MORB-type melting but have experience some metasomatic enrichment by the host HV lavas. However, the SLC and PK xenoliths show an extreme range in Hf isotope compositions towards highly radiogenic values (ɛ Hf= 7-80), at nearly constant Nd isotope compositions (ɛ Nd= 7-10), unlike any OIB or MORB basalt. Furthermore, these Oahu peridotites show a bimodal distribution in their bulk rock 187Os/186Os ratios: the PK peridotites have similar ratios to the abyssal peridotites (0.130-0.1238), while the SLC peridotites have highly subchondritic ratios (0.1237-0.1134) that yield 500Ma to 2Ga Re-depletion ages. Hf-Os isotopes show a broad negative correlation whereby the samples with the most radiogenic 176Hf/177Hf have the most unradiogenic 187Os/186Os ratios. Based on their combined Hf-Os-Nd isotope and major element compositions, the PK peridotites can be interpreted as fragments of the Hawaiian lithosphere, residue of MORB melting 80-100Ma ago, that have been variably metasomatized by the host HV lavas. In contrast, the extreme Hf-Os isotope compositions of the SLC peridotites suggest that they cannot be the source nor residue of any kind of Hawaiian lavas, and that Hf and Os isotopes survived the metasomatism or melt-rock reaction that has overprinted the Nd and Sr isotope compositions of these peridotites. The ancient (>1Ga) melt depletion event recorded by both the low 187Os/186Os and high 176Hf/177Hf ratios in the SLC peridotites can be explained with two different scenarios. First, the SLC peridotites may represent ancient depleted lithosphere that survived subduction, remained "rafting" in the upper mantle and is now sampled beneath Oahu. However, the lack of such unradiogenic Os isotopes in both MORBs and abyssal peridotites suggests that such peridotites are rare in the upper mantle and makes their exclusive presence under Oahu a rather fortuitous coincidence. Alternatively, the SLC peridotites may represent ancient depleted recycled lithosphere brought up by the Hawaiian plume. A recycled oceanic crust origin has been previously invoked for the Koolau shield lavas. It is then conceivable that fragments of the lithospheric portion of that subducted package have remained coupled with the oceanic crust and are being brought up by the plume from the deep, but because they were previously depleted, these peridotites contribute minimally, if at all, to Hawaiian volcanism. The presence of microdiamonds and majoritic garnets in some SLC pyroxenites also corroborates a deep origin. In this case, the SLC peridotites represent the first-ever direct evidence that subducted material actually makes it back on the surface, essentially closing the subduction cycle.

  2. Crustal Accretion at Subduction Initiation Along Izu-Bonin-Mariana Arc and the Link to SSZ Ophiolites

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Tani, K.; Reagan, M. K.; Kanayama, K.; Umino, S.; Harigane, Y.; Sakamoto, I.

    2014-12-01

    The Izu-Bonin-Mariana (IBM) forearc preserves the earliest arc magmatic history from subduction initiation to the establishment of the arc. Recent investigations have established a bottom to top igneous stratigraphy of: 1) mantle peridotite, 2) gabbroic rocks, 3) a sheeted dyke complex, 4) basaltic pillow lavas (forearc basalts: FAB), 5) boninites and magnesian andesites, 6) tholeiites and calcalkaline arc lavas. This stratigraphy has many similarities to supra-subduction zone (SSZ) ophiolites. One of the most important common characteristics between the SSZ ophiolites and the forearc crust is the occurrence of MORB-like basaltic lavas underlying or accompanying boninites and early arc volcanic suites. A key observation from the IBM forearc is that FAB differs from nearby back-arc lavas in chemical characteristics, including a depletion in moderately incompatible elements. This indicates that FAB is not a pre-existing oceanic basement of the arc, but the first magmatic product after subduction initiation. Sheeted dikes of FAB composition imply that this magmatism was associated with seafloor spreading, possibly triggered by onset of slab sinking. Recognition of lavas with transitional geochemical characteristics between the FAB and the boninites strongly implies genetic linkage between these two magma types. The close similarity of the igneous stratigraphy of SSZ ophiolites to the IBM forearc section strongly implies a common magmatic evolutionary path, i.e., decompressional melting of a depleted MORB-type mantle is followed by melting of an even more depleted mantle with the addition of slab-derived fluid/melt to produce boninite magma. Similarity of magmatic process between IBM forearc and Tethyan ophiolites appears to be reflected on common characteristics of upper mantle section. Peridotite from both sections show more depleted characteristics compared to upper mantle rocks from mid-ocean ridges. Age determinations reveal that first magmatism at the IBM arc occurred at c. 52 Ma, and transition from forearc basalt to normal arc magmatism took 7-8 million years. Combined with the age information from SSZ-ophiolites, significant constraints on time scale of subduction initiation and associated crustal accretion might be obtained.

  3. Assessing δ18O heterogeneity in Icelandic olivine crystals

    NASA Astrophysics Data System (ADS)

    Bar Rasmussen, M.; Halldorsson, S. A.; Martin, W.; Gibson, S. A.; Hilton, D. R.

    2017-12-01

    δ18O systematics of Icelandic basalts are notably distinct from MORB-sourced basalts. This difference has previously been attributed to interaction with low δ18O meteoric water in the crust or slight heterogeneity within the Icelandic mantle [1]. Studies addressing this issue have mostly involved batch mineral laser-fluorination analysis which cannot resolve any intra-mineral δ18O variability that might be present due to shallow-level processes, e.g. crustal contamination [2]. We present a study of olivine crystals found in basalts covering the neovolcanic rift and flank zones as well as older Tertiary crust, in which we couple in-situ δ18O-measurements with major and trace elements using SIMS, high-precision EMP and LA ICP-MS. Most samples have previously been analysed for 3He/4He which ranges from 6.7 to 47.8 RA, the largest span reported for any oceanic island [3]. Our analysed olivine grains, range in Fo# between 79.9 to 91.8 with limited intra-grain variability. Independent of Fo#, we observe a variation in δ18O(Ol) of >3 ‰ across Iceland, with most crystals plotting below the expected depleted mantle-value ( 5.1 ± 0.2‰ [4]). The lowest δ18O(Ol) of +2.77 ‰, is found in crystals with Fo# 86 from central Iceland, closest to the inferred plume head [3]. Trace element ratios for these olivine grains (e.g. Zn/Fe) strongly indicate a peridotitic mantle source, which implies a shallow (likely crustal) origin of low δ18O(Ol) for this region. In contrast, olivine crystals from the South Iceland Volcanic Zone (a region of active rift propagation and transitional to alkalic volcanism) display trace element ratios that are indicative of a greater amount of pyroxenite in their melt source region. The δ18O(Ol) of these samples vary significantly (from +3.45 to +4.98 ‰) which, together with their elevated 3He/4He values, implies entrainment of a lower δ18O mantle-source by a less-degassed mantle plume source. Further modelling will be performed to evaluate the role of crustal-level processes in generating the low δ18O values. [1] Muehlenbachs et al., (1974), GCA 38, 677-588 [2] Bindemann et al., (2008), GCA 72, 4397-4420 [3] Harðardóttir et al., (2017), in press [4] Eiler, (2001), RMG, 43, 319-364

  4. The Eclogite-Garnetite transformation in the MORB + H 2O system

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuaki; Maruyama, Shigenori

    2004-08-01

    To decipher phase relations of oceanic crust in the coldest slab at the mantle transition zone, multi-anvil experiments were conducted in the MORB+H 2O system at pressures of 10-19 GPa, and temperatures of 700-1500 °C. Garnet and stishovite were recognized in all run charges. Above 15 GPa, garnet drastically increases NaSi (Na 2MSi 5O 12) component (M = Ca, Mg, Fe 2+), jadeite occurs instead of omphacite. Na-, K-hollandite containing 7 mol% NaAlSi 3O 8 and Ca-perovskite with 60 mol% CaTiO 3, were observed at P>17 GPa. With decomposition of omphacite and increase of modal ratio of garnet, there is a sharp increase of density at 440 km. The density increase due to appearance of Ca-perovskite at 570 km, is estimated approximately 100 km shallower than that of previous estimation.

  5. Contrasting melt equilibration conditions across Anatolia

    NASA Astrophysics Data System (ADS)

    Reid, Mary; Delph, Jonathan; Schleiffarth, W. Kirk; Cosca, Michael

    2017-04-01

    The widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape in response to Arabian-Anatolian plate collision. We used the results from basalt geochemistry and a passive-source broadband seismic experiment obtained as part of an international collaborative effort (Continental Dynamics - Central Anatolia Tectonics) to investigate the crust-mantle structure and melting conditions associated with the Quaternary Hasandag Monogenic Cluster (HMC) south and west of Hasandag volcano. The HMC is unusually mafic, not only for Central Anatolia but globally, enabling meaningful comparisons between geochemical and seismic interpretations of mantle conditions. HMC basalts are characterized by orogenic signatures that could have originated (1) in mantle wedge that, after stagnating because of collision, was remobilized south and upward as a result of rollback of the African slab or, alternatively (2) by piecemeal foundering of residual mantle lithosphere into convecting upper mantle, producing small-scale convection and associated decompression melting. Melt equilibration conditions for the HMC are hot (TP ˜1335-1250˚ C, assuming 1-4 wt.% H2O) and shallow (P = 1.1 to 1.6 GPa), approaching those for MORB. Shear wave velocities are relatively constant at ˜4.1 km/s between the Moho and a depth of ˜45-50 km (˜1.4 GPa; Fig. 6), below which Vs increases with increasing depth. We infer that a melt-perfused mantle lid could be locally present between 40 and 55 km. In contrast to Central Anatolia, estimated equilibration conditions for Western Anatolia and Eastern Anatolia (east of the Inner Tauride Suture) mantle melts are hotter (by ≥60˚ C) and deeper (mostly by 0.6-1.0 GPa). They also have chemical signatures that, unlike Central Anatolia, are similar to those of intraplate basalts. These differences are likely related to the presence of a fragmenting, if quite deep, Cyprus slab beneath Central Anatolia, in contrast to absence of the Arabian slab beneath Eastern Anatolia since at least 10 Ma, and flow of deep-seated asthenosphere through a tear in the African plate under Western Anatolia. .

  6. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu arc further verify the complex tectonic and magmatic framework of this intra-oceanic island arc.

  7. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Haase, Karsten M.; Freund, Sarah; Beier, Christoph; Koepke, Jürgen; Erdmann, Martin; Hauff, Folkmar

    2016-05-01

    We present major and trace element as well as Sr, Nd, and Hf isotope data on a suite of 87 plutonic rock samples from 27 felsic crustal intrusions in seven blocks of the Oman ophiolite. The rock compositions of the sample suite including associated more mafic rocks range from 48 to 79 wt% SiO2, i.e. from gabbros to tonalites. The samples are grouped into a Ti-rich and relatively light rare earth element (LREE)-enriched P1 group [(Ce/Yb) N > 0.7] resembling the early V1 lavas, and a Ti-poor and LREE-depleted P2 group [(Ce/Yb) N < 0.7] resembling the late-stage V2 lavas. Based on the geochemical differences and in agreement with previous structural and petrographic models, we define phase 1 (P1) and phase 2 (P2) plutonic rocks. Felsic magmas in both groups formed by extensive fractional crystallization of olivine, clinopyroxene, plagioclase, apatite, and Ti-magnetite from mafic melts. The incompatible element compositions of P1 rocks overlap with those from mid-ocean ridges but have higher Ba/Nb and Th/Nb trending towards the P2 rock compositions and indicating an influence of a subducting slab. The P2 rocks formed from a more depleted mantle source but show a more pronounced slab signature. These rocks also occur in the southern blocks (with the exception of the Tayin block) of the Oman ophiolite implying that the entire ophiolite formed above a subducting slab. Initial Nd and Hf isotope compositions suggest an Indian-MORB-type mantle source for the Oman ophiolite magmas. Isotope compositions and high Th/Nb in some P2 rocks indicate mixing of a melt from subducted sediment into this mantle.

  8. The Debate on the Prospective Interaction between SWIR 46°-52°E and Crozet hotspot: Constrain from the Geochemical Characteristics and Helium isotopes of MORBs from Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yu, X.; Dick, H. J. B.; Chu, F.; Li, X.; Tang, L.

    2017-12-01

    The Southwest Indian Ridge with obvious mantle heterogeneity is often attributed to the influence of nearby hotspots. The Dragon Flag Supersegment between 46°E and 52°E on Marion Rise has thicker crust, shallower axial depth, and lower mantle Bouguer anomaly, which indicates ridge-hotspot interaction. However, the great distance between Crozet hotspot and the supersegment (about 1,000km) and the controversial geochemical data are both against the prospective ridge-hotspot interaction. Here we compiled major element, trace element, Sr-Nd-Pb and He isotopic data of new samples from the supersegment. The mantle source, partial melting process as well as the crystallization history of these basalts are further constrained based on the synthetic analysis of the dataset. Most basalts from the supersegment require 0 to 30% olivine and plagioclase fractionation to account for their present composition, whereas the crystallization of clinopyroxene appears to be rather limited. The parental magmas of the supersegment are distinctive from east to west. Most samples from the Eastern Group can be modeled as the product of 10% partial melting of a DMM-like source, while some extremely depleted samples from the central valley may require two stages of partial melting, i.e. ancient melting of DMM-like source, followed by recent remelting of the residues. The Western Group may be resulted from lower degree of partial melting (5-10%), or a previously less depleted mantle source. The Eastern Group is favor of the involvement of Crozet hotspot in terms of Pb isotope and helium isotope signatures, but the trace element and Sr-Nd isotopes are not supportive for this interaction. The especially high 206Pb/204Pb for some of the samples from the Eastern Group, similar to the Crozet hotspot, requires the sporadical entrainment of blobs of relatively enriched source material, like the Crozet component. The Crozet hotspot is distinctive in its Sr-Nd-Pb-He isotopes among different islands, thus it is more complicate to address the issue of ridge-hotspot interaction. We suggest that the prospective Crozet-SWIR interaction is possible and can explain most of the geological and geochemical signatures.

  9. First principles investigation of Fe and Al bearing phase H

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Tsuchiya, T.

    2015-12-01

    The global circulation of water in the earth is important to investigate the evolution history and dynamics of the earth, since the physical properties (e.g. atomic diffusivity, melting temperature, electrical conductivity and seismic velocities) of the constituent minerals are considerably changed by the presence of water. It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) which are also known as alphabet phases (phase A, superhydrous phase B, and phase D etc.) in the descending cold plate. It has been thought that the relay of these hydrous phases was terminated at ~1200 km depth by the dehydration of phase D which was the highest pressure phase of DHMSs. Recently, we have theoretically predicted the high pressure phase of phase D and experimentally confirmed the existence of this new DHMS in lower mantle pressure conditions above ~45 GPa. This phase has MgSiO4H2chemical composition and named as phase H. At the lower mantle pressure conditions, Al and H-bearing SiO2, δ-AlOOH, ɛ-FeOOH and phase H may be the relevant hydrous phases in the subducting slabs. Interestingly, the crystal structure of these hydrous phases are almost same and have CaCl2type structure. This suggests that these hydrous phases may potentially be able to make the wide range of solid solution. Some experimental studies already reported that Al preferentially partitioned into phase H and the stability of phase H drastically increased by incorporation of Al (Nishi et al. 2014, Ohira et al. 2014). The density of subducted MORB is reported to be denser than that of pyrolite in the lower mantle (e.g. Kawai et al. 2009). Therefore, there is a possibility that phase H containing Al and Fe in subducted MORB survive down to the bottom of lower mantle and the melting of phase H at the core mantle boundary may contribute to the cause of ultra-low velocity zones. In this study, we further extends our exploration of these hydrous phases, such as the spin transition of Fe in phase H and the possibility of further phase transition of this new hydrous mineral using first principles calculation techniques and discuss the possible effects of this hydrous phase at the bottom of lower mantle.

  10. How Many Plumes In Africa ? The Geochemical Point of View

    NASA Astrophysics Data System (ADS)

    Pik, R.; Marty, B.; Hilton, D.

    2004-12-01

    Since the Oligocene, volcanic activity in Africa was particularly important in the Horn of Africa where ~ 1 million km3 of continental flood basalts (the Ethiopian CFB) erupted 30 Ma ago in a time interval of 1-2 Ma or less. The Afar volcanic province which is still magmatically active is thought to represent the surface expression of a deep mantle plume, a view consistent with ultra-low velocity anomalies at the base of the mantle beneath the African superswell and the Ethiopia-Afar volcanic province. This plume origin is also supported by the occurrence of 3He/4He ratios up to 20 Ra (Ra is the 3He/4He ratio of atmospheric helium) much higher than those of mid-ocean ridge basalts (on average, 8,b1 Ra) and thought to characterize mantle material originating from below the 660 km discontinuity. However, a deep mantle origin for "high 3He" material is currently questioned by some models which rather ascribe a lithospheric or shallow asthenospheric origin for such He component. The origin of this signal can be tested with the distribution of He isotopic signatures and other geochemical tracers among different African volcanic provinces. All these other provinces exhibit 3He/4He ratios that are equal to, or lower than, the mean MORB ratio of 7-9 Ra (Cameroon line: 5-7 Ra; Hoggar: 8 Ra, this work; Darfur 5.4-7.5 Ra; West African rift: 5-8.5 Ra, this work; Comores, 6.5 Ra, this work). Although low 3He/4He ratios in intraplate volcanic provinces could result from crustal recycling in the mantle and remobilisation of recycled crust during plume uprise, the upper range of 3He/4He values within the field of MORB values points to the strong involvement of asthenospheric mantle and limited interactions of magmas with the aged African crust. Furthermore, these "low-3He" volcanic provinces are characterized by strongly alkaline to undersaturated volcanism indicative of low degrees of partial melting and a thermal regime of the asthenosphere cooler than the one that gave rise to transitional to tholeiitic Ethiopian CFBs. These geochemical observations also conflict with models that advocate channelling of the Afar hotspot material by pre-existing tectonic features to account for all these African volcanic provinces.

  11. Melting and Its Influence on the Long-term Evolution of the Lower Mantle Heterogeneities (LLSVP and ULVZ)

    NASA Astrophysics Data System (ADS)

    Fomin, I.; Tackley, P. J.

    2017-12-01

    Recent investigations have shown mantle solidus close to the range of proposed core-mantle boundary (CMB) temperatures (e.g. [Andrault et al., 2011, 2014], [de Koker et al., 2013]). Certain fraction of distinct rocks may reduce the effective melting temperature to values below the CMB temperature. It is especially true for iron enriched materials such as MORB [Nomura et al., 2011], BIF [Kato et al., 2016], iron-rich periclase [Boukare et al., 2015] and other rock species used to explain observed seismic anomalies. Computer simulations allow to study evolution and stability for chemically distinct piles proposed from geophysical data. Previous researches (e.g. [Mulyukova et al., 2015]) found those piles stirring in several hundreds of Ma. Our investigation adds influence of melting and following chemical differentiation on preservation of such structures.We present StagYY code [Tackley et al., 2008] with extended set of routines to model melting, melt redistribution and melt-dependent rheology in addition to solid-state mantle convection to reveal fate of chemically distinct piles in long-term (millions of years) perspective. A new point of our approach is usage of chemically independent oxides to describe rock composition and physical properties. Thin layers homogenize in few tens of millions of years despite whether melting happens or not. Thick structures (like periclase piles proposed for ULVZ [Wicks et al., 2010] or MORB-bearing domes for LLSVP [Ohta et al., 2008]) undergo partial melting if CMB temperature is above 3700K. Melt migration results in extraction of fusible components and therefore segregation of iron-enriched material. However, we weren't able to obtain any stabilized layer of iron-rich partially molten material at the CMB, because ongoing interaction and reequilibration of melt and solid results in buoyant liquids spreading to the adjacent mantle. Rheological influence of melt on bulk rock properties reduces time pile can exist.Our modeling puts severe constraints on the presence and fate of chemical heterogeneities in the lowermost mantle. Melting enhances stirring of such heterogeneities and generally no silicate melt can be stabilized at CMB for long time. Only low CMB temperatures (generally lower than 3700 K) allow anomalies to exist for geological periods of time (hundreds of Ma).

  12. Mantle Noble Gas Contents Controlled by Subduction of Serpentinite

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.

    2017-12-01

    Geochemical analyses of exhumed subduction zone material1, well gases2, MORB, and OIBs3 indicate that noble gases are being recycled from the surface of the earth into the mantle. However, the path taken by these noble gases is unclear. To estimate the distribution and quantity of Ar, Kr, and Xe in subducting slabs, a model consisting of layers of sediments, altered oceanic crust (AOC), and serpentinite (hydrously altered mantle) has been developed. The noble gas contents of sediments and AOC were calculated using the least air-like and most gas-rich analyses from natural systems4,5, while serpentinite was modelled using both data from natural systems1 and experimentally determined solubilities. Layer thicknesses were assessed over a range of values: 1 to 12 km of sediments, 5 to 9 km of AOC, and 1 to 30 km of serpentinite. In all cases, the serpentinite layer contains at least an order of magnitude more Ar and Kr than the other layers. For realistic layer thicknesses (1 km of sediments, 6 km of AOC, and 3 km of serpentinite), Xe is distributed roughly equally between the three layers. By incorporating global subduction rates6, fluxes of the heavy noble gases into the mantle have been calculated as 4 · 1012 mol/Ma for 36Ar, 6 · 1011 mol/Ma for 84Kr, and 8 · 109 mol/Ma for 130Xe. These fluxes are equivalent to the total 84Kr and 130Xe contents of the depleted and bulk mantle over 1 and 10 Ma7. Similarly, the flux of 36Ar is equivalent over 1 and 100 Ma. Since the Kr and Xe have not been completely overprinted by recycling, the large majority of subducted noble gases must escape in the subduction zone. However, even the small amounts that are subducted deeper have affected the mantle as measured in both MORB and OIBs. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Holland, G. and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., G3, 16, 719-735, 2015 4. Matsuda, J. and Nagao, K., Geochemical Journal, 20, 71-80, 1986 5. Chavrit, D. et al., GCA, 183, 106-124, 2016 6. Hacker, B.R., G3, 9, 1-24,2008 7. Marty, B., EPSL, 313-314, 56-66, 2012

  13. Why Archaean TTG cannot be generated by MORB melting in subduction zones

    NASA Astrophysics Data System (ADS)

    Martin, Hervé; Moyen, Jean-François; Guitreau, Martin; Blichert-Toft, Janne; Le Pennec, Jean-Luc

    2014-06-01

    Until recently it was assumed that the Archaean continental crust (made of TTGs: tonalites, trondhjemites, and granodiorites) was generated through partial melting of MORB-like basalts in hot subduction environments, where the subducted oceanic crust melted at high pressure, leaving a garnet-bearing amphibolitic or eclogitic residue. However, recent geochemical models as well as basalt melting experiments have precluded MORB as a plausible source for TTGs. Rather, geochemical and experimental evidences indicate that formation of TTG required a LILE-enriched source, similar to oceanic plateau basalts. Moreover, subduction is a continuous process, while continental growth is episodic. Several “super-growth events” have been identified at ~ 4.2, ~ 3.8, ~ 3.2, ~ 2.7, ~ 1.8, ~ 1.1, and ~ 0.5 Ga, which is inconsistent with the regular pattern that would be expected from a subduction-driven process. In order to account for this periodicity, it has been proposed that, as subduction proceeds, descending residual slabs accumulate at the 660-km seismic discontinuity. When stored oceanic crust exceeds a certain mass threshold, it rapidly sinks into the mantle as a cold avalanche, which induces the ascent of mantle plumes that in turn produce large amounts of magmas resulting in oceanic plateaus. However, melting at the base of thick oceanic plateaus does not appear to be a realistic process that can account for TTG genesis. Modern oceanic plateaus contain only small volumes (≤ 5%) of felsic magmas generally formed by high degrees of fractional crystallization of basaltic magmas. The composition of these felsic magmas drastically differs from that of TTGs. In Iceland, the interaction between a mantle plume and the mid-Atlantic ridge gives rise to an anomalously (Archaean-like) high geothermal gradient resulting in thick basaltic crust able to melt at shallow depth. Even in this favorable context though, the characteristic Archaean TTG trace element signature is not being produced. Consequently, internal recycling of oceanic plateaus does not appear to be a suitable process for the genesis of Archaean continental crust. A possible alternative to this scenario is the subduction of oceanic plateaus. This hypothesis is supported by a present-day analog. In Ecuador, the Carnegie ridge, which is an oceanic plateau resulting from the Galapagos hot spot activity, is being subducted beneath the South American plate. Not only are the resulting magmas adakitic (TTG-like) in composition, but the volcanic productivity is several times greater than in other parts of the Andean volcanic arc. Above the location where the plateau is subducted, the arc is wide and the quaternary volcanoes numerous (about 80 active edifices). The volcanic productivity of each individual volcano also is more intense than away from the subduction focal point with an average output rate of about 0.4-0.5 km3·ka- 1 compared with only about 0.05-0.2 km3·ka- 1 for production rates at volcanoes erupting in the rest of the arc. Consequently, we infer that occasional subduction of oceanic plateaus throughout Earth's history can account for the episodic nature of crustal growth. Additionally, the generation by this mechanism of huge volumes of TTG-like magmas would readily dominate the crustal growth record.

  14. A Sharp Continent-Ocean Transition in the Area of the Canary Islands: Evidence From Upper Mantle and Lower Crustal Xenoliths

    NASA Astrophysics Data System (ADS)

    Neumann, E.; Vannucci, R.; Tiepolo, M.; Griffin, W. L.; Pearson, N. J.; O'Reilly, S. Y.

    2005-05-01

    Our present information on passive margins rests almost exclusively on seismic and density data. An important exception is the west Iberia margin where petrological and geochemical information on crustal and mantle rocks have been made available through drilling experiments. In order to increase our information about, and understanding of, passive margins and their mode of formation, more information on crustal and mantle rocks along different types of passive margins are needed. In the area of the Canary Islands such information has been obtained through the study of mantle and deep crustal xenoliths brought to the surface by basaltic magmas. In-situ laser ablation (LA) ICP-MS mineral analyses have enabled us to "see through" the effects of the Canary Islands event and obtain robust information about the original (pre-Canarian) chemical character of the crust and upper mantle on which these islands are built. Our studies show that the lithosphere beneath the Canary Islands originated as highly refractory N-MORB type oceanic mantle overlain by highly refractory N-MORB crust. Both the lithospheric mantle and lower crust have been metasomatized to different degrees by a variety of fluid and melts. The enriched material is commonly concentrated along grain boundaries and cracks through mineral grains, suggesting that the metasomatism is relatively recent, and is thus associated with the Canary Islands magmatism. The original, strongly depleted trace element patterns and the low 87Sr/86Sr isotopic ratios typical of the oceanic lithosphere are preserved in the minerals in the least metasomatized rocks (e.g. LaN/LuN<0.1 in orthopyroxene and 87Sr/86Sr=0.7027-0.7029 in clinopyroxene in mantle xenoliths). The compositions of the most depleted gabbro samples from the different islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. Furthermore, we have found no evidence of continental material that might reflect attenuated continental lithosphere in this area. The easternmost Canary Islands, Fuerteventura and Lanzarote, appear to overlap the lower part of the continental slope of Africa. The presence of normal oceanic lithosphere beneath these islands implies that the continent-ocean transition in the Canary Islands area must be relatively sharp, in contrast to the passive non-volcanic margin further north along the coast of Morocco, along the Iberia peninsula, and in many other areas. Our data also contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean.

  15. Isotopic composition of reduced and oxidized sulfur in the Canary Islands: implications for the mantle S cycle

    NASA Astrophysics Data System (ADS)

    Beaudry, P.; Longpre, M. A.; Wing, B. A.; Bui, T. H.; Stix, J.

    2017-12-01

    The Earth's mantle contains distinct sulfur reservoirs, which can be probed by sulfur isotope analyses of volcanic rocks and gases. We analyzed the isotopic composition of reduced and oxidized sulfur in a diverse range of volcanically derived materials spanning historical volcanism in the Canary Islands. Our sample set consists of subaerial volcanic tephras from three different islands, mantle and sedimentary xenoliths, as well as lava balloon samples from the 2011-2012 submarine El Hierro eruption and associated crystal separates. This large sample set allows us to differentiate between the various processes responsible for sulfur isotope heterogeneity in the Canary archipelago. Our results define an array in triple S isotope space between the compositions of the MORB and seawater sulfate reservoirs. Specifically, the sulfide values are remarkably homogeneous around d34S = -1 ‰ and D33S = -0.01 ‰, while sulfate values peak at d34S = +4 ‰ and D33S = +0.01 ‰. Lava balloons from the El Hierro eruption have highly enriched sulfate d34S values up to +19.3 ‰, reflecting direct interaction between seawater sulfate and the erupting magma. Several sulfate data points from the island of Lanzarote also trend towards more positive d34S up to +13.8 ‰, suggesting interaction with seawater sulfate-enriched lithologies or infiltration of seawater within the magmatic system. On the other hand, the modal values and relative abundances of S2- and S6+ in crystal separates suggest that the Canary Island mantle source has a d34S around +3 ‰, similar to the S-isotopic composition of a peridotite xenolith from Lanzarote. We infer that the S2- and S6+ modes reflect isotopic equilibrium between those species in the magmatic source, which requires 80 % of the sulfide to become oxidized after melting, consistent with measured S speciation. This 34S enrichment of the source could be due to the recycling of hydrothermally-altered oceanic crust, which has been previously suggested for the Canary Island hotspot on the basis of radiogenic isotope characteristics.

  16. Feldspar palaeo-isochrons from early Archaean TTGs: Pb-isotope evidence for a high U/Pb terrestrial Hadean crust

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.; Whitehouse, M. J.; Moorbath, S.; Collerson, K. D.

    2001-12-01

    Feldspar lead-isotope data for 22 early Archaean (3.80-3.82 Ga) tonalitic gneisses from an area south of the Isua greenstone belt (IGB),West Greenland, define a steep linear trend in common Pb-isotope space with an apparent age of 4480+/-77 Ma. Feldspars from interleaved amphibolites yield a similar array corresponding to a date of 4455+/-540 Ma. These regression lines are palaeo-isochrons that formed during feldspar-whole rock Pb-isotope homogenisation a long time (1.8 Ga) after rock formation but confirm the extreme antiquity (3.81 Ga) of the gneissic protoliths [1; this study]. Unlike their whole-rock counterparts, feldspar palaeo-isochrons are immune to rotational effects caused by the vagaries of U/Pb fractionation. Hence, comparison of their intercept with mantle Pb-isotope evolution models yields meaningful information regarding the source history of the magmatic precursors. The locus of intersection between the palaeo-isochrons and terrestrial mantle Pb-isotope evolution lines shows that the gneissic precursors of these 3.81 Ga gneisses were derived from a source with a substantially higher time-integrated U/Pb ratio than the mantle. Similar requirements for a high U/Pb source have been found for IGB BIF [2], IGB carbonate [3], and particularly IGB galenas [4]. Significantly, a single high U/Pb source that separated from the MORB-source mantle at ca. 4.3 Ga with a 238U/204Pb of ca. 10.5 provides a good fit to all these observations. In contrast to many previous models based on Nd and Hf-isotope evidence we propose that this reservoir was not a mantle source but the Hadean basaltic crust which, in the absence of an operating subduction process, encased the early Earth. Differentiation of the early high U/Pb basaltic crust could have occurred in response to gravitational sinking of cold mantle material or meteorite impact, and produced zircon-bearing magmatic rocks. The subchondritic Hf-isotope ratios of ca. 3.8 Ga zircons support this model [5] provided that the redetermined 176Lu decay constant of Scherer et al. [6] is correct. Our model of a stable basaltic Hadean shell for the pre-plate tectonic era explicitly refutes operation of processes such as sediment recycling or melting of hydrated material in subduction zones as far back as 4.4 Ga (as recently suggested by [7]; and [8]). Instead, we propose that initiation of terrestrial subduction occurred at ca. 3.75 Ga, at which stage most of the Hadean basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We further argue that >3.75 Ga terrestrial rocks and minerals were not preserved by chance, but because of creation of a lithospheric mantle keel concommitant with intrusion of voluminous granitoids immediately after establishment of global subduction. In other words, the only portions of >3.75 Ga crust (basaltic and otherwise) that survived were those that were involved in voluminous arc magmatism along the earliest subduction zones. [1] Nutman A.P. et al. (1999). Contr. Min. Pet. 137, 364. [2] Moorbath S. et al. (1973). Nature 245, 138. [3] Kamber B. S. et al.. (2001). Geol. Soc. London, Spec. Publ. 190, 177. [4] Frei R. & Rosing M. T. (in press). Chem. Geol. [5] Amelin Y. et al. (2000). GCA 64, 4205. [6] Scherer E. et al (2001) Science 293, 683. [7] Wilde S. A. et al.(2001). Nature 409, 175. [8] Mojzsis S. J. (2001). Nature 409, 178.

  17. Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia

    NASA Astrophysics Data System (ADS)

    Brügmann, G. E.; Arndt, N. T.; Hofmann, A. W.; Tobschall, H. J.

    1987-08-01

    The distribution of the chalcophile and siderophile metals Cu, Ni, Au, Pd, Ir, Os and Ru in an Archaean komatiite flow from Alexo, Ontario and in a Phanerozoic komatiitic suite of Gorgona Island, Colombia, provides new information about the geochemical behaviour of these elements. Copper, Au and Pd behave as incompatible elements during the crystallization of these ultramafic magmas. In contrast, Ni, Ir, Os and Ru concentrations systematically decrease with decreasing MgO contents, a pattern characteristic of compatible elements. These trends are most probably controlled by olivine crystallization, which implies that Ir, Os and Ru are compatible in olivine. Calculated partition coefficients for Ir, Os and Ru between olivine and the melt are about 1.8. Compared to primitive mantle, parental komatiitic liquids are enriched in (incompatible) Cu, Au and Pd and depleted in (compatible) Ir, Os and Ru. Within both Archaean and Phanerozoic komatiites, noble metal ratios such as Au/Pd, Ir/Os, Os/Ru and Ru/Ir and ratios of lithophile and siderophile elements such as Ti/Pd, Ti/Au are constant and similar to primitive mantle values. This implies that Au and Pd are moderately incompatible elements and that there has been no significant fractionation of siderophile and lithophile elements since the Archaean. Platinum-group element abundances of normal MORB are highly variable and always much lower than in komatiites, because MORB magma is saturated with sulfur and a variable but minor amount of sulfide segregated during mantle melting or during the ascent of magma to the surface. Sulfide deposits associated with komatiites display similar chalcophile element patterns to those of komatiites. Noble metal ratios such as Pd/Ir, Au/Ir, Pd/Os and Pd/Ru can be used to determine the composition of the host komatiite at the time of sulfide segregation.

  18. The Molybdenum Isotope System as a Tracer of Slab Input in Subduction Zones: An Example From Martinique, Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Gaschnig, Richard M.; Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Asael, Dan; Chauvel, Catherine

    2017-12-01

    Molybdenum isotopes are fractionated by Earth-surface processes and may provide a tracer for the recycling of crustal material into the mantle. Here, we examined the Mo isotope composition of arc lavas from Martinique in the Lesser Antilles arc, along with Cretaceous and Cenozoic Deep Sea Drilling Project sediments representing potential sedimentary inputs into the subduction zone. Mo stable isotope composition (defined as δ98Mo in ‰ deviation from the NIST 3134 standard) in lavas older than ˜7 million years (Ma) exhibits a narrow range similar to and slightly higher than MORB, whereas those younger than ˜7 Ma show a much greater range and extend to unusually low δ98Mo values. Sediments from DSDP Leg 78A, Site 543 have uniformly low δ98Mo values whereas Leg 14, Site 144 contains both sediments with isotopically light Mo and Mo-enriched black shales with isotopically heavy Mo. When coupled with published radiogenic isotope data, Mo isotope systematics of the lavas can be explained through binary mixing between a MORB-like end-member and different sedimentary compositions identified in the DSDP cores. The lavas older than ˜7 Ma were influenced by incorporation of isotopically heavy black shales into the mantle wedge. The younger lavas are the product of mixing isotopically light sedimentary material into the mantle wedge. The change in Mo isotope composition of the lavas at ˜7 Ma is interpreted to reflect the removal of the Cretaceous black shale component due to the arrival of younger ocean crust where the age-equivalent Cretaceous sediments were deposited in shallower oxic waters. Isotopic fractionation of Mo during its removal from the slab is not required to explain the observed systematics in this system.

  19. Temperature fluctuation of the Iceland mantle plume through time

    NASA Astrophysics Data System (ADS)

    Spice, Holly E.; Fitton, J. Godfrey; Kirstein, Linda A.

    2016-02-01

    The newly developed Al-in-olivine geothermometer was used to find the olivine-Cr-spinel crystallization temperatures of a suite of picrites spanning the spatial and temporal extent of the North Atlantic Igneous Province (NAIP), which is widely considered to be the result of a deep-seated mantle plume. Our data confirm that start-up plumes are associated with a pulse of anomalously hot mantle over a large spatial area before becoming focused into a narrow upwelling. We find that the thermal anomaly on both sides of the province at Baffin Island/West Greenland and the British Isles at ˜61 Ma across an area ˜2000 km in diameter was uniform, with Al-in-olivine temperatures up to ˜300°C above that of average mid-ocean ridge basalt (MORB) primitive magma. Furthermore, by combining our results with geochemical data and existing geophysical and bathymetric observations, we present compelling evidence for long-term (>107 year) fluctuations in the temperature of the Iceland mantle plume. We show that the plume temperature fell from its initial high value during the start-up phase to a minimum at about 35 Ma, and that the mantle temperature beneath Iceland is currently increasing.

  20. Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Gasparon, M.; Hilton, D. R.; Varne, R.

    1994-08-01

    Helium isotope data have been obtained on well-characterised olivine and clinopyroxene phenocrysts and xenocrysts from thirteen volcanic centres located between central Sumatra and Sumbawa in the Sunda arc of Indonesia. Olivine crystals in mantle xenoliths (Iherzolite) from Bukit Telor basalts are primitive (Mg# = 90), and their He-3/He-4 value (R/R(sub A) = 8.8) indicates that the Sumatran mantle wedge is MORB-like in helium isotope composition. All other samples have lower He-3/He-4 ratios ranging from 8.5R(sub A) to 4.5R(sub A), with most (thirteen out of eighteen) following a trend of more radiogenic He-3/He-4 values with decreasing Mg#. The only exceptions to this trend are phenocrysts from Batur, Agung and Kerinci, which have MORB-like He-3/He-4 values but relatively low Mg# (Mg# = 70-71), and two highly inclusion-rich clinopyroxenes which have He-3/He-4 values lower than other samples of similar Mg#. The results indicate that crustal contamination unrelated to subduction in the Sunda arc is clearly recorded in the He-3/He-4 characteristics of mafic phenocrysts of subaerial volcanics, and that addition of radiogenic helium is related to low-pressure differentiation processes affecting the melts prior to eruption. These conclusions may have widespread applicability and indicate that helium isotope variations can act as an extremely sensitive tracer of upper crustal contamination.

  1. The Khoy ophiolite: new field observations, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Lechmann, Anna; Burg, Jean-Pierre; Mohammadi, Ali; Faridi, Mohammad

    2017-04-01

    The tectonic assemblage at the junction of the Bitlis-Zagros and Izmir-Ankara-Erzincan suture zones is exposed in the region of the Khoy Ophiolitic Complex, in the Azerbaijan Province of NW Iran. We present new petrography, major and trace element analyses, LA-ICP-MS U-Pb zircon ages and Sr-Nd-Pb isotope data of mantle and crustal suites together with field observations and stratigraphic ages obtained from foraminifera-bearing sediments. Ultramafic rocks crop out as mappable (km-scale) continuous units with fault bounded contacts to neighbouring lithologies and as blocks (m-scale) within an olistostrome. They vary from fresh lherzolite, harzburgite and dunite tectonites with primary mantle structures to completely serpentinized and metasomatized (with metamorphic olivine) samples. Rodingite dikes with MORB-REE signatures are common. Gabbros, also with MORB signature, occur only in small volumes. Pillow basalts have either a MORB or a calc-alkaline signature depending on sample location. First results show that the Khoy Ophiolitic Complex formed during the Jurassic (152-159 Ma) and came in a supra-subduction position, with calc-alkaline magmatism showing negative Nb-Ta and Ti anomalies, in Albian (105-109 Ma) times. Heavy minerals including Cr-spinel and serpentine within the turbidites of the region indicate that the ophiolites were being eroded as early as the Late Cretaceous. An Early Miocene olistostrome, containing blocks of the ophiolitic sequences unconformably covers the ophiolitic complex and the Late-Cretaceous to Eocene turbiditic sequences. A tuff layer dated at 43 Ma within a fine-grained and thin-bedded sandstone block within the olistostrome witnesses continuing volcanic activity in Eocene times. The Khoy Ophiolite compares well with the Inner Zagros and North Makran ophiolites, recording Jurassic extension in the Iranian continental margin followed by Late Cretaceous subduction. This work is supported by SNF Research Grant (project 200021_153124/1).

  2. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial phase with clinopyroxene.

  3. Crustal Anatexis by Upwelling Mantle Melts in the N.Atlantic Igneous Province: the Isle of Rum, NW Scotland.

    NASA Astrophysics Data System (ADS)

    Hertogen, J.; Meyer, R.; Nicoll, G.; Troll, V. R.; Ellam, R. M.; Emeleus, C. H.

    2008-12-01

    Crustal anatexis is a common process in the rift-to-drift evolution during continental breakup and the formation of Volcanic Rifted Margins (VRM) systems. 'Early felsic-later mafic' volcanic rock associations on the Continent Ocean Boundary (COB) of the N.Atlantic Ocean have been sampled by ODP drilling on the SE Greenland margin and the the Vøring Plateau (Norwegian Sea). Such associations also occur further inland in the British Paleocene Igneous Province, such as on the Isle of Rum (e.g., Troll et al., Contrib. Min. Petrol., 2004, 147, p.722). Sr and Nd isotope and trace element geochemistry show that the Rum rhyodacites are the products of melting of Lewisian amphibolite gneiss. There are no indications of a melt contribution from Lewisian granulite gneiss. The amphibolite gneiss parent rock had experienced an ancient Cs and Rb loss, possibly during a Caledonian event, which caused 87Sr/86Sr heterogeneity in the crustal source of silicic melts. The dacites and early gabbros of Rum are mixtures of crustal melts and primary mantle melts. Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to MORB whose trace element content varies from slightly depleted to slightly enriched. The 'early felsic-later mafic' volcanic associations from Rum, and from the now drowned seaward dipping wedges on the shelf of SE Greenland and on the Vøring Plateau show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place.

  4. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province

    NASA Astrophysics Data System (ADS)

    Susko, D.; Karunatillake, S.; Hood, D.

    2017-12-01

    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The fate of sulfide during decompression melting of peridotite - implications for sulfur inventory of the MORB-source depleted upper mantle. Earth and Planetary Science Letters 459, 183-195 (2017). 5. Sakaia, R., Nagaharaa, H., Ozawaa, K. & Tachibanab, S. Composition of the lunar magma ocean constrained by the conditions for the crust formation. Icarus 229, 45-56 (2014).

  5. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    The study of Silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to elucidate between possible heterogeneities in the mantle. Relatively large (~several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1]. In contrast, only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed in high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material (derived from low-temperature surface processes) in OIB source regions in a manner similar to more conventional stable isotope systems, such as O. Here we present the first comprehensive set of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIBs, including new data for the Canary Islands. Samples represent the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. Average δ30Si values for OIBs representing the EM-1 (-0.32 ± 0.06‰, 2 sd), EM-2 (-0.30 ± 0.01‰, 2 sd), and HIMU (-0.34 ± 0.09‰, 2 sd) mantle components are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth [3]. However, small systematic variations are present; HIMU (Mangaia, Cape Verde, La Palma) and Iceland OIBs are enriched in the lighter isotopes of Si (δ30Si values lower than MORB). Further, the difference in Si isotope composition between La Palma and El Heirro (Canary Islands) has previously been observed for O isotopes [4], suggesting a relationship between the Si and O isotope mantle systematics. The Si isotope variations among OIBs may be explained by the sampling of a primitive mantle reservoir enriched in the light isotopes of Si, as suggested by [5], but most likely reflects the incorporation of recycled altered oceanic crust and lithosphere in the plume source. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Day et al., Geology 2009 [5] Huang et al., GCA 2014

  6. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc

    NASA Astrophysics Data System (ADS)

    Torró, Lisard; Proenza, Joaquín A.; Marchesi, Claudio; Garcia-Casco, Antonio; Lewis, John F.

    2017-05-01

    Metamorphosed basalts, basaltic andesites, andesites and plagiorhyolites of the Early Cretaceous, probably pre-Albian, Maimón Formation, located in the Cordillera Central of the Dominican Republic, are some of the earliest products of the Greater Antilles arc magmatism. In this article, new whole-rock element and Nd-Pb radiogenic isotope data are used to give new insights into the petrogenesis of the Maimón meta-volcanic rocks and constrain the early evolution of the Greater Antilles paleo-arc system. Three different groups of mafic volcanic rocks are recognized on the basis of their immobile element contents. Group 1 comprises basalts with compositions similar to low-Ti island arc tholeiites (IAT), which are depleted in light rare earth elements (LREE) and resemble the forearc basalts (FAB) and transitional FAB-boninitic basalts of the Izu-Bonin-Mariana forearc. Group 2 rocks have boninite-like compositions relatively rich in Cr and poor in TiO2. Group 3 comprises low-Ti island arc tholeiitic basalts with near-flat chondrite-normalized REE patterns. Plagiorhyolites and rare andesites present near-flat to subtly LREE-depleted chondrite normalized patterns typical of tholeiitic affinity. Nd and Pb isotopic ratios of plagiorhyolites, which are similar to those of Groups 1 and 3 basalts, support that these felsic lavas formed by anatexis of the arc lower crust. Geochemical modelling points that the parental basic magmas of the Maimón meta-volcanic rocks formed by hydrous melting of a heterogeneous spinel-facies mantle source, similar to depleted MORB mantle (DMM) or depleted DMM (D-DMM), fluxed by fluids from subducted oceanic crust and Atlantic Cretaceous pelagic sediments. Variations of subduction-sensitive element concentrations and ratios from Group 1 to the younger rocks of Groups 2 and 3 generally match the geochemical progression from FAB-like to boninite and IAT lavas described in subduction-initiation ophiolites. Group 1 basalts likely formed at magmatic stages transitional between FAB and first-island arc magmatism, whereas Group 2 boninitic lavas resulted from focused flux melting and higher degrees of melt extraction in a more mature stage of subduction. Group 3 basalts probably represent magmatism taking place immediately before the establishment of a steady-state subduction regime. The relatively high extents of flux melting and slab input recorded in the Maimón lavas support a scenario of hot subduction beneath the nascent Greater Antilles paleo-arc. Paleotectonic reconstructions and the markedly depleted, though heterogeneous character of the mantle source, indicate the rise of shallow asthenosphere which had sourced mid-ocean ridge basalts (MORB) and/or back-arc basin basalts (BABB) in the proto-Caribbean domain prior to the inception of SW-dipping subduction. Relative to the neighbouring Aptian-Albian Los Ranchos Formation, we suggest that Maimón volcanic rocks extruded more proximal to the vertical projection of the subducting proto-Caribbean spreading ridge.

  7. The Nature and Origin of the ~1.88 Ga Circum-Superior Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Minifie, M.; Kerr, A. C.; Ernst, R. E.

    2009-12-01

    The Circum-Superior Large Igneous Province (LIP) is composed of a discontinuous belt of magmatic rocks, predominantly mafic-ultramafic in composition, circumscribing the cratonic margins of the Superior Province in the Canadian Shield for >3000 km. In addition to the cratonic margin magmatism, magmatic rocks of the same age are found in the interior of the craton in the form of mafic-ultramafic dykes and also carbonatite complexes along the Kapuskasing Structural Zone. Recent U-Pb geochronological studies have shown a tight age grouping for these magmatic rocks between 1885 and 1864 Ma. Previous studies have treated the various segments of the Circum-Superior LIP individually and models on the origin of the magmatism include seafloor spreading, back-arc basin rifting, foredeep basin flexure, volcanic arc activity, transtension in pull-apart basins, and mantle plume activity. This study is the first to create a cohesive geochemical and Sr-Nd-Pb-Hf-Os isotopic database for the whole of the Circum-Superior LIP and to assess its petrogenesis as a single entity. The geochemical and isotopic evidence strongly favour a mantle plume origin for the Circum-Superior LIP magmatism. A common trace element signature, very much like that of the Ontong Java oceanic plateau, is persistent throughout most of this LIP. Most samples possess Zr/Y and Nb/Y ratios almost identical to Ontong Java and other oceanic plateau lavas. Utilisation of the PRIMELT2 software of Herzberg & Asimow (2008) shows that the parental magmas of the Circum-Superior LIP were derived from ~30-35% pooled fractional melting of a source composition similar to that of primitive mantle with 1% continental crust extracted from it at mantle potential temperatures ranging from 1515 to 1610° C. Basalts from islands in Hudson Bay possess slightly enriched trace element profiles with small positive Nb anomalies and highlight a degree of heterogeneity within the plume source. The Circum-Superior LIP magmatic rocks possess similar isotopic compositions which further support the notion of a common mantle source for the whole LIP. The isotopic composition of this source is distinct to that of N-MORB which precludes the role of ambient upper mantle in the petrogenesis of the Circum-Superior magmatism suggested by previous studies. Ni-Cu-PGE sulphide deposits are associated with some regions of the Circum-Superior LIP. Subtle differences in the geochemistry of the volcanic rocks in areas which are fertile with respect to Ni-Cu-PGE deposits and areas which are barren may have implications for ore prospecting in other LIPs around the world. Herzberg, C. & Asimow, P.D. 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry Geophysics Geosystems 9, doi: 10.1029/2008GC002057.

  8. Redox state of the Archean mantle: Evidence from V partitioning in 3.5-2.4 Ga komatiites

    NASA Astrophysics Data System (ADS)

    Nicklas, Robert W.; Puchtel, Igor S.; Ash, Richard D.

    2018-02-01

    Oxygen fugacity of the mantle is a crucial thermodynamic parameter that controls such fundamental processes as planetary differentiation, mantle melting, and possible core-mantle exchange. Constraining the evolution of the redox state of the mantle is of paramount importance for understanding the chemical evolution of major terrestrial reservoirs, including the core, mantle, and atmosphere. In order to evaluate the secular evolution of the redox state of the mantle, oxygen fugacities of six komatiite systems, ranging in age from 3.48 to 2.41 Ga, were determined using high-precision partitioning data of the redox-sensitive element vanadium between liquidus olivine, chromite and komatiitic melt. The calculated oxygen fugacities range from -0.11 ± 0.30 ΔFMQ log units in the 3.48 Ga Komati system to +0.43 ± 0.26 ΔFMQ log units in the 2.41 Ga Vetreny system. Although there is a slight hint in the data for an increase in the oxygen fugacity of the mantle between 3.48 and 2.41 Ga, these values generally overlap within their respective uncertainties; they are also largely within the range of oxygen fugacity estimates for modern MORB lavas of +0.60 ± 0.30 ΔFMQ log units that we obtained using the same technique. Our results are consistent with the previous findings that argued for little change in the mantle oxygen fugacity since the early Archean and indicate that the mantle had reached its nearly-present day redox state by at least 3.48 Ga.

  9. Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin

    NASA Astrophysics Data System (ADS)

    Gurenko, Andrey A.; Kamenetsky, Vadim S.

    2011-12-01

    A fundamental question in the genesis of komatiites is whether these rocks originate from partial melting of dry and hot mantle, 400-500 °C hotter than typical sources of MORB and OIB magmas, or if they were produced by hydrous melting of the source at much lower temperatures, similar or only moderately higher than those known today. Gorgona Island, Colombia, is a unique place where Phanerozoic komatiites occur and whose origin is directly connected to the formation of the Caribbean Large Igneous Province. The genesis of Gorgona komatiites remains controversial, mostly because of the uncertain origin of volatile components which they appear to contain. These volatiles could equally result from shallow level magma contamination, melting of a "damp" mantle or fluid-induced partial melting of the source due to devolatilization of the ancient subducting plate. We have analyzed boron isotopes of olivine-hosted melt inclusions from the Gorgona komatiites. These inclusions are characterized by relatively high contents of volatile components and boron (0.2-1.0 wt.% H 2O, 0.05-0.08 wt.% S, 0.02-0.03 wt.% Cl, 0.6-2.0 μg/g B), displaying positive anomalies in the overall depleted, primitive mantle (PM) normalized trace element and REE spectra ([La/Sm] n = 0.16-0.35; [H 2O/Nb] n = 8-44; [Cl/Nb] n = 27-68; [B/Nb] n = 9-30, assuming 300 μg/g H 2O, 8 μg/g Cl and 0.1 μg/g B in PM; Kamenetsky et al., 2010. Composition and temperature of komatiite melts from Gorgona Island constrained from olivine-hosted melt inclusions. Geology 38, 1003-1006). The inclusions range in δ11B values from - 11.5 to + 15.6 ± 2.2‰ (1 SE), forming two distinct trends in a δ11B vs. B-concentration diagram. Direct assimilation of seawater, seawater-derived components, altered oceanic crust or marine sediments by ascending komatiite magma cannot readily account for the volatile contents and B isotope variations. Alternatively, injection of < 3wt.% of a 11B enriched fluid to the mantle source could be a plausible explanation for the δ11B range that also may explain the H 2O, Cl and B excess.

  10. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhong, Yun; Liu, Wei-Liang; Xia, Bin; Liu, Jing-Nan; Guan, Yao; Yin, Zhen-Xing; Huang, Qiang-Tai

    2017-11-01

    The Lanong ophiolitic mélange is a typical ophiolitic mélange in the middle section of the Bangong-Nujiang suture zone in northern Tibet. It mainly consists of ultramafic and mafic rocks, and its tectonic setting and formation age remain poorly constrained. In this paper, new geochemical and LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometer) zircon U-Pb age data obtained from gabbro, gabbro-dolerite, dolerite and basalt of the Lanong ophiolitic mélange are provided. The pillow basalts exhibit N-MORB (normal mid-ocean ridge basalt)-like geochemical features with a zircon U-Pb age of 147.6 ± 2.3 Ma. They were generated by 20-30% partial melting of a depleted mantle source composed of spinel lherzolite. The gabbro, massive basalt and gabbro-dolerite samples are characterised by more depleted and "V"-shaped REE (rare earth element) patterns, and they exhibit variable degrees of boninite-like geochemical characteristics, with a zircon U-Pb age of 149.1 ± 1.2 Ma (gabbro-dolerite). They were derived from the remelting of a significantly refractory mantle source following one or more episodes of previous basaltic melt extraction. Geochemical data of these mafic rocks indicate that they were developed in a continental fore-arc setting, and magmas were derived from depleted mantle sources modified by subducted slab-derived fluids and melts with minor crustal contamination. On the other hand, the dolerites show distinct OIB (oceanic island basalt)-like geochemical features, with a zircon U-Pb age of 244.1 ± 3.0 Ma. They were formed in a rift setting on a continental shelf-slope and originated from a low degree of partial melting of a depleted asthenospheric magma source mixed with some ancient sub-continental lithospheric mantle materials. The signatures presented here, combined with the results of previous studies, suggest that the Lanong ophiolitic mélange probably developed in a convergent plate margin under the southward subduction of the Bangong-Nujiang Tethys Ocean beneath the Lhasa terrane during the Middle Triassic-Early Cretaceous. Namely, the OIB-like dolerites likely reflect an extensional rift setting featuring thin continental crust in the Middle Triassic, and the gabbros, gabbro-dolerites and basalts represent a later stage of a fore-arc basin during the Late Jurassic-Early Cretaceous.

  11. Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Burnett, D. S.

    1992-01-01

    Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.

  12. Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Lentsch, Nathan; Hirschmann, Marc M.

    2015-12-01

    We present high-pressure experiments from 0.8 to 7.95 GPa to determine the effect of carbon on the solidus of mantle monosulfide. The graphite-saturated solidus of monosulfide (Fe0.69Ni0.23Cu0.01S1.00) is described by a Simon and Glatzel (Z Anorg Allg Chem 178:309-316, 1929) equation T (°C) = 969.0[ P (GPa)/5.92 + 1]0.39 (1 ≤ P ≤ 8) and is 80 ± 25 °C below the melting temperature found for carbon-free conditions. A series of comparison experiments using different capsule configurations and preparations document that the observed solidus-lowering is owing to graphite saturation and not an artifact of different capsules or hydrogen contamination. Concentrations of carbon in quenched graphite-saturated monosulfide melt measured by electron microprobe are 0.1-0.3 wt% in monosulfide melt and below the detection limit (<0.2 wt%) in crystalline monosulfide solid solution. Although there is only a small amount of carbon dissolved in monosulfide melts, the substantial effect on monosulfide solidus temperature means that the carbon-saturated monosulfide (Fe0.69Ni0.23Cu0.01S1.00) solidus intersects continental mantle geotherms inferred from diamond inclusion geobarometry at 6-7 GPa ( 200 km), whereas carbon-free monosulfide (Fe0.69Ni0.23Cu0.01S1.00) solidus does not. The composition investigated (Fe0.69Ni0.23Cu0.01S1.00) has a comparatively low metal/sulfur (M/S) ratio and low Ni/(Fe + Ni), but sulfides with higher (M/S) and with greater Ni/(Fe + Ni) should melt at lower temperatures and these should have a broader melt stability field in the diamond formation environment and in the continental lithosphere. Low carbon solubility in monosulfide melt excludes the possibility that diamonds are crystallized from sulfide melt. Although monosulfide melt can store no more than 2 ppm C in a bulk mantle with 225 ppm S, melts with higher M/S could be a primary host of carbon in the deeper part of the upper mantle. For example, the storage capacity of C in sulfide melts in the deep upper mantle ( 400 km) for a depleted mantle domain (MORB source, 120 ± 30 ppm S) is estimated to be 57 ±_{30}^{63} ppm, and so all the C could be in a sulfide melt. In an enriched (OIB source, 225 ± 25 ppm S) mantle domain, the C stored in sulfide melt in the deep upper mantle is estimated to be 86 ±_{44}^{92} ppm, which would amount to about half the available carbon.

  13. Molybdenum isotope fractionation in the mantle

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from -0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (-0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (-0.39 to -0.07‰) with a mean of -0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (-0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo concentrations of all the ultramafic xenoliths of 40-400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113-180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal-silicate fractionation. An identical isotopic composition might result from core-mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.

  14. Evidence for lateral mantle plume flow feeding the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Tindle, A. G.

    2003-04-01

    The Central Indian Ridge exhibits morphological and geochemical features indicating lateral flow of shallow plume asthenosphere from the Reunion hot-spot to the ridge axis. South of the Marie Celeste fracture zone, at 18.25°S, the Central Indian Ridge is bound by a southward closing, “V”-shaped region of shallow crust that extends for over 800 km. Over this distance, the ridge axis deepens to the south and is also affected by left-stepping offsets that bring it towards the west. The northern end of the ridge, which is closest to the island of La'Réunion, is shallowest and dominated by an inflated segment with associated sheet flows covering over 50 square kilometres. These morphological features are usually associated with ridge-hot-spot interaction. However, the nearest active hot-spot lies over 1100 km to the west beneath the island of La'Réunion. Geochemical trends for basalts erupted along the Central Indian Ridge demonstrate a gradient of northward decreasing MgO and increasing SiO2, indicating a relationship between shallower crust and increased magmatic fractional crystallisation. Superimposed on this gradient is an excess increase in incompatible element ratios, indicative of mantle enrichment to the north. The enrichment correlates with the spreading-parallel distance between the ridge axis and the edge of the "V"-shaped region of anomalously shallow crust. Locally, the enriched mantle component is found preferentially at third-order ridge offsets and adjacent to the rift walls demonstrating melting of a compositionally stratified, spinel-lherzolite mantle. These features are evidence for shallow, lateral flow of enriched hot-spot asthenosphere at a velocity of ~333 mm yr-1 and with a flux of at least 50 m3 s-1, through a mantle 'worm', towards the ridge axis where it migrates south at a rate of 54 - 67 mm per year. The trend of the geochemical enrichment points to mixing between deeper N-MORB and shallower Reunion hot-spot sources beneath the Central Indian Ridge.

  15. Two types of ore-bearing mafic complexes of the Early Proterozoic East-Scandinavian LIP and their ore potential

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Zhirov, Dmitry; Bayanova, Tamara; Korchagin, Alexey; Chaschin, Victor

    2015-04-01

    Two types of the ore-bearing mafic complexes are allotted in the East-Scandinavian large igneous province (LIP). They differ in geodynamic setting, structure, isotope geochemistry, petrology and mineralogy. The PGE-bearing mafic-ultramafic layered intrusions are associated with the first complex. They have been formed at an initial (pre-rift) stage of LIP. Features of origin of this complex are: 1) large-scale, protracted, and multiple episodes of deep mantle plume or asthenosphere upwelling; 2) the vast non-subduction-type basaltic magma in an intraplate continental setting; 3) low-sulfide Pt-Pd (with Ni, Cu, Au, Co and Rh) mineralization in different geological setting (reef- and contact type etc.); 4) anomalously high concentrations of PGEs in the bulk sulfides, inferred platinum distribution coefficient between silicate and sulfide melts of >100000. Deep mantle magma source is enriched in ore components (fertile source) and lithophile elements. It is reflected in the isotope indicators such as ɛNd(T) from -1 to -3, ISr(87Sr/86Sr) from 0.702 to 0.704, 3Не/4Не = (10 ^-5 ÷ 10 ^-6). Magma and ore sources differ from those of Mid-Ocean Ridge basalts (MORB), subduction-related magma but are similar to EM-I. Ore-bearing mafic complexes formed during a long period of time and by different episodes (2490±10 Ma; 2470±10 Ma; 2450±10 Ma; 2400±10 Ma), and by mixing between the boninitic an anorthositic magmas. It is known about 10 deposits and occurrences in Kola region with total reserves and resources about 2000 tons in palladium equivalent (with an average content ≥2-3 ppm). Intrusions with the rich sulfide Ni-Cu ore (with Co and poor PGE) are associated with the second mafic complex. Ore-controlling mafic-ultramafic intrusions are formed at a final stage of the intracontinental rifting of the Transitional period (2200-1980 Ma). Initial magma is depleted and similar to the MORB in terms of rare earths distribution. Enriched ferropicritic Fe-Ti derivatives of magma generate single volcano-plutonic rock series. For intrusive ore bodies rock differentiation with the formation of syngenetic wehrlite-clinopyroxenite-gabbro- orthoclase gabbro sequence is typical. Upper mantle source of the depleted magma is characterized by the following isotope indicators: ɛNd(T) +0.5 to +4, ISr= 87Sr/86Sr 0.703-0.704. Ore-bearing intrusive bodies are injected in the upper part of the Early Palaeoproterozoic volcano-sedimentary cross-section. Ores are located in the basement of intrusions and in the redeposited veined bodies, including offset setting. Numerous Ni-Cu deposits with total reserves and resources of several million tons of Nickel equivalent (with an average grade ≥ 0,3%) have been explored, and some of them now is mining. As a result of our research, the complex of indicators and criteria is suggested for predicting the occurrence, for regional exploration target selection and for regional resource evaluation of PGE and base metals. The studies are supported by the Russian Foundation for Basic Research (project nos. 13-05-12055).

  16. Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti

    2015-04-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga detrital zircon in Acasta gneiss and Yilgarn block, respectively), argues against it. One notable feature of successful models is an early depletion of incompatible elements (as well as Th/U ratio in the UM) by the initial 500 Ma, as a result of early formation of continental crust. Our results strongly favor exponential crustal growth and layered mantle structure. Patchett, P.J., Arndt, N.T. (1986), Earth and Planetary Science Letters, 78, 329-338. Kellogg, L.H., Hager, B.H., van der Hilst, R.D (1999), Science, 283, 1881-1884.

  17. Geochemical and isotopic constraints on the tectonic setting of Serra dos Carajas belt, eastern Para, Brazil

    NASA Technical Reports Server (NTRS)

    Olszewski, W. J., Jr.; Gibbs, A. K.; Wirth, K. R.

    1986-01-01

    The lower part of the Serra dos Carajas belt is the metavolcanic and metasedimentary Grao para Group (GPG). The GPG is thought to unconformably overlie the older (but undated) Xingu Complex, composed of medium and high-grade gneisses and amphibolite and greenstone belts. The geochemical data indicate that the GPG has many features in common with ancient and modern volcanic suites erupted through continental crust. The mafic rocks clearly differ from those of most Archean greenstone belts, and modern MORB, IAB, and hot-spot basalts. The geological, geochemical, and isotopic data are all consistent with deposition on continental crust, presumably in a marine basin formed by crustal extension. The isotopic data also suggest the existence of depleted mantle as a source for the parent magmas of the GPG. The overall results suggest a tectonic environment, igneous sources, and petrogenesis similar to many modern continental extensional basins, in contrast to most Archean greenstone belts. The Hammersley basin in Australia and the circum-Superior belts in Canada may be suitable Archean and Proterozoic analogues, respectively.

  18. Incipient rifting accompanied by the release of subcontinental lithospheric mantle volatiles in the Magadi and Natron basin, East Africa

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoo; Fischer, Tobias P.; Muirhead, James D.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys; Takahata, Naoto; Sano, Yuji

    2017-10-01

    Geochemical investigations of volatiles in hydrothermal systems are used to understand heat sources and subsurface processes occurring at volcanic-tectonic settings. This study reports new results of gas chemistry and isotopes (O, H, N, C, and He) of thermal spring samples (T = 36.8-83.5 °C; pH = 8.5-10.3) from the Magadi and Natron basin (MNB) in the East African Rift (EAR). Although a number of thermal springs are shown to ascend along normal faults and feed into major lakes (Magadi, Little Magadi, and Natron), volatile sources and fluxes of these fluids are poorly constrained. CO2 is the most abundant phase (up to 996.325 mmol/mol), and the N2-He-Ar abundances show a mixture of dissolved gases from deep (mantle-derived) and shallow (air/air saturated water) sources. The H2-Ar-CH4-CO2 geothermometers indicate that equilibrium temperatures range from 100 to 150 °C. δ18O (- 4.4 to - 0.2‰) and δD (- 28.9 to - 3.9‰) values of the MNB thermal waters still lie slightly to the right of the local meteoric water lines, reflecting minor evaporation. Each mixing relationship of N2 (δ15N = - 1.5 to 0.4‰; N2/3He = 3.92 × 106-1.33 × 109, except for an anomalous biogenic sample (δ15N = 5.9‰)) and CO2 (δ13C = - 5.7 to 1.6‰; CO2/3He = 7.24 × 108-1.81 × 1011) suggests that the predominant mantle component of the MNB volatiles is Subcontinental Lithospheric Mantle (SCLM). However, N2 is mostly atmospheric, and minor CO2 is contributed by the limestone end-member. 3He/4He ratios (0.64-4.00 Ra) also indicate a contribution of SCLM (R/Ra = 6.1 ± 0.9), with radiogenic 4He derived from a crustal source (R/Ra = 0.02). The MNB 4He flux rates (3.64 × 1011 to 3.34 × 1014 atoms/m2 s) are significantly greater than the reported mean of global continental flux values (4.18 × 1010 atoms/m2 s), implying that magma intrusions could supply mantle 4He, and related heating and fracturing release crustal 4He from the Tanzanian craton and Mozambique belt. Total flux values (mol/yr) of 3He, N2, and CO2 are 8.18, 4.07 × 107, and 5.31 × 109, which are 1.28%, 2.04%, and 0.24% of global fluxes, respectively. Our results suggest that the primary source of magmatic volatiles in the MNB is SCLM, with additional crustal contributions, which is different from the KRV volatiles that have more asthenospheric mantle components. Volatiles from SCLM in magmas stall in the crust to heat and fracture country rock, with accompanying crustal volatile release. These volatile signatures reveal that MORB-type mantle replaces a relatively small volume of SCLM during incipient rifting (< 10 Ma) in the EAR.

  19. Earth's Various Recipes for Making Lherzolites

    NASA Astrophysics Data System (ADS)

    Becker, H.; van Acken, D.

    2007-12-01

    Petrological and cosmochemical arguments suggest that the convecting upper mantle overall should have a lherzolitic composition, otherwise, continous production of MORB would not be feasible. The predominance of harzburgites among ocean floor peridotites fits this picture because harzburgites are commonly believed to be the residue of high degrees of partial melting at shallow depths, with fertile components lost during polybaric partial melting. Implicitly, it is commonly assumed that the deeper parts of the asthenosphere and new-formed lithosphere should be residues of low-degree partial melting. This view has been supported by the abundance of lherzolites among mantle xenoliths and orogenic peridotite massifs. But is this model really correct? Data and observations on oceanic and continental peridotites accumulated over recent years hint that reality is more complicated. On the basis of mineral and whole rock compositions, and isotopic data, it has long been suspected that many continental peridotites have undergone some form of pyroxene addition via percolating melts, yet the efficacy of these processes has been uncertain. Novel combination of structural and chemical work by Le Roux et al. (2007) indicates that melt influx may have converted deformed harzburgitic rocks of the Lherz peridotite massif into little-deformed spinel lherzolites. Refertilization by MORB-like sub-lithospheric melts, and marble cake style stretching of pyroxenites have been implicated as major processes that affected the composition of peridotites from the Totalp spinel lherzolite body, a fragment of Jurassic ultra-slow spreading Thetys ocean floor in the Swiss Alps (van Acken et al., 2007). Refertilization by melts has been associated with lherzolites from oceanic fracture zones (e. g., Seyler and Bonatti, 1997) and may be responsible for lherzolites alternating with harzburgitic domains at the Arctic Gakkel ridge (Liu et al. 2007). Evidence for compositional transformation of depleted peridotites into fertile rocks, both in young oceanic and in continental settings brings up questions that need to be addressed in the future: How common are truly residual lherzolites? Are lherzolites suitable to constrain the composition of the primitive mantle? How are fertile components in the asthenosphere distributed? Mantle rocks may have more surprises in stock.

  20. Seafloor Spreading in the Lau-Havre Backarc Basins: From Fast to Ultra Slow

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Dunn, R. A.; Sleeper, J. D.

    2013-12-01

    Seafloor spreading in the Lau Basin occurs along the well-organized Eastern Lau Spreading Center (ELSC) and Valu Fa Ridges (VFR) opening at 97-39 mm/yr. The ELSC/VFR produce two distinct crustal types sub-parallel to the ridge as a function of their separation from the arc volcanic front. Arc-proximal spreading forms a shallow, thick crust with arc-like lavas that abruptly changes to a deeper, thinner crust with backarc basin basalt (BABB)-like lavas as the ridges separate from the arc volcanic front. Southward in the Havre Trough opening rates decrease to 15 mm/yr and a well-organized spreading axis is largely absent. Instead, active volcanism appears to be distributed across a broad zone located asymmetrically near the arc side of the basin. Further, crustal accretion appears to have two distinct styles forming a shallower terrain floored by arc-like lavas and deeper rifted basins floored by more BABB-like lavas [Wysoczanski et al., 2010, G-cubed]. Although these crustal terrains broadly resemble those flanking the ELSC/VFR, in the Havre Trough they are organized into bands that trend across the basin with the shallower arc-like terrains typically trailing from Kermadec arc front volcanoes. We hypothesize that the variation in style of crustal accretion along the Lau-Havre backarc system is controlled by the southward decreasing rate of plate extension superimposed on a compositionally variable mantle wedge. Distinct hydrous and less-hydrous mantle domains have been proposed for the mantle wedge [Martinez & Taylor, 2002; Dunn & Martinez, 2011; Nature]. Within the hydrous domain (< about 50 km from the arc volcanic front) further compositional 'fingers' trailing basinward from arc front volcanoes have been interpreted in the Lau Basin based on ridge axis morphology and chemistry [Sleeper & Martinez, submitted]. In the Lau Basin, intermediate to fast spreading rates impose a 2D plate-driven advective regime in the mantle wedge constraining volcanic accretion to the 2D narrow ridge axis. Effects of the cross trending compositional 'fingers' are minimized and only expressed as second-order geological and geochemical features at the ridge. As opening rates decrease to ultra-slow in the Havre Trough, 2D plate-driven components of mantle advection and melting are minimized. The inherent buoyancy of melts dominate advection and volcanic emplacement allowing a clearer expression of intrinsic 3D compositional and melt generation patterns in the mantle wedge. These observations suggest that mantle wedge structure fundamentally consists of arc-like mantle source compositional fingers trailing basinward from arc front volcanoes within a hydrous but more MORB source-like mantle. Spreading rate controls the degree of expression of these compositional fingers in back-arc volcanic crustal accretion. Fast to intermediate rate spreading imposes a 2D ridge-parallel distribution to crustal domains whereas slow to ultra slow spreading rates allow 3D mantle wedge compositional and melt generation patterns to be expressed.

  1. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China

    NASA Astrophysics Data System (ADS)

    Cen, Tao; Li, Wu-xian; Wang, Xuan-ce; Pang, Chong-jin; Li, Zheng-xiang; Xing, Guang-fu; Zhao, Xi-lin; Tao, Jihua

    2016-07-01

    Early Jurassic bimodal volcanic and intrusive rocks in southern South China show distinct associations and distribution patterns in comparison with those of the Middle Jurassic and Cretaceous rocks in the area. It is widely accepted that these rocks formed in an extensional setting, although the timing of the onset and the tectonic driver for extension are debated. Here, we present systematic LA-ICP-MS zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotope data for bimodal volcanic rocks from the Changpu Formation in the Changpu-Baimianshi and Dongkeng-Linjiang basins in southern Jiangxi Province, South China. Zircon U-Pb ages indicate that the bimodal volcanic rocks erupted at ca. 190 Ma, contemporaneous with the Fankeng basalts ( 183 Ma). A compilation of geochronological results demonstrates that basin-scale basaltic eruptions occurred during the Early Jurassic within a relatively short interval (< 5 Ma). These Early Jurassic basalts have tholeiitic compositions and OIB-like trace element distribution patterns. Geochemical analyses show that the basalts were derived from depleted asthenospheric mantle, dominated by a volatile-free peridotite source. The calculated primary melt compositions suggest that the basalts formed at 1.9-2.1 GPa, with melting temperatures of 1378 °C-1405 °C and a mantle potential temperature (TP) ranging from 1383 °C to 1407 °C. The temperature range is somewhat hotter than normal mid-ocean-basalt (MORB) mantle but similar to an intra-plate continental mantle setting, such as the Basin and Range Province in western North America. This study provides an important constraint on the Early Jurassic mantle thermal state beneath South China. Reference: Raczek, I., Stoll, B., Hofmann, A.W., Jochum, K.P. 2001. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter 25(1), 77-86.

  2. Geochemistry and geochronology of the ∼0.82 Ga high-Mg gabbroic dykes from the Quanji Massif, southeast Tarim Block, NW China: Implications for the Rodinia supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Liao, Fanxi; Wang, Qinyan; Chen, Nengsong; Santosh, M.; Xu, Yixian; Mustafa, Hassan Abdelsalam

    2018-05-01

    The role of the Tarim Block in the reconstruction of the Neoproterozoic supercontinent Rodinia remains contentious. Here we report a suite of high-Mg gabbroic dykes from the Yingfeng area in northwestern Quanji Massif, which is considered as a fragment of the Tarim Block in NW China. Magmatic zircons from these dykes yield to have a weighted mean 206Pb/238U age of 822.2 ± 5.3 Ma, recording the timing of their emplacement. The gabbros have high MgO (9.91-13.09 wt%), Mg numbers (69.89-75.73) and CaO (8.41-13.55 wt%), medium FeOt (8.50-9.67 wt%) and TiO2 (0.67-0.93 wt%), variable Al2O3 (13.04-16.07 wt%), and high Cr (346.14-675.25 ppm), but relatively low Ni (138.72-212.94 ppm), suggestive of derivation from a primary magma. The rocks display chondrite-normalized LREE patterns with weak fractionation but flat HREE patterns relative to those of the N-MORB. Their primitive mantle normalized trace elemental patterns show positive Rb, Ba and U but negative Th, Nb, Ti and Zr anomalies, carrying characteristics of both mid-ocean ridge basalts and arc basalts. The εHf(t) values of the zircons from these rocks vary from +4.7 to +13.5 with depleted mantle model ages (TDM) of 1.23-0.85 Ga, and the youngest value nearly approaching that for the coeval depleted mantle, suggesting significant addition of juvenile materials. Our data suggest that the strongly depleted basaltic magma was probably sourced from a depleted mantle source that had undergone metasomatism by subduction-related components in a back-arc setting. Accordingly we postulate that a subduction-related tectonic regime possibly prevailed at ∼0.8 Ga along the southeastern margin of the Tarim Block. Combining with available information from the northern Tarim Block, we propose an opposite verging double-sided subduction model for coeval subduction of the oceanic crust beneath both the southern and northern margins of the Tarim Block during early Neoproterozoic.

  3. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Corfu, Fernando; Chiaradia, Massimo; Stern, Robert J.; Ghorbani, Ghasem

    2014-12-01

    The poorly known Sabzevar-Torbat-e-Heydarieh ophiolite belt (STOB) covers a large region in NE Iran, over 400 km E-W and almost 200 km N-S. The Sabzevar mantle sequence includes harzburgite, lherzolite, dunite and chromitite. Spinel Cr# (100Cr/(Cr + Al)) in harzburgites and lherzolites ranges from 44 to 47 and 24 to 26 respectively. The crustal sequence of the Sabzevar ophiolite is dominated by supra-subduction zone (SSZ)-type volcanic as well as plutonic rocks with minor Oceanic Island Basalt (OIB)-like pillowed and massive lavas. The ophiolite is covered by Late Campanian to Early Maastrichtian (~ 75-68 Ma) pelagic sediments and four plagiogranites yield zircon U-Pb ages of 99.9, 98.4, 90.2 and 77.8 Ma, indicating that the sequence evolved over a considerable period of time. Most Sabzevar ophiolitic magmatic rocks are enriched in Large Ion Lithophile Elements (LILEs) and depleted in High Field Strength Elements (HFSEs), similar to SSZ-type magmatic rocks. They (except OIB-type lavas) have higher Th/Yb and plot far away from mantle array and are similar to arc-related rocks. Subordinate OIB-type lavas show Nb-Ta enrichment with high Light Rare Earth Elements (LREE)/Heavy Rare Earth Elements (HREE) ratio, suggesting a plume or subcontinental lithosphere signature in their source. The ophiolitic rocks have positive εNd (t) values (+ 5.4 to + 8.3) and most have high 207Pb/204Pb, indicating a significant contribution of subducted sediments to their mantle source. The geochemical and Sr-Nd-Pb isotope characteristics suggest that the Sabzevar magmatic rocks originated from a Mid-Ocean Ridge Basalt (MORB)-type mantle source metasomatized by fluids or melts from subducted sediments, implying an SSZ environment. We suggest that the Sabzevar ophiolites formed in an embryonic oceanic arc basin between the Lut Block to the south and east and the Binalud mountains (Turan block) to the north, and that this small oceanic arc basin existed from at least mid-Cretaceous times. Intraoceanic subduction began before the Albian (100-113 Ma) and was responsible for generating Sabzevar SSZ-related magmas, ultimately forming a magmatic arc between the Sabzevar ophiolites to the north and the Cheshmeshir and Torbat-e-Heydarieh ophiolites to the south-southeast.

  4. Elemental and Sr-Nd-Pb isotope geochemistry of the Florianópolis Dyke Swarm (Paraná Magmatic Province): crustal contamination and mantle source constraints

    NASA Astrophysics Data System (ADS)

    Marques, L. S.; De Min, A.; Rocha-Júnior, E. R. V.; Babinski, M.; Bellieni, G.; Figueiredo, A. M. G.

    2018-04-01

    The Florianópolis Dyke Swarm is located in Santa Catarina Island, comprising also the adjacent continental area, and belongs to the Paraná Magmatic Province (PMP). The dyke outcrops in the island are 0.1-70 m thick and most of them are coast-parallel (NE-SW trending), with subordinate NW-SE trending. The vast majority of the dykes has SiO2 varying from 50 to 55 wt% and relatively high-Ti (TiO2 > 3 wt%) contents and these rocks were divided using the criteria commonly used to distinguish the different magma-types identified in the volcanic rocks from the PMP. The Urubici dykes (Sr > 550 μg/g) are the most abundant and some of them experienced crustal contamination reaching to 10%, as evidenced by low P2O5/K2O (0.30-0.21), high (Rb/Ba)PM (1.0-2.2), and radiogenic Sr and Pb isotope compositions (87Sr/86Sri up to 0.70716 (back to 125 Ma) and 206Pb/204Pbm up to 19.093). The Pitanga (Sr < 550 μg/g) and the basaltic trachyandesite dykes are less abundant and almost all of them were also substantially affected by at least 15% of crustal assimilation, evidenced by high (Rb/Ba)PM (up to 2.6) and Sr (87Sr/86Sri = 0.70737-0.71758) and Pb (206Pb/204Pbm = 18.446-19.441) isotope ratios, as well as low P2O5/K2O values (0.30-0.18). The low-Ti (TiO2 < 2 wt%) dykes are scarce and show a large compositional variability (SiO2: 50.4-64.5 wt%), with similar geochemical characteristics of the low-Ti volcanic rocks (Gramado-Palmas) from southern PMP, although the most primitive dykes show hybrid characteristics of Ribeira and Esmeralda magmas. The presence of granitic xenoliths with border reactions and dykes with diffuse contacts indicate that crustal contamination probably occurred by assimilation from re-melted the host rocks. Considering only the high-Ti Urubici dykes that were not affected by crustal contamination, the Sr, Nd and Pb isotope mixing modelling indicates the participation of a heterogeneous metasomatized (refertilized) subcontinental lithospheric mantle (SCLM). This mantle source was originated by partial melting of a depleted sublithospheric mantle (DMM - Depleted Mantle MORB), which was hybridized by addition of pyroxenite (< 5%) and carbonatite (up to 2%) melts. The isotope mixing modelling also points to a significant participation (up to 50%) of Archean SCLM, not evidenced in the mantle sources of the northern PMP high-Ti Pitanga flows (dominated by Neoproterozoic SCLM).

  5. Deep sulfur cycle

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2.8 - +5.2‰ with majority between +3 and +5), Krakatau (+1.5 - +8.6‰ with a cluster around +3 - +5), and Augustine (+8 - +12‰) show larger variations among arc magmas than previously known, (4) olivine-hosted melt inclusions from a FAMOUS lava (519-4-1) range from -9.5 to +10.5‰, and (5) undegassed submarine glasses from Samoa (with M. Jackson) appear to show separate ranges for individual islands, including Vailulu clustering around -1.9 to +2.1‰ and Malumalu ranging from -0.9 to -12.1‰. Overall, the results clearly show that low temperature signatures are not completely erased during recycling and isotopic exchange with the mantle infinite reservoir, and that mantle-derived melts still display large isotopic variations for small sampling scales, similar to observations on other isotope systems. Canfield, D. E. (2004) Amer. Jour. Sci., 304, 839-861. Rouxel, O. et al., (2009) Goldschmidt Conf. Abstract.

  6. Post-Hercynian subvolcanic magmatism in the Serre Massif (Central-Southern Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Romano, V.; Cirrincione, R.; Fiannacca, P.; Mazzoleni, P.; Tranchina, A.

    2009-04-01

    In the Serre Massif (Central-Southern Calabria, Italy) dykes and subvolcanic bodies intrude diffusively both Hercynian metamorphic rocks and late-Hercynian granitoids. They range in composition from basaltic andesites to dacite-rhyodacites and can be ascribed to the extensive magmatic activity that affects the entire Hercynian orogenic belt in late Paleozoic - early Mesozoic time. The geodinamic framework of the magmatic activity is still matter of debate, nevertheless most authors agree in correlating magmatism both to the late-orogenic collapse of the Hercynian belt and to the lithosphere thinning responsible for the subsequent continental rifting. In this work, we propose a petrogenetic model for acidic to basic hypabissal bodies from southern Calabria in order to define the nature of sources, discriminate magmatic processes and supply a contribution in the geodynamic reconstruction of the Late Palaeozoic in the Calabria-Peloritani Orogen. In relation to their geochemical affinity, studied dykes have been divided in two groups: a medium- to high-K calc-alkaline and a tholeiitic one. Dykes belonging to the former group, andesitic and dacitic-rhyodacitic in composition, show typical features of subduction-related magmatism, such as LILE and LREE enrichments, depletions in HFSE, peaks in Rb, Th and Ce, accentuated troughs in Ba, Nb-Ta, P and Ti (White and Dupré, 1986; McCulloch and Gamble, 1991), contrasting with the late Hercynian collisional context. On the other side, features typical of intra-plate magmatic activity, such as a moderate enrichment in Ta, Nb, Ce, P, Zr, Hf and Sm relative to MORB composition are also present in studied rocks (Shimizu & Arculus, 1975; Pearce, 1982). REE-patterns are strongly to weakly fractionated for the andesitic rocks (Lan/Ybn = 10.03-13.98) and the dacitic-rhyodacitic ones (Lan/Ybn = 6.00 to 2.82), respectively. The latter rocks exhibit a very slight negative Eu anomaly, whereas no Eu anomaly is recognizable in the andesite patterns. For the andesite rocks an origin by partial melting of an enriched lithospheric mantle source in a post-collisional context is proposed. For dacitic-rhyodacitic dykes a strong involvement of crustal material is suggested by geochemical features such as Nb-Ta trough, Th enrichment, low Nb/La rate (0.37 avg value) and high Th/La rate (0.68 avg value) (Taylor & McLennan, 1985). Tholeiitic dykes include basaltic andesites with geochemical characteristics (REE and incompatible elements) very similar to those of continental tholeiites. Nb and Ti anomalies, less marked of those observed in calc-alkaline dykes, also occur in the tholeiitic ones, as well as the enrichment in LIL elements. Besides, with respect the calc-alkaline ones, tholeiitic types are slightly more HFSE-enriched. REE patterns are sub-parallel and slightly fractionated (Lan/Ybn = 2.62 and 2.65), Eu negative anomaly is strongly pronounced. These geochemical evidences are explained invoking a derivation from an enriched mantle source, possibly in connection with early stages of continental rifting processes. Crustal contamination or magma mixing processes probably occurred during magma ascent, as suggested by petrographic evidences ("quartz ocelli" and xenocrysts of plagioclase). Indeed, even by comparing N-MORB - normalized patterns of tholeiitic dykes with E-MORB (Sun, 1980) and upper continental crust (Taylor and McLennan, 1981) compositions, a derivation from an E-MORB source type and interaction with continental crust both appear as processes strongly involved in the genesis of the studied rocks. REFERENCES: • McCulloch M.T. and Gamble J.A. (1991) - Earth Plan. Sci. Lett., 102, 358-374. • Pearce J. A. (1982) - Ed. Thorpe R. S., 525-548. John Wiley & Sons, New York. • Shimizu N. and Arculus R. J. (1975) - Contrib. Mineral. Petrol., 50, 231-240. • Sun S. S. (1980) - Phil. Trans. R. Soc., A297, 409-445. • Taylor S. R. and McLennan S. M. (1981) - Phil. Trans. R. Soc., A301, 381-399. • Taylor S. R. and McLennan S. M. (1985) - Oxford: Blackwell Scientific, 312 pp. • White W.M. and Dupré B. (1986) - J. Geophys. Res., 91, 5927-5941.

  7. Modeling Mantle Shear Zones, Melt Focusing and Stagnation - Are Non Volcanic Margins Really Magma Poor?

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Muntener, O.

    2011-12-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the conditions and enigmatic development of magma-poor and magma rich margins.

  8. Partial reactive crystallization of variable CO2-bearing siliceous MORB-eclogite-derived melt in fertile peridotite and genesis of alkalic basalts with signatures of crustal recycling

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.

    2013-12-01

    The presence of heterogeneity in the form of recycled altered oceanic crust (MORB-eclogite) has been proposed in the source of HIMU ocean island basalts (OIBs) [1]. Partial melts of recycled oceanic crust, however, are siliceous and Mg-poor and thus do not resemble the major element compositions of alkalic OIBs that are silica-poor and Mg-rich. In an upwelling heterogenous mantle, MORB-eclogite undergoes melting deeper than volatile-free peridotite, hence, andesitic partial melt derived from eclogite will react with subsolidus peridotite. We have examined the effect of such a melt-rock reaction under volatile-free conditions at 1375 °C, 3 GPa by varying the melt-rock ratio from 8 to 50 wt.% [2]. We concluded that the reacted melts reproduce certain major element characteristics of oceanic basanites, but not nephelinites. Also, the melt-rock reaction produces olivine and garnet-bearing websteritic residue. Because presence of CO2 has been invoked in the source of many HIMU ocean islands, the effect of CO2 on such a melt-rock reaction needs to be evaluated. Accordingly, we performed reaction experiments on mixtures of 25% and 33% CO2-bearing andesitic partial melt and peridotite at 1375 °C, 3 GPa by varying the dissolved CO2 content of the reacting melts from 1 to 5 wt.% (bulk CO2 from 0.25 to 1.6 wt.%) [3, this study]. Owing to melt-rock reaction, with increasing CO2 in the bulk mixture, (a) modes of olivine and cpx decrease while melt, opx and garnet increase, (b) reacted melts evolve to greater degree of Si-undersaturation (from andesite through basanite to nephelinite), (c) enhanced crystallization of garnet take place with higher CO2 in the melt, reducing alumina content of the reacted melts, and (d) CaO and MgO content of the reacted melts increase, without affecting FeO* and Na2O contents (indicating greater propensity of Ca2+ and Mg2+ over Fe2+ and Na+ to enter silicate melt as carbonate). For a given melt-MgO, the CO2-bearing reacted melts are a better match for alkalic basalts in terms of SiO2, Al2O3, CaO and CaO/Al2O3 than the CO2-free ones [3]. Using the experimental data, we have further developed an empirical model to predict mineral modes in residue and reacted melt compositions for olivine-opx saturated lithologies as a function of melt:rock ratio and bulk CO2 content. For example, in case of 5 wt.% eclogite melt infiltrating in fertile peridotite, with bulk CO2 from 0 to 2 wt.%, the derivative melts show an increase in CaO and MgO from 11 to 16 wt.%, 15 to 24 wt.%, respectively and decrease in SiO2 and Al2O3 from 45 to 39 wt.% and 14 to 5 wt.%, respectively. From this model, we have created a major element composition space of MORB-eclogite-derived reactive melt mass vs. bulk CO2 and we predict that primary HIMU-type magmas require <5 to 10 wt.% of MORB-eclogite melt input and up to 0.8 wt.% bulk CO2 in their source. Our model also allows determining the residual lithology at the source of alkalic basalts, produced owing to eclogite melt-peridotite reaction with or without CO2. [1] Jackson & Dasgupta (2008) EPSL 276, 175-186. [2] Mallik & Dasgupta (2012) EPSL 329-330, 97-108. [3] Mallik & Dasgupta (in press) JPetrol.

  9. Experimental determination of dissolved CO2 content in nominally anhydrous andesitic melts at graphite/diamond saturation - Remobilization of deeply subducted reduced carbon via partial melts of MORB-like eclogite

    NASA Astrophysics Data System (ADS)

    Eguchi, J.; Dasgupta, R.

    2015-12-01

    Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions coming from subducted crust and investigate the possible role this process may play in the deep carbon cycle. [1] Dasgupta (2013) RiMG. [2] Shirey, et al. (2013) RiMG. [3] Frost & McCammon (2008) Ann Rev Earth Plan Sci. [4] Stagno, et al. (2015) CMP. [5] Kiseeva, et al. (2012) JPet. [6] Mallik & Dasgupta (2014) G3. [7] Spandler, et al. (2008) JPet.

  10. Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5-38.0°S): Constraints on mantle wedge and slab input compositions

    NASA Astrophysics Data System (ADS)

    Jacques, G.; Hoernle, K.; Gill, J.; Hauff, F.; Wehrmann, H.; Garbe-Schönberg, D.; van den Bogaard, P.; Bindeman, I.; Lara, L. E.

    2013-12-01

    Crustal assimilation (e.g. Hildreth and Moorbath, 1988) and/or subduction erosion (e.g. Stern, 1991; Kay et al., 2005) are believed to control the geochemical variations along the northern portion of the Chilean Southern Volcanic Zone. In order to evaluate these hypotheses, we present a comprehensive geochemical data set (major and trace elements and O-Sr-Nd-Hf-Pb isotopes) from Holocene primarily olivine-bearing volcanic rocks across the arc between 34.5°S and 38.0°S, including volcanic front centers from Tinguiririca to Callaqui, the rear arc centers of Infernillo Volcanic Field, Laguna del Maule and Copahue, and extending 300 km into the backarc. We also present an equivalent data set for Chile trench sediments outboard of this profile. The volcanic arc (including volcanic front and rear arc) samples primarily range from basalt to andesite/trachyandesite, whereas the backarc rocks are low-silica alkali basalts and trachybasalts. All samples show some characteristic subduction zone trace element enrichments and depletions, but the backarc samples show the least. Backarc basalts have higher Ce/Pb, Nb/U, Nb/Zr, and Ta/Hf, and lower Ba/Nb and Ba/La, consistent with less of a slab-derived component in the backarc and, consequently, lower degrees of mantle melting. The mantle-like δ18O in olivine and plagioclase phenocrysts (volcanic arc = 4.9-5.6‰ and backarc = 5.0-5.4‰) and lack of correlation between δ18O and indices of differentiation and other isotope ratios, argue against significant crustal assimilation. Volcanic arc and backarc samples almost completely overlap in Sr and Nd isotopic composition. High precision (double-spike) Pb isotope ratios are tightly correlated, precluding significant assimilation of older sialic crust but indicating mixing between a South Atlantic Mid Ocean-Ridge Basalt (MORB) source and a slab component derived from subducted sediments and altered oceanic crust. Hf-Nd isotope ratios define separate linear arrays for the volcanic arc and backarc, neither of which trend toward subducting sediment, possibly reflecting a primarily asthenospheric mantle array for the volcanic arc and involvement of enriched Proterozoic lithospheric mantle in the backarc. We propose a quantitative mixing model between a mixed-source, slab-derived melt and a heterogeneous mantle beneath the volcanic arc. The model is consistent with local geodynamic parameters, assuming water-saturated conditions within the slab.

  11. Off-Axis Seamount Lavas at 8°20' N Span the Entire Range of East Pacific Rise MORB Compositions

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Wanless, V. D.; Perfit, M. R.; Gregg, P. M.; Fornari, D. J.; McCully, E.; Ridley, W. I.

    2017-12-01

    Lavas erupted at off-axis seamounts can provide a window into mantle heterogeneity and melting systematics that are not easily observed on-axis at fast-spreading mid-ocean ridges (MORs), where melts are efficiently mixed and homogenized within shallow axial magma chambers. To investigate off-axis magmatism, we systematically mapped the 8°20' N seamount chain in November of 2016 on R/V Atlantis using shipboard EM122 multibeam system and AUV Sentry. This 160-km long chain of off-axis seamounts and ridges is located perpendicular to the ridge axis, west of the East Pacific Rise (EPR) and north of the Siqueiros Fracture Zone. The high-resolution surface and AUV-based multibeam and AUV sidescan maps are combined with geochemical analyses of 300 basalt samples, collected using HOV Alvin and dredging, to evaluate magmatic plumbing and sources off-axis. Preliminary major and trace element concentrations reveal remarkable geochemical heterogeneity (including both normal and enriched basalt compositions) across the entire seamount chain and within individual seamounts. For example, (La/Sm)N contents span the entire range of known values for basalts from northern Pacific MORs and seamounts (0.45—2.76). MgO contents vary from 10.25 to 4.56 wt. % across the seamount chain and by as much as 3.61 wt. % from volcanic features sampled at an individual seamount (Beryl). Additionally, K2O/TiO2 ratios range from 4.9 to 61.3 across the seamount chain, and by as much as 54.4 at a single seamount (Beryl), indicating heterogeneous mantle sources or variable extents of melting occur at both regional and local scales. We combine the geochemical results and bathymetric maps with petrologic models to evaluate extents and depths of fractional crystallization and mantle melting in the off-axis environment.

  12. Compositional diversity in peridotites as result of a multi-process history: The Pacific-derived Santa Elena ophiolite, northwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Baumgartner, Peter O.; Castillo-Carrión, Mercedes

    2015-08-01

    The Santa Elena ophiolite (SEO) is an ultramafic nappe of more than 270 km2 overlying a tectonic serpentinite-matrix mélange in northwest Costa Rica. It is mainly composed of Cpx-rich and Cpx-poor harzburgites (~ 2.5 km-thick), with minor lherzolite, dunite and chromitite, as well as intrusive mafic sills and subvertical dikes, which coalesce into an upper Isla Negritos gabbroic sill complex. Minerals and whole-rock features of the Cpx-rich and Cpx-poor harzburgites share features of the abyssal and supra-subduction zone (SSZ) peridotites, respectively. To explain these characteristics two-stages of melting and refertilization processes are required. By means of trace element modeling, the composition of Cpx-rich harzburgites may be reproduced by up to ~ 5-10% melting of a primitive mantle source, and the composition of Cpx-poor harzburgites and dunites by ~ 15-18% melting of an already depleted mantle. Therefore, the Cpx-rich harzburgites can be interpreted as product of first-stage melting and low-degrees of melt-rock interaction in a mid-ocean ridge environment, and the Cpx-poor harzburgites and dunites as the product of second-stage melting and refertilization in a SSZ setting. The mafic sills and the Isla Negrito gabbros are genetically related and can be explained as crystallization from the liquids that were extracted from the lower SSZ mantle levels and emplaced at shallow conditions. The Murciélagos Island basalts are not directly related to the ultramafic and mafic rocks of the SEO. Their E-MORB-like composition is similar to most of the CLIP mafic lavas and suggests a common Caribbean plume-related source. The SEO represents a fragment of Pacific-derived, SSZ oceanic lithosphere emplaced onto the southern North America margin during the late Cretaceous. Because of the predominance of rollback-induced extension during its history, only a limited amount of crustal rocks were formed and preserved in the SEO.

  13. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt

    NASA Astrophysics Data System (ADS)

    Rollinson, Hugh; Mameri, Lucan; Barry, Tiffany

    2018-06-01

    Polymineralic inclusions interpreted as melt inclusions in chromite from the dunitic Moho Transition Zone in the Maqsad area of the Oman ophiolite have been analysed and compositions integrated using a rastering technique on the scanning electron microscope. The inclusions now comprise a range of inter-grown hydrous phases including pargasite, aspidolite, phlogopite and chlorite, indicating that the parental melts were hydrous. Average inclusion compositions for seven samples contain between 23.1 and 26.8 wt% MgO and 1.7-3.6 wt% FeO. Compositions were corrected to allow for the low FeO concentrations using coexisting olivine compositions. These suggest that the primary melt has between 20 and 22 wt% MgO and 7-9.7 wt% FeO and has an affinity with boninitic melts, although the melts have a higher Ti content than most boninites. Average rare earth element concentrations suggest that the melts were derived from a REE depleted mantle source although fluid-mobile trace elements indicate a more enriched source. Given the hydrous nature of the inclusions this enrichment could be fluid driven. An estimate of the melt temperature can be made from the results of homogenisation experiments on these inclusions and suggests 1300 °C, which implies for a harzburgite solidus, relatively shallow melting at depths of <50 km and is consistent with a boninitic origin. The current "basaltic" nature of the chromite host to highly magnesian melt inclusions suggests that the dunitic Moho Transition Zone operated as a reaction filter in which magnesian melts were transformed into basalts by the removal of high magnesian olivines, particularly in areas where the Moho Transition Zone is unusually thick. We propose therefore that podiform mantle chromitites, even those with an apparent MORB-like chemical signature, have crystallised from a highly magnesian parental melt. The data presented here strongly support the view that this took place in a subduction initiation setting.

  14. Slab break-off triggered lithosphere - asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Pandit, Manoj K.; Zhao, Jun-Hong; Chen, Wei-Terry; Zheng, Jian-Ping

    2018-01-01

    The Neoproterozoic Malani Igneous Suite (MIS) is described as the largest felsic igneous province in India. The linearly distributed Sindreth and Punagarh basins located along eastern margin of this province represent the only site of bimodal volcanism and associated clastic sediments within the MIS. The in-situ zircon U-Pb dating by LA-ICPMS reveals that the Sindreth rhyolites were erupted at 769-762 Ma. Basaltic rocks from both the basins show distinct geochemical signatures that suggest an E-MORB source for Punagarh basalts (low Ti/V ratios of 40.9-28.2) and an OIB source (high Ti/V ratios of 285-47.6) for Sindreth basalts. In the absence of any evidence of notable crustal contamination, these features indicate heterogeneous mantle sources for them. The low (La/Yb)CN (9.34-2.10) and Sm/Yb (2.88-1.08) ratios of Punagarh basalts suggest a spinel facies, relatively shallow level mantle source as compared to a deeper source for Sindreth basalts, as suggested by high (La/Yb)CN (7.24-5.24) and Sm/Yb (2.79-2.13) ratios. Decompression melting of an upwelling sub-slab asthenosphere through slab window seems to be the most plausible mechanism to explain the geochemical characteristics. Besides, the associated felsic volcanics show A2-type granite signatures, such as high Y/Nb (5.97-1.55) and Yb/Ta (9.36-2.57) ratios, consistent with magma derived from continental crust that has been through a cycle of continent-continent collision or an island-arc setting. A localized extension within an overall convergent scenario is interpreted for Sindreth and Punagarh volcanics. This general convergent setting is consistent with the previously proposed Andean-type continental margin for NW Indian block, the Seychelles and Madagascar, all of which lay either at the periphery of Rodinia supercontinent or slightly off the Supercontinent.

  15. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Dasgupta, R.

    2008-12-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  16. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  17. First Nd-Hf isotope evidence for ultra depleted melts in MOR-type replacive mantle bodies

    NASA Astrophysics Data System (ADS)

    Sanfilippo, A.; Botticchio, S.; Salters, V. J. M.; Tribuzio, R.; Zanetti, A.

    2017-12-01

    A growing number of geochemical investigations on peridotites suggest that the chemical heterogeneity of the Earth's mantle is more extreme than the magmas erupted on the surface. The finding of extremely depleted compositions in residual peridotites apparently not sampled by oceanic magmatism implies that the depleted mantle (DM) end-member is yet to be defined, leaving open questions on contribution of the depleted component to basalt volcanism [1]. Here we present new data on two replacive bodies (10-20 m wide) found in a MOR-type mantle section exposed in the Jurassic Alpine ophiolites (Lanzo South Massif, Italy). Field and geochemical data indicate a formation by reaction between highly depleted melts and host plagioclase (Pl)-bearing peridotites. This interaction led to annealing of the foliation and formation of Pl-free harzburgites. Clinopyroxenes from these replacive rocks are characterized by strong depletions in incompatible elements (TiO2 <0.05 wt.%) compared to the host Pl-peridotites (TiO2 in Cpx >0.4 wt.%), and by a marked Nd-Hf isotope decoupling. Initial ɛNd (calculated at 165 Ma) is similar to present-day MORB and abyssal peridotites, whereas their initial ɛHf are amongst the most radiogenic values (up to 200). The 143Nd/144Nd versus 147Sm/144Nd ratios of the two bodies define parallel trends yielding ages compatible with the Jurassic age of the ophiolites. Differently, the 176Hf/177Hf versus 176Lu/177Hf ratios form error-chrons yielding an age of 1.2 Ga! These data indicate that the melts forming these replacive rocks originated from an old, depleted mantle source, akin to the refractory peridotites sampled at Gakkel Ridge [2]. These ultra depleted melts likely were generated during the last phases of the melting process and transported through the lithospheric mantle into the replacive bodies. We provide the first evidence that melt with extremely depleted isotope compositions do occur at ocean ridges, revealing a potential, but still unrecognized contribution of refractory mantle domains into the composition of erupted melts. [1]Salters, V.J.M., et al., 2011. Geochem. Geophys. Geosyst. doi:10.1029/2011GC003617. [2] Stracke, A. et al., 2011. Earth Plan Scie Lett 308, 359-368

  18. Sr-Nd-Pb Isotope Geochemistry of Melange Formation: Implications for Identification of Fluid Sources in the Mantle Wedge and the Arc

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; King, R. L.; Moriguti, T.; Nakamura, E.

    2004-12-01

    Paramount to our ability to decipher the behavior of fluids and melts within the mantle wedge and the overall subduction system are the chemical compositions of rocks adjacent to the slab-mantle interface. Profound metamorphic and metasomatic alteration of pre-subduction lithologies to form melange along the slab-mantle interface may yield rock types inheriting mixed chemical compositions of diverse pre-subduction lithologies. Early work on melange geochemistry indicates competitive effects between mechanical mixing, metasomatism by fluids or melts, and mineral stabilities imposed by the resulting bulk composition. We have explored the Sr-Nd-Pb isotope geochemistry of low- to high-grade melange zones in the Catalina Schist, CA, to address this crucial missing component in studies of subduction-zone mass flux. The Catalina Schist contains lawsonite-albite (LA), lawsonite-blueschist (LB), and amphibolite (AM) facies melange zones, all with mineralogy dominated by talc, chlorite, and Na-Ca amphiboles, with additional minerals such as micas, rutile, zircon, and apatite stabilized based on bulk sample chemistry. Major element compositions vary, from strongly ultramafic in the AM melange, to more crustal-like compositions (i.e., more reminiscent of basaltic to sedimentary protoliths) for LA and LB melange. However, initial Sr and Nd isotope ratios for all grades of melange are essentially indistinguishable, displaying a wide variation from 87Sr/86Sr=0.703-0.709 and ɛ Nd= +15 to -15. Covariations are generally negative, similar to that of the mantle array, but with some samples extending to higher Sr ratios at constant ɛ Nd that probably reflect inheritance of seawater Sr. No clear mixing relationships between 87Sr/86Sr and 1/Sr exist, suggesting either localized buffering of Sr isotope ratios or that mixing relations are obscured by secondary devolatilization. However, a clear mixing trend for Nd indicates two end-members, one a high-concentration, positive ɛ Nd source (AOC?), the other with low-concentration and negative ɛ Nd (devolatilized sediments?). Likewise, initial Pb isotope ratios for all grades of melange form a single array independent of rock type or inferred protolith. Melange matrix of the Catalina Schist preserves initial 206Pb/204Pb of 18.95-19.59, 207Pb/204Pb of 15.61-15.68, and 208Pb/204Pb of 37.85-39.05. Such elevated Pb ratios are typical of subducting oceanic sediments, but not of MORB-like oceanic crust or peridotites of the depleted mantle. The similarity of these initial ratios suggests pervasive alteration of Pb isotope signatures within diverse rock types by fluids during subduction. As Pb concentrations decline from LA/LB to AM melange, this suggests devolatilization of Pb from the ultramafic AM melange will transfer crustal-like Pb isotope ratios. Sr-Nd-Pb isotope systematics for arc volcanic rocks are commonly used as indicators of fluid sources from the subducting slab to the arc magma source region. Our results suggest such an assumption is extremely dangerous, as hybridization processes common to melange zones are more likely to occur along the slab-mantle interface than is preservation of a pre-subduction section. Such metamorphic mediation and buffering of "slab" compositions is essentially unknown, yet our data support an interpretation where these processes impart a fundamental control on the chemistry of fluids passed to the mantle wedge.

  19. Geodynamic control on melt production in the central Azores : new insights from major and trace elements, Sr, Nd, Pb, Hf isotopic data and K/Ar ages on the islands of Terceira, Sao Jorge and Faial

    NASA Astrophysics Data System (ADS)

    Hildenbrand, A.; Weis, D. A.; Madureira, P.; Marques, F. O.

    2012-12-01

    A combined geochronological and geochemical study has been carried out on the volcanic islands of Terceira, São Jorge, and Faial (central Azores) to examine the relationships between mantle dynamics, melt production and regional deformation close to the triple junction between the American, the Eurasian and the Nubian lithospheric plates. The lavas analyzed span the last 1.3 Myr, and have been erupted during two main periods prior to 800 ka and after 750 ka, respectively. They range in composition from alkaline basalts/basanites to trachytes, and overall exhibit a strong enrichment in highly incompatible elements. The whole range of isotopic compositions here reported (87Sr/86Sr: 0.703508-0.703913; 143Nd/144Nd: 0.512882-0.513010; 206Pb/204Pb: 19.0840- 20.0932; 207Pb/204Pb: 15.5388-15.6409; 208Pb/204Pb: 38.7416-39.3921; 176Hf/177Hf: 0.282956-0.283111) suggests the involvement of three components: (1) a weakly radiogenic component reflecting the source of regional MORBs, (2) a main HIMU-type component represented in the three islands, and (3) an additional component in Faial recent lavas, which appears similar to the EM type end-member previously recognized on other Azores eruptive complexes. The geographical distribution of the enriched components and the synchronous construction of various islands at the regional scale rules out a single narrow active plume. They suggest in turn the presence of dispersed residual enriched mantle blobs, interpreted as remnants from a large heterogeneous plume probably responsible for edification of the Azores plateau several Myr ago. The lavas erupted in São Jorge and Faial prior to 800 ka have similar and homogeneous isotopic ratios, which partly overlap the compositional field of MORBs from the adjacent portion of the Mid-Atlantic Ridge (MAR). Their genesis can be explained by the regional development of N150 transtensive tectonic structures, which promoted significant decompression melting of the upper mantle, with correlative dilute expression of the enriched components. In contrast, the youngest lavas (< 750 ka) erupted along the N110 main structural direction on the three islands are significantly enriched in LILE and LREE, and generally have variable but more radiogenic isotopic compositions. Such characteristics suggest low-degree partial melting and greater incorporation of fertile residual mantle anomalies during passive tectonic reactivation of pre-existing transform faults promoted by recent ridge-push at the MAR. We propose that sub-aerial volcanism over the last 1.3 Myr in the central Azores recorded a sudden change in the conditions of melt generation which most probably reveals a major reconfiguration of regional deformation accompanying the recent geodynamic reorganization of the Eurasia-Nubia plate boundary.

  20. Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China)

    NASA Astrophysics Data System (ADS)

    Liu, Huichuan; Wang, Yuejun; Zi, Jian-Wei

    2017-06-01

    Layered ultramafic-mafic intrusions are usually formed in an arc/back-arc or intra-plate tectonic environment, or genetically related to a mantle plume. In this paper, we report on an ultramafic-mafic intrusion, the Dalongkai intrusion in the Ailaoshan tectonic zone (SW China), whose occurrence is closely associated with arc/back-arc magmatic rocks. The Dalongkai intrusion is composed of plagioclase-lherzolite, hornblende-peridotite, lherzolite and wehrlite at the bottom, cumulate plagioclase-pyroxenite at the middle part, changing to fine-grained gabbro towards the upper part of the intrusion, forming layering structure. Zircons from the plagioclase-pyroxenites and gabbros yielded U-Pb ages of 272.1 ± 1.7 Ma and 266.4 ± 5.8 Ma, respectively. The plagioclase-pyroxenites show cumulate textures, and are characterized by high MgO (25.0-28.0 wt.%; mg# = 80.6-82.3), Cr (1606-2089 ppm) and Ni (893-1203 ppm) contents, interpreted as early cumulate phases. By contrast, the gabbros have relatively lower mg# values (56.3-62.7), and Cr (157-218 ppm) and Ni (73-114 ppm) concentrations, and may represent frozen liquids. The plagioclase-pyroxenites and gabbros share similar chondrite-normalized REE patterns and primitive mantle-normalized trace element profiles which are analogous to those of typical back-arc basin basalts. The εNd(t) values for both rock types range from +2.20 to +4.22. These geochemical and isotopic signatures suggest that the Dalongkai ultramafic-mafic rocks originated from a MORB-like mantle source metasomatized by subduction-related, sediment-derived fluids. Our data, together with other geological evidence, indicate that the emplacement of the Dalongkai ultramafic-mafic intrusion most likely occurred in a back-arc extensional setting associated with subduction of the Ailaoshan Paleotethyan branch ocean during the Middle Permian, thus ruling out the previously speculated linkage to the Emeishan mantle plume, or to an intra-continental rift.

  1. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili

    2018-03-01

    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  2. Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: Constraints from Th, Sr and O isotopes

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Condomines, Michel; Fourcade, Serge

    1992-05-01

    Along the two volcanic off-rift zones in Iceland, the Sn˦fellsnes volcanic zone (SNVZ) and the South Iceland volcanic zone (SIVZ), geochemical parameters vary regularly along the strike towards the centre of the island. Recent basalts from the SNVZ change from alkali basalts to tholeiites where the volcanic zone reaches the active rift axis, and their 87Sr/ 86Sr and Th/U ratios decrease in the same direction. These variations are interpreted as the result of mixing between mantle melts from two distinct reservoirs below Sn˦fellsnes. The mantle melt would be more depleted in incompatible elements, but with a higher 3He/ 4He ratio ( R/Ra≈ 20) beneath the centre of Iceland than at the tip of the Sn˦fellsnes volcanic zone ( R/Ra≈ 7.5). From southwest to northeast along the SIVZ, the basalts change from alkali basalts to FeTi basalts and quartz-normative tholeiites. The Th/U ratio of the Recent basalts increases and both ( 230Th/ 232Th ) and δ 18O values decrease in the same direction. This reflects an important crustal contamination of the FeTi-rich basalts and the quartz tholeiites. The two types of basalts could be produced through assimilation and fractional crystallization in which primary alkali basaltic and olivine tholeiitic melts 'erode' and assimilate the base of the crust. The increasingly tholeiitic character of the basalts towards the centre of Iceland, which reflects a higher degree of partial melting, is qualitatively consistent with increasing geothermal gradient and negative gravity anomaly. The highest Sr isotope ratio in Recent basalts from Iceland is observed inÖr˦fajökull volcano, which has a 3He/ 4He ratio ( R/Ra≈ 7.8) close to the MORB value, and this might represent a mantle source similar to that of Mauna Loa in Hawaii.

  3. Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna

    NASA Astrophysics Data System (ADS)

    Kirkland, C. L.; Smithies, R. H.; Spaggiari, C. V.; Wingate, M. T. D.; Quentin de Gromard, R.; Clark, C.; Gardiner, N. J.; Belousova, E. A.

    2017-05-01

    The crystalline basement beneath the Cretaceous to Cenozoic Bight and Eucla Basins, in Western Australia has received comparatively little attention even though it lies on the eastern margin of one of the most mineral resource endowed regions on the planet. This basement is characterized by a complex geological evolution spanning c. 2 billion years, but paucity of outcrop and younger basin cover present a daunting challenge to understand the basement geology. In this work the composition of the unexposed Proterozoic crystalline basement to the Bight and Eucla Basins is investigated through zircon Hf isotopes and whole rock geochemistry from new drillcore samples. This region includes two geophysically defined basement entities: The Madura Province, containing: 1) c. 1478 Ma Sleeper Camp Formation, which has variable isotopic signatures including evolved values interpreted to reflect reworking of rare slivers of hyperextended Archean crust, 2) 1415-1389 Ma Haig Cave Supersuite, with mantle-like isotope values interpreted as melting of subduction-modified N-MORB source, and 3) 1181-1125 Ma Moodini Supersuite, with juvenile isotopic signatures interpreted to reflect mixed mafic lower-crustal and asthenospheric melts produced at the base of thinned crust. The Coompana Province, to the east of the Madura Province, has three major magmatic components: 1) c. 1610 Ma Toolgana Supersuite, with chemical and isotopic characteristics of primitive arc rock, 2) c. 1490 Ma Undawidgi Supersuite, with juvenile isotope values consistent with extensional processes involving asthenospheric input and 3) 1192-1140 Ma Moodini Supersuite, with strong isotopic similarity to Moodini Supersuite rocks in the Madura Province. This new isotopic and geochemical data shows that the Madura and Coompana regions together represent a huge tract of predominantly juvenile material. Magma sources recognised, include; 1) depleted mantle, producing MORB-like crust at c. 1950 Ma, but also contributing to younger magmatism; 2) recycled c. 1950 Ma crust reworked in primitive arcs and in intra-plate settings and; 3) minor evolved material representing fragments of hyperextended continent. The observed isotopic evolution pattern is comparable to that of other central Australian Proterozoic provinces, including the Musgrave Province, the northern margin of the Gawler Craton, and components within the Rudall Province. Linking these isotopic signatures defines the Mirning Ocean, and its subducted and underplated equivalents. In a global context we suggest c. 1950 Ma crust production reflects the onset of ordered oceanic spreading centres, which swept juvenile crustal fragments into Nuna.

  4. A New Pb Isotope Perspective on Oceanic Basalts: Reading Between the Lines

    NASA Astrophysics Data System (ADS)

    Galer, S. J.; Abouchami, W.; Eisele, J.; Haase, K.; Moller, H.; Regelous, M.; Hofmann, A. W.

    2001-12-01

    Recent high-precision Pb isotope analyses ( ~100 ppm) obtained using double and triple spikes demonstrate that much of the scatter in previous, conventionally obtained data is analytical in origin. Here we pool together all the currently available high-precision Pb isotope data on oceanic basalts to provide a new "sharpened up" picture of the gross Pb isotope heterogeneity in the mantle. These Pb isotope data are from MORB glasses from the East Pacific Rise (EPR) and South Atlantic (26° S, Ascension), seven Hawaiian volcanoes, Pitcairn, Rurutu, the Azores (all MPI data), Mangaia (Woodhead, 1996), and St. Helena and Iceland (Thirlwall, 2000), totalling around 250 samples. The high-precision data for a given location do not form the "clouds" in Pb-Pb isotope space seen in conventional literature data. Rather, each data set forms tight linear arrays in both Pb isotope spaces. More surprising, though, is that the samples lying on a given array cover a limited geographic extent: (1) In the case of the EPR, six distinct arrays are found, each of which is confined to a particular range in latitude along the ridge, corresponding to length-scales of ~100 to 5000 km. The same is true of MORB samples from the South Atlantic (2) Distinct arrays are resolved for individual volcanoes along the Hawaiian chain, indicating that the heterogeneities within the Hawaiian plume are tapped in a long-lived and highly systematic fashion. It is also quite clear that these data are not readily interpretable in terms of mixing between notional end-member "components" in the mantle. For example, the EM1 "component" present in Pitcairn is quite clearly different in Pb isotope space from that sampled by Koolau. Similarly, the HIMU "component" present in the Austral-Cook chain is distinct in the islands Mangaia and Rurutu, and is not the same as that found in St. Helena. In all of these cases it is impossible to find common crossing points of the arrays in both Pb isotope spaces. Moreover, none of the arrays "point" towards any of the putative end-member "mantle components." If such common end-members do exist in the mantle, almost perfect premixing between them would be required to form viable intermediate end-members to each of the arrays observed. Overall, these new Pb isotope data pose the questions: (1) What is the significance of the linear arrays and why are there so many of them?, and (2) how can such heterogeneities survive intact in the convecting mantle over long periods of time?

  5. The petrogenesis of island arc basalts from Gunung Slamet volcano, Indonesia: Trace element and 87Sr /86Sr contraints

    NASA Astrophysics Data System (ADS)

    Vukadinovic, Danilo; Nicholls, Ian A.

    1989-09-01

    Selected major and trace elements, rare earth element (REE) and 87Sr /86Sr data are presented for arc basalts from Gunung Slamet volcano, Java, Indonesia. On the basis of stratigraphy, trace element content, Zr/Nb, and 87Sr /86Sr ratios, Slamet basalts can be broadly categorized into high abundance magma (HAM) and low abundance magma (LAM) types. Provided the quantities of 'immobile' trace elements (in aqueous systems) such as Nb, Hf and Zr in the mantle wedge and ensuing magmas are unaffected by additions from subducted lithosphere or overlying arc crust, a model may be developed whereby LAM are generated by higher degrees of melting in the mantle wedge (13%) compared to HAM (7%). Hf/Nb or Zr/Nb ratio systematics indicate that prior to metasomatism by the underlying lithosphere, the Slamet mantle wedge was similar in chemical character to transitional-MORB source mantle. Conversely, examination of immobile/mobile incompatible trace element ratios (IMITER) provide clues to the nature of the metasomatizing agent, most likely derived from the subducted slab (basalts and sediments). HAM have constant IMITER ( e.g.Nb/U, Zr/K), whereas LAM show a negative correlation between IMITER and 87Sr /86Sr . Metasomatism of the mantle wedge was modelled by interaction with either a slab-derived-melt or -aqueous fluid. Yb/Sr and 87Sr /86Sr ratios from Slamet basalts and oceanic sediments suggest that 'bulk' mixing of the latter into the mantle wedge is unlikely. Instead, sediments probably interact with overlying mantle in the same way that subducted basalts do-either as melts or fluids. In the case of slab-derived melts mixing with 'pristine' mantle, good agreement with back-calculated values for HAM and LAM sources can be achieved only if a residual phase such as rutile persists in the subducting lithosphere. In the case of fluids, excellent agreement with back-calculated values is obtained for all elements except heavy REE. It is tentatively suggested that aqueous slab-derived fluids, relatively rich in mobile incompatible elements, are the probable metasomatizing agent responsible for the chemical characteristics, particularly low IMITER, of Slamet and other island arc basalts (IAB). Because the mobilities/solubilities of Sr in high pressure and temperature fluids are poorly known, the modelled subduction fluids are not necessarily efficient at raising 87Sr /86Sr in the overlying mantle wedge. As a result, positive correlations between e.g.Ba/La vs. 87Sr /86Sr need not be observed in arc suites, especially if the relative mobilities of Sr, Ba, and La are dependent upon intensive parameters during metasomatism. Assimilation of arc crust by uprising magmas (up to ~14% of crustal Sr) can account for the range of 87Sr /86Sr in HAM. However, calculating the amounts of arc crustal assimilation by uprising magmas is poorly constrained since such modelling is highly dependent upon previous estimates of the degree of metasomatism undergone by the mantle wedge.

  6. Large-ion lithophile elements delivered by saline fluids to the sub-arc mantle

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko; Mibe, Kenji; Bureau, Hélène; Reguer, Solenn; Mocuta, Cristian; Kubsky, Stefan; Thiaudière, Dominique; Ono, Shigeaki; Kogiso, Tetsu

    2014-12-01

    Geochemical signatures of arc basalts can be explained by addition of aqueous fluids, melts, and/or supercritical fluids from the subducting slab to the sub-arc mantle. Partitioning of large-ion lithophile elements between aqueous fluids and melts is crucial as these two liquid phases are present in the sub-arc pressure-temperature conditions. Using a micro-focused synchrotron X-ray beam, in situ X-ray fluorescence (XRF) spectra were obtained from aqueous fluids and haplogranite or jadeite melts at 0.3 to 1.3 GPa and 730°C to 830°C under varied concentrations of (Na, K)Cl (0 to 25 wt.%). Partition coefficients between the aqueous fluids and melts were calculated for Pb, Rb, and Sr ([InlineEquation not available: see fulltext.]). There was a positive correlation between [InlineEquation not available: see fulltext.] values and pressure, as well as [InlineEquation not available: see fulltext.] values and salinity. As compared to the saline fluids with 25 wt.% (Na, K)Cl, the Cl-free aqueous fluids can only dissolve one tenth (Pb, Rb) to one fifth (Sr) of the amount of large-ion lithophile elements when they coexist with the melts. In the systems with 13 to 25 wt.% (Na, K)Cl, [InlineEquation not available: see fulltext.] values were greater than unity, which is indicative of the capacity of such highly saline fluids to effectively transfer Pb and Rb. Enrichment of large-ion lithophile elements such as Pb and Rb in arc basalts relative to mid-oceanic ridge basalts (MORB) has been attributed to mantle source fertilization by aqueous fluids from dehydrating oceanic plates. Such aqueous fluids are likely to contain Cl, although the amount remains to be quantified.

  7. A Pan African age for the HP-HT granulite gneisses of Zabargad island: implications for the early stages of the Red Sea rifting

    NASA Astrophysics Data System (ADS)

    Lancelot, Joël R.; Bosch, Delphine

    1991-12-01

    Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, Sm sbnd Nd and Rb sbnd Sr internal isochrons yield Pan African dates for felsic and basic granulites collected 500-600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined Rb sbnd Sr and Sm sbnd Nd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the Sm sbnd Nd and Rb sbnd Sr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the Rb sbnd Sr isotopic system of the mafic granulite. The initial 143Nd/ 144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.

  8. Isotopic Evidence For Chaotic Imprint In The Upper Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Gasperini, D.

    2006-12-01

    Heterogeneities of the asthenospheric mantle along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow mantle, in a convective regime that involves mass transfer from the deep mantle, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper mantle heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper mantle heterogeneities, then if the model of marble-cake mantle (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic mantle processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same mantle process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common mantle processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main mantle process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth's mantle history before it acquired a chaotic structure, thus calling for ancient mantle events. The dimension of 7000 km might be related to the common size of the mantle region which has been affected by these processes.

  9. Hafnium Isotopic Variations in Central Atlantic Intraplate Volcanism

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hanan, B. B.; Hoernle, K.; Blichert-Toft, J.

    2008-12-01

    Although one of the geochemically best investigated volcanic regions on Earth, almost no Hf isotopic data have been published from the broad belt of intraplate seamounts and islands in the East Atlantic between 25° and 36° N. This study presents 176Hf/177Hf ratios from 61 representative samples from the Canary, Selvagen and Madeira Islands and nearby large seamounts, encompassing the full range of different evolutionary stages and geochemical endmembers. The majority of samples have mafic, mainly basaltic compositions with Mg-numbers within or near the range of magmas in equilibrium with mantle olivine (68-75). No correlation was found between Mg-number and 176Hf/177Hf ratios in the data set. In comparison to observed Nd isotope variations published for this volcanic province (6 ɛNd units), 176Hf/177Hf ratios span a larger range (14 ɛHf units). Samples from the Madeira archipelago have the most radiogenic compositions (176Hf/177Hfm= 0.283132-0.283335), widely overlapping the field for central Atlantic N-MORB. They form a relatively narrow, elongated trend (stretching over >6 ɛHf units) between a radiogenic MORB-like endmember and a composition located on the Nd-Hf mantle array. In contrast, all Canary Islands samples plot below the mantle array (176Hf/177Hfm = 0.282943-0.283067) and, despite being from an archipelago that stretches over a much larger geographic area, form a much denser cluster with less compositional variation (~4 ɛHf units). All samples from the seamounts NE of the Canaries, proposed to belong to the same Canary hotspot track (e.g. Geldmacher et al., 2001, JVGR 111; Geldmacher et al., 2005, EPSL 237), fall within the Hf isotopic range of this cluster. The cluster largely overlaps the composition of the proposed common mantle endmember 'C' (Hanan and Graham, 1996, Science 272) but spans a space between a more radiogenic (depleted) composition and a HIMU-type endmember. Although samples of Seine and Unicorn seamounts, attributed to the Madeira hotspot track, show less radiogenic Hf and Nd isotope ratios than Madeira, their isotopic compositions lie along an extension of the Madeira trend in plots of Hf versus Sr, Nd, Pb isotopes. The new Hf isotope ratios confirm the existence of at least two geochemically distinct volcanic provinces (Canary and Madeira) in the East Atlantic as previously proposed.

  10. Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Wu, Xiang; Lin, Jung-Fu; McCammon, Catherine A.; Xiao, Yuming; Chow, Paul; Prakapenka, Vitali B.; Yoshino, Takashi; Zhai, Shuangmeng; Qin, Shan

    2016-01-01

    Al-rich phases (NAL: new hexagonal aluminous phase and CF: calcium-ferrite phase) are believed to constitute 10 ∼ 30 wt% of subducted mid-ocean ridge basalt (MORB) in the Earth's lower mantle. In order to understand the effects of iron on compressibility and elastic properties of the NAL phase, we have studied two single-crystal samples (Fe-free Na1.14Mg1.83Al4.74Si1.23O12 and Fe-bearing Na0.71Mg2.05Al4.62Si1.162+0.009Fe 3+0.17Fe O12) using synchrotron nuclear forward scattering (NFS) and X-ray diffraction (XRD) combined with diamond anvil cells up to 86 GPa at room temperature. A pressure-induced high-spin (HS) to low-spin (LS) transition of the octahedral Fe3+ in the Fe-bearing NAL is observed at approximately 30 GPa by NFS. Compared to the Fe-free NAL, the Fe-bearing NAL undergoes a volume reduction of 1.0% (∼1.2 Å3) at 33 ∼ 47 GPa as supported by XRD, which is associated with the spin transition of the octahedral Fe3+. The fits of Birch-Murnaghan equation of state (B-M EoS) to P- V data yield unit-cell volume at zero pressure V0 = 183.1 (1) Å3 and isothermal bulk modulus KT0 = 233 (6) GPa with a pressure derivative KT0 ‧ = 3.7 (2) for the Fe-free NAL; V0-HS = 184.76 (6) Å3 and KT0-HS = 238 (1) GPa with KT0- HS ‧ = 4 (fixed) for the Fe-bearing NAL. The bulk sound velocities (VΦ) of the Fe-free and Fe-bearing NAL phase are approximately 6% larger than those of Al, Fe-bearing bridgmanite and calcium silicate perovskite in the lower mantle, except for the spin transition region where a notable softening of VΦ with a maximum reduction of 9.4% occurs in the Fe-bearing NAL at 41 GPa. Considering the high volume proportion of the NAL phase in subducted MORB, the distinct elastic properties of the Fe-bearing NAL phase across the spin transition reported here may provide an alternative plausible explanation for the observed seismic heterogeneities of subducted slabs in the lower mantle at depths below 1200 km.

  11. Alkalic Basalt in Ridge Axis of 53˚E Amagmatic Segment Center, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, J.; Liu, Y.; Ji, F.; Dick, H. J.

    2014-12-01

    Mid-ocean ridge basalt (MORB) is key tracer of composition and process in the mantle. It is interesting to notice that some alkalic basalts occur in amagmatic spreading center of ultraslow spreading ridges, for examples, 9-16˚E of the Southwest Indian ridge (Standish et al., 2008) and Lena Trough of Arctic Ocean (Snow et al., 2011). The latter is interpreted as the result of the pre-existence of continental transform fault or the especially cold thermal structure of ancient continental lithosphere. 53˚E segment, east of the Gallieni transform fault, was discovered as an amagmatic segment (Zhou and Dick, 2013). On both sides of the ridge axis, peridotites with a little gabbro are exposed in an area more than 3200 km2. Basalts exist in the southern portion of 53˚E segment, indicating the transformation from magmatic to amagmatic spreading about 9.4 million years ago. In April of 2014, Leg 4 of the RV Dayang Yihao cruise 30, basaltic glasses was dredged at one location (3500 m water depth) in the ridge axis of 53˚E segment center. It is shown by electric probe analysis that the samples have extremely high sodium content (4.0-4.49 wt% Na­2O ), relative higher potassium content (0.27-0.32 wt% K2O) and silica (50.67-51.87 wt% SiO2), and lower MgO content (5.9-6.4 wt% MgO). Mg-number is 0.55-0.59. It is distinctly different from the N-MORB (2.42-2.68 wt% Na2O, 0.03-0.06 wt% K2O, 48.6-49.6 wt% Si2O, 8.8-9.0 wt% MgO, Mg-numbers 0.63) distributed in the 560-km-long supersegment, west of the Gallieni transform fault, where the active Dragon Flag hydrothermal field was discovered at 49.6˚E in 2007. The reasons for the alkalic basalt in the ridge axis of 53˚E amagmatic segment center, either by low melting degree of garnet stability field, by melting from an ancient subcontinental lithospheric mantle, or by sodium-metasomatism or even other mantle processes or their combination in the deep mantle, are under further studies.

  12. Changes in Lava Compositions and With Time From the Eocene Through the Miocene for the Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Reagan, M. K.; Mohler, D.; Brian, H.; Hickey-Vargas, R.; Hanan, B.

    2003-12-01

    We are investigating the evolution of volcanism in the Mariana arc from the initiation of subduction of the Pacific plate beneath the Philippine plate in the Eocene through the Miocene. The oldest lavas in the Mariana fore-arc region are a ca 49 Ma tholeiite to boninite sequence from DSDP sites 458 and 459. These tholeiites have NMORB-like REE, HFSE, and Th concentrations, but are enriched in LIL elements, Pb, and U. The capping boninite-series glasses have similar slab-derived trace element abundance patterns, but lower and flatter REE contents (1-2 x PUM). 40Ar/39Ar ages obtained on boninite series lavas from Guam stretch back to 44Ma. These lavas have U-shaped REE patterns and HREE concentrations about 3-8 x PUM. La/Nb decrease and Hf/Sm increase with increasing Ba/La for both the DSDP and Guam lavas. Pb isotope values plot within fields defined by Pacific plate lavas and volcanogenic sediments (Meijer, 1976, GSA Bull., v. 87; Pearce et al., 1999, J. Petrol., v. 40). Hf and Pb isotopic compositions change consistently with Hf/Sm and Ba/La ratios for lavas from the DSDP sites, but not for those from Guam. The data suggest either that little of the Pb in these lavas was derived from subducting sediments, or that the contrast in Pb isotopes between lavas from Guam and slab fluids was inconsequential. The source of the DSDP site lavas was similar to a Pacific or transitional Pacific-Indian Ocean MORB-source. Fluxed melting at high-P generated the tholeiites. Boninites were generated at low-P by continued fluxed melting. The mantle source for the boninite-series lavas from Guam was less depleted. Progressive fluxed melting here apparently occurred with less mantle upwelling. In both locations, the variations in La/Nb and perhaps the Hf/Sm ratios appear to be related to changes in the residual mantle source mineralogy with progressive melting. Rhyolites erupted on Saipan at 45- 46 Ma are unusually high in silica for an oceanic island arc setting. These lavas are enigmatic in that they have trace element and isotopic compositions similar to those of Oligocene (36-32 Ma) mature arc andesites and dacites from forearc sites. Pb isotope values for all of these lavas plot along a trend that stretches from the NHRL toward Pacific siliceous sediments, with the rhyolites plotting at the least radiogenic end of the array. Basalt dikes with ages of ca. 41 Ma cut the boninite series lavas in Guam. These basalts have trace element patterns of typical arc tholeiites, and mark the first appearance of relatively normal mafic arc lavas in this system. Pb isotope compositions for these samples indicate that siliceous sediment also makes its first appearance at this time. A second stage of normal arc volcanism began on Guam and Saipan at about 14 Ma, after spreading in the Parece Vela Basin ceased. These lavas have incompatible trace element and isotopic ratios that are remarkably similar to those of the modern Mariana arc. In conclusion: lavas from DSDP sites 458 and 459 were apparently generated from upwelling mantle that rushed in behind the newly subducting Pacific lithosphere (see Stern and Bloomer, 1992, GSA Bull. v. 104; Hall et al., 2003, EPSL, v. 212). The transition from an upwelling mantle wedge to relatively normal mantle counterflow and P-T distributions in the mantle wedge apparently required several million years of subduction and cooling of the corner of the mantle wedge. The compositions of the mantle (Pacific to Indian) and the subducted components (basaltic to silicic sediment) both changed with the mantle convection regime.

  13. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary sediments.

  14. Compositional Heterogeneity and Spatial Segmentation of Suprasubduction (ssz-type) Ophiolites: Evidence From The Kamchatka Arc

    NASA Astrophysics Data System (ADS)

    Osipenko, A.; Krylov, K.

    In ophiolite complexes from the Eastern Asian accretion belts the spatial heterogeneity of geochemical parameters for different components of an ophiolite sequence is estab- lished: restite mantle-derived peridotites, cumulative layered complex and volcanics. This heterogeneity is displayed as at a regional level (tens - hundred km), and at a level of local structures (hundred i - first tens km). As a rule, distinction is observed on a complex of geochemical parameters (concentration and form of REE spectra, EPG distribution, isotope characteristics, Cr-spinel and pyroxene composition etc.). Revealed at once in several suprasubduction-type ophiolite belts (Kamuikotan, Philip- pines New Guinea etc.), the spatial variations of geochemical parameters have not gradual, and discrete character. For an explanation of the reasons of ophiolite com- positional heterogeneity several mechanisms are offered: (1) tectonical overlapping of various fragments of lithosphere; (2) different specify of deep processes, resulting to compositional heterogeneity of rocks from the same lithosphere level; 3) hetero- geneity of the upper mantle and/or mantle metasomatism; 4) evolution of ophiolites (Shervais, 2001) and/or center of magma generation (mixture of continuous series of melt portions, separated during different stages of progressive mantle source melting (Bazylev et al., 2001)); 5) preservations of relict blocks of low lithosphere and upper mantle from the previous stage in suprasubduction conditions. The authors consider regional geochemical heterogeneity and segmentation of suprasubduction ophiolites (SSZ-type) on an example of peridotites from the Eastern Kamchatka ophiolite belt (EKOB), where sublongitude zones, crossed the basic geological structures of a penin- sula (including EROB) were allocated earlier. For each of zones the complex of geo- chemical attributes, steady is established within the limits of a zone, but distinct from of the characteristics of other zones. Among the factors causing an unequal degree of partial melting of peridotites, a main role play a geothermal regime and composition of fluid phase (first of all, the role of water fluid is great). These parameters, in turn, are supervised by a geodynamic regime of magma generation (such characteristics as speed of subduction and geometry of a subducted plate) and finally determine speed of uplift from the diapir in mantle, depth of the termination of partial melting, amount of 1 extracted melt, form and capacity of the magma chamber etc. The local heterogeneity in SSZ-ophiolites is considered on an example of a complex of the Kamchatka Cape Peninsula - the largest ophiolite complex in EKOB. Isotope, geochemical and miner- alogical study have shown, that a part, prevailing on volume, of this complex consist suprasubduction-type magmatic rocks (restite high-depleted harzburgites and related layered cumulative complex), whereas peridotites of harzburgite-lherzolite series and high-grade metabasites (retrograde eclogites and garnet amphibolites) composition- ally correspond to series of N-MORB and Ò-MORB-type. The presence in ophiolite of the Kamchatka Cape Peninsula alongside with high-depleted harzburgites as well moderately- and low-depleted peridotites of harzburgite-lherzolite series allows to as- sume, that Late Mesozoic suprasubduction ophiolites were formed on peridotitic basis of abyssal type. Thus the transformation of "oceanic" substrate was not complete, that has allowed to be kept relict peridotites of lherzolitic type and high-pressure metamor- phics. Probably it reflects pulsing character of geodynamics of suprasubduction-type ophiolite formation, it is possible is connected with "jumping" of spreading axes in suprasubduction conditions. During followed multistage napping in a northeast direc- tion in the Upper Cretaceous time disintegrated fragments of both mantle complexes were tectonically concurrent. In the report the alternative versions of tectonic models of development are also discussed for the Eastern Kamchatka ophiolites. 2

  15. Structural, Geochemical, and Isotopic Studies on Magmatic Dyke Swarms of the South Shetland Islands Volcanic Arc, West Antarctica - Revealing the Geodynamic History

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Miller, H.

    2003-12-01

    Between 2000 and 2002 areas of up to 100,000 m2 have been mapped at several locations of the South Shetland Islands, mainly on King George and Livingston Islands. A structural analysis of the dykes and the host rocks was undertaken, and about 250 dykes were sampled for geochemical studies. On Livingston Island six different strike directions were identified, yielding a reliable relative time sequence as deduced from field-relationships. Geochemically, these dykes can be separated into five different groups, correlating with the different strike directions, one of those groups comprising two directions. Analysis of the structural data shows, that at least on Livingston Island only minor changes of the tensional situation occurred. Geochemical data reveal that all dykes of the South Shetland Islands belong to a calc-alkaline, arc-related suite, ranging from primitive basalts to highly differentiated rhyolites. Interpretation of Sr isotopic data of the dykes proves difficult, as there are indications for sea-water induced Sr-alteration. Nd isotopic analysis yield better results, revealing a three-stage development from the oldest dykes (ɛ Nd -0.2 to 0.6) on Livingston Island towards a second, younger group (ɛ Nd 2.8 to 4.2, also Livingston), terminating with a third one (ɛ Nd 5.2 to 7.6), which includes the youngest dykes on Livingston and all dykes on King George and also Penguin Island. Either two mantle sources were involved, or the amount of crustal contamination changed considerately with time. It may have been high during initial arc volcanism, because of a still unstretched crust, then decreasing continually with progressing volcanism. In any case, the pattern reflects a chronological sequence corresponding with other authors' hypothesis of a migrating arc volcanism from SW to NE, i.e. from Livingston (older dykes) towards King George Island (younger dykes). Pb isotopic data, plottet together with MORB- and sediment-samples dredged from the Drake Passage, indicate a three-component mixture of the arc magma. Mixing of MORB- and sediment-sources alone cannot explain the observed pattern. An additional source, maybe the crust underlying the South Shetland block, was involved.

  16. Mantle Flow and Melting Processes Beneath Back-Arc Basins

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2007-12-01

    The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.

  17. Nitrogen Recycling in the Atmosphere - Crust - Mantle Systems: Evidence From Secular Variation of Crustal N Abundances and δ 15N Values, Archean to Present

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Kerrich, R.

    2001-12-01

    The origin and evolution of nitrogen in the Earth's major reservoirs of atmosphere, crust, and mantle is controversial. The initial mantle acquired a δ 15N of -m 25‰ corresponding to enstatite chondrite as found in rare diamonds, and the secondary atmosphere from late accretion of volatile-rich C1 carbonaceous chondrites was +30 to +43‰ . Most diamonds and mid-ocean ridge basalts (MORBs) are -m 5‰ , and the present atmosphere 0‰ , requiring shifts of +20‰ and -m 30 to -m 43‰ in these two reservoirs. The present mass of N in the mantle and atmosphere are estimated at 3.5 x 1019 kg and 3.8 x 1018 kg, respectively. Initial atmospheric δ 15N could have been shifted to lower values by degassing of 15N depleted N from the mantle. However, the mantle would remain more depleted than is observed. The crustal record shows that shifts of both atmosphere and mantle could have occurred by recycling. Sedimentary rocks, and crustal hydrothermal systems that proxy for bulk crust, both show systematic trends over 2.7 Ga from the Archean (δ 15N = 15.0 +/- 1.8‰ ; 16.5 +/- 3.3‰ ); through Paleoproterozoic (δ 15N = 9.7 +/- 1.0‰ ; 9.5 +/- 2.4‰ ); to the Phanerozoic (δ 15N = 3.5 +/- 1.0‰ ; 3.0 +/- 1.2‰ ). Crustal N content has increased in parallel from 84 +/- 67 ppm, through 266 +/- 195 ppm, to 1550 +/- 1135 ppm in the Phanerozoic. These trends are consistent with progressive sequestering of atmospheric N2 into sediments, recycling of 15N enriched continental crust into the mantle, and degassing of 15N depleted from the mantle N into the atmosphere.

  18. New Results for the Multi-stage Geochemical Evolution of the Manihiki and Hikurangi Plateaus (Invited)

    NASA Astrophysics Data System (ADS)

    Hoernle, K.; Timm, C.; Hauff, S. F.; Rupke, L.; Werner, R.; van den Bogaard, P.; Michael, P. J.; Coffin, M.; Mortimer, N. N.; Davy, B. W.

    2009-12-01

    The Hikurangi and Manihiki Plateaus, extensively sampled on the SONNE 168 and 193 cruises, have a similar temporal and geochemical evolution. The two plateaus began with a main tholeiitic plateau stage (c. 126-116 Ma) followed by a later (seamount-forming) alkalic stage of volcanism (lasting more than 30 Ma on each plateau). The tholeiitic lavas have largely similar compositions to the Kwaimbaita/Kroenke and Singgalo lavas from the Ontong Java Plateau (OJP), but some from the Suvarov Trough on the Manihiki Plateau have distinct compositions similar to those reported by Ingle et al. (2007, Geology). Glasses from the tholeiitic plateau stage lavas from two different sites on the Manihiki Plateau have CO2 and H2O contents indicating depths of eruption of 900± 200 m and 1300 ± 200 m. The H2O/Ce ratios (220-400) are at the high end of MORB, similar to the OJP, and therefore volatiles are unlikely to play a major role in melt generation. Using the method of Herzberg and Asimov (2008, G3), the Manihiki tholeiites can be generated by ~30% melting of a peridotitic source at temperatures of ~1510°C (similar to results from the OJP). The S contents are even lower than for the OJP, suggesting that the source was depleted in S. The tholeiitic plateau stage lavas are characterized by generally flat incompatible element patterns on multi-element diagrams, similar to other oceanic plateaus such as the OJP. The mafic alkalic late stage lavas, on the other hand, have steep patterns (characteristic of ocean island basalts), indicating lower degrees of melting and/or enrichment in highly to moderately incompatible elements and residual garnet in the source relative to the plateau stage. The Sr-Nd-Pb-Hf isotope data for the plateau rocks indicate compositions ranging from E-MORB (or FOZO)-like, similar to the major Kwaimbaita/Kroenke compositional group of lavas on the OJP, to EM1-type compositions, characteristic of the Singgalo endmember on the OJP. The late-stage alkalic rocks range from E-MORB (FOZO) - like to HIMU-type isotopic compositions (with 206Pb/204Pb approaching 21) and are similar in composition to rare 90 Ma old alkalic dikes on the OJP. The geochemical data support a common origin and geochemical evolution for the Manihiki, Hikurangi and OJ plateaus. Evidence for large degrees of melting of an enriched peridotitic source at elevated mantle potential temperature favors a plume-type model for the origin of these plateau fragments. The late alkalic stage of volcanism, however, is more difficult to explain, since the plateaus were located thousands of kilometers apart when this volcanism primarily occurred (c. 70-100 Ma ago). We are exploring detachment/delamination and pulsating super-plume models to explain the origin of the late-stage volcanism.

  19. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and more alkalic compositions with decreasing age, although there is again considerable scatter. Chondrite-normalized La/Sm versus Zr/Nb form a continuum from the seamount lavas to depleted N-MORB and E-MORB suggesting a common origin by decompression melting of a mantle source with randomly distributed enriched heterogeneities, which are incorporated to a greater degree with decreasing degree of melting. Based on symmetric magnetic anomalies, only Davidson Seamount has been identified as straddling a fossil spreading center (Lonsdale, 1991, AAPG Mem. 47, 87-125). However, the other seamounts along the continental margin with the same NE-SW orientation and similar geochemical characteristics probably originated in a similar setting, erupting lavas along zones of weakness in the ocean floor fabric related to past seafloor spreading. Small volumes of magma can apparently rise long after spreading ceases if there is enough enriched source component to facilitate melting combined with zones of weakness in the underlying ocean crust fabric and/or extensional tectonics.

  20. Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-Bonin-Mariana arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, Gene M.; Bizimis, Michael; Hickey-Vargas, Rosemary; McCarthy, Anders; Hocking, Benjamin D.; Savov, Ivan P.; Ishizuka, Osamu; Arculus, Richard

    2018-05-01

    Whole-rock isotope ratio (Hf, Nd, Pb, Sr) and trace element data for basement rocks at ocean drilling Sites U1438, 1201 and 447 immediately west of the KPR (Kyushu-Palau Ridge) are compared to those of FAB (forearc basalts) previously interpreted to be the initial products of IBM subduction volcanism. West-of-KPR basement basalts (drill sites U1438, 1201, 447) and FAB occupy the same Hf-Nd and Pb-Pb isotopic space and share distinctive source characteristics with εHf mostly > 16.5 and up to εHf = 19.8, which is more radiogenic than most Indian mid-ocean ridge basalts (MORB). Lead isotopic ratios are depleted, with 206Pb/204Pb = 17.8-18.8 accompanying relatively high 208Pb/204Pb, indicating an Indian-MORB source unlike that of West Philippine Basin plume basalts. Some Sr isotopes show affects of seawater alteration, but samples with 87Sr/86Sr < 0.7034 and εNd > 8.0 appear to preserve magmatic compositions and also indicate a common source for west-of-KPR basement and FAB. Trace element ratios resistant to seawater alteration (La/Yb, Lu/Hf, Zr/Nb, Sm/Nd) in west-of-KPR basement are generally more depleted than normal MORB and so also appear similar to FAB. At Site U1438, only andesite sills intruding sedimentary rocks overlying the basement have subduction-influenced geochemical characteristics (εNd ∼ 6.6, εHf ∼ 13.8, La/Yb > 2.5, Nd/Hf ∼ 9). The key characteristic that unites drill site basement rocks west of KPR and FAB is the nature of their source, which is more depleted in lithophile trace elements than average MORB but with Hf, Nd, and Pb isotope ratios that are common in MORB. The lithophile element-depleted nature of FAB has been linked to initiation of IBM subduction in the Eocene, but Sm-Nd model ages and errorchron relationships in Site U1438 basement indicate that the depleted character of the rocks is a regional characteristic that was produced well prior to the time of subduction initiation and persists today in the source of modern IBM arc volcanic rocks with Sm/Nd > 0.34 and εNd ∼ 9.0.

  1. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  2. Petrogenesis of the Majiari ophiolite (western Tibet, China): Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys

    NASA Astrophysics Data System (ADS)

    Huang, Qiang-tai; Liu, Wei-liang; Xia, Bin; Cai, Zhou-rong; Chen, Wei-yan; Li, Jian-feng; Yin, Zheng-xin

    2017-09-01

    The Majiari ophiolite lies in the western Bangong-Nujiang Suture Zone, which separates the Qiangtang and Lhasa blocks in central Tibet. The ophiolite consists of peridotite, gabbro/diabase and basalt. Zircon U-Pb dating yielded an age of 170.5 ± 1.7 Ma for the gabbro, whereas 40Ar/39Ar dating of plagioclase from the same gabbro yielded ages of 108.4 ± 2.6 Ma (plateau age) and 112 ± 2 Ma (isochron age), indicating that the ophiolite was formed during the Middle Jurassic and was probably emplaced during the Early Cretaceous. Zircons from the gabbro have εHf(t) values ranging from +6.9 to +10.6 and f(Lu/Hf) values ranging from -0.92 to -0.98. Mafic lavas plot in the tholeiitic basalt field but are depleted in Nb, Ta and Ti and enriched in Rb, Ba and Th in the N-MORB-normalized trace element spider diagram. These lavas have whole-rock εNd(t) values of +5.9 to +6.6, suggesting that they were derived from a depleted mantle source, which was probably modified by subducted materials. The Majiari ophiolite probably formed in a typical back-arc basin above a supra-subduction zone (SSZ) mantle wedge. Intra-oceanic subduction occurred during the Middle Jurassic and collision of the Lhasa and South Qiangtang terranes likely occurred in the Early Cretaceous. Thus, closure of the Bangong-Nujiang Tethys Ocean likely occurred before the Early Cretaceous.

  3. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy

    NASA Astrophysics Data System (ADS)

    Serri, G.; Innocenti, F.; Manetti, P.

    1993-07-01

    Serri, G., Innocenti, F. and Manetti, P., 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near The Earth's Surface. Tectonophysics, 223: 117-147. The Neogene-Quaternary magmatism of the northern Apenninic arc took place in four phases separated in space and time which become progressively younger from west to east: Phase I, 14 Ma; Phase II, 7.3-6.0 Ma; Phase III, 5.1-2.2 Ma; Phase IV, 1.3-0.1 Ma. This magmatism is the result of the activation of three physically separate sources: (1) the Adriatic continental crust, extracted from the mantle in the late Proterozoic; (2) a strongly refractory, recently K-enriched harzburgitic mantle located in the mechanical boundary layer (MBL) of the lithosphere; and (3) a recently metasomatized, cpx-rich mantle, compositionally variable from Iherzolite to wehrlite-clinopyroxenite, interpreted as an ephemerally K-enriched asthenosphere. The Adriatic continental crust is the dominant source of the acid plutonic and volcanic rocks of the Tuscan region. The acid magmatism is mostly found inside an ellipsoidal area (about 150 × 300 km) centred on Giglio Island, here defined as the Tuscan Crustal Dome. Within this area, mantle-derived magmas unaffected by important crustal contamination processes and mixing with crustal anatectic melts have so far not been found. Pure crustal magmas are rare but are represented, for example by some of the San Vincenzo and Roccastrada rhyolites. Virtually all the Tuscan acid centres show evidence of mixing with potassic mantle-derived magmas. Major and trace elements, as well as {87Sr }/{86Sr } and {143Nd }/{144Nd } data, on primitive rocks (Mg# > 65) reveal two groups of mantle-derived magmas. These define two distinct mantle enrichment trends, both essentially due to the additions of K-rich components which metasomatized separate, compositionally diverse, upper mantle sectors. In both cases the most remarkable mineralogical effect of these enrichment processes is the production of variable amount of phlogopite through reaction between fluids and/or melts with the mantle. The rocks of group I (ol-hy and Q-normative, lamproites, ultrapotassic high-Mg latites, ultrapotassic shoshonites and shoshonites: saturated trend) are considered to be derived by partial melting at low pressure (< 50 km) of strongly (lamproites) to moderately depleted phlogopite harzburgitic sources produced by reaction of residual peridotites with a K-Si-rich, Ca-Sr-poor melt with high ratios of {87Sr }/{86Sr (> 0.717) }, Ce/Sr (> 0.3) and {K 2O }/{Na 2O (> 6-7) }, and low ratios of {143Nd }/{144Nd ( 0.5121-0.5120) } and Ba/La (< 20) ratios; it is proposed that this component was formed by partial melting of subducted carbonate-free material of the upper crustal reservoir (e.g., non-restitic felsic granulites). This material is very common in the central Mediterranean region either as granitoid plutons/terrigenous sediments or as metasedimentary, non-restitic lower crust. The primitive rocks of group II are critically undersaturated, mostly leucitites, tephritic leucitites, leucite basanites, melilitites (undersaturated trend). Experimental petrology suggests that these rocks were formed by partial melting of a variably enriched phlogopite, clinopyroxene-rich mantle at higher pressure than group I primitive magmas. Trace-element modelling indicates that three components were involved in the genesis of group II mantle source: (a) a typical MORB-OIB-like mantle; (b) a component with very high Sr, Ca and Sr/Ce values and very low silica and sodium content, probably carried by a carbonatite melt somehow related to subducted marine carbonates; and (c) a recently added K-rich, Ca-Sr-poor crustal component, relatively well constrained to high {87Sr }/{86Sr (> 0.712) } and {K 2O }/{Na 2O (> 8-9) } values, and low {143Nd }/{144Nd (< 0.51205) }, Ba/La (< 20) and Ce/Sr (> 0.10) ratios. These constraints do not allow to exclude a complete identity between the K-rich components which metasomatized the mantle sources of the saturated and undersaturated trend magmas. The geochemical and isotopic features of the components that metasomatized the mantle sources of the northern Apenninic arc magmatism can be explained by a geodynamic process which causes a large amount of crustal materials to be incorporated within the upper mantle. We propose that the delamination and subduction of the Adriatic continental lithosphere related to the still ongoing northern Apennine continental collision provide a viable mechanism to explain the genesis and eastward discontinuous migration of the magmatism in central Italy. The subduction of delaminated lithospheric mantle with lower crustal slivers would have exposed uppermost mantle (Adriatic MBL) and crustal units previously imbricated in the Apennine chain to the heating advected by the upwelling of a recently and ephemerally K-enriched asthenospheric mantle wedge and by the underplating of magmas derived from it. We consider that the diapiric uprising of a hot, crustally contaminated asthenosphere occurs in the wake left above the sinking of the Adriatic delaminated/subducting continental lithosphere. The delamination/subduction process of the Adriatic lithosphere has probably started in the Early-Middle Miocene, but earlier than 15-14 Ma ago, as indicated by the age and petrologic characteristics of the first magmatic episode (Sisco lamproite) of the northern Apennine orogenesis.

  4. Geochemical and Geophysical Estimates of Lithospheric Thickness Variation Beneath Galápagos

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D.

    2010-12-01

    Active volcanism in Galápagos is far more widespread (>40,000 km2) than in other hotspot-related archipelagos, such as Hawaii (~20,000 km2). We have employed geochemical and geophysical data to constrain the causes of this widespread volcanism. Basaltic magmas recently erupted across the Galápagos Archipelago are linked to the variable distribution of ‘enriched’, depleted MORB (DMM) and FOZO-like plume (PLUME) components in anomalously-hot upwelling mantle. We have used rare-earth-element inversion modelling for basalts dominated by PLUME and DMM components to constrain the depth to the top of the melt column beneath different Galápagos volcanoes. Basalts erupted on islands in the southwest of the Galápagos Archipelago (e.g. Fernandina and Isabela) -- and closest to the postulated axis of the present-day plume -- have the highest [Sm/Yb]n (typically 2.3 to 3). REE inversion models suggest that adiabatic decompression melting of anhydrous peridotite occurs beneath these islands between ~ 85 and 58 km. In the northeast of the archipelago (e.g. Genovesa, Marchena, eastern Santiago and northern Santa Cruz) [Sm/Yb]n ratios are lower (1.0 to 2.3) and inversion models predict that melting of anhydrous peridotite occurs between 85 and 48 km depth. Models run with different PLUME and DMM source compositions give almost identical depth estimates for the base and top of the anhydrous melt column, because primitive mantle, MORB and recycled oceanic crust all have [Sm/Yb]n close to unity. Incipient melting (of volatile-rich peridotite and or pyroxenite) at depths between ~85 and 150 km is required to explain elevated concentrations of strongly-incompatible trace elements. The length of this small-fraction melt ‘tail’ is greatest for basalts erupted closest to the plume axis, which have super-chondritic Nb/La ratios but variable 3He/4He. By converting surface wave data from a recently published tomographic experiment [1] to temperature we have been able to map the base of the Galápagos thermal lithosphere. An excellent correlation exists between the results of this modelling and our estimates of the top of the melt column from geochemical modelling. The seismic data suggest that the base of the thermal lithosphere is ~56 km beneath western Galapagos and ~50 km beneath the northeast of the archipelago. These estimates are also consistent with those derived from models of conductive geotherms for plate ages of 5 and 10 Ma and a mantle potential temperature of 1400oC. We propose that thinner lithosphere away from the postulated site of the present-day Galápagos plume axis, combined with the lateral deflection of the plume head, is responsible for active volcanism over a relatively large area. Non-uniform variations in lithospheric thickness relative to distance from the Galápagos Spreading Centre are consistent with the complex nature of the oceanic lithosphere beneath this part of the Pacific. [1] Villagomez, D.R. et al., 2007. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. JGR 112.

  5. The Effect of CO2 on Partial Reactive Crystallization of MORB-Eclogite-derived Basaltic Andesite in Peridotite and Generation of Silica-Undersaturated Basalts

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.

    2012-12-01

    Recycled oceanic crust (MORB-eclogite) is considered to be the dominant heterogeneity in Earth's mantle. Because MORB-eclogite is more fusible than peridotite, siliceous partial melt derived from it must react with peridotite while the latter is still in the subsolidus state. Thus, studying such reactive process is important in understanding melting dynamics of the Earth's mantle. Reaction of MORB-eclogite-derived andesitic partial melt with peridotite can produce alkalic melts by partial reactive crystallization but these melts are not as silica-undersaturated as many natural basanites, nephelinites or melititites [1]. In this study, we constrain how dissolved CO2 in a siliceous MORB-eclogite-derived partial melt affects the reaction phase equilibria involving peridotite and can produce nephelinitic melts. Here we compare experiments on CO2-free [1] and 2.6 wt.% CO2 bearing andesitic melt+lherzolite mixtures conducted at 1375 °C and 3 GPa with added melt fraction of 8-50 wt.%. In both CO2-free and CO2-bearing experiments, melt and olivine are consumed and opx and garnet are produced, with the extent of modal change for a given melt-rock ratio being greater for the CO2-bearing experiments. While the residue evolves to a garnet websterite by adding 40% of CO2-bearing melt, the residue becomes olivine-free by adding 50% of the CO2-free melt. Opx mode increases from 12 to ~55 wt.% for 0 to 40% melt addition in CO2-bearing system and 12 to ~43 wt.% for 0 to 50% melt addition in CO2-free system. Garnet mode, for a similar range of melt-rock ratio, increases from ~10 to ~15 wt.% for CO2 bearing system and to ~11 wt.% for CO2-free system. Reacted melts from 25-33% of CO2-bearing melt-added runs contain ~39 wt.% SiO2 , ~11-13 wt.% TiO2, ~9 wt.% Al2O3, ~11 wt.% FeO*, 16 wt.% MgO, 10-11 wt.% CaO, and 3 wt.% Na2O whereas experiments with a similar melt-rock ratio in a CO2-free system yield melts with 44-45 wt.% SiO2, 6-7 wt.% TiO2, 13-14 wt.% Al2O3, 10-11 wt.% FeO*, 12-13 wt.% MgO, ~8 wt.% CaO, and ~4 wt.% Na2O. Our study shows that with only 2.6 wt.% CO2, andesites, owing to partial reactive crystallization in a peridotite matrix, can evolve to nephelinites (as opposed to basanites for CO2-free runs) that match with silica-undersaturated oceanic basalts better than reacted melts from CO2-free conditions. The effects of CO2 on the partial reactive crystallization of andesite in a fertile peridotite matrix thus are: a) lowered melt- SiO2 owing to increased stability of opx at the liquidus of basalt, b) lowered Al2O3 content of basalts owing to increased crystallization of garnet. Experiments with 1 and 5 wt.% CO2-bearing andesite-peridotite mixture are underway and will be presented. [1] Mallik and Dasgupta (2012), EPSL, 329-330, 97-108.

  6. Contrasting geochemical trends in the fertile and refractory parts of the NE Atlantic mantle source

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Debaille, V.; Brandon, A. D.; Waight, T. E.; Graham, D. W.; Williams, A.; Lee, C. A.

    2008-12-01

    Primitive alkaline basalts from the Icelandic off-rift volcanic zones and Jan Mayen represent low-degree melts from the fertile parts of the NE Atlantic mantle. Olivine tholeiites and picrites from the Icelandic rift zones and nearby oceanic spreading ridges are formed by protracted decompressional melting. The V-shaped ridges along the Reykjanes, Kolbeinsey and Aegir ridges indicate that ascending source material is supplied by a pulsating plume and deflected laterally for distances of about 1000 km from Iceland (Jones et al. GGG 2002; Breivik et al. JGR 2006). Plume material deflected in the direction of the rift zones and spreading ridges undergoes extensive melting at shallow level, whereas material deflected in other directions flows laterally at deeper levels and remains largely unmelted and more fertile. The comparison of a sample suite of primitive off-rift basalts from Iceland and Jan Mayen (Debaille et al., in prep.) with olivine tholeiites and picrites from the Icelandic rift zones (mainly Brandon et al. GCA 2007) demonstrate opposing geochemical trends. The degree of source enrichment, expressed by the La/Sm-ratio, is positively and negatively correlated with 87/86Sr and 143/144Nd throughout the entire range of depleted rift zone tholeiites and enriched off-rift basalts. In the rift zone tholeiites the La/Sm-ratio has negative correlations with Mg# and Mg-content and positive correlations with 187/188Os and 3/4He. These four trends have opposite equivalents for the off-rift basalts. The most enriched and alkaline basalts from Jan Mayen and Snæfellsnes have the lowest 3/4He of 6-9*Ra and 187/188Os of 0.12-0.13. The trends seem to require a source component with ancient melt depletion and subsequent enrichment. A subcontinental lithospheric mantle keel (SCLM) is the most likely origin for the enriched component with high LILE, La/Sm and 87/86Sr and low 143/144Nd, 3/4He and 187/188Os. The most enriched alkaline basalts have notably higher Mg# and Mg and lower Fe and Na (but higher Ti, K and P) than the least enriched off-rift basalts. The first order geochemical variation in the off-rift basalts can be modelled by progressive partial melting of a pseudo-binary source mixture of the SCLM- component and a composite component with high 143/144Nd and 3/4He and low 87/86Sr. Depleted MORB- like asthenosphere is required to model the further progressive melting of the rift-related tholeiitic basalts.

  7. Platinum Group Element (PGE) Abundances in Lava Flows Generated by the Hawaiian Plume: Insights into Plume Evolution

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Neal, C. R.

    2003-12-01

    Picritic and high-MgO (7.7-24 wt.%) basalt samples from Detroit (/sim81-76 Ma) and Koko (/sim48 Ma) Seamounts along the ESC have been analyzed for PGEs (Ru, Rh, Pd, Ir, and Pt) allowing an examination of how the PGEs in lavas from the Hawaiian plume have changed over time. Major and trace element (including the PGEs) concentrations were quantified by ICP methods at the University of Notre Dame. See Ely et al. (1999, Chem. Geol. 157:219) for the PGE analytical method. Bennett et al. (2000) analyzed Hawaiian picrites and found PGE abundances slightly greater than average MORB and comparable to the low-PGE basaltic komatiites. These authors modeled the PGE abundances of these picrites by using variable amounts of residual sulfide during melting, such that Koolau (low PGE contents) formed from a relatively sulfide-rich source and Loihi (high PGEs) from a sulfide-poor source. Our PGE data from Detroit Seamount show slightly higher PGE abundances than Loihi and Kilauea, suggesting these picrites formed from a source lacking residual sulfide. These results suggest that, if the model of Bennett et al. (2000) is correct, the dilution of plume lava with MORB source, as hypothesized on the basis of depleted isotope ratios and lower trace element abundances than modern Hawaii (Keller et al., 2000, Nature 405:603; Kinman & Neal, 2002, Eos 83:F1282; Regelous et al., 2003, JPet 44:113), was not the controlling factor in PGE abundances. However, since MORB PGE concentrations are not substantially different than low-PGE Hawaiian picrites, incorporation of MORB material within the Hawaiian plume at Detroit Seamount would not have drastically reduced the PGE abundances. Koko Seamount has relatively high PGE concentrations (/sim3-12 times greater than those from Detroit lavas). This may be the result of a lack of residual sulfide facilitated by higher degrees of partial melting. Although our initial data are consistent with variable degrees of partial melting and/or source heterogeneity over the life of the Hawaiian plume, the data from Detroit Seamount can be modeled by, for example, magma mixing between Koko-type "PGE-rich" plume and MORB end members (cf. Kinman & Neal, 2002). The Pt/Ir ratios and PGE abundances of picrites from Detroit and Koko Seamounts and from Hawaii (as analyzed by Bennett et al., 2000) increase in the order: Hawaii (4.8), Detroit (5.8), Koko (8.1). Bennett et al. argued that if more sulfide was retained in the source the PGE profile would be more fractionated and abundances would be lower. Our data suggest the opposite is true. For Koko Seamount to have PGE abundances approximately 3-12 times greater than the high-PGE picrites from Hawaii and yet have a more fractionated profile, the source of the Hawaiian plume must have been relatively PGE-enriched at 48 Ma than it is currently. In addition, the more fractionated profile of Detroit Seamount is consistent with the incorporation of MORB material (Pt/Ir /sim 25.9), thereby raising its Pt/Ir ratio.

  8. Increased mantle heat flow with on-going rifting of the West Antarctic rift system inferred from characterisation of plagioclase peridotite in the shallow Antarctic mantle

    NASA Astrophysics Data System (ADS)

    Martin, A. P.; Cooper, A. F.; Price, R. C.

    2014-03-01

    The lithospheric, and shallow asthenospheric, mantle in Southern Victoria Land are known to record anomalously high heat flow but the cause remains imperfectly understood. To address this issue plagioclase peridotite xenoliths have been collected from Cenozoic alkalic igneous rocks at three localities along a 150 km transect across the western shoulder of the West Antarctic rift system in Southern Victoria Land, Antarctica. There is a geochemical, thermal and chronological progression across this section of the rift shoulder from relatively hot, young and thick lithosphere in the west to cooler, older and thinner lithosphere in the east. Overprinting this progression are relatively more recent mantle refertilising events. Melt depletion and refertilisation was relatively limited in the lithospheric mantle to the west but has been more extensive in the east. Thermometry obtained from orthopyroxene in these plagioclase peridotites indicates that those samples most recently affected by refertilising melts have attained the highest temperatures, above those predicted from idealised dynamic rift or Northern Victoria Land geotherms and higher than those prevailing in the equivalent East Antarctic mantle. Anomalously high heat flow can thus be attributed to entrapment of syn-rift melts in the lithosphere, probably since regional magmatism commenced at least 24 Myr ago. The chemistry and mineralogy of shallow plagioclase peridotite mantle can be explained by up to 8% melt extraction and a series of refertilisation events. These include: (a) up to 8% refertilisation by a N-MORB melt; (b) metasomatism involving up to 1% addition of a subduction-related component; and (c) addition of ~ 1.5% average calcio-carbonatite. A high MgO group of clinopyroxenes can be modelled by the addition of up to 1% alkalic melt. Melt extraction and refertilisation mainly occurred in the spinel stability field prior to decompression and uplift. In this region mantle plagioclase originates by a combination of subsolidus recrystallisation during decompression within the plagioclase stability field and refertilisation by basaltic melt.

  9. Rare gases systematics and mantle structure

    NASA Technical Reports Server (NTRS)

    Allegre, C. J.; Staudacher, T.

    1994-01-01

    The following points are emphasized: one of the most important ones is certainly the first set of experimental data on the solubility of noble gases in metal phases at intermediate pressures, since the core was certainly not formed at ultra high pressures, as emphasized by Ahrens and confirmed by trace elements systematics Wanke. The experimental data clearly show that the core can not be a major reservoir for terrestrial rare gases; the second point is a more elaborate reconsideration of the (40)K-(40)Ar budget of the Earth. This shows that (40)Ar contained in continental crust plus upper mantle plus atmosphere is at maximum half of the (40)Ar inventory of the whole earth. This implies the existence of a two layered mantle; the third point is the discovery by the Australian noble gases group of the existence of high (20)Ne/(22)Ne and low (21)Ne/(22)Ne isotopic ratios in Loihi seamount samples. This results which are different to the MORB ratios confirm the idea of a two layered model, but suggest the existence of a primordial solar type Ne reservoir. Several possibilities about the origin of this (20)Ne excess in the mantle will be discussed; The high (40)Ar/(36)Ar, (129)Xe/(130)Xe and (134) Xe/(130)Xe, (136)Xe/(130)Xe are confirmed by new data. The corresponding ratios for the lower mantle will be discussed. (40)Ar/(36)Ar ratios up to 6000 can be accepted and will not modify the general model of the mantle. They confirm the atmosphere chronology, about 85 percent of the atmosphere was formed in the first 50 My and 15 percent later on.

  10. Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet)

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Han; Shi, Ren-Deng; Griffin, W. L.; Huang, Qi-Shuai; Xiong, Qing; Chen, Sheng-Sheng; Zhang, Ming; O'Reilly, Suzanne Y.

    2016-10-01

    Ophiolites in the Indus-Yarlung Zangbo (IYZ) suture (southern Tibet) have been interpreted as remnants of the Neo-Tethyan lithosphere. However, the discovery of diamonds and super-reducing, ultra-high pressure (SuR-UHP) mineral assemblages (e.g., coesite after stishovite, olivine after wadsleyite, native metals, alloys, and moissanite) in some of these massifs and associated chromitites requires a re-evaluation of their origin and evolution. A new petrological and geochemical study of the Purang ophiolite in the western IYZ suture sheds new lights on these issues. The depleted harzburgites of the Purang massif have low modal contents of clinopyroxene (< 2%), and high Cr# [100*Cr3 +/(Cr3 + + Al3 +)] in spinel (> 40 70) and pyroxenes (> 16 in orthopyroxene, and > 20 in clinopyroxene), suggesting high degrees of melt extraction (> 20%). These features are not consistent with formation in a (ultra-) slow-spreading mid-ocean ridge. These peridotites have high modal contents of orthopyroxene; this, and the extremely high Cr# of spinels in these peridotites, suggests modification in a subduction zone. The clinopyroxene-rich harzburgites and lherzolites contain rare spinel-pyroxene symplectites after garnet. Their clinopyroxenes have low MREE-to-HREE ratios ((Sm/Yb)N < 0.1) at relatively high HREE concentrations, and are Na-rich but Nd-poor. The relatively enrichment of Na but depletion of Nd in clinopyroxene cannot be explained by refertilization with MORB melts but are consistent with an origin from Na-rich subcontinental lithospheric mantle (SCLM). All lines of evidence suggest that these peridotites underwent initial melting in the stability field of garnet-facies peridotites, followed by additional melting in the spinel-facies mantle. Whole-rock Os isotopic compositions of the Purang peridotites give ancient TRD model ages (up to 1.3 Ga), indicating that the formation of these ancient depletion residues predated the opening of Neo-Tethyan Ocean. These observations, together with recent studies on other IYZ peridotites, suggest that the Purang peridotites are genetically unrelated to the associated mafic crust. Instead, they represent ancient SCLM domains, initially formed beneath a continental margin, and then modified by subduction, before they were incorporated into the Neo-Tethyan ocean basin. This model is consistent with the deep-mantle-recycling model for the presence of SuR-UHP phases in the IYZ ophiolites. The infiltration of MORB melts through these ancient depleted peridotites during their final exhumation in a (ultra-) slow-spreading center may have refertilized them to produce the clinopyroxene-rich peridotites.

  11. Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors

    NASA Astrophysics Data System (ADS)

    Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.

    2014-12-01

    The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351 will be presented

  12. Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya

    2013-04-01

    Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid of sediment origins, subducted sediments etc.) with high Rb/Sr ratio.

  13. Thermodynamic and Thermoelastic properties of the NAL Phase

    NASA Astrophysics Data System (ADS)

    Marcondes, M. L.; Yao, C.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Subduction of Mid Ocean Ridge Basalt (MORB) transports crust elements to the deep Earth. Therefore, it is important to study MORB in order to understand geophysical processes in the mantle. The high Al2O3 content of the MORB gives rise to a new aluminous phase (NAL) that constitutes up to 25% of its composition [1]. Phase equilibrium study of MgAl2O4-CaAl2O4 generated the mineral CaMg2Al6O12 with hexagonal symmetry, which was proposed for the NAL phase [2,3]. The NAL chemical composition, however, shows significantly less calcium [1,4] and several compositions have been considered in previous studies of this phase [5,6]. Here we present an ab initio study of NAL phases at high temperatures with several possible compositions. We used the quasiharmonic approximation to address thermodynamic and thermoelastic properties and seismic velocities of this phase as function of composition. References[1] T. Irifune and A. E. Ringwood, Earth Planet. Sci. Lett. 117, 101 (1993). [2] H. Miura, Y. Hamada, T. Suzuki, M. Akaogi, N. Miyajima, and K. Fujino, Am. Mineral. 85, 1799 (2000). [3] M. Akaogi, Y. Hamada, T. Suzuki, M. Kobayashi, and M. Okada, Phys. Earth Planet. Inter. 115, 67 (1999). [4] A. Ricolleau, J. P. Perrillat, G. Fiquet, I. Daniel, J. Matas, A. Addad, N. Menguy, H. Cardon, M. Mezouar, and N. Guignot, J. Geophys. Res. Solid Earth 115, B08202 (2010). [5] M. Mookherjee, B. B. Karki, L. Stixrude, and C. Lithgow-Bertelloni, Geophys. Res. Lett. 39, L19306 (2012). [6] K. Kawai and T. Tsuchiya, Geophys. Res. Lett. 37, L17302 (2010).

  14. The Easternmost Southwest Indian Ridge: A Laboratory to Study MORB and Oceanic Gabbro Petrogenesis in a Very Low Melt Supply Context

    NASA Astrophysics Data System (ADS)

    Paquet, M.; Cannat, M.; Hamelin, C.; Brunelli, D.

    2014-12-01

    Our study area is located at the ultra-slow Southwest Indian Ridge, east of the Melville Fracture Zone, between 61 and 67°E. The melt distribution in this area is very heterogeneous, with corridors of ultramafic seafloor where plate separation is accommodated by large offset normal faults [Sauter, Cannat et al., 2013]. These ultramafic corridors also expose rare gabbros and basalts. We use the major and trace elements composition of these magmatic rocks to document the petrogenesis of MORB in this exceptionnally low melt supply portion of the MOR system. Basalts from the easternmost SWIR represent a global MORB end-member for major element compositions [Meyzen et al., 2003], with higher Na2O and Al2O3 wt%, and lower CaO and FeO wt% at a given MgO. Within this group, basalts from the ultramafic corridors have particularly high Na2O, low CaO and FeO wt%. Best fitting calculated liquid lines of descent are obtained for crystallization pressures of ~8 kbar. Gabbroic rocks recovered in the ultramafic corridors include gabbros, oxide-gabbros and variably impregnated peridotites. This presentation focuses on these impregnated samples, where cpx have high Mg#, yet are in equilibrium with the nearby basalts in terms of their trace element compositions. Plagioclase An contents vary over a broad range, and there is evidence for opx resorption. These characteristics result from melt-mantle interactions in the axial lithosphere, which may explain several peculiar major element characteristics of the basalts. Similar interactions probably occur beneath ridges at intermediate to slow and ultraslow spreading rates. We propose that they are particularly significant in our study area due to its exceptionnally low integrated melt-rock ratio.

  15. Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence

    NASA Astrophysics Data System (ADS)

    Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.

    2010-12-01

    The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile content of the lavas. This process is evident when volatile/refractory element ratios are compared to the trace elements indicative of interaction between melt and the oceanic lithosphere such as a positive Sr anomaly (Sr*) in a primitive mantle normalized diagram. This is indicative of the interaction of basaltic melts with plagioclase cumulates. For the Galapagos depleted submarine glasses, we find a positive correlation between Sr* and all volatile/refractory element ratios suggesting significant volatile input from melt-lithosphere interaction. These samples, due to their low trace element concentrations, readily show the alteration signature, thus making the establishment of their primitive volatile content difficult. As a result, we will present the primary volatile concentrations for the trace element intermediate and enriched groups after careful consideration for degassing, sulfide saturation, and assimilation of hydrothermally altered material.

  16. Preliminary Geochemical Data for the Diabase Dykes from the Izmir-Ankara-Erzincan Suture Belt, Central Anatolia

    NASA Astrophysics Data System (ADS)

    Balcı, Uǧur; Sayıt, Kaan

    2017-04-01

    The Izmir-Ankara-Erzincan Suture Belt preserves oceanic and continental fragments originated from the closure of the northern branch of Neotethys. In the Bogazkale area (Central Anatolia), the pieces of the Neotethyan oceanic lithosphere exist in a chaotic manner, forming an ophiolitic mélange. Within the mélange, diabase dykes occur, which are found to cut various types of oceanic lithospheric rocks, including pillow basalts, gabbros and serpentinized ultramafics. We here present the preliminary geochemical results obtained from the diabase dykes and put some constraints on their petrogenesis. The investigated diabase dykes are chiefly composed of plagioclase and a mafic phase, which is clinopyroxene and/or hornblende. A detailed examination reveals two petrographic types on the basis of predominating mafic mineral phase, namely clinopyroxene-dominated Type 1, and hornblende-dominated Type 2. Ophitic to sub-ophitic textures, where lath-shaped plagioclase crystals are enclosed by clinopyroxene, can be observed in almost all Type 1 dykes. In Type 2 samples, altered mafic phases can be seen enclosed within plagioclase crystals, forming poikilitic texture. Polysynthetic twinning is common in plagioclase. Hornblende occasionally displays simple twinning. Both types appear to have been variably affected by low-grade hydrothermal alteration as reflected by the presence of secondary mineral phases, such as chlorite, epidote, prehnite, and actinolite. The whole-rock geochemistry appear to be consistent with the petrographical grouping, revealing distinct immobile trace element systematics for the two types. Both types have basaltic composition with sub-alkaline characteristics (Nb/Y=0.2-0.3 for Type 1; Nb/Y=0.02-0.08 for Type 2). The relatively low MgO contents of the dykes suggest that they do not represent primary magmas, but evolved through fractionation of mafic phases. In the N-MORB normalized diagrams, Type 2 diabases exhibit marked negative Nb anomalies, with HFSE abundances around or slightly more enriched than N-MORB. Type 1 diabases, on the other hand, do not possess any negative Nb anomalies and display enrichment in highly incompatible elements. In the chondrite-normalized diagrams, Type 1 diabases display slight LREE enrichment relative to HREE, whereas Type 2 diabases show flat to slightly LREE-depleted patterns. The N-MORB-like Nb contents of Type 2 dykes suggest that they have been derived from depleted asthenopheric mantle source. The marked enrichment of Th and La over Nb indicates that their source has been metasomatized by slab-derived fluids/melts. However, the enrichment in highly incompatible elements in Type 1 dykes implies their derivation from a relatively enriched source region and/or small degrees of partial melting. Trace element systematics suggest that Type 2 diabases may have formed in an oceanic back-arc basin environment, whereas Type 1 diabases have been generated in a mid-ocean ridge or alternatively in an oceanic back-arc basin.

  17. Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes

    NASA Astrophysics Data System (ADS)

    Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne

    2014-05-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.

  18. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    USGS Publications Warehouse

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.

    1992-01-01

    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host basalts. The EMII mantle domain may be present in the Chinese continental lithosphere just above the EMI domain of the basalt source at the lower part of the lithosphere. We argue that the ancient depleted continental lithosphere was metasomatized, imparting the EMI signature, in earlier times ( > 1000 m.y.), and U migrated upward, resulting in high Th U ratios in the lower portion of the lithosphere. Observed high Th U, Rb Sr, 87Sr 86Sr and ??208, low Sm Nd ratios, and a large negative ??Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga, support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component. We also suggest that the EMII signature may have been introduced later (less than ??? 500 Ma) by another metasomatic event during the subduction of an oceanic plate, which was partially responsible for some of the observed inter-mineral isotopic disequilibria. ?? 1992.

  19. Archaean tectonic systems: A view from igneous rocks

    NASA Astrophysics Data System (ADS)

    Moyen, Jean-François; Laurent, Oscar

    2018-03-01

    This work examines the global distribution of Archaean and modern igneous rock's compositions, without relying on preconceptions about the link between rock compositions and tectonic sites (in contrast with "geotectonic" diagrams). Rather, Archaean and modern geochemical patterns are interpreted and compared in terms of source and melting conditions. Mafic rocks on the modern Earth show a clear chemical separation between arc and non-arc rocks. This points to the first order difference between wet (arc) and dry (mid-ocean ridges and hotspots) mantle melting. Dry melts are further separated in depleted (MORB) and enriched (OIB) sources. This three-fold pattern is a clear image of the ridge/subduction/plume system that dominates modern tectonics. In contrast, Archaean mafic and ultramafic rocks are clustered in an intermediate position, between the three main modern types. This suggests that the Archaean mantle had lesser amounts of clearly depleted or enriched portions; that true subductions were rare; and that the distinction between oceanic plateaus and ridges may have been less significant. Modern granitic rocks dominantly belong to two groups: arc-related granitoids, petrologically connected to arc basalts; and collision granitoids, related to felsic sources. In contrast, the Archaean record is dominated by the TTG suite that derives from an alkali-rich mafic source (i.e. altered basalt). The geochemical diversity of the TTG suite points to a great range of melting depths, from ca. 5 to > 20 kbar. This reveals the absence of large sedimentary accumulations, again the paucity of modern-like arc situations, and the importance played by reworking of an earlier basaltic shell, in a range of settings (including some proto-subduction mechanisms). Nonetheless, granitoids in each individual region show a progressive transition towards more modern-looking associations of arc-like and peraluminous granites. Collectively, the geochemical evidence suggests an Archaean Earth with somewhat different tectonic systems. In particular, the familiar distinction between collision, arcs, ridges and hotspots seems to blur in the Archaean. Rather, the large-scale geochemical pattern reveals a long-lived, altered and periodically resurfaced basaltic crust. This protocrust is reworked, through a range of processes occurring at various depths that correspond to a progressive stabilization of burial systems and the establishment of true subductions. A punctuated onset of global plate tectonics is unlikely to have occurred, but rather short-term episodes of proto-subduction in the late Archaean evolved over time into longer-term, more stable style of plate tectonics as mantle temperature decayed.

  20. Geochemical and Depth Variations at the Galápagos 93.25˚W Propagating Rift

    NASA Astrophysics Data System (ADS)

    Rotella, M.; Sinton, J.; Mahoney, J.; Chazey, W.

    2006-12-01

    The 93.25°W propagating rift on the Galápagos Spreading Center (GSC) differs markedly from the better-known propagator at 95.5°W in having the morphology of a classic overlapping spreading center (~24 km of overlap and 7.5 km of offset). It has a higher propagation rate (70 vs 48 mm/yr) [Wilson & Hey, JGR v. 100, 1995] and is breaking through younger crust (260 vs 910 ka); overall magma supply is ~20% greater, as the area is closer to the Galápagos hotspot. The overlapping limbs lack pronounced bathymetric lows, instead they are up to 150 m shallower than the surrounding axial ridges away from the offset. Lavas are T-MORB; failing rift lavas show a slight increase in Mg within the overlap zone but propagating rift lavas lack the strong fractionation anomaly that characterizes the propagating limb at 95.5°W and many other propagating rifts. New major and trace element data on 28 samples from 24 dredge stations along a 175 km section of the GSC spanning the 93.25°W offset indicate significant, systematic variations in mantle sources and melting processes on each limb of the system. Fractionation-corrected ratios of highly to moderately incompatible elements (e.g. La/Yb, Sm/Yb, Zr/Y) show constant values along the propagating rift east of 93.2°W, but within the overlap zone these ratios increase sharply up to a factor of 1.5, then gradually decline to the west. In contrast, the failing rift shows constant to moderately increasing ratios as the overlap zone is approached from the west, with lower overall ratios within the zone. These variations could be interpreted to reflect a counter-intuitive relationship of gradually increasing extent of partial melting with progressive failure of the dying rift, consistent with the striking shoaling of the failing limb, or melting of incompatible-element depleted mantle. Variations along the eastern, propagating rift suggest either a sharp decrease in extent of melting or tapping of a more incompatible-element-enriched mantle source within the overlap zone. Limited Nd-Pb-Sr isotopic data suggest source variations are required in addition to variations in extent of melting. Thus, in contrast to other well-documented propagators where geochemical variations are dominated by magma chamber effects, variations around the 93.25°W system appear to be dominated by melting and source.

  1. 187Os/188Os of boninites from the Izu-Bonin-Mariana forearc, IODP Exp 352

    NASA Astrophysics Data System (ADS)

    Niles, D. E.; Nelson, W. R.; Reagan, M. K.; Pearce, J. A.; Godard, M.; Shervais, J. W.

    2016-12-01

    The Izu-Bonin-Mariana (IBM) subduction zone is an ideal laboratory in which to study the evolution of a subduction zone from its initiation to the development of modern-day arc volcanism. Boninite lavas were produced in the IBM forearc region during the early stages of subduction and are thought to have been generated by flux melting the previously depleted mantle wedge. Mariana forearc mantle peridotites record unradiogenic 187Os/188Os signatures (0.1193-0.1273) supporting the existence of variably depleted mantle in this region (Parkinson et al., 1998). In order to understand the connection between the regional mantle, slab-derived fluids, and the generation of boninites, Re-Os isotopic data were measured on subset of boninite-series lavas obtained during IODP Expedition 352. Preliminary age-corrected (48 Ma) 187Os/188Os isotopic data for boninite-series lavas (sites U1439C and U1442A) are unradiogenic to modestly radiogenic (0.1254-0.1390) compared to primitive mantle (0.1296), consistent with Os isotopic data from boninite sands from the Bonin Islands (0.1279-0.1382; Suzuki et al., 2011). The least radiogenic boninites have 187Os/188Os (< 0.1296) values consistent with average MORB mantle recorded globally by abyssal peridotites (0.1238 ± 0.0042; Rudnick & Walker, 2009). However, boninite lavas were not derived from the most refractory ancient mantle recorded by Mariana peridotites. Unradiogenic boninites generally have higher Os abundances (0.043-0.567 ppb), whereas more radiogenic boninites have low Os abundances (0.015-0.036). Due to their low Os abundances, the moderately radiogenic isotopic signatures may be the result of interaction with highly radiogenic seawater or incorporation of radiogenic sediment (e.g. Suzuki et al. 2011). However, the radiogenic values could also be the result of fluid flux from the subducting Pacific plate.

  2. Transition From Archean Plume-Arc Orogens to Phanerozoic Style Convergent Margin Orogens, and Changing Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Jia, Y.; Wyman, D.

    2001-12-01

    Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc-terrane, and terrane-terrane collision with steep subduction resulting in narrow belts of granitoids and obduction of lithospheric mantle.

  3. Storage and recycling of water and carbon dioxide in the earth

    NASA Technical Reports Server (NTRS)

    Wood, Bernard J.

    1994-01-01

    The stabilities and properties of water- and carbon-bearing phases in the earth have been determined from phase equilibrium measurements, combined with new data on the equations of state of water, carbon dioxide, carbonates and hydrates. The data have then been used to predict the fate of calcite and hydrous phases in subducting oceanic lithosphere. From the compositions of MORB's one can estimate concentrations of water and carbon of around 200 ppm and 80 ppm respectively in the upper mantle. Lower mantle estimates are very uncertain, but 1900 ppm water and 2000 ppm C are plausible concentrations. Measurements of the density of supercritical water to 3 GPa demonstrate that this phase is less compressible than anticipated from the equations of state of Haar et al. or Saul and Wagner and is closer to predictions based on molecular dynamics simulations. Conversely, fugacity measurements on carbon dioxide to 7 GPa show that this fluid is more compressible than predicted from the MRK equation of state. The results imply that hydrates are relatively more stable and carbonates less stable at pressures greater than 5 GPa than would be predicted from simple extrapolation of the low pressure data. Nevertheless, carbonates remain extremely refractory phases within both the upper and lower mantle.

  4. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  5. Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2001-12-01

    Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also. Plate motions are driven by subduction, the passive falling away of oceanic lithosphere which is negatively buoyant because of top-down cooling. Slabs have top and bottom rolling hinges and sink subvertically (inclinations of slabs mark their positions, not trajectories) into the transition zone, where they are laid down on, and depress, the 660-km discontinuity. Rollback of upper hinges into subducting plates is required by plate behavior at all scales. That fronts of overriding plates advance at rollback velocity is required by common preservation atop their thin leading edges of little-deformed fore-arc basins. Convergence velocity also commonly equals rollback but is faster in some arcs. Steeply-sinking inclined slabs push sublithospheric upper mantle forward into the shrinking ocean from which they came, forcing seafloor spreading therein, and pull overriding plates behind them. Continental plates pass over sunken slabs like tanks above their basal treads, and material from, and displaced rearward by, sunken slabs is cycled into pull-apart oceans opening behind the continents, thus transferring mantle from shrinking to enlarging oceans. Hot mantle displaced above slabs enables backarc spreading. Spreading ridges, in both shrinking and enlarging oceans, are passive byproducts of subduction, and migrate because it is more energy efficient to process new asthenosphere than to get partial melt from increasingly distant sources. A plate-motion framework wherein hinges roll back, ridges migrate, Antarctica is approximately fixed, and intraplate deformation is integrated may approximate an absolute reference to sluggish lower mantle, whereas the hotspot frame is invalid, and the no-net-rotation frame minimizes trench and ridge motions.

  6. The 1998-2001 submarine lava balloon eruption at the Serreta ridge (Azores archipelago): Constraints from volcanic facies architecture, isotope geochemistry and magnetic data

    NASA Astrophysics Data System (ADS)

    Madureira, Pedro; Rosa, Carlos; Marques, Ana Filipa; Silva, Pedro; Moreira, Manuel; Hamelin, Cédric; Relvas, Jorge; Lourenço, Nuno; Conceição, Patrícia; Pinto de Abreu, Manuel; Barriga, Fernando J. A. S.

    2017-01-01

    The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998 and 2001 along the submarine Serreta ridge (SSR), 4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMU­type component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.

  7. Noble Gas Isotope Evidence for Mantle Volatiles in the Cu-Mo Porphyry and Main Stage Polymetallic Veins at Butte, Montana

    NASA Astrophysics Data System (ADS)

    Hofstra, A. H.; Rusk, B. G.; Manning, A. H.; Hunt, A. G.; Landis, G. P.

    2017-12-01

    Recent studies suggest that volatiles released from mafic intrusions may be important sources of heat, sulfur, and metals in porphyry Cu-Mo-Au and epithermal Au-Ag deposits associated with intermediate to silicic stocks. The huge Cu-Mo porphyry and Main Stage polymetallic vein deposits at Butte are well suited to test this hypothesis because there is no geologic or isotopic evidence of basaltic intrusions in the mine or drill holes. The Butte porphyry-vein system is associated with quartz monzonite stocks and dikes within the southwest part of the Late Cretaceous Boulder batholith. The Boulder batholith was emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and Late Cretaceous volcanic rocks. The Boulder batholith and Butte intrusions have Sri and eNd values indicative of crustal contamination. Eu and Ce anomalies in zircon from Butte intrusions provide evidence of oxidation due to magma degassing. To ascertain the source of volatiles in this system, 11 samples from the Cu-Mo porphyry and 16 from Main Stage veins were selected. The isotopic composition of Ar, Ne, and He extracted from fluid inclusions in quartz, magnetite, pyrite, chalcopyrite, sphalerite, galena, enargite, and covellite were determined. Helium isotopes exceed blank levels in all samples and Ne and Ar in some samples. On a 38Ar/36Ar vs. 40Ar/36Ar diagram, data plot near air. On a 20Ne/22Ne vs. 21Ne/22Ne diagram, data extend from air along the trajectories of OIB and MORB. On a 36Ar/4He vs. 3He/4He RA diagram, data extend from crust toward the air-mantle mixing line. The maximum 3He/4He RA values in the Cu-Mo porphyry (2.86) and Main Stage veins (3.46) are from pyrite and these values correspond to 36 and 43 % mantle helium. The Ne and He results show that fluid inclusions contain volatiles discharged from mantle magmas and that these volatiles were diluted by groundwater containing He derived from country rocks. Despite the lack of mafic intrusions in the Butte magmatic center, noble gas isotopes show that volatiles derived from concealed mafic intrusions were present in the hydrothermal system. Discharge of hot volatiles from mafic magma chambers at depth may be required to prevent the overlying magma column from quenching and, thus, allow for the repeated buildup and release of sulfur- and metal-bearing fluids from apical intrusions.

  8. Halogen and trace element geochemistry in Mid-Ocean Ridge basalts from the Australian-Antarctic Ridge (AAR)

    NASA Astrophysics Data System (ADS)

    Yang, Y. S.; Seo, J. H.; Park, S. H.; Kim, T.

    2015-12-01

    Australian-Antarctic Ridge (AAR) is an extension of easternmost SE Indian Mid-Ocean Ridge (MOR).We collected volcanic glasses from the "in-axis" of the KR1 and KR2 MOR, and the overlapping zones of the KR1 MOR and the nearby seamounts ("KR1 mixing"). We determined trace and halogen elements in the glasses. Halogen concentrations and its ratios in the glasses are important to understand the mantle metasomatism and volatile recycling. 52 of the collected glasses are "primitive" (higher than 6 wt% MgO), while 3 of them have rather "evolved" composition (MgO wt% of 1.72, 2.95 and 4.15). K2O concentrations and Th/Sc ratios in the glasses show a negative correlation with its MgO concentration. Incompatible element ratios such as La/Sm are rather immobile during a magma differentiation so the ratios are important to understand mantle composition (Hofmann et al. 2003). La/Sm ratios in the glasses are 0.95 ~ 3.28 suggesting that the AAR basalts can be classified into T-MORB and E-MORB (Schilling et al., 1983). La/Sm ratios are well-correlated with incompatible elements such as U, Ba, Nb, and negatively correlated with compatible elements such as Sc, Eu2+, Mg. The AAR glasses contain detectable halogen elements. The "KR1 mixing" glasses in halogen elements are more abundant than "in-axis" the glasses. Cl is the least variable element compared to the other halogens such as Br and I in the AAR. The "KR1 mixing" glasses have the largest variations of Br/Cl ratios compared to the "in-axis" glasses. The Cl/Br and Th/Sc ratios in the "in-axis" glasses and in the "KR1 mixing" glasses show positive and negative correlations, respectively. The Br-rich glasses in the "KR1 mixing" zone might be explained by a recycled Br-rich oceanic slab of paleo-subduction or by a hydrothermal alteration in the AAR. I composition in the glasses does not show a correlation other trace elements. The K/Cl and K/Ti ratios in the AAR glasses are similar to the basalts from the Galapagos Spreading Center (Geldmacher et al., 2010) and Pacific MORB. The AAR region closely located with Balleny hotspot (Lanyon et al., 1993) and Pacific-Antarctic Ridge. K2O/Nb and Zr/Nb ratios are very low compared with near Pacific-Antarctic Ridge and Southeast Indian Ridge. The ratios are close to the Balleny hotspot.

  9. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    NASA Astrophysics Data System (ADS)

    Feng, Jianyun; Xiao, Wenjiao; Windley, Brian; Han, Chunming; Wan, Bo; Zhang, Ji'en; Ao, Songjian; Zhang, Zhiyong; Lin, Lina

    2013-12-01

    The time of termination of orogenesis for the southern Altaids has been controversial. Systematic investigations of field geology, geochronology and geochemistry on newly discriminated mafic-ultramafic rocks from northern Alxa in the southern Altaids were conducted to address the termination problem. The mafic-ultramafic rocks are located in the Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km. All rocks occur high-grade gneisses as tectonic lenses that are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have undergone pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by uniform compositional trends, i.e., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O + K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enrichments in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have been strongly altered and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%) values, they may have been subjected to considerable alteration by either seawater or metamorphic fluids. The REE and trace element patterns show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc origin. The ultramafic rocks are relics derived from the magma after a large degree of partial melting of oceanic lithospheric mantle with superposed island arc processes under the influence of mid-ocean-ridge magmatism. LA-ICP MS U-Pb zircon ages of gabbros from three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering other previously published data, we suggest that the mafic-ultramafic rocks were products of south-dipping subduction, most probably with a slab window caused by ridge subduction, of the Paleo-Asian Ocean plate beneath the Alxa block in the Late Carboniferous to Late Permian before the Ocean completely closed. This sheds light on the controversial tectonic history of the southern Altaids and supports the concept that the termination of orogenesis was in the end-Permian to Triassic.

  10. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    NASA Astrophysics Data System (ADS)

    Jianyun, Feng; Wenjiao, Xiao

    2013-04-01

    The termination of orogenesis for the southern Altaids has been controversial. Systematical investigations of field geology, geochronology and geochemistry on mafic-ultramafic rocks from the northern Alxa of the southern Altaids were conducted to address the termination controversy. The newly discriminated mafic-ultramafic rocks belt is located at Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km in length. All of the three rock associations contact tectonically with the adjacent metamorphic and deformed Precambrian rocks as tectonic blocks or lenses, and are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have subjected to pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by a uniform trend of compositional distribution, e.g., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O+K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enriched in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have had strong alteration and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%), the rocks may be subjected to considerable alteration by either sea-water or metamorphic fluid. The REE and trace element patterns for the rocks show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc subsequently. The ultramafic rocks are relics derived from the magma after large degree of partial melting of the oceanic lithospheric mantle with overprinted by island-arc processes under the influence of mid-ocean-ridge magmatism. LA - ICP MS U - Pb zircon ages of gabbros from the three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering the other data published previously, we suggest that the mafic-ultramafic rocks are products of a south-dipping subduction, most probably a ridge subduction for the Paleo-Asian Ocean beneath the Alxa block in the Late Carboniferous to Late Permian before the Paleo-Asian Ocean completely closed. This shed light on the controversial tectonic history of the southern Altaids and support that the termination of the orogenesis was in the end Permian to Triassic.

  11. Platinum-Group Elements in Basalts Derived From the Icelandic Mantle Plume -Past and Present.

    NASA Astrophysics Data System (ADS)

    Momme, P.; Oskarsson, N.; Gronvold, K.; Tegner, C.; Brooks, K.; Keays, R.

    2001-12-01

    Paleogene basalts ( ~55Ma) derived from the ancestral Iceland mantle plume and extruded during continental rifting are exposed along the Blosseville Kyst in central East Greenland. These basalts comprise three intercalated series, viz: a low-Ti, high-Ti and a very high-Ti series. The two Ti-rich series are interpreted to represent continental flood basalts formed by low degrees of partial melting (degree of melting F=3-9%) while the low-Ti series are believed to have formed by higher degrees of partial melting (F:15-25%). All three of the East Greenland basalt series are enriched in the PGE, relative to normal MORB. During differentiation of the low-Ti series, Pd increase from 11 to 24 ppb whereas Pt and Ir decrease from 12 and 0.6 ppb to 3 and <0.05 ppb respectively. The primitive basalts (molar Mg#60) of the dominant high-Ti series contain ~6-10 ppb Pd, ~7-10 ppb Pt and ~0.2 ppb Ir whereas the most evolved basalts (Mg#43) contain 25 ppb Pd, 5 ppb Pt and <0.05 ppb Ir. The PGE-rich nature of these basalts is surprising because low degree partial melts are generally S-saturated and hence strongly depleted in the PGE (cf, Keays, 1995). However, our data indicates that all of the East Greenland magmas were S-undersaturated and as they underwent differentiation, Pd behaved incompatibly while Ir and Pt behaved compatibly. Primitive Holocene Icelandic olivine tholeiites contain 120 ppm Cu, 6 ppb Pd, 4 ppb Pt and 0.2 ppb Ir while their picritic counterparts contain 74 ppm Cu, 17 ppb Pd, 7 ppb Pt and 0.3 ppb Ir. Both the olivine tholeiites and the picrites are believed to have formed by high degrees of partial melting (15-25%) which would have exhausted all of the sulphides in the mantle source region and produced S-undersaturated magmas. In Icelandic samples with 10-14wt% MgO, Cu and the PGEs vary systematically between the primitive picrite and olivine tholeiite compositions given above i.e there is an inverse correlation between Cu and the PGEs. This is best explained by mixing between parental olivine tholeiite and picrite magmas. The low Cu/Pd ratio in the most primitive picrite probably reflect derivation from a depleted mantle where Cu was less efficiently retained in sulphides compared to Pd during previous melt extraction episodes. Whithin the analysed suite of olivine tholeiites, Ir decreases from 0.15 to 0.06 ppb, Pd increases from ~6 to ~15 ppb and Pt/Pd ratio decreases from 0.8-0.2 during differentiation (7-4wt% MgO); these variations provide further evidence that the olivine tholeiite magmas remained S-undersaturated throughout their differentiation. To summarize, (1) Continental flood basalts and low-Ti tholeiites in the Paleogene East Greenland flood basalt sequence, as well as Holocene Icelandic olivine tholeiites are PGE-rich relative to normal MORB. (2) Their PGE-contents vary as a function of S-undersaturated differentiation. (3) Cu-PGE variations in Icelandic samples with 10-14 wt% MgO suggest that they represent mixtures between distinct tholeiitic (Cu/Pd: 20000) and depleted picritic (Cu/Pd: 4400) parental liquids. Reference: Keays RR (1995) The role of komatiitic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1-18.

  12. Baddeleyite in PGE paleoproterozoic layered intrusions on Fennoscandian Shield (Arctic region): significance for timing, duration and continental reconstraction

    NASA Astrophysics Data System (ADS)

    Bayanova, Tamara; Korchagin, Aleksey; Chachshin, Viktor; Nerovich, Ludmila; Drogobuzhskaya, Svetlana

    2017-04-01

    Baddeleyite was firstly found and U-Pb dating in PGE layered intrusions of the Fennoscandian Shield in the rock-forming orthopyroxene (Lukkulaisvaara intrusion in Karelia region) and in magmatic zircon from gabbronorite Mt. Generalskaya (Kola region). Real crystals of baddeleyite were separated and U-Pb measured from Fedorovo-Pansky complex in gabbronorites lower part of the Pt-Pd reef intrusion (as first phase 2.50 Ga) and in upper part of Pt-Pd reef in anorthosites (second phase -2.45 Ga) and reflect time interval about 50 Ma of magmatic complex activity. In basite dykes from Cr-Ti-V Imandra lopolith baddeleyite were dating by U-Pb with 2.40 Ga. Therefore total duration time of Kola LIP and magmatic origin of the multimetal deposits are estimated as 100 Ma [1]. New additional isotope Nd-Sr-He data for the WR of the layered PGE intrusions in the Kola-Karelia-Finland big belt more than 500 km reflect EM-1 mantle reservoir. New REE (ELAN- 9000) distributions in the WR and dykes complexes of the Fedorovo-Pansky and Monshegorck Cu-Ni and PGE ore deposits gave OIB, N-MORB and E-MORB primary plume mantle source due to Re-Os data [2]. LA-ICP-MS data of REE investigations in baddeleyite crystals from Monchegorsk ore region yielded 1000 C forming of the grains and high U-Pb closure temperatures compared with zircon. Baddeleyite also primary magmatic minerals in the layered PGE intrusions and dykes complexes from Fennoscandian Shield and U-Pb precise data using artificial 205 Pb spike of the crystals together with time data for different continents gave new important information concerning break up and super continental reconstruction of geological history in paleoproterozoic time [3]. Acknowledgements: Many thanks to G.Wasserburg for 205 Pb artificial spike, J. Ludden, F. Corfu, V. Todt and U. Poller for assistance in the establishing of the U-Pb for single zircon and baddeleyite. All studies are supported by RFBR 16-05-00305. All investigations are devoted to memory of academician RAS F.P. Mitrofanov due to whom baddeleyite was found, separation and studied by U-Pb (ID-TIMS and LA-ICP-MS) methods. References: [1] Bayanova et al. (2014), INTECH, 143-193; [2] Yang Sheng-Hong et. al. (2016), Mineralium Deposita 51, 1055-1073; [3] Ernst R. Large igneous provinces. (2016), London, 500

  13. Submarine Flood Basalt Eruptions and Flows of Ontong Java Plateau, Nauru Basin and East Mariana Basin

    NASA Astrophysics Data System (ADS)

    Michael, P. J.; Trowbridge, S. R.; Zhang, J.; Johnson, A. L.

    2016-12-01

    The preservation of fresh basalt glasses from the submarine Cretaceous Ontong Java Plateau (OJP), Earth's largest LIP, has allowed correlation of precise lava compositions over 100s of km, as well as determination of eruption depths using dissolved H2O and CO2 contents. Low dissolved H2O in glasses shows that H2O in the mantle source is low [1,2], suggesting mantle temperatures are high. Very high dissolved Cl indicates that magmas interacted extensively with brines. The near total absence of vesicles in OJP glasses contrasts sharply with MORB, and suggests that OJP lavas were saturated or undersaturated with CO2 when they were emplaced, in contrast to MORB that are often oversaturated. The lavas likely remained liquid for a longer period of time so that they degassed to equilibrium levels of dissolved CO2 andlost all bubbles. Very precise major and trace element analyses of glasses, uncomplicated by crystals or alteration, show how lavas within and between widely-spaced drill holes could be related. For example, glasses from Sites 1185B and 1186A, which are about 200 km apart, are compositionally identical within precise limits and must have erupted from the same well-mixed magma chamber. They erupted at about the same depth, but 1186A has a corrected basement depth that is >700m deeper. With a slope of 0.3°, this suggests a flow distance >130km. The eruption depths for glasses from East Mariana and Nauru Basins are similar to those of 1185B and 1186A on OJP, even though their reconstructed basement depths are about 2000 m deeper. It suggests that the plateau lavas flowed into the basins. Similarly, eruption depths in Hole 807C are 3040m for Kwaimbaita lavas but are 1110m [1,2] for Singgalo lavas that directly overlie them. It is unlikely that plateau uplift and subsidence accounts for the observed eruption depths. All of these observations are best explained by very large-volume eruptions whose lavas traveled for long distances, up to 100s of km, into deeper water over gentle slopes (0.1-0.5°). The presence of many glass layers within the cores contrasts with continental flood basalts and suggests the flows were covered by a thick, moving, shifting carapace of solidified lava. They may represent an extreme form of inflated pahoehoe flows. 1 Michael, P.J., 1999 G-Cubed 1 (12), GC000025 2 Roberge J., et al., 2005, Geology 33, 501-504

  14. Mapping mantle-melting anomalies in Baja California: a combined subaereal-submarine noble gas geochemistry new data set.

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Negrete-Aranda, R.; Hilton, D. R.; Virrueta, C.; Tellez, M.; Lupton, J. E.; Evans, L. J.; Clague, D. A.; Zierenberg, R. A.; Neumann, F.

    2017-12-01

    In active tectonic settings, the presence of helium in aqueous fluids with 3He/4He ratios greater than in-situ production values ( 0.05 RA where RA = air He or 1.4 x 10-6) indicates the contribution of mantle-derived volatiles to the total volatile inventory. This is an indicative of the presence of mantle-derived melts, which act to transfer volatiles from the solid Earth towards the surface. Thus, He has the potential to map regions of the underlying mantle which are undergoing partial melting - a phenomenon which should also be evident in the seismic record. Reports of high 3He/4He in hot springs in Baja California (BC) has prompted us to initiate a survey of the region to assess relationship(s) between He isotopes and geophysical images of the underlying mantle. Previous studies report 3He/4He ratios of 0.54 RA for submarine hot springs (Punta Banda 108oC) and 1.3 RA for spring waters (81oC) at Bahia Concepcion. Our new survey of hot springs in northern BC has revealed that all 12 localities sampled to date, show the presence of mantle He with the highest ratio being 1.74RA (21% mantle-derived) at Puertecitos on the Gulf coast. He ratios are generally lower on the Pacific coast with the minimum mantle He contribution being 5% at Santa Minerva (0.11RA). Thus, preliminary trends are of a west-to-east increase in the mantle He signal across the peninsula. In the Gulf of California, recent He analyses from the newly discovered Meyibo (350 °C) and Auka (250-290 °C) hydrothermal fields at Alarcon rise and Pescadero basin, respectively, show high 3He/4He ratios ( 8RA), typical of MORB's. These ratios are higher than the ones reported for Guaymas Basin (6.95 RA), suggesting that primordial He signal from the mantle increases following a North-South direction along the Gulf axis. He results presented in this study correlate well with high resolution Rayleigh wave tomography images by DiLuccio et al (2014). Shear velocity variations in the BC crust and upper mantle have been interpreted as low velocity anomalies associated with dynamic upwelling and active melt production. Data presented here coupled with analysis of other geochemical indicators of mantle degassing (e.g. CO2) will allow more detailed characterization of the extent and distribution of mantle melts in the region, facilitating assessment of the region's geothermal potential.

  15. Mantle Volatiles and Global Carbon Flux and Budget

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2014-12-01

    The global volcanic carbon flux to the surface of Earth is a fundamental parameter in understanding the global carbon cycle that includes deep carbon as well as the degassing history of the mantle. The flux has been estimated before (e.g., Marty and Tolstikhin, 1998). Recent progress has significantly revised some of the parameters used in the estimation, e.g., the oceanic 3He flux has been re-evaluated (Bianchi et al., 2010) to be only about half of the earlier widely-used estimate, and numerous subaerial volcanic degassing data are now available. In this report, a new attempt is made to assess the global carbon flux and budget. Rather than dividing the carbon flux by categories of MORB, Plumes and Arcs, we estimate the global carbon flux by considering oceanic and subaerial volcanism. The oceanic 3He flux is 527±102 mol/yr (Bianchi et al., 2010). Most of the flux is from spreading ridges with only minor contributions from submarine oceanic hotspots or arc volcanism. Hence, the mean CO2/3He ratio in MORB is applied to estimate oceanic flux of CO2. The subaerial CO2 flux is based on evaluation of different arc segments and is messier to compute. Literature estimates use estimated SO2 flux in the last tens of years combined with estimated CO2/SO2 degassing ratios (Hilton et al., 2002; Fischer, 2008). Assuming that the last tens of years are representative of recent geological times in terms of volcanic degassing, the estimated global CO2 flux still depends critically on a couple of arcs that are main contributors of the subaerial volcanic CO2 flux, and those seem to have been rather loosely constrained before. Using recently available data (although there are still holes), we derive a new global subaerial volcanic CO2 flux. By combining with oceanic volcanic CO2 flux, we obtain at a new global flux. The significance of the new estimate to the global volatile budget will be discussed.

  16. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  17. Fabric Development in Sheared Mantle Rocks: The Source of the 'a-c' Switch

    NASA Astrophysics Data System (ADS)

    Qi, C.; Hansen, L. N.; Holtzman, B. K.; Kohlstedt, D. L.

    2014-12-01

    Researchers often invoke variations in water content, stress state, and melt distribution to account for the observed variety of olivine crystallographic preferred orientations (CPOs). Since the average direction of [100] axes directly affects seismic anisotropy, there is potential to link observed anisotropy to compositional and thermo-mechanical conditions. It is well established that the (010)[100] is the weakest slip system, and therefore thought to control CPOs, in dry olivine at P < 2 GPa. However, CPOs formed in experiments on olivine plus mid-ocean ridge basalt (MORB) reveal a fabric in which [001] axes form weak point maxima parallel to the shear direction, and [010] axes form strong point maxima perpendicular to the shear plane, indicative of (010)[001] as the weak slip system. To investigate the mechanisms that cause this change in CPO, samples fabricated from fine-grained San Carlos olivine plus MORB were deformed in torsion at T = 1200°C and P = 300 MPa. Samples with starting melt fractions of 0.01, 0.10 and 0.25 were sheared to a maximum strain of γ ≈ 13. We investigate three hypotheses. 1) The easiest slip direction changes from [100] to [001] in partially molten rocks. However, no microstructural evidence for such a change has been found. 2) With the presence of a melt phase, shape preferred orientations (SPOs) play an important role in fabric development. We test this hypothesis by examining the relationship between SPOs and CPOs as a function of strain and melt content. 3) Anisotropy in the melt distribution leads to anisotropy in grain-boundary sliding, thus preferentially favoring grain rotations necessary to produce the observed fabric. We test this hypothesis by detailed analysis of misorientations between neighboring grains. Our results will provide a crucial link between seismic anisotropy and grain-scale deformation processes.

  18. Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite

    NASA Astrophysics Data System (ADS)

    Ulrich, Marc; Picard, Christian; Guillot, Stéphane; Chauvel, Catherine; Cluzel, Dominique; Meffre, Sébastien

    2010-03-01

    The origin of the New Caledonia ophiolite (South West Pacific), one of the largest in the world, is controversial. This nappe of ultramafic rocks (300 km long, 50 km wide and 2 km thick) is thrust upon a smaller nappe (Poya terrane) composed of basalts from mid-ocean ridges (MORB), back arc basins (BABB) and ocean islands (OIB). This nappe was tectonically accreted from the subducting plate prior and during the obduction of the ultramafic nappe. The bulk of the ophiolite is composed of highly depleted harzburgites (± dunites) with characteristic U-shaped bulk-rock rare-earth element (REE) patterns that are attributed to their formation in a forearc environment. In contrast, the origin of spoon-shaped REE patterns of lherzolites in the northernmost klippes was unclear. Our new major element and REE data on whole rocks, spinel and clinopyroxene establish the abyssal affinity of these lherzolites. Significant LREE enrichment in the lherzolites is best explained by partial melting in a spreading ridge, followed by near in-situ refertilization from deeper mantle melts. Using equilibrium melting equations, we show that melts extracted from these lherzolites are compositionally similar to the MORB of the Poya terrane. This is used to infer that the ultramafic nappe and the mafic Poya terrane represent oceanic lithosphere of a single marginal basin that formed during the late Cretaceous. In contrast, our spinel data highlights the strong forearc affinities of the most depleted harzburgites whose compositions are best modeled by hydrous melting of a source that had previously experienced depletion in a spreading ridge. The New Caledonian boninites probably formed during this second stage of partial melting. The two melting events in the New Caledonia ophiolite record the rapid transition from oceanic accretion to convergence in the South Loyalty Basin during the Late Paleocene, with initiation of a new subduction zone at or near the ridge axis.

  19. Petrogenesis and geodynamics of plagiogranites from Central Turkey (Ekecikdağ/Aksaray): new geochemical and isotopic data for generation in an arc basin system within the northern branch of Neotethys

    NASA Astrophysics Data System (ADS)

    Köksal, Serhat; Toksoy-Köksal, Fatma; Göncüoglu, M. Cemal

    2017-06-01

    In the Late Cretaceous, throughout the closure of the Neotethys Ocean, ophiolitic rocks from the İzmir-Ankara-Erzincan ocean branch were overthrusted the northern margin of the Tauride-Anatolide Platform. The ophiolitic rocks in the Ekecikdağ (Aksaray/Central Turkey) region typify the oceanic crust of the İzmir-Ankara-Erzincan branch of Neotethys. The gabbros in the area are cut by copious plagiogranite dykes, and both rock units are intruded by mafic dykes. The plagiogranites are leucocratic, fine- to medium-grained calc-alkaline rocks characterized mainly by plagioclase and quartz, with minor amounts of biotite, hornblende and clinopyroxene, and accessory phases of zircon, titanite, apatite and opaque minerals. They are tonalite and trondhjemite in composition with high SiO2 (69.9-75.9 wt%) and exceptionally low K2O (<0.5 wt%) contents. The plagiogranites in common with gabbros and mafic dykes show high large-ion lithophile elements/high-field strength element ratios with depletion in Nb, Ti and light rare-earth elements with respect to N-MORB. The plagiogranites together with gabbros and mafic dykes show low initial 87Sr/86Sr ratios (0.70419-0.70647), high ƐNd( T) (6.0-7.5) values with 206Pb/204Pb (18.199-18.581), 207Pb/204Pb (15.571-15.639) and 208Pb/204Pb (38.292-38.605) ratios indicating a depleted mantle source modified with a subduction component. They show similar isotopic characteristics to the other supra-subduction zone (SSZ) ophiolites in the Eastern Mediterranean to East Anatolian-Lesser Caucasus and Iran regions. It is suggested that the Ekecikdağ plagiogranite was generated in a short time interval from a depleted mantle source in a SSZ/fore-arc basin setting, and its nature was further modified by a subduction component during intra-oceanic subduction.

  20. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    NASA Astrophysics Data System (ADS)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models' calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, a FeO∗silicatemelt , and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5 wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from picritic glasses, mare basalts, to young lunar meteorites vary from 2600 to 4800 ppm for basalt equilibration with a pure FeS melt and from 1400 to 2600 ppm for basalt equilibration with a Fe-rich sulfide melt containing 30 wt.% Ni. The measured S contents in these proposed near-primary lunar magmas are lower than the predicted SCSS at the conditions of their last equilibration with the lunar mantle, indicating no sulfide retention in the lunar mantle source during partial melting. Sulfide exhaustion during partial melting in the lunar mantle also supports the notion that the bulk silicate moon is depleted in highly siderophile elements. Based on the measured S contents and the estimated degree of melting, the estimated S contents for the mantle source of A15 green glass and A15 mare basalts is 10-23 ppm; for A17 orange glass is 25-62 ppm, for A12 mare basalts is 27-92 ppm, and for A11 basalt is 35-120 ppm. Consideration of SCSS decrease due to the presence of Ni in the sulfide melt does not change these mantle S abundance estimates for <30 wt.% Ni in the sulfide. The inferred S contents suggest that the lunar mantle is heterogeneous in terms of S. Although variable among different groups, the inferred S abundance of up to 120 ppm in the lunar mantle falls near the lower end of the S content of the depleted terrestrial mantle such as the MORB source.

  1. Electrical conductivity of the oceanic asthenosphere and its interpretation based on laboratory measurements

    NASA Astrophysics Data System (ADS)

    Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu

    2017-10-01

    We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the extraction of volatiles from the plume mantle by the ocean island basalt (OIB) magmatism.

  2. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high compared to N-MORB mantle source estimates (72-134 ppm) based upon CO2/Nb ratios [2, 3]; however, they are in good agreement with those from submarine glasses on adjacent segments from the Reykjanes and Kolbeinsey ridges [4,5]. Significantly, the model-derived δ13C estimate is close to the mean Icelandic geothermal value, implying that fluids closely resemble source values, i.e. they likely represent the exsolved component. Integrating the estimated source CO2 content with magma production values of 0.079 km3/yr [6] yields a CO2 flux of ~1.2 x 1011 mol CO2 yr-1for Iceland, representing ~ 5.4 % of the total carbon ridge flux of 2.2 x 1012 mol CO2 yr-1 [7]. Thus, the average CO2 flux estimate for Iceland is ~2.2 x 108 mol CO2 yr-1km-1 strike of ridge axis, which compares to an overall ridge flux (including Iceland) of ~2.9 x 107 mol CO2 yr-1km-1. This difference highlights both heterogeneity in source volatile contents and magma production rates as important controls for determining mantle CO2 fluxes. [1] Poreda et al., 1992 [2] Saal et al., 2002. [3] Shaw et al., 2010. [4] de Leeuw, 2007 [5] Macpherson et al., 2005. [6] Thordarson et al., 2007 [7] Marty et al., 1998.

  3. Geochemistry of South China Sea MORB and implications for deep geodynamics

    NASA Astrophysics Data System (ADS)

    Yu, X.; Liu, Z.; Chen, L.; Zeng, G.

    2017-12-01

    Mid-ocean ridge basalts (MORB) were sampled near fossil spreading centers of east subbasin (Site U1431) and southwest subbasin (Site U1433) from the South China Sea (SCS). These basalts record the history of oceanic crustal accretion and mechanism of deep dynamics at the end of SCS ridge spreading. For major elements, basalts from the above two sites show similarities in abundances. Wherein both of them show more depleted in SiO2 and MgO along with enriched Al2O3 than the present Pacific MORB and Indian MORB. In terms of trace elements, basalts from east subbasin are NMORB-like while basalts from southwest subbasin are EMORB-like. Diversity in trace elemental features indicates the difference in petrogenesis of SCS MORB. The good correlations between major elements, e.g., negative correlations between MgO and Al2O3, CaO, suggest that relative to the normal Pacific and Indian MORB, SCS MORB experienced much more complex magma chamber processes. The diversity in trace elemental ratios like Th/La and Ti/Gd, Eu/Eu* and Ti/Ti* further indicates that, besides of magma chamber processes, SCS MORB records the heterogeneities of asthenosphere. When in comparison with Pacific MORB and Indian MORB respectively, we found that basalts from east subbasin are Pacific MORB like while basalts from southwest subbasin are Indian MORB like. Therefore, it implies, at the time of Miocene, the east subbasin of SCS can be a part of the Pacific oceanic basin. However, the southwest subbasin should be the result of continental margin rifting of Indochina Block.

  4. Intensive Variables in Primary Kimberlite Magmas (Lac de Gras, N.W.T., Canada) and Application for Diamond Preservation

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Y.; Canil, D.; Carlson, J. A.

    2002-12-01

    Crystallization temperatures (T) and oxygen fugacity (fO2) are not well constrained for kimberlites. Knowledge of these intensive variables of kimberlite melt is important for understanding the origin and evolution of kimberlites and prediction of diamond preservation in the magma. Difficulties in interpreting the equilibrium mineral assemblages in kimberlites and the high degree of secondary alteration usually complicate use of mineral geothermometers and oxygen barometers. Some of Lac de Gras (N.W.T., Canada) kimberlites are extremely fresh and provide opportunity to apply mineral thermobarometers. The presence of numerous chromite inclusions in the rims of olivine phenocrysts allows application of the olivine-spinel thermometer and oxygen barometer to constrain T and fO2 of the melt. We performed T and fO2 calculations on samples from three kimberlite pipes - the Leslie, Aaron and Grizzly. The T obtained from olivine - chromite pairs for crystallization of olivine phenocryst rims are 1050° to 1100°C +/- 50°C (calculated at 1 GPa). Few olivine - chromite pairs from Leslie and Grizzly record higher temperatures of 1250° - 1350°C. The cores of olivine phenocrysts usually lack chromite inclusions and their crystallization T and fO2 could not be estimated. The fO2 recorded by coexisting olivine and chromite are +0.3 to 1.0 +/- 0.4 log units more oxidized than the nickel-nickel oxide (NNO) buffer. The established fO2 of kimberlites would require fO2 in their mantle source to be higher than that of cratonic mantle and oceanic lithosphere producing MORB's but comparable to the source of subduction-related magmas. The T and fO2 for the Lac de Gras kimberlites constrain the path of any mantle material entrained in these magmas in fO2-T-P space and provide limits on diamond destructive processes. Diamonds are not stable in kimberlite magma and are oxidized to CO2 or converted into graphite. The former process is more favorable for their preservation. The results of out thermo-barometric calculations show that at any pressure the Lac de Gras kimberlites were above the Graphite (Diamond)-CCO buffer. Diamonds entrained in these kimberlites were moved into stability field of CO2 without graphitization, favoring better preservation of diamonds.

  5. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios

    NASA Astrophysics Data System (ADS)

    Guo, Kun; Zeng, Zhi-Gang; Chen, Shuai; Zhang, Yu-Xiang; Qi, Hai-Yan; Ma, Yao

    2017-09-01

    The Okinawa Trough (OT) is a back-arc, initial continental marginal sea basin located behind the Ryukyu Arc-Trench System. Formation and evolution of the OT have been intimately related to subduction of the Philippine Sea Plate (PSP) since the late Miocene; thus, the magma source of the trough has been affected by subduction components, as in the case of other active back-arc basins, including the Lau Basin (LB) and Mariana Trough (MT). We review all the available geochemical data relating to basaltic lavas from the OT and the middle Ryukyu Arc (RA) in this paper in order to determine the influence of the subduction components on the formation of arc and back-arc magmas within this subduction system. The results of this study reveal that the abundances of Th in OT basalts (OTBs) are higher than that in LB (LBBs) and MT basalts (MTBs) due to the mixing of subducted sediments and EMI-like enriched materials. The geochemical characteristics of Th and other trace element ratios indicate that the OTB originated from a more enriched mantle source (compared to N-mid-ocean ridge basalt, N-MORB) and was augmented by subducted sediments. Data show that the magma sources of the south OT (SOT) and middle Ryukyu Arc (MRA) basalts were principally influenced by subducted aqueous fluids and bulk sediments, which were potentially added into magma sources by accretion and underplating. At the same time, the magma sources of the middle OT (MOT) and Kobi-syo and Sekibi-Syo (KBS+SBS) basalts were impacted by subducted aqueous fluids from both altered oceanic crust (AOC) and sediment. The variable geochemical characteristics of these basalts are due to different Wadati-Benioff depths and tectonic environments of formation, while the addition of subducted bulk sediment to SOT and MRA basalts may be due to accretion and underplating, and subsequent to form mélange formation, which would occur partial melting after aqueous fluids are added. The addition of AOC and sediment aqueous fluid to MOT and KBS+SBS basalts is therefore the result of cold subducted slab dehydration combined with a rapid subduction rate (82 mm/a), leading to the migration of fluids into the mantle wedge. The presence of these attributes is likely because the OT was a back-arc, initial continental marginal sea basin.

  6. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7.8 to -16.7) and granite (-16.6 to -6.7). Together with the Hf depleted model ages and crustal model ages, we infer that the magma sources involved both juvenile depleted mantle and reworked Mesoproterozoic, Paleoproterozoic and Neoarchean components. The mid Neoproterozoic intraplate magmatism is considered to be a response to mantle upwelling in an aborted rift setting.

  7. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    More than twenty years since the publication of Armstrong's seminal paper, debate still rages about most aspects of the Earth's first billion years. Although orders of magnitude more data have been generated since then, the arguments remain the same. The debate is largely centered on the isotopic systematics of minerals and whole rocks, the major and trace element geochemistry of continental crust, and various geodynamic models for differentiation of the planet. Most agree that earth, like all the terrestrial planets, differentiated into a crust, mantle and core very early in its history. After that, models of crustal evolution diverge significantly, including the suggestions that modern style plate tectonics did not originate until ca. 2.7 Ga or younger and that plumes have played a major role in the generation of continental crust. Many believe that the preserved rock record and the detrital zircon record are consistent with episodic crustal growth, which in turn has led to geodynamic models of episodic mantle convection driving major crust forming events. High-precision and high-throughput geochronology have led to claims of episodicity even more pronounced than that presented in Gastil's 1960 paper. We believe that Earth history has been dominated by plate tectonics and that continental crust is formed largely by amalgamation of island arcs, seamounts, micro continents, and oceanic plateaus. While there are geochemical differences in the average composition of Archean igneous rocks when compared to younger rocks, the processes responsible for their formation may not have changed a great deal. In this view, the so-called crustal growth curves originated by Hurley are in fact crude approximations of crustal preservation. The most highly cited rationales for the view that little silicic crust formed during Earth's first billion years are the lack of known exposed crust older than 3.5 Ga and the paucity of detrital zircons older than 4.0 Ga in sedimentary rocks of any age. If one accepts that the probability of preserving old crust decreases with increasing age, the few exposures of rocks older than 3.5 Ga should not be surprising. The thickness and compositional differences between Archean and younger lithospheric mantle are not fully understood nor is the role of thicker buoyant mantle in preserving continental crust; these lead to the question of whether the preserved rock record is representative of what formed. It is notable that the oldest known rocks, the ca. 4.0 Ga Acasta Gneisses, are tonalities-granodiorites-granites with evidence for the involvement of even older crust and that the oldest detrital zircons from Australia (ca. 4.0-4.4 Ga) are thought to have been derived from granitoid sources. The global Hf and Nd isotope databases are compatible with both depleted and enriched sources being present from at least 4.0 Ga to the present and that the lack of evolution of the MORB source or depleted mantle is due to recycling of continental crust throughout earth history. Using examples from the Slave Province and southern Africa, we argue that Armstrong's concept of steady state crustal growth and recycling via plate tectonics still best explains the modern geological and geochemical data.

  8. Isotopic evolution of Mauna Loa Volcano: A view from the submarine southwest rift zone

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Kenna, T. C.; Kammer, D. P.; Rhodes, J. Michael; Garcia, Michael O.

    New isotopic and trace element measurements on lavas from the submarine southwest rift zone (SWR) of Mauna Loa continue the temporal trends of subaerial Mauna Loa flows, extending the known compositional range for this volcano, and suggesting that many of the SWR lavas are older than any exposed on land. He and Nd isotopic compositions are similar to those in the oldest subaerial Mauna Loa lavas (Kahuku and Ninole Basalts), while 87Sr/86Sr ratios are slightly lower (as low as .7036) and Pb isotopes are higher (206Pb'204Pb up to 18.30). The coherence of all the isotopes suggests that helium behaves as an incompatible element, and that helium isotopic variations in the Hawaiian lavas are produced by melting and mantle processes, rather than magma chamber or metasomatic processes unique to the gaseous elements. The variations of He, Sr, and Nd are most pronounced in lavas of approximately 10 ka age range [Kurz and Kammer, 1991], but the largest Pb isotopic variation occurs earlier. These variations are interpreted as resulting from the diminishing contribution from the upwelling mantle plume material as the shield building ends at Mauna Loa. The order of reduction in the plume isotopic signature is inferred to be Pb (at >100 ka), He (at ˜14 ka), Sr (at ˜9 ka), and Nd (at ˜8 ka); the different timing may relate to silicate/melt partition coefficients, with most incompatible elements removed first, and also to concentration variations within the plume. Zr/Nb, Sr/Nb, and fractionation-corrected Nb concentrations, correlate with the isotopes and are significantly higher in some of the submarine SWR lavas, suggesting temporal variability on time scales similar to the Pb isotopes (i.e. ˜ 100 ka). Historical lavas define trace element and isotopic trends that are distinct from the longer term (10 to 100 ka) variations, suggesting that different processes cause the short term variability. The temporal evolution of Mauna Loa, and particularly the new data from the submarine SWR, suggest that the isotopic composition of the upwelling plume mantle is best represented by data from Loihi seamount tholeiites. The temporal evolution suggests that the mantle source of the latest stage of Mauna Loa, which is characterized by radiogenic 87Sr/86Sr (up to .70395), unradiogenic 206Pb/204Pb (˜18.0), 3He/4He ratios similar to MORB, and low Nb concentrations, is a small-volume contribution related to non-plume components (such as normal asthenosphere, or entrained mantle).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, W.G.; Griesshaber, E.; Andrews, J.N.

    The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by variousmore » physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.« less

  10. The origin of hydrothermal and other gases in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Darling, W. G.; Griesshaber, E.; Andrews, J. N.; Armannsson, H.; O'Nions, R. K.

    1995-06-01

    The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N 2 and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH 4 and homologues) appears to be exclusively derived from the shallow crust, with thermogenic δ 13C values averaging -25‰ PDB for CH 4. H 2 is likely also to be crustally formed. CO 2, generally a dominant constituent, has a narrow δ 13C range averaging -3.7‰ PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/ 3He supports this view in most cases. Sulphur probably also originates there. Ratios of 3He/ 4He reach a MORB-like maximum of 8.0 R/RA and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between 3He/ 4He and the hydrocarbon parameter log (C 1/ΣC 2-4) appears to be primarily temperature related. The highest 3He/ 4He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on 3He/ 4He ratios in the KRV as a whole.

  11. Ages and Nd, Sr isotopic systematics in the Sierran foothills ophiolite belt, CA: the Smartville and Feather River complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, H.F.; Niemeyer, S.

    1985-01-01

    Sm-Nd dating has shown the Kings-Kaweah ophiolite to be approx. 480 My old. Its Nd, Sr, and Pb isotopic compositions require an unusually old depleted mantle source. Samples from the Smartville and Feather River complexes have been analyzed in a search for similar highly depleted, early Paleozoic ophiolites in the northern foothills ophiolite belt. Six whole rocks from Smartville, encompassing representative lithologies, plus plagioclase and pyroxene mineral separates define a 183 +/- 22 My Sm-Nd isochron. This age, interpreted as the igneous age, is older than, but within error of, approx. 160 My U-Pb ages previously obtained from plagiogranite zirconmore » analyses. One diabase with unusually high Rb/Sr yields a depleted mantle Sr model age of 200 +/- 25 My, consistent with the Sm-ND age. These compositions are clearly oceanic in character but do not discriminate among possible tectonic settings for the formation of the Smartville complex. Sm-Nd data for flaser gabbros and related rocks from Feather River scatter about an approx. 230 My errorchron with element of/sub Nd/(T) = +6.3 to +8.7. Initial /sup 87/Sr//sup 86/Sr ranges from 0.7028 to 0.7031. These results indicate a complex history with initial isotopic heterogeneities and/or disturbances of the isotopic systems. If primary, the element of/sub Nd/ (T) values are somewhat low, suggesting a possible arc origin for these rocks. Neither the Smartville nor Feather R. complexes appear to be related to the Kings-Kaweah ophiolite which, so far, is unique among foothill ophiolites in having an early Paleozoic age and a clear MORB, as opposed to arc or marginal basin, isotopic signature.« less

  12. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano

    NASA Astrophysics Data System (ADS)

    Bryce, Julia G.; Depaolo, Donald J.; Lassiter, John C.

    2005-09-01

    Sr, Nd, and Os isotopic measurements were made on 110 Mauna Kea lava and hyaloclastite samples from the drillcore retrieved from the second phase of the Hawaii Scientific Drilling Project (HSDP-2). The samples come from depths of 255 to 3098 meters below sea level, span an age range from 200 to about 550-600 kyr, and represent an ordered record of the lava output from Mauna Kea volcano as it drifted a distance of about 40 km over the magma-producing region of the Hawaiian hot spot. The deepest (oldest) samples represent the time when Mauna Kea was closest to the center of the melting region of the Hawaiian plume. The Sr and Os isotopic ratios in HSDP-2 lavas show only subtle isotopic shifts over the ˜400 kyr history represented by the core. Neodymium isotopes (ɛNd values) increase systematically with decreasing age from an average value of nearly +6.5 to an average value of +7.5. This small change corresponds to subtle shifts in 87Sr/86Sr and 187Os/188Os isotope ratios, with small shifts of ɛHf, a large shift in 208Pb/204Pb and 208Pb/207Pb values, and with a very large shift in He isotope ratios from R/RA values of about 7-8 to values as high as 25. When Mauna Kea was closest to the plume core, the magma source did not have primitive characteristics for Nd, Sr, Pb, Hf, and Os isotopes but did have variable amounts of "primitive" helium. The systematic shifts in Nd, Hf, Pb, and He isotopes are consistent with radial isotopic zoning within the melting region of the plume. The melting region constitutes only the innermost, highest-temperature part of the thermally anomalous plume mantle. The different ranges of values observed for each isotopic system, and comparison of Mauna Kea lavas with those of Mauna Loa, suggest that the axial region of the plume, which has a radius of ˜20 km, is a mixture of recycled subducted components and primitive lower mantle materials, recently combined during the formational stages of the plume at the base of the mantle. The proportions of recycled and primitive components are not constant, and this requires there be longitudinal (vertical) heterogeneity within the core of the plume. The remainder of the plume, outside this plume "core zone," is less heterogeneous but distinct from upper mantle as represented by mid-ocean ridge basalt (MORB). The plume structure may provide a detailed view of mantle isotopic composition near the core-mantle boundary.

  13. Fluid and element transfer at the slab-mantle interface: insights from the serpentinized Livingstone Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Scott, J.; Tarling, M.; Tulley, C. J.; le Roux, P. J.

    2017-12-01

    At the slab-mantle interface in subduction zones, hydrous fluids released by dehydration reactions are fluxed upwards into the fore-arc mantle corner. The extent to which these fluids can move across the plate interface shear zone has significant implications for understanding the composition of the mantle wedge and the origin of episodic tremor and slow slip. The >1000 km long Livingstone Fault in New Zealand provides a superbly exposed analogue (both in terms of scale and the rock types involved) for the serpentinite shear zone likely to be present along the slab-mantle interface. The Livingstone Fault is a sheared serpentinite mélange up to several hundreds of meters wide that separates greenschist-facies quartzofeldspathic metasediments (e.g. analogue for slab sediments) from variably-serpentinized harzburgitic peridotite (e.g. analogue for mantle wedge). To track element mobility and paleo-fluid flow across the shear zone, Sr and Nd isotopes were measured in five transects across the metasediments, mélange and serpentinized peridotites. Results show that the mélange and serpentinized peridotites (originally with Sr and Nd similar to Permian MORB) were progressively overprinted with the isotopic composition of the metasediments at distances of up to c. 400 m from the mélange-metasediment contact. Mass balance calculations require that many elements were mobile across the mélange shear zone, but permeability modeling indicates that diffusive transfer of such elements is unrealistically slow. Instead, it appears that fluid and element percolation in to and across the mélange was aided by episodic over-pressuring and fracturing, as indicated by the widespread presence of tremolite-bearing breccias and veins that mutually cross-cut the serpentinite mélange fabrics. Overall, the field and isotopic results indicate that fluid and element redistribution within major serpentinite-bearing shear zones is strongly aided by fracturing and brecciation that are triggered by episodic fluid over-pressuring. By comparison to recent geophysical and experimental results, we infer that high fluid pressures and the resultant brittle failure processes may contribute to the slow slip and tremor signal near the forearc mantle corner.

  14. Magma Supply at the Arctic Gakkel Ridge: Constraints from Peridotites and Basalts

    NASA Astrophysics Data System (ADS)

    Sun, C.; Dick, H. J.; Hellebrand, E.; Snow, J. E.

    2015-12-01

    Crustal thickness in global ridge systems is widely believed to be nearly uniform (~7 km) at slow- and fast-spreading mid-ocean ridges, but appears significantly thinner (< ~4 km) at ultraslow-spreading ridges. At the slowest-spreading Arctic Gakkel Ridge, the crust becomes extremely thin (1.4 - 2.9 km; [1]). The thin crust at the Gakkel and other ultraslow-spreading ridges, has been attributed to lithosphere thickening, ancient mantle depletion, lower mantle temperature, ridge obliquity, and melt retention/focusing. To better understand the magma supply at ultraslow-spreading ridges, we examined melting dynamics by linking peridotites and basalts dredged along the Gakkel Ridge. We analyzed rare earth elements in clinopyroxene from 84 residual peridotites, and estimated melting parameters for individual samples through nonlinear least squares analyses. The degrees of melting show a large variation but mainly center at around 7% assuming a somewhat arbitrary but widely used depleted MORB mantle starting composition. Thermobarometry on published primitive basaltic glasses from [2] indicates that the mantle potential temperature at the Gakkel Ridge is ~50°C cooler than that at the East Pacific Rise. The ridge-scale low-degree melting and lower mantle potential temperature place the final depth of melting at ~30 km and a melt thickness of 1.0 or 2.9 km for a triangular or trapezoidal melting regime, respectively. The final melting depth is consistent with excess conductive cooling and lithosphere thickening suggested by geodynamic models, while the estimated melt thickness is comparable to the seismic crust (1.4 - 2.9 km; [1]). The general agreement among geochemical analyses, seismic measurements, and geodynamic models supports that lower mantle potential temperature and thick lithosphere determine the ridge-scale low-degree melting and thin crust at the Gakkel Ridge, while melt retention/focusing and excess ancient mantle depletion are perhaps locally important at short length scales (e.g., < 50 - 100 km). [1] Jokat and Schmidt-Aursch (2007) Geophys. J. Int. (2007) 168, 983-998. [2] Gale et al. (2012) J. Petrology, 55, 1051-1082.

  15. Redox state of recycled crustal lithologies in the convective upper mantle constrained using oceanic basalt CO2-trace element systematics

    NASA Astrophysics Data System (ADS)

    Eguchi, J.; Dasgupta, R.

    2017-12-01

    Investigating the redox state of the convective upper mantle remains challenging as there is no way of retrieving samples from this part of the planet. Current views of mantle redox are based on Fe3+/∑Fe of minerals in mantle xenoliths and thermodynamic calculations of fO2 [1]. However, deep xenoliths are only recoverable from continental lithospheric mantle, which may have different fO2s than the convective oceanic upper mantle [1]. To gain insight on the fO2 of the deep parts of the oceanic upper mantle, we probe CO2-trace element systematics of basalts that have been argued to receive contributions from subducted crustal lithologies that typically melt deeper than peridotite. Because CO2 contents of silicate melts at graphite saturation vary with fO2 [2], we suggest CO2-trace element systematics of oceanic basalts which sample deep heterogeneities may provide clues about the fO2 of the convecting mantle containing embedded heterogeneities. We developed a new model to predict CO2 contents in nominally anhydrous silicate melts from graphite- to fluid-saturation over a range of P (0.05- 5 GPa), T (950-1600 °C), and composition (foidite-rhyolite). We use the model to calculate CO2 content as a function of fO2 for partial melts of lithologies that vary in composition from rhyolitic sediment melt to silica-poor basaltic melt of pyroxenites. We then use modeled CO2 contents in mixing calculations with partial melts of depleted mantle to constrain the fO2 required for partial melts of heterogeneities to deliver sufficient CO2 to explain CO2-trace element systematics of natural basalts. As an example, Pitcairn basalts, which show evidence of a subducted crustal component [3] require mixing of 40% of partial melts of a garnet pyroxenite at ΔFMQ -1.75 at 3 GPa. Mixing with a more silicic composition such as partial melts of a MORB-eclogite cannot deliver enough CO2 at graphite saturation, so in this scenario fO2 must be above the EMOG/D buffer at 4 GPa. Results suggest convecting upper mantle may be more oxidized than continental lithospheric mantle, and fO2 profiles of continental lithospheric mantle may not be applicable to convective upper mantle.[1] Frost, D, McCammon, C. 2008. An Rev E & P Sci. (36) p.389-420; [2] Holloway, J, et al. 1992. Eu J. Min. (4) p. 105-114; [3] Woodhead, J, Devey C. 1993. EPSL. (116) p. 81-99.

  16. How inheritance, geochemical and geophysical properties of the lithospheric mantle influence rift development and subsequent collision

    NASA Astrophysics Data System (ADS)

    Picazo, Suzanne; Chenin, Pauline; Müntener, Othmar; Manatschal, Gianreto; Karner, Garry; Johnson, Christopher

    2017-04-01

    In magma-poor rifted margins, the rift structures, width of necking zones and overall geometry are controlled by the heterogeneities of geochemical and geophysical properties of the crust and mantle. In this presentation we focus on the mantle heterogeneities and their major implications on the closure of a hyper-extended rifted system. In our study, we review the clinopyroxene and spinel major element composition from the Liguria-Piemonte domain, the Pyrenean domain, the Dinarides and Hellenides ophiolites and the Iberia-Newfoundland rifted margins (Picazo et al, 2016). It would seem that during an extensional cycle i.e., from post-orogenic collapse to polyphase rifting to seafloor spreading, the mineral compositions of mantle peridotites are systematically modified. The initially heterogeneous subcontinental mantle cpx (inherited mantle type 1) equilibrated in the spinel peridotite field and is too enriched in Na2O and Al2O3 to be a residue of syn-rift melting. The heterogeneous inherited subcontinental mantle becomes progressively homogenized due to impregnation by MORB-type melts (refertilized mantle-type 2) during extensional thinning of the lithosphere. At this stage, cpx equilibrate with plagioclase and display lower Na2O and Al2O3 and high Cr2O3 contents. The system might evolve into breakup and oceanization (mantle type 3) i.e., self-sustained steady-state seafloor spreading. The different mantle-types are present in various reconstructed sections of magma-poor margins and display a systematic spatial distribution from mantle type 1 to 3 going oceanwards in Western and Central Europe. We estimated the density of the three identified mantle types using idealized modal peridotite compositions using the algorithm by Hacker et al, (2003). The density of the refertilized plagioclase peridotite is predicted to be lower than that of inherited subcontinental and depleted oceanic mantle. This has some interesting consequences on the reactivation of rifted margins. Conversely to a classical subduction where the oceanic lithosphere being subducted produces a mobile component that contributes to the formation of long-lived volcanic arcs, a hyper-extended rifted system and small oceanic basins (<300m wide) might not go to self-sustained subduction with limited production of arc magmas. Such a mantle wedge might remains fertile with a high potential to melt during the first stages of subsequent extension. Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research, 108(B1):2029. Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., & Johnson, C. (2016). Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos, 266, 233-263.

  17. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    USGS Publications Warehouse

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component; and OIB-source-like domains. Lavas with arc and intraplate (OIB) geochemical signatures were erupted close to HAOT, and many lavas are blends of two or more magma types. Pre-eruptive H2O contents of HAOT, coupled with phase-equilibrium studies, suggest that these magmas were relatively dry and last equilibrated in the mantle wedge at temperatures of ???1300??C and depths of ???40 km, virtually at the base of the crust. Arc basalt and basaltic andesite represent greater extents of melting than HAOT, presumably in the same general thermal regime but at somewhat lower mantle separation temperatures, of domains of sub-arc mantle that have been enriched by a hydrous subduction component derived from the young, relatively hot Juan de Fuca plate. The primitive magmas originated by partial melting in response to adiabatic upwelling within the mantle wedge. Tectonic extension in this part of the Cascade arc, one characterized by slow oblique convergence, contributes to mantle upwelling and facilitates eruption of primitive magmas.

  18. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China

    NASA Astrophysics Data System (ADS)

    Fan, Weiming; Wang, Yuejun; Zhang, Aimei; Zhang, Feifei; Zhang, Yuzhi

    2010-10-01

    This paper presents a set of new SHRIMP zircon U-Pb geochronological, elemental and Sr-Nd-Pb isotopic data for the Wusu and Yaxuanqiao basaltic rocks (the Mojiang area) along the Ailaoshan tectonic zone. The Wusu basaltic sequence is dominated by SiO 2-poor, MgO- and TiO 2-rich basalts with a major mineral assemblage of plagioclase + clinopyroxene. These rocks gave a SHRIMP zircon U-Pb age of 287 ± 5 Ma (MSWD = 0.58). In contrast, the Yaxuanqiao basaltic sequence is predominantly composed of high-Al basaltic andesite, which gave a SHRIMP zircon U-Pb age of 265 ± 7 Ma (MSWD = 0.34). The analyzed samples for both sequences exhibit significant enrichment in LILEs and depletion in HFSEs with (Nb/La)n of 0.38-0.81, similar to arc-like volcanics. They have positive ɛNd(t) values (+ 3.52 to + 5.54). In comparison with MORB-derived magmatic rocks, the Wusu basalts are more enriched in LILEs and REEs, and the Yaxuanqiao samples are more enriched in LILEs but variably depleted in Ti, Y and HREE. The Wusu samples show high Pb isotopic ratios, similar to the Tethyan basalts, whereas the Yaxuanqiao samples plot in the field of the global pelagic sediments. The geochemical and Sr-Nd-Pb isotopic characteristics suggest that the Wusu basalts originated from a MORB-like source metasomatised by slab-derived fluids, while the Yaxuanqiao rocks have a fluid-modified MORB source with the input of subducted sediments. The geochemical affinity to both MORB- and arc-like sources, together with other geological observations, appears to support the development of a Permian arc-back-arc basin along the Ailaoshan-Song Ma tectonic zone in response to the northward subduction of the Paleotethys main Ocean. The final closure of the arc-back-arc basin took place in the uppermost Triassic due to the diachronous amalgamation between the Yangtze and Simao-Indochina Blocks.

  19. Nickel and helium evidence for melt above the core-mantle boundary.

    PubMed

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis

    2013-01-17

    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  20. Fluid-mediated redox transfer in subduction zones: Measuring the intrinsic fO2 of slab fluids in the lab

    NASA Astrophysics Data System (ADS)

    Iacovino, K.; Till, C. B.

    2017-12-01

    It is widely observed that arc magmas are the most oxidized magmas on Earth. One frequently cited explanation calls on the flux of aqueous fluid from the highly oxidized down-going slab to catalyze sub-arc mantle melting and impose a highly oxidized redox signature on the mantle wedge. Fluid inclusions from sub-arc mantle xenoliths provide evidence that "slab fluids" may be highly oxidizing (fO2 QFM+1.5; Brandon & Draper, 1996; Frost and Ballhaus, 1998), but for decades, determination of the precise reactive mechanism potentially responsible for the transfer of O2 from slab to mantle has been elusive. Pure H2O has been shown to have insufficient oxidizing capacity to affect mantle redox, but H2O-rich fluids may facilitate the mobilization of Fe3+ or other multivalent cations and/or O2 transfer via the reduction of sulfate, particularly if such fluids are hypersaline. Here we present the first results from experiments designed to investigate fluid-mediated element transfer, including redox reactions, at the slab-mantle interface. These data include the first direct measurements of the intrinsic oxygen fugacity of fluids released during slab dehydration using sliding binary alloy redox sensors. Experiments were performed on natural Fe3+-bearing antigorite serpentinite at 1-2 GPa and 800°C in a piston cylinder at Arizona State University, analogous to conditions in a subducting slab and sufficient to cause the breakdown of starting material into forsteritic olivine, Mg-rich clinopyroxene, magnetite, and aqueous fluid. Experimental time series allow for the detection of (and correction for) any buffering effect on the sample by the experimental assembly. Initial results indicate that the dehydration of sulfur-free antigorite serpentinite can generate fluids with fO2 several orders of magnitude above that of MORB mantle and similar to those observed in natural sub-arc fluid inclusions. Careful measurements of the chemistry of fluid and solid run products will elucidate the redox exchange reaction responsible for these fluid characteristics. These data suggest the dehydration of slab serpentine and the derivative fluid may play an important role in controlling the redox of arc magmas and the sub-arc mantle.

  1. Regional sub-cratonic mantle heterogeneities under the Kaapvaal craton recorded by sulfide inclusions in diamond.

    NASA Astrophysics Data System (ADS)

    Thomassot, E.; Lorand, J. P.

    2016-12-01

    Sulfide inclusions in diamonds (SID) have been trapped by their host at depth greater than 150 km and then protected from alteration or reequilibration processes. Subsequently, depending on their initial composition, there have experienced multiple exsolution events at temperatures between 650°C and 200°C. Mineralogical and isotopic composition of SID thus directly reflects their sources whereas their texture give information on the exhumation history of their diamond host. Our samples originating from Koffiefontein, De Beers Pool and Jwaneng kimberlites, include both peridotitic (P-type, n=6) and eclogitic (E-type, n=151) sulfides. P-type sulfides are monosulfide solid solutions (exsolved from a nickeliferous monosulfide solid solution, mss, stable at T>300°C). Their Ni and Cr content indicate that the sublithospheric mantle under Koffiefontein (Ni=26wt%; Cr=0.36 wt%) is more refractory than De Beers Pool (Ni=24wt%; Cr=0.28wt%) and Jwaneng (Ni=17wt%; Cr=0.22wt%). Sulfides from De Beers Pool have S/Se (3900±100) greater than the chondritic values ( 2540) pointing to a metasomatic overprint predating the formation of diamonds. S-isotopic composition (d34S=-0.9 ± 0.5‰, Δ33S=0‰) are homogeneous, and consistent with the composition of MORB. E-type sulfides are unmixed assemblage of chalcopyrite (crystallized from an intermediate solid solution formed at T 650°C) pentlandite (T° from 260 to >200°C) and pyrrhotite. Comparing the chemical composition of the unmixed phases with experimental data, we determined a blocking T° for E-type assemblages ranging from 540°C at Koffiefontein, to less than 200°C at Jwaneng and DeBeersPool. E-type sulfides thus confirm the chemical heterogeneity from one mine to the other, with d34S extended to fractionated values (-9 to +11‰). Our study indicates that SID are robust probes to explore regional scale mantle heterogeneities likely associated to discrete depletion events and possible recycling of ancient sediment, predating the formation of diamonds. Major, trace element and isotopes data will be presented at the conference in order to support this conclusion.

  2. Igneous Crystallization Beginning at 20 km Beneath the Mid-Atlantic Ridge, 14 to 16 N

    NASA Astrophysics Data System (ADS)

    Kelemen, P.

    2003-12-01

    ODP Leg 209 drilled 19 holes at 8 sites along the Mid-Atlantic Ridge from 14° 43 to 15° 44 N. All sites were previously surveyed by submersible, and were chosen to be < 200 m from peridotite or dunite exposed on the seafloor; outcrops of gabbroic rock were also near some sites. One primary goal of Leg 209 was to constrain melt migration and igneous petrogenesis in this region where residual peridotites are exposed on both sides of the Ridge axis. At Sites 1269 and 1273, we penetrated 112 m of basaltic rubble; recovery was poor (3.7 m) and holes unstable, so drilling was terminated. Lavas form nearly horizontal surfaces overlying cliffs exposing peridotite and gabbro. At 6 other sites, we drilled a mixture of residual peridotite and gabbroic rocks intrusive into peridotite. We penetrated 1075 meters at these 6 sites, and recovered 354 m of core. Drilling at Sites 1268, 1270, 1271 and 1272 recovered 25% gabbroic rocks and 75% residual mantle peridotite. Core from Site 1274 is mainly residual peridotite, with a few m-scale gabbroic intrusions. Core from Site 1275 is mainly gabbroic, but contains 24% poikilitic lherzolite interpreted as residual peridotite "impregnated" by plagioclase and pyroxene crystallized from melt migrating along olivine grain boundaries; these impregnated peridotites were later intruded by evolved gabbros. Impregnated peridotites are also common at Site 1271, and present at Sites 1268 and 1270. The overall proportion of gabbroic rocks versus residual peridotites from these 6 sites is similar to previous dredging and submersible sampling in the area. The proportion of gabbro is larger than in"amagmatic" regions on the ultra-slow spreading SWIR and Gakkel Ridges. Impregnated peridotites from Site 1275 have "equilibrated" textures and contain olivine, 2 pyroxenes, plag and Cr-rich spinel. Their whole rock Mg#, Cr# and Ni are high, extending to residual peridotite values. 87 MORB glasses from 14 to 16° N with Mg# from 60 to 73 [from PetDB] could be plagioclase lherzolite saturated at 0.54 GPa (+/-0.14 GPa, 2σ ) and 1220° C (+/-16° C, 2σ ) [Kinzler & Grove, JGR 92]. Impregnated peridotites and olivine gabbronorites at other sites contain all or most of these minerals, have similar compositions, and record similar conditions. Melts entered the thermal boundary layer beneath the Mid-Atlantic Ridge at about 20 km depth [e.g., Sleep, JGR1975; Reid & Jackson, MGR 82; Grove et al JGR 92; Cannat JGR 96; Michael & Chase CMP 97; Braun et al., EPSL 00], and began to crystallize within impregnated peridotites and as discrete plutons intruding peridotite. 25% gabbro in the upper 20 km of an oceanic plate would correspond to 5 km of "normal" oceanic crust. 25% gabbro (7.2 km/s) + 75% peridotite (8.2 km/s) yields a "mantle" Vp (8 km/s). Residual mantle peridotites from Leg 209 Sites N and S of the 15° 20 Fracture Zone are among the most depleted from the mid-ocean ridges. No regional compositional gradient is evident. Most gabbroic rocks are evolved gabbronorites that are not complementary to MORB; instead, they result from complete, near-fractional crystallization of migrating melt at depth. Site 1268 gabbronorites, together with impregnated peridotites, may be primitive cumulates complementary to MORB. As reported elsewhere at this meeting, high temperature shear zones and faults accomodated nearly all of the subsolidus deformation associated with corner flow and exhumation of residual peridotites and high pressure igneous rocks.

  3. Metamorphic density controls on early-stage subduction dynamics

    NASA Astrophysics Data System (ADS)

    Duesterhoeft, Erik; Oberhänsli, Roland; Bousquet, Romain

    2013-04-01

    Subduction is primarily driven by the densification of the downgoing oceanic slab, due to dynamic P-T-fields in subduction zones. It is crucial to unravel slab densification induced by metamorphic reactions to understand the influence on plate dynamics. By analyzing the density and metamorphic structure of subduction zones, we may gain knowledge about the driving, metamorphic processes in a subduction zone like the eclogitization (i.e., the transformation of a MORB to an eclogite), the breakdown of hydrous minerals and the release of fluid or the generation of partial melts. We have therefore developed a 2D subduction zone model down to 250 km that is based on thermodynamic equilibrium assemblage computations. Our model computes the "metamorphic density" of rocks as a function of pressure, temperature and chemical composition using the Theriak-Domino software package at different time stages. We have used this model to investigate how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within subduction systems. These processes are commonly neglected by other approaches (e.g., gravitational or thermomechanical in nature) reproducing the density distribution within this tectonic setting. The process of eclogitization is assumed as being important to subduction dynamics, based on the very high density (3.6 g/cm3) of eclogitic rocks. The eclogitization in a MORB-type crust is possible only if the rock reaches the garnet phase stability field. This process is primarily temperature driven. Our model demonstrates that the initiation of eclogitization of the slab is not the only significant process that makes the descending slab denser and is responsible for the slab pull force. Indeed, our results show that the densification of the downgoing lithospheric mantle (due to an increase of pressure) starts in the early subduction stage and makes a significant contribution to the slab pull, where eclogitization does not occur. Thus, the lithospheric mantle acts as additional ballast below the sinking slab shortly after the initiation of subduction. Our calculation shows that the dogma of eclogitized basaltic, oceanic crust as the driving force of slab pull is overestimated during the early stage of subduction. These results improve our understanding of the force budget for slab pull during the intial and early stage of subduction. Therefore, the complex metamorphic structure of a slab and mantle wedge has an important impact on the development and dynamics of subduction zones. Further Reading: Duesterhoeft, Oberhänsli & Bousquet (2013), submitted to Earth and Planetary Science Letters

  4. Electrical conductivity of partially-molten olivine aggregate and melt interconnectivity in the oceanic upper mantle

    NASA Astrophysics Data System (ADS)

    Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina

    2016-04-01

    A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (< 2 vol. %). To fill this gap, we performed in situ electrical conductivity (EC) measurement on a partially-molten olivine aggregate (Fo92-olivine from a natural peridotite of Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.

  5. Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Yogodzinski, G. M.; Ishizuka, O.; McCarthy, A.; Bizimis, M.; Kusano, Y.; Savov, I. P.; Arculus, R.

    2018-05-01

    The Izu-Bonin-Mariana (IBM) island arc formed following initiation of subduction of the Pacific plate beneath the Philippine Sea plate at about 52 Ma. Site U1438 of IODP Expedition 351 was drilled to sample the oceanic basement on which the IBM arc was constructed, to better understand magmatism prior to and during the subduction initiation event. Site U1438 igneous basement Unit 1 (150 m) was drilled beneath 1460 m of primarily volcaniclastic sediments and sedimentary rock. Basement basalts are microcrystalline to fine-grained flows and form several distinct subunits (1a-1f), all relatively mafic (MgO = 6.5-13.8%; Mg# = 52-83), with Cr = 71-506 ppm and Ni = 62-342 ppm. All subunits are depleted in non-fluid mobile incompatible trace elements. Ratios such as Sm/Nd (0.35-0.44), Lu/Hf (0.19-0.37), and Zr/Nb (55-106) reach the highest values found in MORB, while La/Yb (0.31-0.92), La/Sm (0.43-0.91) and Nb/La (0.39-0.59) reach the lowest values. Abundances of fluid-mobile incompatible elements, K, Rb, Cs and U, vary with rock physical properties, indicating control by post-eruptive seawater alteration, but lowest abundances are typical of fresh, highly depleted MORBs. Mantle sources for the different subunits define a trend of progressive incompatible element depletion. Inferred pressures of magma segregation are 0.6-2.1 GPa with temperatures of 1280-1470 °C. New 40Ar/39Ar dates for Site U1438 basalts averaging 48.7 Ma (Ishizuka et al., 2018) are younger that the inferred age of IBM subduction initiation based on the oldest ages (52 Ma) of IBM forearc basalts (FAB) from the eastern margin of the Philippine Sea plate. FAB are hypothesized to be the first magma type erupted as the Pacific plate subsided, followed by boninites, and ultimately typical arc magmas over a period of about 10 Ma. Site U1438 basalts and IBM FABs are similar, but Site U1438 basalts have lower V contents, higher Ti/V and little geochemical evidence for involvement of slab-derived fluids. We hypothesize that the asthenospheric upwelling and extension expected during subduction initiation occurred over a broad expanse of the upper plate, even as hydrous fluids were introduced near the plate edge to produce FABs and boninites. Site U1438 basalts formed by decompression melting during the first 3 Ma of subduction initiation, and were stranded behind the early IBM arc as mantle conditions shifted to flux melting beneath a well-defined volcanic front.

  6. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.

    2015-12-01

    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement suggests modest enrichment of a depleted Indian MORB source over time.

  7. Fingerprints of the Paleotethyan back-arc basin in Central Hainan, South China: geochronological and geochemical constraints on the Carboniferous metabasites

    NASA Astrophysics Data System (ADS)

    He, Huiying; Wang, Yuejun; Zhang, Yanhua; Qian, Xin; Zhang, Yuzhi

    2018-03-01

    Hainan of Southeast Asia has been regarded as a key area for understanding the Late Paleozoic tectonic regime and amalgamation process of the Indochina with South China Blocks that are not well constrained. This paper presents a set of new geochronological, elemental, and Sr-Nd isotopic data for the Paleozoic Bangxi and Chenxing metabasites in Central Hainan. The geochronological data show that the representative samples yield the 40Ar/39Ar plateau age of 328.1 ± 2.6 Ma and zircon U-Pb age of 330.7 ± 4.4 Ma, respectively. They are SiO2- and TiO2-poor, Al2O3-rich mafic rocks. The Chenxing samples are characterized by left-sloping chondrite-normalized REE and N-MORB-like multi-elemental patterns. The Bangxi samples have the E-MORB-like geochemical affinity. All samples show high ɛ Nd(t) values ranging from +5.61 to +9.85. Such signatures suggest their origination of a MORB-like source with the input of subduction-derived components. Our investigation has verified the presence of the Carboniferous metabasites with both MORB- and arc- like geochemical affinities at the Bangxi-Chenxing area in Central Hainan. In combination with the available data from the Jinshajiang, Ailaoshan, and Song Ma suture zones, it is proposed for the development of a Carboniferous back-arc basin along the Ailaoshan-Song Ma and Central Hainan suture zones in response to the subduction of the Paleotethyan main Ocean.

  8. Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: Footprints of Proterozoic mantle plumes under the Cathaysia Block

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Lung; O'Reilly, Suzanne Y.; Honda, Masahiko; Matsumoto, Takuya; Griffin, William L.; Pearson, Norman J.; Zhang, Ming

    2010-02-01

    Abundant primary sulfides occur as inclusions in silicates and as discrete grains in mantle-derived spinel lherzolite xenoliths from Miocene intraplate basalts on the Penghu Islands, Taiwan, which is located at the southeastern margin of Cathaysia Block. These sulfides are dominantly mixtures of Fe-rich and Ni-rich monosulfide solid solutions (MSS), with minor pentlandite, millerite and chalcopyrite, and are considered to represent sulfide melts crystallized at high temperatures (>900 °C). Some sulfides from the Tungchiyu (TCY) islet (37 out of 118 grains) have remarkably high Co contents resulting in subchondritic Ni/Co ratios (<21; 5-20, median = 12), distinct from the superchondritic values (Ni/Co = 48-157, median = 83) typical of mantle sulfides worldwide. The Co-rich nature of the TCY sulfides is considered to be a primary characteristic as no secondary processes can be identified to account for the feature. They are similar to Ni-Co-rich sulfides from Lac de Gras, Slave Craton ( Aulbach et al. (2004) Chemical Geology 208, 61-88) interpreted as being derived from the lower mantle. Experimental studies suggest that the sulfide melt/silicate melt partition coefficient of Ni becomes lower than that of Co at pressures greater than 28 GPa, similar to recent estimates of the magma ocean conditions. Os model ages of the TCY Co-rich sulfides reveal four episodes of generation: 2.0, 1.7, 1.4 and 0.8 Ga; this is consistent with the age pattern of all Penghu sulfides, indicating significant lithosperic mantle formation, melt extraction or metasomatic events at these time periods. These events closely correspond to the global 1.9-Ga superplume event related to the assembly of the Nena/Columbia supercontinent, a minor 1.7-Ga superplume event in SW Laurentia prior to breakup of Nena/Columbia, the 1468 Ma Moyie event in the Belt Basin region in western Laurentia and the ˜0.8 Ga breakup of Rodinia, with which the Cathaysia Block was associated at various stages during its Proterozoic evolution ( Li et al. (2008) Precambrian Research 160, 179-210 and references therein). Olivine in a peridotite sample from the TCY locality has distinctly high 3He/ 4He (11 R A), whereas other peridotites from the KP and TCY localities have 3He/ 4He ˜6.7 R A, lower than MORB. The high 3He/ 4He further suggests that materials from the deep mantle have interacted with the host peridotite of Co-rich sulfides. We thus propose that the Co-rich sulfide melts may have been trapped in the lower mantle during core-mantle differentiation and then transported to shallow depths by mantle plumes that entrained lower mantle materials at several different time periods. This study provides the first substantial evidence from the lithosperic mantle beneath the Cathaysia Block to support the activity of mantle plumes related to the breakup of the supercontinents Nena/Columbia and Rodinia in Proterozoic time.

  9. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of collision type with extreme LILE and significant HFSE enrichment relative to MORB and with large negative Nb-Ta and Ti anomalies. Post-collision volcanism is usually ascribed to combinations of slab detachment, delamination, and slab roll back (orogenic) and extension (post-orogenic). The magma source is typically conductively-heated, sub-continental mantle lithosphere with composition and depth of melting depending on the nature and evolution of the collision zone in question. Geochemical patterns may be similar to those of syn-collision basalts or of intraplate, continental basalts - or transitional between these. This variability in space and time, though problematic for geochemical fingerprinting, can give clues to the polarity and development of the collision zone, for example by highlighting the distribution of subduction-modified mantle lithosphere and hence of pre-collision subduction zones. One characteristic common to this setting is a high crustal input resulting from the presence of a hot, thick 'crustal chemical filter' which is evident on geochemical projections that highlight AFC-type processes. Using this, and other, geochemical features it is possible to develop methodologies to at least partly see through the complexity of collision terranes.

  10. Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.

    2006-12-01

    The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations suggesting erosion and replacement of the deeper Pacific lithosphere by plume material, downstream from the center of the plume.

  11. Observations of 231Pa/ 235U disequilibrium in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Pickett, David A.; Murrell, Michael T.

    1997-04-01

    We present here the first survey of ( 231Pa/ 235U) ratios in volcanic rocks; such measurements are made possible by new mass spectrometric techniques. The data place new constraints on the timing and extent of magma source and evolutionary processes, particularly due to the sensitivity of the 231Pa- 235U pair and its intermediate time scale ( 231Pat 1/2 = 33 ky). ( 231Pa/ 235U) is found to vary widely, from 0.2 in carbonatites to 1.1-2.9 in basalts and 0.9-2.2 in arcs. Substantial Pa enrichment is nearly ubiquitous, suggestive of the relative incompatibility of Pa, qualitatively consistent with available partitioning data. The level of 231Pa- 235U disequilibrium typically far exceeds that of 230Th- 238U and is comparable to 226Ra- 230Th. The high ( 231Pa/ 235U) ratios in MORB and other basalts reflect a large degree of discrimination between two incompatible elements, posing challenges for modelling of melt generation and migration. Fundamental differences in ( 231Pa/ 235U) among different basaltic environments are likely related to contrasts in melting zone conditions (e.g., melting rate). Strong ( 231Pa/ 235U) disequilibria in continental basalts, for which ( 230Th/ 238U) disequilibria are small or absent, demonstrate that Pa-U fractionation is possible in both garnet and spinel mantle stability fields. In arcs, correlation of ( 231Pa/ 235U) and ( 230Th/ 238U) is consistent with U enrichment via slab-derived fluids, a process which is additional to the still dominant Pa enrichment. An important new constraint is provided by the observation that the near-equilibrium ( 230Th/ 238U) common to arcs and continental basalts is not typically accompanied by near-equilibrium ( 231Pa/ 235U), arguing against the influence of long magma history, crustal material, or equilibrium mantle sources in affecting decay-series ratios. Small sample sets from two silicic centers illustrate: (1) recent, rapid U enrichment in the magma chamber (El Chichón); and (2) the failure of substantial magma H 2O-CO 2 degassing to effect U-Th-Pa fractionation (Mono Craters).

  12. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical indicators of mantle degassing to assess the relationship between He-isotopes and mantle velocity structure in the region.

  13. Testing Models for the Origin of the Earth-Moon System with 142Nd/144Nd Measurements

    NASA Astrophysics Data System (ADS)

    Hyung, E.; Jacobsen, S. B.; Zeng, L.

    2015-12-01

    The Sm-Nd system is widely used for tracking the differentiation and evolution of planetary silicate reservoirs, due to the well understood, strong Sm-Nd fractionation between melt and mantle minerals. The short-lived 146Sm-142Nd system with a half-life of 103 Ma or 68 Ma has been used to constrain early planetary differentiation events based on early Archean terrestrial rocks, lunar rocks and meteorites. Early Archean terrestrial rocks show significant variations in 142Nd/144Nd of about 30 ppm, demonstrating very early differentiation of the Earth's mantle and crust. In contrast, present day 142Nd/144Nd ratios of mantle-derived ocean island basalts and MORBs show almost no variation at the reported analytical precision level (2σ = ± 6 ppm), suggesting that such early variations have been erased with time due to crustal recycling and mantle mixing. The 142Nd/144Nd ratio of the lunar mantle has been reported to be offset from terrestrial standards by about -5 ppm, barely resolvable with the reported analytical uncertainties. Differences in the 142Nd/144Nd ratios between the bulk Earth and Moon may suggest early large scale silicate differentiation events on the Earth that predate the Giant Moon forming impact. To address this problem, we carry out new 142Nd/144Nd measurements of terrestrial rocks, and lunar rocks and meteorites with a TIMS (Isoprobe T) equipped with new Xact Faraday amplifiers provided by Isotopx. We find that the Xact amplifiers provide lower noise than the earlier generation preamplifiers and operate close to the theoretical thermodynamic noise limit calculated from the Johnson equation. So far we have been able to improve multidynamic measurements to be reproducible to within ± 2 ppm at the 2σ level, and with this precision we find no variations in a few young terrestrial rocks. Our next step is measurements of lunar rocks and E-chondrites. If these turn out to be identical to the modern Earth, then the Nd isotope system may tell the same story as isotope ratios of many other elements: they are identical in the Earth, Moon and E-chondrites, and different from most other Solar System objects. There would thus be no need to postulate hidden reservoirs in the Earth's mantle to explain the 142Nd/144Nd ratios of the modern Earth's mantle.

  14. A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion

    NASA Astrophysics Data System (ADS)

    Abouchami, Wafa; Boher, Muriel; Michard, Annie; Albarede, Francis

    1990-10-01

    Birimian terranes from West Africa (Mauritania, Senegal, Ivory Coast, Burkina Faso, Niger) comprise two major units: a dominantly mafic bimodal volcanic unit and a volcano-detrital unit with mostly felsic to intermediate protolith. Stratigraphic relationships of these units are still a matter of debate but current work suggest that they both formed in a short time interval around 2.1 Ga. Widespread basaltic magmas from the bimodal unit have been analyzed for REE distributions and Sr-Nd isotopes. Three Sm-Nd isochrons on tholeiitic lavas were obtained at 2.229±0.042 Ga and initial ɛNd = 3.6±1.0 for Mauritania, 2.126±0.024 Ga and initial ɛNd = 2.9±0.7 for Burkina Faso, 2.063±0.041 Ga and initial ɛNd = 3.1± .0 for Eastern Senegal, data which compare with the age of 2.11±0.09 Ga and initial ɛNd = 2.1±1.8 obtained in Guyana by Gruau et al. (1985). Samples from other localities (Ivory Coast, Niger) give generally similar results. Although the variations of Sm/Nd ratios and the scatter of ɛNd(T) values from +1.2 to +4.3 preclude a single origin for these magmas, initial isotopic heterogeneities are unlikely to bias significantly the ages given by the isochrons which are in good agreement with U-Pb zircon ages (Boher et al., 1989; unpublished data, 1990). Presence of lavas with frequent pillow structures and sediments virtually free of older recycled components suggests that Birimian terranes formed in ocean basins far from continental influence. The isotopic heterogeneities are not consistent with a MORB-like mantle source. Most lavas are slightly depleted in LREE and inversion of the data through a melting model suggests 5-15 percent melting of a slightly depleted Iherzolite. Strong depletion (Burkina Faso) and slight enrichment (Senegal) are occasionally observed. With a noticeable trend of Ti enrichment with differentiation intermediate between that of MORB and IAT, the geochemical signature of Birimian basalts does not fit the best known geodynamic environments. Back-arc or low-Ti continental flood basalts provide a marginally good agreement but still face some difficulties. Oceanic flood basalts similar to those which form oceanic plateaus (e.g. in the Nauru basin) and later accreted to continents as allochtonous terranes represent the most acceptable modern analogue of many Proterozoic basalts. It is suggested that deep plumes piercing young lithosphere can generate huge amounts of tholeiites in a short time. Birimian basalts, like many Early Proterozoic basalts, may also be viewed as recent equivalents of the Archean greenstone belts. The modern komatiite of Gorgona Island is suggested to fit this model of intraplate volcanism. Although the 2.1 Ga magmatic event in West Africa has gone virtually unnoticed in the literature, it extends over several thousand kilometers and compares with the distribution of mantle-derived magmatic activity in other major orogenic provinces (e.g. Superior). It shows that the growth rate of continents cannot be extrapolated from the data obtained solely from the best studied continents (North America, Europe, Australia). If such large crustal segments were overlooked, a spurious pattern of episodic activity of the mantle could arise.

  15. Vanadium Partitioning and Mantle Oxidation State: New Experimental Data

    NASA Astrophysics Data System (ADS)

    Mallmann, G.; O'Neill, H. S.

    2007-12-01

    Vanadium exists in multiple valences in natural basaltic melts, namely V2+, V3+, V4+ and V5+. Because most crystalline phases prefer to incorporate V3+ rather than V4+ and V5+, the crystal/silicate-melt partitioning of vanadium (DVcry/melt) tends to decrease with increasing oxygen fugacity (fO2). Such dependence has been experimentally demonstrated and used to estimate the fO2 of mantle and mantle-derived rocks. Recent modelling of V and V/Sc systematics in basalts has lead to the view that the relative fO2 of the upper mantle is constant, both through time and among the sources of different types of basaltic magmas (i.e. MORB, OIB and IAB). This is contrary to the notion given by other oxygen barometric methods on peridotites and basalts, which indicate an upper mantle heterogeneous in relative fO2. To explore further the potential of V abundances and V/Sc ratios to estimate the relative fO2 of mantle peridotites and basalts, and in particular to understand variations in mantle oxidation state better, we carried out an experimental campaign aimed at measuring DVcry/melt for all the relevant phases of the upper mantle (i.e. olivine, orthopyroxene, clinopyroxene, garnet and spinel) over a range of fO2 conditions large enough to pin down not only the behaviour of V3+ and V4+ but also V2+ and V5+. Experiments were done in 1-atm vertical tube furnaces (1300°C) and piston-cylinder apparatus (1275-1450°C and 1.5-3.2 GPa). For the high-pressure experiments, fO2 was controlled by the Re-ReOx/2 equilibrium (10-9 to 10-0.7 bar), whereas for the 1-atm experiments, fO2 was controlled by Ar-CO-CO2- O2 gas mixes (10-18 to 10-0.7 bar). Five starting compositions were used to ensure the presence of all the desired phases. Experimental products were analysed for major elements by electron microprobe and for trace elements by laser-ablation ICP-MS, which enables V to be measured precisely even at very low concentrations. Partition coefficients for all phases plot as approximately sigmoid-shaped curves in log D-log fO2 space. Details of the shape of the curve are controlled by the relative preference of each crystalline phase for a specific valence of V. For instance, orthopyroxene appears to particularly like V4+, so that the log DVopx/melt-log fO2 and log DVcpx/melt-log fO2 curves converge in the region of the diagram dominated by V4+, diverging in the regions dominated by V3+ and V5+. Contrary to previous studies, our results do not suggest a systematic increase in DVcpx/opx with decreasing fO2. Olivine and spinel, on the other hand, strongly prefer V3+ relative to V4+ and V5+ and hence for olivine and spinel the difference in partition coefficients between reducing and oxidizing conditions are more pronounced than that for pyroxenes. At high-pressure, DVgrt/melt and DVcpx/melt are very similar to each other, but the values of DVcpx/melt are about one order of magnitude higher than those obtained at 1 atm at comparable fO2. The cause of this discrepancy is being investigated.

  16. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic understanding of the fluid, in regards with the geodynamical context, helps us to unravel the complex fluid history of these deep environments. Ballentine C.J. and Burnard P.G. (2002). Rev. Mineral. Geochem., vol. 47, pp 481-538. Burnard P et al. (2012) EPSL 341, pp 68-78. Gilfillan, S.M.V. et al. (2008) GCA, vol. 72, pp 1174-1198.

  17. Mechanisms of formation of mantle section pyroxenites of Voykar Ophiolite, Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Belousov, Ivan; Batanova, Valentina; Sobolev, Alexander; Savelieva, Galina

    2010-05-01

    Ural Mountains mark a major mid Paleozoic collision event, which resulted in the closure of an ocean basin separating the Siberian and European plates. Voykar Ophiolite is located in the Northern part of Uralian Ophiolite Belt. Ophiolitic sequence rocks of Polar Urals are usually considered as giant fragments of mantle and MORB-type crust formed in back-arc settings (e.g. Savelieva et al., 1987). Mantle section of Voykar Ophiolite comprises most of the ophiolitic sequence. It is up to 8 km thick and consists mostly of spinel harzburgites with multiple dunitic bodies and pyroxenitic veins representing pathways for different melts/fluids. While it is generally accepted that dunites in mantle sections are formed by melt-rock reaction and mark melt pathways (e.g. Kelemen et al., 1995), formation of pyroxenites is a subject of debate. Often pyroxenites from mantle sections of ophiolites (Varfalvy et al., 1997), as well as pyroxenites from mantle wedge xenoliths (Arai et al., 2006, Bali et al., 2007, Gregoire et al., 2008) are interpreted as interaction products between high-SiO2 melts and mantle peridotites. Such melts are believed to be widespread in SSZ mantle: boninites, high-MgO andesites and adakites. However, some researchers (e.g. Berly et al., 2006, Halama et al., 2009) propose pyroxenite formation in metasomatic reaction with fluid from subducting plate. Moreover, some pyroxenites could be formed by the melt crystallization in hydrous conditions (Muntener et al., 2001). We present comprehensive study of mineral major and trace element compositions from the mantle section rocks of Voykar Ophiolite in order to determine mechanism of formation of pyroxenites in ophiolitic mantle sections. Compositions of clinopyroxene and olivine from pyroxenites were compared to their compositions in harzburgites and dunites. Furthermore, compositions of clinopyroxene and magmatic amphibole from mantle section pyroxenites were used to calculate equilibrium melts. Geochemical data (enrichment of clinopyroxenes and amphiboles in LREE and LILE (Rb, Ba, Sr) relative to HFSE (Nb, Zr)) together with structural data suggests that pyroxenites display clear suprasubduction signatures and refer to the last stage of Voykar Ophiolite mantle section formation. All minerals from pyroxenites tend to have lower Mg-numbers and, therefore, high-Si meltsfluids have played major role in their formation. Depletion of clinopyroxenes in HREE and enrichment in Sr and LREE across the harzburgite-pyroxenite contacts suggests that this high-Si melts most probably refer to depleted SSZ melts, such as boninites. One group of magmatic amphibole in pyroxenites refers to such melts. However, another group of magmatic amphiboles probably refers to high-Si fluid depleted in REE and enriched in LILE (Rb, Ba, Sr) and Pb. Therefore, the variety of pyroxenite segregations, veins, and dikes reflects progressive stages of melt/fluid migration through harzburgite and dunite at various P-T conditions. For some pyroxenites (such as zoned websterite dikes) formation by fractional crystallization of hydrous magmas couldn't be excluded.

  18. Petrogenetic implications from ultramafic rocks and pyroxenites in ophiolitic occurrences of East Othris, Greece

    NASA Astrophysics Data System (ADS)

    Koutsovitis, P.; Magganas, A.

    2012-04-01

    Ultramafic rocks and pyroxenites in east Othris are included within ophiolitic units near the villages of Vrinena, Karavomilos, Pelasgia, Eretria, Agios Georgios, Aerino and Velestino. The first five ophiolitic occurrences are estimated to have been emplaced between the Oxfordian and Tithonian-Berriasian[1,2,3], while the latter two have been emplaced during the Eocene[4]. Ultramafic rocks include variably serpentinized harzburgites and lherzolites. Pyroxenites are usually found in the form of crosscutting veins within the harzburgites. Ultramafic rocks include depleted lherzolites, with Al2O3 ranging from 1.12 to 1.80 wt% and Cr from 3250 to 3290 ppm, as well as moderate to highly depleted serpentinized harzburgites, with Al2O3 ranging from 0.69 to 1.98 wt% and Cr from 2663 to 5582 ppm. Pyroxenites have generally higher Al2O3 ranging from 1.91 to 3.08 wt% and variable Cr ranging from 1798 to 3611 ppm. Lherzolites mostly include olivines (Fo=87.07-89.23) and clinopyroxenes (Mg#=85.71-90.12). Spinels from Eretria lherzolite (TiO2=0.02-0.08 wt%, Al2O3=36.06-42.45 wt%, Cr#=31.67-36.33) are compositionally similar with those of MORB peridotites[5], while those from Vrinena lherzolite (TiO2=0.16-0.43 wt%, Al2O3=6.90-22.12 wt%, Cr#=57.69-76.88) are similar to SSZ peridotites[5]. Serpentinized harzburgites include few olivines (Fo=90.51-91.15), enstatite porphyroclasts (Mg#=87.42-88.91), as well as fine grained enstatites of similar composition. Harzburgites from Pelasgia, Eretria and Agios Georgios include spinels (TiO2=0.03-0.08 wt%, Al2O3=23.21-31.58 wt%, Cr#=45.21-56.85) which do not clearly show if they are related with MORB or SSZ peridotites[5]. Spinels from Karavomilos harzburgite (TiO2=0.02-0.05 wt%, Al2O3=45.71-50.85 wt%, Cr#=16.84-22.32) are compositionally similar with MORB peridotites[5], whereas spinels from Vrinena harzburgite (TiO2=0.15-0.19 wt%, Al2O3=1.42-1.86 wt% Cr#=91.64-93.47) with SSZ peridotites[5]. Pyroxenites include clinopyroxenes (Mg#=84.25-91.78) but also enstatites (Mg#=88.37-91.47). Spinels have been analysed in pyroxenites from Aerino and Velestino (TiO2=0.79-1.07 wt%, Al2O3=10.88-18.46 wt% Cr#=60.74-70.78), indicating SSZ settings. Application of the olivine-spinel[6], olivine-augite[7], Cpx-Opx[8,9] geothermometers, yield equilibration temperatures of 961-1075 oC for lherzolites, 895-1084 oC for harzburgites and 990-1011 oC for pyroxenites. Our data indicate that the ophiolitic occurrences of Vrinena, Aerino and Velestino include ultramafic rocks and pyroxenites related to SSZ processes, while the other ophiolitic occurrences embrace ultramafic rocks which originated from a MORB-like setting, similar to west Othris ophiolites. It should be noted that even lherzolites have Cr and Y values similar to those of a highly depleted mantle source. A supra-subduction zone origin of the east Othris ophiolites, possibly with a slab rollback in the Pindos oceanic basin, may explain the different geotectonic environment affinities of the studied rocks.

  19. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  20. Anomalously low pressure of rutile-CaCl2 phase transition in aluminous hydrogen- bearing stishovite.

    NASA Astrophysics Data System (ADS)

    Lakshtanov, D. L.; Sinogeikin, S. V.; Litasov, K. D.; Prakapenka, V. B.; Hellwig, H.; Wang, J.; Sanches-Valle, C.; Perrillat, J.; Chen, B.; Somayazulu, M.; Ohtani, E.; Bass, J.

    2006-12-01

    Stishovite, the tetragonal rutile-structured (P42/mnm) high-pressure phase of silica with Si in six coordination by oxygen, is one of the main constituents of subducting slabs, may also be present as a free phase in the lower mantle, and may be a reaction product at the core-mantle boundary. Pure SiO2 stishovite undergoes a rutile-CaCl2 structural transition at 50 - 60GPa. Theoretical investigations suggested that this transition is associated with a drastic drop in shear modulus that could provide a sharp seismic signature, however such a change in velocity has never been verified experimentally. Thus far a majority of investigations have concentrated on pure SiO2 stishovite, whereas stishovite in natural lithologies (such as MORB) is expected to contain up to 5wt.% Al2O3 and possibly water. Here we report the elastic properties, densities, and Raman spectra of Al- and H-bearing stishovite with a composition close to that expected in Earth's mantle. We show that the Landau-type rutile-CaCl2 phase transition in stishovite is significantly different from the transition pressure for pure SiO2. Our results suggest that the rutile-CaCl2 transition in natural stishovite (with up to 5wt.% Al2O3) is strongly influenced by the presence of minor elements. The phase transition is accompanied by drastic changes in elastic properties, which we have measured on single-crystal samples. This transition should be visible in seismic profiles and may be responsible for seismic reflectors at 1000-1400 km depths.

  1. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  2. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Fan, W. M.; Shi, R. D.; Gong, X. H.

    2017-12-01

    During the latest Carboniferous to early Permian, a mantle plume initiated continental rifting along the northern Gondwana margin, which subsequently developed into the Meso-Tethys Ocean. However, the nature and timing of the embryonic oceanic crust of the Meso-Tethys Ocean remains poorly understood. Here, we present for the first time a combined analysis of petrological, geochronological, geochemical, and Sr-Nd isotopic data for mafic rocks from the Nagqu area, central Tibet. Zircons from the mafic rocks yield a concordant age of ca. 277.8±1.8 Ma, which is slightly younger than the age of mantle plume activity (ca. 300-279 Ma), as represented by the large igneous province (LIP) on the northern Gondwana margin. Geochemical features suggest that the Nagqu mafic rocks, which display normal mid ocean ridge basalt (N-MORB) affinities, are different from those of the LIP, which display oceanic island basalt (OIB)-type affinities. The Nagqu mafic rocks result from a relatively high degree of melting of depleted asthenospheric mantle. Combined with observations from previous studies, we suggest that the late early Permian Nagqu magmatism fully records processes of early stage rifting and incipient formation of oceanic crust. Moreover, the patterns of magmatism are consistent with patterns of rift-related sedimentation that records the transition from predominantly continental to marine deposition in the region during the Carboniferous-Permian. We therefore suggest that rifting of the eastern Cimmerian and northern Gondwana continents started at ca. 277.8 Ma, and the rifting culminated in the opening of the Meso-Tethys Ocean.

  3. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in general. Additionally, these processes are likely to be more common in regions of episodic magma supply and enhanced magma-crust interaction such as at the ends of ridge segments. ?? The Author 2010. Published by Oxford University Press. All rights reserved.

  4. Simultaneous Quantification of Temperature, Pyroxenite Abundance, and Upwelling Rates in the Iceland Mantle Source

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2014-12-01

    The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity, which is required to account for much of the observed chemical and isotopic diversity. [1] Langmuir et al, 1992, AGU Geophys. Mono. Ser. 71 [2] Chauvel & Hemond, 2000, G-cubed, v 1 [3] Kokfelt et al, 2003, EPSL, v 214 [4] Sobolev et al, 2007, Science, v 316 [5] Shorttle et al, 2014, EPSL, v 395

  5. The role of water in the petrogenesis of Marina trough magmas

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Newman, Sally

    1994-02-01

    Most variations in composition among primitive basalts from the Mariana back-arc trough can be explained by melting mixtures of an N-type mid-ocean ridge basalt (NMORB) mantle source and an H2O rich component, provided the degree of melting is positively and approximately linearly correlated with the proportion of the H2O-rich component in the mixture. We conclude that the degrees of melting by which Mariana trough magmas are generated increase from magmas similar to NMORB, through more H2O-enriched basalts, to 'arc-like' basalts, and that this increase is due to the lowering of the solidus of mantle peridotite that accompanies addition of the H2O-rich component. The H2O-rich component is likely to be ultimately derived from fluid from a subducting slab, but we propose that by the time fluids reach the source regions of Mariana trough basalts, they have interacted with sufficient mantle material that for all but the most incompatible of elements (with respect to fluid-mantle interaction), they are in equilibrium with the mantle. In contrast, fluids added to the source regions of Mariana island-arc magmas have typically interacted with less mantle and thus retain the signature of slab-derived fluids to varying degrees for all but the most compatible elements. Primitive Mariana arc basalts can be generated by melting mixtures of such incompletely exchanged slab-derived fluids and sources similar to NMORB-type mantle sources, but the degrees of melting are typically higher than those of Mariana trough NMORB and the sources have been variably depleted relative to the back-arc sources by previous melt extraction. This depletion may be related to earlier extraction of back-arc basin magmas or may evolve by repeated fluxing of the sources as fluid is continually added to them in the regions of arc magma generation. If fluid with partitioning behavior relative to the solid mantle similar to that deduced for the H2O-rich component involved in the generation of Mariana trough basalts were extracted from primitive mantle, the residual mantle would have many of the minor and trace element characteristics of typical oceanic upper mantle; primitive mantle enriched in such fluid would be a satisfactory source for the continental crust in terms of its trace and minor element chemical composition.

  6. Noble gas composition of Indian carbonatites (Amba Dongar, Siriwasan): Implications on mantle source compositions and late-stage hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Hopp, Jens; Viladkar, Shrinivas G.

    2018-06-01

    Within a stepwise crushing study we determined the noble gas composition of several calcite separates, one aegirine and one pyrochlore-aegirine separate of the carbonatite ring dyke complex of Amba Dongar and carbonatite sill complex of Siriwasan, India. Both carbonatites are related to the waning stages of volcanic activity of the Deccan Igneous Province ca. 65 Ma ago. Major observations are a clear radiogenic 4He* and nucleogenic 21Ne* imprint related to in situ production from U and Th in mineral impurities, most likely minute apatite grains, or late incorporation of crustal fluids. However, in first crushing steps of most calcites from Amba Dongar a well-resolvable mantle neon signal is observed, with lowest air-corrected mantle 21Ne/22Ne-compositions equivalent to the Réunion hotspot mantle source. In case of the aegirine separate from Siriwasan we found a neon composition similar to the Loihi hotspot mantle source. This transition from a mantle plume signal in first crushing step to a more nucleogenic signature with progressive crushing indicates the presence of an external (crustal) or in situ nucleogenic component unrelated and superposed to the initial mantle neon component whose composition is best approximated by results of first crushing step(s). This contradicts previous models of a lithospheric mantle source of the carbonatitic magmas from Amba Dongar containing recycled crustal components which base on nucleogenic neon compositions. Instead, the mantle source of both investigated carbonatite complexes is related to a primitive mantle plume source that we tentatively ascribe to the postulated Deccan mantle plume. If, as is commonly suggested, the present location of the Deccan mantle plume source is below Réunion Island, the currently observed more nucleogenic neon isotopic composition of the Réunion hotspot might be obliterated by significant upper mantle contributions. In addition, compared with other carbonatite complexes worldwide a rather significant contribution of atmospheric noble gases is observed. This is documented in cut-off 20Ne/22Ne-ratios of ca. 10.2 (Amba Dongar) and 10.45 (Siriwasan) and cut-off 40Ar/36Ar-ratios of about 1500. This atmospheric component had been added at shallow levels during the emplacement process or later during hydrothermal alteration. However, understanding the late-stage interaction between atmospheric gases and magmatic mantle fluids still requires further investigation.

  7. Origin and Role of Recycled Crust in Flood Basalt Magmatism: Case Study of the Central East Greenland Rifted Margin

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2015-12-01

    Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of recycled crust in the modern Iceland plume[3]. These results suggest that this lithospheric material was not recycled into the lower mantle before becoming entrained in the Iceland plume. [1] Rudge et al. (2013). GCA, 114, p112-143; [2] Brown & Lesher (2014). Nat. Geo., 7, p820-824; [3] Thirlwall et al. (2004). GCA, 68, p361-386

  8. Volcanism on the fossil Galapagos Rise spreading centre, SE Pacific

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Stroncik, N. A.

    2002-12-01

    A part of the fossil spreading centre of the Galapagos Rise at 10° S, 95° W in the SE Pacific Ocean was mapped and sampled. This spreading centre was active for about 12 Ma and was abandoned about 6.5 Ma ago when the spreading rate of the East Pacific Rise (EPR) increased. The aim of this study is to understand the tectonic and petrological implications of the ridge jump for the spreading centre and to gain insights into the processes in its melting column. Bathymetric swath mapping of a part of the Galapagos Rise revealed an elongated structure with a NNE-SSW strike direction which is bounded by a large fracture zone in the north. The mapped area can be divided into three segments, each of about 50 km length. The northernmost segment consists of an ~4400 m deep rift which shows similarities to a slow-spreading centre, e.g. the Mid-Atlantic Ridge. The southern two segments are volcanic ridges with numerous volcanic flank cones which reach water depths up to 490 m. This volcanic ridge is interpreted as the continuation of the fossil spreading axis. While the northernmost segment is magmatically starved, the volcanic ridges of the southern two segments apparently formed after cessation of spreading. The rock samples from the rift flanks in the north are incompatible element-depleted (K/Ti 0.08-0.28) and plagioclase-phyric basalts resembling typical mid-ocean ridge basalts (MORB). In contrast, the lavas from the two volcanic ridge segments in the south are highly vesicular incompatible element-enriched alkali basalts with K/Ti of 0.65-1.4. The depleted rift basalts have Sr isotope ratios below 0.7027 while the alkali basalts from the ridge range between 0.7029 and 0.7031. The rift basalts have significantly lower sodium contents than the alkali basalts and thus the southern lavas are probably derived by smaller degrees of partial melting. The relatively low Si contents of the alkali basalts also indicates formation deeper in the melting column than the northern MORB-like samples. The mantle source of the alkali basalts is similar to the enriched source of off-axis seamounts along the EPR. Our preliminary data suggest that the northernmost segment formed by tectonic processes during a final slow-spreading phase of the Galapagos Rise while the southern two segments erupted alkaline lavas probably after spreading stopped.

  9. Geochemical characteristics of the La Réunion mantle plume source inferred from olivine-hosted melt inclusions from the adventive cones of Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Valer, Marina; Schiano, Pierre; Bachèlery, Patrick

    2017-09-01

    Major and trace element compositions were obtained for bulk rocks and melt inclusions hosted in olivine crystals (Fo > 85) from the adventive cones of the Piton de La Fournaise volcano (La Réunion Island). Ratios of highly incompatible trace elements for these magmas are used to identify the nature of the La Réunion mantle plume source. Although adventive cone lavas display unusual major element compositions compared to the historical lavas of the volcano (e.g., lower CaO/Al2O3), trace element data suggest that the magmas emitted by the adventive cones originate from a common chemical source. This source may correspond to either a homogeneous mixed source of different mantle components or a near-primitive less-differentiated mantle source. The melt inclusions display ratios of highly incompatible elements (e.g., Th/La, Nb/La) which are similar to primitive mantle values, and lower Nb/U ratios compared to most oceanic basalts. These results and previous isotopic and trace element data suggest that La Réunion plume samples a source which is intermediate between a primitive-like mantle domain and a slightly depleted one almost unaffected by the recycling processes. This source could have originated from early depletion of the primitive mantle. Assuming a depletion 4.45 Gyr ago, 10% melting of this slightly depleted source could explain the enriched trace element concentrations of the melt inclusions.

  10. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii

    USGS Publications Warehouse

    Kurz, M.D.; Jenkins, W.J.; Hart, S.R.; Clague, D.

    1983-01-01

    Helium isotopic ratios ranging from 20 to 32 times the atmospheric 3He 4He(RA) have been observed in a suite of 15 basaltic glasses from the Loihi Seamount. These ratios, which are up to four times higher than those of MORB glasses and more than twice those of nearby Kilauea, are strongly suggestive of a primitive source of volatiles supplying this volcanism. The Loihi glasses measured span a broad compositional range, and the 3He/4He ratios were found to be generally lower for the alkali basalts than for the tholeiites. The component with a lower 3He 4He ratio appears to be associated with olivine xenocrysts, within which fluid inclusions are probably the carrier of contaminant helium. One Loihi sample has a much lower isotopic ratio ( 30 RA) helium with some (variable) component of lithospheric contamination added during "breakthrough", while the later stages are characterized by a relaxation toward lithospheric 3He 4He ratios (??? 8 RA) due to isolation of the diapir from the mantle below (as the plate moves on), and subsequent mining of the inherited helium and contamination from the surrounding lithosphere. The abrupt contrast in 3He 4He ratios between Kilauea and Loihi, despite their close proximity, is indicative of the small lateral extent of the plume. ?? 1983.

  11. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya: Petrogenesis

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    Strong mixing trends on a (Th-230/Th-232) versus Th diagram show that the basalts are mixed magmas which have undergone interaction with the crust. Instantaneous Th/U ratios are less than time integrated ones but these exceed the Th/U ratios in the MORB and OIB sources. This indicates that the mantle may have undergone some metasomatic fluxing, crustal contamination of the basalts will also enhance these ratios. Early activity on the Akira plain is represented by early basalts and hawaiites. The early basalt samples are known to predate the earliest comendites. The most recent phase of activity is represented by another cinder cone 40-50 m high being feldspar and clinopyroxene phyric. Inclusions which occur in the comendites vary in size and distribution. The largest and most porphyritic are the trachytes (up to 40 cm) with alkali feldspar phases up to 6 mm and small pyroxenes in the ground mass. The second set of inclusions are smaller (up to 10 cm) and are largely aphyric. The distribution of the inclusions are not uniform, the Broad Acres (C5) lavas contain 2-5 percent. The size of the inclusions decrease from south to north, as does the abundance of the trachytic inclusions. The major element variations in the Naivasha basalts, hawaiites and magmatic inclusions are discussed.

  12. Kolumbo active seamount (Greece): A window into the Aegean mantle

    NASA Astrophysics Data System (ADS)

    Rizzo, A. L.; Caracausi, A.; Chavagnac, V.; Nomikou, P.; Polymenakou, P.; Magoulas, A.; Mandalakis, M.; Kotoulas, G.

    2015-12-01

    Submarine volcanism is ubiquitous in active tectonic settings of the earth, but due to depth and hazardousness of these environments the study is a challenge. In May 2014, we performed a cruise in the Aegean Sea aimed to investigate the high-temperature (>200°C) hydrothermal system of Kolumbo active underwater volcano, 7 km northeast off Santorini. Last explosive eruption occurred in 1650 A.D. and killed ~70 people, so plainly the eruptive potential is real. We sampled gases discharged from seven chimneys located at ~500 m b.s.l. and we investigated their composition. The chemistry indicates that these consist of almost pure CO2 with a small atmospheric contamination. The δ13C-CO2 varies from 0 to 1.5‰ and shows a positive correlation with the concentration of He, H2, CO and CH4 as the result of chemical and isotope fractionation due to variable extents of gas-water interaction. The 3He/4He varies from 7.0 to 7.1 Ra, coherently with the fact that this ratio does not suffer any fractionation due to gas-water interaction. These values are surprisingly higher (more than 3 units Ra) than the measurements performed in gases and rocks from Santorini (Rizzo et al., 2015). They are in the typical range of arc volcanoes worldwide (7-9 Ra; Hilton et al., 2002; Di Piazza et al., 2015), indicating that the 3He/4He ratios measured at Kolumbo are likely the result of direct mantle degassing in a general extensive regime. More importantly, these ratios are the highest in all the South Aegean volcanism, which leads to consider homogeneous (and MORB-like) the He isotope composition of the mantle below the central part of the Hellenic Volcanic Arc and eastward up to Nisyros, which until this study showed the highest ratios (6.2Ra; Shimizu et al., 2005). Our results strongly emphasize the role of tectonics in the transfer of fluids from the mantle toward the surface. The complicated geodynamics status of the Aegean-Anatolian region, plays a key role in generating crustal stretching and rising up magma-bodies from the mantle into the crust.

  13. Incorporation of Solar Noble Gases from a Nebula-Derived Atmosphere During Magma Ocean Cooling

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Cassen, P.; Wasserburg, G. J.; Porcelli, D.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The presence of solar noble gases in the deep interior of the Earth is inferred from the Ne isotopic compositions of MORB (Mid-ocean Ridge Basalts) and OIB (Oceanic Island Basalt); Ar data may also consistent with a solar component in the deep mantle. Models of the transport and distribution of noble gases in the earth's mantle allow for the presence of solar Ar/Ne and Xe/Ne ratios and permit the calculation of lower mantle noble gas concentrations. These mantle data and models also indicate that the Earth suffered early (0.7 to 2 x 10(exp 8) yr) and large (greater than 99 percent) losses of noble gases from the interior, a result previously concluded for atmospheric Xe. We have pursued the suggestion that solar noble gases were incorporated in the forming Earth from a massive, nebula-derived atmosphere which promoted large-scale melting, so that gases from this atmosphere dissolved in the magma ocean and were mixed downward. Models of a primitive atmosphere captured from the solar nebula and supported by accretion luminosity indicate that pressures at the Earth's surface were adequate (and largely more than the required 100 Atm) to dissolve sufficient gases. We have calculated the coupled evolution of the magma ocean and the overlying atmosphere under conditions corresponding to the cessation (or severe attenuation) of the sustaining accretion luminosity, prior to the complete removal of the solar nebula. Such a condition was likely to obtain, for instance, when most of the unaccumulated mass resided in large bodies which were only sporadically accreted. The luminosity supporting the atmosphere is then that provided by the cooling Earth, consideration of which sets a lower limit to the time required to solidify the mantle and terminate the incorporation of atmospheric gases within it. In our initial calculations, we have fixed the nebula temperature at To = 300K, a value likely to be appropriate for nebular temperatures at lAU in the early planet-building epoch. We treated the background (nebula) pressure as an adjustable, time-dependent parameter. Additional information is contained within the original extended abstract.

  14. Evolution of the upper mantle beneath the southern Baikal rift zone: an Sr-Nd isotope study of xenoliths from the Bartoy volcanoes

    NASA Astrophysics Data System (ADS)

    Ionov, D. A.; Kramm, U.; Stosch, H.-G.

    1992-06-01

    Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.

  15. Elemental and isotopic compositions of noble gases in the mantle: Pete's path

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Péron, Sandrine; Colin, Aurélia

    2016-04-01

    Noble gases are tracers of the origin of the volatiles on Earth and other terrestrial planets. The determination of their isotopic compositions in oceanic basalts allows discriminating between different possible scenarios for the origin of volatiles (chondritic, solar, cometary). However, oceanic basalts show a ubiquitous component having atmospheric noble gas compositions, which reflects a shallow air contamination. This component masks the mantle composition and only step crushing is able to (partially) remove it. Nevertheless, the exact mantle composition is always unconstrained due to the uncertainty on its complete removal. Developed by Pete Burnard (Burnard et al., 1997; Burnard, 1999), single vesicle analysis using laser ablation is a challenging technique to determine the mantle composition, free of atmospheric contamination. We have used this technique to measure He, Ne, Ar isotopes and CO2 in single vesicles from both MORB and OIB (Galapagos, Iceland). Vesicles are located using microtomography and the noble gases are measured using the Noblesse mass spectrometer from IPGP using an Excimer laser to open the vesicles. Both Galapagos and Iceland samples show that the 20Ne/22Ne ratio is limited to ~12.8 in the primitive mantle, suggesting that the origin of the light noble gases can be attributed to irradiated material instead of a simple dissolution of solar gases into a magma ocean (Moreira and Charnoz, 2016). Such a scenario of incorporation of light noble gases by irradiation also explains the terrestrial argon isotopic composition. However, the Kr and Xe contribution of implanted solar wind is small and these two noble gases were carried on Earth by chondrites and/or cometary material. Burnard, P., D. Graham and G. Turner (1997). "Vesicle-specific noble gas analyses of « popping rock »: implications for primordial noble gases in the Earth." Science 276: 568-571. Burnard, P. (1999). "The bubble-by-bubble volatile evolution of two mid-ocean ridge basalts." Earth and Planetary Science Letters 174: 199-211. Moreira, M. and S. Charnoz (2016). "The origin of the neon isotopes in chondrites and Earth." Earth and Planetary Science Letters 433: 249-256.

  16. Llsvp

    NASA Astrophysics Data System (ADS)

    Garnero, E.; McNamara, A. K.; Shim, S. H. D.

    2014-12-01

    The term large low shear velocity province (LLSVP) represents large lowermost mantle regions of reduced shear velocities (Vs) relative to 1D reference models. There are two LLSVPs: one beneath the central Pacific Ocean, and one beneath the southern Atlantic Ocean and Africa. While LLSVP existence has been well known for several decades, more recently evidence from forward modeling has brought to light relatively sharp margins of the LLSVPs, i.e., the transition from low-to-"normal" Vs occurs over a short lateral distance (probably < ~100 km). This finding is further supported by the strongest lateral dVs gradients in tomography coinciding with locations of sharp LLSVP sides in high-resolution studies. Surface hotspot and large igneous province origination locations mostly map above the present day LLSVP edges. Combined with geochemical arguments that a deep mantle long-lived (possibly primordial) reservoir exists, and geodynamics experiments that demonstrate a dense basal reservoir would be swept by convection to reside beneath upwellings and plumes, a strong argument can be made for dense, chemically distinct material explaining LLSVPs. This presentation will present additional seismic information that needs to be considered for a self-consistent geodynamic and mineralogical framework. For example, there does not appear to be consistency between Vp and Vs reductions defining LLSVPs; however, this comparison is complicated by lowermost mantle Vp models exhibiting greater divergence from each other than Vs models. LLSVP forward modeling usually involves a trade-off between dVs within the LLSVP and LLSVP height/shape; thus continued mapping of heterogeneity within LLSVP is critical. ULVZs might relate to LLSVP chemistry, temperature, and evolution, and thus will be discussed. The chemistry that can explain large and old thermochemical piles is as of yet unconstrained; other mineralogical considerations include understanding the possible role of the post-perovskite phase transition within and outside LLSVPs (which may affect Vs differently from Vp), and the evolution of pile chemistry over time, since geodynamics work demonstrates how mantle material (including deeply subducted MORB) can become downward entrained into piles.

  17. The Earth's Thorium and Uranium Abundance and Distribution

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.; Guo, M.; Wipperfurth, S. A.

    2017-12-01

    The abundance and distribution of thorium (Th) and uranium (U) and its Th/U value have been assessed for the bulk silicate Earth (BSE), core, modern mantle and continental crust. These heat producing elements power the Earth's engine and are recorders of atmospheric oxidation and biologically mediated processes. More than 50,000 measured Th/U values (Kappa) and a couple of thousand Kappa-Pb values, the time-integrated Pb isotopic values from the decay of Th and U, are evaluated for the BSE, continental crust (CC) and modern mantle (MM), with the latter represented by mid-ocean ridge basalts (MORB) and ocean island basalt (OIB). The Kappa-Pb values for these complementary enriched and depleted domains of the BSE (i.e., CC_Kappa-Pb = 4.1 +/- 0.2 and MM_Kappa-Pb = 3.8 +/- 0.1, respectively) narrowly bracket the solar system initial (SSi_Kappa-Pb = 3.88 +/- 0.02) with an uncertainty of +/-5%) and demonstrate that negligible Th/U fractionation accompanied accretion, core formation, and crust - mantle differentiation. Experimental studies find marked differences in the partitioning of U and Th during core formation and thus, the BSE_Kappa-Pb = of 3.9 +/- 0.2 dictates that Th and U were excluded from the core. The <4% differences between the CC_Kappa-Pb and MM_Kappa-Pb reveals that U6+ recycling back into the mantle has either been a relatively recent process or that its recycling following atmospheric oxygenation at 2.4 Ga was limited and evolved slowly with time. Recent data from geoneutrino flux measurements at KamLAND observes a Th/U of 4.1 (+5.5, -3.3); although these uncertainties are large, future experiments, with annual count rates that are 10 to 40 times greater than that at KamLAND, will provide greater statistics, a critical measure of the planetary Th/U ratio, and an assessment of the assumption of chondritic ratio for the Earth.

  18. The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs

    NASA Astrophysics Data System (ADS)

    Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.

    2000-07-01

    New helium isotope data measured in Cenozoic intraplate basalts and their mantle xenoliths are compared with present-day mantle helium emission on a regional scale from thermal and nonthermal gas discharges on the South Island of New Zealand and the offshore Chatham Islands. Cenozoic intraplate basaltic volcanism in southern New Zealand has ocean island basalt affinities but is restricted to continental areas and absent from adjacent Pacific oceanic crust. Its distribution is diffuse and widespread, it is of intermittent timing and characterised by low magma volumes. Most of the 3He/ 4He ratios measured in fluid inclusions in mantle xenocrysts and basalt phenocrysts such as olivine, garnet, and amphibole fall within the narrow range of 8.5 ± 1.5 Ra (Ra is the atmospheric 3He/ 4He ratio) with a maximum value of 11.5 Ra. This range is characteristic of the relatively homogeneous and degassed upper MORB-mantle helium reservoir. No helium isotope ratios typical of the lower less degassed mantle (>12 Ra), such as exemplified by the modern hot-spot region of Hawaii (with up to 32 Ra) were measured. Helium isotope ratios of less than 8 Ra are interpreted in terms of dilution of upper mantle helium with a radiogenic component, due to either age of crystallisation or small-scale mantle heterogeneities caused by mixing of crustal material into the upper mantle. The crude correlation between age of samples and helium isotopes with generally lower R/Ra values in mantle xenoliths compared with host rock phenocrysts and the in general depleted Nd and Sr isotope ratios and the light rare earth element enrichment of the basalts supports derivation of melts as small melt fractions from a depleted upper mantle, with posteruptive ingrowth of radiogenic helium as a function of lithospheric age. In comparison, the regional helium isotope survey of thermal and nonthermal gas discharges of the South Island of New Zealand shows that mantle 3He anomalies in general do not show an obvious relationship with either age or proximity to the Cenozoic intraplate volcanic centres or with major faults. In general, areas characterised by mantle 3He emission are interpreted to define those regions beneath which mantle melting and basalt magma addition to the crust are recent. The strongest mantle 3He anomaly (equivalent to >80% mantle helium component) is centred over southern Dunedin, measured in magmatic CO 2-rich mineral water springs issuing from crystalline basement rocks which outcrop at the southern extent of Miocene intraplate basaltic volcanism which ceased 9 Ma ago. This mantle helium anomaly overlaps with an area characterised by elevated surface high heat flow, compatible with a long-lived mantle melt/heat input into the crust. In comparison Banks Peninsula, another Miocene intraplate basaltic centre, is characterised by relatively low surface heat flow and a small mantle helium contribution measured in a nitrogen-rich spring. Here the thermal transient induced by the magmatic event has either dissipated or has not reached the surface. In the former case one might be dealing with storage and mixing of magmatic and crustal gases at shallow crustal levels and in the latter with active to recent mantle-melt degassing at depth. Along the most actively deforming part of the plate boundary zone, the transpressional Alpine Fault and Marlborough fault systems, mantle helium is present in gas-rich springs in all those areas underlain by actively subducting oceanic crust (the Australian plate in the south and Pacific plate in the north), whereas the central part of the Alpine transpressional fault is characterised by pure crustal radiogenic helium. Areas where the mantle helium component is negligible are restricted to the centre part of the South Island, extending along its length from Southland to northern Canterbury and Murchison. These areas are interpreted to delineate the extent of thicker and colder lithosphere compared to all other areas where mantle helium release from partial mantle melts at depth is recent to active being added to the lower lithosphere and/or lower crust. Areas characterised by mantle helium anomalies are equated with areas of thermal mantle anomalies, i.e., localised mantle heterogeneities such as upwelling less dense silicate melts in the upper asthenospheric mantle.

  19. Melt focusing and CO2 extraction at mid-ocean ridges: simulations of reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.; Hirschmann, M. M.

    2016-12-01

    The deep CO2 cycle is the result of fluxes between near-surface and mantle reservoirs. Outgassing from mid-ocean ridges is one of the primary fluxes of CO2 from the asthenosphere into the ocean-atmosphere reservoir. Focusing of partial melt to the ridge axis crucially controls this flux. However, the role of volatiles, in particular CO2 and H2O, on melt transport processes beneath ridges remains poorly understood. We investigate this transport using numerical simulations of two-phase, multi-component magma/mantle dynamics. The phases are solid mantle and liquid magma; the components are dunite, MORB, hydrated basalt, and carbonated basalt. These effective components capture accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Our results indicate that volatiles cause channelized melt transport, which leads to significant variability in volume and composition of focused melt. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing; distal volatile-rich melts are not focused to the axis. Up to 50% of these melts are instead emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of CO2 and H2O in the deep lithosphere, which has implications for LAB rheology and volatile recycling by subduction. Results from a suite of simulations, constrained by catalogued observational data [4,5,6] enable predictions of global MOR CO2 output. By combining observational constraints with self-consistent numerical simulations we obtain a range of CO2 output from the global ridge system of 28-110 Mt CO2/yr, corresponding to mean CO2 contents of 50-200 ppm in the mantle. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171. Fig: Simulation results of MOR magma/mantle dynamics with H2O and CO2, showing Darcy flux magnitude for half-spreading rates of 1 and 5 cm/yr.

  20. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    NASA Astrophysics Data System (ADS)

    Inglis, Edward C.; Debret, Baptiste; Burton, Kevin W.; Millet, Marc-Alban; Pons, Marie-Laure; Dale, Christopher W.; Bouilhol, Pierre; Cooper, Matthew; Nowell, Geoff M.; McCoy-West, Alex J.; Williams, Helen M.

    2017-07-01

    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

  1. The vanadium isotope compositions of subduction zone lavas

    NASA Astrophysics Data System (ADS)

    Tian, S.; Huang, F.

    2017-12-01

    Vanadium is a redox sensitive element with multiple oxidation states, and thus it has the potential to trace redox-related processes. With the advancement of analytical method for V isotopes, we are now able to recognize V isotope fractionation for igneous rocks. Subduction zones are critical zones on the Earth for the interaction between crust and mantle where undergo complex geological processes. However, V isotope data of subduction zone lavas are still rare except those reported in [1]. To investigate the V isotope variations of subduction zones and discuss the potential to apply V to trace mantle redox state. In this contribution, we report δ51V for three subduction zone lavas from Kamchatka, Lesser Antilles, and Aleutians which are characterized by well-documented magmatic evolutionary series. 47 arc lava samples have been analyzed and the δ51V data of them range from -0.91‰ to -0.53‰ (2sd = 0.10 ‰). Among these samples, primitive arc basalts with MgO > 6 wt. % have an average δ51V of -0.80 ± 0.15‰ (2sd, n = 20), broadly consistent with δ51V data of MORB [2, 3]. Within the single arc of Kamchatka, δ51V data of primitive basalts from the arc front to the back-arc is almost constant, suggesting limited influences of mantle melting and source heterogeneity on V isotopes. δ51V data of these samples show no correlation with Ba/Nb, suggesting that fluids have little impact on V isotopes. On the other hand, δ51V data of the more involved samples with MgO < 6 wt. % are negatively correlated with MgO contents, indicating that the 50V preferentially enters crystalline minerals, which produces heavier V isotope compositions of residual melts. Distinct to the observation showing 2‰ fractionation reported in [1], the magnitude of V isotope fractionation in arc lavas is much smaller (0.38‰) in this study. Future works are needed for better understanding the V isotope fractionation mechanisms of subduction zone lavas. [1]Prytulak et al., 2017, Geochem. Persp. Let. 3, 75-84. [2]Huang et al., 2016, Goldschmidt Abstracts. 1190. [3] Prytulak et al., 2013, EPSL. 365, 177-189.

  2. Deep mantle: Enriched carbon source detected

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.

    2017-09-01

    Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.

  3. Sedimentary input into the source of Martinique lavas: a Li perspective

    NASA Astrophysics Data System (ADS)

    Tang, M.; Chauvel, C.; Rudnick, R. L.

    2013-12-01

    The Lesser Antilles arc is known for the prominent continental crustal signatures in its lavas. It thus provides an ideal target for studying crustal recycling in subduction zones. Martinique Island, located in the middle of the Lesser Antilles arc, has been well characterized for its elemental and radiogenic isotope geochemistry (Labanieh et al., 2012). We measured Li isotopes in the Martinique lavas as well as sediments cored at the southern (Site 144) and northern part (Site 543) of the subducting slab. The sediments show a large isotopic variation (δ7Li ~ -4.2‰ to +3.2‰) but the average δ7Li of -1.1 × 2.4‰ (1 σ, n = 15) is significantly lower than that of N-MORB (δ7Li = + 3.4 × 0.7‰, 1 σ, Tomascak et al., 2008), reflecting the influence of chemical weathering in the continental provenance. Although the subducting sediments display marked mineralogical and chemical shifts from south to north due to different deposition distances to the continental platform (Carpentier et al., 2009), their average Li isotopic compositions are indiscernible from each other. With a few exceptions, the Li isotopic compositions of the Martinique lavas are systematically lighter than MORB, giving an average δ7Li of 1.6 × 1.4‰ (1 σ, n = 25, 4 exceptions excluded). The δ7Li values show no correlation with any radiogenic isotope ratios (206Pb/204Pb, 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf), Li/Y ratio, La/Sm ratio and SiO2 content. Therefore, the light Li isotopic composition likely reflects the source characteristics rather than contamination within the arc crust. Incorporation of the isotopically light sediments from Site 144 and 543 in the source may explain the depletion of 7Li in the Martinique lavas. A two-end-member mixing model requires 2-5% addition of the sediments into the depleted mantle source, compared with 1-10% sediments constrained by radiogenic isotopes (Carpentier et al., 2008). References Carpentier, M., Chauvel, C., & Mattielli, N., 2008. Pb-Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth and Planetary Science Letters, 272(1), 199-211. Carpentier, M., Chauvel, C., Maury, R. C., & Mattielli, N., 2009. The 'zircon effect' as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments. Earth and Planetary Science Letters, 287(1), 86-99. Labanieh, S., Chauvel, C., Germa, A., & Quidelleur, X., 2012. Martinique: a Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench. Journal of Petrology, 53(12), 2441-2464. Tomascak, P. B., Langmuir, C. H., le Roux, P. J., & Shirey, S. B. (2008). Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 72(6), 1626-1637.

  4. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, May; Zhang, Zhonglong

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat,more » and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.« less

  5. Variable slab and subarc mantle signatures within dying arc setting-clues from the volcanology and geochemistry of Quaternary volcanic rocks from Armenia.

    NASA Astrophysics Data System (ADS)

    Savov, I. P.; Luhr, J.; D'Antonio, M.; Connor, C.; Karakhanian, A.; Ghukasyan, Y.; Djrbashian, R.

    2007-05-01

    Armenian volcanoes occur within the active continental collision zone involving the Arabian and Eurasian plates. The volcanism is hosted by a chain of pull-apart basins, cumulatively forming an arc across Armenia and extending into Turkey and Iran. We collected fresh volcanic rocks from >100 volcanoes in proximity to the large calc-alkaline strato-volcano Mt.Ararat (Turkey) and the sub-alkaline shield-volcano Mt.Aragats (Armenia).The samples are trachybasalt-andesites o dacites (Aragats Volcanic Plateau) and trachybasalts to rhyolites (Arteni Volcanic Complex, Gegham Plateau and Lake Sevan regions).The major and trace element systematics of the Armenian volcanics reveal mixed arc-like and OIB-like signatures may accompany the transition from subduction to collision (Miocene-recent). Relative to N-MORB our samples show enrichments of fluid mobile elements,Th,U,LILE and LREE,and depletions of HREE and Hf, Nb, Ta and Zr.The lower 87Sr/86Sr ratios (0.7041 to 0.7051) compared to any known crustal material in the region, the regional mantle 144Nd/143Nd isotope ratios [0.5128-0.5129] and the absence of crustal xenoliths cause us to conclude that crustal assimilation did not play a significant role in the magmagenesis.We will report large mineral chemistry dataset and detailed textural observations revealing no significant mineral zoning.Based on mineral rim and groundmass chemistries and using variety of hygrothermometers, we calculated melt H2O contents ranging from 1.9 to 4.5 wt% and also elevated eruption temperatures [range= 1030- 1060°C].This calculations are in agreement with the generally anhydrous nature of the mineral assemblages [Pl+Opx+Cpx+Ol+TiMt] and with the ionprobe study of volatile contents in olivine hosted melt inclusions [H2O = 0.5-2.8 wt%; CO2 = 10-371 ppm; F= 1865-2905 ppm, S= 225-5122 ppm;Cl= 650-1013 ppm]. Although other mechanisms such as delamination and localized extension related to strike slip faulting might also contribute to magma generation we suggest that the unusual combination of anhydrous but fluid mobile element, LILE and LREE-enriched mantle source under the Armenia is due to long-lasting (Jurassic- Miocene) pre-collisional subduction modifications, followed by slab break-off and interaction with hot mantle asthenosphere [1]. Our new data confirms recent tomography scans showing heterogeneous hot mantle domain under the volcanic highlands of Armenia based on large and sharp low shear wave velocity anomaly correlated with long wavelength free-air gravity anomalies [2]. [1] Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophys. Res. Lett.,30(24),8046. [2] Maggi, A. and Priestley, K. (2005). Surface waveform tomography of the Turkish-Iranian plateau, Geophys. J. Int.,160, 1068-1080.

  6. Ge and Fe Isotope Fractionation in Metabasites during Subduction-Zone Metamorphism

    NASA Astrophysics Data System (ADS)

    Luais, B.; El Korh, A. M. T.; Boiron, M. C.; Deloule, E.; Cividini, D.

    2016-12-01

    Non-traditional stable isotope fractionation during subduction of oceanic crust provides a powerful but challenging tool for understanding geochemical processes in the sub-arc mantle. Iron and germanium are strongly sensitive to low-temperature (T) hydrothermal processes (< 350°C), but can also fractionate at high-T (>700°C) [1-4]. We measured Fe and Ge isotopes in high-pressure metabasites of hydrothermally altered MORB (1.7-2.3 GPa; 550-600°C [5]) from the Ile de Groix (France) to study their behaviour during subduction and fluid-rock interactions. Eclogites and blueschists have δ74GeNIST3120a values (+0.42-0.65‰) similar to those of tholeiitic basalts (+0.55-0.57‰ [2]), indicating a negligible effect of hydrothermal alteration on δ74Ge values. Weak decreases in δ74Ge values occur during dehydration from blueschist to eclogite facies, and in greenschists showing evidence of restricted fluid-rock interaction, but remain close to the HP range (+0.39-0.49‰). This near constancy is attributed to stability of garnet, the main Ge host. By contrast, albite and calcite-bearing greenschists that suffer garnet breakdown show evidence of Ge isotope fractionation (δ74Ge = +0.84-0.98‰) during intensive fluid interaction in a reduced context (Fe2+/Fetot= 0.77-0.80). The metabasites have δ56FeIRMM-014 values (+0.16-0.33‰) heavier than MORBs-OIBs (+0.07-0.18‰ [3]). Unlike Ge isotopes, Fe isotopes correlate with HFSE and mainly reflect protolith heterogeneity. The increase in δ56Fe compared to igneous basic rocks results from open-system hydrothermal alteration prior to subduction. Small correlated variations in Fe elemental (Fe2+/Fetot) and isotopic compositions between blueschists, eclogites and greenschists suggest that Fe isotope fractionation was buffered by the iron of the basic protoliths during subduction and exhumation. Thus metasomatism related to fluids derived from subducted hydrothermally altered metabasites might have little effect on mantle Ge and Fe isotope compositions under subsolidus conditions. [1] Rouxel et al 2003, Chem Geol 202, 155-182. [2] Luais 2012. Chem Geol 334, 295-311. [3] Teng et al, 2013, GCA 107, 12-26. [4] Escoube et al 2015. GCA 167, 93-112. [5] El Korh et al 2009, J Petrol 50, 1107-1148.

  7. HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexander; Weyer, Stefan; John, Timm; Brey, Gerhard P.

    2009-01-01

    The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.

  8. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes

    NASA Astrophysics Data System (ADS)

    Gill, R. C. O.; Aparicio, A.; El Azzouzi, M.; Hernandez, J.; Thirlwall, M. F.; Bourgois, J.; Marriner, G. F.

    2004-12-01

    Samples of volcanic rocks from Alborán Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alborán Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (˜0.5×N-MORB), especially Nb (˜0.2×N-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. 143Nd/ 144Nd ratios fall in the same range as many island-arc and back-arc basin samples, whereas 87Sr/ 86Sr ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with ( 87Sr/ 86Sr) 0 up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westernmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain.

  9. The source location of mantle plumes from 3D spherical models of mantle convection

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Zhong, Shijie

    2017-11-01

    Mantle plumes are thought to originate from thermal boundary layers such as Earth's core-mantle boundary (CMB), and may cause intraplate volcanism such as large igneous provinces (LIPs) on the Earth's surface. Previous studies showed that the original eruption sites of deep-sourced LIPs for the last 200 Myrs occur mostly above the margins of the seismically-observed large low shear velocity provinces (LLSVPs) in the lowermost mantle. However, the mechanism that leads to the distribution of the LIPs is not clear. The location of the LIPs is largely determined by the source location of mantle plumes, but the question is under what conditions mantle plumes form outside, at the edges, or above the middle of LLSVPs. Here, we perform 3D geodynamic calculations and theoretical analyses to study the plume source location in the lowermost mantle. We find that a factor of five decrease of thermal expansivity and a factor of two increase of thermal diffusivity from the surface to the CMB, which are consistent with mineral physics studies, significantly reduce the number of mantle plumes forming far outside of thermochemical piles (i.e., LLSVPs). An increase of mantle viscosity in the lowermost mantle also reduces number of plumes far outside of piles. In addition, we find that strong plumes preferentially form at/near the edges of piles and are generally hotter than that forming on top of piles, which may explain the observations that most LIPs occur above LLSVP margins. However, some plumes originated at pile edges can later appear above the middle of piles due to lateral movement of the plumes and piles and morphologic changes of the piles. ∼65-70% strong plumes are found within 10 degrees from pile edges in our models. Although plate motion exerts significant controls over the large-scale mantle convection in the lower mantle, mantle plume formation at the CMB remains largely controlled by thermal boundary layer instability which makes it difficult to predict geographic locations of most mantle plumes. However, all our models show consistently strong plumes originating from the lowermost mantle beneath Iceland, supporting a deep mantle plume origin of the Iceland volcanism.

  10. Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Kamenetsky, Vadim; Campbell, Ian; Park, Gyuseung; Hanski, Eero; Pushkarev, Evgeny

    2017-11-01

    Recent experimental studies and in situ LA-ICP-MS analysis on natural Cr-spinel have shown that Rh and IPGEs (Ir-group platinum group elements: Ru, Ir, Os) are enriched in the lattice of Cr-spinel. However, the factors controlling the partitioning behaviour of these elements are not well constrained. In this study, we report the Rh, IPGE, and trace element contents in primitive Cr-spinel, measured by LA-ICP-MS, from nine volcanic suites covering various tectonic settings including island arc picrites, boninites, large igneous province picrites and mid-ocean ridge basalts. The aim is to understand the factors controlling the enrichment of Rh and IPGEs in Cr-spinels, to estimate empirical partition coefficients between Cr-spinel and silicate melts, and to investigate the role of Cr-spinel fractional crystallization on the PGE geochemistry of primitive magmas during the early stages of fractional crystallization. There are systematic differences in trace elements, Rh and IPGEs in Cr-spinels from arc-related magmas (Arc Group Cr-spinel), intraplate magmas (Intraplate Group Cr-spinel), and mid-ocean ridge magmas (MORB Group Cr-spinel). Arc Group Cr-spinels are systematically enriched in Sc, Co and Mn and depleted in Ni compared to the MORB Group Cr-spinels. Intraplate Group Cr-spinels are distinguished from the Arc Group Cr-spinels by their high Ni contents. Both the Arc and Intraplate Group Cr-spinels have total Rh and IPGE contents of 22-689 ppb whereas the MORB Group Cr-spinels are depleted in Rh and IPGE (total < 20 ppb). Palladium and Pt contents are below detection limit for all of the studied Cr-spinels (<1-5 ppb). The time-resolved spectra of LA-ICP-MS data for Cr-spinels mostly show constant count rates for trace element and Rh and IPGEs, suggesting homogeneous distribution of these elements in Cr-spinels. The PGE spikes observed in several Cr-spinels were interpreted to be PGE-bearing mineral inclusions and excluded from calculating the PGE contents of the Cr-spinels. On primitive mantle normalized diagrams the Arc Group Cr-spinels are characterized by a fractionated pattern with high Rh and low Os. The Intraplate Group Cr-spinels show flat patterns with positive Ru anomalies. Our results, together with the experimental and empirical data from previous studies, show that PGE patterns of Cr-spinel largely mimic that of the rock in which they are found, and that Rh, Ir and Os contents increase with increasing Fe3+ contents (i.e. magnetite component) in Cr-spinel, although Ru does not. These observations suggest that the enrichment of Rh and IPGEs in Cr-spinel is controlled by a combination of the Rh and IPGE contents in parental melts and the magnetite component of the spinel. Empirical partition coefficients (D) for Rh and IPGEs between Cr-spinels and silicate melts were calculated using the Rh and IPGE contents of the Cr-spinel and their host volcanic rocks after subtracting the accumulation effect of Cr-spinel. The D values for the Intraplate and MORB Group Cr-spinels increase with increasing magnetite component in Cr-spinel and range from 6 to 512, which is consistent with previously reported experimental and empirical values. In contrast, the Arc Group Cr-spinels have significantly higher D values (e.g. up to ∼3700 for Ru) than those of the Intraplate and MORB Group at the same magnetite concentration in the Cr-spinel, suggesting Rh and IPGEs dissolved in silicate melt have stronger affinity for Cr spinel under arc magma conditions than in intraplate magmas. This may be partly attributed to the low temperature of arc magmas relative to intraplate magmas, which leads to the Arc Group Cr-spinels having more octahedral sites at the same magnetite components than the Intraplate Group Cr-spinels. Because of significantly higher D values for the Arc Group Cr-spinels, compared with the Intraplate Group and MORB Group spinels, fractional crystallization of Cr-spinel will more efficiently fractionate Rh and IPGE from Pd and Pt in arc systems than in intraplate and MORB systems, which accounts for the highly fractionated PGE patterns in arc basalts.

  11. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo

    2010-07-01

    Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.

  12. Melt-rock interactions and fabric development of peridotites from North Pond in the Kane area, Mid-Atlantic Ridge: Implications of microstructural and petrological analyses of peridotite samples from IODP Hole U1382A

    NASA Astrophysics Data System (ADS)

    Harigane, Yumiko; Abe, Natsue; Michibayashi, Katsuyoshi; Kimura, Jun-Ichi; Chang, Qing

    2016-06-01

    North Pond is an isolated sedimentary pond on the western flank of the Kane area along the Mid-Atlantic Ridge. Drill-hole U1382A of IODP Expedition 336 recovered peridotite and gabbro samples from a sedimentary breccia layer in the pond, from which we collected six fresh peridotite samples. The peridotite samples came from the southern slope of the North Pond where an oceanic core complex is currently exposed. The samples were classified as spinel harzburgite, plagioclase-bearing harzburgite, and a vein-bearing peridotite that contains tiny gabbroic veins. No obvious macroscopic shear deformation related to the formation of a detachment fault was observed. The spinel harzburgite with a protogranular texture was classified as refractory peridotite. The degree of partial melting of the spinel harzburgite is estimated to be ˜17%, and melt depletion would have occurred at high temperatures in the uppermost mantle beneath the spreading axis. The progressive melt-rock interactions between the depleted spinel harzburgite and the percolating melts of Normal-Mid Ocean Ridge Basalt (N-MORB) produced the plagioclase-bearing harzburgite and the vein-bearing peridotite at relatively low temperatures. This implies that the subsequent refertilization occurred in an extinct spreading segment of the North Pond after spreading at the axis. Olivine fabrics in the spinel and plagioclase-bearing harzburgites are of types AG, A, and D, suggesting the remnants of a mantle flow regime beneath the spreading axis. The initial olivine fabrics appear to have been preserved despite the later melt-rock interactions. The peridotite samples noted above preserve evidence of mantle flow and melt-rock interactions beneath a spreading ridge that formed at ˜8 Ma.

  13. Elevated helium isotope ratios in the northern Lau and north Fiji basins: Intrusion of the Samoan hotspot or another OIB component?

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Price, A. A.; Jackson, M. G.; Arculus, R. J.; Nebel, O.

    2016-12-01

    The submarine volcanic rocks of the northern Lau Basin exhibit a complex pattern in helium and radiogenic isotope ratios attributed to the interplay of depleted upper mantle, arc, and hotspot components. The seafloor lavas of the NW Lau Spreading Center (NWLSC) and Rochambeau Rifts have elevated 3He/4He ratios (12 - 28 Ra) indicating that a mantle plume component, possibly from Samoa, has influenced this extensional zone (Lupton et al., 2009). However, this hotspot helium is absent in the NE Lau Basin, which has MOR-type helium ( 8 Ra). We have analyzed helium isotope ratios in 40 additional submarine samples collected on the 2012 cruise of the R/V Southern Surveyor which extend the geographic coverage farther west into the Fiji Basin. To the west of the NWLSC, several samples from the Futuna Volcanic Zone and the Futuna Spreading Center have elevated 3He/4He in the range of 12 - 20.9 Ra, presumably related to the same OIB influence detected along the nearby NW Lau backarc spreading system. Surprisingly, the NE Fiji Triple Junction 1000 km to the west of the NWLSC, also has elevated 3He/4He up to 14.4 Ra. When radiogenic isotopes (Sr, Nd, Hf) are added to the picture, samples from the Futuna Volcanic Zone and from the NE Fiji Triple Junction fall on a mixing trend between depleted MORB mantle and FOZO, as do samples from the Rochambeau Rifts and NWLSC. However, this trend is distinct from that of Samoa proper, suggesting that only a restricted (FOZO) portion of the Samoan plume is responsible for the elevated 3He/4He in the northern Lau and Fiji basins.

  14. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Henry, Hadrien; Griffin, William L.; Zheng, Jian-Ping; Satsukawa, Takako; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2017-06-01

    The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77-0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49-0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at 130-120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.

  15. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; Walte, N. P.; Rubie, D. C.

    2015-05-01

    Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.

  16. Mantle sources and origin of the Middle Paleoproterozoic Jatulian Large Igneous Province of the Fennoscandian shield: evidence from isotope geochemical data on the Kuetsjarvi volcanics, Kola Craton

    NASA Astrophysics Data System (ADS)

    Bogina, Maria; Zlobin, Valeriy; Chistyakov, Alexeii; Evgenii, Sharkov

    2014-05-01

    Paleoproterozoic is one of the most important stages in the Earth's evolution as marking a cardinal change in a style of tectonomagmatic processes at 2.2-2.0 Ga, which corresponds to the formation of the Jatulian Large Igneous Province at the Fennoscandian Shield. The fragment of this province is represented by the volcanics of the Kuetsjarvi Group in the Kola Craton. These rocks differ in the extremely wide rock diversity and prominent role of alkaline rocks, the extremely rare rocks in the Precambrian. The rocks of the group are subdivided into the alkaline and tholeiitic basaltic series. The tholeiites are highly fractionated (mg# 38) high-Ti rocks enriched in HFSE. The alkaline series show wider mg# variations (32-52), which is inconsistent with a single fractionation sequence of these series. All rocks have high HFSE, at extremely wide LILE variations. Tholeiites show moderate LREE fractionation pattern at practically flat HREE: La/YbN = 3.6-4.5; La/SmN = 2.2-2.4, Gd/YbN = 1.5-1.7 and slight Eu anomaly (Eu/Eu* = 0.80-0.85). The alkaline rocks display much more fractionated LREE and fractionated HREE (La/YbN = 43.9-5.8; La/SmN = 2.2-2.4, Gd/YbN = 2.04-3.92) patterns at Eu anomaly varying from 0.53 to 1. The spidergrams of both series reveal negative Nb and Sr anomalies at sign-variable Ti anomaly. The alkaline rocks are enriched relative to tholeiites in U, Th, and Nb. Examination of behavior of incompatible trace elements offers an opportunity to compare the conditions of generation of parental mantle magmas of the studied series. In particular, the tholeiitic basalts have higher Zr/Nb ratios than the alkaline rocks, which in combination with their lower La/Yb ratios indicates their formation under the higher melting degree of mantle source as compared to the alkaline rocks. Simultaneous increase in Ce/Y ratio in the alkaline rocks may indicate their formation at greater depths. Tholeiitic basalts have lower Nb/U ratio, which testifies some crustal contamination of the melts. In addition, they have low Ti/Y (323-449) ratios and high Lu/Hf (0.11-0.16), which is typical of the rocks formed by melting of spinel peridotites. The alkaline basalts were derived from a deeper garnet-bearing mantle source (Ti/Y = 640-1140, Lu/Hf = 0.03-0.05). Isotope-geochemical study showed that these rocks have very similar Nd isotope composition ((eNd (2200) = +1.5 in the alkaline basalt and +1.9 in the tholeiites). It was found that the studied alkaline rocks are similar in composition to the OIB-type Tristan da Kunha basalts, while tholeiites are closer to the high-Ti rocks of the Parana plateau, which experienced significant lithospheric contribution. Obtained data confirm the within-plate setting at the Jatulian stage of the Fennoscandian Shield. The Kutesjarvi Group consists of two rock types: OIB-type alkaline and E-MORB-type tholeiitic, which is typical of most Phanerozoic large igneous provinces. However, unlike the latters, the rocks of this area were too much tectonized and eroded to compile a systematic sequence. But, the Kuetsjarvi Group may be considered as the fragment of the oldest large igneous province.

  17. Carslberg Ridge and Mid-Atlantic Ridge: Slow-spreading Apparent Analogs

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Murton, B. J.; Bostrom, K.; Widenfalk, L.; Melson, W. G.; O'Hearn, T.; Cronan, D. S.; Jenkins, W. J.

    2005-12-01

    We compare morphology, tectonics, petrology, and hydrothermal activity of a known section of the Mid-Atlantic Ridge (MAR) between the Kane and Atlantis fracture zones (full multi-beam coverage 21N to 31N) to the lesser known Carlsberg Ridge (CR; limited multi-beam coverage plus satellite altimetry). The CR extends from the Owen Fracture Zone (10N) to the Vityaz Fracture Zone (5S) and spreads at half-rates (~1.2-1.8 cm/yr) similar to the MAR: 1) Morphology: Both ridges exhibit distinct segmentation (primarily sinistral) and axial valleys with high floor to crest relief (range 1122-1771 m). Average lengths of segments (CR: 70 km; MAR: 50 km) and crest-to crest width of the axial valley are greater on the CR (40 km) than MAR (23 km). Axial volcanic ridges form the neovolcanic zone on both ridges, typically 2.6 km wide and 213 m high on the CR. Average water depth near segment centers is greater on the MAR (3933 m) than the CR (3564 m). V-shaped patterns oblique to the spreading axis are present on both ridges. 2) Tectonics: Segments on each ridge are predominantly separated by short-offset (<30 km) non-transform discontinuities with longer transform faults generally spaced hundreds of kilometers apart. Bulls-eye Mantle Bouguer Lows (-30 to -50 mgal) are present at centers of spreading segments on both ridges. Metamorphic core complexes of lower crust and upper mantle are present on the MAR section (at fracture zones) and at least at one locality at 58.33E on the CR. 3) Petrology: MORB composition from our 20 stations along the CR fall into the MORB family, with no evidence of hotspot inputs (no excess K or Nb), or extreme fractionation, similar to the MAR section. REE and trace element patterns between 57E and 61E on the CR indicate increasing melt depletion to the northwest, while glasses exhibit a striking systematic increase in MgO (decrease in fractionation) to the northwest and attain among the most primitive composition of any ocean ridge adjacent to the Owen fracture zone (9.93wt percent). Sr, Nd, and Pb isotopic compositions of Indian Ocean MORB are distinct from those of other oceans. They exhibit relatively higher 87Sr/86Sr, and lower 143Nd/144Nd, 207Pb/204Pb and 208Pb/204Pb for a given 206Pb/204Pb invoking mixing and regional-scale contamination of a depleted mantle with a variously designated enriched reservoir (EM1, EM2, DUPAL, etc.). 4) Hydrothermal activity: The MAR section encompasses a low-T hydrothermal field driven by the serpentinization at the Atlantis fracture zone (Lost City at 30N), and three high-temperature fields driven by magmatic heat in the axial valley (Broken Spur 29N, TAG 26N, and Snake Pit 23N). A 70 km-long, 1000 m-thick megaplume was detected in the water column up to 1400 m above the CR axial valley centered at 6.05N, 60.95E in August 2003, the first clear evidence of high-temperature hydrothermal activity on the CR. Further CR hydrothermal evidence includes relict sulfide chimneys at 58E; Mn-oxide coatings on basalts in the axial valley with Fe/Mn ratios at the boundary between hydrogenous and hydrothermal composition with thickness at two stations (1.67S, 67.77E; 5.35S, 68.62E) suggestive of hydrothermal input; and a d3He anomaly (166 per mil) in the water column at one of our stations in April 1979 (5.35S, 68.62E).

  18. Nature and Significance of the High-Sr Aleutian Lavas

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y<30, 87Sr/86Sr=0.7031-0.7033). Western Aleutian dredge samples also include high-Sr lavas (>700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr < 0.7028). The endmember Sr-rich lavas are magnesian rhyodacites (SiO2~68%, Mg# >0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (La<7 ppm, Yb<0.4 ppm) and 87Sr/86Sr < 0.70266. The high silica and primitive (high Mg#) character of the high-Sr lavas, combined with their strongly fractionated trace element patterns and MORB-like isotopes are consistent with a source predominantly of subducted basalt and a melt residue that contained garnet. The high-Sr lavas have some characteristics of MORB fluids (low Ce/Pb and unradiogenic Pb), and their highly calc-alkaline nature implies high pre-eruptive water contents[1], but low 87Sr/86Sr indicates that their source was in MORB, not seawater-altered MORB. The high-Sr endmember is clearly present in andesites from some emergent volcanoes in the western Aleutians, and mixing arrays indicate that it may be present in all Aleutian lavas (e.g., 87Sr/86Sr vs. La/Yb or Sr/Y); however, radiogenic Pb and Sr from subducted sediment renders the high-Sr endmember isotopically invisible in most central and eastern Aleutian lavas. The geochemistry of small monogenetic sea-floor volcanoes--especially those in the back-arc--may be the best opportunity to identify the high-Sr endmember in central and eastern Aleutian locations. The existence of primitive, high-silica lavas in the western Aleutians, where the subducting plate is probably unusually hot, may also provide key observations toward an improved understanding of high-Mg# andesites and dacites from other hot-slab locations, especially in the Cascades and Central Mexico. [1] Zimmer et al., 2010, J. Petrology, v. 51, p. 2411

  19. A Partial Late Veneer for the Source of 3.8 Ga Isua Rocks: Evidence from Highly Siderophile Elements and 182W

    NASA Astrophysics Data System (ADS)

    Dale, C.; Kruijer, T.; Burton, K. W.; Kleine, T.; Moorbath, S.

    2015-12-01

    Highly siderophile elements (HSE) were strongly sequestered into metallic planetary cores, leaving silicate mantles almost devoid of HSE. Late accretion partially replenished HSE in planetary mantles soon after core formation had ceased [1], which for Earth probably postdated the giant Moon-forming impact. Ancient isolated domains in Earth's mantle - such as the source of 3.8 Ga Isua basalts - might represent mantle isolated from late accreted material, as suggested based on their small 182W excesses compared to Earth's present-day mantle [2]. However, such 182W excesses may also represent signatures of early differentiation in Earth's mantle, which have been preserved through the giant impact [3]. To assess the origin of 182W anomalies and the 182W composition of the pre-late veneer mantle, we determined HSE abundances and 182W compositions of a suite of mafic to ultramafic rocks from Isua. Our data show that the Isua source mantle had HSE abundances at ~60% of the present-day mantle, inconsistent with isolation from the late veneer. For the same samples we obtained a 13±4 ppm 182W excess over the modern terrestrial mantle, in excellent agreement with previous data [2]. Using a range of possible late veneer compositions and taking into account the recently revised 182W value for the Moon [4], we calculate that the Isua mantle source, containing 60% late veneer, would have a 182W value of 9±4 ppm, in very good agreement with the measured value for Isua. The combined HSE-W data, therefore, are consistent with only partial addition of the late veneer to the Isua mantle source, and with the interpretation that the 27±4 ppm 182W excess of the Moon represents the 182W composition of the pre-late veneer Earth's mantle [4]. [1] Dale et al. (2012) Science 336, 72. [2] Willbold et al. (2011) Nature 477, 195. [3] Touboul et al. (2012) Science 335, 1065-1069. [4] Kruijer et al. (2015) Nature 7548, 534

  20. Petrogenesis of Late Cretaceous lava flows from a Ceno-Tethyan island arc: The Raskoh arc, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Siddiqui, Rehanul Haq; Qasim Jan, M.; Asif Khan, M.

    2012-10-01

    The Raskoh arc is about 250 km long, 40 km wide and trends in an ENE direction. The oldest rock unit in the Raskoh arc is an accretionary complex (Early to Late Jurassic), which is followed in age by Kuchakki Volcanic Group, the most wide spread unit of the Raskoh arc. The Volcanic Group is mainly composed of basaltic to andesitic lava flows and volcaniclastics, including agglomerate, volcanic conglomerate, breccia and tuff, with subordinate shale, sandstone, limestone and chert. The flows generally form 3-15 m thick lenticular bodies but rarely reach up to 300 m. They are mainly basaltic-andesites with minor basalts and andesites. The main textures exhibited by these rocks are hypocrystalline porphyritic, subcumulophyric and intergranular. The phenocrysts comprise mainly plagioclase (An30-54 in Nok Chah and An56-64 in Bunap). They are embedded in a micro-cryptocrystalline groundmass having the same minerals. Apatite, magnetite, titanomagnetite and hematite occur as accessory minerals. Major, trace and rare earth elements suggest that the volcanics are oceanic island arc tholeiites. Their low Mg # (42-56) and higher FeO (total)/MgO (1.24-2.67) ratios indicate that the parent magma of these rocks was not directly derived from a mantle source but fractionated in an upper level magma chamber. The trace element patterns show enrichment in LILE and depletion in HFSE relative to N-MORB. Their primordial mantle-normalized trace element patterns show marked negative Nb anomalies with positive spikes on K, Ba and Sr which confirm their island arc signatures. Slightly depleted LREE to flat chondrite normalized REE patterns further support this interpretation. The Zr versus Zr/Y and Cr versus Y studies show that their parent magma was generated by 20-30% melting of a depleted mantle source. The trace elements ratios including Zr/Y (1.73-3.10), Ti/Zr (81.59-101.83), Ti/V (12.39-30.34), La/YbN (0.74-2.69), Ta/Yb (0.02-0.05) and Th/Yb (0.11-0.75) of the volcanics are more consistent with oceanic island arcs rather than continental margin arcs. It is suggested that the Raskoh arc is an oceanic island arc which formed due to the intra-oceanic convergence in the Ceno-Tethys during the Late Cretaceous rather than constructed on the southern continental margin of the Afghan block, as claimed by previous workers. It is further suggested that the Semail, Zagros, Chagai-Raskoh, Muslim Bagh, and Waziristan island arcs were developed in a single but segmented Cretaceous Ceno-Tethyan convergence zone.

Top