Sample records for mordenite

  1. XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves.

    PubMed

    Anson, A; Maham, Y; Lin, C C H; Kuznicki, T M; Kuznicki, S M

    2009-05-01

    Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.

  2. Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption

    NASA Astrophysics Data System (ADS)

    Zevi, Y.; Dewita, S.; Aghasa, A.; Dwinandha, D.

    2018-01-01

    Mordenite minerals derived from Sukabumi natural green stone founded in Indonesia was tested in order to remove iron and manganese from natural groundwater. This research used two types of adsorbents which were consisted of physically activated and natural mordenite. Physical activation of the mordenite was carried out by heating at 400-600°C for two hours. Batch system experiments was also conducted as a preliminary experiment. Batch system proved that both activated and natural mordenite minerals were capable of reducing iron and manganese concentration from natural groundwater. Then, continuous experiment was conducted using down-flow system with 45 ml/minute of constant flow rate. The iron & manganese removal efficiency using continuous reactor for physically activated and natural mordenite were 1.38-1.99%/minute & 0.8-1.49%/minute and 2.26%/minute & 1.37-2.26%/minute respectively. In addition, the regeneration treatment using NH4Cl solution managed to improve the removal efficiency of iron & manganese to 1.98%/minute & 1.77-1.90%/minute and 2.25%/minute & 2.02-2.21%/minute on physically activated mordenite and natural mordenite respectively. Subsequently, the activation of the new mordenite was carried out by immersing mordenite in NH4Cl solution. This chemical activation showed 2.42-2.75%/minute & 0.96 - 2.67 %/minute and 2.66 - 2.78 %/minute & 1.34 - 2.32 %/minute of iron & manganese removal efficiency per detention time for chemically activated and natural mordenite respectively.

  3. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol.

    PubMed

    Grundner, Sebastian; Markovits, Monica A C; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A; Hensen, Emiel J M; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.

  4. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    DOE PAGES

    Grundner, Sebastian; Markovits, Monica A. C.; Li, Guanna; ...

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. In conclusion, the similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towardsmore » methanol, in both the enzyme system and copper-exchanged mordenite.« less

  5. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  6. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it; Martucci, Annalisa; Alberti, Alberto

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determinedmore » by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.« less

  7. A study involving mordenite, titanate nanotubes, perfluoroalkoxy polymers, and ammonia borane

    NASA Astrophysics Data System (ADS)

    Nosheen, Shaneela

    Zeolites and molecular sieves are finding applications in many areas of catalysis due to appreciable acid activity, shape selectivity, and ion-exchange capacity, as they possess an unbalanced framework charge. For catalytic applications, zeolites become more valuable as the ratio of SiO2/Al2O 3 increases. Acid resistance and thermal stability of zeolite are both improved with increasing SiO2/Al2O3. This part of the thesis deals with the control of morphology focused on decreasing the crystal diameter of mordenite zeolite and to increase the SiO2/Al 2O3 ratio by changing synthesis conditions. A high SiO 2/Al2O3 ratio (SAR15) of mordenite was prepared in a very short reaction time. We studied the role of hydroxide in the crystallization of the mordenite as a structure director, nucleation time modifier, and crystallite aggregate enhancer. The formation of nano-aggregates of mordenites was greatly enhanced using a combination of alcohol additives and conventional heating. Mordenite nucleation was also increased without using alcohols when microwave heating was employed, but the alcohols further accelerated the nucleation process. The different heating techniques affected the morphology; microwave heating produced crystallites of ˜40 nm, while the conventional hydrothermal method formed larger size crystallites of ˜88 nm. We controlled the size and shape of the mordenite crystals because they have important implications in hydrocarbon conversion and separation processes. Mordenite synthesized showed jellyfish, acicular, flower, and wheat grain like structures. In the second part of this thesis, a phase transition was successfully achieved from TiO2 particles to titanate nanotubes by the breakage of Ti-O bonds and the creation of oxygen vacancies without using expensive precursors, high temperatures, high chemical concentrations of alkaline solutions, and long synthesis times. A combination of anatase nano-particles/titanate nano-tubes was synthesized using TiO2

  8. Preparation of metal/zeolite catalysts: Formation of palladium aquocomplexes in the precursor of palladium-mordenite catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    Previous research has revealed that the catalytic performance of metal/zeolite catalysts can be significantly modified by exposing the catalyst precursor to H[sub 2]O vapor during the period after calcination, but before reduction. For bimetallic PdCo/NaY catalysts used for CO hydrogenation, the selectivity was changed from predominant production of oxygenates to predominant production of higher hydrocarbons. For Pt/H-mordenite catalysts, this water treatment has been reported to improve the alkane isomerization activity. Although it is certain that Lewis sites are transformed to Bronsted sites by reaction with H[sub 2]O, the activity of the catalyst is affected most when the water is addedmore » after calcination, when the noble metal is present as ligand-free ions. This observation led to the hypothesis that complexation of transition metal ions with water might be instrumental for the observed effects. In zeolites containing cages, such as Y, the formation of metal-ligand complex ions appears to incite their migration from small to large cages. In cageless zeolites such as mordenite, however, it is not clear, a priori, whether hydration of transition metal ions will increase or decrease their reducibility and whether it will ultimately result in higher or lower metal dispersion. The authors have therefore undertaken research to clarify these issues. Palladium supported in H-mordenite (Pd/HMor) or Na-mordenite (Pd/Na-Mor) has been tested using methylcyclopentane as a probe reaction; temperature-programmed reduction (TPR), desorption (TPD), and extended X-ray absorption fine structure (EXAFS) spectroscopy have been used to characterize the effects of water treatment on the samples.« less

  9. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    DOE PAGES

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag 0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag 0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodinemore » adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag 0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  10. Removal of free fatty acid in Azadirachta indica (Neem) seed oil using phosphoric acid modified mordenite for biodiesel production.

    PubMed

    SathyaSelvabala, Vasanthakumar; Varathachary, Thiruvengadaravi Kadathur; Selvaraj, Dinesh Kirupha; Ponnusamy, Vijayalakshmi; Subramanian, Sivanesan

    2010-08-01

    In this study free fatty acids present in Azadirachta indica (Neem) oil were esterified with our synthesized phosphoric acid modified catalyst. During the esterification, the acid value was reduced from 24.4 to 1.8 mg KOH/g oil. Synthesized catalyst was characterized by NH(3) TPD, XRD, SEM, FTIR and TGA analysis. During phosphoric acid modification hydrophobic character and weak acid sites of the mordenite were increased, which lead to better esterification when compared to H-mordenite. A kinetic study demonstrates that the esterification reaction followed pseudo-first order kinetics. Thermodynamic studies were also done based on the Arrhenius model. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Ammonia IRMS-TPD study on the distribution of acid sites in mordenite.

    PubMed

    Niwa, Miki; Suzuki, Katsuki; Katada, Naonobu; Kanougi, Tomonori; Atoguchi, Takashi

    2005-10-13

    Using an IRMS-TPD (temperature programmed desorption) of ammonia, we studied the nature, strength, crystallographic location, and distribution of acid sites of mordenite. In this method, infrared spectroscopy (IR) and mass spectroscopy (MS) work together to follow the thermal behavior of adsorbed and desorbed ammonia, respectively; therefore, adsorbed species were identified, and their thermal behavior was directly connected with the desorption of ammonia during an elevation of temperature. IR-measured TPD of the NH4(+) cation was similar to MS-measured TPD, thus showing the nature of Brønsted acidity. From the behavior of OH bands, it was found that the Brønsted acid sites consisted of two kinds of OH bands at high and low wavenumbers, ascribable to OH bands situated on 12- and 8-member rings (MR) of mordenite structure, respectively. The amount and strength of these Brønsted hydroxyls were measured quantitatively based on a theoretical equation using a curve fitting method. Up to ca. 30% of the exchange degree, NH4(+) was exchanged with Na+ on the 12-MR to arrive at saturation; therefore, in this region, the Brønsted acid site was situated on the large pore of 12-MR. The NH4(+) cation was then exchanged with Na+ on 8-MR, and finally exceeded the amount on 12-MR. In the 99% NH4-mordenite, Brønsted acid sites were located predominantly on the 8-MR more than on the 12-MR. Irrespective of the NH4(+) exchange degree, the strengths deltaH of Brønsted OH were 145 and 153 kJ mol(-1) on the 12- and 8-MR, respectively; that is, the strength of Brønsted acid site on the 8-MR was larger than that on the 12-MR. A density functional theory (DFT) calculation supported the difference in the strengths of the acid sites. Catalytic cracking activity of the Brønsted acid sites on the 8-MR declined rapidly, while that on the 12-MR was remarkably kept. The difference in strength and/or steric capacity may cause such a difference in the life of a catalyst.

  12. X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.

    Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less

  13. X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite

    DOE PAGES

    Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.

    2017-03-29

    Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less

  14. Synthesis and characterization of nanocrystalline mordenite, high silica zeolite RHO, and copper faujasite

    NASA Astrophysics Data System (ADS)

    Hincapie Palacio, Beatriz Omaira

    Mordenite is a zeolite that has been used as a selective adsorbent and as a catalyst. In reactions where the diffusion of reagents into the pore system is the rate-determining step, nanoparticles of the catalyst improve the reaction rate. Mordenite with a crystal diameter smaller than 100 nm has been prepared by the modification of different synthetic parameters such as the source of aluminum, the presence of seeds, the use of low temperatures (150°C vs. 170°C), longer crystallization times (24 h vs. 96 h), and different silica to alumina ratios (10--30). The decrease in the crystal diameter of the prepared mordenite was monitored by the application of the Scherrer equation that relates the broadness of the X-ray diffraction peaks to crystal sizes. Zeolite RHO with an initial silica to alumina ratio (SAR) higher than 20 has been prepared. EDTA, citric acid, and tartaric acid have been used as complexing agents in the synthesis of zeolite RHO. Crystallization time increases (from 48 h to 900 h) with increasing the silica to alumina ratios (SAR) of the initial gel (SAR: 10.8 to 30) and by adding complexing agents. Complexing agents favor the formation of small crystals (0.8 mum) with increased silica to alumina ratio (final SAR: 4.5 vs. 4.0 without complexing agents). The products were characterized by XRD, FESEM, EDX, FTIR, and in-situ XRD. Copper containing faujasite has been successfully prepared for the first time using a direct synthesis method. Ammonium hydroxide was used to form a copper complex that was later mixed with the reacting gel. Crystallization took place at 85°C for 11 days. The copper containing faujasite obtained was characterized by XRD, FESEM, EDX, EPR, FTIR, TPR, and BET. According to the XRD pattern only FAU type zeolite was obtained. According to TPR experiments, the reduction temperature for Cu2+ ions present in Cu-FAU prepared by direct synthesis was 70 K higher than for Cu-FAU prepared by ion-exchange. This difference can be due to the

  15. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.

    PubMed

    Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu

    2010-10-25

    Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.

  16. Aging of Iodine-Loaded Silver Mordenite in NO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Patton, Kaara K.

    2014-04-01

    Used nuclear fuel facilities need to control and minimize radioactive emissions. Off-gas systems are designed to remove radioactive contaminants, such as 85Kr, 14C, 3H, and 129I. In an off-gas system, any capture material will be exposed to a gas stream for months at a time. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents comprising the dissolver off-gas stream in a nuclear fuel reprocessing plant. For this reason, it is important to evaluate the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration ismore » reduced silver mordenite (Ag0Z), which is recognized for its efficient iodine capture properties. Iodine is immobilized on Ag0Z as AgI, a solid with low volatility (m.p. ≥ 500°C). The aim of this study was to determine whether extended aging at elevated temperature in a nominally 2% NO2 environment would result in a loss of immobilized iodine from this material due to either physical or chemical changes that might occur during aging. Charges of iodine-loaded reduced silver mordenite (I2-Ag0Z) were exposed to a 2% NO2 environment for 1, 2, 3, and 4 months at 150°C, then analyzed for iodine losses The aging study was completed successfully. The material did not visibly change color or form. The results demonstrate that no significant iodine loss was observed over the course of 4 months of 2% NO2 aging of I2-Ag0Z at elevated temperature within the margin of error and the variability (~10%) in the loading along the beds. This provides assurance that iodine will remain immobilized on Ag0Z during extended online use in an off-gas capture treatment system. Future tests should expose I2-Ag0Z to progressively more complex feed gases in an effort to accurately replicate the conditions expected in a reprocessing facility.« less

  17. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO.

    PubMed

    Boronat, Mercedes; Martínez-Sánchez, Cristina; Law, David; Corma, Avelino

    2008-12-03

    The mechanism of methanol carbonylation at different positions of zeolite MOR is investigated by quantum-chemical methods in order to discover which are the active sites that can selectively catalyze the desired reaction. It is shown that when methanol carbonylation competes with hydrocarbon formation, the first reaction occurs preferentially within 8MR channels. However, the unique selectivity for the carbonylation of methanol and dimethyl ether in mordenite is not only due to the size of the 8MR channel: neither process occurs equally at the two T3-O31 and T3-O33 positions. We show that only the T3-O33 positions are selective and that this selectivity is due to the unusual orientation of the methoxy group in relation to the 8MR channel (parallel to the cylinder axis). Only in this situation does the transition state for the attack of CO fit perfectly in the 8MR channel, while the reaction with methanol or DME is sterically impeded. This result explains why T3-O31, while also located in the 8MR channel of mordenite, is not as selective as the T3-O33 position and why ferrierite, although it contains 8MR channels, is less selective than mordenite. The competing effect of water is explained at the molecular level, and the molecular microkinetic reaction model has been established.

  18. Platinum-mordenite catalysts for n-Hexane isomerization: Characterization by X-ray absorption spectroscopy and chemical probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otten, M.M.; Clayton, M.J.; Lamb, H.H.

    Platinum-mordenite (Pt-MOR) catalysts were prepared from NH{sub 4}-MOR by ion exchange with (Pt{sup II}(NH{sub 3}){sub 4})(OH){sub 2}, calcination in O{sub 2} at 350{degrees}C, and reduction in H{sub 2} at 350{degrees}C. The resultant Pt-H-MOR was active for n-hexane isomerization and hydrocracking via bifunctional catalysis at 240-300{degrees}C and 1 atm. The observed activation energies for C{sub 6} branched-isomer formation are unusually low, suggesting that the isomerization rates were controlled by pore diffusion. A Pt-KH-MOR catalyst was prepared by ion exchange with aqueous KNO{sub 3} and re-reduction at 350{degrees}C; elemental analysis evidenced 90% exchange of protons for K{sup +} ions. The product distributionmore » and observed activation energies for C{sub 6} branched-isomer formation over Pt-KH-MOR are consistent with n-hexane isomerization via bifunctional catalysis. Hydrocracking was strongly suppressed, and light hydrocarbons were formed primarily by Pt-catalyzed hydrogenolysis. From in-situ extended X-ray absorption fine structure spectroscopy and H{sub 2} temperature-programmed desorption, we conclude that the Pt-MOR catalysts consist of small Pt clusters hosted within the mordenite crystals. The PtL{sub III}X-ray absorption near-edge structure (XANES) spectra of Pt-H-MOR and Pt-KH-MOR are closely similar, suggesting that the electronic structure of the Pt clusters is unaffected by mordenite acid-base chemistry. The infrared spectrum of CO adsorbed on Pt-H-MOR contains an intense band at 2084 cm{sup -1}, which is assigned to linear CO moieties on Pt clusters. The infrared spectrum of CO adsorbed on Pt-KH-MOR evidences a red shift of the linear CO band, which the authors suggest is due to electrostatic interactions between carbonyl O atoms and nearby K{sup +} ions. 45 refs., 9 figs., 6 tabs.« less

  19. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  20. Adsorption Equilibrium and Modeling of Water Vapor on Reduced and Unreduced Silver-Exchanged Mordenite

    DOE PAGES

    Nan, Yue; Lin, Ronghong; Liu, Jiuxu; ...

    2017-06-26

    This work is related to the removal of tritiated water and radioactive iodine from off-gases released during spent nuclear fuel reprocessing. Specifically, it is focused on the adsorption equilibrium of water on reduced silver mordenite (Ag 0Z), which is the state-of-art solid adsorbent for iodine retention in the off-gas treatment. As the off-gases contain different gas species, including iodine and water, Ag 0Z would take up iodine and water simultaneously during the adsorption process. Therefore, understanding the adsorption of water on Ag 0Z is important and necessary for studying the performance of Ag 0Z in off-gas treatment processes. The isothermsmore » of water (nonradioactive water) on Ag 0Z were obtained at temperatures of 25, 40, 60, 100, 150, and 200 °C with a continuous-flow adsorption system. The data were analyzed using the Heterogeneous Langmuir and generalized statistical thermodynamic adsorption (GSTA) models, and thermodynamic parameters of the isotherms were obtained from both models. Both models were found capable of describing the isotherms. Isotherms of water on the unreduced silver mordenite (AgZ) were also obtained at 25, 40, and 60 °C and parametrized by the GSTA model. Through the comparison of the isotherms of Ag 0Z and AgZ, it was found that Ag 0Z had a higher water adsorption capacity than AgZ. The comparison of their thermodynamic parameters suggested that the interaction of water molecules with the H + in Ag 0Z was stronger than that with the Ag + in AgZ.« less

  1. Adsorption Equilibrium and Modeling of Water Vapor on Reduced and Unreduced Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Yue; Lin, Ronghong; Liu, Jiuxu

    This work is related to the removal of tritiated water and radioactive iodine from off-gases released during spent nuclear fuel reprocessing. Specifically, it is focused on the adsorption equilibrium of water on reduced silver mordenite (Ag 0Z), which is the state-of-art solid adsorbent for iodine retention in the off-gas treatment. As the off-gases contain different gas species, including iodine and water, Ag 0Z would take up iodine and water simultaneously during the adsorption process. Therefore, understanding the adsorption of water on Ag 0Z is important and necessary for studying the performance of Ag 0Z in off-gas treatment processes. The isothermsmore » of water (nonradioactive water) on Ag 0Z were obtained at temperatures of 25, 40, 60, 100, 150, and 200 °C with a continuous-flow adsorption system. The data were analyzed using the Heterogeneous Langmuir and generalized statistical thermodynamic adsorption (GSTA) models, and thermodynamic parameters of the isotherms were obtained from both models. Both models were found capable of describing the isotherms. Isotherms of water on the unreduced silver mordenite (AgZ) were also obtained at 25, 40, and 60 °C and parametrized by the GSTA model. Through the comparison of the isotherms of Ag 0Z and AgZ, it was found that Ag 0Z had a higher water adsorption capacity than AgZ. The comparison of their thermodynamic parameters suggested that the interaction of water molecules with the H + in Ag 0Z was stronger than that with the Ag + in AgZ.« less

  2. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.

    PubMed

    Boronat, Mercedes; Martínez, Cristina; Corma, Avelino

    2011-02-21

    The activity and selectivity towards carbonylation presented by Brønsted acid sites located inside the 8MR pockets or in the main 12MR channels of mordenite is studied by means of quantum-chemical calculations, and the mechanistic differences between methanol and DME carbonylation are investigated. The selectivity towards carbonylation is higher inside the 8MR pockets, where the competitive formation of DME and hydrocarbons that finally leads to catalyst deactivation is sterically impeded. Moreover, inclusion of dispersion interactions in the calculations leads to agreement between the calculated activation barriers for the rate determining step and the experimentally observed higher reactivity of methoxy groups located inside the 8MR channels.

  3. A study of silver species on silver-exchanged ETS-10 and mordenite by XRD, SEM and solid-state 109Ag, 29Si and 27AI NMR spectroscopy.

    PubMed

    Liu, Yan; Chen, Fu; Wasylishen, Roderick E; Xu, Zhenghe; Sawada, James; Kuznicki, Steven M

    2012-08-01

    Silver zeolites, especially Ag-ETS-10 and Ag-mordenite, actively bind xenon and iodine, two prime contaminants common to nuclear accidents. The evolution of silver species on silver exchanged ETS-10 (Ag/ETS-10) and mordenite (Ag/Mor) has been investigated by exposing the materials to a series of activation conditions in Ar, air and H2. The samples were characterized by XRD, SEM and solid-state 109Ag, 29Si and 27AI MAS NMR. The silver reduction and structural evolution have been illustrated by those techniques. The effectiveness of one sample of each type of sieve was tested for its ability to trap mercury from a gas stream. However, the results from this study demonstrate that the adsorption characteristics of silver-loaded sieves cannot necessarily be predicted using a full complement of structural characterization techniques, which highlights the importance of understanding the formation and nature of silver species on molecular sieves.

  4. Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R. T.; Bruffey, S. H.; Patton, K. K.

    2014-09-30

    Reduced silver-exchanged mordenite (Ag0Z) is being evaluated as a potential material to control the release of radioactive iodine that is released during the reprocessing of used nuclear fuel into the plant off-gas streams. The purpose of this study was to determine if hot pressing could directly convert this iodine loaded sorbent into a waste form suitable for long-term disposition. The minimal pretreatment required for production of pressed pellets makes hot pressing a technically and economically desirable process. Initial scoping studies utilized hot uniaxial pressing (HUPing) to prepare samples of non-iodine-loaded reduced silver exchanged mordenite (Ag0Z). The resulting samples were verymore » fragile due to the low pressure (~ 28 MPa) used. It was recommended that hot isostatic pressing (HIPing), performed at higher temperatures and pressures, be investigated. HIPing was carried out in two phases, with a third and final phase currently underway. Phase I evaluated the effects of pressure and temperature conditions on the manufacture of a pressed sample. The base material was an engineered form of silver zeolite. Six samples of Ag0Z and two samples of I-Ag0Z were pressed. It was found that HIPing produced a pressed pellet of high density. Analysis of each pressed pellet by scanning electron microscopy-energy dispersive spectrophotometry (SEM-EDS) and X-ray diffraction (XRD) demonstrated that under the conditions used for pressing, the majority of the material transforms into an amorphous structure. The only crystalline phase observed in the pressed Ag0Z material was SiO2. For the samples loaded with iodine (I-Ag0Z) iodine was present as AgI clusters at low temperatures, and transformed into AgIO4 at high temperatures. Surface mapping and EDS demonstrate segregation between silver iodide phases and silicon dioxide phases. Based on the results of the Phase I study, an expanded test matrix was developed to examine the effects of multiple source materials

  5. Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite

    DOE PAGES

    Zhao, Zhi -Jian; Kulkarni, Ambarish; Vilella, Laia; ...

    2016-05-02

    Selective oxidation of methane to methanol is one of the most difficult chemical processes to perform. A potential group of catalysts to achieve CH 4 partial oxidation are Cu-exchanged zeolites mimicking the active structure of the enzyme methane monooxygenase. However, the details of this conversion, including the structure of the active site, are still under debate. In this contribution, periodic density functional theory (DFT) methods were employed to explore the molecular features of the selective oxidation of methane to methanol catalyzed by Cu-exchanged mordenite (Cu-MOR). We focused on two types of previously suggested active species, CuOCu and CuOOCu. Our calculationsmore » indicate that the formation of CuOCu is more feasible than that of CuOOCu. In addition, a much lower C–H dissociation barrier is located on the former active site, indicating that C–H bond activation is easily achieved with CuOCu. We calculated the energy barriers of all elementary steps for the entire process, including catalyst activation, CH 4 activation, and CH 3OH desorption. Finally, our calculations are in agreement with experimental observations and present the first theoretical study examining the entire process of selective oxidation of methane to methanol.« less

  6. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    NASA Astrophysics Data System (ADS)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  7. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite – a combined DFT/experimental study

    DOE PAGES

    Rasmussen, D. B.; Christensen, J. M.; Temel, B.; ...

    2017-01-23

    The reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite was studied theoretically with periodic density functional theory calculations including dispersion forces and experimentally in a fixed bed flow reactor at pressures between 10 and 100 bar, dimethyl ether concentrations in CO between 0.2 and 2.0%, and at a temperature of 438 K. The theoretical study showed that the reaction of CO with surface methyl groups, the rate-limiting step, is faster in the eight-membered side pockets than in the twelve-membered main channel of the zeolite; the subsequent reaction of dimethyl ether with surface acetyl to form methyl acetatemore » was demonstrated to occur with low energy barriers in both the side pockets and in the main channel. Here, the present analysis has thus identified a path, where the entire reaction occurs favourably on a single site within the side pocket, in good agreement with previous experimental studies. The experimental study of the reaction kinetics was consistent with the theoretically derived mechanism and in addition revealed that the methyl acetate product inhibits the reaction – possibly by sterically hindering the attack of CO on the methyl groups in the side pockets.« less

  8. Preparation of NO 2-Aged Silver-Functionalized Silica-Aerogel and Silver Mordenite Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Jacob A.; Bruffey, Stephanie H.

    2016-10-01

    Reprocessing used nuclear fuel can result in the volatilization of radioactive gaseous species, including 129I, into the various process off-gas streams. In order to comply with US regulatory requirements, plant off-gas streams must be treated to remove the iodine prior to discharging the off-gas into the environment. The performance of available gas removal methods depends not only on the concentration of the volatile radioisotope of interest, but also on other constituents that could be present in the reprocessing off-gas streams. Some of the constituents, such as NOx produced during fuel dissolution, are known to have deleterious effects on the capturemore » performance of silver-based sorbents used for iodine removal. Commercially available reduced silver mordenite (AgZ) has an iodine saturation concentration of 7.0-9.0 wt%, and its iodine sorption capacity is reduced by 20-50% as a result of NO2 aging. Silverfunctionalized silica aerogel (AgAerogel), an alternative for iodine capture, has an initial iodine saturation of 29.0 wt% and its iodine capacity is only reduced by 15% from NO2 aging. Understanding the differences in aging behavior between AgZ and AgAerogel is critical to determining the behavior of these sorbents under realistic off-gas conditions. To assist in future technical studies on this topic, samples of both AgZ and AgAerogel were aged with NO2. In the experiment, 10.2190 g of AgZ and 10.1771 g of AgAerogel were exposed to a static 0.75% NO 2/dry air blend for a period of 28 days. The samples were then removed and stored under argon until needed for future experiments.=« less

  9. Silver-mordenite for radiologic gas capture from complex streams. Dual catalytic CH 3I decomposition and I confinement

    DOE PAGES

    Nenoff, Tina M.; Rodriguez, Mark A.; Soelberg, Nick R.; ...

    2014-05-09

    The selective capture of radiological iodine ( 129I) is a persistent concern for safe nuclear energy. In these nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I 2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of themore » recovered sorbent. Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. Moreover, the MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite.« less

  10. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits

  11. Electronic Structure of the [Cu 3 (μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogiatzis, Konstantinos D.; Li, Guanna; Hensen, Emiel J. M.

    Identifying Cu-exchanged zeolites able to activate C–H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu 3(μ-O) 3] 2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu 3(μ-O) 3] 2+ site using multiconfigurational wave-function-based methods and densitymore » functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C–H activation of methane by [Cu 3(μ-O) 3] 2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.« less

  12. Electronic Structure of the [Cu 3 (μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

    DOE PAGES

    Vogiatzis, Konstantinos D.; Li, Guanna; Hensen, Emiel J. M.; ...

    2017-09-28

    Identifying Cu-exchanged zeolites able to activate C–H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu 3(μ-O) 3] 2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu 3(μ-O) 3] 2+ site using multiconfigurational wave-function-based methods and densitymore » functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C–H activation of methane by [Cu 3(μ-O) 3] 2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.« less

  13. Method for treating a nuclear process off-gas stream

    DOEpatents

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  14. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  15. Removal of Cu(II) and Pb(II) from Aqueous Solutions Using Nanoporous Materials

    NASA Astrophysics Data System (ADS)

    Dutta, Debajani; Roy, Sushanta Kumar; Das, Bodhaditya; Talukdar, Anup K.

    2018-05-01

    The present work deals with the adsorption of Cu2+ and Pb2+ on zeolites (ZSM-5, mordenite) and mesoporous materials (MCM-48, MCM-41). The characterization of the synthesized samples was performed by means of XRD, SEM, and thermogravimetric analysis. The batch method was employed to study the influence of adsorbent nature, contact time, initial metal ion concentration, and adsorbent load. The adsorption on MCM-48 follows a pseudo-second-order kinetic model. This material was found to be more effective for the removal of lead in a batch process as compared to the other adsorbents and the removal efficiency of the materials for Pb(II) followed the order MCM-48 > mordenite > ZSM-5 > MCM-41 and that for Cu(II) followed the order ZSM-5 > mordenite > MCM-41 > MCM-48.

  16. Thermal Properties of Zeolite-Containing Composites

    PubMed Central

    Shimonosono, Taro; Hirata, Yoshihiro; Nishikawa, Kyohei; Sameshima, Soichiro; Sodeyama, Kenichi; Masunaga, Takuro; Yoshimura, Yukio

    2018-01-01

    A zeolite (mordenite)–pore–phenol resin composite and a zeolite–pore–shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity <20%, the thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70–2.07 W/mK at room temperature for the zeolite–pore–phenol resin composite and the zeolite–pore–shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C. PMID:29534034

  17. Dual-catalyst system to broaden the window of operability in the reduction of NO/sub chi/ with ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medros, F.G.; Eldridge, J.W.; Kittrell, J.R.

    1989-08-01

    The objective of the research discussed in this paper was to determine if a dual-catalyst system for NO reduction with NH/sub 3/ can achieve a given percent NO reduction over a wider range of temperatures and space velocities than either catalyst used alone in the same total reactor volume. Hydrogen mordenite (20/32 mesh) and copper-ion-exchanged hydrogen mordenite (2.2% Cu) were used in series at temperatures from 200 to 600 {sup 0}C and space velocities from 1000000 to 450000 h/sup -1/ (STP). The superiority of the dual-catalyst system was demonstrated experimentally, and a model was developed which predicted its performance verymore » well from data on the individual catalysts. A technique was then developed for predicting quantitatively the dual-catalyst enhancement of the space velocity versus temperature window for achieving a given percent NO conversion.« less

  18. Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon.

    PubMed

    Xue, Runmiao; Donovan, Ariel; Zhang, Haiting; Ma, Yinfa; Adams, Craig; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd; Shi, Honglan

    2018-02-01

    When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. Copyright © 2017. Published by Elsevier B.V.

  19. A quantum chemical study for exploring the inhibitory effect of nitrogen containing species on the adsorption of polynuclear aromatic hydrocarbons over a Bronsted acid site

    NASA Astrophysics Data System (ADS)

    Celis-Cornejo, C. M.; Garnica Mantilla, M. M.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E.

    2016-08-01

    The analysis of the inhibitory effect of nitrogenated compounds on the hydroprocessing and hydropurification of oil derived fuels is important to produce cleaner fuels. In this work, density functional theory calculations were performed to investigate the effect of the nitrogen containing molecules on the adsorption of Polynuclear Aromatic Hydrocarbons (PAHs). Mordenite was chosen as a zeolitic structure for simulating a Bronsted acid site. The character of the acid site was confirmed by both a vibrational frequency calculation and a Bader charge analysis. From the adsorption calculations, it was found that the adsorption energy of PAHs increases with the number of aromatic rings in the structure. Also, the nitrogen containing species possibly inhibit more extensively two and three rings PAHs because of their lower adsorption energies. Finally, it was observed that the nitrogen species tend to drag the proton from the mordenite acid site. This explains the inhibitory effect in the adsorption of PAHs and contributes to understanding the dynamics of hydrocarbon hydroprocessing in refineries.

  20. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor.

    PubMed

    Villaseñor, J; Rodríguez, L; Fernández, F J

    2011-01-01

    This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Milestone Report - M4FT-14OR0312022 - Co-absorption studies - Design system complete/test plan complete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Spencer, Barry B.; Jubin, Robert Thomas

    2013-12-01

    The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.

  2. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Wang, Yifeng

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2more » when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag 0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag 0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodinemore » adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag 0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  4. Synthesis of single-site copper catalysts for methane partial oxidation

    DOE PAGES

    Grundner, S.; Luo, W.; Sanchez-Sanchez, M.; ...

    2015-12-24

    Cu-Exchanged zeolites are known as active materials for methane oxidation to methanol. However, understanding of the formation of Cu active species during synthesis, dehydration and activation is fragmented and rudimentary. We show here how a synthesis protocol guided by insight in the ion exchange elementary steps leads to highly uniform Cu species in mordenite (MOR).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibani, Siwar, E-mail: siwar.chibani@univ-lorraine.fr; Chebbi, Mouheb; Badawi, Michael, E-mail: michael.badawi@univ-lorraine.fr

    The potential use of some cation-exchanged mordenite (H{sup +}, Na{sup +}, Cu{sup +}, and Ag{sup +}) as a selective adsorbent for volatile iodine species (ICH{sub 3} and I{sub 2}), which can be released during a nuclear accident together with a steam carrier gas, is investigated using density functional theory. It is found that in the case of Cu-MOR and Ag-MOR, the absolute values of interaction energies of ICH{sub 3} and I{sub 2} are higher than that of water which indicates that these forms of zeolite could be suitable for selective adsorption of iodine species. In contrast, the H-MOR and Na-MORmore » are found to be unsuitable for this purpose. A systematic investigation of all adsorption sites allowed us to analyze the structural effects affecting the adsorption behavior. For the Ag-MOR and Cu-MOR zeolites, the iodine compounds are adsorbed preferentially in the large channel of mordenite (main channel) while water prefers the small channel or the side pocket where it forms stronger hydrogen bonds. The factors governing the interaction energies between the cationic sites and the different molecules are analyzed and the important role of van der Waals interactions in these systems is highlighted.« less

  6. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  7. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  8. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

  9. Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The direct conversion of iodine-bearing sorbents into a stable waste form is a research topic of interest to the US Department of Energy. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary in order to comply with the regulatory requirements that apply to facilities sited within the United States (Jubin et al., 2012a), and any iodine-containing media or solid sorbents generated by this process would contain 129I and would be destined for eventual geological disposal. While recovery of iodine from some sorbents is possible, a method to directly convert iodineloaded sorbentsmore » to a durable waste form with little or no additional waste materials being formed and a potentially reduced volume would be beneficial. To this end, recent studies have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by hot isostatic pressing (HIPing) (Bruffey and Jubin, 2015). Silver mordenite (AgZ), of the zeolite class of minerals, is under consideration for use in adsorbing iodine from nuclear reprocessing off-gas streams. Direct conversion of I-AgZ by HIPing may provide the following benefits: (1) a waste form of high density that is tolerant to high temperatures, (2) a waste form that is not significantly chemically hazardous, and (3) a robust conversion process that requires no pretreatment.« less

  10. Photophysical properties and fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene in zeolites

    NASA Astrophysics Data System (ADS)

    Pischel, Uwe; Galletero, Maria S.; García, Hermenegildo; Miranda, Miguel A.; Nau, Werner M.

    2002-06-01

    2,3-Diazabicyclo[2.2.2]oct-2-ene (DBO) was used as a long-lived fluorescent probe in zeolites (NaY, Na-mordenite, Na-ZSM-5, H-ZSM-5) and related oxide materials (all silica MCM-41, silica, silica-alumina, γ-alumina). The photophysical properties are dominated by a hydroxylic environment, caused by the inorganic framework and co-adsorbed water. The quenching of DBO by oxygen was strongly dependent on the type of zeolite. In ZSM-5 zeolites, the fluorescence decays were not monoexponential in the presence of oxygen (air).

  11. Trivalent ions modification for high-silica mordenite: A first principles study

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Feng, Gang; Wang, Xuewen; Zhang, Rongbin; Liu, Jianwen

    2018-03-01

    Using periodic DFT-D3-U methods, the present work give a mechanistic insight into the high silica B-, Al-, Ga- and Fe-MOR with H, Li, Na, and K as charge balance ions. The acid properties of the zeolite were probed via NH3 and pyridine adsorption. It is found that the charge balance ions influence the location of the trivalent ions, the cell volumes, as well as the synthesis difficulty of the zeolites. The energy differences for B, Al, Ga and Fe in different T sites are small for the H-form zeolites, while large for the Na- and K-form zeolites. For H-form MOR, the proton of the sbnd OH group prefers to bond to O(7) and O(3) and pointing to the 12MR for trivalent ions in T1 sites. The proton bonds to O(3), O(2), O(2) and O(5), respectively, for B, Al, Ga and Fe in T2 site of MOR, with the sbnd OH group pointing to intersection of 12MR and the side-pocket, except for the B-MOR that sbnd OH group pointing to the 12MR. For trivalent ions located in T3 and T4 sites, the protons prefers to bond to O(1) and O(2), respectively, with the sbnd OH group pointing to the intersection of 8MR and side-pocket as well as the intersection of 12MR and side-pocket. All incorporated B, Al, Ga, and Fe framework ions are tetra-coordinated, except the B atoms are tri-coordinated. The NH4-form MOR has smaller cell volume than the other form MOR. Na and K are energetically more favored charge balance ions than Li and NH3 for MOR zeolites synthesis, and the H-form zeolite is the most difficult to be synthesized directly. The strength of the Brønsted acidity follows the order: HBMOR < HFeMOR ≈ HGaMOR < HAlMOR, vs. the Lewis acidity order: HBMOR < HAlMOR < HFeMOR ≈ HGaMOR. NH3 could be adsorbed inside all kinds of channels, and especially favors in the small 8MR vs. pyridine could only be adsorbed in the main channel of MOR due to the steric effect. It indicates that the acid sites in the side pocket and the small 8-membered ring and the side pocket could not be effectively determined just by the pyridine adsorption experiments. In comparison, the NH3 adsorption experiments could detect all kinds of Brønsted sites of the MOR zeolites.

  12. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Yue; Lin, Ronghong; Liu, Jiuxu

    This work is related to the removal of tritiated water and radioactive iodine from off-gases released during spent nuclear fuel reprocessing. Specifically, it is focused on the adsorption equilibrium of water on reduced silver mordenite (Ag 0Z), which is the state-of-art solid adsorbent for iodine retention in the off-gas treatment. As the off-gases contain different gas species, including iodine and water, Ag 0Z would take up iodine and water simultaneously during the adsorption process. Therefore, understanding the adsorption of water on Ag 0Z is important and necessary for studying the performance of Ag 0Z in off-gas treatment processes. The isothermsmore » of water (nonradioactive water) on Ag 0Z were obtained at temperatures of 25, 40, 60, 100, 150, and 200 °C with a continuous-flow adsorption system. The data were analyzed using the Heterogeneous Langmuir and generalized statistical thermodynamic adsorption (GSTA) models, and thermodynamic parameters of the isotherms were obtained from both models. Both models were found capable of describing the isotherms. Isotherms of water on the unreduced silver mordenite (AgZ) were also obtained at 25, 40, and 60 °C and parametrized by the GSTA model. Through the comparison of the isotherms of Ag 0Z and AgZ, it was found that Ag 0Z had a higher water adsorption capacity than AgZ. The comparison of their thermodynamic parameters suggested that the interaction of water molecules with the H + in Ag 0Z was stronger than that with the Ag + in AgZ.« less

  15. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  16. Influence of inorganic and organic amendments in the soil properties and the growth and survival of Olea Europaea var. Sylvestris in the semiarid Mediterranean area

    NASA Astrophysics Data System (ADS)

    Ortega, Raúl; Miralles, Isabel; Anguita-Maeso, Manuel; Domene, Miguel; Soriano, Miguel

    2017-04-01

    Selecting the most appropriate types of plants adapted to the harsh climatic conditions of restoring drylands is essential to success in landscape restoration. Besides improving soil quality is a key factor to consider when designing the restoration procedures. The use of organic and inorganic amendments can help with this task. On this study, we evaluated the influence of different mineral (clays) and organic (compost and poultry) amendments on the properties of a bare soil and how this influenced on the growth and survival of the Olea europaea var. sylvestrys, a perennial bush plant adapted to the Mediterranean semi-arid zone. Tests were designed and carried out in a greenhouse at the "Experimental Station of Cajamar foundation "Las Palmerillas" in El Ejido (Almería, Spain). Plants were grown in 250L pots and their substrate was bare soil and mineral and/or organic amendments. The experimental design consisted of three replicas for five treatments: 1. compost, 2. "ZeoPro", a cliptonolite commercial clay, 3. mordenite clay from local quarries plus compost, 4. cliptonolite clay from Turkey plus compost, 5. cliptonolite from Turquey plus poultry; with four levels each one: 5%, 10%, 20%, 30% volume of amendment. Including three control samples without amendment total plants accounted for 63. Climatic sensors inside and outside the greenhouse permitted to establish the same meteorological conditions for the plants and only emergency watering was supplied when necessary for the survival of the plants when arid conditions were extreme. The physico-chemical soil properties of each treatment and level were analyzed before planting and the biovolume and the survival rates of the plants were measured regularly along eleven months. Statistically the best treatment for the growing of the plants was number 3 (mordenite and compost) with no deaths recorded. According to the growing rates the best level was soil with 20% of amendment. Besides we analyzed the evolution of the

  17. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  18. Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey

    NASA Astrophysics Data System (ADS)

    Kadir, Selahattin; Önen-Hall, A. Piril; Aydin, S. Nihal; Yakicier, Cengiz; Akarsu, Nurten; Tuncer, Murat

    2008-03-01

    The Cretaceous-Eocene volcano-sedimentary units of the Zonguldak region of the western Black Sea consist of subalkaline andesite and tuff, and sandstone dominated by smectite, kaolinite, accessory chlorite, illite, mordenite, and analcime associated with feldspar, quartz, opal-CT, amphibole, and calcite. Kaolinization, chloritization, sericitization, albitization, Fe-Ti-oxidation, and the presence of zeolite, epidote, and illite in andesitic rocks and tuffaceous materials developed as a result of the degradation of a glass shards matrix, enclosed feldspar, and clinopyroxene-type phenocrysts, due to alteration processes. The association of feldspar and glass with smectite and kaolinite, and the suborientation of feldspar-edged, subparallel kaolinite plates to fracture axes may exhibit an authigenic smectite or kaolinite. Increased alteration degree upward in which Al, Fe, and Ti are gained, and Si, Na, K, and Ca are depleted, is due to the alteration following possible diagenesis and hydrothermal activities. Micromorphologically, fibrous mordenite in the altered units and the presence of needle-type chrysotile in the residential buildings in which cancer cases lived were detected. In addition, the segregation pattern of cancer susceptibility in the region strongly suggested an environmental effect and a genetic influence on the increased cancer incidence in the region. The most likely diagnosis was Li-Fraumeni syndrome, which is one of the hereditary cancer predisposition syndromes; however, no mutations were observed in the p53 gene, which is the major cause of Li-Fraumeni syndrome. The micromorphology observed in the altered units in which cancer cases were detected may have a role in the expression of an unidentified gene, but does not explain alone the occurrence of cancer as a primary cause in the region.

  19. Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croes, Kenneth James; Garino, Terry J.; Mowry, Curtis D.

    This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I 2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added asmore » further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I 2.« less

  20. A gas-sensing array produced from screen-printed, zeolite-modified chromium titanate

    NASA Astrophysics Data System (ADS)

    Pugh, David C.; Hailes, Stephen M. V.; Parkin, Ivan P.

    2015-08-01

    Metal oxide semiconducting (MOS) gas sensors represent a cheap, robust and sensitive technology for detecting volatile organic compounds. MOS sensors have consistently been shown to lack sensitivity to a broad range on analytes, leading to false positive errors. In this study an array of five chromium titanate (CTO) thick-film sensors were produced. These were modified by incorporating a range of zeolites, namely β, Y, mordenite and ZSM5, into the bulk sensor material. Sensors were exposed to three common reducing gases, namely acetone, ethanol and toluene, and a machine learning technique was applied to differentiate between the different gases. All sensors produced strong resistive responses (increases in resistance) and a support vector machine (SVM) was able to classify the data to a high degree of selectivity.

  1. Slow release of NO by microporous titanosilicate ETS-4.

    PubMed

    Pinto, Moisés L; Rocha, João; Gomes, José R B; Pires, João

    2011-04-27

    A novel approach to designing nitric oxide (NO) storage and releasing microporous agents based on very stable, zeolite-type silicates possessing framework unsaturated transition-metal centers has been proposed. This idea has been illustrated with ETS-4 [Na(9)Si(12)Ti(5)O(38)(OH)·xH(2)O], a titanosilicate that displays excellent NO adsorption capacity and a slow releasing kinetics. The performance of these materials has been compared to the performance of titanosilicate ETS-10, [(Na,K)(2)Si(5)TiO(13)·xH(2)O], of benchmark zeolites mordenite and CaA, and of natural and pillared clays. DFT periodic calculations have shown that the presence of water in the pores of ETS-4 promotes the NO adsorption at the unsaturated (pentacoordinated) Ti(4+) framework ions.

  2. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  3. Trihalomethanes in Comerio Drinking Water and Their Reduction by Nanostructured Materials

    DOE PAGES

    Bourdon, Jorge Hernandez; Linares, Francisco Marquez

    2014-01-01

    The formation of disinfection by-products (DBPs) during chlorination of drinking water is an issue which has drawn significant scientific attention due to the possible adverse effects that these compounds have on human health and the formation of another DBPs. Some factors that affect the formation of DBPs include: chlorine dose and residue, contact time, temperature, pH and natural organic matter (NOM). The most frequently detected DBPs in drinking water are trihalomethanes (THMs) and haloacetic acids (HAAs). The MCLs are standards established by the United States Environmental Protection Agency (USEPA) for drinking water quality established in Stage 1, Disinfectants and Disinfectionmore » Byproducts Rule (DBPR), and they limit the amount of potentially hazardous substances that are allowed in drinking water. The water quality data for THMs were evaluated in the Puerto Rico Aqueduct and Sewer Authority (PRASA). During this evaluation, the THMs exceeded the maximum contamination limit (MCLs) for the Comerio Water Treatment Plant (CWTP). USEPA classified the THMs as Group B2 carcinogens (shown to cause cancer in laboratory animals). This research evaluated the THMs concentrations in the following sampling sites: CWTP, Río Hondo and Piñas Abajo schools, Comerio Health Center (CDT), and the Vázquez Ortiz family, in the municipality of Comerio Puerto Rcio. The results show that the factors affecting the formation of THMs occur in different concentrations across the distribution line. Furthermore, there are not specific ranges to determine the formation of THMs in drinking water when the chemical and physical parameters were evaluated. Three different nanostructured materials (graphene, mordenite (MOR) and multiwalled carbon nanotubes (MWCNTs)) were used in this research, to reduce the THMs formation by adsorption in specific contact times. The results showed that graphene is the best nanomaterial to reduce THMs in drinking water. Graphene can reduce 80 parts per

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Ralph L.; Seitz, Roger R.; Dixon, Kenneth L.

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the informationmore » necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Ermanoski, Ivan; Greathouse, Jeffrey A.

    Here, we present a combined experimental and Grand Canonical Monte Carlo (GCMC) modeling study on the adsorption of iodine in three classes of nanoporous materials: activated charcoals, zeolites, and metal–organic frameworks (MOFs). Iodine adsorption profiles were measured for the first time in situ, with a uniquely designed sorption apparatus. It was determined that pore size and pore environment are responsible for a dynamic adsorption profile, correlated with distinct pressure ranges. At pressures below 0.3 atm, iodine adsorption is governed by a combination of small pores and extra-framework components (e.g., Ag+ ions in the zeolite mordenite). At regimes above 0.3 atm,more » the amount of iodine gas stored relates with an increase in pore size and specific surface area. GCMC results validate the trends noted experimentally and in addition provide a measure of the strength of the adsorbate–adsorbent interactions in these materials.« less

  6. The zeolite deposits of Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hall, A.; Hein, J.R.

    1996-01-01

    Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

  7. Hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    NASA Astrophysics Data System (ADS)

    Ylagan, Robert F.; Altaner, Stephen P.; Pozzuoli, Antonio

    1996-12-01

    A rhyolitic hyaloclastite from Ponza island, Italy, has been hydrothermally altered producing four distinct alteration zones based on XRD and field textures: (1) non-pervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is a volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the non pervasive argillic zone, characterized by smectite and disordered opal-CT. Obsidian clasts, some pumice lapilli, and pyrogenic plagioclase and biotite are unaltered. Smectite has an irregular flakey morphology, although euhedral particles are occasionally observed. The propylitic zone is characterized by mixed-layer illite/smectite (I/S) with 10 to 85% illite (I), mordenite, opal-C and authigenic K-feldspar (akspar). The matrix of the hyaloclastite is completely altered and obsidian clasts are silicified; however, plagioclase and biotite phenocrysts remain unaltered. Flakey I/S replaces pumice, and mordenite, akspar and silica line and fill pores. I/S particles are composed predominantly of subequant plates and euhedral laths. The silicic zone is characterized by highly illitic I/S with ≥ 90% I, quartz, akspar and occasional albite. In this zone the matrix and clasts are completely altered, and pyrogenic plagioclase shows significant alteration. Illitic I/S has a euhedral lath-like morphology. In the sericitic zone the hyaloclastite altered primarily to illitic I/S with ≥ 66% I, quartz, and minor akspar and pyrite. Clay minerals completely replace pyrogenic feldspars and little evidence remains of the original hyaloclastite texture. Unlike other zones, illitic I/S is fibrous and pure illite samples are composed of euhedral laths and hexagonal plates. The temperatures of hydrothermal alteration likely ranged from 30 to 90 °C for the argillic zone, from 110 to 160 °C for the propylitic zone, from 160 to 270 °C for the

  8. In situ upgrading of whole biomass to biofuel precursors with low average molecular weight and acidity by the use of zeolite mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben, Haoxi; Huang, Fang; Li, Liwei

    2015-09-09

    The pyrolysis of whole biomass—pine wood and bark—with mordenite (M), beta (β) and Y zeolites has been examined at 600°C. The GPC results indicated that the pyrolysis oils upgraded by Y and β zeolites have a very low average molecular weight range (70–170 g mol –1). Several NMR methods have been employed to characterize the whole portion of pyrolysis products. After the use of these two zeolites (Y and β), the two main products from the pyrolysis of cellulose—levoglucosan and HMF—were eliminated; this indicates a significant deoxygenation process. When a mixture of zeolites (Y and M) was used, the upgradedmore » pyrolysis oil exhibited advantages provided by both zeolites; this pyrolysis oil represents a biofuel precursor that has a very low average molecular weight and a relatively low acidity. Finally, this study opens up a new way to upgrade pyrolysis oils by employing mixtures of different functional zeolites to produce biofuel/biochemical precursors from whole biomass.« less

  9. A transmission infrared cell design for temperature-controlled adsorption and reactivity studies on heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Cybulskis, Viktor J.; Harris, James W.; Zvinevich, Yury; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-10-01

    A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10-2-103 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).

  10. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  11. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  12. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  13. Petrology, sedimentology, and diagenesis of hemipelagic limestone and tuffaceous turbidities in the Aksitero Formation, central Luzon, Philippines

    USGS Publications Warehouse

    Garrison, Robert E.; Espiritu, E.; Horan, L.J.; Mack, L.E.

    1979-01-01

    The Aksitero Formation of central Luzon is an upper Eocene and lower Oligocene sequence of evenly bedded hemipelagic limestone with a few thin interlayers of tuffaceous turbidites. The limestone consists chiefly of planktonic foraminifers and calcareous nannofossils, with up to 30 percent of noncarbonate components, chiefly volcaniclastic debris. The tuff layers are graded beds. Composed mainly of glass shards, pumice fragments, crystals, and fine-grained volcanic rock fragments. Hydrocarbons migrated into the pores of the tuffaceous layers early during diagenesis but they were subsequently flushed out and only bitumen remains, chiefly as thin coatings on grains and wthin pumice vesicles. Later during diagenesis, zeolites (mordenite and c1inoptilolite) and secondary calcite preferentially replaced glass shards and pumice fragments. Deposition of the Aksitero Formation probably occurred at depths of at least 1,000 meters within a subsiding basin adjacent to an active island arc system. Submarine ash eruptions of silicic composition caused volcaniclastic turbidity currents that occasionally reached the basin floor. The more proximal facies of these volcaniclastic deposits may be prospective for hydrocarbons.

  14. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  15. A transmission infrared cell design for temperature-controlled adsorption and reactivity studies on heterogeneous catalysts.

    PubMed

    Cybulskis, Viktor J; Harris, James W; Zvinevich, Yury; Ribeiro, Fabio H; Gounder, Rajamani

    2016-10-01

    A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10 -2 -10 3 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).

  16. Comparative study of As (III) and Zn (II) removal from aqueous solutions using Philippine natural zeolite and alumina

    NASA Astrophysics Data System (ADS)

    Olegario-Sanchez, Eleanor; Pelicano, Christian Mark

    2017-12-01

    Herein, the heavy metal removal efficiency of Philippine natural zeolite is investigated through a comparative study with commercial alumina (Al2O3). XRD results revealed a high purity crystalline γ-Al2O3 and a natural zeolite having clinoptilolite (Na,K,Ca)2-3Al3(Al,Si)2Si13O36.12H2O and mordenite (Ca, Na2, K2)Al2Si10O24.7H2O as primary component minerals. Micro-pores and plate-like structures were observed on the surface of the natural zeolite. The natural zeolite has shown three times higher removal efficiency for Zn2+ ion than alumina. On the other hand, alumina exhibited comparable but smaller removal efficiency for As3+ as with that of natural zeolite. Alumina showed a higher capability of increasing the pH of both solutions compared with the natural zeolite. Based on removal efficiency and adsorbent costs, Philippine natural zeolite could be used as a low-cost alternative for wastewater treatment.

  17. Preparation of H-mordenite/MCM-48 composite and its catalytic performance in the alkylation of toluene with tert-butanol

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Cheng, Fuling; Qin, Juan; Yu, Pengcheng; Xu, Lin; Gu, Zhiqiang; Liu, Xiaoqin; Wu, Wenliang

    2017-09-01

    A series of HM/MCM-48 samples with different SiO2/Al2O3 molar ratio were prepared by sol-gel method. The prepared catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, FT-IR, SEM, and TEM techniques, and their catalytic performance was investigated in alkylation of toluene with tert-butanol. The adsorption capacity and the acid sites amount of HM/MCM-48-4 sample prepared by growing MCM-48 on the surface of HM zeolite are much higher than that of their mechanical mixture (HM/MCM-48(4) sample) due to its biporous structure; it shows higher catalytic performance than other HM/MCM-48 samples. The influence of reaction conditions on the catalytic performance of HM/MCM-48-4 zeolite was discussed. Toluene conversion of 41.4% and p-tert-butyltoluene selectivity of 73.5% were obtained at the weight ratio of toluene to HM/MCM-48-4 of 5, reaction temperature of 453 K, reaction time of 5 h and the molar ratio of toluene to tert-butanol of 0.5.

  18. Zeolites in the Miocene Briones Sandstone and related formations of the central Coast Ranges, California

    USGS Publications Warehouse

    Murata, K.J.; Whiteley, Karen R.

    1973-01-01

    Authigenic zeolites present in the generally tuffaceous Miocene Briones Sandstone and related formations of the central Coast Ranges of California indicate three stages of diagenetic history: (1) Initial alteration of pyroclastic materials to clinoptilolite (and montmorillonite) that is widely distributed in small amounts throughout the region. (2) Subsequent crystallization of heulandite followed by stilbite in fractures at a few places. (3) Widespread development of laumontite in only the southern part of the region, where the sandstone appears to have been downfolded and faulted to greater depths than elsewhere. Laumontite occurs both as pervasive cement of sandstone and as filling of fractures, and was produced through the reaction of interstitial solutions with other zeolites and with such major constituents of the sandstone as plagioclase, montmorillonite, and calcite at temperatures of 100° C or higher. Mordenite was found at only one locality, closely associated with clinoptilolite and opal. Analcite occurs in diverse settings, and its relation to the other zeolites is obscure.  Sparry calcite and coexisting stilbite, laumontite, or analcite in veins seem to make up nonequilibrium assemblages.

  19. Initial Effects of NO x on Idodine and Methyl Iodine Loading of AgZ and Aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas

    2015-03-31

    This initial evaluation provides insight into the effect of NO on the adsorption of both I 2 and CH 3I onto reduced silver-exchanged mordenite (Ag 0Z). It was determined that adsorption of CH 3I onto Ag 0Z occurs at approximately 50% of the rate of I 2 adsorption onto Ag 0Z, although total iodine capacities are comparable. Addition of 1% NO to the simulated off-gas stream results in very similar loading behaviors and iodine capacities for both iodine species. This is most likely an effect of CH 3I oxidation to I 2 by NO prior to contact with the sorbentmore » bed. Completion of tests including NO 2 in the simulated off-gas stream was delayed due to vendor NO 2 production schedules. A statistically designed test matrix is partially completed, and upon conclusion of the suggested experiments, the effects of temperature, NO, NO 2, and water vapor on the sorption of CH 3I and I 2 onto Ag 0Z will be able to be statistically resolved. This work represents progress towards that aim.« less

  20. Incredible antibacterial activity of noble metal functionalized magnetic core-zeolitic shell nanostructures.

    PubMed

    Padervand, M; Janatrostami, S; Karanji, A Kiani; Gholami, M R

    2014-02-01

    Functionalized magnetic core-zeolitic shell nanostructures were prepared by hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, nitrogen adsorption-desorption isotherms, and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles in the presence of organic templates was also confirmed. Antibacterial activity of the prepared nanostructures was investigated by the inactivation of Escherichia coli as a gram negative bacterium. A new mechanism was proposed for inactivation of E. coli over the prepared samples. In addition, the Minimum Inhibitory Concentration (MIC) and reuse ability were studied. TEM images of the destroyed cell wall after the treatment time were performed to illustrate the inactivation mechanism. According to the experimental results, the core-shell nanostructures which were modified by organic agents and then functionalized with noble metal nanoparticles were the most active. The interaction of the noble metals with the organic components on the surface of nanostructures was studied theoretically and the obtained results were used to interpret the experimental results. © 2013. Published by Elsevier B.V. All rights reserved.

  1. Biomass-derived chemicals: synthesis of biodegradable surfactant ether molecules from hydroxymethylfurfural.

    PubMed

    Arias, Karen S; Climent, Maria J; Corma, Avelino; Iborra, Sara

    2014-01-01

    A new class of biodegradable anionic surfactants with structures based on 5-alkoxymethylfuroate was prepared starting from 5-hydroxymethylfurfural (HMF), through a one-pot-two-steps process which involves the selective etherification of HMF with fatty alcohols using heterogeneous solid acid, followed by a highly selective oxidation of the formyl group with a gold catalyst. The etherification step was optimized using aluminosilicates as acid catalysts with different pore topologies (H-Beta, HY, Mordenite, ZSM-5, ITQ-2, and MCM-41), different active sites (Bronsted or Lewis) and different adsorption properties. It was shown that highly hydrophobic defect-free H-Beta zeolites with Si/Al ratios higher than 25 are excellent acid catalysts to perform the selective etherification of HMF with fatty alcohols, avoiding the competitive self-etherification of HMF. Moreover, the 5-alkoxymethylfurfural derivatives obtained can be selectively oxidized to the corresponding furoic salts in excellent yield using Au/CeO2 as catalyst and air as oxidant, at moderated temperatures. Both H-Beta zeolite and Au/CeO2 could be reused several times without loss of activity. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An investigation of the effect of migratory type corrosion inhibitor on mechanical properties of zeolite-based novel geopolymers

    NASA Astrophysics Data System (ADS)

    Auqui, Nestor Ulloa; Baykara, Haci; Rigail, Andres; Cornejo, Mauricio H.; Villalba, Jose Luis

    2017-10-01

    The effects of migratory type corrosion inhibitor and curing time on the thermal stability and mechanical properties of Ecuadorian natural zeolite-based geopolymers were evaluated. Geopolymer samples were prepared by alkali activation of the natural zeolite by 8 M NaOH solution and calcium hydroxide Ca(OH)2 1-3 wt%, with an activator/binder ratio of 0.6. The geopolymer samples cured for 24 h at 40 °C and then for 6 days more at room temperature showed the compressive strength values in a range of 3-5,5 MPa. Mineralogical analysis of natural zeolite obtained by XRD is as follows: Mordenite (∼67%), quartz (∼27%) and amorphous (∼6%). SEM-EDS micrographs analysis of geopolymers revealed the presence of Na and Ca which proves the incorporation of the activators, NaOH and Ca(OH)2. The compressive strength values obtained indicate that the use of alkali activation of natural zeolites is an effective method for the synthesis of geopolymers. The mechanical properties of geopolymers were slightly but not adversely affected by the addition of the migratory corrosion inhibitor, MCI-2005 NS. These results will be used in future research on geopolymer concrete with embedded reinforcing steel.

  3. Hydrothermal fabrication of ZSM-5 zeolites: biocompatibility, drug delivery property, and bactericidal property.

    PubMed

    Guo, Ya-Ping; Long, Teng; Song, Zhen-Fu; Zhu, Zhen-An

    2014-04-01

    The bone graft-associated infection is widely considered in orthopedic surgery, which may lead to implant failure, extensive bone debridement, and increased patient morbidity. In this study, we fabricated ZSM-5 zeolites for drug delivery systems by hydrothermal method. The structure, morphology, biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites were investigated. The ZSM-5 zeolites have mordenite framework inverted-type structure and exhibit the disk-like shape with the diameter of ∼350 nm and thickness of ∼165 nm. The biocompatibility tests indicate that human bone marrow stromal cells spread out well on the surfaces of the ZSM-5 zeolites and proliferate significantly with increasing culture time. As compared with the conventional hydroxyapatite particles, the ZSM-5 zeolites possess greater drug loading efficiency and drug sustained release property because of the ordered micropores, large Brunauer-Emmett-Teller (BET) surface areas, and functional groups. For the gentamicin-loaded ZSM-5 zeolites, the sustained release of gentamicin minimizes significantly bacterial adhesion and prevents biofilm formation against Staphylococcus epidermidis. The excellent biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites suggest that they have great application potentials for treating implant-associated infections. Copyright © 2013 Wiley Periodicals, Inc.

  4. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi

    PubMed Central

    2013-01-01

    Background It is imperative to eliminate bacteria present in water in order to avoid problems in healthy. Escherichia coli and Salmonella typhi bacteria are two common pollutants and they are developing resistance to some of the most used bactericide. Therefore new biocide materials are being tested. Thus, gold nanoparticles are proposed to inhibit the growth of these two microorganisms. Results Gold nanoparticles were supported onto clinoptilolite, mordenite and faujasite zeolites. Content of gold in materials varied between 2.3 and 2.8 wt%. The size, dispersion and roughness of gold nanoparticles were highly dependent of the zeolite support. The faujasite support was the support where the 5 nm nanoparticles were highly dispersed. The efficiency of gold-zeolites as bactericides of Escherichia coli and Salmonella typhi was determined by the zeolite support. Conclusions Gold nanoparticles dispersed on zeolites eliminate Escherichia coli and Salmonella typhi at short times. The biocidal properties of gold nanoparticles are influenced by the type of support which, indeed, drives key parameters as the size and roughness of nanoparticles. The more actives materials were pointed out Au-faujasite. These materials contained particles sized 5 nm at surface and eliminate 90–95% of Escherichia coli and Salmonella typhi colonies. PMID:23331621

  6. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  7. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  8. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation.

    PubMed

    An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn

    2016-01-01

    To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix.

  9. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    NASA Astrophysics Data System (ADS)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  10. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    NASA Astrophysics Data System (ADS)

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  11. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [Cu IIOH] + species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [Cu IIOH] + active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu] 2+ and Cu 3O 3 motifs.« less

  12. Investigations on humic acid removal from water using surfactant-modified zeolite as adsorbent in a fixed-bed reactor

    NASA Astrophysics Data System (ADS)

    Elsheikh, Awad F.; Ahmad, Umi Kalthom; Ramli, Zainab

    2017-10-01

    Natural organic matter (NOM) is ubiquitous in aquatic environments and has recently become an issue of worldwide concern in drinking water treatment. The major component of NOM is humic acids (HA). In this study, a natural zeolite (mordenite) was modified employing hexadecyltrimethylammonium bromide (HDTMA) to enhance greater efficient sites for sorption of HA. The natural zeolite and surfactant-modified zeolite (SMZ) were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectrometer (FT-IR), N2 Adsorption-desorption isotherms and BET-specific surface area, thermographic analysis, derivative thermographic analysis (TGA-DTA) and Field emission scanning electron microscopy (FESEM). A fixed-bed reactor was used for the removal of HA and the effects of different experimental parameters such as HDTMA loading levels, HA solution flow rate, solution pH and eluent concentration were investigated. The results indicated that the SMZ bed with HDTMA loading of 75% of external cation exchange capacity (ECEC) at a flow rate of 2 BV/h and pH of 10 showed the greatest enhanced removal efficiency of HA while ethanol solutions (25%v/v) with feed flow rate of 2 BV/h were sufficient for complete regeneration of SMZ and desorption of HA. Measurements of surface area of SMZ indicated that a monolayer formation of the surfactant at those conditions allowed the optimum removal of HA.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorptionmore » of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.« less

  14. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites.

    PubMed

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-15

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon

    USGS Publications Warehouse

    Keith, Terry E.C.; Staplese, Lloyd W.

    1985-01-01

    Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence that makes up part of the Eocene Siletz River Volcanics in the central Coast Range, Oregon. Regional zoning of zeolite assemblages is not apparent; the zeolites formed in joints, fractures, and interstices, although most occur in central cavities of basalt pillows. The zeolites and associated minerals identified, in general order of paragenetic sequence, are smectite, pyrite, calcite (small spheres), thomsonite, natrolite, analcime, scolecite, mesolite, stilbite, heulandite, apophyllite, chahazite, mordenite, calcite (scalenohedra and twinned rhombohedra), laumontite, and amethystine quartz. Common three-mineral assemblages are: natrolite-analcime-sfilbite, stilbite-heulandite-chabazite, stilbite-apophyllie-chabazite, and natrolite-mesolite-laumontite.Alteration of basaltic glass, which was initially abundant, appears to have been an important factor in formation of the zeolites. Isotopic data suggest that zeolitization occurred during a low-temperature (60 ~ 70°C submarine hydrothermal event, or by reactions of cold (~ 10°C meteoric water with basalt over a long time. The occurrence of different mineral assemblages in cavities of adjacent basalt pillows indicates that these minerals crystallized in dosed systems that were isolated as fractures and joints were sealed by deposition of smectite and early zeolites. Although the total chemical composition of the mineral assemblages in cavities is similar, different mineral species formed because of the sensitivity of zeolite minerals to slight variations in physical and chemical conditions within individual cavities.

  16. Growth of Megaspherulites In a Rhyolitic Vitrophyre

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.; Tremallo, Robin L.; Lofgren, Gary E.

    2000-01-01

    Megaspherulites occur in the middle zone of a thick sequence of rhyolitic vitrophyre that occupies a small, late Eocene to early Oligocene volcanic-tectonic basin near Silver Cliff, Custer County, Colorado. Diameters of the megaspherulites range from 0.3 m to over 3.66 m, including a clay envelope. The megaspherulites are compound spherulites. consisting of an extremely large number (3.8 x 10(exp 9) to 9.9 x 10(exp 9)) of individual growth cones averaging 3 mm long by 1.25 mm wide at their termination. They are holocrystalline, very fine- to fine-grained, composed of disordered to ordered sanidine (orthoclase) and quartz, and surrounded by a thin K-feldspar, quartz rich rind, an inner clay layer with mordenite, and an outer clay layer composed wholly of 15 A montmorillonite. Whole rock analyses of the megaspherulites show a restricted composition from their core to their outer edge, with an average analyses of 76.3% SiO2, 0.34% CaO, 2.17% Na2O, 6.92% K2O, 0.83% H2O+ compared to the rhyolitic vitrophyre from which they crystallize with 71.07% SiO2, 0.57% CaO, 4.06% Na2O,4.l0% K2O, and 6.40% H2O+. The remaining oxides of Fe2O3 (total Fe), A12O3, MnO,MgO, TiO2, P2O5, Cr2O3, and trace elements show uniform distribution between the megaspherulites and the rhyolitic vitrophyre. Megaspherulite crystallization began soon after the rhyolitic lava ceased to flow as the result of sparse heterogeneous nucleation, under nonequilibrium conditions, due to a high degree of undercooling, delta T. The crystals grow with a fibrous habit which is favored by a large delta T ranging between 245 C and 295 C, despite lowered viscosity, and enhanced diffusion due to the high H2O content, ranging between 5% and 7%. Therefore, megaspherulite growth proceeded in a diffusion controlled manner, where the diffusion, rate lags behind the crystal growth rate at the crystal-liquid interface, restricting fibril lengths and diameters to the 10 micron to 15 micron and 3 micron and 8 micron ranges

  17. Sorption Modeling and Verification for Off-Gas Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and

  18. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  19. Reassessment of the OHZ process for the thermochemical decomposition of water. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findl, E.; Kulesa, F.; Strickland, G.

    1983-08-01

    A two-step thermochemical process to sequentially produce hydrogen and oxygen from water by the use of a cation-exchanged zeolite, cycled over a temperature range of 25/sup 0/ to 600/sup 0/C, was reassessed at Brookhaven National Laboratory (BNL). Based on the work of Kasai and Bishop (Union Carbide Corp., 1976), C.C.S. Associates (CCSA) performed a preliminary plant-design study for the OHZ (oxygen-hydrogen-zeolite) process, and was responsible for a few laboratory tests of the zeolite. The results of the BNL's more detailed studies showed that although the thermochemical phenomenon is valid, it is neither practical nor a cost-effective method of producing hydrogenmore » from water. Experimental findings were based on tests of indium-exchanged mordenite zeolite (10 grams, as powder) without carrier gas. The cost reassessment, which was made without using any of BNL's experimental data, showed that the hydrogen costs projected by CCSA were low by a factor of about six (2-h cycle time). The corrected costs, $46 to 50/10/sup 6/ Btu H/sub 2/, are about twice those predicted for electrolytic hydrogen ($24/10/sup 6/ Btu). Corrected costs for a cycle time of 4 hours were $54 to 58/10/sup 6/ Btu. This reassessment, which is based on a realistic review of CCSA's preliminary process design, has shown that the corrected costs projected for OHZ hydrogen are so high that no further consideration should be given to development of the concept. 6 references, 14 figures, 6 tables.« less

  20. Malignant mesothelioma induced by asbestos and zeolite in the mouse peritonenal cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Y.; Kohyama, N.

    1984-10-01

    The carcinogenicity of asbestos (amosite and chrysotile) and zeolite (fibrous erionite, mordenite, and synthetic zeolite 4A) were studied in the peritoneum of 586 BALB/C male mice after a single intraperitoneal or intraabdominal wall injection. Tumors developed in 93 of 394 animals (23.6%) treated with asbestos or fibrous erionite 7 months or more after administration. All of the induced peritoneal tumors were intimately associated with marked peritoneal fibrosis, in which asbestos or erionite fibers were regularly detected. Histopathologically, 83 of 93 were consistent with malignant mesotheliomas. Other tumors consisted of 6 plasmacytomas, 1 histiocytoma, 1 liposarcoma, 1 osteosarcoma, and 1 adenocarcinomamore » of the pancreas. Two of the cases of mesotheliomas were associated with plasmacytoma. In many instances, the primary site of the mesotheliomas seemed to be multiple, the favorite sites being the omentum, mesentery, serosae of the gastrointestinal and genital organs, the diaphragm, the capsule of the liver and spleen, and the abdominal wall peritoneum. In addition to the 93 peritoneal tumors, 3 extraperitoneal tumors (1 fibrosarcoma and 2 rhabdomyosarcomas) were induced by amosite which was probably accidentally injected into the extraperitoneal connective tissue and the striated muscle tissue of the abdominal wall, respectively. These three tumors were also intimately associated with focal fibrosis in which amosite fibers were detected. Among the three different types of zeolite, only fibrous erionite showed striking carcinogenicity and marked fibrogenicity. The erionite-induced mesotheliomas were similar to those induced by asbestos in exhibiting long latency, in gross appearance, in histology, and in close association with fibrosis.« less

  1. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR andmore » 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.« less

  2. Reactivity of propene, n-butene, and isobutene in the hydrogen transfer steps of n-hexane cracking over zeolites of different structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukyanov, D.B.

    The reaction of n-hexane cracking over HZSM-5, HY zeolite and mordenite (HM) was studied in accordance with the procedure of the [beta]-test recently proposed for quantitative characterization of zeolite hydrogen transfer activity. It is shown that this procedure allows one to obtain quantitative data on propene, n-butene, and isobutene reactivities in the hydrogen transfer steps of the reaction. The results demonstrate that in the absence of steric constraints (large pore HY and HM zeolites) isobutene is approximately 5 times more reactive in hydrogen transfer than n-butene. The latter, in turn, is about 1.3 times more reactive than propene. With mediummore » pore HZSM-5, steric inhibition of the hydrogen transfer between n-hexane and isobutene is observed. This results in a sharp decrease in the isobutene reactivity: over HZSM-5 zeolites isobutene is only 1.2 times more reactive in hydrogen transfer than n-butene. On the basis of these data it is concluded that the [beta]-test measures the [open quotes]real[close quotes] hydrogen transfer activity of zeolites, i.e., the activity that summarizes the effects of the acidic and structural properties of zeolites. An attempt is made to estimate the [open quotes]ideal[close quotes] zeolite hydrogen transfer activity, i.e., the activity determined by the zeolite acidic properties only. The estimations obtained show that this activity is approximately 1.8 and 1.6 times higher for HM zeolite in comparison with HZSM-5 and HY zeolites, respectively. 16 refs., 4 figs., 2 tabs.« less

  3. Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites

    NASA Astrophysics Data System (ADS)

    Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.

    2017-12-01

    Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.

  4. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Chipera, Steve J.; Goff, Fraser; Goff, Cathy J.; Fittipaldo, Melissa

    2008-12-01

    Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow "caldera-type zeolitization" as defined by Utada et al. [Utada, M., Shimizu, M., Ito, T., Inoue, A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan — with special reference to "caldera-type zeolitization." Resource Geol. Spec. Issue No. 20, 129-140]. Geology and 40Ar/ 39Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (≤ 0.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alteration does not form laterally continuous beds and are consequently, not of economic significance.

  5. The heat capacity of hydrous cordierite above 295 K

    NASA Astrophysics Data System (ADS)

    Carey, J. William

    1993-04-01

    The heat capacity of synthetic hydrous cordierite (Mg2Al4Si5O18·nH2O) has been determined by differential scanning calorimetry (DSC) from 295 to 425 K as a function of H2O content. Six samples with H2O contents ranging from 0 to 0.82 per formula unit were examined. The partial molar heat capacity of H2O in cordierite over the measured temperature interval is independent of composition and temperature within experimental uncertainty and is equal to 43.3 ±0.8 J/mol/ K. This value exceeds the molar heat capacity of gaseous H2O by 9.7 J/mol/K, but is significantly smaller than the heat capacity of H2O in several zeolites and liquid H2O. A statistical-mechanical model of the heat capacity of adsorbed gas species (Barrer 1978) is used to extrapolate the heat capacity of hydrous cordierite to temperatures greater than 425 K. In this model, the heat capacity of hydrous cordierite (Crd·nH2O) is represented as follows: Cp(Crd · nH2O) = Cp(Crd)+ n{Cp(H2O, gas)+ R(gas constant)} (1) An examination of calorimetric data for hydrous beryl, analcime, mordenite, and clinoptilolite (Hemingway et al. 1986; Johnson et al. 1982, 1991, 1992) demonstrates the general applicability of the statistical-mechanical model for the extrapolation of heat capacity data of zeolitic minerals. The heat capacity data for cordierite are combined with the data of Carey and Navrotsky (1992) to obtain the molar enthalpy of formation and enthalpy of hydration of hydrous cordierite as a function of temperature.

  6. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less

  7. Petrology of deep drill hole, Kilauea Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grose, L.T.; Keller, G.V.

    1976-12-01

    The first deep drill hole (1262 m TD) at the summit of an active volcano (1102 m elev) was drilled in 1973 at Kilauea volcano, Hawaii with support from NSF and USGS. The hole is located within southern margin of Kilauea caldera in northern part of a 15 km/sup 2/ triangular block bounded by east rift zone, Koae fault zone, and southwest rift zone-a summit area relatively free of faults, rifts, and extrusions. Nearest eruptions are from fissures 1.2 km away which are active in 1974 and which do not trend toward the drill hole. Core recovery totals 47 mmore » from 29 core runs at rather evenly spaced intervals to total depth. Megascopic, thin-section, and X-ray examination reveals: (1) Recovered core is essentially vesicular, intergranular, nonporphyritic to porphyritic olivine basalt with minor olivine diabase, picrite diabase, and basalt, (2) Hyaloclastite and pillow basalt are absent, (3) Below water table (614 m elev) with increasing depth, vesicularity decreases, and density, crystallinity, competence, vesicle fill, and alteration irregularly increase, (4) Alteration first occurs at water table where calcite and silica partially fill vesticles and olivine is partially serpentinized, (5) At about 570 m elev massive serpentinization of olivine and deposition of montmorillonite-nontronite occur; at about 210 m elev truscottite and tobermorite occur in vesicles; at about 35 m elev mordenite occurs in vesicles, (6) Bottom-hole cores have complete filling of vesicles with silica, minor silica replacement, and complete alteration of olivine, and (7) Plagioclase is unaltered. Chemical analyses of bottom-hole cores are similar to those of modern summit lavas. Alteration and low porosity in bottom-hole cores plus abrupt temperature increase suggest the drill hole penetrated a self-sealed ''cap rock'' to a hydrothermal convection cell and possibly a magma body.« less

  8. Argon Collection And Purification For Proliferation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event wasmore » a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.« less

  9. M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion andmore » chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.« less

  10. Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy

    2015-05-01

    In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less

  11. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into amore » final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.« less

  12. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5

    USGS Publications Warehouse

    Keith, T.E.C.; Muffler, L.J.P.

    1978-01-01

    A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been

  13. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  14. Formation of [Cu 2 O 2 ] 2+ and [Cu 2 O] 2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ipek, Bahar; Wulfers, Matthew J.; Kim, Hacksung

    Cu-exchanged small-pore zeolites (CHA and AEI) form methanol from methane (>95% selectivity) using a 3-step cyclic procedure (Wulfers et al. Chem. Commun. 2015, 51, 4447-4450) with methanol amounts higher than Cu-ZSM-5 and Cu-mordenite on a per gram and per Cu basis. Here, the CuxOy species formed on Cu-SSZ-13 and Cu-SSZ-39 following O2 or He activation at 450 °C are identified as trans-μ-1,2-peroxo dicopper(II) ([Cu2O2]2+) and mono-(μ-oxo) dicopper(II) ([Cu2O]2+) using synchrotron X-ray diffraction, in situ UV–vis, and Raman spectroscopy and theory. [Cu2O2]2+ and [Cu2O]2+ formed on Cu-SSZ-13 showed ligand-to-metal charge transfer (LMCT) energies between 22,200 and 35,000 cm–1, Cu–O vibrations atmore » 360, 510, 580, and 617 cm–1 and an O–O vibration at 837 cm–1. The vibrations at 360, 510, 580, and 837 cm–1 are assigned to the trans-μ-1,2-peroxo dicopper(II) species, whereas the Cu–O vibration at 617 cm–1 (Δ18O = 24 cm–1) is assigned to a stretching vibration of a thermodynamically favored mono-(μ-oxo) dicopper(II) with a Cu–O–Cu angle of 95°. On the basis of the intensity loss of the broad LMCT band between 22,200 and 35,000 cm–1 and Raman intensity loss at 571 cm–1 upon reaction, both the trans-μ-1,2-peroxo dicopper(II) and mono-(μ-oxo) dicopper(II) species are suggested to take part in methane activation at 200 °C with the trans-μ-1,2-peroxo dicopper(II) core playing a dominant role. A relationship between the [Cu2Oy]2+ concentration and Cu(II) at the eight-membered ring is observed and related to the concentration of [CuOH]+ suggested as an intermediate in [Cu2Oy]2+ formation.« less

  15. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. Themore » baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The

  16. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  17. Dachiardite-K, (K2Ca)(Al4Si20O48) · 13H2O, a new zeolite from Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Encheva, S.; Petrov, P.; Pekov, I. V.; Belakovskiy, D. I.; Britvin, S. N.; Aksenov, S. M.

    2016-12-01

    Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (K2Ca)(Al4Si20O48) · 13H2O. It occurs in the walls of opal-chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2 V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [ d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.

  18. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals

    NASA Astrophysics Data System (ADS)

    Che, Congcong; Glotch, Timothy D.; Bish, David L.; Michalski, Joseph R.; Xu, Wenqian

    2011-05-01

    at ˜900 cm-1 upon heating to 800°C. Compared with phyllosilicates, spectral features of two natural zeolites, clinoptilolite and mordenite, are less affected by thermal treatments. Even after heating to 900°C, the IR spectral features attributed to Si (Al)-O stretching and bending vibration modes do not show significant differences from those of unheated zeolites.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Jacob A.; Jubin, Robert Thomas

    US regulations could require the removal of both iodine and tritium from the off-gas stream of a used nuclear fuel (UNF) reprocessing facility. Advanced tritium pretreatment is a pretreatment step that uses high concentrations of NOR2R in a gas stream to volatilize tritium and iodine from UNF prior to traditional dissolution. The gaseous effluent from this process would then require abatement to remove tritium and iodine, but high levels of NOR2R could have a detrimental effect on the ability of various solid sorbents to remove the volatile radionuclides. For tritium and iodine, the sorbents of interest are 3Å molecular sievemore » (3AMS) for tritium and reduced silver mordenite (AgP 0 PZ), silver-functionalized silica-aerogel (AgAerogel), and silver-nitrate-impregnated alumina (AgA) for iodine. Prior research has demonstrated that exposure to high concentrations of NOR2R can reduce the iodine loading capacity of AgP 0 PZ by > 90% when exposed for 1 week. Research in Japan has demonstrated that AgA is more robust to NOR2R exposure than AgZ. The testing described here was intended to assess the effects of high concentrations of NOR2R on the iodine capture capacity of AgA and the water adsorption capacity of 3AMS. To determine the effect of extended exposure of the sorbents to NOR2R, both 3AMS and AgA were aged in a 75% NOR2R environment prior to loading. The 3AMS samples were aged for 1, 4, and 5.5 weeks at 40°C. They were then loaded with water in a 10°C dew point stream (corresponding to a water concentration of ~12,000 ppmv) at 40°C. There was no significant change in the water adsorption capacity of the 3AMS upon exposure to 75% NOR2R. The AgA samples were aged for 1, 2, and 4 weeks at 150°C and were loaded with 50 ppmv IR2R at 150°C. The results show that the iodine capture capacity of AgA is reduced by exposure to high concentrations of NOR2R. The iodine capacity reductions were 16%, 36%, and 76% for 1, 2, and 4 week exposures, respectively. This is

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Patton, Kaara K.; Jubin, Robert Thomas

    In off-gas treatment systems within a nuclear fuel reprocessing plant, capture materials will be exposed to a gas stream for extended periods during their lifetime. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents. For this reason, it is important to understand the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration for iodine sequestration is silver-functionalized silica aerogel (Ag 0-aerogel). The aim of this study was to determine the effect of extended exposure at 150°C to an air stream containing NO on themore » iodine capture capacity of Ag 0-aerogel. Ag 0-aerogel was provided by the Pacific Northwest National Laboratory (PNNL), which manufactures the material at a lab scale. Prior to aging, the material has an iodine loading capacity of approximately 290 mg I/g Ag 0-aerogel. Previous studies have aged the material in a dry air stream or in a moist air stream for up to 6 months. Both tests resulted in a 22% loss in iodine capacity. Aging the material in a static 2% NO 2 environment for up to 2 months results in a 15% loss of iodine capacity.3 In this study, exposure of Ag 0-aerogel to 1% NO at 150°C for 2 months produced a loss of 43% in iodine loading capacity. This is largest loss observed for aerogel aging studies to date. The performance of Ag 0-aerogel in this study was compared to the performance of reduced silver mordenite (Ag 0Z) in similar studies. Ag 0Z is a zeolite mineral considered to be the current standard technology for iodine removal from off-gas streams of a potential US used fuel processing plant. In an aging study exposing Ag 0Z to 1% NO for 2 months, an iodine capacity loss of over 80% was observed. This corresponds to a silver utilization of 13.5% for 2 month NO-aged Ag 0Z, compared to 57% silver utilization for 2 month NO-aged aerogel. While iodine loading capacity and silver utilization are critical parameters in

  1. Mineral Resources of the Warm Springs Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Gray, Floyd; Jachens, Robert C.; Miller, Robert J.; Turner, Robert L.; Knepper, Daniel H.; Pitkin, James A.; Keith, William J.; Mariano, John; Jones, Stephanie L.; Korzeb, Stanley L.

    1986-01-01

    At the request of the U.S. Bureau of Land Management, approximately 113,500 acres of the Warm Springs Wilderness Study Area (AZ-020-028/029) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to as the 'wilderness study area' or 'study area'; any reference to the Warm Springs Wilderness Study Area refers only to that part of the wilderness study area for which a mineral survey was requested. This study area is located in west-central Arizona. The U.S. Geological Survey and the U.S. Bureau of Mines conducted geological, geochemical, and geophysical surveys to appraise the identified mineral resources (known) and assess the mineral resource potential (undiscovered) of the study area. fieldwork for this report was carried out largely in 1986-1989. There is a 1-million short ton indicated subeconomic resource of clinoptilolite-mordenite zeolite and an additional inferred resource of 2 million short tons near McHeffy Butte, approximately 2 miles west of the study area. A perlite deposit in the southeast corner of the study area contains an inferred subeconomic resource totaling 13 million short tons. An inferred subeconomic resource of gold in 225 short tons of quartz having a grade of 0.01 8 troy ounces per short ton is present at the Cook mine, 0.5 miles west of the study area. The northwestern part of the Warm Springs Wilderness Study Area has high mineral resource potential for gold and silver. The south-central part of the study area has one area of moderate and one area north of this south-central part has low mineral resource potential for gold and silver in and near Warm Springs Canyon; the mineral resource potential for gold is also moderate in three small areas in the southern part and one area in the northeastern part of the study area. The mineral resource potential for zeolite is high for the area surrounding the McHeffy Butte prospect and for one area in the southern part of the study area. Two

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Gray, Kimberly D.

    The U.S. Department of Energy, Office of Nuclear Energy has chartered an effort to develop technologies to enable safe and cost effective recycle of commercial used nuclear fuel (UNF) in the U.S. Part of this effort includes the evaluation of exiting waste management technologies for effective treatment of wastes in the context of current U.S. regulations and development of waste forms and processes with significant cost and/or performance benefits over those existing. This study summarizes the results of these ongoing efforts with a focus on the highly radioactive primary waste streams. The primary streams considered and the recommended waste formsmore » include: •Tritium separated from either a low volume gas stream or a high volume water stream. The recommended waste form is low-water cement in high integrity containers. •Iodine-129 separated from off-gas streams in aqueous processing. There are a range of potentially suitable waste forms. As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals. •Carbon-14 separated from LWR fuel treatment off-gases and immobilized as a CaCO3 in a cement waste form. •Krypton-85 separated from LWR and SFR fuel treatment off-gases and stored as a compressed gas. •An aqueous reprocessing high-level waste (HLW) raffinate waste which is immobilized by the vitrification process in one of three forms: a single phase borosilicate glass, a borosilicate based glass ceramic, or a multi-phased titanate ceramic [e.g., synthetic rock (Synroc)]. •An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel that is either included in the borosilicate HLW glass or is immobilized in the form of a metal alloy in the case of glass ceramics or titanate ceramics. â

  3. A call to expand regulation to all carcinogenic fibrous minerals

    NASA Astrophysics Data System (ADS)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.

    2013-05-01

    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in

  4. Fault and fluid systems in supra-subduction zones: The Troodos ophiolite

    NASA Astrophysics Data System (ADS)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter; Krenn, Kurt

    2017-04-01

    The Troodos massif on the island of Cyprus represents a well-preserved and complete supra-subduction zone (SSZ) ophiolite. It includes an extrusive sequence that is subdivided into Upper (UPL) and Lower Pillow Lavas (LPL). These volcanic rocks contain mineralized fractures (veins) and vesicles that record fluid availability probably related to slab dehydration and deformation subsequent to a period of subduction initiation in the framework of a SSZ setting. Here, we present electron microprobe element mappings and cathodoluminescence studies of vein minerals as well as analyses of fluid inclusions entrapped in zeolite, calcite and quartz from veins and vesicles of the Pillow Lavas of the Troodos ophiolite. Two different zeolite type assemblages, interpreted as alteration products of compositional varying volcanic glasses, occur: (1) Na-zeolites analcime and natrolite from the UPL that require lower formation temperatures, higher Na/Ca ratios and pH values than (2) Ca-zeolites heulandite and mordenite from the LPL which indicate temporal or spatial varying fluid compositions and conditions. Calcite represents a late stage phase in incompletely sealed blocky type (1) assemblage and in syntaxial quartz veins. Additionally, calcite occurs as major phase in syntaxial and blocky veins of UPL and LPL. These syntaxial quartz and calcite veins are assumed to be related to tectonic extension. Chalcedony is associated with quartz and occurs in typical veins and vesicles of the LPL. In addition, the presence of neptunian dykes in veins suggests that seawater penetrated fractures throughout the extrusive sequence. Thus, circulation in an open system via advective transport is favored while diffusion in a closed system is a subordinate, local and late stage phenomenon. Calcite veins and quartz vesicles contain primary, partly re-equilibrated two phase (liquid, vapor) fluid inclusions. The chemical system of all studied inclusions in both host minerals is restricted to aqueous

  5. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the

  6. Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    USGS Publications Warehouse

    Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A.

    2003-01-01

    A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ???90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ???66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ?? 0.08 Ma. Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has ??18 O values of 21.7 to 22.0??? and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3???, 12.5 to 14.0???, and 8.6 to 11.9???, respectively. ??18 O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9???. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65 ??C for the argillic zone, 85 to 125 ??C for the propylitic zone, 110 to 210 ??C for the silicic zone, and 145 to 225 ??C for the sericitic zone. Fluid inclusion data and calculated ??18 O water values indicate that hydrothermal fluids were seawater dominated. Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone

  7. Internal load management in eutrophic, anoxic environments. The role of natural zeolite.

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    During the last decades, the increase of the nutrient and organic load inflows in the coastal zone increased the number of the anoxic environments. Inputs' control constitutes one of the basic practices for the eutrophic/anoxic aquatic ecosystems management. However, the induced changes at the ecosystem characteristics resulting from the trophic state alteration, and anoxic conditions prevalence, render the ecosystem's restoration difficult if not impossible. Bottom water anoxia accelerates PO43-, NH4+ and S2- recycling and accumulation from organic matter decomposition. This, toxic layer is a permanent menace for the balance of the entire ecosystem, as it can supply PO43-, NH4+ and S2- to the surface layers altering their qualitative character and threatening the welfare of fishes and other aquatic organisms. Having as objective the water basins' internal load control and based on practices are used in eutrophic environments' restoration, this study is referred to the role of the natural zeolite in eutrophic/anoxic ecosystems management. For the first time are presented, results from S2- removal experiments using the zeolitic mineral mordenite, [(Na2, Ca, K2)4 (H2O)28] [Al8Si40O96]. Four different sets of experiments were conducted, in order to examine zeolite's removal capacity of S2- in aquatic solutions, under a wide range of physicochemical parameters. More specific: a) the effect of initial pH on the removal process, b) the removal process kinetics, c) the removal process isotherms and d) the effect of salinity on the removal process were studied. Natural zeolite has the ability to neutralize the pH of aqueous solutions, thus all the experiments were practically performed at pH 7. Initially sulfides concentration range from 1 to 10mg/l. Zeolite's removal capability appeared to be directly depended on the S2- initial concentration. For initial concentration of 1mg/l, the removal rate reached up to 90% after 24h. The maximum zeolite removal capacity was

  8. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica

  9. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a

  10. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Koether, S.L.

    1983-01-01

    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic

  11. Erionite and other fibrous zeolites in volcanic environments: the need for a risk assessment in Italy

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Rimoldi, B.

    2012-04-01

    In many European countries in the '90s there was a significant increase in mortality linked to mesothelioma, a cancer of the lung, involving pleural, pericardial and peritoneal mesothelial cells, which unfortunately has no cure at present. Though most of these cases have been attributed to t asbestos, in Italy at least 17% of cases of mesothelioma is still not fully explained. In the years between 1990 and 2000, it was discovered that the inhalation of erionite fibers (a zeolite group mineral, that can be found in altered volcanic rocks) was the cause of a regional epidemic of mesothelioma in some villages of Cappadocia (Turkey). Erionite, in fact, was recently included in Class 1 (highly carcinogenic) by the World Health Organization, up to 800 times more carcinogenic than asbestos; on the other hand, little is known about the toxicity of other fibrous zeolites, commonly intergrown with erionite, such as offretite and mordenite. Erionite was reported in different regions of Italy; nevertheless, a systematic mapping of its distribution, the quantification of its presence in rocks and data about airborne fibers are still missing. We carried out first preliminary sampling in Veneto, in Tertiary volcanic rocks, mainly hydrothermally altered basalts. The first mineralogical investigations by means of XRPD, SEM-EDS and OM confirmed the presence of small amounts of erionite and abundant fibrous offretite, in vugs of basaltic rocks. Intergrowths and overgrowths with other fibrous minerals are quite common, and the morphological-chemical similarities among these zeolites pose a special analytical problem, with the need of combining different techniques. Our first findings, combined with the fact that zeolites are important industrial minerals, emphasize the need of a risk assessment in Italy and Europe, because there are no systematic studies on the distribution of erionite or similar fibrous zeolites in the environment. The knowledge of the epidemiology of mesothelioma