Science.gov

Sample records for morphine-induced reward caused

  1. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  2. Attenuation by dextromethorphan on the higher liability to morphine-induced reward, caused by prenatal exposure of morphine in rat offspring.

    PubMed

    Wu, Ling-Yi; Chen, Jain-Fang; Tao, Pao-Luh; Huang, Eagle Yi-Kung

    2009-11-25

    Co-administration of dextromethorphan (DM) with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on morphine-induced reward and behavioral sensitization (possibly related to the potential to induce morphine addiction) in morphine-exposed offspring. Conditioned place preference and locomotor activity tests revealed that the p60 male offspring of chronic morphine-treated female rats were more vulnerable to morphine-induced reward and behavioral sensitization. The administration of a low dose of morphine (1 mg/kg, i.p.) in these male offspring also increased the dopamine and serotonin turnover rates in the nucleus accumbens, which implied that they were more sensitive to morphine. Co-administration of DM with morphine in the dams prevented this adverse effect of morphine in the offspring rats. Thus, DM may possibly have a great potential in the prevention of higher vulnerability to psychological dependence of morphine in the offspring of morphine-addicted mothers.

  3. Distribution of neuropeptide FF (NPFF) receptors in correlation with morphine-induced reward in the rat brain.

    PubMed

    Wu, Chun-Hung; Tao, Pao-Luh; Huang, Eagle Yi-Kung

    2010-07-01

    Neuropeptide FF (NPFF) exhibited anti-/pro-opioid effects when centrally injected. It was proved to bind to its own receptors, namely NPFF(1) and NPFF(2) receptors, but did not bind to opioid receptors. In our previous study, we found that i.c.v. injected NPFF suppressed morphine-induced conditioned place preference (CPP) in rats, which indicated that NPFF may play a role in the modulation of morphine-induced reward. In the present study, we further investigated the action site of NPFF to attenuate morphine-induced reward. Bilateral intra-VTA (ventral tegmental area) and intra-NAc (nucleus accumbens) injections of NPFF both blocked the CPP caused by morphine in rats. This suggests that NPFF may act at both VTA and NAc to inhibit the sensitization of the mesocorticolimbic dopaminergic pathway. Neurochemical analyses support that NPFF could be acting through the inhibition of the mesocorticolimbic dopaminergic activity increased by morphine. We also determined the distribution of NPFF receptors in rat brains. Our results showed that both NPFF receptors were abundantly expressed in VTA but with less content in NAc. In fluorescent immunohistochemical staining, our results revealed that NPFF(1) and NPFF(2) receptors could be expressed at the TH (tyrosine hydroxylase)- or GAD67 (glutamic acid decarboxylase-67)-positive neurons in VTA, whereas some of them were present in the negative neurons. This implied a possible function of NPFF to modulate dopaminergic neurons directly and a possible indirect action of NPFF on GABAergic neurons to modulate dopamine release. Taken together, our study should be helpful for clarifying the possible mechanisms of NPFF system to modulate morphine-induced reward. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Geranylgeranylacetone protects mice against morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome.

    PubMed

    Luo, Fu-Cheng; Qi, Lei; Lv, Tao; Wang, Sheng-Dong; Liu, Hua; Nakamura, Hajime; Yodoi, Junji; Bai, Jie

    2012-04-01

    There are few efficacious interventions to combat morphine dependence. Thioredoxin-1 (Trx-1) and heat shock protein 70 (Hsp70) are emerging as important modulators of neuronal function. They have been shown to be involved in cellular protective mechanisms against a variety of toxic stressors. This study was designed to investigate the effects of geranylgeranylacetone (GGA), a pharmacological inducer of Trx-1 and Hsp70, on morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome. Trx-1 and Hsp70 expression was increased in the frontal cortex, hippocampus, ventral tegmental area, and nucleus accumbens of mice after GGA treatment. GGA administration reduced morphine-induced motor activity and inhibited conditioned place preference. GGA markedly attenuated the morphine-naloxone-induced withdrawal signs, including jumping, rearing, and forepaw tremor. Furthermore, the activation of cAMP-responsive element-binding protein and the expression of ΔFosB and cyclin-dependent kinase 5 were decreased in the nucleus accumbens by GGA treatment after morphine withdrawal. In the nucleus accumbens, GGA enhanced morphine-induced expression of Trx-1 and Hsp70 after morphine withdrawal. These results suggest that strengthening the expression of Trx-1 and Hsp70 in the brain by using noncytotoxic pharmacological inducers may provide a novel therapeutic strategy for morphine dependence. GGA could be a safe and novel therapeutic agent for morphine dependence. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Drug-seeking behavior in an invertebrate system: evidence of morphine-induced reward, extinction and reinstatement in crayfish.

    PubMed

    Nathaniel, Thomas I; Panksepp, Jaak; Huber, Robert

    2009-02-11

    Several lines of evidence suggest that exploring the neurochemical basis of reward in invertebrate species may provide clues for the fundamental behavioral and neurobiology underpinnings of drug addiction. How the presence of drug-sensitive reward relates to a decrease in drug-seeking behavior and reinstatement of drug-seeking behavior in invertebrate systems is not known. The present study of a conditioned place preference (CPP) paradigm in crayfish (Orconectes rusticus) explores morphine-induced reward, extinction and reinstatement. Repeated intra-circulatory infusions of 2.5 microg/g, 5.0 microg/g and 10.0 microg/g doses of morphine over 5 days serve as a reward when paired with a distinct visual or tactile environment. Morphine-induced CPP was extinguished after repeated saline injections for 5 days in the previously morphine-paired compartment. After the previously established CPP had been eliminated during the extinction phase, morphine-experienced crayfish were challenged with 2.5 microg/g, 5.0 microg/g and 10.0 microg/g, respectively. The priming injections of morphine reinstated CPP in all training doses, suggesting that morphine-induced CPP is unrelenting, and that with time, it can be reinstated by morphine following extinction in an invertebrate model just like in mammals. Together with other recent studies, this work demonstrates the advantage of using crayfish as an invertebrate animal model to investigate the basic biological processes that underline exposure to mammalian drugs of abuse.

  6. Effects of swimming exercise on morphine-induced reward and behavioral sensitization in maternally-separated rat pups in the conditioned place preference procedure.

    PubMed

    Abad, Atiyeh Taghavi-Khalil; Miladi-Gorji, Hossein; Bigdeli, Imanollah

    2016-09-19

    This study was designed to examine the effects of swimming exercise during adolescence on morphine-induced conditioned place preference (CPP) and behavioral sensitization in maternally separated male and female rat pups. Male Wistar rats were allowed to mate with female virgin Wistar rats. Pups were separated from the dam daily for 180min during postnatal days 2-14. All pups were weaned on day 21.The exercising pups were allowed to swim (60min/d, five days per a week, for 30days) during adolescence. Then, rat pups were tested for behavioral sensitization and the CPP induced by morphine. Maternal separation produced a significant increase in morphine-induced CPP in both sexes, behavioral sensitization in male pups and tolerance to morphine-induced motor activity in female pups. Swimmer pups separated from the dam exhibited a decrease in morphine-induced CPP in both sexes and behavioral sensitization in male pups than those of their control pups. The present results have shown that swimming exercise during adolescence may exert a protective effect against morphine-induced reward and behavioral sensitization in adult male and female rats following maternal separation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Morphine-induced apoptosis in the ventral tegmental area and hippocampus after the development but not extinction of reward-related behaviors in rats.

    PubMed

    Razavi, Yasaman; Alamdary, Shabnam Zeighamy; Katebi, Seyedeh-Najmeh; Khodagholi, Fariba; Haghparast, Abbas

    2014-03-01

    Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have protective effects against cell death. In this study, we suggested that there is a parallel role of morphine in reward circuitry and apoptosis processing. Therefore, we investigated the effect of morphine on modifications of apoptotic factors in the ventral tegmental area (VTA) and hippocampus (HPC) which are involved in the reward circuitry after the acquisition and extinction periods of conditioned place preference (CPP). In behavioral experiments, different doses of morphine (0.5, 5, and 10 mg/kg) and saline were examined in the CPP paradigm. Conditioning score and locomotor activity were recorded by Ethovision software after acquisition on the post-conditioning day, and days 4 and 8 of extinction periods. In order to investigate the molecular mechanisms in each group, we then dissected the brains and measured the expression of apoptotic factors in the VTA and HPC by western blotting analysis. All of the morphine-treated groups showed an increase of apoptotic factors in these regions during acquisition but not in extinction period. In the HPC, morphine significantly increased the ratio of Bax/Bcl-2, caspases-3, and PARP by the lowest dose (0.5 mg/kg), but, in the VTA, a considerable increase was seen in the dose of 5 mg/kg; promotion of apoptotic factors in the HPC and VTA insinuates that morphine can affect the molecular mechanisms that interfere with apoptosis through different receptors. Our findings suggest that a specific opioid receptor involves in modification of apoptotic factors expression in these areas. It seems that the reduction of cell death in response to high dose of morphine in the VTA and HPC may be due to activation of low affinity opioid receptors which are involved in neuroprotective features of morphine.

  8. Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice.

    PubMed

    Chefer, V I; Shippenberg, T S

    2009-03-01

    Studies in experimental animals have shown that individuals exhibiting enhanced sensitivity to the locomotor-activating and rewarding properties of drugs of abuse are at increased risk for the development of compulsive drug-seeking behavior. The purpose of the present study was to assess the effect of constitutive deletion of delta-opioid receptors (DOPr) on the rewarding properties of morphine as well as on the development of sensitization and tolerance to the locomotor-activating effects of morphine. Locomotor activity testing revealed that mice lacking DOPr exhibit an augmentation of context-dependent sensitization following repeated, alternate injections of morphine (20 mg/kg; s.c.; 5 days). In contrast, the development of tolerance to the locomotor-activating effects of morphine following chronic morphine administration (morphine pellet: 25 mg: 3 days) is reduced relative to WT mice. The conditioned rewarding effects of morphine were reduced significantly in DOPrKO mice as compared to WT controls. Similar findings were obtained in response to pharmacological inactivation of DOPr in WT mice, indicating that observed effects are not due to developmental adaptations that occur as a consequence of constitutive deletion of DOPr. Together, these findings indicate that the endogenous DOPr system is recruited in response to both repeated and chronic morphine administration and that this recruitment serves an essential function in the development of tolerance, behavioral sensitization, and the conditioning of opiate reward. Importantly, they demonstrate that DOPr has a distinct role in the development of each of these drug-induced adaptations. The anti-rewarding and tolerance-reducing properties of DOPr antagonists may offer new opportunities for the treatment and prevention of opioid dependence as well as for the development of effective analgesics with reduced abuse liability.

  9. Suppression of the morphine-induced rewarding effect and G-protein activation in the lower midbrain following nerve injury in the mouse: involvement of G-protein-coupled receptor kinase 2.

    PubMed

    Ozaki, S; Narita, M; Narita, M; Iino, M; Miyoshi, K; Suzuki, T

    2003-01-01

    The present study was designed to investigate whether a state of neuropathic pain induced by sciatic nerve ligation could alter the rewarding effect, antinociception, and G-protein activation induced by a prototype of mu-opioid receptor agonist morphine in the mouse. The sciatic nerve ligation caused a long-lasting and profound thermal hyperalgesia. Under this neuropathic pain-like state, an i.c.v. morphine-induced place preference was observed in sham-operated mice but not in sciatic nerve-ligated mice. However, no differences in the antinociceptive effect of i.c.v.-administered morphine were noted between the groups. The increases in the binding of guanosine-5'-o-(3-[(35)S]thio)triphosphate induced by morphine in lower midbrain membranes including the ventral tegmental area, which contributes to the expression of the rewarding effect of opioid, were significantly attenuated in sciatic nerve-ligated mice. On the other hand, there were no differences in the stimulation of guanosine-5'-o-(3-[(35)S]thio)triphosphate binding to pons/medulla membranes, which plays an important role in the antinociception of mu-opioid receptor agonists, between the groups. In addition, no changes in levels of guanosine-5'-o-(3-[(35)S]thio)triphosphate binding by either the selective delta- or kappa-opioid receptor agonists were noted in membrane of the lower midbrain and limbic forebrain membranes obtained from sciatic nerve-ligated mice. Reverse transcription-polymerase chain reaction analysis showed that sciatic nerve ligation did not alter the mRNA product of mu-opioid receptors in the lower midbrain, indicating that a decrease in some mu-opioid receptor functions may result from the uncoupling of mu-opioid receptors from G-proteins. We found a significant increase in protein levels of G-protein-coupled receptor kinase 2, which causes receptor phosphorylation in membranes of the lower midbrain but not in the pons/medulla, obtained from mice with nerve injury, whereas there were no

  10. Potentiation of morphine-induced conditioned place preference with concurrent use of amantadine and fluvoxamine by the intraperitoneal and intracerebroventricular injection in rat.

    PubMed

    Maleki, Saeid Abbasi; Samini, Morteza; Babapour, Vahab; Mehr, Shahram Ejtemaei; Cheraghiyan, Siyamak; Nouri, Mir H Khayat

    2008-07-19

    In this study, the effect of concurrent use of fluvoxamine and amantadine on morphine-induced conditioned place preference (CPP) was investigated by the intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) injection in rat. The CPP paradigms took place on 6 consecutive days by using an unbiased procedure. Our results showed that i.p. injection of morphine sulfate (2.5-10mg/kg) induced CPP in rat. On day 6, fluvoxamine (5 and 10mg/kg, i.p.), and amantadine (5 and 10mg/kg, i.p.) both increased morphine-induced conditioned place preference. Intracerebroventricular injection of fluvoxamine (10 microg/rat) and amantadine (10 microg/rat) were also increased morphine-induced conditioned preference significantly. Concurrent use of fluvoxamine (5mg/kg, i.p.; 10 microg/rat i.c.v.) and amantadine (10mg/kg, i.p.; 10 microg/rat, i.c.v.) potentiated morphine-induced conditioned preference significantly. Release of dopamine from neurons cause reinforcing behavior. Morphine produces reinforcement (reward) effect by activation of mu receptors which facilitated dopaminergic transmission through dopamine release. Fluvoxamine, a serotonin reuptake inhibitor, increase serotonin concentration in synaptic clefts, which is a potent stimulator of dopamine release. Amantadine also appears to work by increasing dopamine release from neuron. In conclusion, our results show that concurrent use of fluvoxamine and amantadine potentiate morphine-like effect on CPP through increasing dopaminergic transmission and this combination may simulate the rewarding effect of morphine and can be candidate for controlling the drug compulsive seeking in morphine dependent subjects.

  11. Microinjection of histone deacetylase inhibitor into the ventrolateral orbital cortex potentiates morphine induced behavioral sensitization.

    PubMed

    Wei, Lai; Zhu, Yuan-Mei; Zhang, Yu-Xiang; Liang, Feng; Barry, Devin M; Gao, Hong-Yu; Li, Tao; Huo, Fu-Quan; Yan, Chun-Xia

    2016-09-01

    Accumulating evidence indicates that epigenetic regulation, such as changes in histone modification in reward-related brain regions, contributes to the memory formation of addiction to opiates and psychostimulants. Our recent results suggested that the ventrolateral orbital cortex (VLO) is involved in the memories of stress and drug addiction. Since addiction and stress memories share some common pathways, the present study was designed to investigate the role of histone deacetylase (HDAC) activity in the VLO during morphine induced-behavioral sensitization. Rats received a single exposure to morphine for establishing the behavioral sensitization model. The effect of HDAC activity in the VLO in morphine induced-behavioral sensitization was examined by microinjection of HDAC inhibitor Trichostatin A (TSA). Furthermore, the protein expression levels of extracellular signal-regulated kinase (ERK) and phosphorylated ERK (p-ERK), histone H3 lysine 9 acetylation (aceH3K9) and brain-derived neurotrophic factor (BDNF) in the VLO in morphine-induced behavioral sensitization were examined. The results showed that the bilateral VLO lesions suppressed the expression phase, but not the developmental phase of morphine-induced behavioral sensitization. Microinjection of TSA into the VLO significantly increased both the development and expression phases. Moreover, the protein levels of p-ERK, aceH3K9 and BDNF except ERK in the VLO were significantly upregulated in morphine-treated rats in the expression phase. These effects were further strengthened by intra-VLO injection of TSA. Our findings suggest that HDAC activity in the VLO could potentiate morphine-induced behavioral sensitization. The upregulated expression of p-ERK, aceH3K9 and BDNF in the VLO might be the underlying mechanism of histone acetylation enhancing the morphine-induced behavioral sensitization. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Muscarinic acetylcholine receptor but not nicotinic acetylcholine receptor plays a role in morphine-induced behavioral sensitization in rats.

    PubMed

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Ruan, Heng; Li, Xinwang

    2017-09-01

    Background and Aim The cholinergic system can affect drug reward. The present study aimed to examine the roles of muscarinic acetylcholine receptor (mAChR) and nicotinic acetylcholine receptor (nAChR) in morphine-induced behavioral sensitization. To analyze the roles of mAChR and nAChR in behavioral sensitization induced by morphine (5mg/kg), seven experiments were designed. Experiments 1 and 2 examined the effects of 3, 1, and 0.3 mg/kg scopolamine and 0.2, 0.1, and 0.05mg/kg scopolamine, respectively, on the locomotor activity when administered alone. Experiments 3 and 4 explored the effect of scopolamine on morphine-induced behavioral sensitization. Experiment 5 studied the effect of mecamylamine on morphine-induced behavioral sensitization. Experiments 6 and 7 investigated the effects of scopolamine+huperzine A and mecamylamine+huperzine A, respectively, on morphine-induced behavioral sensitization. The results revealed that 3mg/kg scopolamine, which significantly enhanced locomotor activity when administered alone, inhibited the acquisition of morphine-induced sensitization. However, mecamylamine (0.5, 1, 2mg/kg) did not have these effects. The co-administration of scopolamine (0.05 mg/kg)+huperzine A (0.4mg/kg) or mecamylamine (1mg/kg)+huperzine A (0.4mg/kg) did not affect the acquisition of morphine-induced behavioral sensitization. Scopolamine (0.05mg/kg) which did not affect the locomotor activity when administered alone, but not mecamylamine (1mg/kg), reversed the acute attenuation effect of huperzine A (0.4mg/kg) on morphine-induced locomotor activity at the acquisition stage and reversed the inhibition of huperzine A on the expression of morphine-induced sensitization. The mAChR might play a more important role in morphine-induced locomotor activity and the expression of morphine-induced behavioral sensitization. The mechanisms of mAChR and nAChR were relatively separate in morphine-induced sensitization. Copyright © 2017 Elsevier Inc. All rights

  13. Effects of berberine on acquisition and reinstatement of morphine-induced conditioned place preference in mice

    PubMed Central

    Vahdati Hassani, Faezeh; Hashemzaei, Mahmoud; Akbari, Edris; Imenshahidi, Mohsen; Hosseinzadeh, Hossein

    2016-01-01

    Objective: It has been shown that berberine, a major component of Berberis vulgaris extract, modulates the activity of several neurotransmitter systems including dopamine (Da) and N-methyl-D-aspartate (NMDA) contributing to rewarding and reinforcing effects of morphine. Drug craving and relapsing even after a long time of abstinence therapy are the most important problems of addiction. In the present study, we investigated the alleviating effects of berberine on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP) in mice. Materials and Methods: In male NMRI mice, the acquisition of CPP was established by 40 mg/kg of morphine sulphate injection and extinguished after the extinction training and reinstated by a 10 mg/kg injection of morphine. The effects of different doses of berberine (5, 10, and 20 mg/kg) on the acquisition and reinstatement induced by morphine were evaluated in a conditioned place preference test. Results: The results showed that intraperitoneal administration of berberine (5, 10, and 20 mg/kg) did not induce conditioned appetitive or aversive effects. Injection of berberine (10 and 20 mg/kg) 2 h before the morphine administration reduced acquisition of morphine-induced CPP. In addition, same doses of berberine significantly prevented the reinstatement of morphine-induced CPP. Conclusion: These results suggest that berberine can reduce the acquisition and reinstatement of morphine-induced conditioned place preference and may be useful in treatment of morphine addiction. PMID:27222833

  14. Effects of dronabinol on morphine-induced dopamine-related behavioral effects in animals.

    PubMed

    Mori, Tomohisa; Shibasaki, Masahiro; Abe, Minako; Udagawa, Yuya; Suzuki, Tsutomu

    2012-11-01

    The present study examined the effects of dronabinol, a United States FDA-approved synthetic cannabinoid receptor agonist, on morphine (a prototypic μ-opioid receptor agonist)-induced dopamine-related behaviors in animals. Dronabinol suppressed the rewarding effects of morphine in rats and its emetic effects in ferrets. Furthermore, the morphine-induced increase in dopamine release from the nucleus accumbens was significantly attenuated by dronabinol, which indicated that the suppressive effects of dronabinol on morphine-induced behaviors are at least in part mediated by regulation of the dopaminergic system. Since cannabinoid receptor agonists have been shown to enhance the antinociceptive effects of morphine, the use of dronabinol as an adjuvant could be useful for preventing the adverse effects of μ-opioid receptor agonists when used to control pain.

  15. Sertraline influence on morphine-induced conditioned place preference in rats.

    PubMed

    Ciubotariu, Diana; Nechifor, M

    2014-01-01

    Serotonine reuptake inhibitors are an important pharmacological arsenal for treating major depression, a severe disease with poorly understood pathogenic mechanisms. Also, little is known about the action of antidepressants on reward system, the function of which is severely affected in this disorder. To assess the influence of sertraline on brain reward system by conditioned place preference technique in rats. Both 3 and 5 mg/kg doses of sertraline determined a significant rewarding effect, whereas only the 5 mg/kg dose increased the morphine-induced rewarding effect (in the morphine-only group time spent in the conditioning chamber increased by 184.92 +/- 21.43% post-conditioning vs. preconditioning, whereas the increase was 195.56 +/- 18.3% in the group treated with morphine and sertraline 5 mg/kg, p < 0.05). The stimulant effect of sertraline on brain reward function might be involved in its therapeutic efficacy.

  16. Morphine induces albuminuria by compromising podocyte integrity.

    PubMed

    Lan, Xiqian; Rai, Partab; Chandel, Nirupama; Cheng, Kang; Lederman, Rivka; Saleem, Moin A; Mathieson, Peter W; Husain, Mohammad; Crosson, John T; Gupta, Kalpna; Malhotra, Ashwani; Singhal, Pravin C

    2013-01-01

    Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.

  17. mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity.

    PubMed

    Perreau-Lenz, Stéphanie; Hoelters, Laura-Sophie; Leixner, Sarah; Sanchis-Segura, Carla; Hansson, Anita; Bilbao, Ainhoa; Spanagel, Rainer

    2017-06-01

    Previous studies have shown that repeated exposure to drugs of abuse is associated with changes in clock genes expression and that mice strains with various mutations in clock genes show alterations in drug-induced behaviors. The objective of this study is to characterize the role of the clock gene mPer1 in the development of morphine-induced behaviors and a possible link to histone deacetylase (HDAC) activity. In Per1 (Brdm1) null mutant mice and wild-type (WT) littermates, we examined whether there were any differences in the development of morphine antinociception, tolerance to antinociception, withdrawal, sensitization to locomotion, and conditioned place preference (CPP). Per1 (Brdm1) mutant mice did not show any difference in morphine antinociception, tolerance development, nor in physical withdrawal signs precipitated by naloxone administration compared to WT. However, morphine-induced locomotor sensitization and CPP were significantly impaired in Per1 (Brdm1) mutant mice. Because a very similar dissociation between tolerance and dependence vs. sensitization and CPP was recently observed after the co-administration of morphine and the HDAC inhibitor sodium butyrate (NaBut), we studied a possible link between mPer1 and HDAC activity. As opposed to WT controls, Per1 (Brdm1) mutant mice showed significantly enhanced striatal global HDAC activity within the striatum when exposed to a locomotor-sensitizing morphine administration regimen. Furthermore, the administration of the HDAC inhibitor NaBut restored the ability of morphine to promote locomotor sensitization and reward in Per1 (Brdm1) mutant mice. Our results reveal that although the mPer1 gene does not alter morphine-induced antinociception nor withdrawal, it plays a prominent role in the development of morphine-induced behavioral sensitization and reward via inhibitory modulation of striatal HDAC activity. These data suggest that PER1 inhibits deacetylation to promote drug-induced neuroplastic changes.

  18. Role of dorsal hippocampal orexin-1 receptors in associating morphine reward with contextual stimuli.

    PubMed

    Riahi, Esmail; Khodagholi, Fariba; Haghparast, Abbas

    2013-08-01

    In this study, we evaluated the role of orexin receptors in the dorsal hippocampus (dHPC) in the development of morphine-induced conditioned place preference (CPP) and modification of hippocampal c-Fos and cyclic AMP response element-binding protein (CREB) levels. Orexin-A (0.5, 5, and 50 pmol) and the orexin-1 receptor antagonist, SB334867 (10, 20, and 40 nmol), were bilaterally infused into the dHPC immediately before conditioning with morphine (0.5 or 7.5 mg/kg) using the CPP task. Western blotting was then used to measure the protein levels of c-Fos, total CREB, and phosphorylated CREB (pCREB) in the hippocampus. Orexin did not enhance the rewarding efficacy of morphine (0.5 mg/kg), but caused a reduction in hippocampal c-Fos. Successful conditioning with morphine (7.5 mg/kg) was associated with increased levels of hippocampal c-Fos and CREB, but with decreased CREB phosphorylation. Intrahippocampal administration of SB334867 before conditioning sessions disrupted the rewarding effect of morphine (7.5 mg/kg) and blocked morphine-induced increases in hippocampal CREB protein levels. The results suggest that orexin signaling within the dHPC is necessary for the development of morphine CPP. Morphine reward is related to altered levels of hippocampal c-Fos and CREB. Inhibition of morphine-induced increases in CREB levels might be the underlying mechanism for the disruption of morphine CPP.

  19. Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization.

    PubMed

    Sharf, Ruth; Guarnieri, Douglas J; Taylor, Jane R; DiLeone, Ralph J

    2010-03-04

    Orexin (or hypocretin) has been implicated in mediating drug addiction and reward. Here, we investigated orexin's contribution to morphine-induced behavioral sensitization and place preference. Orexin-/- (OKO) mice and littermate wild-type (WT) controls (n=56) and C57BL/6J mice (n=67) were tested for chronic morphine-induced locomotor sensitization or for conditioned place preference (CPP) for a morphine- or a cocaine-paired environment. C57BL/6J mice received the orexin receptor 1 (Ox1r) antagonist, SB-334867, prior to test sessions. OKO mice did not significantly differ from WT controls in locomotor activity following acute- or chronic-morphine treatments. Similarly, mice treated with the Ox1r antagonist did not differ from vehicle controls in locomotor activity following acute- or chronic-morphine treatments. In contrast, while OKO mice did not differ from WT controls in preference for a morphine-paired environment, the Ox1r antagonist significantly attenuated place preference for a morphine-, but not a cocaine-paired, environment. These data suggest that orexin action is not required for locomotor responses to acute and chronic morphine, but Ox1r signaling can influence morphine-seeking in WT animals. 2009 Elsevier B.V. All rights reserved.

  20. Orexin Mediates Morphine Place Preference, but not Morphine-Induced Hyperactivity or Sensitization

    PubMed Central

    Sharf, Ruth; Guarnieri, Douglas J.; Taylor, Jane R.; DiLeone, Ralph J.

    2010-01-01

    Orexin (or hypocretin) has been implicated in mediating drug addiction and reward. Here, we investigated orexin's contribution to morphine-induced behavioral sensitization and place preference. Orexin -/- (OKO) mice and littermate wild-type (WT) controls (n= 56) and C57BL/6J mice (n=67) were tested for chronic morphine-induced locomotor sensitization or for conditioned place preference (CPP) for a morphine- or a cocaine-paired environment. C57BL/6J mice received the orexin receptor 1 (Ox1r) antagonist, SB-334867, prior to test sessions. OKO mice did not significantly differ from WT controls in locomotor activity following acute- or chronic-morphine treatments. Similarly, mice treated with the Ox1r antagonist did not differ from vehicle controls in locomotor activity following acute- or chronic-morphine treatments. In contrast, while OKO mice did not differ from WT controls in preference for a morphine-paired environment, the Ox1r antagonist significantly attenuated place preference for a morphine-, but not a cocaine-paired, environment. These data suggest that orexin action is not required for locomotor responses to acute and chronic morphine, but Ox1r signaling can influence morphine-seeking in WT animals. PMID:20034477

  1. TRPV1 modulates morphine-induced conditioned place preference via p38 MAPK in the nucleus accumbens.

    PubMed

    Hong, Sa-Ik; Nguyen, Thi-Lien; Ma, Shi-Xun; Kim, Hyoung-Chun; Lee, Seok-Yong; Jang, Choon-Gon

    2017-09-15

    Emerging evidence suggests that the transient receptor potential vanilloid type 1 channel (TRPV1) is a novel target for the treatment of drug addiction, such as cocaine and morphine. Previously we reported that TRPV1 inhibition reduced morphine reward in the dorsal striatum (DSt) of mice and morphine self-administration through a decrease in accumbal activity in rats. However, the role of TRPV1 on morphine-conditioned reward in addiction-related brain regions, such as the nucleus accumbens (NAc), has not been previously established. Here, we investigated the effects of TRPV1 on morphine conditioned place preference (CPP) and intracellular mechanisms of TRPV1 using Western blot analysis and immunohistochemistry (IHC) in morphine-administered mice. TRPV1 knockout mice did not exhibit morphine reward responses, and both i.p. and intra-NAc injections of SB366791, a selective TRPV1 antagonist, reduced morphine-induced CPP in wild-type mice. Furthermore, i.p. injection of SB203580, a selective p38 MAPK inhibitor, also dampened morphine-induced CPP. To determine the molecular mechanisms of the TRPV1/p38 MAPK pathway in morphine CPP, we investigated the expression of adenylyl cyclase type 1 (AC1) and phospho-p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) in the NAc. Either SB366791 or SB203580 decreased the protein expression levels of phospho-p38 MAPK, phosphor-NF-κB, and AC1 in the NAc of morphine CPP mice. Taken together, our findings suggest that TRPV1 may modulate morphine-induced conditioned reward effects via the p38 MAPK signaling pathway in the NAc. Therefore, blockade of TRPV1 may provide a novel therapeutic approach for the prevention and treatment of opioid addiction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparing of the Effects of Hypericin and Synthetic Antidepressants on the Expression of Morphine-Induced Conditioned Place Preference

    PubMed Central

    Assadi, Assad; Zarrindast, Mohammad Reza; Jouyban, Abolghasem; Samini, Morteza

    2011-01-01

    The effect of hypericin on the expression of morphine-induced conditioned place preference (CPP) was investigated and compared with the effect of the synthetic antidepressants. The CPP paradigms took place over six days using an unbiased procedure. The results demonstrate that intra-peritoneal (IP) injection of morphine sulfate (2.5, 5 and 10 mg/Kg) significantly induce the CPP in rat. Intra-peritoneal and intracerebroventricular (ICV) injection of hypericin and/or synthetic antidepressants augmented morphine-induced CPP. It has been suggested that the adrenergic, serotonergic and dopaminergic neurotransmissions play an important role in mediating the antidepressant effect of hypericin and this effect may be due to its inhibitory effect on the reuptake of neurotransmitters. Morphine produces a reinforcement (reward) effect by activating. The μ-receptors that facilitate dopaminergic transmission. Serotonin is also a potent stimulator of dopamine release in such a way that an increase in brain serotonin could possibly stimulate the dopaminergic system. In conclusion, it may suggest that the augmentation of morphine-induced CPP by hypericin and synthetic antidepressants may be related to the increasing dopamine and serotonin concentrations in synaptic clefts. PMID:24250400

  3. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion.

    PubMed

    Kon, Risako; Ikarashi, Nobutomo; Hayakawa, Akio; Haga, Yusuke; Fueki, Aika; Kusunoki, Yoshiki; Tajima, Masataka; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2015-06-01

    Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.

  4. Rewards.

    PubMed

    Gunderman, Richard B; Kamer, Aaron P

    2011-05-01

    For much of the 20th century, psychologists and economists operated on the assumption that work is devoid of intrinsic rewards, and the only way to get people to work harder is through the use of rewards and punishments. This so-called carrot-and-stick model of workplace motivation, when applied to medical practice, emphasizes the use of financial incentives and disincentives to manipulate behavior. More recently, however, it has become apparent that, particularly when applied to certain kinds of work, such approaches can be ineffective or even frankly counterproductive. Instead of focusing on extrinsic rewards such as compensation, organizations and their leaders need to devote more attention to the intrinsic rewards of work itself. This article reviews this new understanding of rewards and traces out its practical implications for radiology today.

  5. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice.

    PubMed

    Engel, Jörgen A; Nylander, Ingrid; Jerlhag, Elisabet

    2015-12-01

    Gut-brain hormones such as ghrelin have recently been suggested to have a role in reward regulation. Ghrelin was traditionally known to regulate food intake and body weight homoeostasis. In addition, recent work has pin-pointed that this peptide has a novel role in drug-induced reward, including morphine-induced increase in the extracellular levels of accumbal dopamine in rats. Herein the effect of the ghrelin receptor (GHS-R1A) antagonist, JMV2959, on morphine-induced activation of the mesolimbic dopamine system was investigated in mice. In addition, the effects of JMV2959 administration on opioid peptide levels in reward related areas were investigated. In the present series of experiment we showed that peripheral JMV2959 administration, at a dose with no effect per se, attenuates the ability of morphine to cause locomotor stimulation, increase the extracellular levels of accumbal dopamine and to condition a place preference in mice. JMV2959 administration significantly increased tissue levels of Met-enkephalin-Arg(6)Phe(7) in the ventral tegmental area, dynorphin B in hippocampus and Leu-enkephalin-Arg(6) in striatum. We therefore hypothesise that JMV2959 prevents morphine-induced reward via stimulation of delta receptor active peptides in striatum and ventral tegmental areas. In addition, hippocampal peptides that activate kappa receptor may be involved in JMV2959׳s ability to regulate memory formation of reward. Given that development of drug addiction depends, at least in part, of the effects of addictive drugs on the mesolimbic dopamine system the present data suggest that GHS-R1A antagonists deserve to be elucidated as novel treatment strategies of opioid addiction.

  6. The possible role of medial prefrontal cortex beta-1-adrenoceptors in morphine-induced amnesia.

    PubMed

    Torkaman-Boutorabi, Anahita; Hashemi-Hezaveh, Seyed-Milad; Sheidadoust, Hadi; Zarrindast, Mohammad-Reza

    2014-01-01

    The prelimbic region of the medial prefrontal cortex (mPFC) in the brain is crucial for memory. Norepinephrine elicits an important influence on mPFC functions. The stimulation of β-adrenoceptors (β-ARs) may play a critical role in the consolidation of long-term memory. The present study examines the possible role of β₁-ARs located in the mPFC on morphine-induced amnesia in rats. The animals were bilaterally implanted with chronic cannulas in the mPFC, trained in a step-through-type passive avoidance task and tested 24 h after training to measure step-through latency. Our present results indicated that posttraining intraperitoneal administration of morphine (2.5, 5 and 7.5 mg/kg) dose-dependently reduced the step-through latency. Different doses of xamoterol (0.01, 0.1 and 1 µg/rat) have shown no significant change in the step-through latency, but posttraining intra-mPFC microinjection of atenolol (0.2 and 0.4 µg/rat) had an amnesic effect. Moreover, atenolol-caused amnesia was reversed by an ineffective dose of xamoterol (0.1 µg/rat). On the other hand, coadministration of an ineffective dose of atenolol (0.1 µg/rat) with an ineffective dose of morphine (2.5 mg/kg) induced an amnesic effect. Meanwhile, xamoterol had no effect on morphine-induced amnesia. These results suggest that β₁-ARs of the prelimbic region in the mPFC may play an important role in morphine-induced amnesia.

  7. Reward-seeking behavior and addiction: cause or cog?

    PubMed

    Arias-Carrión, Oscar; Salama, Mohamed

    2012-09-01

    Although dopaminergic system represents the cornerstone in rewarding, other neurotransmitters can modulate both the reward system and the psychomotor effects of addictive drugs. Many hypotheses have been proposed for a better understanding of the reward system and its role in drug addiction. However, after many years of investigation, no single theory can completely explain the neural basis of drug addiction. Recent reports introduce novel neurotransmitters into the game e.g. dynorphins, orexins, histamine, gheralin and galanin. The interacting functions of these neurotransmitters have shown that the reward system and its role in drug dependence, is far more complicated than was thought before. Individual variations exist regarding response to drug exposure, vulnerability for addiction and the effects of different cues on reward systems. Consequently, genetic variations of neurotransmission are thought to influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. However, the individual variations can not be based mainly on genetics; environmental factors seem to play a role too. Here we discuss the current knowledge about the orquestic regulation of different neurotransmitters on reward-seeking behavior and their potential effect on drug addiction.

  8. A mechanism of action for morphine-induced immunosuppression: corticosterone mediates morphine-induced suppression of natural killer cell activity.

    PubMed

    Freier, D O; Fuchs, B A

    1994-09-01

    Morphine is a drug of abuse with an ability to down-regulate immune responsiveness that could have potentially serious consequences in both heroin addicts and in the clinical environment. The exact mechanism of action by which morphine induces immunosuppression has yet to be clearly determined. A direct mechanism of action is suggested to operate through lymphocyte opiate receptors, but the nature of such receptors is still in question. The alternative, an indirect mechanism of action is proposed to be mediated by two possible pathways, hypothalamic-pituitary-adrenal axis activation with increased production of adrenal corticosteroids, or activation of the sympathetic nervous system and concomitant catecholamine release. Natural killer (NK) cell activity was used to determine potential indirect mechanisms of action for morphine. NK activity in the B6C3F1 mouse was suppressed between 12 and 48 hr after implantation of 75 mg timed-release morphine pellets. Morphine suppressed NK activity in a dose-responsive manner. The opiate antagonists naloxone and naltrexone completely blocked morphine-induced suppression of NK activity, whereas naloxone methiodide, a congener that crosses the blood-brain barrier much more slowly than naloxone, produced very little blockade. Implantation of the 75-mg morphine pellets produced a significant elevation in serum corticosterone levels. In vitro exposure to corticosterone is known to suppress NK activity directly, whereas in vitro morphine was unable to alter directly NK activity. The glucocorticoid receptor antagonist Roussel-Uclaf 38486 blocked morphine-induced suppression of NK activity in a dose-responsive fashion. Naltrexone (10-mg pellet) antagonized the morphine-induced elevation in serum corticosterone.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Inhibition of actin polymerization in the NAc shell inhibits morphine-induced CPP by disrupting its reconsolidation

    PubMed Central

    Li, Gongying; Wang, Yanmei; Yan, Min; Xu, Yunshuai; Song, Xiuli; Li, Qingqing; Zhang, Jinxiang; Ma, Hongxia; Wu, Yili

    2015-01-01

    Drug-associated contextual cues contribute to drug craving and relapse after abstinence, which is a major challenge to drug addiction treatment. Previous studies showed that disrupting memory reconsolidation impairs drug reward memory. However, the underlying mechanisms remain elusive. Although actin polymerization is involved in memory formation, its role in the reconsolidation of drug reward memory is unknown. In addition, the specific brain areas responsible for drug memory have not been fully identified. In the present study, we found that inhibiting actin polymerization in the nucleus accumbens (NAc) shell, but not the NAc core, abolishes morphine-induced conditioned place preference (CPP) by disrupting its reconsolidation in rats. Moreover, this effect persists for more than 2 weeks by a single injection of the actin polymerization inhibitor, which is not reversed by a morphine-priming injection. Furthermore, the application of actin polymerization inhibitor outside the reconsolidation window has no effect on morphine-associated contextual memory. Taken together, our findings first demonstrate that inhibiting actin polymerization erases morphine-induced CPP by disrupting its reconsolidation. Our study suggests that inhibition of actin polymerization during drug memory reconsolidation may be a potential approach to prevent drug relapse. PMID:26538334

  10. Inhibition of actin polymerization in the NAc shell inhibits morphine-induced CPP by disrupting its reconsolidation.

    PubMed

    Li, Gongying; Wang, Yanmei; Yan, Min; Xu, Yunshuai; Song, Xiuli; Li, Qingqing; Zhang, Jinxiang; Ma, Hongxia; Wu, Yili

    2015-11-05

    Drug-associated contextual cues contribute to drug craving and relapse after abstinence, which is a major challenge to drug addiction treatment. Previous studies showed that disrupting memory reconsolidation impairs drug reward memory. However, the underlying mechanisms remain elusive. Although actin polymerization is involved in memory formation, its role in the reconsolidation of drug reward memory is unknown. In addition, the specific brain areas responsible for drug memory have not been fully identified. In the present study, we found that inhibiting actin polymerization in the nucleus accumbens (NAc) shell, but not the NAc core, abolishes morphine-induced conditioned place preference (CPP) by disrupting its reconsolidation in rats. Moreover, this effect persists for more than 2 weeks by a single injection of the actin polymerization inhibitor, which is not reversed by a morphine-priming injection. Furthermore, the application of actin polymerization inhibitor outside the reconsolidation window has no effect on morphine-associated contextual memory. Taken together, our findings first demonstrate that inhibiting actin polymerization erases morphine-induced CPP by disrupting its reconsolidation. Our study suggests that inhibition of actin polymerization during drug memory reconsolidation may be a potential approach to prevent drug relapse.

  11. Saffron (Crocus sativus) ethanolic extract and its constituent, safranal, inhibits morphine-induced place preference in mice.

    PubMed

    Ghoshooni, H; Daryaafzoon, M; Sadeghi-Gharjehdagi, S; Zardooz, H; Sahraei, H; Tehrani, S P; Noroozzadeh, A; Bahrami-Shenasfandi, F; Kaka, G H; Sadraei, S H

    2011-10-15

    The effects of saffron ethanolic extract and its constituent, safranal, on the acquisition and expression of morphine-induced place preference (CPP) in male Swiss Webster mice (20-25 g) were investigated in the present study. An unbiased place conditioning method was applied for assessment of morphine reward properties. The saffron extract and safranal were administered intraperitoneally (i.p.) during (acquisition) or after induction (expression) of morphine CPP. In a pilot study, the extract and safranal were alone administered to the animals to assess if they have any reward properties. Subcutaneous (s.c.) of morphine (4 and 8 mg kg(-1)) and extract (50 mg kg(-1); i.p.) induced CPP. Extract (10, 50 and 100 mg kg(-1); i.p.) reduced the acquisition and expression of morphine CPP. The same results were obtained when safranal (1, 5 and 10 mg kg(-1), i.p.) was used. It may be concluded that both ethanolic saffron extract and safranal can inhibit the acquisition and expression of morphine-induced CPP in the mice.

  12. Repeated administration of dopaminergic agents in the dorsal hippocampus and morphine-induced place preference.

    PubMed

    Zarrindast, M-R; Nasehi, M; Rostami, P; Rezayof, A; Fazli-Tabaei, S

    2005-03-01

    The aim of the present experiments was to investigate whether repeated intra-hippocampal CA1 (intra-CA1) administration of dopaminergic agents can affect morphine-induced conditioned place preference (CPP). Effects of repeated intra-CA1 injections of dopamine (DA) receptor agonists and antagonists on morphine-induced CPP in rats were investigated using an unbiased 3-day schedule of place conditioning. Animals receiving once-daily subcutaneous (s.c.) injections of morphine (1-9 mg/kg) or saline (1.0 ml/kg, s.c.) showed a significant place preference in a dose-dependent manner: the maximum response was observed with 3 mg/kg morphine. Three days' intra-CA1 injections of apomorphine (0.25-1 microg/rat) followed by 5 days free of the drug, significantly decreased morphine CPP (1 and 3 mg/kg, s.c.). Moreover, pre-treatment with the highest dose of apomorphine (1 microg/rat) altered the effect of morphine to an aversive response. The morphine (1 and 3 mg/kg) CPP was also significantly decreased in animals that previously received three intra-CA1 injections of SKF 38393 (2-9 microg/rat), quinpirole (1-3 microg/rat) or sulpiride (1-3 microg/rat), and significantly increased in animals that had previously received three intra-CA1 injections of SCH 23390 (0.02 microg/rat). The 3-day pre-treatment with apomorphine, SKF 38393 or quinpirole reduced locomotor activity in the test session, while SCH 23390 and sulpiride did not have any influence on locomotor activity. It is concluded that repeated injections of DA receptor agents in the dorsal hippocampus, followed by 5 days free of the drugs, can affect morphine reward.

  13. Naloxone pro-drug rescues morphine induced respiratory depression in Sprague-Dawley rats.

    PubMed

    Wallisch, Michael; El Rody, Nehad M; Huang, Baohua; Koop, Dennis R; Baker, James R; Olsen, George D

    2012-01-15

    Respiratory depression is the main obstacle for the safe administration of morphine for acute pain after injury. Due to this complication, new delivery methods are needed to insure that safe and effective doses of opioid analgesics are administered during emergencies. A depot formulation containing a naloxone pro-drug was designed to release the antidote when morphine causes dangerous hypoxic conditions in the blood. The aim of this work was to test the naloxone release in vivo in response to a severe overdose of morphine in the Sprague-Dawley rat model. Non-invasive two-chamber plethysmography was used to monitor and record respiration and to test the capability of the naloxone pro-drug to respond to and rescue morphine-induced respiratory depression in the animal. We show that the pro-drug formulation can both prevent and reverse severe morphine induced respiratory depression. The animal model demonstrates that co-administration of the naloxone pro-drug reliably antagonizes profound respiratory depressive effects of morphine.

  14. Effects of the fruit essential oil of Cuminum cyminum L. on the acquisition and expression of morphine-induced conditioned place preference in mice.

    PubMed

    Khatibi, Ali; Haghparast, Abbas; Shams, Jamal; Dianati, Elham; Komaki, Alireza; Kamalinejad, Mohammad

    2008-12-19

    Rewarding properties of opioids are now accepted and widely discussed. These properties can lead to long-term usage of these substances. The main purpose of this study was to investigate the effects of Cuminum cyminum fruit essential oil (FEO) on the acquisition and expression of morphine-induced conditioned place preference (CPP) in mice. CPP was induced by subcutaneous (s.c.) injection of morphine (5mg/kg) in 3 days conditioning schedule. Intraperitoneal (i.p.) administration of Cumin FEO (0.001%, 0.01%, 0.1%, 0.5%, 1% and 2%; 5 ml/kg) or Tween-80 (0.5%; 5 ml/kg) did not show any conditioning effects. Administration of Cumin FEO (0.001-2%; 5 ml/kg; i.p.), 60 min before test on day 5 (expression) decreased the conditioning scores at the doses of 1% and 2% while i.p. injection of Cumin FEO (0.001-2%; 5 ml/kg), 60 min before morphine injection (5mg/kg; s.c.) during 3 days of conditioning session (acquisition) significantly resulted in decrement of rewarding properties of morphine at the doses of 0.1%, 0.5%, 1% and 2% in dose-dependent manner. Tween-80 as a vehicle did not suppress the acquisition and expression of morphine-induced CPP. The results showed that the C. cyminum fruit essential oil reduces the acquisition and expression of morphine-induced conditioned place preference in mice.

  15. Effects of Motivation: Rewarding Hackers for Undetected Attacks Cause Analysts to Perform Poorly.

    PubMed

    Maqbool, Zahid; Makhijani, Nidhi; Pammi, V S Chandrasekhar; Dutt, Varun

    2017-05-01

    The aim of this study was to determine how monetary motivations influence decision making of humans performing as security analysts and hackers in a cybersecurity game. Cyberattacks are increasing at an alarming rate. As cyberattacks often cause damage to existing cyber infrastructures, it is important to understand how monetary rewards may influence decision making of hackers and analysts in the cyber world. Currently, only limited attention has been given to this area. In an experiment, participants were randomly assigned to three between-subjects conditions ( n = 26 for each condition): equal payoff, where the magnitude of monetary rewards for hackers and defenders was the same; rewarding hacker, where the magnitude of monetary reward for hacker's successful attack was 10 times the reward for analyst's successful defense; and rewarding analyst, where the magnitude of monetary reward for analyst's successful defense was 10 times the reward for hacker's successful attack. In all conditions, half of the participants were human hackers playing against Nash analysts and half were human analysts playing against Nash hackers. Results revealed that monetary rewards for human hackers and analysts caused a decrease in attack and defend actions compared with the baseline. Furthermore, rewarding human hackers for undetected attacks made analysts deviate significantly from their optimal behavior. If hackers are rewarded for their undetected attack actions, then this causes analysts to deviate from optimal defend proportions. Thus, analysts need to be trained not become overenthusiastic in defending networks. Applications of our results are to networks where the influence of monetary rewards may cause information theft and system damage.

  16. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  17. Differentiation state affects morphine induced cell regulation in neuroblastoma cultured cells.

    PubMed

    Fiore, Giovina; Ghelardini, Carla; Bruni, Giancarlo; Guarna, Massimo; Bianchi, Enrica

    2013-10-25

    Neuroblastoma (NB) is the most common extracranial solid cancer in childhood and the most common cancer in infancy. Our purpose was to investigate in vitro how cancer cell survival occurs in presence of morphine in undifferentiated and differentiated SHSY-5Y human neuroblastoma cultured cell line. Exposure of differentiated cells to morphine dose-dependently induced apoptosis in these cells through c-Jun N-terminal kinase (JNK)/caspase pathway. Otherwise, morphine induced activation for mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, caused positive regulation of cell survival in undifferentiated cells. Therefore, cell differentiation state bimodally affects the cellular regulation activity triggered by morphine in isolated cultured neuroblastoma cells raising concerns about the application of morphine to this type of cancer patients.

  18. Short-term plasticity as cause-effect hypothesis testing in distal reward learning.

    PubMed

    Soltoggio, Andrea

    2015-02-01

    Asynchrony, overlaps, and delays in sensory-motor signals introduce ambiguity as to which stimuli, actions, and rewards are causally related. Only the repetition of reward episodes helps distinguish true cause-effect relationships from coincidental occurrences. In the model proposed here, a novel plasticity rule employs short- and long-term changes to evaluate hypotheses on cause-effect relationships. Transient weights represent hypotheses that are consolidated in long-term memory only when they consistently predict or cause future rewards. The main objective of the model is to preserve existing network topologies when learning with ambiguous information flows. Learning is also improved by biasing the exploration of the stimulus-response space toward actions that in the past occurred before rewards. The model indicates under which conditions beliefs can be consolidated in long-term memory, it suggests a solution to the plasticity-stability dilemma, and proposes an interpretation of the role of short-term plasticity.

  19. Reversal of morphine-induced urinary retention after methylnaltrexone.

    PubMed

    Garten, L; Bührer, C

    2012-03-01

    Methylnaltrexone, a peripherally acting µ-opioid receptor antagonist, has been studied in adults for the treatment of opioid-induced constipation in advanced illness. Here, the authors document the first neonate to receive methylnaltrexone in an attempt to resolve morphine-induced urinary retention. An asphyxiated term newborn infant underwent induced hypothermia and received morphine by continuous intravenous infusion. After 36 h, the patient developed progressive urinary retention (calculated bladder volume 63 ml), followed by venous congestion of the lower extremities. Attempted bladder catheterisation was unsuccessful. Voiding occurred within 20 min after intravenous administration of methylnaltrexone (0.15 mg/kg body weight). A relapse of urinary retention 24 h later responded well to a second dose of methylnaltrexone. There were no adverse effects and no opioid withdrawal symptoms. The neonate had normal findings in cranial MRI that was performed after elective cessation of induced hypothermia.

  20. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  1. Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation*

    PubMed Central

    Yang, Liling; Wang, Shuxing; Sung, Backil; Lim, Grewo; Mao, Jianren

    2008-01-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis, neurotoxicity, and glutamatergic regulation of opioid tolerance. However, how the glutamate transporter turnover is regulated remains poorly understood. Here we show that chronic morphine exposure induced posttranscriptional down-regulation of the glutamate transporter EAAC1 in C6 glioma cells with a concurrent decrease in glutamate uptake and increase in proteasome activity, which were blocked by the selective proteasome inhibitor MG-132 or lactacystin but not the lysosomal inhibitor chloroquin. At the cellular level, chronic morphine induced the PTEN (phosphatase and tensin homolog deleted on chromosome Ten)-mediated up-regulation of the ubiquitin E3 ligase Nedd4 via cAMP/protein kinase A signaling, leading to EAAC1 ubiquitination and proteasomal degradation. Either Nedd4 or PTEN knockdown with small interfering RNA prevented the morphine-induced EAAC1 degradation and decreased glutamate uptake. These data indicate that cAMP/protein kinase A signaling serves as an intracellular regulator upstream to the activation of the PTEN/Nedd4-mediated ubiquitin-proteasome system activity that is critical for glutamate transporter turnover. Under an in vivo condition, chronic morphine exposure also induced posttranscriptional down-regulation of the glutamate transporter EAAC1, which was prevented by MG-132, and transcriptional up-regulation of PTEN and Nedd4 within the spinal cord dorsal horn. Thus, inhibition of the ubiquitin-proteasome-mediated glutamate transporter degradation may be an important mechanism for preventing glutamate overexcitation and may offer a new strategy for treating certain neurological disorders and improving opioid therapy in chronic pain management. PMID:18539596

  2. Morphine-induced conditioned place preference and effects of morphine pre-exposure in adolescent and adult male C57BL/6J mice.

    PubMed

    Koek, Wouter

    2016-06-01

    Given the increasing abuse of prescription opioids, particularly in adolescents, surprisingly few preclinical studies have explored effects of opioids in adolescents (versus adults). This study compared the conditioned rewarding effects of morphine, without (experiment 1) and with morphine pre-exposure (experiment 2), in adolescent and adult male mice. Experiment 1: On each of three consecutive days, one of the two conditioning sessions was preceded by an injection of a particular dose of morphine (0.1, 0.32, 1, 3.2, 10, 32, or 100 mg/kg, intraperitoneal) and the other by saline; place preference was tested on day 4. Experiment 2: Mice received once daily injections of saline or a particular dose of morphine (17.8 or 56 mg/kg) for 4 days, and 3 days later, place conditioning with morphine (0.32, 1, 3.2, or 10 mg/kg) began. In both experiments, morphine induced conditioned place preference along similar inverted U-shaped dose-response curves in adolescent and adult mice, with maximal effects between 0.32 and 10 mg/kg. Morphine pre-exposure did not sensitize morphine-induced conditioned place preference; instead, tolerance occurred, but only in adults. Adolescents were more sensitive than adults to morphine-induced locomotor stimulation. Response to novelty predicted the locomotor stimulating effects of morphine in adolescents, but not its rewarding effects. The rewarding effects of morphine were similar in adolescent and adult mice but showed differential tolerance after morphine pre-exposure. Adolescents were more sensitive than adults to the acute locomotor stimulating effects of morphine, consistent with dopamine systems involved in locomotor activity being overactive during adolescence.

  3. Importance of Autophagy in Mediating Human Immunodeficiency Virus (HIV) and Morphine-Induced Metabolic Dysfunction and Inflammation in Human Astrocytes

    PubMed Central

    Rodriguez, Myosotys; Estrada-Bueno, Hary; Dever, Seth M.; Gewirtz, David A.; Kashanchi, Fatah; El-Hage, Nazira

    2017-01-01

    Under physiological conditions, the function of astrocytes in providing brain metabolic support is compromised under pathophysiological conditions caused by human immunodeficiency virus (HIV) and opioids. Herein, we examined the role of autophagy, a lysosomal degradation pathway important for cellular homeostasis and survival, as a potential regulatory mechanism during pathophysiological conditions in primary human astrocytes. Blocking autophagy with small interfering RNA (siRNA) targeting BECN1, but not the Autophagy-related 5 (ATG5) gene, caused a significant decrease in HIV and morphine-induced intracellular calcium release. On the contrary, inducing autophagy pharmacologically with rapamycin further enhanced calcium release and significantly reverted HIV and morphine-decreased glutamate uptake. Furthermore, siBeclin1 caused an increase in HIV-induced nitric oxide (NO) release, while viral-induced NO in astrocytes exposed to rapamycin was decreased. HIV replication was significantly attenuated in astrocytes transfected with siRNA while significantly induced in astrocytes exposed to rapamycin. Silencing with siBeclin1, but not siATG5, caused a significant decrease in HIV and morphine-induced interleukin (IL)-8 and tumor necrosis factor alpha (TNF-α) release, while secretion of IL-8 was significantly induced with rapamycin. Mechanistically, the effects of siBeclin1 in decreasing HIV-induced calcium release, viral replication, and viral-induced cytokine secretion were associated with a decrease in activation of the nuclear factor kappa B (NF-κB) pathway. PMID:28788100

  4. BDNF parabrachio-amygdaloid pathway in morphine-induced analgesia.

    PubMed

    Sarhan, Maysa; Pawlowski, Sophie Anne; Barthas, Florent; Yalcin, Ipek; Kaufling, Jennifer; Dardente, Hugues; Zachariou, Venetia; Dileone, Ralph Joseph; Barrot, Michel; Veinante, Pierre

    2013-08-01

    In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.

  5. Blockade of dorsal hippocampal orexin-1 receptors impaired morphine-induced state-dependent learning.

    PubMed

    Farahmandfar, Maryam; Kadivar, Mehdi; Rastipisheh, Sareh

    2016-12-01

    Behavioral abnormalities associated with opiate addiction include memory and learning deficits, which are the result of some alterations in the neuromodulatory systems. Recently, orexin has shown to influence drug addiction neural circuitry, specifically in mediating reward-related perception and memory. To explore the possible interaction of orexinergic and opioidergic system on modulation of learning and memory, we have investigated the effects of intra-dorsal hippocampal (intra-CA1) administration of orexin-1 receptor agonist and the competitive orexin-1 antagonist, SB-334867, on morphine-induced memory impairment by using step-down passive avoidance task in mice. Pre-training injection of morphine (5mg/kg, i.p.) impaired memory, which was restored when 24h later the same dose of the drug was administered. Pre-test administration of orexin-1 (0.5, 5 and 50pmol, intra-CA1) had not a significant effect on the retention latency compared to the saline-treated animals, but it restored the memory impairment induced by pre-training morphine (5mg/kg, i.p.). Pre-test administration of SB-334867 (10, 20 and 40nmol, intra-CA1) by itself decreased the retention latencies of passive avoidance task. Co-administration of orexin-1 (0.5, 5 and 50pmol, intra-CA1) and morphine (1mg/kg, i.p.) on the test day induced morphine state-dependent memory. Conversely, pre-test injection of SB-334867 (10, 20 and 40nmol, intra-CA1) inhibited the orexin-1-induced potentiation of morphine state-dependent learning on the test day. It is concluded that dorsal hippocampal orexin-1 receptors may be involved, at least in part, in morphine state-dependent learning in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Activating Autophagy in Hippocampal Cells Alleviates the Morphine-Induced Memory Impairment.

    PubMed

    Pan, Jingrui; He, Lei; Li, Xiangpen; Li, Mei; Zhang, Xiaoni; Venesky, Jacob; Li, Yi; Peng, Ying

    2017-04-01

    Morphine abuse in treating severe and chronic pain has become a worldwide problem. But, chronic morphine exposure can cause memory impairment with its mechanisms not fully elucidated by past research sstudies which all focused on the harmful effects of morphine. Autophagy is an important pathway for cells to maintain survival. Here we showed that repeated morphine injection into C57BL/6 mice at a dose of 15 mg/kg per day for 7 days activated autophagic flux mainly in the hippocampi, especially in neurons of hippocampal CA1 region and microglia, with spatial memory impairment confirmed by Morris water maze test. Autophagy inhibition by 3-methyladenine obviously aggravates this morphine-induced memory impairment, accompanied with increased cell deaths in stratum pyramidale of hippocampal CA1, CA3, and DG regions and the activation of microglia to induce inflammation in hippocampus, such as upregulated expression of TNF-α, IL-1β, IL-6, and iNOS, as well as NF-κB' s activation, while morphine alone promoted microglial immunosuppression in hippocampus with autophagy activation which was also confirmed in primary microglia. Taken together, our data indicates that autophagy activating in hippocampal cells can alleviate the memory impairment caused by morphine, by decreasing neuronal deaths in hippocampus and suppressing inflammation in hippocampal microglia, implying that modulating the activation of autophagy might be a promising method to prevent or treat the memory impairment caused by morphine.

  7. Morphine-induced conditioned taste aversions: assessment of sexual dimorphism.

    PubMed

    Randall-Thompson, Jovita F; Riley, Anthony L

    2003-09-01

    Although sex differences in taste aversions have been reported with emetics such as lithium chloride (LiCl), little is known whether such findings generalize to other aversion-inducing drugs, including recreational compounds. One particular class of recreational compounds that induces taste aversions but that has not been examined for sex differences in its aversive properties is the opioids. To assess sex differences in the aversive properties of the opioids, Experiment 1 examined the acquisition and extinction of morphine-induced taste aversions in male and female rats. To determine whether the specific parametric conditions used in Experiment 1 would support sex differences in general, Experiment 2 examined possible sex differences in the acquisition and extinction of LiCl-induced taste aversions, a compound for which sex differences have been previously reported. During acquisition, male and female rats were given 20-min access to a novel saccharin solution and injected with either morphine (0, 10, 18 and 32 mg/kg s.c.; Experiment 1) or LiCl (0, 0.3, 0.6 and 1.2 mEq s.c.; Experiment 2) every fourth day for a total of four conditioning trials. During extinction, subjects were allowed access to saccharin but were not injected (for a total of eight trials). There were no sex differences in acquisition with either morphine or LiCl. There were also no sex differences in extinction with morphine; however, sex differences were found with LiCl, an effect consistent with prior assessments with this drug. The basis for and implications of the differences in the effects of sex on morphine- and LiCl-induced taste aversions were discussed.

  8. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    PubMed

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing.

  9. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha2-adrenoceptors.

    PubMed

    Tahsili-Fahadan, Pouya; Yahyavi-Firouz-Abadi, Noushin; Khoshnoodi, Mohammad Ali; Motiei-Langroudi, Rouzbeh; Tahaei, Seyed Amir; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza

    2006-08-01

    The effects of agmatine, an endogenous polyamine metabolite formed by decarboxylation of L-arginine, and its combination with morphine on conditioned place preference (CPP) has been investigated in male mice. Our data show that subcutaneous administration of morphine (1-7.5 mg/kg) significantly increases the time spent in the drug-paired compartment in a dose-dependent manner. Intraperitoneal administration of agmatine (1-40 mg/kg) alone does not induce either CPP or conditioned place aversion, while combination of agmatine and subeffective doses of morphine leads to potent rewarding effects. Lower doses of morphine (0.1, 0.05, and 0.01 mg/kg) are able to induce CPP in mice pretreated with agmatine 1, 5, and 10 mg/kg, respectively. Concomitant intraperitoneal administration of UK 14 304 (0.5 mg/kg), a highly selective alpha2-agonist, with per se noneffective dose of morphine (0.5 mg/kg) and also its combination with noneffective doses of agmatine (1 mg/kg) plus morphine (0.05 mg/kg) produces significant CPP. UK 14 304 (0.05, 0.5 mg/kg) alone, or in combination with agmatine (1, 5 mg/kg) have had no effect. We have further investigated the possible involvement of the alpha2-adrenoceptors in the potentiating effect of agmatine on morphine-induced place preference. Selective alpha2-antagonists, yohimbine (0.005 mg/kg) and RX821002 (0.1, 0.5 mg/kg), block the CPP induced by concomitant administration of agmatine (5 mg/kg) and morphine (0.05 mg/kg). Yohimbine (0.001-0.05 mg/kg) or RX821002 (0.05-0.5 mg/kg) alone or in combination with morphine (0.05 mg/kg) or agmatine (5 mg/kg) fail to show any significant place preference or aversion. Our results indicate that pretreatment of animals with agmatine enhances the rewarding properties of morphine via a mechanism which may involve alpha2-adrenergic receptors.

  10. Ontogenesis of morphine-induced behavior in the cat.

    PubMed

    Burgess, J Wesley; Villablanca, Jaime R

    2007-02-23

    We analyzed the behavioral responses to a single dose of morphine in kittens at postnatal (P) ages 7, 15, 30, 60, 90, and 120 days. Each kitten received 0.5 or 3.0 mg/kg i.p. of morphine sulphate or saline vehicle. An average of 6.5 kittens were studied at each dose and age. An ethogram was constructed, based on morphine effects in adult cats, to score appropriate behaviors from direct observation and video sampling. After injection behaviors were sampled for periods of 2 min every 15-30 min for a total of 4 h. The frequency of each selected behavior was scored at 2 s intervals during each of the 2 min periods and it was expressed as a percent of all time samples scored for the 4 h period. Statistical comparisons were made with control (saline) littermates. At P7-15 the drug's main effect was behavioral depression; i.e., kittens, away from the litter, laid sprawled as if with no muscle tonus; Nursing was suppressed and Vocalization was distressed. Mainly with the higher dose, at P30, morphine-specific behaviors appeared for the first time. With the kitten in a Sitting position, these included stereotypical Head and Paw Movements and body Torsion. At P60 other drug-elicited behaviors emerged, including Spinning, Retching, and Vomiting. By P90-120 the frequency of Head (16.0%) and Paw (16.9%) Movements doubled relative to P30-60. Morphine significantly changed frequencies of newly matured behaviors (in control kittens) including Sniffing and Licking (increased), and Grooming (decreased/blocked). Retching and Vomiting increased to adult levels. Morphine-induced hyperthermia was first detected at P60 and peaked by P90-P120. The early behavioral depression shifted to a pattern of increasing activity starting at P30 and peaking at P90-120, at which time Sleep was absent and Laying was reduced, while Walking and Sitting were increased. We concluded that the maturation of the stereotypical behavioral responses to morphine in cats begins at about P30 and is completed

  11. Effect of delta 9-tetrahydrocannabinol on the morphine-induced hyperactivity of mice.

    PubMed

    Ulkü, E; Ayhan, I H; Tulunay, F C; Uran, B; Kaymakçalan, S

    1980-01-01

    The effect of delta 9-tetrahydrocannabinol (THC) on the locomotor activity-stimulating action of morphine has been investigated in mice. THC (10 mg/kg) has been found to potentiate morphine-induced hyperactivity. On the other hand, the stimulating action of morphine on motor activity strongly diminished in mice rendered tolerant by the implantation of a morphine pellet. The pretreatment of morphine-tolerant mice with the same dose of THC did not change the effect of morphine on the motor activity. These results suggest that tolerance also developed to the potentiating action of THC on morphine-induced hyperactivity during the development of tolerance to this action of morphine.

  12. Central amygdala nicotinic and 5-HT1A receptors mediate the reversal effect of nicotine and MDMA on morphine-induced amnesia.

    PubMed

    Tirgar, F; Rezayof, A; Zarrindast, M-R

    2014-09-26

    The present study was designed to investigate possible involvement of the central amygdala (CeA) nicotinic acetylcholine (nACh) and 5-hydroxytryptamine 1A (5-HT1A) receptors in the reversal effect of nicotine and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) on morphine-induced amnesia. Two guide cannulas were stereotaxically implanted in the CeA regions and a step-through passive avoidance task was used for the assessment of memory retrieval in adult male Wistar rats. Our results indicated that post-training s.c. administration of morphine (3-7-mg/kg) impaired memory retrieval. Pre-test administration of nicotine (0.3- and 0.5-mg/kg, s.c.) reversed morphine-induced amnesia. In addition, pre-test intra-CeA injection of MDMA (1-2-μg/rat) with an ineffective dose of nicotine (0.1-mg/kg, s.c.) improved memory retrieval, suggesting the interactive effect of the drugs on memory formation. It should be noted that that pre-test intra-CeA injection of 2-μg/rat of MDMA by itself produced amnesia. Interestingly, pre-test intra-CeA injection of mecamylamine, a nACh receptor antagonist (1-2-μg/rat) or (S)-WAY 100135 (0.25-1-μg/rat), a selective 5-HT1A receptor antagonist inhibited the improvement of morphine-induced amnesia which was produced by pre-test co-injection of nicotine and MDMA. Pre-test intra-CeA injection of the same doses of MDMA, mecamylamine or (S)-WAY 100135 by itself had no effect on morphine-induced amnesia. Moreover, pre-test injection of the same doses of mecamylamine or (S)-WAY 100135 into the CeA alone could not change memory retrieval. Taken together, it can be concluded that there is a functional interaction between morphine, nicotine and MDMA via the CeA nicotinic and serotonergic receptor mechanisms in passive avoidance memory retrieval. Moreover, cross state-dependent memory retrieval may have been induced between the drugs and this probably depends on the rewarding effects of the drugs.

  13. Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference.

    PubMed

    Chen, Jia-Xin; Huang, Kang-Mei; Liu, Meng; Jiang, Jin-Xiang; Liu, Jian-Peng; Zhang, Yu-Xiang; Yang, Chen; Xin, Wen-Jun; Zhang, Xue-Qin

    2017-09-29

    Morphine, commonly used to relieve the acute or chronic pain, has a high potential for addiction and exerts rewarding effects via a critical role for mesolimbic dopamine system. Studies suggest that addiction-related behavior is highly associated with inflammatory immune response, but the mechanisms are poorly understood. The present study showed that intra-VTA microinjection of TLR4 antagonist LPS-RS prevented the acquisition and maintenance, but not the expression, of morphine-induced CPP in rats. In addition, chronic morphine treatment significantly activated STAT3 on day 6 and 11 in VTA, and bilateral microinjection of STAT3 inhibitor S3I-201 into the VTA suppressed the acquisition and maintenance of morphine-induced CPP in rats. Furthermore, local knockout of STAT3 by injection of the AAV-Cre-GFP into the VTA area of STAT3(flox/flox) mice also significantly impaired the acquisition of morphine CPP. Importantly, the TLR4 expression is colocalized with p-STAT3-positive cell in VTA, and repeated injection of LPS-RS significantly attenuated the STAT3 activation in VTA induced by chronic morphine treatment. Collectively, these data suggest that TLR4/STAT3 signaling pathway in VTA might play a critical role in the acquisition and maintenance of morphine CPP, and provides new evidence that TLR4/STAT3 signaling pathway might be a potential target for treatment of morphine addiction. Copyright © 2017. Published by Elsevier B.V.

  14. Involvement of AMPA/Kainate Glutamate Receptor in the Extinction and Reinstatement of Morphine-Induced Conditioned Place Preference: A Behavioral and Molecular Study.

    PubMed

    Siahposht-Khachaki, Ali; Fatahi, Zahra; Yans, Asal; Khodagholi, Fariba; Haghparast, Abbas

    2017-03-01

    Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.

  15. Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia.

    PubMed

    Ma, Shuai; Li, Xin-Yan; Gong, Nian; Wang, Yong-Xiang

    2015-12-10

    Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

  16. Geranylgeranylacetone protects against morphine-induced hepatic and renal damage in mice.

    PubMed

    Luo, Fu-Cheng; Zhao, Lu; Deng, Juan; Liang, Min; Zeng, Xian-Si; Liu, Hua; Bai, Jie

    2013-02-01

    The acute or chronic administration of opioid drugs may induce oxidative damage and cellular apoptosis in the liver and kidney, and hence result in hepatic and renal damage. Thioredoxin-1 (Trx-1) and heat shock protein 70 (Hsp70) are emerging as important modulators of cellular functions. They have been shown to be involved in cellular protective mechanisms against a variety of toxic stressors. The present study was designed to investigate the effects of geranylgeranylacetone (GGA), a pharmacological inducer of Trx-1 and Hsp70, on morphine-induced hepatic and renal damage. Morphine induced apoptosis in the liver and kidney through the mitochondria-mediated apoptosis pathway, but not the endoplasmic reticulum-mediated pathway. The activation of caspases-9 and -3 was attenuated by pre‑treatment with GGA. In addition, the morphine-induced increase of malondialdehyde (MDA) levels was suppressed by GGA. Furthermore, GGA enhanced morphine-induced expression of Trx-1 and Hsp70 in the liver and kidney. The findings of this study suggest that GGA may be a safe and novel therapeutic agent for morphine‑induced hepatic and renal damage.

  17. Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning.

    PubMed

    Jafarinejad-Farsangi, Saeideh; Farazmand, Ali; Rezayof, Ameneh; Darbandi, Niloufar

    2015-01-01

    Morphine's effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine can change the expression level of rat hippocampal proteins during learning of a passive avoidance task. A step-through type passive avoidance task was used for the assessment of memory retention. To identify the complex pattern of protein expression induced by morphine, we compared rat hippocampal proteome either in morphine-induced amnesia or in state-dependent learning by two-dimensional gel electerophoresis and combined mass spectrometry (MS and MS/MS). Post-training administration of morphine decreased step-through latency. Pre-test administration of morphine induced state-dependent retrieval of the memory acquired under post-training morphine influence. In the hippocampus, a total of 18 proteins were identified whose MASCOT (Modular Approach to Software Construction Operation and Test) scores were inside 95% confidence level. Of these, five hippocampal proteins altered in morphine-induced amnesia and ten proteins were found to change in the hippocampus of animals that had received post-training and pre-test morphine. These proteins show known functions in cytoskeletal architecture, cell metabolism, neurotransmitter secretion and neuroprotection. The findings indicate that the effect of morphine on memory formation in passive avoidance learning has a morphological correlate on the hippocampal proteome level. In addition, our proteomicscreensuggests that morphine induces memory impairment and state-dependent learning through modulating neuronal plasticity.

  18. Tolerance to morphine-induced antinociception is decreased by chronic sucrose or polycose intake.

    PubMed

    D'Anci, K E

    1999-05-01

    Chronic intake of palatable fluids alters morphine-induced antinociception. Two experiments were conducted to evaluate how long-term access to palatable fluids alters the development of tolerance to morphine-induced antinociception. In Experiment 1, 40 adult male Long-Evans rats were used. In addition to ad lib chow and water, 10 rats were given a 0.15% saccharin solution, 10 were given a 32% sucrose solution, and 10 were given a 32% Polycose solution to drink for 3 weeks. Ten rats were given chow and water alone, and served as dietary controls. Morphine-induced antinociception was assessed using the radiant-heat tail-flick method (TF). Half of the animals in each dietary condition were given preexposure to 7.5 mg/kg morphine; the other half received saline. All rats were given a TF 30-min postinjection. To determine whether tolerance developed, a cumulative dose paradigm (0.625, 1.25, 2.5, 5.0, 10.0 mg/kg) was employed 1 week after initial morphine injections, and was repeated at weekly intervals for 3 weeks. Antinociception was significantly lower in rats preexposed to morphine relative to rats preexposed to saline. Although all rats displayed decreased antinociception relative to the first morphine injection, rats that drank saccharin showed greater reductions in morphine-induced antinociception relative to rats that drank sucrose or Polycose. Experiment 2 was conducted to determine whether initial pairing of the TF with morphine preexposure produced differences in the development of opioid tolerance. All conditions and procedures were identical to Experiment 1, except that the initial morphine and saline injections were not followed by TF. As in Experiment 1, rats that drank saccharin showed less antinociception than rats that drank sucrose or Polycose. The present results suggest that long-term intake of palatable nutritive solutions curbs tolerance to morphine-induced antinociception, whereas long-term intake of a nonnutritive, sweet saccharin solution does

  19. Morphine-induced nitric oxide production in isolated, iris-ciliary bodies

    PubMed Central

    Dortch-Carnes, Juanita; Randall, Karen Russell

    2009-01-01

    Considerable evidence suggests that the nitric oxide (NO)/cGMP signaling pathway plays an integral role in opioid receptor-mediated responses in the cardiovascular and immune systems. Previous studies in our laboratory and others have shown that nitric oxide (NO) plays a role in morphine-induced reduction of intraocular pressure (IOP) and pupil diameter (PD) in the New Zealand white (NZW) rabbit. The present study is designed to determine the effect of morphine on NO production in the isolated, iris-ciliary body (ICB), site of aqueous humor production, as this effect could be associated with morphine-stimulated changes in aqueous humor dynamics and iris function. ICBs obtained from normal NZW rabbits were utilized in these experiments. In some experiments, ICB samples were treated with morphine (1, 10 and 100 μM) for 1 hour and later examined for changes in NO levels using a NO detection kit. In other experiments, tissue samples were pretreated with naloxone (non-selective opioid receptor antagonist), L-NAME (non-selective NO synthase inhibitor) or GSH (sulfhydryl reagent) for 30 minutes, followed by treatment with morphine (10 μM). Morphine caused a concentration-dependent increase in the release of NO from ICBs. Levels of NO detected in the incubation medium of ICB samples increased from 1.49 ± 0.19 (control) to 8.81 ± 2.20 μM/mg protein (morphine treated; 100 μM). Morphine-stimulated release of NO was significantly inhibited in tissues pretreated with 10 μM naloxone, L-NAME, or GSH. Results obtained from this study suggest that morphine stimulates NO release from the ICB through a mechanism that involves activation of NO-releasing opioid receptors. These results support the in vivo effects of morphine demonstrated in previous studies. PMID:19555685

  20. Effect of dietary fiber on morphine-induced constipation in rats.

    PubMed

    Niwa, Takashi; Nakao, Makoto; Hoshi, Seiko; Yamada, Kiyofumi; Inagaki, Kazuhiro; Nishida, Mikio; Nabeshima, Toshitaka

    2002-06-01

    Morphine is used to alleviate chronic cancer pain. However, constipation is a major adverse effect that often detracts from the patient's quality of life. In this study, we investigated the effectiveness of dietary fiber on morphine-induced constipation. Rats were fed on a normal diet or one containing either 10% or 20% apple fiber for two weeks before morphine was administered. In the control diet group, the fecal number and dry weight were decreased by treating with morphine in a dose-dependent manner. Moreover, the motility of the small and large intestines was reduced. The fecal number and weight were increased and the colon motility was promoted by dietary fiber, regardless of whether morphine was being administered. The dietary fiber increased the concentration of short-chain fatty acids (SCFAs) in the cecum. These results suggest that dietary fiber has a preventative effect on morphine-induced constipation by increasing SCFAs in the cecum, and thereby promoting colon motility in rats.

  1. Reversal of morphine-induced respiratory depression by doxapram in anesthetized rats.

    PubMed

    Haji, Akira; Kimura, Satoko; Ohi, Yoshiaki

    2016-06-05

    The present study was undertaken to investigate whether doxapram, a blocker of tandem pore K(+) (TASK-1/-3) channels, is a useful tool for recovery from morphine-induced ventilatory disturbances. Spontaneous ventilation and the hind leg withdrawal response against noxious thermal stimulation were recorded simultaneously in anesthetized rats. Morphine (1.0mg/kg, i.v.) decreased the minute volume resulting from depression of the ventilatory rate and tracheal airflow. Concomitantly, it prolonged the latency of withdrawal response against the thermal stimulation. Subsequent intravenous injection of doxapram recovered the morphine-induced ventilatory depression. This effect of doxapram declined rapidly after a single injection (1.0-3.0mg/kg, i.v.) but persisted with a continuous infusion (0.33mg/kg/min). Neither single injection nor continuous infusion of doxapram had any detectable effect on the analgesic potency of morphine. The central respiratory activity was recorded from the phrenic nerve in anesthetized, vagotomized, paralyzed and artificially ventilated rats. Morphine (3.0mg/kg, i.v.) induced respiratory depression, characterized by a prolonged plateau-like inspiratory discharge (apneustic discharge) in the phrenic nerve. Doxapram (10mg/kg, i.v.) restored the morphine-induced apneustic discharge to an augmenting inspiratory discharge. This study demonstrated that doxapram counteracted morphine-induced respiratory depression by stimulating the central respiratory network without compromising morphine antinociception. These results support the clinical use of doxapram for amelioration of ventilatory disturbances in patients treated with opioids. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference.

    PubMed

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-03-06

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3(-/-)) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3(-/-) mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3(-/-) mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3(-/-) mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP.

  3. A new pharmacological role for thalidomide: Attenuation of morphine-induced tolerance in rats.

    PubMed

    Hassanzadeh, Kambiz; Khodadadi, Bashir; Moloudi, Mohammad Raman; Amini, Hassan; Rahmani, Mohammad Reza; Izadpanah, Esmael

    2016-06-01

    Tolerance to the analgesic effect is the main side effect of chronic administration of opioids. Several drugs have been studied to try to find agents to prevent the development of this phenomenon. In the present study we aimed to evaluate the effect of thalidomide on morphine-induced tolerance to the analgesic effect. Groups of male rats were randomly rendered and received daily morphine in combination with thalidomide vehicle or thalidomide (2.5 mg/kg, 5 mg/kg, or 10 mg/kg, intraperitoneally). Nociception was measured using the plantar test apparatus. Latency time was recorded when the animal reacted to the light stimulus; licking or raising its hind paw. Treatments and evaluations continued until completion of tolerance to the analgesic effect of morphine. Our findings indicated that tolerance was achieved following 11 days of morphine administration, while thalidomide postponed the day of tolerance completion for 4 days (2.5 mg/kg and 5 mg/kg thalidomide) or 10 days (10 mg/kg thalidomide). Moreover, thalidomide prevented the morphine-induced shift to the right of the ED50 in the dose-response curve. It was concluded that thalidomide attenuated the morphine-induced tolerance to the analgesic effect. Copyright © 2016. Published by Elsevier B.V.

  4. Role of oxidative stress and heme oxygenase activity in morphine-induced glomerular epithelial cell growth.

    PubMed

    Patel, Jaimita; Manjappa, Nagarathna; Bhat, Rajani; Mehrotra, Pavni; Bhaskaran, Madhu; Singhal, Pravin C

    2003-11-01

    Opiate addiction has been reported to contribute to the progression of renal injury. In addition, opiate addiction is a major risk factor for the development of human immunodeficiency virus-associated nephropathy. In the present study, we evaluated the effects of morphine, an active metabolite of heroin, on glomerular epithelial cell (GEC) growth and the involved molecular mechanism. At lower concentrations, morphine promoted GEC proliferation; however, at higher concentrations, morphine triggered apoptosis. Antioxidants inhibited morphine-induced proliferation as well as apoptosis. Similarly, free radical scavengers prevented morphine-induced GEC proliferation and apoptosis. Because proliferative and proapoptotic effects of morphine were inhibited by free radical scavengers as well as antioxidants, it appears that these effects of morphine are mediated through oxidative stress. Hemin, an inducer of heme oxygenase (HO) activity, inhibited GEC proliferation and promoted GEC apoptosis under basal and morphine-stimulated conditions. On the other hand, zinc protoporphyrin, an inhibitor of HO activity, promoted GEC proliferation and inhibited GEC apoptosis under basal as well as morphine-stimulated conditions. These findings suggest that HO activity is directly related to GEC apoptosis and inversely related to GEC proliferation. Morphine, de novo, had bimodal effects on HO activity: lower concentrations increased and higher concentrations decreased HO activity. It appears that HO activity may be modifying morphine-induced GEC growth.

  5. Prepubertal Fischer 344 rats display stronger morphine-induced taste avoidance than prepubertal Lewis rats.

    PubMed

    Hurwitz, Zachary E; Cobuzzi, Jennifer L; Merluzzi, Andrew P; Wetzell, Bradley; Riley, Anthony L

    2014-07-01

    The present report asked if the previously reported differences in morphine-induced conditioned taste avoidance between adult F344 and LEW rats (F344 > LEW) are also evident in prepubescence (early adolescence). To assess this possibility, adult (Experiment 1) and prepubertal (Experiment 2) F344 and LEW rats were assessed for their ability to acquire morphine-induced taste avoidance (0, 3.2, 10, or 18 mg/kg) in a modified taste avoidance procedure. In each experiment, rats of both strains were given repeated pairings of saccharin and morphine followed by a final two-bottle avoidance test. Adult and prepubertal F344 subjects displayed a more rapid acquisition of the avoidance response as well as stronger suppression of consumption than their LEW counterparts. These data suggest the strains differ in their sensitivity to the aversive effects of morphine and that this differential sensitivity is evident early in development and is developmentally stable. The basis for these strain differences in morphine-induced avoidance was discussed.

  6. Enhanced morphine-induced antinociception in histamine H3 receptor gene knockout mice.

    PubMed

    Mobarakeh, Jalal Izadi; Takahashi, Kazuhiro; Yanai, Kazuhiko

    2009-09-01

    Previous studies have implicated a potential role for histamine H3 receptor in pain processing. There have been conflicting data, however, on the roles of H3 receptors in pain perception, and little information is available about the role of spinal histamine H3 receptors in morphine-induced antinociception. In the present study we examined the role of histamine H3 receptor in morphine-induced antinociception using histamine H3 receptor knockout mice and a histamine H3 receptor antagonist. Anitinociception was evaluated by assays for four nociceptive stimuli: hot-plate, tail-flick, paw-withdrawal, and formalin tests. Antinociception induced by morphine (0.125 nmol/5 microl, i.t.) was significantly augmented in histamine H3 receptor knockout (-/-) mice compared to the wild-type (+/+) mice in all four assays of pain. Furthermore, the effect of intrathecally administered morphine with thioperamide, a histamine H3 antagonist, was examined in C57BL/6J mice. A low dose of i.t. administered thioperamide (0.125 nmol/5 microl) alone had no significant effect on the nociceptive response. In contrast, the combination of morphine (0.125 nmol/5 microl, i.t.) with the same dose of thioperamide resulted in a significant reduction in the pain-related behaviors in all four nociceptive tests. These results suggest that histamine exerts inhibitory effects on morphine-induced antinociception through H3 receptors at the spinal level.

  7. Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus.

    PubMed

    Zhao, Lixia; Zhu, Yushan; Wang, Dongmei; Chen, Ming; Gao, Ping; Xiao, Weiming; Rao, Guanhua; Wang, Xiaohui; Jin, Haijing; Xu, Lin; Sui, Nan; Chen, Quan

    2010-04-01

    Chronic exposure to morphine can induce drug addiction and neural injury, but the exact mechanism is not fully understood. Here we show that morphine induces autophagy in neuroblastoma SH-SY5Y cells and in the rat hippocampus. Pharmacological approach shows that this effect appears to be mediated by PTX-sensitive G protein-coupled receptors signaling cascade. Morphine increases Beclin 1 expression and reduces the interaction between Beclin 1 and Bcl-2, thus releasing Beclin 1 for its pro-autophagic activity. Bcl-2 overexpression inhibits morphine-induced autophagy, whereas knockdown of Beclin 1 or knockout of ATG5 prevents morphine-induced autophagy. In addition, chronic treatment with morphine induces cell death, which is increased by autophagy inhibition through Beclin 1 RNAi. Our data are the first to reveal that Beclin 1 and ATG5 play key roles in morphine-induced autophagy, which may contribute to morphine-induced neuronal injury.

  8. Effects of dorsal hippocampal orexin-2 receptor antagonism on the acquisition, expression, and extinction of morphine-induced place preference in rats.

    PubMed

    Sadeghi, Bahman; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-06-01

    Orexinergic system is involved in reward processing and drug addiction. Here, we investigated the effect of intrahippocampal CA1 administration of orexin-2 receptor (OX2r) antagonist on the acquisition, expression, and extinction of morphine-induced place preference in rats. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) during a 3-day conditioning phase. Three experimental plots were designed; TCS OX2 29 as a selective antagonist of orexin-2 receptors (OX2rs) was dissolved in DMSO, prepared in solutions with different concentrations (1, 3, 10, and 30 nM), and was bilaterally microinjected into the CA1 and some neighboring regions (0.5 μl/side). Conditioning scores and locomotor activities were recorded during the test. Results demonstrate that intra-CA1 administration of the OX2r antagonist attenuates the induction of morphine CPP during the acquisition and expression phases. Effect of TCS OX2 29 on reduction of morphine CPP was dose-dependent and was more pronounced during the acquisition than the expression. Furthermore, higher concentrations of TCS OX2 29 facilitated the extinction of morphine-induced CPP and reduced extinction latency period. Nevertheless, administration of TCS OX2 29 solutions did not have any influence on locomotor activity of all phases. Our findings suggest that OX2rs in the CA1 region of hippocampus are involved in the development of the acquisition and expression of morphine CPP. Moreover, blockade of OX2rs could facilitate extinction and may abrogate or extinguish the ability of drug-related cues, implying that the antagonist might be considered as a propitious therapeutic agent in suppressing drug-seeking behavior.

  9. Vitamin D receptor activation and downregulation of renin-angiotensin system attenuate morphine-induced T cell apoptosis

    PubMed Central

    Chandel, Nirupama; Sharma, Bipin; Salhan, Divya; Husain, Mohammad; Malhotra, Ashwani; Buch, Shilpa

    2012-01-01

    Opiates have been reported to induce T cell loss. We evaluated the role of vitamin D receptor (VDR) and the activation of the renin-angiotensin system (RAS) in morphine-induced T cell loss. Morphine-treated human T cells displayed downregulation of VDR and the activation of the RAS. On the other hand, a VDR agonist (EB1089) enhanced T cell VDR expression both under basal and morphine-stimulated states. Since T cells with silenced VDR displayed the activation of the RAS, whereas activation of the VDR was associated with downregulation of the RAS, it appears that morphine-induced T cell RAS activation was dependent on the VDR status. Morphine enhanced reactive oxygen species (ROS) generation in a dose-dependent manner. Naltrexone (an opiate receptor antagonist) inhibited morphine-induced ROS generation and thus, suggested the role of opiate receptors in T cell ROS generation. The activation of VDR as well as blockade of ANG II (by losartan, an AT1 receptor blocker) also inhibited morphine-induced T cell ROS generation. Morphine not only induced double-strand breaks (DSBs) in T cells but also attenuated DNA repair response, whereas activation of VDR not only inhibited morphine-induced DSBs but also enhanced DNA repair. Morphine promoted T cell apoptosis; however, this effect of morphine was inhibited by blockade of opiate receptors, activation of the VDR, and blockade of the RAS. These findings indicate that morphine-induced T cell apoptosis is mediated through ROS generation in response to morphine-induced downregulation of VDR and associated activation of the RAS. PMID:22763121

  10. Morphine-induced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors.

    PubMed

    Rezayof, Ameneh; Assadpour, Sara; Alijanpour, Sakineh

    2013-01-01

    In the present study, the effects of repeated intra-ventral hippocampal (intra-VH) microinjections of nicotinic acetylcholine receptor agonist or antagonist on morphine-induced anxiolytic-like behavior were investigated in morphine-sensitized mice using elevated plus-maze. Intraperitoneal (i.p.) administration of different doses of morphine (5, 7.5 and 10mg/kg) increased the percentage of open arm time (%OAT), open arm entries (%OAE), but not locomotor activity, indicating an anxiolytic-like response to morphine. The maximum response was obtained by 7.5mg/kg of the opioid. The anxiety-like behavior which was induced by a lower dose of morphine (5mg/kg) was significantly increased in mice that had previously received once daily injections of morphine (10 and 20mg/kg, i.p.) for 3 days. It should be considered that this treatment also increased locomotor activity in morphine-sensitized mice. Furthermore, the response to an ineffective dose of morphine (5mg/kg, i.p.) in the EPM was significantly increased in the animals that had previously received nicotine for 3 days (0.1, 0.3, 0.5 and 0.7 μg/mouse; intra-VH), 5 min prior to the injections of morphine (5mg/kg/day × 3 days; i.p.). On the other hand, the increase of morphine-induced anxiolytic-like effect in animals that had previously received the 3-day morphine (20mg/kg) was dose dependently suppressed by once daily injections of mecamylamine (0.5, 1 and 2 μg/mouse/day × 3 days; intra-VH). It is important to note that repeated intra-VH administrations of the same doses of nicotine or mecamylamine alone caused no significant change in morphine (5mg/kg)-induced anxiety-like parameters in the EPM. In conclusion, it seems that morphine sensitization affects the anxiety-like behavior in the EPM and the cholinergic system in the ventral hippocampus, via nicotinic receptors, may play an important role in this effect.

  11. Neuroprotection of donepezil against morphine-induced apoptosis is mediated through Toll-like receptors.

    PubMed

    Shafie, Alireza; Moradi, Farshid; Izadpanah, Esmael; Mokarizadeh, Aram; Moloudi, Mohammad Raman; Nikzaban, Mehrnoush; Hassanzadeh, Kambiz

    2015-10-05

    Previously, we had shown that donepezil provides anti-apoptotic effects associated with the prevention of morphine tolerance to the analgesic effect. In this regard, the present study aimed to evaluate the molecular mechanisms involved in this effect considering the possible role of Toll-like receptor (TLR) 2,4, and the balance between pre-apoptotic and anti-apoptotic Bcl family proteins. To this end, male Wistar rats received daily morphine in combination with either normal saline or donepezil (0.5, 1, or 1.5 mg/kg, ip). The analgesic effect was assessed by the plantar test apparatus. The latency was recorded when the animal responded to the light stimulus. On the 15th day, when no significant difference was observed between morphine and saline groups in terms of analgesia, the frontal cortex and lumbar spinal cord of the animals were dissected. Then, TLR2 and 4, Bcl2, and Bax mRNA fold changes were calculated using Real-time PCR method. The results indicated no significant analgesic effect in the morphine group compared with the saline treated animals after 15 days of injection, while daily co-administration of donepezil with morphine preserved significant analgesia. Moreover, Quantitative PCR showed that morphine significantly increased TLRs and Bax gene expressions and decreased the anti-apoptotic Bcl2. In contrast, donepezil prevented these morphine induced changes in the mentioned gene expressions. Taken together, the results suggest that the neuroprotective effects of donepezil in attenuating morphine-induced tolerance and apoptosis are mediated by preventing morphine-induced changes in TLR2 and 4 gene expressions.

  12. Morphine-induced Straub tail reaction in mice treated with serotonergic compounds.

    PubMed

    Belozertseva, Irina V; Dravolina, Olga A; Tur, Margarita A; Semina, Marina G; Zvartau, Edwin E; Bespalov, Anton Yu

    2016-11-15

    Constitutively active 5-HT2 receptors have been suggested to contribute to motoneuronal excitability, muscle spasms and spasticity. Accordingly, 5-HT2C receptor inverse agonists have been demonstrated in pilot experiments to reduce spasticity in animal model of spasticity and patients with spinal cord injuries. Thus, 5-HT2C receptor inverse agonists may represent a novel class of anti-spasticity agents justifying a search for compounds with robust 5-HT2C receptor inverse agonist activity either among the existing medications or via a dedicated drug discovery program. Morphine-induced Straub tail response in mice is regarded as a model of transient spasticity that may be suitable for supporting such drug discovery efforts. Subcutaneous injection of morphine (10-60mg/kg) induced a dose-dependent Straub tail reaction in male Swiss mice with maximum response obtained 15-30min after the morphine administration. When given prior to morphine, 5-HT2B/2C receptor inverse agonists cyproheptadine (1-10mg/kg, i.p.) and SB206553 (0.3-3mg/kg, i.p.) diminished Straub tail reaction dose-dependently without affecting spontaneous locomotor activity. In contrast, 5-HT2B/2C receptor antagonist methysergide (1-5.6mg/kg, i.p.) and 5-HT2C receptor antagonist SB242084 (1-5.6mg/kg, i.p.) as well as 5-HT2A receptor inverse agonist pimavanserin (1-10mg/kg, i.p.) had no appreciable effects on Straub tail response. Taken together, the findings indicate that constitutive activity of 5-HT2B/2C receptor may be involved in the mechanisms of morphine-induced spasticity. Thus, morphine-induced Straub tail response may be evaluated further as a candidate higher throughput test to identify 5-HT2C receptor inverse agonists with anti-spasticity effects in vivo.

  13. Comparison of mirtazapine, gabapentin and ondansetron to prevent intrathecal morphine-induced pruritus

    PubMed Central

    Akhan, Ayse; Subasi, Ferhunde Dilek; Bosna, Gulsen; Ekinci, Osman; Pamuk, Hakan; Batan, Siddika; Ateser, Rezzan Yagmur; Turan, Gulden

    2016-01-01

    OBJECTIVE: Antagonism of the central nervous system inhibitor neurotransmitter gamma-Aminobutyric acid (GABA) or serotonergic system activation is an important factor in the pathogenesis of intrathecal morphine-induced pruritus. This study tested the hypothesis that preoperative use of ondansetron, gabapentin or mirtazapine can prevent morphine-induced pruritus. METHODS: We randomly allocated 80 patients of American Society of Anesthesiology (ASA) classification I and II physical status who were to undergo unilateral inguinal hernia or pilonidal sinus operations under spinal anesthesia into 4 equal groups. The first 3 groups received oral doses of 30 mg mirtazapine, 8 mg ondansetron, and 1200 mg gabapentin at 2 hours, 10 minutes, and 1 hour before surgery, respectively, and the fourth group was given a placebo. All patients received intrathecal injection of 15 mg of 0.5% hyperbaric bupivacaine and 0.2 mg morphine. Pruritus was evaluated at 0, 3, 6, 9, 12, and 24 hours after intrathecal morphine administration, and details of presence, onset time, duration, localization, and severity of pruritus were recorded. RESULTS: Incidence of pruritus was significantly more frequent in the placebo group compared to ondansetron, gabapentin, and mirtazapine groups (70%, 55%, 35%, and 35%, respectively). In general, onset of pruritus was between 2 and 6 hours after intrathecal morphine injection; however, onset in the gabapentin group (mean±SD: 4.75±2.7 hours; p=0.019) was delayed compared to other groups. It was observed that pruritus persisted relatively longer in the ondansetron and placebo groups (mean±SD: 6±3.08; 5.82±2.96 hours, respectively; p=0.047). No statistical determination was made regarding location of pruritus. Severity of pruritus was greater in the placebo group (p=0.0001). Necessity for antipruritic treatment was not statistically significantly different between groups. CONCLUSION: Incidence and severity of intrathecal morphine-induced pruritus decreased

  14. Attenuation of Morphine-Induced Tolerance and Dependence by Pretreatment with Cerebrolysin in Male rats.

    PubMed

    Ghavimi, Hamed; Darvishi, Sara; Ghanbarzadeh, Saeed

    2017-08-28

    Background Dependence and tolerance to morphine are major problems which limit its chronic clinical application. Purpose This study was aimed to investigate the attenuation effect of Cerebrolysin, a mixture of potent growth factors (BDNF, GDNF, NGF, CNTF etc,), on the development of Morphine-induced dependence and tolerance. Methods Male Wistar rats were selected randomly and divided into different groups (n=8) including: a control group, groups received additive doses of morphine (5-25 mg/kg, ip, at an interval of 12 h until tolerance completion), and groups pretreated with Cerebrolysin (40, 80 and 160 mg/kg, ip, before morphine administration). Development of tolerance was assessed by tail-flick test and the attenuation effect of Cerebrolysin on morphine-induced dependence was evaluated after injection of naloxone (4 mg/kg, ip, 12 h after the morning dose of morphine). Seven distinct withdrawal signs including: jumping, rearing, genital grooming, abdominal writhing, wet dog shake and teeth grinding were recorded for 45 min and total withdrawal score (TWS) was calculated. Results Results showed that administration of Cerebrolysin could prolonged development (10 and 14 days in administration of 80 mg/kg and 160 mg/kg Cerebrolysin) and completion (4, 10 and 14 days in administration of 40, 80 and 160 mg/kg Cerebrolysin, respectively) of tolerance. Results also indicated that administration of Cerebrolysin (40, 80 and 160 mg/kg) could significantly decreased the TWS value (62±2, 77±4 and 85±6%, respectively). Conclusion In conclusion, it was found that pretreatment with Cerebrolysin could attenuated morphine-induced tolerance and dependence. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats.

    PubMed

    Cui, Yue; Zhang, X Q; Cui, Y; Xin, W J; Jing, J; Liu, X G

    2010-11-24

    Hippocampus is a critical structure for the acquisition of morphine-induced conditioned place preference (CPP), which is a usual learning paradigm for assessing drug reward. However, the precise mechanisms remain largely unknown. Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt, mammalian target of Rapamycin (mTOR) and 70-kDa ribosomal S6 kinase (p70S6K), are critical molecules implicated in learning and memory. Here, we tested the role of PI3K/Akt-mTOR-p70S6K signaling pathway in morphine-induced CPP in the hippocampus. Our results showed that the acquisition of morphine CPP increased phosphorylation of Akt in the hippocampal CA3, but not in the nucleus accumbens (NAc), the ventral tegmental area (VTA) or the CA1. Moreover, the phosphorylated Akt exclusively expressed in the CA3 neurons. Likewise, levels of phosphorylated mTOR and p70S6K were significantly enhanced in the CA3 following morphine CPP. The alterations of these phosphorylated proteins are positively correlated with the acquisition of morphine CPP. More importantly, microinjection of PI3K inhibitor (LY294002) or mTOR inhibitor (Rapamycin) into the CA3 prevented the acquisition of CPP and inhibited the activation of PI3K-Akt signaling pathway. In addition, pre-infusion of β-FNA (β-funaltrexamine hydrochloride), a selective irreversible μ opioid receptor antagonist, into CA3 significantly prevented the acquisition of CPP and impaired Akt phosphorylation. All these results strongly implied that the PI3K-Akt signaling pathway activated by μ opioid receptor in hippocampal CA3 plays an important role in acquisition of morphine-induced CPP.

  16. Effect of morphine-induced postconditioning in corrections of tetralogy of fallot

    PubMed Central

    2013-01-01

    Background Results of previous reports on ischemic postconditioning in animals and humans were very encouraging. Although ischemic postconditioning possessed a wide prospect of clinical application, debates on the precise ischemic postconditioning algorithm to use in clinical settings were ongoing. In this regard, pharmacological strategies were possible alternative methods. Accumulating data demonstrated that pharmacological postconditioning with morphine conferred cardioprotection in animals. This trial aimed to evaluate the effect of morphine-induced postconditioning on protection against myocardial ischemia/reperfusion injury in patients undergoing corrections of Tetralogy of Fallot (TOF). Methods Eight-nine consecutive children scheduled for corrections of TOF were enrolled and randomly assigned to either a postconditioning group (patients received a dose of morphine (0.1 mg/kg) injected via a cardioplegia needle into the aortic root for direct and focused delivery to the heart within 1 minute starting at 3 min before aorta cross-clamp removal, n=44) or a control group (the same protocol was performed as in the postconditioning group except that patients received the same volume of saline instead, n=45). The peri-operative relevant data were investigated and analyzed, and the cardiac troponin I (cTnI) was assayed preoperatively, and then 4 h, 8 h, 12 h, 24 h and 48 h after reperfusion. Results Morphine-induced postconditioning reduced postoperative peak cTnI release as compared to the control group (0.57 ± 0.15 versus 0.75 ± 0.20 ng/mL, p<0.0001). Morphine-induced postconditioned patients had lower peak inotropic score (5.7 ± 2.4 versus 8.4 ± 3.6, p<0.0001) and shorter duration of mechanical ventilation as well as ICU stay (20.6 ± 6.8 versus 28.5 ± 8.3 hours, p<0.0001 and 40.4 ± 10.3 versus 57.8 ± 15.2 hours, p<0.0001, respectively), while higher left ventricular ejection fraction as well as cardiac output (0.57±0.15 versus 0.51±0.13, p=0.0467 and 1

  17. Monoamine mediation of the morphine-induced activation of mice

    PubMed Central

    Carroll, Bernard J.; Sharp, Peter T.

    1972-01-01

    1. The dose-response relationship for hyperactivity in grouped mice following the injection of morphine sulphate has been established. 2. The activation response can be modified by drugs which affect either catecholamines or indoleamines. 3. The monoamine precursors L-DOPA and 5-hydroxytryptophan potentiate the response. 4. The monoamine synthesis inhibitors α-methyl-p-tyrosine and p-chlorophenylalanine reduce the response. 5. Inhibition of monoamine oxidase activity by pargyline caused a great increase in the response. The simultaneous administration of reserpine resulted in a further potentiation. 6. Reserpine blocked the response whenever it was given alone, either before, with or after the injection of morphine. 7. Blockade of α-adrenoceptors with phentolamine or phenoxybenzamine reduced the response. 8. Blockade of tryptaminergic receptors with methysergide or cinanserin also antagonized the response. 9. The major tranquillizers haloperidol and chlorpromazine reduced the response. Haloperidol was especially effective in this regard. 10. The tricyclic antidepressant drug imipramine potentiated the response. 11. The morphine antagonist nalorphine completely prevented the response. 12. The anticholinergic agent atropine and the antihistaminic drug mepyramine did not affect the response. 13. We conclude that dopamine, noradrenaline and 5-hydroxytryptamine are all involved in the normal activation response of grouped mice to morphine, with dopaminergic mechanisms being of primary importance. PMID:4263794

  18. Effect of Aqueous Extract of Crocus sativus L. on Morphine-Induced Memory Impairment

    PubMed Central

    Naghibi, Sayede Maryam; Hosseini, Mahmoud; Khani, Fatemeh; Rahimi, Motahare; Vafaee, Farzaneh; Rakhshandeh, Hassan; Aghaie, Azita

    2012-01-01

    In the present study, the effect of aqueous extracts of saffron on morphine-induced memory impairment was investigated. On the training trial, the mice received an electric shock when the animals were entered into the dark compartment. Twenty-four and forty-eight hours later, the time latency for entering the dark compartment was recorded and defined as the retention trial. The mice were divided into (1) control, (2) morphine which received morphine before the training in the passive avoidance test, (3–5) three groups treated by 50, 150 and 450 mg/kg of saffron extract before the training trial, and (6 and 7) the two other groups received 150 and 450 mg/kg of saffron extract before the retention trial. The time latency in morphine-treated group was lower than control (P < 0.01). Treatment of the animals by 150 and 450 mg/kg of saffron extract before the training trial increased the time latency at 24 and 48 hours after the training trial (P < 0.05 and P < 0.01). Administration of both 150 and 450 mg/kg doses of the extract before retention trials also increased the time latency (P < 0.01). The results revealed that the saffron extract attenuated morphine-induced memory impairment. PMID:23091484

  19. Effect of Aqueous Extract of Crocus sativus L. on Morphine-Induced Memory Impairment.

    PubMed

    Naghibi, Sayede Maryam; Hosseini, Mahmoud; Khani, Fatemeh; Rahimi, Motahare; Vafaee, Farzaneh; Rakhshandeh, Hassan; Aghaie, Azita

    2012-01-01

    In the present study, the effect of aqueous extracts of saffron on morphine-induced memory impairment was investigated. On the training trial, the mice received an electric shock when the animals were entered into the dark compartment. Twenty-four and forty-eight hours later, the time latency for entering the dark compartment was recorded and defined as the retention trial. The mice were divided into (1) control, (2) morphine which received morphine before the training in the passive avoidance test, (3-5) three groups treated by 50, 150 and 450 mg/kg of saffron extract before the training trial, and (6 and 7) the two other groups received 150 and 450 mg/kg of saffron extract before the retention trial. The time latency in morphine-treated group was lower than control (P < 0.01). Treatment of the animals by 150 and 450 mg/kg of saffron extract before the training trial increased the time latency at 24 and 48 hours after the training trial (P < 0.05 and P < 0.01). Administration of both 150 and 450 mg/kg doses of the extract before retention trials also increased the time latency (P < 0.01). The results revealed that the saffron extract attenuated morphine-induced memory impairment.

  20. Gene expression profiling of the rewarding effect caused by methamphetamine in the mesolimbic dopamine system.

    PubMed

    Yang, Moon Hee; Jung, Min-Suk; Lee, Min Joo; Yoo, Kyung Hyun; Yook, Yeon Joo; Park, Eun Young; Choi, Seo Hee; Suh, Young Ju; Kim, Kee-Won; Park, Jong Hoon

    2008-08-31

    Methamphetamine, a commonly used addictive drug, is a powerful addictive stimulant that dramatically affects the CNS. Repeated METH administration leads to a rewarding effect in a state of addiction that includes sensitization, dependence, and other phenomena. It is well known that susceptibility to the development of addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. These behavioral abnormalities reflect neuroadaptive changes in signal transduction function and cellular gene expression produced by repeated drug exposure. To provide a better understanding of addiction and the mechanism of the rewarding effect, it is important to identify related genes. In the present study, we performed gene expression profiling using microarray analysis in a reward effect animal model. We also investigated gene expression in four important regions of the brain, the nucleus accumbens, striatum, hippocampus, and cingulated cortex, and analyzed the data by two clustering methods. Genes related to signaling pathways including G-protein-coupled receptor-related pathways predominated among the identified genes. The genes identified in our study may contribute to the development of a gene modeling network for methamphetamine addiction.

  1. Attenuation of morphine-induced dependence and tolerance by ceftriaxone and amitriptyline in mice.

    PubMed

    Habibi-Asl, Bohlul; Vaez, Haleh; Najafi, Moslem; Bidaghi, Ali; Ghanbarzadeh, Saeed

    2014-12-01

    Tolerance to and dependence on the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. The aim of this study was to evaluate the protective effects of ceftriaxone and amitriptyline on the development of morphine-induced tolerance and dependence. In this study, 18 groups (9 groups each for tolerance and dependency tests) of mice (n = 8) received saline [10 mL/kg, intraperitoneally (i.p.)], morphine (50 mg/kg, i.p.), ceftriaxone (50 mg/kg, i.p., 100 mg/kg, i.p., and 200 mg/kg, i.p.), amitriptyline (5 mg/kg, i.p., 10 mg/kg, i.p., and 15 mg/kg, i.p.), or a combination of ceftriaxone (50 mg/kg, i.p.) and amitriptyline (5 mg/kg, i.p.) once per day for 4 days for investigation and comparison of the effects of ceftriaxone and amitriptyline on the prevention of dependency and tolerance to morphine. Tolerance was assessed with administration of morphine (9 mg/kg, i.p.) and using the hot plate test on the 5(th) day. In dependency tests, withdrawal symptoms were assessed on the 4(th) day for each animal 30 minutes after the administration of naloxone (4 mg/kg, i.p.; 2 hours after the last dose of morphine). It was found that treatment with ceftriaxone or amitriptyline attenuated the development of tolerance to the antinociceptive effect of morphine and also reduced naloxone-precipitated withdrawal jumping and standing on feet. Furthermore, coadministration of ceftriaxone and amitriptyline at low doses (50 mg/kg, i.p. and 5 mg/kg, i.p., respectively) prior to morphine injection also decreased both morphine-induced tolerance and dependence. Results indicate that the treatment with ceftriaxone and amitriptyline, alone or in combination, could attenuate the development of morphine-induced tolerance and dependence. Copyright © 2014. Published by Elsevier B.V.

  2. [Clinical observation of prophylactic lactulose for prevention of oral morphine-induced constipation].

    PubMed

    Wang, Zhan; Qian, Jian-Xin; Jiao, Xiao-Dong; Yuan, Ling-Yan; Xiao, Ming; Gu, Xiao-Qiang; Lou, Cheng; Wang, Miao-Miao; Lan, Hai-Feng

    2012-11-13

    To evaluate the effects of different doses of lactulose on preventing oral morphine-induced constipation. From January 2011 to May 2012, a total of 112 patients received oral lactulose solution to prevent morphine-induced constipation at our hospital and their clinical data were retrospectively analyzed. The doses of morphine were adjusted according to the pain scores and lactulose was taken simultaneously. There were 52 males and 60 females. They were randomized into Group 30 ml/d (n = 40), Group 60 ml/d (n = 43) and Group 90 ml/d (n = 29). The incidences of constipation and adverse reactions were obtained at 1 week after the start of medicine. The measurement data were analyzed with analysis of variance. And the enumeration data were analyzed with χ(2), Kruskal-Wallis and Mann-Whitney U tests. The incidence of constipation was 67.5% (27/40) in Group 30 ml/d, 46.5% (20/43) in Group 60 ml/d, and 37.9% (11/29) in Group 90 ml/d. And there were statistical differences (P = 0.036). The incidence of constipation in Group 30 ml was significantly higher than Group 90 ml/d (P = 0.015). No statistical difference existed in the incidence of constipation between Groups 30 ml/d and 60 ml/d (P = 0.054) or Groups 60 ml/d and 90 ml/d (P = 0.471). The incidence of vomiting was 34.5% (10/29) in Group 90 ml/d and it was significantly higher than 10.0% (4/40) in Group 30 ml/d (P = 0.013) and 9.3% (4/43) in Group 60 ml/d (P = 0.009). No statistical difference existed in the incidence of vomiting between Groups 30 ml/d and 60 ml/d (P = 0.915). The incidence of diarrhea was 17.2% (5/29) in Group 90 ml/d and it was significantly higher than 0 (0/40) in Group 30 ml/d (P = 0.007). No statistical difference existed in the incidence of diarrhea between Groups 30 ml/d and 60 ml/d (4.7% (2/43), P = 0.170) or Groups 60 ml/d and 90 ml/d (P = 0.072). The correct dosage of lactulose for the prevention of oral morphine-induced constipation is 60 ml/d.

  3. Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits

    PubMed Central

    Kam, Angel Y.F.; Liao, Dezhi; Loh, Horace H.; Law, Ping-Yee

    2010-01-01

    Chronic morphine treatment resulting in the alteration of postsynaptic levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors thereby modulating synaptic strength has been reported. Yet, the mechanism underlying such drug-induced synaptic modification has not been resolved. By monitoring the GluR1 trafficking in primary hippocampal neurons using the pHluorin-GluR1 imaging and biotinylation studies, we observed prolonged morphine exposure significantly induced loss of synaptic and extra-synaptic GluR1 by internalization. The morphine-induced GluR1 endocytosis was independent of neural network activities or N-methyl-D-aspartate (NMDA) receptor activities as neither blocking the sodium channels with tetrodotoxin nor NMDA receptors with DL-APV altered the effects of morphine. Instead, morphine-induced GluR1 endocytosis is attributed to a change in the phosphorylation state of the GluR1 at Ser845 as morphine significantly decreased the dephosphorylation of GluR1 at this site. Such change in Ser845 phosphorylation required morphine-induced activation of calcineurin, based on the observations that a calcineurin inhibitor FK506 completely abrogated the dephosphorylation, and morphine treatment led to an increase in calcineurin enzymatic activity, even in the presence of DL-APV. Importantly, pretreatment with FK506 and overexpression of the GluR1 mutants, S845D (phospho-mimic) or S845A (phospho-blocking), attenuated the morphine-induced GluR1 endocytosis. Therefore, the calcineurin-mediated GluR1-S845 dephosphorylation is critical for the morphine-induced changes in the postsynaptic AMPA receptor level. Together, these findings reveal a novel molecular mechanism for opioid-induced neuronal adaptation and/or synaptic impairment. PMID:21068335

  4. Possible involvement of nitric oxide in morphine-induced miosis and reduction of intraocular pressure in rabbits.

    PubMed

    Bonfiglio, Vincenza; Bucolo, Claudio; Camillieri, Giovanni; Drago, Filippo

    2006-03-18

    The role of mu3 opioid receptors in morphine-induced intraocular pressure (IOP) lowering effect and miosis was evaluated in conscious, dark-adapted New Zealand white (NZW) rabbits using a masked-design study. IOP and pupil diameter (PD) measurements were taken at just before and 0.5, 1, 2, 4, 6 h after monolateral instillation of morphine (10, 50 and 100 microg/30 microl) as compared to vehicle administered in the contralateral eye. Morphine-induced ocular effects were challenged by a pre-treatment with the non-selective opioid receptor antagonist, naloxone (100 microg/30 microl), the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME, 1%, 30 microl), or the non-selective mu3 opioid receptor inhibitor, reduced L-glutathione (GSH, 1%, 30 microl). Morphine induced a dose-dependent decrease in IOP and PD. Pre-treatment with naloxone totally prevented morphine-induced decrease in IOP and miosis. Ocular administration of L-NAME or GSH alone failed to affect IOP or PD of NZW rabbits. However, pre-treatment with either drugs significantly reduced, but not totally prevented ocular effects of morphine. These results suggest that biochemical mechanisms related to nitric oxide release are involved, at least in part, in morphine effects on the eye. Since the mu3 opioid receptor subtype is able to release nitric oxide and is sensitive to inactivation by GSH, it may be possible that mu3 opioid receptors are involved in morphine-induced miosis and reduction in IOP.

  5. Calcium channel antagonists increase morphine-induced analgesia and antagonize morphine tolerance.

    PubMed

    Contreras, E; Tamayo, L; Amigo, M

    1988-04-13

    The influence of calcium channel blockers on morphine-induced analgesia and on tolerance to the chronic administration of the opiate was investigated in mice. The effects of a test dose of morphine were significantly increased by the administration of diltiazem, flunarizine, nicardipine and verapamil. In contrast, nifedipine induced an antagonistic effect. The calcium channel antagonists did not change the reaction time to thermal stimulation in mice (hot plate test). The administration of nifedipine, flunarizine and verapamil reduced the intensity of the tolerance induced by a single dose of morphine administered in a slow release preparation. Diltiazem induced a non-significant decrease of the process. The present results are in accordance with the known interaction of acute and chronic morphine administration with the intracellular calcium concentration in neurones of the central nervous system.

  6. Effect of selective monoamine oxidase inhibitors on the morphine-induced hypothermia in restrained rats.

    PubMed

    Milanés, M V; Cremades, A; Vargas, M L; Arnaldos, J D

    1987-01-01

    Morphine (30 mg/kg i.p.) produced a hypothermic effect in restrained rats which was antagonized by naloxone pretreatment (10 mg/kg s.c.). This hypothermia was inhibited by deprenyl pretreatment (5 mg/kg i.p.) and by beta-phenylethylamine treatment (25 mg/kg i.p.). However, the effect of morphine was partially potentiated when a higher dose of deprenyl (10 mg/kg i.p.) was administered. Pretreatment with clorgyline (1 mg/kg i.p.) potentiated the morphine-induced hypothermia. In contrast, the effect of morphine was antagonized when a higher dose of clorgyline was used (5 mg/kg i.p.). Based on these results, a possible role of brain serotonin and dopamine in the thermoregulatory effects of morphine is proposed in this paper.

  7. BK channels in microglia are required for morphine-induced hyperalgesia

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Zhang, Jing; Satoh, Yasushi; Meredith, Andrea L.; Nakata, Takahiro; Wu, Zhou; Kohsaka, Shinichi; Inoue, Kazuhide; Nakanishi, Hiroshi

    2016-01-01

    Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca2+-activated K+ (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance. PMID:27241733

  8. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Protective effects of atorvastatin against morphine-induced tolerance and dependence in mice.

    PubMed

    Pajohanfar, Nasim Sadat; Mohebbi, Ehsan; Rad, Abolfazl; Pejhan, Akbar; Nazemi, Samad; Amin, Bahareh

    2017-02-15

    In this study, we evaluated the effects of atorvastatin, a lipid-lowering medication on morphine-induced tolerance and dependence in mice. Tolerance was induced by subcutaneous administration of morphine (20mg/kg) to animals, twice a day for 9days. Atorvastatin was given at the doses of 5, 10 and 20mg/kg, 30min before each morphine administration, once daily for 9days. Hot plate test was employed to assess antinociceptive effect of morphine on days 1, 3, 5, 7 and 9. Dependence was evaluated by naloxone-precipitated withdrawal syndrome. We attempted to verify withdrawal regulation of induced nitric oxide synthase (iNOS), astroglia marker, glial fibrillary acidic protein (GFAP), ionized calcium-binding protein (Iba1), a microglia activation marker, a pro-inflammatory mediator, tumor necrosis alpha (TNF-α) and immune receptor, toll like receptor 4 (TLR-4) genes by real-time polymerase chain reaction (RT-PCR). Lipid peroxidation was estimated by assessing malondialdehyde (MDA) content in the spinal cord of animals. Tolerance to antinociceptive effects of morphine was observed on days 7 and 9. Decrease in morphine-induced antinociception was reversed by concomitant intraperitoneal administration of atorvastatin (10 and 20mg/kg). Atorvastatin (10 and 20mg/kg) mitigated naloxone-induced withdrawal parameters. Brain expression levels of TNF-α, GFAP, Iba1 and iNOS increased in morphine withdrawn animals which were attenuated by nine days treatment with atorvastatin. Increased MDA was also normalized in withdrawn animals received atorvastatin. Atorvastatin exhibits meaningful protective effects against both tolerance to antinociceptive effects of morphine and withdrawal-induced behavioral profile. Neuroprotective effects of atorvastatin is further supported via inhibition of glia activity and antioxidant effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Midazolam Exacerbates Morphine Tolerance and Morphine-induced Hyperactive Behaviors in Young Rats with Burn Injury

    PubMed Central

    Song, Li; Wang, Shuxing; Zuo, Yunxia; Chen, Lucy; Martyn, Jeevendra A.; Mao, Jianren

    2014-01-01

    Midazolam and morphine are often used in pediatric intensive care unit (ICU) for analgesia and sedation. However, how these two drugs interact behaviorally remains unclear. Here, we examined whether 1) co-administration of midazolam with morphine would exacerbate morphine tolerance and morphine-induced hyperactive behaviors, and 2) protein kinase C (PKC) would contribute to these behavioral changes. Male rats of 3 to 4 weeks old were exposed to a hindpaw burn injury. In Experiment 1, burn-injured young rats received once daily saline or morphine (10 mg/kg, subcutaneous, s.c.), followed 30 min later by either saline or midazolam (2 mg/kg, intraperitoneal, i.p.), for 14 days beginning 3 days after burn injury. In Experiment 2, young rats with burn injury were administered with morphine (10 mg/kg, s.c.), midazolam (2 mg/kg, i.p.), and chelerythrine chloride (a non-specific PKC inhibitor 10 nmol, intrathecal) for 14 days. For both experiments, cumulative morphine anti-nociceptive dose-response (ED50) was tested and hyperactive behaviors such as jumping and scratching were recorded. Following 2 weeks of each treatment, ED50 dose was significantly increased in rats receiving morphine alone as compared with rats receiving saline or midazolam alone. The ED50 dose was further increased in rats receiving both morphine and midazolam. Co-administration of morphine and midazolam also exacerbated morphine-induced hyperactive behaviors. Expression of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor and PKCγ in the spinal cord dorsal horn (immunohistochemistry; Western blot) was upregulated in burn-injured young rats receiving morphine alone or in combination with midazolam, and chelerythrine prevented the development of morphine tolerance. These results indicate that midazolam exacerbated morphine tolerance through a spinal NMDA/PKC-mediated mechanism. PMID:24713351

  11. Cholecystokinin-octapeptide restored morphine-induced hippocampal long-term potentiation impairment in rats.

    PubMed

    Wen, Di; Zang, Guoqing; Sun, DongLei; Yu, Feng; Mei, Dong; Ma, Chunling; Cong, Bin

    2014-01-24

    Cholecystokinin-octapeptide (CCK-8), which is a typical brain-gut peptide, exerts a wide range of biological activities on the central nervous system. We have previously reported that CCK-8 significantly alleviated morphine-induced amnesia and reversed spine density decreases in the CA1 region of the hippocampus in morphine-treated animals. Here, we investigated the effects of CCK-8 on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of rat dentate gyrus (DG) in acute saline or morphine-treated rats. Population spikes (PS), which were evoked by stimulation of the LPP, were recorded in the DG region. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and CCK-8 (1μg, i.c.v.) restored the amplitude of PS that was attenuated by morphine injection. Furthermore, microinjection of CCK-8 (0.1 and 1μg, i.c.v.) also significantly augmented hippocampal LTP in saline-treated (1ml/kg, s.c.) rats. Pre-treatment of the CCK2 receptor antagonist L-365,260 (10μg, i.c.v) reversed the effects of CCK-8, but the CCK1 receptor antagonist L-364,718 (10μg, i.c.v) did not. The present results demonstrate that CCK-8 attenuates the effect of morphine on hippocampal LTP through CCK2 receptors and suggest an ameliorative function of CCK-8 on morphine-induced memory impairment.

  12. Interactive HIV-1 Tat and Morphine-Induced Synaptodendritic Injury Is Triggered through Focal Disruptions in Na+ Influx, Mitochondrial Instability, and Ca2+ Overload

    PubMed Central

    Knapp, Pamela E.; Zou, Shiping; Marks, William D.; Bowers, M. Scott; Akbarali, Hamid I.; Hauser, Kurt F.

    2014-01-01

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na+]i) and calcium ([Ca2+]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca2+]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca2+]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na+]i, mitochondrial instability, excessive Ca2+ influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca2+]i and by further disrupting [Ca2+]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuroAIDS. PMID:25232120

  13. Effects of unilatral- and bilateral inhibition of rostral ventral tegmental area and central nucleus of amygdala on morphine-induced place conditioning in male Wistar rat.

    PubMed

    Mohammadian, Zahra; Sahraei, Hedayat; Meftahi, Gholam Hossein; Ali-Beik, Hengameh

    2017-03-01

    The rostral ventral tegmental area (VTAR) and central nucleus of amygdala (CeA) are considered the main regions for induction of psychological dependence on abused drugs, such as morphine. The main aim of this study was to investigate the transient inhibition of each right and left side as well as both sides of the VTAR and the CeA by lidocaine (2%) on morphine reward properties using the conditioned place preference (CPP) method. Male Wistar rats (250±20 g) 7 days after recovery from surgery and cannulation were conditioned to morphine (7.5 mg/kg) in CPP apparatus. Five minutes before morphine injection in conditioning phase, lidocaine was administered either uni- or bilaterally into the VTAR (0.25 μL/site) or CeA (0.5 μL/site). The results revealed that lidocaine administration into the left side, but not the right side of the VTAR and the CeA reduced morphine CPP significantly. The reduction was potentiated when lidocaine was injected into both sides of the VTAR and the CeA. The number of compartment crossings was reduced when lidocaine was injected into both sides of the VTAR and the CeA as well as the left side. Rearing was reduced when lidocaine was injected into the right, but not the left side of the VTAR. Sniffing and rearing increased when animals received lidocaine in the right side and reduced in the group that received lidocaine in the left side of the CeA. It was concluded that the right and the left side of VTAR and the CeA play different roles in morphine-induced activity and reward. © 2016 John Wiley & Sons Australia, Ltd.

  14. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated

  15. Biomarkers of morphine tolerance and dependence are prevented by morphine-induced endocytosis of a mutant μ-opioid receptor

    PubMed Central

    He, Li; Kim, Joseph A.; Whistler, Jennifer L.

    2009-01-01

    Growing evidence shows that trafficking of the μ-opioid receptor (MOR) is a critical process in functional recovery from desensitization following activation and plays important roles in morphine tolerance and dependence largely because of the failure of morphine to promote such trafficking. However, morphine tolerance and dependence are believed to be mediated by multiple mechanisms, including well-documented biochemical changes in cAMP activity, N-methyl-d-aspartate receptors (NMDARs), glucocorticoid receptors (GRs), and c-fos. Here, we assess the consequences of promoting morphine-induced endocytosis on these biochemical changes utilizing a knock-in mouse model, RMOR, in which MORs undergo morphine-induced endocytosis. Chronic morphine treatment of wild-type (WT) mice promoted superactivation of adenylyl cyclase, alterations in NMDARs, and up-regulation of GR and c-fos in distinct brain regions. Notably, none of these biochemical changes occurred in the RMOR-knock-in mice. Together, these data demonstrate that morphine tolerance and dependence are mediated by multiple biochemical mechanisms and that MOR endocytosis plays a critical role in each of these mechanisms.—He, L., Kim, J. A., Whistler, J. L. Biomarkers of morphine tolerance and dependence are prevented by morphine-induced endocytosis of a mutant μ-opioid receptor. PMID:19679639

  16. The α1 adrenoceptors in ventrolateral orbital cortex contribute to the expression of morphine-induced behavioral sensitization in rats.

    PubMed

    Wei, Lai; Zhu, Yuan-Mei; Zhang, Yu-Xiang; Liang, Feng; Li, Teng; Gao, Hong-Yu; Huo, Fu-Quan; Yan, Chun-Xia

    2016-01-01

    The aim of the present study was to investigate the effect of microinjection of benoxathian, selective α1 adrenoceptor antagonist, into the ventrolateral orbital cortex (VLO) on morphine-induced behavioral sensitization and its underlying molecular mechanism in rats. A single morphine treatment protocol was used in establishing the behavioral sensitization model. The effect of bilateral intra-VLO benoxathian injection on locomotor activity was examined and the protein expression levels of α1 adrenoceptors and activation of extracellular signal-regulated kinase (ERK) in the VLO were detected after locomotor test. The results showed that a single injection of morphine could induce behavioral sensitization by a low challenge dosage of morphine after a 7-days drug free period. Benoxathian significantly suppressed the expression but not the development of morphine-induced behavioral sensitization. Morphine treatment significantly elicited ERK phosphorylation and downregulated the expression level of α1 adrenoceptors in the VLO. In addition, intra-VLO benoxathian injection enhanced the expression levels of α1 adrenoceptors and phosphorylated ERK. These results suggest that α1 adrenoceptors in the VLO are involved in regulating the expression of morphine-induced behavioral sensitization. The effect of decreased locomotor activity by blocking α1 adrenoceptors might be associated with activation of ERK in the VLO.

  17. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia

    PubMed Central

    Farooqui, M; Li, Y; Rogers, T; Poonawala, T; Griffin, R J; Song, C W; Gupta, K

    2007-01-01

    Morphine and its congener opioids are the main therapy for severe pain in cancer. However, chronic morphine treatment stimulates angiogenesis and tumour growth in mice. We examined if celecoxib (a cyclooxygenase-2 (COX-2) inhibitor) prevents morphine-induced tumour growth without compromising analgesia. The effect of chronic treatment with celecoxib (by gavage) and/or morphine (subcutaneously), or PBS on tumour prostaglandin E2 (PGE2), COX-2, angiogenesis, tumour growth, metastasis, pain behaviour and survival was determined in a highly invasive SCK breast cancer model in A/J mice. Two weeks of chronic morphine treatment at clinically relevant doses stimulates COX-2 and PGE2 (4.5-fold compared to vehicle alone) and angiogenesis in breast tumours in mice. This is accompanied by increased tumour weight (∼35%) and increased metastasis and reduced survival. Co-administration of celecoxib prevents these morphine-induced effects. In addition, morphine and celecoxib together provided better analgesia than either agent alone. Celecoxib prevents morphine-induced stimulation of COX-2, PGE2, angiogenesis, tumour growth, metastasis and mortality without compromising analgesia in a murine breast cancer model. In fact, the combination provided significantly better analgesia than with morphine or celecoxib alone. Clinical trials of this combination for analgesia in chronic and severe pain in cancer are warranted. PMID:17971769

  18. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats.

    PubMed

    Prasoon, Pranav; Gupta, Shivani; Kumar, Rahul; Gautam, Mayank; Kaler, Saroj; Ray, Subrata Basu

    2016-01-01

    Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action. Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry. Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1-4). Expression of SP was increased in the morphine + fosaprepitant group. The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals.

  19. Reinstatement of Morphine-Induced Conditioned Place Preference in Mice by Priming Injections

    PubMed Central

    Do Couto, B. Ribeiro; Aguilar, M. A.; Manzanedo, C.; Rodríguez-Arias, M.; Miñarro, J.

    2003-01-01

    To construct a model of relapse of drug abuse in mice, the induction, we evaluated the extinction and reinstatement of morphine-induced place preference. In Experiment 1, we examined the effects of morphine (0, 2, 3, 5, 10, 20 and 40 mg/kg) in the conditioned place preference (CPP) paradigm. Mice showed CPP with 5, 10, 20 and 40 mg/kg. In Experiment 2, we evaluated the effects of two different extinction procedures. After conditioning with 40 mg/kg of morphine, the mice underwent daily extinction sessions of 60 or 15 min of duration. CPP was extinguished after seven and nine sessions, respectively. In Experiment 3, we tested the reinstating effects of several priming doses of morphine. Mice were conditioned with 40 mg/kg of morphine and underwent the daily 15 min extinction sessions until CPP was no longer evident. Then, the effects of morphine (0, 2, 3, 5, 10, 20, 40 mg/kg, i.p.) were evaluated. CPP was reinstated by doses from 5 mg/kg upward. The results show that morphine priming injections are effective in reactivating opiateseeking behavior in mice, and thus, the CPP paradigm might be useful to investigate the mechanisms underlying relapse of drug abuse. PMID:15152982

  20. Gastric pentadecapeptide BPC 157 counteracts morphine-induced analgesia in mice.

    PubMed

    Boban Blagaic, A; Turcic, P; Blagaic, V; Dubovecak, M; Jelovac, N; Zemba, M; Radic, B; Becejac, T; Stancic Rokotov, D; Sikiric, P

    2009-12-01

    Previously, the gastric pentadecapeptide BPC 157, (PL 14736, Pliva) has been shown to have several beneficial effects, it exert gastroprotective, anti-inflammatory actions, stimulates would healing and has therapeutic value in inflammatory bowel disease. The present study aimed to study the effect of naloxone and BPC 157 on morphine-induced antinociceptive action in hot plate test in the mouse. It was found that naloxone and BPC 157 counteracted the morphine (16 mg/kg s.c.) - analgesia. Naloxone (10 mg/kg s.c.) immediately antagonised the analgesic action and the reaction time returned to the basic values, the development of BPC 157-induced action (10 pg/kg, 10 ng/kg, 10 microg/kg i.p.) required 30 minutes. When haloperidol, a central dopamine-antagonist (1 mg/kg i.p.), enhanced morphine-analgesia, BPC 157 counteracted this enhancement and naloxone reestablished the basic values of pain reaction. BPC 157, naloxone, and haloperidol per se failed to exert analgesic action. In summary, interaction between dopamine-opioid systems was demonstrated in analgesia, BPC 157 counteracted the haloperidol-induced enhancement of the antinociceptive action of morphine, indicating that BPC acts mainly through the central dopaminergic system.

  1. Behavioral cross-sensitization between morphine-induced locomotion and sodium depletion-induced salt appetite.

    PubMed

    Na, Elisa S; Morris, Michael J; Johnson, Alan Kim

    2009-10-01

    In general terms, sensitization refers to the capacity of a repetitive stimulus of fixed strength to produce a progressive increase in the magnitude of a response with each stimulation. In the addiction literature cross-sensitization is the capacity of an agent with abuse potential to sensitize a behavioral response induced by another stimulus. In the present experiments we examined the effects of morphine pretreatment on furosemide-induced saline intake and conversely sodium appetite induction on morphine-induced locomotion. In an initial experiment rats were pretreated with morphine (10 mg/kg, s.c.) or vehicle for 5 days. The rats were then sodium or sham depleted and 24 h later given a sodium appetite test. Sodium depleted rats pretreated with morphine increased saline intake compared to depleted rats initially pretreated with vehicle. In a second experiment rats that were previously depleted and repleted of sodium as compared to sham depleted animals showed enhanced locomotor activity in an open field test when challenged with morphine (1 mg/kg, s.c.). These studies demonstrate that the behavioral responses induced by sodium deficiency and morphine treatment cross-sensitize with one another and suggest that common neural substrates underlie the sensitization of behaviors associated with states induced by morphine and sodium appetite.

  2. Differences in morphine-induced antinociception in male and female offspring born of morphine exposed mothers

    PubMed Central

    Biglarnia, Masoomeh; Karami, Manizheh; Hafshejani, Zahra Khodabakhshi

    2013-01-01

    Objective: Antinociceptive effect of morphine in offspring born of mothers that received saline or morphine during the gestation period was investigated. Materials and Methods: Wistar rats (200-250 g) received saline, morphine 0.5 mg/kg or 5 mg/kg during gestation days 14-16. All pups after weaning were isolated treatment/sex dependently and were allowed to fully mature. The antinociceptive effect of morphine was assessed in formalin test. Morphine (0.5-7.5 mg/kg) or saline (1 ml/kg) was injected intraperitoneally 10 min before formalin (50 μl of 2.5% solution in right hind-paw). Results: Male offspring born of saline-treated mothers were less morphine-sensitive than females. On the contrary, male offspring exposed prenatally to morphine (5 mg/kg) were more sensitive to morphine-induced antinociceptive response in formalin test. However, no difference in antinociceptive effect was observed amongst offspring of either sex born of mothers treated with morphine 0.5 mg/kg, identifying a lower dose effect of the opioid. Conclusion: The exposure to morphine during the developmental period may result in altered development of tolerance to morphine and thus involved in drug abuse. PMID:23833363

  3. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide.

    PubMed

    Roeckel, Laurie-Anne; Utard, Valérie; Reiss, David; Mouheiche, Jinane; Maurin, Hervé; Robé, Anne; Audouard, Emilie; Wood, John N; Goumon, Yannick; Simonin, Frédéric; Gaveriaux-Ruff, Claire

    2017-09-04

    Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.

  4. Cannabinoid CB2 receptor attenuates morphine-induced inflammatory responses in activated microglial cells

    PubMed Central

    Merighi, Stefania; Gessi, Stefania; Varani, Katia; Fazzi, Debora; Mirandola, Prisco; Borea, Pier Andrea

    2012-01-01

    BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB2 and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB2 receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB2 receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB2 receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids. PMID:22428664

  5. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    PubMed

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-06

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Involvement of GABA(B) receptors of the dorsal hippocampus on the acquisition and expression of morphine-induced place preference in rats.

    PubMed

    Zarrindast, Mohammad-Reza; Massoudi, Roohollah; Sepehri, Houri; Rezayof, Ameneh

    2006-01-30

    In the present study, effects of intra-hippocampal CA1 (intra-CA1) injections of GABA(B) receptor agonist and antagonist on the acquisition and expression of morphine-induced place preference in male Wistar rats have been investigated. Subcutaneous administration of different doses of morphine sulphate (0.5-6 mg/kg) produced a dose-dependent conditioned place preference (CPP). Using a 3-day schedule of conditioning, it was found that the GABA(B) receptor agonist, baclofen (0.5-2 microg/rat; intra-CA1), or the GABA(B) receptor antagonist, phaclofen (1-3 microg/rat; intra-CA1), did not produce a significant place preference or place aversion. Intra-CA1 administration of baclofen (1 and 2 microg/rat; intra-CA1) decreased the acquisition of CPP induced by morphine (3 mg/kg; s.c.). On the other hand, intra-CA1 injection of phaclofen (1 and 2 microg/rat; intra-CA1) in combination with a lower dose of morphine (1 mg/kg) elicited a significant CPP. The response of baclofen (2 microg/rat; intra-CA1) was reversed by phaclofen (4 and 6 microg/rat; intra-CA1). Furthermore, intra-CA1 administration of baclofen but not phaclofen before testing significantly decreased the expression of morphine (3 mg/kg; s.c.)-induced place preference. Baclofen or phaclofen injections had no effects on locomotor activity on the testing sessions. It is concluded that the GABA(B) receptors in dorsal hippocampus may play an active role in morphine reward.

  7. CP-154,526 Modifies CREB Phosphorylation and Thioredoxin-1 Expression in the Dentate Gyrus following Morphine-Induced Conditioned Place Preference.

    PubMed

    García-Carmona, Juan-Antonio; Camejo, Daymi M; Almela, Pilar; Jiménez, Ana; Milanés, María-Victoria; Sevilla, Francisca; Laorden, María-Luisa

    2015-01-01

    Corticotropin-releasing factor (CRF) acts as neuro-regulator of the behavioral and emotional integration of environmental and endogenous stimuli associated with drug dependence. Thioredoxin-1 (Trx-1) is a functional protein controlling the redox status of several proteins, which is involved in addictive processes. In the present study, we have evaluated the role of CRF1 receptor (CRF1R) in the rewarding properties of morphine by using the conditioned place preference (CPP) paradigm. We also investigate the effects of the CRF1R antagonist, CP-154,526, on the morphine CPP-induced activation of CRF neurons, CREB phosphorylation and Trx expression in paraventricular nucleus (PVN) and dentate gyrus (DG) of the mice brain. CP-154,526 abolished the acquisition of morphine CPP and the increase of CRF/pCREB positive neurons in PVN. Moreover, this CRF1R antagonist prevented morphine-induced CRF-immunoreactive fibers in DG, as well as the increase in pCREB expression in both the PVN and DG. In addition, morphine exposure induced an increase in Trx-1 expression in DG without any alterations in PVN. We also observed that the majority of pCREB positive neurons in DG co-expressed Trx-1, suggesting that Trx-1 could activate CREB in the DG, a brain region involved in memory consolidation. Altogether, these results support the idea that CRF1R antagonist blocked Trx-1 expression and pCREB/Trx-1 co-localization, indicating a critical role of CRF, through CRF1R, in molecular changes involved in morphine associated behaviors.

  8. Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal.

    PubMed

    Huber, Robert; Panksepp, Jules B; Nathaniel, Thomas; Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5

  9. Drug–sensitive reward in crayfish: An invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal✩

    PubMed Central

    Huber, Robert; Panksepp, Jules B.; Nathaniel, Thomas; Alcaro, Antonio; JaakPanksepp

    2016-01-01

    In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5

  10. Effects of cholecystokinin-8 on morphine-induced spatial reference memory impairment in mice.

    PubMed

    Yang, Shengchang; Wen, Di; Dong, Mei; Li, Dong; Sun, Donglei; Ma, Chunling; Cong, Bin

    2013-11-01

    Acute and chronic exposure to opiate drugs impaired various types of memory processes. To date, there is no preventive treatment for opiate-induced memory impairment and the related mechanism is still unclear. CCK-8 is the most potent endogenous anti-opioid peptide and has been shown to exert memory-enhancing effect, but the effect of CCK-8 on morphine-induced memory impairment has not been reported. By using Morris water maze, we found that escape latency to the hidden platform in navigation test was not influenced, but performance in the probe test was seriously poor in morphine dependency mice. Amnesia induced by chronic morphine treatment was significantly alleviated by pre-treatment with CCK-8 (0.01, 0.1 and 1 μg, i.c.v.), and CCK-8 (0.1 and 1 μg, i.c.v.) treatment alone could improve performance in either navigation or probe test. Furthermore, Golgi-Cox staining analysis revealed that pre-treatment with CCK-8 (1 μg, i.c.v.) reversed spine density decreased in CA1 region of hippocampus in morphine dependency mice, and CCK-8 (1 μg, i.c.v.) alone obviously increased spine density in CA1. Our findings conclude spine density change in CA1 region of hippocampus may be the structural plasticity mechanism which is responsible for enhancing effect of CCK-8 on spatial reference memory. Therefore, CCK-8 could effectively improve memory impairment in morphine dependency mice.

  11. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat.

    PubMed

    Fadda, Paola; Scherma, Maria; Fresu, Alessandra; Collu, Maria; Fratta, Walter

    2003-10-01

    Evidence recently provided has suggested a specific involvement of the GABAergic system in modulating positive reinforcing properties of several drugs of abuse through an action on mesolimbic dopaminergic neurons. The GABA(B) receptor agonist baclofen has been proposed as a potential therapeutic agent for the clinical treatment of several forms of drug addiction. In the present study, using the in vivo microdialysis technique, we investigated the effect of baclofen on nicotine, cocaine, and morphine-induced increase in extracellular dopamine (DA) levels in the shell of the nucleus accumbens, a brain area supposedly involved in the modulation of the central effects of several drugs of abuse, of freely moving rats. As expected, nicotine (0.6 mg/kg s.c.), morphine (5 mg/kg s.c.), and cocaine (7.5 mg/kg i.p.) administration in rats induced a marked increase in extracellular DA concentrations in the nucleus accumbens, reaching a maximum value of +205 +/- 8.4%, +300 +/- 22.2%, and +370 +/- 30.7%, respectively. Pretreatment with baclofen (1.25 and 2.5 mg/kg i.p.) dose-dependently reduced the nicotine-, morphine-, and cocaine-evoked DA release in the shell of the nucleus accumbens. Furthermore, baclofen alone did not elicit changes in basal DA extracellular levels up to 180 min. Taken together, our data are in line with previous reports demonstrating the ability of baclofen to modulate the mesolimbic DAergic transmission and indicate baclofen as a putative candidate in the pharmacotherapy of polydrug abuse.

  12. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats

    PubMed Central

    2010-01-01

    Background The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Results Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Conclusion Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with

  13. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  14. Ondansetron for neuraxial morphine-induced pruritus: A meta-analysis of randomized controlled trials.

    PubMed

    Wang, W; Zhou, L; Sun, L

    2017-08-01

    Pruritus is one of the most common adverse effects associated with neuraxial morphine. Ondansetron has been used to deal with the problem of neuraxial morphine-induced pruritus (NMIP). The aim of this meta-analysis was to evaluate the preventive efficacy of ondansetron on NMIP. Online databases such as PubMed, EMBASE and the Cochrane Central Register of Controlled Trials were searched for eligible randomized controlled trials (RCTs). The primary outcome was the incidence of NMIP. We calculated risk ratios (RR) with 95% confidence intervals (CI) for dichotomous data. Trial sequential analysis (TSA) was performed to avoid the risk of making a spurious claim of significant effect and to calculate the sample size necessary to make a robust claim of effect. Our traditional meta-analysis showed that prophylactic ondansetron could significantly reduce the incidence of NMIP in non-obstetric patients (three trials, RR=0.63, 95% CI 0.45-0.89, P=.008) with modest heterogeneity (I(2) =47%) while it did not show the preventive efficacy of NMIP in obstetric patients (seven trials, RR=0.84, 95% CI 0.69-1.03, P=.10) with obvious heterogeneity (I(2)  =82% ). However, TSA demonstrates that more high-quality RCTs are still needed to confirm the preventive efficacy of ondansetron on NMIP in non-obstetric populations and to study whether ondansetron prevents NMIP in obstetric patients. Prophylactic ondansetron can significantly reduce the incidence of NMIP in non-obstetric patients but not in obstetric patients. However, more well-designed trials are still required to test the reliability of the results in our traditional meta-analysis. © 2017 John Wiley & Sons Ltd.

  15. Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine-induced antinociception in rats.

    PubMed

    Haghparast, Abbas; Gheitasi, Izad-Panah; Lashgari, Reza

    2007-11-01

    The nucleus cuneiformis (CnF), located just ventrolateral to the periaqueductal gray, is part of the descending pain modulatory system. Neurons in the CnF project to medullary nucleus raphe magnus (NRM), which plays an important role on pain modulation. In this study, we investigated the effect of microinjection of the non-competitive NMDA receptor antagonist MK-801, the competitive NMDA receptor antagonist AP-7, and the kainate/AMPA receptor antagonist DNQX, alone or in combination with morphine into the nucleus cuneiformis on morphine-induced analgesia to understand the role of glutamatergic receptors in the modulating activity of morphine. Antinociception was assessed with the tail-flick test. Morphine (10, 20, 40 microg in 0.5 microl saline) had an antinociceptive effect, increasing tail-flick latency in a dose-dependent manner. Microinjection of MK-801 (10 microg/0.5 microl saline) and AP7 (3 microg/0.5 microl saline) prior to morphine microinjection (10 microg/0.5 microl saline) attenuated the antinociceptive effects of morphine, whereas DNQX (0.5 microg/0.5 microl saline) showed a partial antinociceptive effect and potentiated the analgesic effect of morphine. These results indicated that the NMDA receptor partially potentiates the antinociceptive effect of morphine. Our results suggest that NMDA but not non-NMDA receptors are involved in the antinociception produced by morphine in the CnF. The non-NMDA receptors in this area may have a facilitatory effect on nociceptive transmission. The fact that morphine's effect was potentiated by NMDA receptor suggests that projection neurons within the CnF are under tonic, glutamatergic input and when the influence of this input is blocked, the descending inhibitory system is inactivated.

  16. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats

    PubMed Central

    Prasoon, Pranav; Gupta, Shivani; Kumar, Rahul; Gautam, Mayank; Kaler, Saroj; Ray, Subrata Basu

    2016-01-01

    Objectives: Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action. Methods: Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry. Results: Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1–4). Expression of SP was increased in the morphine + fosaprepitant group. Conclusions: The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals. PMID:27756950

  17. Altered Morphine-Induced Analgesia in Neurotensin Type 1 Receptor Null Mice

    PubMed Central

    Roussy, Geneviève; Beaudry, Hélène; Lafrance, Mylène; Belleville, Karine; Beaudet, Nicolas; Wada, Keiji; Gendron, Louis; Sarret, Philippe

    2013-01-01

    Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the antinociceptive action of mu opioid drugs. To this end, pain behavioral responses to formalin were determined following systemic administration of morphine in both male and female NTS1 knockout mice. Acute injection of morphine (2 or 5 mg/kg) produced strong antinociceptive effects in both male and female wild-type littermates, with no significant sex differences. On the other hand, morphine analgesia was considerably reduced in NTS1-deficient mice of both sexes compared to their respective controls, indicating that the NTS1 receptor actively participates in mu opioid alleviating pain. By examining specifically the flinching, licking and biting nociceptive behaviors, we also showed that the functional crosstalk between NTS1 and mu opioid receptors influences the supraspinally-mediated behaviors. Interestingly, sexual dimorphic action of morphine-induced pain inhibition was found in NTS1 null mice in the formalin test, suggesting that the endogenous NT system interacts differently with the opioid network in male and female mice. Altogether, these results demonstrated that NTS1 receptor activation operates downstream to the opioidergic transmission and that NTS1-selective agonists combined with morphine may act synergistically to reduce persistent pain. PMID:20727387

  18. Morphine-induced conditioned place preference and the alterations of p-ERK, p-CREB and c-fos levels in hypothalamus and hippocampus: the effects of physical stress.

    PubMed

    Pahlevani, P; Fatahi, Z; Moradi, M; Haghparast, A

    2014-12-08

    The hypothalamus and hippocampus are important areas involved in stress responses and reward processing. In addition, ERK/CREB pathway plays a critical role in the control of cellular responses to stress and reward. In the current study, effects of acute and subchronic stress on the alteration of p-ERK, p-CREB and c-fos levels in the hypothalamus and hippocampus of saline- or morphine-treated animals during morphine-induced conditioned place preference (CPP) procedure were investigated. Male Wistar rats were divided into two saline- and morphine-treated supergroups. Each supergroup includes of control, acute stress and subchronic stress groups. In all of groups, the CPP procedure was done, afterward the alternation of p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the hypothalamus and hippocampus were estimated by Western blot analysis. The results indicated that in saline- or morphine-treated animals, p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level increased after application of acute and subchronic stress (except for p-ERK/ERK ratio in morphine-control group). Our findings revealed that in saline- or morphine-treated animals, acute and subcronic stress increased the p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the hypothalamus and hippocampus and this enhancement in morphine-treated animals, was more considerable than that in saline-treated animals.

  19. Effects of acute and long-term typical or atypical neuroleptics on morphine-induced behavioural effects in mice.

    PubMed

    Hollais, André W; Patti, Camilla L; Zanin, Karina A; Fukushiro, Daniela F; Berro, Laís F; Carvalho, Rita C; Kameda, Sonia R; Frussa-Filho, Roberto

    2014-03-01

    1. It has been suggested that the high prevalence of drug abuse in schizophrenics is related to chronic treatment with typical neuroleptics and dopaminergic supersensitivity that develops as a consequence. Within this context, atypical neuroleptics do not seem to induce this phenomenon. In the present study, we investigated the effects of acute administration or withdrawal from long-term administration of haloperidol and/or ziprasidone on morphine-induced open-field behaviour in mice. 2. In the first experiment, mice were given a single injection of haloperidol (1 mg/kg, i.p.) or several doses of ziprasidone (2, 4 or 6 mg/kg, i.p.) and motor activity was quantified by the open-field test. The aim of the second experiment was to verify the effects of an acute injection of haloperidol (1 mg/kg) or ziprasidone (6 mg/kg) on 20 mg/kg morphine-induced behaviours in the open-field test. In the third experiment, mice were treated with 1 mg/kg haloperidol and/or 2, 4 or 6 mg/kg ziprasidone for 20 days. Seventy-two hours after the last injection, mice were injected with 20 mg/kg, i.p., morphine and then subjected to the open-field test. Acute haloperidol or ziprasidone decreased spontaneous general activity and abolished morphine-induced locomotor stimulation. 3. Withdrawal from haloperidol or ziprasidone did not modify morphine-elicited behaviours in the open-field test. The results suggest that withdrawal from neuroleptic treatments does not contribute to the acute effect of morphine in schizophrenic patients.

  20. The effect of O-1602, an atypical cannabinoid, on morphine-induced conditioned place preference and physical dependence.

    PubMed

    Alavi, Mohaddeseh Sadat; Hosseinzadeh, Hossein; Shamsizadeh, Ali; Roohbakhsh, Ali

    2016-06-01

    Previous studies show that some non-CB1/non-CB2 effects of cannabinoids are mediated through G protein coupled receptor 55 (GPR55). As this receptor is activated by some of cannabinoid receptor ligands and is involved in the modulation of pain, it was hypothesized that this receptor may also interact with opioids. This study examined the effect of atypical cannabinoid O-1602 as a GPR55 agonist on morphine-induced conditioned place preference (CPP) and physical dependence. We used a biased CPP model to evaluate the effect of O-1602 (0.2, 1 and 5mg/kg, intraperitoneal; ip) on the acquisition and expression of morphine-induced CPP in male mice. The locomotor activities of mice were also recorded. Moreover, repeated administration of morphine (50, 50 and 75mg/kg/day) for three days, induced physical dependence. The withdrawal signs such as jumps and diarrhea were precipitated by administration of naloxone (5mg/kg, ip). The effect of O-1602 on the development of morphine physical dependence was assessed by injection of O-1602 (0.2, 1 and 5mg/kg) before morphine administrations. Morphine (40mg/kg, subcutaneous; sc), but not O-1602 (5mg/kg) elicited significant preference in the post-conditioning phase. O-1602 at the doses of 0.2 and 1mg/kg, but not 5mg/kg reduced acquisition of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 at the doses of 0.2, 1 and 5mg/kg also reduced expression of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 had a significant inhibitory effect on development of morphine-induced physical dependence at the dose of 5mg/kg by decreasing jumps and diarrhea during withdrawal syndrome. The present results indicate that O-1602 decreased acquisition and expression of morphine CPP and inhibited development of morphine-induced physical dependence. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Potentiation of morphine-induced mechanical antinociception by σ₁ receptor inhibition: role of peripheral σ₁ receptors.

    PubMed

    Sánchez-Fernández, Cristina; Nieto, Francisco Rafael; González-Cano, Rafael; Artacho-Cordón, Antonia; Romero, Lucía; Montilla-García, Ángeles; Zamanillo, Daniel; Baeyens, José Manuel; Entrena, José Manuel; Cobos, Enrique José

    2013-07-01

    We studied the modulation of morphine-induced mechanical antinociception and side effects by σ₁ receptor inhibition. Both wild-type (WT) and σ₁ receptor knockout (σ₁-KO) mice showed similar responses to paw pressure (100-600 g). The systemic (subcutaneous) or local (intraplantar) administration of σ₁ antagonists (BD-1063, BD-1047, NE-100 and S1RA) was devoid of antinociceptive effects in WT mice. However, σ₁-KO mice exhibited an enhanced mechanical antinociception in response to systemic morphine (1-16 mg/kg). Similarly, systemic treatment of WT mice with σ₁ antagonists markedly potentiated morphine-induced antinociception, and its effects were reversed by the selective σ₁ agonist PRE-084. Although the local administration of morphine (50-200 μg) was devoid of antinociceptive effects in WT mice, it induced dose-dependent antinociception in σ₁-KO mice. This effect was limited to the injected paw. Enhancement of peripheral morphine antinociception was replicated in WT mice locally co-administered with σ₁ antagonists and the opioid. None of the σ₁ antagonists tested enhanced morphine-antinociception in σ₁-KO mice, confirming a σ₁-mediated action. Morphine-induced side-effects (hyperlocomotion and inhibition of gastrointestinal transit) were unaltered in σ₁-KO mice. These results cannot be explained by a direct interaction of σ₁ ligands with μ-opioid receptors or adaptive changes of μ-receptors in σ₁-KO mice, given that [(3)H]DAMGO binding in forebrain, spinal cord, and hind-paw skin membranes was unaltered in mutant mice, and none of the σ₁ drugs tested bound to μ-opioid receptors. These results show that σ₁ receptor inhibition potentiates morphine-induced mechanical analgesia but not its acute side effects, and that this enhanced analgesia can be induced at peripheral level.

  2. The antipsychotic aripiprazole selectively prevents the stimulant and rewarding effects of morphine in mice.

    PubMed

    Almeida-Santos, Ana F; Gobira, Pedro H; Souza, Diego P; Ferreira, Renata C M; Romero, Thiago R; Duarte, Igor D; Aguiar, Daniele C; Moreira, Fabricio A

    2014-11-05

    Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors, with a favorable pharmacological profile. Due to its unique mechanism of action, this compound has potential application as a substitutive therapy for drug addiction. Considering that distinct neural systems subserve the addictive and analgesic actions of opioids, we tested the hypothesis that aripiprazole selectively inhibit the abuse-related, but not the antinociceptive, effects of morphine. The drugs were tested in male Swiss mice for their effects on locomotion, conditioned place preference (CPP) and nociception. Morphine (20mg/kg) increased motor activity, whereas aripiprazole (0.1, 1 and 10mg/kg) did not induce any change. This antipsychotic, however, prevented morphine-induced locomotion. In the conditioning box, aripiprazole did not induce either reward or aversion. Yet, it prevented both the acquisition and the expression of morphine-induced CPP. Finally, none of the doses of this antipsychotic interfere with morphine (5mg/kg)-induced antinociception in the tail-flick test. In conclusion, aripiprazole inhibited the abuse-related effects of morphine at doses that do not interfere with basal locomotion, reward or aversion. Also, it did not alter morphine-induced antinociceptive effects. This antipsychotic should be further investigated as a possible substitutive strategy for treating certain aspects of opioid addiction.

  3. Reward processing in neurodegenerative disease.

    PubMed

    Perry, David C; Kramer, Joel H

    2015-02-01

    Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit, they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment (MCI), Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis (ALS), Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses.

  4. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.

    PubMed Central

    Moreau, J. L.; Pieri, L.

    1988-01-01

    1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

  5. Morphine-induced sensitization of locomotor activity in mice: effect of social isolation on plasma corticosterone levels.

    PubMed

    Francès, H; Graulet, A; Debray, M; Coudereau, J P; Guéris, J; Bourre, J M

    2000-03-31

    This study examined the influence of social isolation on behavioural sensitization to the locomotor effect of morphine and the link between this behaviour and plasma corticosterone concentrations. Four weeks isolation induced an increase in the locomotor effect of morphine. In social and isolated mice, repeated administrations (6) of morphine (one injection every 3 or 4 days) followed by 3 h in an actimeter induced behavioural sensitization to the locomotor effect of morphine. No interaction was observed between social isolation and behavioural sensitization to morphine. Resocializing previously isolated mice for 3 weeks reduced the morphine-induced locomotor effect without altering the behavioural sensitization. Corticosterone plasma levels were more increased (416%) in mice isolated 5 weeks than in mice isolated for 2 weeks (243%) and they return to the control levels following 3 weeks of resocialization. Since there was no interaction between the increase in morphine locomotor effect induced by social isolation and the morphine-induced behavioural sensitization, it is suggested that each of these two events acts independently. Whether or not a common mechanism (plasma corticosterone levels?) partly underlies both effects, the result resembles a simple additive effect.

  6. RACK1 affects morphine reward via BDNF.

    PubMed

    Wan, Lihong; Xie, Yizhou; Su, Lan; Liu, Yanyou; Wang, Yuhui; Wang, Zhengrong

    2011-10-06

    Chronic morphine addiction may trigger functional changes in the mesolimbic dopamine system, which is believed to be the neurobiological substrate of opiate addiction. Brain derived neurotrophic factor (BDNF) has been implicated in addiction-related pathology in animal studies. Our previous studies have shown that RACK1 is involved in morphine reward in mice. The recent research indicates nuclear RACK1 by localizing at the promoter IV region of the BDNF gene and the subsequent chromatin modifications leads to the activation of the promoter and transcription of BDNF. The present study was designed to investigate if shRACK1 (a short hairpin RNA of RACK1) could reverse the mice's behavioral responses to morphine and BDNF expression in hippocampus and prefrontal cortex. No significant changes were observed in vehicle-infused mice which received no morphine treatment (CONC) and shRACK1-infused mice which received no morphine treatment (CONR), whereas vehicle-infused mice preceded the morphine injection (MIC) showed increased BDNF expression in hippocampus and prefrontal cortex, as compared to vehicle-infused mice which received no morphine treatment (CONC). Intracerebroventricular shRACK1 treatment reversed these, and in fact, ShRACK1-infused mice preceded the morphine injection (MIR) showed reduced BDNF expression in hippocampus and prefrontal cortex, as compared to MIC. In the conditioned place preference (CPP) test, inactivating RACK1 markedly reduces morphine-induced conditioned place preference. Non-specific changes in CPP could not account for these effects since general CPP of shRACK1- and vehicle-infused animals was not different. Combined behavioral and molecular approaches have support the possibility that the RACK1-BDNF system plays an important role in the response to morphine-induced reward.

  7. Differential effects of gram-positive and gram-negative bacterial products on morphine induced inhibition of phagocytosis.

    PubMed

    Ninkovic, Jana; Jana, Ninkovic; Anand, Vidhu; Vidhu, Anand; Dutta, Raini; Raini, Dutta; Zhang, Li; Saluja, Anuj; Meng, Jingjing; Koodie, Lisa; Lisa, Koodie; Banerjee, Santanu; Santanu, Banerjee; Roy, Sabita; Sabita, Roy

    2016-02-19

    Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (-) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (-) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (-) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers.

  8. Differential effects of gram-positive and gram-negative bacterial products on morphine induced inhibition of phagocytosis

    PubMed Central

    Jana, Ninkovic; Vidhu, Anand; Raini, Dutta; Zhang, Li; Saluja, Anuj; Meng, Jingjing; Lisa, Koodie; Santanu, Banerjee; Sabita, Roy

    2016-01-01

    Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (−) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (−) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (−) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers. PMID:26891899

  9. Modulating effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin secretion in male rats.

    PubMed Central

    Matton, A.; Engelborghs, S.; Bollengier, F.; Finné, E.; Vanhaeist, L.

    1996-01-01

    1. The effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin (PRL) secretion was investigated in vivo in male rats, by use of a stress-free blood sampling and drug administration method by means of a permanent indwelling catheter in the right jugular vein. 2. Four doses of piracetam were tested (20, 100, 200 and 400 mg kg-1), being given intraperitoneally 1 h before blood sampling; control rats received saline instead. After a first blood sample, rats were subjected to immobilization stress and received morphine, 6 mg kg-1, 90 min later. 3. Piracetam had no effect on basal plasma PRL concentration. 4. While in the non-piracetam-treated rats, stress produced a significant rise in plasma PRL concentration, in the piracetam-pretreated rats PRL peaks were attenuated, especially in the group given 100 mg kg-1 piracetam, where plasma PRL concentration was not significantly different from basal values. The dose-response relationship showed a U-shaped curve; the smallest dose had a minor inhibitory effect and the highest dose had no further effect on the PRL rise. 5. In unrestrained rats, morphine led to a significant elevation of plasma PRL concentration. After the application of immobilization stress it lost its ability to raise plasma PRL concentration in the control rats, but not in the piracetam-treated rats. This tolerance was overcome by piracetam in a significant manner but with a reversed dose-response curve; i.e. the smaller the dose of piracetam, the higher the subsequent morphine-induced PRL peak. 6. There is no simple explanation for the mechanism by which piracetam induces these contradictory effects. Interference with the excitatory amino acid system, which is also involved in opiate action, is proposed speculatively as a possible mediator of the effects of piracetam. PMID:8821540

  10. Comparative study between nalbuphine and ondansetron in prevention of intrathecal morphine-induced pruritus in women undergoing cesarean section

    PubMed Central

    Moustafa, Ahmed A. M.; Baaror, Amr Samir; Abdelazim, Ibrahim A.

    2016-01-01

    Background: Intrathecal morphine provides effective postoperative analgesia, but their use is associated with numerous side effects, including pruritus, nausea, vomiting, urinary retention, and respiratory depression. Pruritus is the most common side effect with a reported incidence of 58–85%. Objectives: This prospective, randomized, and double-blinded study was performed for women scheduled for cesarean delivery using spinal anesthesia to compare nalbuphine and ondansetron in the prevention of intrathecal morphine-induced pruritus. Patients and Methods: Ninety women after spinal anesthesia with hyperbaric bupivacaine and intrathecal morphine patients randomly divided into three groups. Women in placebo group (P group) received 4 ml of normal saline intravenous (IV) injection, nalbuphine group (N group) received 4 ml of a 4 mg nalbuphine IV injection, and ondansetron 4 group (O group) received 4 ml of a 4 mg ondansetron IV injection, immediately after delivery of the baby. Studied women observed in postanesthesia care unit for 4 h. The primary outcome measures success of the treatment, defined as a pruritus score 1 (no pruritus) or 2 (mild pruritus - no treatment required) at 20 min after treatment. Results: Although, three was no significant difference between the three studied groups regarding; score 1 pruritus, while, score 2 pruritus (mild pruritus - no treatment requested) was significantly high in N and O groups compared to placebo group. Pruritus score 1 (no pruritus) plus pruritus score 2 were significantly high in N and O groups compared to placebo group (20 cases, 20 cases, 5 cases; respectively, P = 0.008). In addition; score 3 pruritus (moderate - treatment requested) was significantly less in N and O groups compared to placebo group. Conclusion: Nalbuphine and ondansetron were found to be more effective than placebo for prevention of intrathecal morphine-induced pruritus in women undergoing cesarean delivery and nalbuphine is preferred than

  11. Intracerebroventricular effects of histaminergic agents on morphine-induced anxiolysis in the elevated plus-maze in rats.

    PubMed

    Zarrindast, Mohammad-Reza; Rostami, Parvin; Zarei, Morteza; Roohbakhsh, Ali

    2005-11-01

    Some reports indicate that morphine can induce anxiolytic effects both in animal and in man. It has also been reported that histaminergic system can interfere with some pharmacological effects of morphine. The effects of histaminergic agents on morphine-induced anxiolysis in rats, using elevated plus-maze were investigated in the present study. Intraperitoneal injection of morphine (3, 6 and 9 mg/kg) induced antianxiety effects. Intracerebroventricular administration of histamine at the doses of (5, 10 and 20 microg/rat) also increased anxiety-related behaviours. Intracerebroventricular injection of pyrilamine, a H1 receptor antagonist (25, 50 and 100 microg/rat), increased anxiety whereas injection of ranitidine, a H2 receptor antagonist (5, 10 and 20 microg/rat) at the same site, decreased anxiety. Therefore, it seems that histamine induces anxiogenic response through activation of H2 receptors, while the response of H1 blocker may be due to release of histamine. We also evaluated the interactions between morphine and histaminergic agents. Our data show that histamine (10 microg/rat), pyrilamine (50 microg/rat) and ranitidine (5 microg/rat) did not alter the response induced by different doses of morphine (3, 6 and 9 mg/kg). Similarly, a single dose of morphine did not alter the response induced by different doses of histamine (5, 10 and 20 microg/rat), pyrilamine (25, 50 and 100 microg/rat) or ranitidine (5, 10 and 20 microg/rat). In conclusion, the histaminergic system plays an important role in the modulation of anxiety, although in our experiments, no interaction was found between the effects of histaminergic agents and morphine on anxiety-related indices in the elevated plus-maze. This may imply that morphine-induced anxiolysis probably is independent of the histaminergic system.

  12. α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide

    PubMed Central

    Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza

    2016-01-01

    Objective(s): Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. Materials and Methods: The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Results: Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. Conclusion: These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production. PMID:27081466

  13. Morphine-induced place preference affects mRNA expression of G protein α subunits in rat brain.

    PubMed

    Zelek-Molik, Agnieszka; Bielawski, Adam; Kreiner, Grzegorz; Popik, Piotr; Vetulani, Jerzy; Nalepa, Irena

    2012-01-01

    The conditioned place preference (CPP) test is an animal model serving to assess addictive potential of drugs in which environmental cues become associated with the subjective effects of drugs of abuse. Morphine, a known addictive drug, is an agonist of opioid receptors that couple to the G(i/o) family of guanine nucleotide-binding proteins (GP). We have recently found that chronic treatment with morphine affects mRNA levels of GPs that are not coupled to opioid receptors (OR). Therefore, in this study, we investigated the influence of morphine-induced CPP on mRNA expression of the Gα subunits, G(i/o), G(s), G(q/11), and G(12), in the rat prefrontal cortex (PFC) and nucleus accumbens (NAc) using standard PCR techniques. CPP and NO-CPP experiments were conducted; Wistar rats were either subjected to the standard CPP procedure or were injected with morphine (or saline) in their home cage. All rats were decapitated 24 h after the last injection. We found that mRNA levels of Gα(q), Gα(11) and Gα(12) were increased after morphine in non-conditioned treatment in the PFC but remained unchanged in the NAc. In rats showing conditioned place preference to morphine, levels of Gα(i2) in the PFC and levels of Gα(oA) in the NAc were diminished by ≈58% and ≈30%, respectively (p < 0.05 vs. saline), but levels of Gα(s-l) in NAc were increased (≈60%, p = 0.05). Our data indicate that only G(i/o) and G(s) were specifically changed in animals after morphine-induced CPP, thus suggesting that the effect was related to learning environmental cues associated with morphine.

  14. Altering dietary levels of protein or vitamins and minerals does not modify morphine-induced analgesia in male rats.

    PubMed

    Kanarek, R B; D'Anci, K E; Przypek, J M; Mathes, W F

    1999-02-01

    Previous research has demonstrated that chronic intake of nutritive sweet solutions, but not nonnutritive sweet solutions, enhances morphine's analgesic potency. To separate out the effects of sweet taste from other changes in dietary intake, which result when rats consume a sucrose solution, the effects of altering dietary levels of protein, or vitamins and minerals on morphine-induced analgesia were examined. In Experiment 1, 40 male Long-Evans rats were fed standard chow or a semipurified diet containing either 10, 20, or 40% protein. Three weeks later, antinociceptive responses to morphine were examined using the tail flick procedure. Tail flick latencies were measured immediately prior to and 30, 60, and 90 min after the administration of morphine sulfate (0.0, 1.25, 2.5, and 5.0 mg/kg, SC). At all three measurement times, antinociceptive responses increased directly as a function of the dose of morphine, but did not differ as a function of diet. In Experiment 2, 24 rats were maintained on either standard laboratory chow or semipurified diets containing 20% protein and either 100% or 25% of the recommended levels of vitamins and minerals for 3 weeks. Tail flick latencies were measured immediately prior to and 30 min after injections (SC) of 2.5 mg/kg morphine sulfate. This procedure was repeated until a cumulative dose of 10.0 mg/kg was obtained. Tail flick latencies increased significantly as a function of drug dose, but did not differ across dietary conditions. These results demonstrate that the increase in morphine-induced analgesia seen in rats consuming a sucrose solution is not due to alterations in either protein or micronutrient intake.

  15. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload.

    PubMed

    Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F

    2014-09-17

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuroAIDS.

  16. ATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice

    PubMed Central

    Ahmadi, Shamseddin; Azarian, Shaho; Ebrahimi, Sayede Shohre; Rezayof, Ameneh

    2014-01-01

    Introduction We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. Methods We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior test was performed for evaluating the effects of morphine by itself and along with nimodipine, a blocker of L-type calcium channels and diazoxide, an opener of ATP-sensitive potassium channels. All drugs were injected through an intraperitoneal route. Results The results showed that morphine (7.5, 10 and 15 mg/kg) induced analgesia in normal mice, which was prevented by naloxone (1 mg/kg). After nociceptive sensitization, analgesic effect of morphine (10 and 15 mg/kg) was significantly decreased in sensitized mice. The results showed that nimodipine (2.5, 5, 10 and 20 mg/kg) had no significant effect on pain behavior test in either normal or sensitized mice. However, nimodipine (20 mg/ kg) along with morphine (10 and 15 mg/kg) caused more decrease in morphine analgesia in sensitized mice. Furthermore, diazoxide by itself (0.25, 1, 5 and 20 mg/kg) had also no significant effect on pain behavior in both normal and sensitized mice, but at dose of 20 mg/kg along with morphine (10 and 15 mg/kg) decreased analgesic effect of morphine in sensitized mice. Discussion It can be concluded that potassium and calcium channels have some roles in decrease of analgesic effect of morphine after nociceptive sensitization induced by pretreatment of morphine. PMID:25337379

  17. Rewards and Performance Incentives.

    ERIC Educational Resources Information Center

    Zigon, Jack

    1994-01-01

    Discusses rewards and performance incentives for employees, including types of rewards; how rewards help in managing; dysfunctional awards; selecting the right reward; how to find rewards that fit; and delivering rewards effectively. Examples are included. (three references) (LRW)

  18. MicroRNA-219-5p Inhibits Morphine-Induced Apoptosis by Targeting Key Cell Cycle Regulator WEE1.

    PubMed

    Lou, Wei; Zhang, Xingwang; Hu, Xiao-Ying; Hu, Ai-Rong

    2016-06-02

    BACKGROUND To identify the effects of microRNA (miR)-219-5p on morphine-induced apoptosis by targeting WEE1. MATERIAL AND METHODS Forty Balb/C mice (Toll-like receptor 9, TLR9 knockout) were randomly allocated to the experimental and control groups (20 in each group). The baseline miR-219-5p expression was detected using quantitative real-time PCR (qRT-PCR). After morphine was injected at 6 h on the 2nd and 6th days, experimental and control groups received miR-219-5p mimics or miRNA-negative control (NC), respectively, compound injection. Tissues and cells were later obtained from subjects in each group separately after mice were killed. TUNEL assay was used to investigate apoptosis in both groups. RAW264.7 cells were treated with miR-219-5p mimics and controls, respectively. After 24 h, 10 μM of morphine was added at 24 h. Cell apoptosis was assessed by flow cytometer. The WEE1 and Phospho-cdc2 (Tyr15) expressions were examined by Western blotting. RESULTS MiR-219-5p expression in the experimental group was significantly lower than that in the control group (P<0.05). Mice injected with miR-219-5p mimic experienced an evident increase in apoptosis rate compared with the control group (P<0.05). The miR-219-5p NC group and the morphine group both presented an elevated apoptosis rate compared with the blank control group (both, P<0.05). The apoptosis rate in the miR-219-5p mimic group was 10.06%, remarkably lower than in the miR-219-5p NC group and blank control group (both P<0.05). WEE1 and Tyr15 protein expressions in the miR-219-5p NC group and morphine group were obviously stronger than those in the blank control group (all P<0.05). In the miR-219-5p mimic group, WEE1 and Tyr15 protein expressions were significantly lower compared with those in the miR-219-5p NC group and morphine group (all P<0.05). CONCLUSIONS Morphine significantly downregulated the expression of miRNA-219-5p, which targets WEE1 to suppress Tyr15 expressions and activate Cdc2, thus inhibiting

  19. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.

    PubMed

    Matsumoto, Kenjiro; Umemoto, Hiroyuki; Mori, Tomohisa; Akatsu, Ryuya; Saito, Shinichiro; Tashima, Kimihito; Shibasaki, Masahiro; Kato, Shinichi; Suzuki, Tsutomu; Horie, Syunji

    2016-01-15

    Constipation is the most common side effect of morphine. Morphine acts centrally and on peripheral sites within the enteric nervous system. There are a few comprehensive studies on morphine-induced constipation in the small and large intestine by the activation of central and peripheral μ-opioid receptors. We investigated the differences in the inhibition of the small and large intestinal transit in normal and morphine-tolerant mice. Morphine reduced the geometric center in the fluorescein isothiocyanate-dextran assay and prolonged the bead expulsion time in a dose-dependent manner. The inhibitory effects of morphine were blocked by μ-opioid antagonist β-funaltrexamine, but not by δ- and κ-opioid antagonists. The peripheral opioid receptor antagonist, naloxone methiodide, partially blocked morphine's effect in the small intestine and completely blocked its effect in the large intestine. The intracerebroventricular administration of naloxone significantly reversed the delay of small intestinal transit but did not affect morphine-induced inhibition of large intestinal transit. Naloxone methiodide completely reversed the inhibition of large intestinal transit in normal and morphine-tolerant mice. Naloxone methiodide partially reversed the morphine-induced inhibition of small intestinal transit in normal mice but completely reversed the effects of morphine in tolerant mice. Chronic treatment with morphine results in tolerance to its inhibitory effect on field-stimulated contraction in the isolated small intestine but not in the large intestine. These results suggest that peripheral and central opioid receptors are involved in morphine-induced constipation in the small and large intestine during the early stage of treatment, but the peripheral receptors mainly regulate constipation during long-term morphine treatment.

  20. Inhibition of spinal ERK1/2-c-JUN signaling pathway counteracts the development of low doses morphine-induced hyperalgesia.

    PubMed

    Sanna, Maria Domenica; Mello, Tommaso; Ghelardini, Carla; Galeotti, Nicoletta

    2015-10-05

    Morphine-induced hyperalgesia is a pharmacological phenomenon often hindering its prolonged applications in the clinic. It has been shown that systemic administration of morphine induced a hyperalgesic response at an extremely low dose. Extracellular signal-regulated kinase (ERK) pathway contributes to pain sensitization, and its phosphorylation under pain conditions results in the induction and maintenance of pain hypersensitivity. The present study was designed to determine whether low dose morphine treatment in mice could influence the spinal activity of ERK. The data showed that morphine (1 µg/kg) induced a marked increase in ERK phosphorylation. Intrathecal pre-treatment with a selective mitogen-activated and extracellular signal-regulated kinase (MEK) inhibitor PD98059, attenuated morphine-associated thermal hyperalgesia. Morphine exposure increased phosphorylation of c-JUN, that was prevented by the inhibition of ERK pathway. In addition, double immunofluorescence studies revealed that, p-ERK and p-c-JUN are localized on neurons of the spinal dorsal horn expressing µ receptors. These data suggest that ERK contributes to the morphine-induced hyperalgesia by regulating the activation of c-JUN.

  1. Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling.

    PubMed

    Eidson, Lori N; Inoue, Kiyoshi; Young, Larry J; Tansey, Malu G; Murphy, Anne Z

    2017-02-01

    Opioid tolerance and the potential for addiction is a significant burden associated with pain management, yet its precise underlying mechanism and prevention remain elusive. Immune signaling contributes to the decreased efficacy of opioids, and we recently demonstrated that Toll-like receptor 4 (TLR4)-mediated neuroinflammation in the periaqueductal gray (PAG) drives tolerance. Tumor necrosis factor (TNF), a product of TLR4 signaling, promotes inflammation and facilitates glutamatergic signaling, key components of opioid tolerance. Therefore, we hypothesize that TLR4-mediated opioid tolerance requires TNF signaling. By expression of a dominant-negative TNF peptide via lentiviral vector injection in rat PAG to sequester soluble TNF (solTNF), we demonstrate that solTNF mediates morphine tolerance induced by TLR4 signaling, stimulates neuroinflammation (increased IL-1β and TLR4 mRNA), and disrupts glutamate reuptake (decreased GLT-1 and GLAST mRNA). We further demonstrate the efficacy of the brain-permeant PEGylated version of the anti-solTNF peptide, XPro1595, injected systemically, to normalize morphine-induced CNS neuroinflammation and morphine- and endotoxin-induced changes in glutamate transport, effectively preserving the efficacy of morphine analgesia and eliminating tolerance. Our findings provide a novel pharmacological target for the prevention of opioid-induced immune signaling, tolerance, and addiction.

  2. Effects of humoral modulators and naloxone on morphine-induced changes in the spontaneous locomotor activity of the rat.

    PubMed

    Oka, T; Hosoya, E

    1976-06-23

    The s.c. administration of 20 mg/kg of morphine-HCl produced a decrease in the spontaneous locomotor activity (SLMA) of rats. The decrease in SLMA was significantly antagonized by p-chlorophenylalanine (p-CPA). When rats pretreated with p-CPA were given 5-hydroxytryptophan before morphine injection, the marked sedative response to morphine was restored, suggesting that the morphine-induced decrease in SLMA of rats may depend on the release of 5-hydroxytryptamine by morphine. By contrast, the s.c. administration of 5 mg/kg of morphine-HCl produced a significant increase in SLMA of rats. The magnitude of the increase was reduced by atropine, scopolamine or alpha-methyl-p-tyrosine. It appears that both adrenergic and cholinergic mechanisms participate in the increase in SLMA of rats induced by morphine. Both the increase in SLMA produced by 5 mg/kg of morphine and the decrease in SLMA induced by 20 mg/kg of morphine were completely antagonized by the s.c. administration of naloxone-HCl, 0.0625 and 0.25 mg/kg, respectively. Thus, it appears that the receptor with which morphine interacts to produce stimulation is chemically identical with or very similar to the receptor with which morphine combines to induce depression. The former receptors, however, are likely to be located on different neurons from the latter.

  3. Peripheral participation of cholecystokinin in the morphine-induced peripheral antinociceptive effect in non-diabetic and diabetic rats.

    PubMed

    Torres-López, Jorge E; Juárez-Rojop, Isela E; Granados-Soto, Vinicio; Diaz-Zagoya, Juan C; Flores-Murrieta, Francisco J; Ortíz-López, José U S; Cruz-Vera, Jorge

    2007-03-01

    The effects of cholecystokinin (CCK-8) and the CCK receptor antagonist proglumide, on antinociception induced by local peripheral (subcutaneous) injected morphine in non-diabetic (ND) and streptozotocin-induced diabetic (D) rats, were examined by means of the formalin test. Morphine induced dose-dependent antinociception both in ND and D rats. However, in D rats, antinociceptive morphine potency was about twofold less than in ND rats. Pre-treatment with CCK-8 abolished the antinociceptive effect of morphine in a dose-dependent manner in both groups of rats. Additionally, proglumide enhanced the antinociceptive effect induced by all doses of morphine tested. Both CCK-8 and proglumide had no effect on flinching behaviour when given alone to ND rats. Unlike ND rats, in D rats proglumide produced dose-dependent antinociception and CCK-8 enhanced formalin-evoked flinches, as observed during the second phase of the test. In conclusion, our data show a decrease in peripheral antinociceptive potency of morphine when diabetes was present. Additionally, peripheral CCK plays an antagonic role to the peripheral antinociceptive effect of morphine, additional to the well known CCK/morphine interaction at spinal and supraspinal level.

  4. Assessment of Morphine-induced Hyperalgesia and Analgesic Tolerance in Mice Using Thermal and Mechanical Nociceptive Modalities

    PubMed Central

    Elhabazi, Khadija; Ayachi, Safia; Ilien, Brigitte; Simonin, Frédéric

    2014-01-01

    Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy. PMID:25145878

  5. Inhibition of Spinal Oxidative Stress by Bergamot Polyphenolic Fraction Attenuates the Development of Morphine Induced Tolerance and Hyperalgesia in Mice

    PubMed Central

    Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M.; Mollace, Vincenzo; Muscoli, Carolina

    2016-01-01

    Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5–50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy. PMID:27227548

  6. Inhibition of Spinal Oxidative Stress by Bergamot Polyphenolic Fraction Attenuates the Development of Morphine Induced Tolerance and Hyperalgesia in Mice.

    PubMed

    Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M; Mollace, Vincenzo; Muscoli, Carolina

    2016-01-01

    Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5-50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy.

  7. Neuro-Genetics of Reward Deficiency Syndrome (RDS) as the Root Cause of "Addiction Transfer": A New Phenomenon Common after Bariatric Surgery.

    PubMed

    Blum, Kenneth; Bailey, John; Gonzalez, Anthony M; Oscar-Berman, Marlene; Liu, Yijun; Giordano, John; Braverman, Eric; Gold, Mark

    2011-12-23

    Now after many years of successful bariatric (weight-loss) surgeries directed at the obesity epidemic clinicians are reporting that some patients are replacing compulsive overeating with newly acquired compulsive disorders such as alcoholism, gambling, drugs, and other addictions like compulsive shopping and exercise. This review article explores evidence from psychiatric genetic animal and human studies that link compulsive overeating and other compulsive disorders to explain the phenomenon of addiction transfer. Possibly due to neurochemical similarities, overeating and obesity may act as protective factors reducing drug reward and addictive behaviors. In animal models of addiction withdrawal from sugar induces imbalances in the neurotransmitters, acetylcholine and dopamine, similar to opiate withdrawal. Many human neuroimaging studies have supported the concept of linking food craving to drug craving behavior. Previously our laboratory coined the term Reward Deficiency Syndrome (RDS) for common genetic determinants in predicting addictive disorders and reported that the predictive value for future RDS behaviors in subjects carrying the DRD2 Taq A1 allele was 74%. While poly genes play a role in RDS, we have also inferred that disruptions in dopamine function may predispose certain individuals to addictive behaviors and obesity. It is now known that family history of alcoholism is a significant obesity risk factor. Therefore, we hypothesize here that RDS is the root cause of substituting food addiction for other dependencies and potentially explains this recently described Phenomenon (addiction transfer) common after bariatric surgery.

  8. Neuro-Genetics of Reward Deficiency Syndrome (RDS) as the Root Cause of “Addiction Transfer”: A New Phenomenon Common after Bariatric Surgery

    PubMed Central

    Blum, Kenneth; Bailey, John; Gonzalez, Anthony M; Oscar-Berman, Marlene; Liu, Yijun; Giordano, John; Braverman, Eric; Gold, Mark

    2012-01-01

    Now after many years of successful bariatric (weight-loss) surgeries directed at the obesity epidemic clinicians are reporting that some patients are replacing compulsive overeating with newly acquired compulsive disorders such as alcoholism, gambling, drugs, and other addictions like compulsive shopping and exercise. This review article explores evidence from psychiatric genetic animal and human studies that link compulsive overeating and other compulsive disorders to explain the phenomenon of addiction transfer. Possibly due to neurochemical similarities, overeating and obesity may act as protective factors reducing drug reward and addictive behaviors. In animal models of addiction withdrawal from sugar induces imbalances in the neurotransmitters, acetylcholine and dopamine, similar to opiate withdrawal. Many human neuroimaging studies have supported the concept of linking food craving to drug craving behavior. Previously our laboratory coined the term Reward Deficiency Syndrome (RDS) for common genetic determinants in predicting addictive disorders and reported that the predictive value for future RDS behaviors in subjects carrying the DRD2 Taq A1 allele was 74%. While poly genes play a role in RDS, we have also inferred that disruptions in dopamine function may predispose certain individuals to addictive behaviors and obesity. It is now known that family history of alcoholism is a significant obesity risk factor. Therefore, we hypothesize here that RDS is the root cause of substituting food addiction for other dependencies and potentially explains this recently described Phenomenon (addiction transfer) common after bariatric surgery. PMID:23483116

  9. Persistent Peripheral Inflammation Attenuates Morphine-induced Periaqueductal Gray Glial Cell Activation and Analgesic Tolerance in the Male Rat

    PubMed Central

    Eidson, Lori N.; Murphy, Anne Z.

    2014-01-01

    Morphine is among the most prevalent analgesics prescribed for chronic pain. However, prolonged morphine treatment results in the development of analgesic tolerance. An abundance of evidence has accumulated indicating that CNS glial cell activity facilitates pain transmission and opposes morphine analgesia. While the midbrain ventrolateral periaqueductal gray (vlPAG) is an important neural substrate mediating pain modulation and the development of morphine tolerance, no studies have directly assessed the role of PAG-glia. Here we test the hypothesis that morphine-induced increases in vlPAG glial cell activity contribute to the development of morphine tolerance. As morphine is primarily consumed for the alleviation of severe pain, the influence of persistent inflammatory pain was also assessed. Administration of morphine, in the absence of persistent inflammatory pain, resulted in the rapid development of morphine tolerance and was accompanied by a significant increase in vlPAG glial activation. In contrast, persistent inflammatory hyperalgesia, induced by intraplantar administration of Complete Freund’s Adjuvant (CFA), significantly attenuated the development of morphine tolerance. No significant differences were noted in vlPAG glial cell activation for CFA-treated animals versus controls. These results indicate that vlPAG glia are modulated by a persistent pain state, and implicate vlPAG glial cells as possible regulators of morphine tolerance. Perspective The development of morphine tolerance represents a significant impediment to its use in the management of chronic pain. We report that morphine tolerance is accompanied by increased glial cell activation within the vlPAG, and that the presence of a persistent pain state prevented vlPAG glial activation and attenuated morphine tolerance. PMID:23395474

  10. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL.

  11. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor

    PubMed Central

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24697554

  12. Involvement of protein kinase C in the modulation of morphine-induced analgesia and the inhibitory effects of exposure to 60-hz magnetic fields in the land snail, Cepaea nemoralis

    SciTech Connect

    Kavaliers, M.; Ossenkopp, K.P. )

    1990-02-26

    One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKC activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.

  13. Effects of MPEP on locomotion, sensitization and conditioned reward induced by cocaine or morphine.

    PubMed

    Herzig, Volker; Schmidt, Werner J

    2004-12-01

    Exposure to environmental cues is considered a major cause of relapse in detoxified addicts. Recent findings showed an involvement of glutamate in cue-induced relapse and suggest that subtype 5 of metabotropic glutamate receptors (mGluR5) is involved in conditioned drug-reward. The present study applied the conditioned place preference (CPP) paradigm to examine the involvement of mGluR5 in cocaine- and morphine-induced behaviours. Results of previous mice-studies were extended into rats by using the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). As a result, the evaluated behavioural parameters were dose-relatedly affected by MPEP. Low-dosed MPEP (10 mg/kg, i.p.) did not affect spontaneous locomotion, reduced cocaine-induced hyperlocomotion and produced sensitized locomotion, while showing no effect on sensitized locomotion induced by repeated cocaine or morphine. Low-dosed MPEP did not genuinely block development of cocaine- and morphine-CPP, but rendered CPP expression state-dependent. The medium MPEP-dose (30 mg/kg) was most effective in reducing spontaneous locomotion. The high MPEP-dose (50 mg/kg) was most effective in reducing both body-weight and morphine-CPP expression. Cocaine-CPP expression was not affected by any MPEP-dose. In conclusion, mGluR5 are involved in modulation of spontaneous and cocaine-induced locomotion, in state-dependent learning and in expression of morphine-CPP. Thus, MPEP may be beneficial for relapse prevention in morphine-addicts.

  14. NMDA receptors of dorsal hippocampus are involved in the acquisition, but not in the expression of morphine-induced place preference.

    PubMed

    Zarrindast, Mohammad-Reza; Lashgari, Reza; Rezayof, Ameneh; Motamedi, Fereshteh; Nazari-Serenjeh, Farzaneh

    2007-07-30

    In the present study, involvement of the N-methyl-d-aspartate (NMDA) receptors of the CA1 region of dorsal hippocampus (intra-CA1) in the acquisition or expression of morphine-induced conditioned place preference in rats was studied. Male Wistar rats were used in these experiments. NMDA-receptor agonist (NMDA) and antagonist (MK-801) were injected into the CA1 region of the dorsal hippocampus (intra-CA1) and morphine was injected subcutaneously. An unbiased conditioned place preference paradigm was used to study the effect of these agents. In the first set of experiments, the drugs were used during the development of conditioned place preference by morphine or they were used alone in order to see if they induce conditioned place preference or conditioned place aversion. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (2.5-10 mg/kg) induced conditioned place preference in rat. NMDA (0.1-1 microg/rat) or MK-801 (1-4 microg/rat) did not induce conditioned place preference or conditioned place aversion. Intra-CA1 administration of different doses of NMDA (0.1-1 microg/rat) increased, while MK-801 (1-4 microg/rat) decreased morphine-induced place preference. MK-801 reversed the effect of NMDA on morphine response. In the second set of experiments, when the drugs were used before testing on Day 5, in order to test their effects on the expression of morphine (7.5 mg/kg)-induced place preference, intra-CA1 administration of NMDA or MK-801 did not alter the morphine response. None of the drugs influenced locomotion. It is concluded that NMDA receptor of the CA1 region of hippocampus are involved in the acquisition but not expression of morphine-induced place preference.

  15. Yohimbine prevents morphine-induced changes of glial fibrillary acidic protein in brainstem and alpha2-adrenoceptor gene expression in hippocampus.

    PubMed

    Alonso, Elba; Garrido, Elisa; Díez-Fernández, Carmen; Pérez-García, Carmen; Herradón, Gonzalo; Ezquerra, Laura; Deuel, Thomas F; Alguacil, Luis F

    2007-01-29

    The alpha(2)-adrenoceptor antagonist yohimbine is known to oppose to several pharmacological effects of opioid drugs, but the consequences and the mechanisms involved remain to be clearly established. In the present study we have checked the effects of yohimbine on morphine-induced alterations of the expression of key proteins (glial fibrillary acidic protein, GFAP) and genes (alpha(2)-adrenoceptors) in rat brain areas known to be relevant in opioid dependence, addiction and individual vulnerability to drug abuse. Rats were treated with morphine in the presence or absence of yohimbine. The effects of the treatments on GFAP expression were studied by immunohistochemical staining in Locus Coeruleus (LC) and Nucleus of the Solitary Tract (NST), two important noradrenergic nuclei. In addition, drug effects on alpha(2)-adrenoceptor gene expression were determined by real time RT-PCR in the hippocampus, a brain area that receives noradrenergic input from the brainstem. Morphine administration increased GFAP expression both in LC and NST as it was previously reported in other brain areas. Yohimbine was found to efficiently prevent morphine-induced GFAP upregulation. Chronic (but not acute) morphine downregulated mRNA levels of alpha(2A)- and alpha(2C)-adrenoceptors in the hippocampus, while simultaneously increased the expression of the alpha(2B)-adrenoceptor gene. Again, yohimbine was able to prevent morphine-induced changes in the levels of expression of the three alpha(2)-adrenoceptor genes. These results correlate the well-established reduction of opioid dependence and addiction by yohimbine and suggest that this drug could interfere with the neural plasticity induced by chronic morphine in central noradrenergic pathways.

  16. Acute morphine induces matrix metalloproteinase-9 up-regulation in primary sensory neurons to mask opioid-induced analgesia in mice

    PubMed Central

    2012-01-01

    Background Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9) plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs) after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice. Results Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR). In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition. Conclusions Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia. Distinct molecular

  17. Incentive theory: IV. Magnitude of reward

    PubMed Central

    Killeen, Peter R.

    1985-01-01

    Incentive theory is successfully applied to data from experiments in which the amount of food reward is varied. This is accomplished by assuming that incentive value is a negatively accelerated function of reward duration. The interaction of the magnitude of a reward with its delay is confirmed, and the causes and implications of this interaction are discussed. PMID:16812421

  18. Repeated Exposure to Methamphetamine, Cocaine or Morphine Induces Augmentation of Dopamine Release in Rat Mesocorticolimbic Slice Co-Cultures

    PubMed Central

    Nakagawa, Takayuki; Suzuki, Yuichi; Nagayasu, Kazuki; Kitaichi, Maiko; Shirakawa, Hisashi; Kaneko, Shuji

    2011-01-01

    Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1–1000 µM), cocaine (0.1–300 µM) or morphine (0.1–100 µM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1–1000 µM) had little effect. Following repeated exposure to methamphetamine (10 µM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1–300 µM) or morphine (10 and 100 µM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 µM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA

  19. Pharmacodynamics and kinetics of loss of tolerance and physical dependence on morphine induced by pellet implantation in the rat.

    PubMed

    Villar, V M; Bhargava, H N

    1992-01-01

    The decay characteristics of tolerance and physical dependence on morphine induced by a pellet implantation procedure were determined in male Sprague-Dawley rats. Rats were implanted subcutaneously with 6 morphine pellets during a 7-day period. The pellets were removed, and at various times thereafter tolerance to the analgesic and hyperthermic effects of morphine was measured by determining the response in rats implanted with morphine and placebo pellets. Similarly, the physical dependence was assessed by monitoring withdrawal signs following an injection of naloxone. A high degree of tolerance developed to the analgesic and hyperthermic effects of morphine. Similarly, a high degree of physical dependence also developed as evidenced by a high incidence of jumping response, teeth chattering and production of fecal boli induced by injections of naloxone. In addition, loss of body weight and body temperature also occurred. The analgesic and hyperthermic response to morphine recovered very gradually. There was no significant difference in the analgesic and hyperthermic responses to morphine on day 4 after the pellet removal in rats implanted with morphine and placebo pellets. The decay of tolerance was linear with time for the analgesic effect (r = 0.98) and for the hyperthermic effect (r = 0.93). The change in symptoms of physical dependence on morphine with time depended on the specific symptom monitored. The average number of jumps and teeth chattering decreased with time in a linear fashion with r values of 0.98 and 0.99, respectively. However, the number of fecal boli and wet dog shakes increased linearly with time (r = 0.97). The recovery of loss of body weight was also linear with time. Thus, it is clear that fecal boli and wet dog shakes, which increase in number as the dependence decays, are signs of a low degree of dependence. The results suggest that different central or peripheral mechanisms may be operating in different withdrawal symptoms. These studies

  20. Establishment of opioid-induced rewarding effects under oxaliplatin- and Paclitaxel-induced neuropathy in rats.

    PubMed

    Mori, Tomohisa; Kanbara, Tomoe; Harumiya, Masato; Iwase, Yoshiyuki; Masumoto, Aki; Komiya, Sachiko; Nakamura, Atsushi; Shibasaki, Masahiro; Kanemasa, Toshiyuki; Sakaguchi, Gaku; Suzuki, Tsutomu

    2014-01-01

    The rewarding effects of μ-receptor agonists can be suppressed under several pain conditions. We recently showed that clinically used μ-receptor agonists possess efficacies for relieving the neuropathic pain induced by chemotherapeutic drug in rats; however, it is possible that the use of μ-receptor agonists may trigger the rewarding effects even under chemotherapeutic drug-induced neuropathic pain. Nevertheless, no information is available regarding whether μ-receptor agonists produce psychological dependence under chemotherapeutic drug-induced neuropathic pain. Therefore, we examined the effects of neuropathy induced by chemotherapeutic drugs on the rewarding effects of morphine, oxycodone, and fentanyl in rats. Repeated treatment with oxaliplatin or paclitaxel produced neuropathy as measured by the von Frey test. Rewarding effects produced by antinociceptive doses of μ-receptor agonists were not suppressed under oxaliplatin- or paclitaxel-induced neuropathy. Furthermore, the morphine-induced increase in the release of dopamine from the nucleus accumbens, which is a critical step in the rewarding effects of μ-receptor agonists, was not altered in paclitaxel-treated rats. These results suggest that the rewarding effects of μ-receptor agonists can still be established under oxaliplatin- or paclitaxel-induced neuropathic pain. Therefore, patients should be carefully monitored for psychological dependence on μ-receptor agonists when they are used to control chemotherapeutic drug-induced neuropathic pain.

  1. Morphine-induced inhibition of Ca(2+) -dependent d-serine release from astrocytes suppresses excitability of GABAergic neurons in the nucleus accumbens.

    PubMed

    Wu, Jian; Zhao, Rui; Guo, Lin; Zhen, Xuechu

    2017-09-01

    The nucleus accumbens (NAc) plays a critical role in addictive drug-induced behavioral changes. d-serine is present at high levels in the brain and is involved in the regulation of N-methyl-d-aspartate glutamate (NMDA)-dependent synaptic activity. In this study, we aimed to examine the involvement of d-serine in morphine addiction. Morphine decreased the NMDA receptor-mediated excitatory postsynaptic currents and excitability of GABAergic neurons in the NAc, while exogenous d-serine alleviated the effects of morphine. Morphine reduced extracellular d-serine levels in rat NAc or in primary culture of astrocytes through inhibition of intracellular Ca(2+) signals and blockade of d-serine release from cell vesicles. Morphine induced robust internalization of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate acid receptor (AMPAR) in primary cultured astrocytes. Moreover, administration of exogenous d-serine to rats inhibited the development of locomotor sensitization to morphine, attenuated the morphine-induced potentiation on conditioned place preference and suppressed the morphine-enhanced expression of p-CREB and ΔFosB in the NAc. Overall, our results showed that morphine inhibited d-serine release from astrocytes through modulation of AMPAR-mediated Ca(2+) influx, and led to the inhibition of postsynaptic excitability of GABAergic neurons in the NAc. This work may provide a new insight into the underlying mechanisms of morphine addiction. © 2016 Society for the Study of Addiction.

  2. Dopamine D₄ receptor counteracts morphine-induced changes in µ opioid receptor signaling in the striosomes of the rat caudate putamen.

    PubMed

    Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia

    2014-01-21

    The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.

  3. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1

    PubMed Central

    Song, Kyu Young; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5′-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). PMID:27292014

  4. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1.

    PubMed

    Song, Kyu Young; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H

    2017-03-01

    Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5'-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). J. Cell. Physiol. 232: 576-584, 2017. © 2016 Wiley Periodicals, Inc.

  5. Upregulation of Nerve Growth Factor in Central Amygdala Increases Sensitivity to Opioid Reward

    PubMed Central

    Bie, Bihua; Wang, Yan; Cai, You-Qing; Zhang, Zhi; Hou, Yuan-Yuan; Pan, Zhizhong Z

    2012-01-01

    The rewarding properties of opioids are essential driving force for compulsive drug-seeking and drug-taking behaviors in the development of opioid-mediated drug addiction. Prior drug use enhances sensitivity to the rewarding effects of subsequently used drugs, increasing vulnerability to relapse. The molecular mechanisms underlying this reward sensitization are still unclear. We report here that morphine that induced reward sensitization, as demonstrated by reinstatement of the behavior of conditioned place preference (CPP) with sub-threshold priming morphine, epigenetically upregulated the output activity of Ngf encoding the nerve growth factor (NGF) by increasing histone H4 acetylation in the rat central nucleus of the amygdala (CeA). NGF locally infused into the CeA mimicked the morphine effect in inducing new functional delta-opioid receptor (DOR) that was required for the reward sensitization, and morphine-induced reward sensitization was inhibited by blocking NGF receptor signaling in the CeA. Histone deacetylase inhibitors that increased the acetylation level at the Ngf promoter and NGF expression in the CeA also induced reward sensitization in a CeA NGF signaling- and DOR-dependent manner. Furthermore, CeA-applied NGF substituted prior morphine to induce reward sensitization in naive rats and also substituted priming morphine to reinstate the CPP induced by prior morphine. Thus, epigenetic upregulation of NGF activity in the CeA may promote the behavior of opioid reward and increase the sensitivity to the rewarding effect of subsequent opioids, a potentially important mechanism in drug addiction. PMID:22871918

  6. Genetic and environmental causes of individual differences in daily life positive affect and reward experience and its overlap with stress-sensitivity.

    PubMed

    Menne-Lothmann, Claudia; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Wichers, Marieke

    2012-09-01

    Momentary positive affect (PA) and reward experience may underlie subjective wellbeing, and index mental health resilience. This study examines their underlying sources of variation and the covariation with stress-sensitivity. The experience sampling method was used to collect multiple appraisals of mood and daily life events in 520 female twins. Structural equation model fitting was employed to determine sources of variation of PA, reward experience, and the association between reward experience and stress-sensitivity. PA was best explained by shared and non-shared environmental factors, and reward experience by non-shared environmental factors only, although the evidence was also suggestive of a small genetic contribution. Reward experience and stress-sensitivity showed no association. PA was not heritable. Most-if not all-variance of reward experience was explained by environmental influences. Stress-sensitivity, indexing depression vulnerability, and reward experience were non-overlapping, suggesting that resilience traits are independent from stress-sensitivity levels in a general population sample.

  7. Prohormone convertase 2 (PC2) null mice have increased mu opioid receptor levels accompanied by altered morphine-induced antinociception, tolerance and dependence.

    PubMed

    Lutfy, K; Parikh, D; Lee, D L; Liu, Y; Ferrini, M G; Hamid, A; Friedman, T C

    2016-08-04

    Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25-10mg/kg) and tested for antinociception 30min later. For tolerance studies, mice were tested in the hot plate test before and 30min following morphine (5mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10mg/kg on this day. On days 2-4, mice received additional doses of morphine (20, 40 and 80mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30min following morphine (5mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80mg/kg) for 4days, implanted with a morphine pellet on day 5 and 3 days later injected with naloxone (1mg/kg) and signs of withdrawal were recorded. Morphine dose-dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal gray area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, lack of opioid peptides led to up-regulation of the MOP and altered morphine-induced

  8. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex

    PubMed Central

    Ahmadi, Shamseddin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2016-01-01

    Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance. PMID:27563417

  9. Ventral Pallidum Roles in Reward and Motivation

    PubMed Central

    Smith, Kyle S.; Tindell, Amy J.; Aldridge, J. Wayne; Berridge, Kent C.

    2008-01-01

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for normal reward and motivation, 2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and 3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important ‘limbic final common pathway’ for mesocorticolimbic processing of many rewards. PMID:18955088

  10. Can the chronic administration of the combination of buprenorphine and naloxone block dopaminergic activity causing anti-reward and relapse potential?

    PubMed

    Blum, Kenneth; Chen, Thomas J H; Bailey, John; Bowirrat, Abdalla; Femino, John; Chen, Amanda L C; Simpatico, Thomas; Morse, Siobhan; Giordano, John; Damle, Uma; Kerner, Mallory; Braverman, Eric R; Fornari, Frank; Downs, B William; Rector, Cynthia; Barh, Debmayla; Oscar-Berman, Marlene

    2011-12-01

    Opiate addiction is associated with many adverse health and social harms, fatal overdose, infectious disease transmission, elevated health care costs, public disorder, and crime. Although community-based addiction treatment programs continue to reduce the harms of opiate addiction with narcotic substitution therapy such as methadone maintenance, there remains a need to find a substance that not only blocks opiate-type receptors (mu, delta, etc.) but also provides agonistic activity; hence, the impetus arose for the development of a combination of narcotic antagonism and mu receptor agonist therapy. After three decades of extensive research, the federal Drug Abuse Treatment Act 2000 (DATA) opened a window of opportunity for patients with addiction disorders by providing increased access to options for treatment. DATA allows physicians who complete a brief specialty-training course to become certified to prescribe buprenorphine and buprenorphine/naloxone (Subutex, Suboxone) for treatment of patients with opioid dependence. Clinical studies indicate that buprenorphine maintenance is as effective as methadone maintenance in retaining patients in substance abuse treatment and in reducing illicit opioid use. With that stated, we must consider the long-term benefits or potential toxicity attributed to Subutex or Suboxone. We describe a mechanism whereby chronic blockade of opiate receptors, in spite of only partial opiate agonist action, may ultimately block dopaminergic activity causing anti-reward and relapse potential. While the direct comparison is not as yet available, toxicity to buprenorphine can be found in the scientific literature. In considering our cautionary note in this commentary, we are cognizant that, to date, this is what we have available, and until such a time when the real magic bullet is discovered, we will have to endure. However, more than anything else this commentary should at least encourage the development of thoughtful new strategies to target

  11. Can the chronic administration of the combination of buprenorphine and naloxone block dopaminergic activity causing anti-reward and relapse potential?

    PubMed Central

    Blum, Kenneth; Chen, Thomas JH; Bailey, John; Bowirrat, Abdulla; Femino, John; Chen, Amanda LC; Simpatico, Thomas; Morse, Siobhan; Giordano, John; Damle, Uma; Kerner, Mallory; Braverman, Eric R.; Fornari, Frank; Downs, B.William; Rector, Cynthia; Barh, Debmayla; Oscar-Berman, Marlene

    2013-01-01

    Opiate addiction is associated with many adverse health and social harms, fatal overdose, infectious disease transmission, elevated health care costs, public disorder, and crime. Although community-based addiction treatment programs continue to reduce the harms of opiate addiction with narcotic substitution therapy such as methadone maintenance, there remains a need to find a substance that not only blocks opiate-type receptors (mu, delta, etc.) but also provides agonistic activity; hence the impetus arose for the development of a combination of narcotic antagonism and mu receptor agonist therapy. After three decades of extensive research the federal Drug Abuse Treatment Act 2000 (DATA) opened a window of opportunity for patients with addiction disorders by providing increased access to options for treatment. DATA allows physicians who complete a brief specialty-training course to become certified to prescribe buprenorphine and buprenorphine/naloxone (Subutex, Suboxone) for treatment of patients with opioid dependence. Clinical studies indicate buprenorphine maintenance is as effective as methadone maintenance in retaining patients in substance abuse treatment and in reducing illicit opioid use. With that stated, we must consider the long-term benefits or potential toxicity attributed to Subutex or Suboxone. We describe a mechanism whereby chronic blockade of opiate receptors, in spite of only partial opiate agonist action, may ultimately block dopaminergic activity causing anti-reward and relapse potential. While the direct comparison is not as yet available, toxicity to buprenorphine can be found in the scientific literature. In considering our cautionary note in this commentary, we are cognizant that to date this is what we have available, and until such a time when the real magic bullet is discovered, we will have to endure. However, more than anything else this commentary should at least encourage the development of thoughtful new strategies to target the

  12. The Rewards of Learning.

    ERIC Educational Resources Information Center

    Chance, Paul

    1992-01-01

    Although intrinsic rewards are important, they (along with punishment and encouragement) are insufficient for efficient learning. Teachers must supplement intrinsic rewards with extrinsic rewards, such as praising, complimenting, applauding, and providing other forms of recognition for good work. Teachers should use the weakest reward required to…

  13. The Rewards of Learning.

    ERIC Educational Resources Information Center

    Chance, Paul

    1992-01-01

    Although intrinsic rewards are important, they (along with punishment and encouragement) are insufficient for efficient learning. Teachers must supplement intrinsic rewards with extrinsic rewards, such as praising, complimenting, applauding, and providing other forms of recognition for good work. Teachers should use the weakest reward required to…

  14. Subchronic morphine increases amphetamine-induced potentiation of brain stimulation reward: reversal by DNQX.

    PubMed

    Bespalov AYu; Zvartau, E E

    1995-06-01

    The ability of morphine and amphetamine to potentiate brain stimulation reward was studied in rats with monopolar electrodes in the medial forebrain bundle. Animals received seven daily injections of morphine (3 mg/kg, s.c.) or saline followed 10 min later by either DNQX (100 mg/kg, i.p.) or its vehicle. On the 8th day the self-stimulation (SS) response was examined 60 min or 30 min after the administration of either morphine (3 mg/kg, s.c.) or amphetamine (1.5 mg/kg, s.c.), respectively. It was found that the subchronic administration of morphine sensitizes animals to subsequent amphetamine-, but not morphine-induced activation of SS, which may be prevented by the coadministration of DNQX, an antagonist of the non-NMDA subtype of glutamate receptors.

  15. Inhibitory effects of SA4503 on the rewarding effects of abused drugs.

    PubMed

    Mori, Tomohisa; Rahmadi, Mahardian; Yoshizawa, Kazumi; Itoh, Toshimasa; Shibasaki, Masahiro; Suzuki, Tsutomu

    2014-05-01

    Previous findings have shown that sigma-1 receptors (Sig-1Rs) are upregulated by the self-administration of methamphetamine, whereas Sig-1R antisense can attenuate the behavioral effects of psychostimulants in rodents. Sig-1R is an endoplasmic reticulum chaperone protein. However, the effects of Sig-1R agonist on the rewarding effects of abused drugs are not fully understood. Therefore, we examined the effects of selective Sig-1R agonists, such as SA4503 and (+)-pentazocine, on the rewarding effects of abused drugs such as methamphetamine, cocaine and morphine in rats, as measured by the conditioned place preference. Methamphetamine, cocaine and morphine induced a significant place preference. SA4503, but not (+)-pentazocine, significantly attenuated the abused drug-induced place preference. We recently showed that (+)-pentazocine exerts U50,488H-like discriminative stimulus effects, which are related to its psychotomimetic/aversive effects. However, SA4503 did not generalize to the discriminative stimulus effects of U50,488H. These results suggest that SA4503 inhibits the rewarding effects of abused drugs, and that psychotomimetic/aversive effects may not play a role in the attenuating effects of SA4503 on the rewarding effects of abused drugs.

  16. Intravenous morphine causes hypertension, hyperglycaemia and increases sympatho-adrenal outflow in conscious rabbits.

    PubMed

    May, C N; Ham, I W; Heslop, K E; Stone, F A; Mathias, C J

    1988-07-01

    1. In conscious rabbits, intravenous morphine (3 mg/kg) caused hypertension, bradycardia, hyperglycaemia and sedation. These changes were accompanied by large increases in plasma adrenaline and smaller increases in plasma noradrenaline. 2. These effects of morphine were prevented by intravenous naloxone, demonstrating their dependence on stimulation of opiate receptors. 3. Pretreatment with the antihistamines cimetidine and chlorpheniramine enhanced the morphine-induced rise in blood pressure, excluding a role for histamine release in the hypertensive action of morphine. 4. The centrally acting alpha 2-adrenergic agonist clonidine prevented the morphine-induced hypertension and rise in plasma catecholamines, suggesting that these effects are exerted via central pathways. Clonidine alone reduced blood pressure and heart rate and produced hyperglycaemia. 5. alpha-Adrenergic blockade with phenoxybenzamine reduced the increase in blood pressure after morphine, although the increase in plasma catecholamines was augmented. 6. Pentobarbitone anaesthesia prevented the morphine-induced cardiovascular changes, the increase in plasma catecholamines and the hyperglycaemia. 7. These findings indicate, that in conscious rabbits, morphine induces hypertension by stimulation of opiate receptors leading to increased sympatho-adrenal activity. The hyperglycaemia appears to be in response to secretion of adrenaline. These effects probably result from a central action of morphine.

  17. The role of nitric oxide in the effects of cumin (Cuminum Cyminum L.) fruit essential oil on the acquisition of morphine-induced conditioned place preference in adult male mice.

    PubMed

    Kermani, Mojtaba; Azizi, Pegah; Haghparast, Abbas

    2012-01-12

    OBJECTIVE: Nitric oxide is a neural messenger molecule in the central nervous system that is generated from L-arginine via the nitric oxide synthase (NOS) and is involved in many important oplold-induced effects. In Iranian ancient medicine, Cuminum cyminum L (green seed) has been used for the treatment of some diseases. In the present study, the effect of intraperitoneal (ip) administration of different doses of cumin fruit essential oil (FEO) on the acquisition of morphine-induced conditioned place preference (GPP) in L-arginine-treated mice was investigated. METHODS: A total of 213 adult male albino Wistar mice were used in these experiments. The CPP paradigm was carried out in 5 continuous days, pre-conditioning, conditioning and post-conditioning. Animals were randomly assigned to one of the two groups for place conditioning. CPP was induced by subcutaneous (sc) injection of morphine (5 mg/kg) in 3 days conditioning schedule. On the test day, conditioning scores and locomotor activity were recorded by Ethovision software. RESULTS: Sole administration of different doses of cumin FEO (0.01%, 0.1%, 0.5%, 1% and 2%; lp) or L-arginine (50, 100 and 200 mg/kg; lp) during the CPP protocol could not induce CPP. Nonetheless, morphine-induced CPP was decreased by different doses of cumin FEO (0.01%-2%), whereas it was increased by L-arginine (50-200 mg/kg) when they were injected before morphine (5 rug/kg) during a 3-day conditioning phase (acquisition period). Additionally, cumin FEO could interestingly attenuate the raising effect of L-arginine on morphine-induced CPP in a dose-dependent manner. CONCLUSIONS: It is suggested that some components of the Cuminum cyminum L. seed attenuate the excessive effect of L-arginine on morphine-induced CPP through the NOS inhibitory mechanism. It seems that cumin FEO possibly acts as a NOS inhibitor.

  18. STEP signaling pathway mediates psychomotor stimulation and morphine withdrawal symptoms, but not for reward, analgesia and tolerance.

    PubMed

    Kim, Yoon-Jung; Kang, Young; Park, Hye-Yeon; Lee, Jae-Ran; Yu, Dae-Yeul; Murata, Takuya; Gondo, Yoichi; Hwang, Jung Hwan; Kim, Yong-Hoon; Lee, Chul-Ho; Rhee, Myungchull; Han, Pyung-Lim; Chung, Bong-Hyun; Lee, Hyun-Jun; Kim, Kyoung-Shim

    2016-02-26

    Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEP(C230X-/-) mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEP(C230X-/-) mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine.

  19. STEP signaling pathway mediates psychomotor stimulation and morphine withdrawal symptoms, but not for reward, analgesia and tolerance

    PubMed Central

    Kim, Yoon-Jung; Kang, Young; Park, Hye-Yeon; Lee, Jae-Ran; Yu, Dae-Yeul; Murata, Takuya; Gondo, Yoichi; Hwang, Jung Hwan; Kim, Yong-Hoon; Lee, Chul-Ho; Rhee, Myungchull; Han, Pyung-Lim; Chung, Bong-Hyun; Lee, Hyun-Jun; Kim, Kyoung-Shim

    2016-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEPC230X−/− mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEPC230X−/− mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine. PMID:26915673

  20. Punished by Rewards?

    ERIC Educational Resources Information Center

    Brandt, Ron

    1995-01-01

    The author of "Punished by Rewards" (1993), claims that rewards and punishments serve to manipulate behavior and destroy the potential for real learning. Praise is especially tricky, since intangible rewards can also foster compliance, not motivation. An engaging curriculum and a caring atmosphere encourage kids to exercise their natural…

  1. MeCP2 Repression of G9a in Regulation of Pain and Morphine Reward

    PubMed Central

    Zhang, Zhi; Tao, Wenjuan; Hou, Yuan-Yuan; Wang, Wei; Kenny, Paul J.

    2014-01-01

    Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction. PMID:24990928

  2. MeCP2 repression of G9a in regulation of pain and morphine reward.

    PubMed

    Zhang, Zhi; Tao, Wenjuan; Hou, Yuan-Yuan; Wang, Wei; Kenny, Paul J; Pan, Zhizhong Z

    2014-07-02

    Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction.

  3. Intravascular Food Reward

    PubMed Central

    Oliveira-Maia, Albino J.; Roberts, Craig D.; Walker, Q. David; Luo, Brooke; Kuhn, Cynthia; Simon, Sidney A.; Nicolelis, Miguel A. L.

    2011-01-01

    Consumption of calorie-containing sugars elicits appetitive behavioral responses and dopamine release in the ventral striatum, even in the absence of sweet-taste transduction machinery. However, it is unclear if such reward-related postingestive effects reflect preabsorptive or postabsorptive events. In support of the importance of postabsorptive glucose detection, we found that, in rat behavioral tests, high concentration glucose solutions administered in the jugular vein were sufficient to condition a side-bias. Additionally, a lower concentration glucose solution conditioned robust behavioral responses when administered in the hepatic-portal, but not the jugular vein. Furthermore, enteric administration of glucose at a concentration that is sufficient to elicit behavioral conditioning resulted in a glycemic profile similar to that observed after administration of the low concentration glucose solution in the hepatic-portal, but not jugular vein. Finally using fast-scan cyclic voltammetry we found that, in accordance with behavioral findings, a low concentration glucose solution caused an increase in spontaneous dopamine release events in the nucleus accumbens shell when administered in the hepatic-portal, but not the jugular vein. These findings demonstrate that the postabsorptive effects of glucose are sufficient for the postingestive behavioral and dopaminergic reward-related responses that result from sugar consumption. Furthermore, glycemia levels in the hepatic-portal venous system contribute more significantly for this effect than systemic glycemia, arguing for the participation of an intra-abdominal visceral sensor for glucose. PMID:21980372

  4. Prophylactic administration of ondansetron in prevention of intrathecal morphine-induced pruritus and post-operative nausea and vomiting in patients undergoing caesarean section.

    PubMed

    Koju, Ram Bhakta; Gurung, Bandana Sharma; Dongol, Yashad

    2015-02-17

    Intrathecal morphine is commonly used for post caesarean analgesia. However, their use is frequently associated with the incidence of troublesome side effects such as nausea, vomiting and pruritus. Various mechanisms have been postulated for the opioid-induced pruritus, with a variety of medications with different mechanisms of actions formulated for the prevention and treatment. But, the results are inconsistent and hence the prevention and treatment of opioid-induced pruritus still remains a challenge. Ondansetron which is antiemetic, non-sedative and has no antianalgesic effect is an antagonist to 5-HT3 receptor, the receptor with which opioids interacts and imparts its effects. Ondansetron, thus, would be an attractive treatment strategy for both opioid-induced pruritus and post-operative nausea and vomiting. After the approval from institutional review committee and written consent received from the patient, 50 healthy parturients of ASA I and II physical status undergoing caesarean section under spinal anaesthesia were enrolled for the study. They were randomly categorized into placebo group (2 ml normal saline) and treatment group (2 ml of 4 mg ondansetron), each group containing 25 patients. Pruritus and post-operative nausea and vomiting scores were recorded up to 24 hours after the administration of intrathecal morphine. Statistical analysis was performed using chi-square test. The incidence, severity and necessity of treatment for pruritus in the treatment group was significantly reduced compared to the placebo group (16% vs 88%). Similarly, the risk of post-operative nausea and vomiting in the treatment group was less compared to the placebo group (8% vs 56%). Prophylactic administration of ondansetron to parturients receiving intrathecal morphine for post-operative analgesia provides a significant reduction of intrathecal morphine-induced pruritus and nausea and vomiting. CTRI/2015/01/005362 registered on 07/01/2015 in Clinical Trials Registry

  5. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain

    PubMed Central

    Boronat, M Assumpció; García-Fuster, M Julia; García-Sevilla, Jesús A

    2001-01-01

    This study was designed to assess the influence of activation and blockade of the endogenous opioid system in the brain on two key proteins involved in the regulation of programmed cell death: the pro-apoptotic Fas receptor and the anti-apoptotic Bcl-2 oncoprotein. The acute treatment of rats with the μ-opioid receptor agonist morphine (3 – 30 mg kg−1, i.p., 2 h) did not modify the immunodensity of Fas or Bcl-2 proteins in the cerebral cortex. Similarly, the acute treatment with low and high doses of the antagonist naloxone (1 and 100 mg kg−1, i.p., 2 h) did not alter Fas or Bcl-2 protein expression in brain cortex. These results discounted a tonic regulation through opioid receptors on Fas and Bcl-2 proteins in rat brain. Chronic morphine (10 – 100 mg kg−1, 5 days, and 10 mg kg−1, 13 days) induced marked increases (47 – 123%) in the immunodensity of Fas receptor in the cerebral cortex. In contrast, chronic morphine (5 and 13 days) decreased the immunodensity of Bcl-2 protein (15 – 30%) in brain cortex. Chronic naloxone (10 mg kg−1, 13 days) did not alter the immunodensities of Fas and Bcl-2 proteins in the cerebral cortex. The concurrent chronic treatment (13 days) of naloxone (10 mg kg−1) and morphine (10 mg kg−1) completely prevented the morphine-induced increase in Fas receptor and decrease in Bcl-2 protein immunoreactivities in the cerebral cortex. The results indicate that morphine, through the sustained activation of opioid receptors, can promote abnormal programmed cell death by enhancing the expression of pro-apoptotic Fas receptor protein and damping the expression of anti-apoptotic Bcl-2 oncoprotein. PMID:11704646

  6. Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands

    PubMed Central

    Boronat, M Assumpció; Olmos, Gabriel; García-Sevilla, Jesús A

    1998-01-01

    Agmatine, the proposed endogenous ligand for imidazoline receptors, has been shown to attenuate tolerance to morphine-induced antinociception (Kolesnikov et al., 1996). The main aim of this study was to assess if idazoxan, an α2-adrenoceptor antagonist that also interacts with imidazoline receptors, could also modulate opioid tolerance in rats and to establish which type of imidazoline receptors (or other receptors) are involved. Antinociceptive responses to opioid drugs were determined by the tail-flick test. The acute administration of morphine (10 mg kg−1, i.p., 30 min) or pentazocine (10 mg kg−1, i.p., 30 min) resulted in marked increases in tail-flick latencies (TFLs). As expected, the initial antinociceptive response to the opiates was lost after chronic (13 days) treatment (tolerance). When idazoxan (10 mg kg−1, i.p.) was given chronically 30 min before the opiates it completely prevented morphine tolerance and markedly attenuated tolerance to pentazocine (TFLs increased by 71–143% at day 13). Idazoxan alone did not modify TFLs. The concurrent chronic administration (10 mg kg−1, i.p., 13 days) of 2-BFI, LSL 60101, and LSL 61122 (valldemossine), selective and potent I2-imidazoline receptor ligands, and morphine (10 mg kg−1, i.p.), also prevented or attenuated morphine tolerance (TFLs increased by 64–172% at day 13). This attenuation of morphine tolerance was still apparent six days after discontinuation of the chronic treatment with LSL 60101-morphine. The acute treatment with these drugs did not potentiate morphine-induced antinociception. These drugs alone did not modify TFLs. Together, these results indicated the specific involvement of I2-imidazoline receptors in the modulation of opioid tolerance. The concurrent chronic (13 days) administration of RX821002 (10 mg kg−1, i.p.) and RS-15385-197 (1 mg kg−1, i.p.), selective α2-adrenoceptor antagonists, and morphine (10 mg kg−1, i.p.), did not

  7. Markov reward processes

    NASA Technical Reports Server (NTRS)

    Smith, R. M.

    1991-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.

  8. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats.

    PubMed

    Alvandi, Mina Sadighi; Bourmpoula, Maria; Homberg, Judith R; Fathollahi, Yaghoub

    2017-09-22

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse. © 2017 Society for the Study of Addiction.

  9. ABCC3 Genetic Variants are Associated with Postoperative Morphine-induced Respiratory Depression and Morphine Pharmacokinetics in Children

    PubMed Central

    Chidambaran, Vidya; Venkatasubramanian, Raja; Zhang, Xue; Martin, Lisa J.; Niu, Jing; Mizuno, Tomoyuki; Fukuda, Tsuyoshi; Meller, Jaroslaw; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2015-01-01

    Respiratory depression (RD) is a serious side effect of morphine and detrimental to effective analgesia. We reported that variants of the ATP binding cassette gene ABCC3 (facilitates hepatic morphine metabolite efflux), affect morphine metabolite clearance. In this study of 316 children undergoing tonsillectomy, we found significant association between ABCC3 variants and RD leading to prolonged postoperative care unit stay (Prolonged RD). Allele A at rs4148412 and allele G at rs729923 caused a 2.36 (95% CI=1.28–4.37, p=0.0061) and 3.7 (95% CI 1.47– 9.09, p=0.0050) times increase in odds of Prolonged RD respectively. These clinical associations were supported by increased formation clearance of morphine glucuronides in children with rs4148412 AA and rs4973665 CC genotypes in this cohort, as well as an independent spine surgical cohort of 67 adolescents. This is the first study to report association of ABCC3 variants with opioid -related RD, and morphine metabolite formation (in two independent surgical cohorts). PMID:26810133

  10. ABCC3 genetic variants are associated with postoperative morphine-induced respiratory depression and morphine pharmacokinetics in children.

    PubMed

    Chidambaran, V; Venkatasubramanian, R; Zhang, X; Martin, L J; Niu, J; Mizuno, T; Fukuda, T; Meller, J; Vinks, A A; Sadhasivam, S

    2017-03-01

    Respiratory depression (RD) is a serious side effect of morphine and detrimental to effective analgesia. We reported that variants of the ATP binding cassette gene ABCC3 (facilitates hepatic morphine metabolite efflux) affect morphine metabolite clearance. In this study of 316 children undergoing tonsillectomy, we found significant association between ABCC3 variants and RD leading to prolonged postoperative care unit stay (prolonged RD). Allele A at rs4148412 and allele G at rs729923 caused a 2.36 (95% CI=1.28-4.37, P=0.0061) and 3.7 (95% CI 1.47-9.09, P=0.0050) times increase in odds of prolonged RD, respectively. These clinical associations were supported by increased formation clearance of morphine glucuronides in children with rs4148412 AA and rs4973665 CC genotypes in this cohort, as well as an independent spine surgical cohort of 67 adolescents. This is the first study to report association of ABCC3 variants with opioid-related RD, and morphine metabolite formation (in two independent surgical cohorts).

  11. A Growth Factor Attenuates HIV-1 Tat and Morphine Induced Damage to Human Neurons: Implication in HIV/AIDS-Drug Abuse Cases

    PubMed Central

    Malik, Shaily; Khalique, Hena; Buch, Shilpa; Seth, Pankaj

    2011-01-01

    The neuropathological abnormalities of human immunodeficiency virus (HIV)-1 patients abusing illicit drugs suggest extensive interactions between the two agents, thereby leading to increased rate of progression to neurodegeneration. The role of HIV-1 transactivating protein, Tat has been elucidated in mediating neuronal damage via apoptosis, a hallmark of HIV-associated dementia (HAD), however the underlying mechanisms involved in enhanced neurodegeneration by illicit drugs remain elusive. In this study, we demonstrated that morphine enhances HIV-Tat induced toxicity in human neurons and neuroblastoma cells. Enhanced toxicity by Tat and morphine was accompanied by increased numbers of TUNEL positive apoptotic neurons, elevated caspase-3 levels and decreased ratio of anti- and pro-apoptotic proteins, Bcl2/Bax. Tat and morphine together elicited high levels of reactive oxygen species that were NADPH dependent. Significant alterations in mitochondrial membrane homeostasis were also observed with co-exposure of these agents. Extensive studies of mitogen activated protein kinase (MAPK) signaling pathways revealed the involvement of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase-1/2 (ERK1/2) pathways in enhanced toxicity of Tat and morphine. In addition to this, we found that pre-treatment of cells with platelet derived growth factor (PDGF-BB) protected neurons from HIV-Tat and morphine induced damage. PDGF-BB alleviated ROS production, maintained mitochondrial membrane potential, decreased caspase-3 activation and hence protected the cells from undergoing apoptosis. PDGF-BB mediated protection against Tat and morphine involved the phosphatidylinositol–3 kinase (PI3K) pathway, as specific inhibitor of PI3K abrogated the protection conferred by PDGF-BB. This study demonstrates the mechanism of enhanced toxicity in human neurons subjected to co-exposure of HIV protein Tat and morphine, thus implying its importance in HIV positive drug abusers

  12. Effort-reward imbalance, overcommitment and their associations with all-cause and mental disorder long-term sick leave - A case-control study of the Swedish working population.

    PubMed

    Lidwall, Ulrik

    2016-11-18

    To investigate if effort-reward imbalance (ERI) and overcommitment (OC) are associated with all-cause and mental disorder long-term sick leave (LS), and to identify differences in associations between genders, private versus public sector employees and socioeconomic status groups. The study uses a cross-sectional case-control design with a sample of 3477 persons on long-term sick leave of more than 59 days and a control group of 2078 in employment. Data on sick leave originate from social insurance registers, while data on health, working and living conditions were gathered through a survey. The binary logistic regression was used to test the multivariate associations. Effort-reward imbalance was associated with all-cause LS among the women (odds ratio (OR) = 1.58, 95% CI: 1.2-2.08), but not among the men. Associations for mental disorder LS were evident for both ERI and OC among both genders (ERI/OC: women OR = 2.76/2.82; men OR = 2.18/2.92). For the men these associations were driven by high effort, while for the women it was low job esteem in public sector and low job security in private sector. Among the highly educated women, ERI was strongly related to mental disorder LS (OR = 6.94, 95% CI: 3.2-15.04), while the highly educated men seemed to be strongly affected by OC for the same outcome (OR = 5.79, 95% CI: 1.48-22.57). The study confirmed the independent roles of ERI and OC for LS, with stronger associations among the women and for mental disorders. The ERI model is a promising tool that can contribute to understanding the prevailing gender gap in sick leave and increasing sick leave due to mental disorders. Int J Occup Med Environ Health 2016;29(6):973-989.

  13. Rewarding the Resident Teacher

    ERIC Educational Resources Information Center

    McBride, Jennifer M.; Drake, Richard L.

    2011-01-01

    Residents routinely make significant contributions to the education of medical students. However, little attention has been paid to rewarding these individuals for their involvement in these academic activities. This report describes a program that rewards resident teachers with an academic appointment as a Clinical Instructor. The residents…

  14. Reward Merit with Praise.

    ERIC Educational Resources Information Center

    Andrews, Hans A.

    1987-01-01

    Describes the efforts of two educational institutions to reward teaching excellence using positive feedback rather than merit pay incentives. An Arizona district, drawing on Herzberg's motivation theories, offers highly individualized rewards ranging from computers to conference money, while an Illinois community college bestows engraved plaques…

  15. Rewarding the Resident Teacher

    ERIC Educational Resources Information Center

    McBride, Jennifer M.; Drake, Richard L.

    2011-01-01

    Residents routinely make significant contributions to the education of medical students. However, little attention has been paid to rewarding these individuals for their involvement in these academic activities. This report describes a program that rewards resident teachers with an academic appointment as a Clinical Instructor. The residents…

  16. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  17. Reward expectations in honeybees

    PubMed Central

    2010-01-01

    The study of expectations of reward helps to understand rules controlling goal-directed behavior as well as decision making and planning. I shall review a series of recent studies focusing on how the food gathering behavior of honeybees depends upon reward expectations. These studies document that free-flying honeybees develop long-term expectations of reward and use them to regulate their investment of energy/time during foraging. Also, they present a laboratory procedure suitable for analysis of neural substrates of reward expectations in the honeybee brain. I discuss these findings in the context of individual and collective foraging, on the one hand, and neurobiology of learning and memory of reward. PMID:20585498

  18. Reward expectations in honeybees.

    PubMed

    Gil, Mariana

    2010-03-01

    The study of expectations of reward helps to understand rules controlling goal-directed behavior as well as decision making and planning. I shall review a series of recent studies focusing on how the food gathering behavior of honeybees depends upon reward expectations. These studies document that free-flying honeybees develop long-term expectations of reward and use them to regulate their investment of energy/time during foraging. Also, they present a laboratory procedure suitable for analysis of neural substrates of reward expectations in the honeybee brain. I discuss these findings in the context of individual and collective foraging, on the one hand, and neurobiology of learning and memory of reward.

  19. Mephedrone exposure in adolescent rats alters the rewarding effect of morphine in adults.

    PubMed

    Joanna, Listos; Sylwia, Talarek; Magdalena, Gryzinska; Piotr, Listos; Ewa, Kedzierska; Jolanta, Orzelska-Gorka; Malgorzata, Dylewska; Malgorzata, Lupina; Kotlinska, Jolanta H

    2017-09-05

    An increasing number of data show that exposure to mephedrone in adolescence can have long-lasting implication on brain activity and on peripheral organs/tissues. The aim of this study was to investigate whether adolescent exposure to mephedrone (10mg/kg, i.p.) has influence upon the rewarding effect of morphine (5mg/kg, i.p.) in adult rats. Thus, the adolescent rats (on the 30th PND) were treated with mephedrone for 7 consecutive days. When the animals were adult (on the 60th PND) the morphine-induced conditioned place preference (CPP) test was performed. After that, the level of DNA methylation in the striatum was investigated. DNA methylation is one of the epigenetic mechanisms which produces changes in the genome. These alterations may affect the phenotype, without effect on DNA sequences, and has influence on drug addiction. Additionally, in order to check the toxic properties of mephedrone on the peripheral organs, the histopathological examination of kidney and liver was carried out. The present experiments demonstrated that: 1) adolescent mephedrone exposure may intensify the rewarding effect of morphine in adult rats in the CPP test; 2) mephedrone may induce the alterations in DNA methylation in striatum of adult rats leading to changes in gene activity; 3) mephedrone may produce some retrogressive disturbances in kidney and liver, which confirms the toxic properties of this substance. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rewarding effects of ethanol combined with low doses of morphine through dopamine D1 receptors.

    PubMed

    Ise, Yuya; Mori, Tomohisa; Katayama, Shirou; Nagase, Hiroshi; Suzuki, Tsutomu

    2013-01-01

    This study investigated whether ethanol combined with low doses of morphine produces rewarding effects in rats. Ethanol (0.075-1.2 g/kg, intraperitoneal [i.p.]) alone did not induce place preference. A moderate dose (1 mg/kg, s.c.), but not a low dose (0.1 mg/kg), of morphine induced a significant place preference. The combination of ethanol (0.075-0.6 g/kg, i.p.) and 0.1 mg/kg of morphine, as well as low doses of morphine (0.03-0.1 mg/kg, subcutaneous [s.c.]) combined with ethanol (0.3 g/kg, i.p.), induced a significant place preference. The combined effect of ethanol and morphine was significantly attenuated by naloxone (0.3 mg/kg, s.c.), naltrindole (1.0 mg/kg, s.c.), or long-term administration of the dopamine D1 receptor antagonist SCH23390 (1.0 mg/kg/day, s.c.). These results suggest that the rewarding effect induced by ethanol and a low dose of morphine is mediated by activation of the central opioidergic and dopaminergic systems through dopamine D1 receptors.

  1. Reducing endocannabinoid metabolism with the fatty acid amide hydrolase inhibitor, URB597, fails to modify reinstatement of morphine-induced conditioned floor preference and naloxone-precipitated morphine withdrawal-induced conditioned floor avoidance.

    PubMed

    McCallum, Amanda L; Limebeer, Cheryl L; Parker, Linda A

    2010-10-01

    The potential of the fatty acid amide hydrolase (FAAH) inhibitor, URB597, to modify drug prime-induced reinstatement of morphine-induced conditioned floor preference or naloxone-precipitated morphine withdrawal-induced conditioned floor avoidance was evaluated. In Experiment 1, morphine-induced conditioned floor preference was established across 4 conditioning trials. Following extinction training (4 trials), rats were pretreated with URB597 or vehicle prior to a morphine prime or a saline prime. Morphine reinstated the previously extinguished floor preference, but URB597 did not modify the strength of the reinstated preference. In Experiment 2, naloxone-precipitated morphine withdrawal-induced conditioned floor avoidance was established across 2 conditioning trials. Following extinction training (14 trials), rats were pretreated with URB597 or vehicle prior to a saline prime or a morphine withdrawal prime. The morphine withdrawal prime reinstated the previously extinguished floor avoidance, but URB597 did not modify the strength of reinstated avoidance. These results suggest that under the conditions in which URB597 promotes extinction (e.g., Manwell et al. (2009)) it does not interfere with drug-induced reinstatement of either conditioned floor preference or avoidance. That is, although activation of the endocannabinoid (eCB) system promotes extinction of aversive learning, it may not prevent reinstatement of that aversion by re-exposure to the aversive treatment.

  2. Dopamine signaling in reward-related behaviors.

    PubMed

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  3. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  4. Reward, context, and human behaviour.

    PubMed

    Blaukopf, Clare L; DiGirolamo, Gregory J

    2007-05-29

    Animal models of reward processing have revealed an extensive network of brain areas that process different aspects of reward, from expectation and prediction to calculation of relative value. These results have been confirmed and extended in human neuroimaging to encompass secondary rewards more unique to humans, such as money. The majority of the extant literature covers the brain areas associated with rewards whilst neglecting analysis of the actual behaviours that these rewards generate. This review strives to redress this imbalance by illustrating the importance of looking at the behavioural outcome of rewards and the context in which they are produced. Following a brief review of the literature of reward-related activity in the brain, we examine the effect of reward context on actions. These studies reveal how the presence of reward vs. reward and punishment, or being conscious vs. unconscious of reward-related actions, differentially influence behaviour. The latter finding is of particular importance given the extent to which animal models are used in understanding the reward systems of the human mind. It is clear that further studies are needed to learn about the human reaction to reward in its entirety, including any distinctions between conscious and unconscious behaviours. We propose that studies of reward entail a measure of the animal's (human or nonhuman) knowledge of the reward and knowledge of its own behavioural outcome to achieve that reward.

  5. Time discounting for primary rewards.

    PubMed

    McClure, Samuel M; Ericson, Keith M; Laibson, David I; Loewenstein, George; Cohen, Jonathan D

    2007-05-23

    Previous research, involving monetary rewards, found that limbic reward-related areas show greater activity when an intertemporal choice includes an immediate reward than when the options include only delayed rewards. In contrast, the lateral prefrontal and parietal cortex (areas commonly associated with deliberative cognitive processes, including future planning) respond to intertemporal choices in general but do not exhibit sensitivity to immediacy (McClure et al., 2004). The current experiments extend these findings to primary rewards (fruit juice or water) and time delays of minutes instead of weeks. Thirsty subjects choose between small volumes of drinks delivered at precise times during the experiment (e.g., 2 ml now vs 3 ml in 5 min). Consistent with previous findings, limbic activation was greater for choices between an immediate reward and a delayed reward than for choices between two delayed rewards, whereas the lateral prefrontal cortex and posterior parietal cortex responded similarly whether choices were between an immediate and a delayed reward or between two delayed rewards. Moreover, relative activation of the two sets of brain regions predicts actual choice behavior. A second experiment finds that when the delivery of all rewards is offset by 10 min (so that the earliest available juice reward in any choice is 10 min), no differential activity is observed in limbic reward-related areas for choices involving the earliest versus only more delayed rewards. We discuss implications of this finding for differences between primary and secondary rewards.

  6. Exposure to Opiates in Female Adolescents Alters Mu Opiate Receptor Expression and Increases the Rewarding Effects of Morphine in Future Offspring

    PubMed Central

    Vassoler, Fair M.; Wright, Siobhan J.; Byrnes, Elizabeth M.

    2016-01-01

    Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30–39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. PMID:26700246

  7. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring.

    PubMed

    Vassoler, Fair M; Wright, Siobhan J; Byrnes, Elizabeth M

    2016-04-01

    Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA.

  8. Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference.

    PubMed

    Guo, Sui-Jun; Cui, Yu; Huang, Zhen-Zhen; Liu, Huan; Zhang, Xue-Qin; Jiang, Jin-Xiang; Xin, Wen-Jun

    2016-05-01

    Accumulating evidence indicates that the hippocampal dentate gyrus (DG), a critical brain region contributing to learning and memory, is involved in the addiction and relapse to abused drugs. Emerging studies also suggest the role of orexin signaling in the rewarding behavior induced by repeated exposure to opiates. In the present study, we investigated the dynamic adaptation of orexin signaling in the DG and its functional significance in the acquisition, expression, maintenance of and relapse to rewarding behavior induced by morphine. Repeated place conditioning with morphine significantly increased the orexin A content released from the lateral hypothalamic area projecting neurons into the DG. Local infusions of orexin A into the DG sensitized the acquisition of and relapse to the conditioned place preference induced by morphine. The application of the orexin receptor type 1 (OXR1) antagonist SB334867 significantly abolished the acquisition, expression and maintenance of the conditioned place preference induced by repeated exposure to morphine. Furthermore, the significant increase of the phosphorylation of AKT in the DG was associated with preference for the morphine-paired chamber in rats, which was reversed by the local administration of an OXR1 antagonist. Thus, these findings suggested that the dynamic upregulation of orexin A signaling, via the AKT pathway in the DG, may promote the acquisition and maintenance of opioid-induced craving behaviors and may increase sensitivity to the rewarding effect of subsequent opioids.

  9. Promising High Monetary Rewards for Future Task Performance Increases Intermediate Task Performance

    PubMed Central

    Zedelius, Claire M.; Veling, Harm; Bijleveld, Erik; Aarts, Henk

    2012-01-01

    In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner. PMID:22905145

  10. Reward modulates adaptations to conflict.

    PubMed

    Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim

    2012-11-01

    Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single flanker task (Experiment 1) or a task-switch paradigm (Experiment 2) with performance-related rewards. Both experiments confirmed that adaptations after conflict were modulated by reward. In the flanker task, this resulted in increased conflict adaptation after rewarded trials. In the task-switching experiment, reward increased the conflict-modulated switch cost. Interestingly, both adaptations to conflict disappeared after no-reward trials. Moreover, individual differences in participants' sensitivity to reward predicted these reward modulations of trial-to-trial adaptations. These findings shed new light on the exact role of cognitive conflict in shaping subsequent behavior.

  11. Activation of Mas oncogene-related gene (Mrg) C receptors enhances morphine-induced analgesia through modulation of coupling of μ-opioid receptor to Gi-protein in rat spinal dorsal horn.

    PubMed

    Wang, D; Chen, T; Zhou, X; Couture, R; Hong, Y

    2013-12-03

    Mas oncogene-related gene (Mrg) G protein-coupled receptors are exclusively expressed in small-sized neurons in trigeminal and dorsal root ganglia (DRG) in mammals. The present study investigated the effect of MrgC receptor activation on morphine analgesic potency and addressed its possible mechanisms. Intrathecal (i.t.) administration of the specific MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) increased morphine-induced analgesia and shifted the morphine dose-response curve to the left in rats. Acute morphine (5 μg) reduced the coupling of μ-opioid receptors (MORs) to Gi-, but not Gs-, protein in the spinal dorsal horn. The i.t. BAM8-22 (3 nmol) prevented this change of G-protein repertoire while the inactive MrgC receptor agonist BAM8-18 (3 nmol, i.t.) failed to do so. A double labeling study showed the co-localization of MrgC and MORs in DRG neurons. The i.t. BAM8-22 also increased the coupling of MORs to Gi-protein and recruited Gi-protein from cytoplasm to the cell membrane in the spinal dorsal horn. Application of BAM8-22 (10nM) in the cultured ganglion explants for 30 min increased Gi-protein mRNA, but not Gs-protein mRNA. The present study demonstrated that acute administration of morphine inhibited the repertoire of MOR/Gi-protein coupling in the spinal dorsal horn in vivo. The findings highlight a novel mechanism by which the activation of MrgC receptors can modulate the coupling of MORs with Gi-protein to enhance morphine-induced analgesia. Hence, adjunct treatment of MrgC agonist BAM8-22 may be of therapeutic value to relieve pain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Differences in basal and morphine-induced FosB/DeltaFosB and pCREB immunoreactivities in dopaminergic brain regions of alcohol-preferring AA and alcohol-avoiding ANA rats.

    PubMed

    Kaste, Kristiina; Kivinummi, Tanja; Piepponen, T Petteri; Kiianmaa, Kalervo; Ahtee, Liisa

    2009-06-01

    Besides alcohol, alcohol-preferring AA and alcohol-avoiding ANA rats differ also with respect to other abused drugs. To study the molecular basis of these differences, we examined the expression of two transcription factors implicated in addiction, DeltaFosB and pCREB, in brain dopaminergic regions of AA and ANA rats. The effects of morphine and nicotine were studied to relate the behavioral and molecular changes induced by these drugs. Baseline FosB/DeltaFosB immunoreactivity (IR) in the nucleus accumbens core and pCREB IR in the prefrontal cortex (PFC) were elevated in AA rats. Morphine increased DeltaFosB-like IR more readily in the caudate-putamen of AA rats than in ANA rats. In the PFC morphine decreased pCREB IR in AA rats, but increased it in ANA rats. In addition to enhanced locomotor response, the development of place preference to morphine was enhanced in AA rats. The enhanced nicotine-induced locomotor sensitization found in AA compared with ANA rats seems to depend in addition to dopamine and DeltaFosB on other mechanisms. These findings suggest that enhanced sensitivity of AA rats to morphine is related to augmented morphine-induced expression of FosB/DeltaFosB and morphine-induced reduction of pCREB levels. Moreover, altered innate expression of FosB/DeltaFosB and pCREB in AA rats is likely to affect the sensitivity of these rats to abused drugs.

  13. Updating dopamine reward signals

    PubMed Central

    Schultz, Wolfram

    2013-01-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations. PMID:23267662

  14. Ghrelin, reward and motivation.

    PubMed

    Menzies, John R W; Skibicka, Karolina P; Leng, Gareth; Dickson, Suzanne L

    2013-01-01

    Almost all circulating gut peptides contribute to the control of food intake by signalling satiety. One important exception is ghrelin, the only orexigenic peptide hormone thus far described. Ghrelin secretion increases before meals and behavioural and electrophysiological evidence shows that ghrelin acts in the hypothalamus via homeostatic pathways to signal hunger and increase food intake and adiposity. These findings strongly suggest that ghrelin is a dynamically regulated peripheral hunger signal. However, ghrelin also interacts with the brain reward pathways to increase food intake, alter food preference and enhance food reward. Here we discuss ghrelin's role as an endocrine gut-brain reward signal in relation to homeostatic and hedonic feeding control. Copyright © 2013 S. Karger AG, Basel.

  15. Do Economic Rewards Work?

    ERIC Educational Resources Information Center

    Wallace, Brian D.

    2009-01-01

    The love of learning--that intrinsic desire to gain knowledge and insight into new subjects--was once its own reward. That was altered decades ago when parents started using the proverbial "stick and carrot" to motivate their children to do well in school, or even just show up. Today, educators across the country have taken hold of this…

  16. A Rewarding Partnership

    ERIC Educational Resources Information Center

    Abbott, Cheryl; Swanson, Marc

    2006-01-01

    A collaborating scientist--a rewarding addition to any high school science program--can help students collect and analyze data that either replicates or parallels the work of the partnering scientist. This type of partnership is beneficial for both students and scientists, and perhaps there has never been a better time to consider such a…

  17. Rewards and Supports

    ERIC Educational Resources Information Center

    Hershberg, Theodore; Robertson-Kraft, Claire

    2010-01-01

    Pay-for-performance systems in public schools have long been burdened with controversy. Critics of performance pay systems contend that because teachers' impact cannot be measured without error, it is impossible to create fair and accurate systems for evaluating and rewarding performance. By this standard, however, current practice fails on both…

  18. A Rewarding Partnership

    ERIC Educational Resources Information Center

    Abbott, Cheryl; Swanson, Marc

    2006-01-01

    A collaborating scientist--a rewarding addition to any high school science program--can help students collect and analyze data that either replicates or parallels the work of the partnering scientist. This type of partnership is beneficial for both students and scientists, and perhaps there has never been a better time to consider such a…

  19. Rewards and Supports

    ERIC Educational Resources Information Center

    Hershberg, Theodore; Robertson-Kraft, Claire

    2010-01-01

    Pay-for-performance systems in public schools have long been burdened with controversy. Critics of performance pay systems contend that because teachers' impact cannot be measured without error, it is impossible to create fair and accurate systems for evaluating and rewarding performance. By this standard, however, current practice fails on both…

  20. Performance Management and Reward

    NASA Astrophysics Data System (ADS)

    Yiannis, Triantafyllopoulos; Ioannis, Seimenis; Nikolaos, Konstantopoulos

    2009-08-01

    The article aims to examine, current Performance Management practices on Reward, financial or non-financial using lessons from the literature and the results of a qualitative analysis as these revealed from the interview of some executive members of Greek companies.

  1. Bribes or Rewards.

    ERIC Educational Resources Information Center

    Megyeri, Kathy A.

    Small tangible rewards for student progress, such as candy bars, pens, or ribbons, add potency to the verbal and written praise offered by the teacher, thus increasing student motivation. Giving students small prizes enhances the cooperative atmosphere of learning, especially for those who do not normally do well. Research indicates that low…

  2. Do Economic Rewards Work?

    ERIC Educational Resources Information Center

    Wallace, Brian D.

    2009-01-01

    The love of learning--that intrinsic desire to gain knowledge and insight into new subjects--was once its own reward. That was altered decades ago when parents started using the proverbial "stick and carrot" to motivate their children to do well in school, or even just show up. Today, educators across the country have taken hold of this…

  3. Performance Rewards in Athletics.

    ERIC Educational Resources Information Center

    Jones, Dianne; Mungai, Diana

    2001-01-01

    Discusses ways that college athletic coaches can motivate student athletes to improve performance, describing a model that recognizes the multiple factors that contribute to success. The model draws from experiences in corporate America, which uses performance reward systems to supplement base compensation. The model illustrates how one…

  4. The Rewards of Mentoring

    ERIC Educational Resources Information Center

    Green-Powell, Patricia

    2012-01-01

    A growing body of knowledge exists which describes the rewards and importance of mentors in the professional development of young men and women, particularly with relation to their interactions in professional and organizational settings. Research in both educational settings and the workplace indicates that students and employees alike are more…

  5. The salience of a reward cue can outlast reward devaluation.

    PubMed

    De Tommaso, Matteo; Mastropasqua, Tommaso; Turatto, Massimo

    2017-06-01

    Reward cues can be perceived as highly attractive stimuli because of their acquired motivational properties. However, because the motivational value of reward changes after reward receipt, a debated question is whether the attentional salience of reward cues changes accordingly. In Experiment 1, thirsty participants learned 3 cue-reward associations involving different contingencies. Then, while thirsty, participants performed a visual-search task under extinction, during which the previous reward cues appeared as irrelevant stimuli containing target and distractor items. Experiment 2 was identical to Experiment 1, except that participants drank ad libitum before the visual-search task. In Experiment 3, instead, participants quenched their thirst at the beginning of the learning session. The results of Experiment 1 showed that attention was preferentially deployed toward the cue that best predicted the reward in the previous conditioning phase. Crucially, Experiment 2 revealed that the attentional bias persisted despite reward devaluation. By contrast, no attentional bias was found in Experiment 3. The novelty of our study is that the attentional salience of a reward cue can outlast reward devaluation, suggesting that some incentive properties of the cue can become independent from those of the reward. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Monetary rewards modulate inhibitory control.

    PubMed

    Herrera, Paula M; Speranza, Mario; Hampshire, Adam; Bekinschtein, Tristán A

    2014-01-01

    The ability to override a dominant response, often referred to as behavioral inhibition, is considered a key element of executive cognition. Poor behavioral inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioral inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/NoGo and Stop Signal Tasks (SSTs). Several studies have reported a positive modulatory effect of reward on performance in pathological conditions such as substance abuse, pathological gambling, and Attention Deficit Hyperactive Disorder (ADHD). However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory tasks are scarce and little is known about the finer grained relationship between motivation and inhibitory control. Here we probed the effect of reward magnitude and context on behavioral inhibition with three modified versions of the widely used SST. The pilot study compared inhibition performance during six blocks alternating neutral feedback, low, medium, and high monetary rewards. Study One compared increasing vs. decreasing rewards, with low, high rewards, and neutral feedback; whilst Study Two compared low and high reward magnitudes alone also in an increasing and decreasing reward design. The reward magnitude effect was not demonstrated in the pilot study, probably due to a learning effect induced by practice in this lengthy task. The reward effect per se was weak but the context (order of reward) was clearly suggested in Study One, and was particularly strongly confirmed in study two. In addition, these findings revealed a "kick start effect" over global performance measures. Specifically, there was a long lasting improvement in performance throughout the task when participants received the highest reward magnitudes at the beginning of the

  7. Monetary rewards modulate inhibitory control

    PubMed Central

    Herrera, Paula M.; Speranza, Mario; Hampshire, Adam; Bekinschtein, Tristán A.

    2014-01-01

    The ability to override a dominant response, often referred to as behavioral inhibition, is considered a key element of executive cognition. Poor behavioral inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioral inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/NoGo and Stop Signal Tasks (SSTs). Several studies have reported a positive modulatory effect of reward on performance in pathological conditions such as substance abuse, pathological gambling, and Attention Deficit Hyperactive Disorder (ADHD). However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory tasks are scarce and little is known about the finer grained relationship between motivation and inhibitory control. Here we probed the effect of reward magnitude and context on behavioral inhibition with three modified versions of the widely used SST. The pilot study compared inhibition performance during six blocks alternating neutral feedback, low, medium, and high monetary rewards. Study One compared increasing vs. decreasing rewards, with low, high rewards, and neutral feedback; whilst Study Two compared low and high reward magnitudes alone also in an increasing and decreasing reward design. The reward magnitude effect was not demonstrated in the pilot study, probably due to a learning effect induced by practice in this lengthy task. The reward effect per se was weak but the context (order of reward) was clearly suggested in Study One, and was particularly strongly confirmed in study two. In addition, these findings revealed a “kick start effect” over global performance measures. Specifically, there was a long lasting improvement in performance throughout the task when participants received the highest reward magnitudes at the beginning of the

  8. Interactions between target location and reward size modulate the rate of microsaccades in monkeys.

    PubMed

    Joshua, Mati; Tokiyama, Stefanie; Lisberger, Stephen G

    2015-11-01

    We have studied how rewards modulate the occurrence of microsaccades by manipulating the size of an expected reward and the location of the cue that sets the expectations for future reward. We found an interaction between the size of the reward and the location of the cue. When monkeys fixated on a cue that signaled the size of future reward, the frequency of microsaccades was higher if the monkey expected a large vs. a small reward. When the cue was presented at a site in the visual field that was remote from the position of fixation, reward size had the opposite effect: the frequency of microsaccades was lower when the monkey was expecting a large reward. The strength of pursuit initiation also was affected by reward size and by the presence of microsaccades just before the onset of target motion. The gain of pursuit initiation increased with reward size and decreased when microsaccades occurred just before or after the onset of target motion. The effect of the reward size on pursuit initiation was much larger than any indirect effects reward might cause through modulation of the rate of microsaccades. We found only a weak relationship between microsaccade direction and the location of the exogenous cue relative to fixation position, even in experiments where the location of the cue indicated the direction of target motion. Our results indicate that the expectation of reward is a powerful modulator of the occurrence of microsaccades, perhaps through attentional mechanisms. Copyright © 2015 the American Physiological Society.

  9. Theory meets pigeons: the influence of reward-magnitude on discrimination-learning.

    PubMed

    Rose, Jonas; Schmidt, Robert; Grabemann, Marco; Güntürkün, Onur

    2009-03-02

    Modern theoretical accounts on reward-based learning are commonly based on reinforcement learning algorithms. Most noted in this context is the temporal-difference (TD) algorithm in which the difference between predicted and obtained reward, the prediction-error, serves as a learning signal. Consequently, larger rewards cause bigger prediction-errors and lead to faster learning than smaller rewards. Therefore, if animals employ a neural implementation of TD learning, reward-magnitude should affect learning in animals accordingly. Here we test this prediction by training pigeons on a simple color-discrimination task with two pairs of colors. In each pair, correct discrimination is rewarded; in pair one with a large-reward, in pair two with a small-reward. Pigeons acquired the 'large-reward' discrimination faster than the 'small-reward' discrimination. Animal behavior and an implementation of the TD-algorithm yielded comparable results with respect to the difference between learning curves in the large-reward and in the small-reward conditions. We conclude that the influence of reward-magnitude on the acquisition of a simple discrimination paradigm is accurately reflected by a TD implementation of reinforcement learning.

  10. Adaptive reward pursuit: how effort requirements affect unconscious reward responses and conscious reward decisions.

    PubMed

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2012-11-01

    When in pursuit of rewards, humans weigh the value of potential rewards against the amount of effort that is required to attain them. Although previous research has generally conceptualized this process as a deliberate calculation, recent work suggests that rudimentary mechanisms-operating without conscious intervention-play an important role as well. In this article, we propose that humans can perform a basic integration of reward value and effort requirements without conscious awareness. Furthermore, we propose that conscious awareness of rewards allows for the use of more advanced functions in reward pursuit, which consider the specific course of action that leads to reward attainment. Using a monetary reward priming paradigm that allows us to dissect the performance effects of rewards (i.e., coins of different value) into conscious and unconscious components, we tested this proposal in 3 experiments. Overall, results indicate that people rely on a simple yet adaptive mechanism that unconsciously conserves effort during reward pursuit, because it makes people more reward sensitive whenever more effort is required of the body. Moreover, consciousness supports a more sophisticated mode of reward pursuit, via which people can strategically conserve effort even further. We discuss these findings in the context of decision making, motivation, and consciousness. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  11. A model of food reward learning with dynamic reward exposure

    PubMed Central

    Hammond, Ross A.; Ornstein, Joseph T.; Fellows, Lesley K.; Dubé, Laurette; Levitan, Robert; Dagher, Alain

    2012-01-01

    The process of conditioning via reward learning is highly relevant to the study of food choice and obesity. Learning is itself shaped by environmental exposure, with the potential for such exposures to vary substantially across individuals and across place and time. In this paper, we use computational techniques to extend a well-validated standard model of reward learning, introducing both substantial heterogeneity and dynamic reward exposures. We then apply the extended model to a food choice context. The model produces a variety of individual behaviors and population-level patterns which are not evident from the traditional formulation, but which offer potential insights for understanding food reward learning and obesity. These include a “lock-in” effect, through which early exposure can strongly shape later reward valuation. We discuss potential implications of our results for the study and prevention of obesity, for the reward learning field, and for future experimental and computational work. PMID:23087640

  12. High monetary reward rates and caloric rewards decrease temporal persistence

    PubMed Central

    Bode, Stefan; Murawski, Carsten

    2017-01-01

    Temporal persistence refers to an individual's capacity to wait for future rewards, while forgoing possible alternatives. This requires a trade-off between the potential value of delayed rewards and opportunity costs, and is relevant to many real-world decisions, such as dieting. Theoretical models have previously suggested that high monetary reward rates, or positive energy balance, may result in decreased temporal persistence. In our study, 50 fasted participants engaged in a temporal persistence task, incentivised with monetary rewards. In alternating blocks of this task, rewards were delivered at delays drawn randomly from distributions with either a lower or higher maximum reward rate. During some blocks participants received either a caloric drink or water. We used survival analysis to estimate participants' probability of quitting conditional on the delay distribution and the consumed liquid. Participants had a higher probability of quitting in blocks with the higher reward rate. Furthermore, participants who consumed the caloric drink had a higher probability of quitting than those who consumed water. Our results support the predictions from the theoretical models, and importantly, suggest that both higher monetary reward rates and physiologically relevant rewards can decrease temporal persistence, which is a crucial determinant for survival in many species. PMID:28228517

  13. Social reward shapes attentional biases.

    PubMed

    Anderson, Brian A

    2016-01-01

    Paying attention to stimuli that predict a reward outcome is important for an organism to survive and thrive. When visual stimuli are associated with tangible, extrinsic rewards such as money or food, these stimuli acquire high attentional priority and come to automatically capture attention. In humans and other primates, however, many behaviors are not motivated directly by such extrinsic rewards, but rather by the social feedback that results from performing those behaviors. In the present study, I examine whether positive social feedback can similarly influence attentional bias. The results show that stimuli previously associated with a high probability of positive social feedback elicit value-driven attentional capture, much like stimuli associated with extrinsic rewards. Unlike with extrinsic rewards, however, such stimuli also influence task-specific motivation. My findings offer a potential mechanism by which social reward shapes the information that we prioritize when perceiving the world around us.

  14. Rewarding properties of visual stimuli.

    PubMed

    Blatter, Katharina; Schultz, Wolfram

    2006-01-01

    The behavioral functions of rewards comprise the induction of learning and approach behavior. Rewards are not only related to vegetative states of hunger, thirst and reproduction but may also consist of visual stimuli. The present experiment tested the reward potential of different types of still and moving pictures in three operant tasks involving key press, touch of computer monitor and choice behavior in a laboratory environment. We found that all tested visual stimuli induced approach behavior in all three tasks, and that action movies sustained consistently higher rates of responding compared to changing still pictures, which were more effective than constant still pictures. These results demonstrate that visual stimuli can serve as positive reinforcers for operant reactions of animals in controlled laboratory settings. In particular, the coherently animated visual stimuli of movies have considerable reward potential. These observations would allow similar forms of visual rewards to be used for neurophysiological investigations of mechanisms related to non-vegetative rewards.

  15. Nutritional controls of food reward.

    PubMed

    Fernandes, Maria F; Sharma, Sandeep; Hryhorczuk, Cecile; Auguste, Stephanie; Fulton, Stephanie

    2013-08-01

    The propensity to select and consume palatable nutrients is strongly influenced by the rewarding effects of food. Neural processes integrating reward, emotional states and decision-making can supersede satiety signals to promote excessive caloric intake and weight gain. While nutritional habits are influenced by reward-based neural mechanisms, nutrition and its impact on energy metabolism, in turn, plays an important role in the control of food reward. Feeding modulates the release of metabolic hormones that have an important influence on central controls of appetite. Nutrients themselves are also an essential source of energy fuel, while serving as key metabolites and acting as signalling molecules in the neural pathways that control feeding and food reward. Along these lines, this review discusses the impact of nutritionally regulated hormones and select macronutrients on the behavioural and neural processes underlying the rewarding effects of food. Copyright © 2013 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation and reward delivery

    PubMed Central

    Bjork, James M.; Smith, Ashley R.; Chen, Gang; Hommer, Daniel W.

    2011-01-01

    Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: 1) cues to respond for monetary rewards, 2) post-response anticipation of rewards, or 3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction. PMID:22281932

  17. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation, and reward delivery.

    PubMed

    Bjork, James M; Smith, Ashley R; Chen, Gang; Hommer, Daniel W

    2012-09-01

    Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: (1) cues to respond for monetary rewards, (2) post-response anticipation of rewards, or (3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction.

  18. Reward Industry for Innovative Outcomes

    DTIC Science & Technology

    2015-08-01

    Defense AT&L: July–August 2015 34 Reward Industry for Innovative Outcomes RADM Allie Coetzee, USN Coetzee is Acting Director of Defense Procurement...away from the “best efforts” default and toward rational use of other techniques. Rather than reward compa- nies with contracts and funds to pursue...concepts advanced on paper in proposals, the DoD desires to reward companies that deliver demonstrable results through early prototypes that can be

  19. Rewarding with dignity.

    PubMed

    Davidhizar, R; Shearer, R

    1998-11-01

    Job satisfaction affects employee morale, which in turn affects employee productivity. Therefore, managers need to learn about contributing factors and use the factors within their power to improve job satisfaction. Extrinsic rewards, such as a high salary and good work benefits, are important, but studies show that how a job makes an employee feel is the greatest determinant of job satisfaction. Managers can influence the emotional effect of work on an employee through, among other strategies, recognizing the employee's efforts, providing opportunities for the employee to participate in decision making, and allowing the employee to grow professionally.

  20. Reward processing in adolescent rodents

    PubMed Central

    Simon, Nicholas W; Moghaddam, Bita

    2015-01-01

    Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents. PMID:25524828

  1. Affective neuroscience of pleasure: reward in humans and animals

    PubMed Central

    2010-01-01

    Introduction Pleasure and reward are generated by brain circuits that are largely shared between humans and other animals. Discussion Here, we survey some fundamental topics regarding pleasure mechanisms and explicitly compare humans and animals. Conclusion Topics surveyed include liking, wanting, and learning components of reward; brain coding versus brain causing of reward; subjective pleasure versus objective hedonic reactions; roles of orbitofrontal cortex and related cortex regions; subcortical hedonic hotspots for pleasure generation; reappraisals of dopamine and pleasure-electrode controversies; and the relation of pleasure to happiness. PMID:18311558

  2. Affective neuroscience of pleasure: reward in humans and animals.

    PubMed

    Berridge, Kent C; Kringelbach, Morten L

    2008-08-01

    Pleasure and reward are generated by brain circuits that are largely shared between humans and other animals. Here, we survey some fundamental topics regarding pleasure mechanisms and explicitly compare humans and animals. Topics surveyed include liking, wanting, and learning components of reward; brain coding versus brain causing of reward; subjective pleasure versus objective hedonic reactions; roles of orbitofrontal cortex and related cortex regions; subcortical hedonic hotspots for pleasure generation; reappraisals of dopamine and pleasure-electrode controversies; and the relation of pleasure to happiness.

  3. Rewards teach visual selective attention.

    PubMed

    Chelazzi, Leonardo; Perlato, Andrea; Santandrea, Elisa; Della Libera, Chiara

    2013-06-07

    Visual selective attention is the brain function that modulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior. Enhanced analysis of currently relevant or otherwise salient information is often accompanied by suppressed processing of the less relevant or salient input. Recent findings indicate that rewards exert a powerful influence on the deployment of visual selective attention. Such influence takes different forms depending on the specific protocol adopted in the given study. In some cases, the prospect of earning a larger reward in relation to a specific stimulus or location biases attention accordingly in order to maximize overall gain. This is mediated by an effect of reward acting as a type of incentive motivation for the strategic control of attention. In contrast, reward delivery can directly alter the processing of specific stimuli by increasing their attentional priority, and this can be measured even when rewards are no longer involved, reflecting a form of reward-mediated attentional learning. As a further development, recent work demonstrates that rewards can affect attentional learning in dissociable ways depending on whether rewards are perceived as feedback on performance or instead are registered as random-like events occurring during task performance. Specifically, it appears that visual selective attention is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them. Overall this emerging literature demonstrates unequivocally that rewards "teach" visual selective attention so that processing resources will be allocated to objects, features and locations which are likely to optimize the organism's interaction with the

  4. Rewards Are a Rat Trap.

    ERIC Educational Resources Information Center

    Maydosz, Ann S.

    1998-01-01

    Argues against the use of rewards for students. Discusses their origin in Skinner's behaviorism and their application in behavior modification in the classroom. Describes the problems with using rewards, as noted by Alfie Kohn and others, including the erosion of intrinsic motivation and the distortion of the focus of learning. Presents…

  5. Something funny happened to reward.

    PubMed

    Berns, Gregory S

    2004-05-01

    The human reward system has been shown to be activated by a wide range of reinforcers, including food, money, sex, drugs, and beauty. Now, a recent fMRI study has found mesolimbic reward activation associated with humorous cartoons, providing a neurobiological link between theories of humour and hedonic processes in the brain.

  6. Reward Modulates Adaptations to Conflict

    ERIC Educational Resources Information Center

    Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim

    2012-01-01

    Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single…

  7. Reward Modulates Adaptations to Conflict

    ERIC Educational Resources Information Center

    Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim

    2012-01-01

    Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single…

  8. Reward deficiency and anti-reward in pain chronification.

    PubMed

    Borsook, D; Linnman, C; Faria, V; Strassman, A M; Becerra, L; Elman, I

    2016-09-01

    Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.g., the central and basolateral amygdala nuclei, the bed nucleus of the stria terminalis, the lateral tegmental noradrenergic nuclei of the brain stem, the hippocampus and the habenula) responsible for massive outpouring of stressogenic neurochemicals (e.g., norepinephrine, corticotropin releasing factor, vasopressin, hypocretin, and substance P) giving rise to such negative affective states as anxiety, fear and depression. We propose here the Combined Reward deficiency and Anti-reward Model (CReAM), in which biopsychosocial variables modulating brain reward, motivation and stress functions can interact in a 'downward spiral' fashion to exacerbate the intensity, chronicity and comorbidities of chronic pain syndromes (i.e., pain chronification). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Development of Monetary and Social Reward Processes.

    PubMed

    Wang, Di; Liu, Tongran; Shi, Jiannong

    2017-09-11

    The current study investigated monetary and social reward processing in children, adolescents and adults with adapted incentive-delay tasks and self-report questionnaires. Both tasks had three levels of reward magnitudes (no, low, and high). Qualified participants received 15 Chinese Yuan and an honor certificate as monetary and social rewards, respectively. The results indicated that both monetary and social rewards effectively speeded up responses for all three age groups as reward magnitude increased in the choice reaction time task. Among adolescents and adults, males exhibited faster responses in high reward than in low reward condition, while females responded equally fast in both conditions. Among children, girls responded faster to high reward than low reward condition. However, boys committed more errors than girls in low and high reward conditions, and they had exhibited more errors in high reward than that in no reward condition for social reward. Regarding the subjective ratings, both children and adolescents reported higher motivation for social reward than for monetary reward. These findings indicated that the males in the adolescent and adult groups were more sensitive to reward than were the females. Moreover, tangible and quantitative social reward had stronger incentive power than monetary reward among children and adolescents.

  10. Adaptive Reward Pursuit: How Effort Requirements Affect Unconscious Reward Responses and Conscious Reward Decisions

    ERIC Educational Resources Information Center

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2012-01-01

    When in pursuit of rewards, humans weigh the value of potential rewards against the amount of effort that is required to attain them. Although previous research has generally conceptualized this process as a deliberate calculation, recent work suggests that rudimentary mechanisms--operating without conscious intervention--play an important role as…

  11. Adaptive Reward Pursuit: How Effort Requirements Affect Unconscious Reward Responses and Conscious Reward Decisions

    ERIC Educational Resources Information Center

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2012-01-01

    When in pursuit of rewards, humans weigh the value of potential rewards against the amount of effort that is required to attain them. Although previous research has generally conceptualized this process as a deliberate calculation, recent work suggests that rudimentary mechanisms--operating without conscious intervention--play an important role as…

  12. Reward-Guided Learning with and without Causal Attribution.

    PubMed

    Jocham, Gerhard; Brodersen, Kay H; Constantinescu, Alexandra O; Kahn, Martin C; Ianni, Angela M; Walton, Mark E; Rushworth, Matthew F S; Behrens, Timothy E J

    2016-04-06

    When an organism receives a reward, it is crucial to know which of many candidate actions caused this reward. However, recent work suggests that learning is possible even when this most fundamental assumption is not met. We used novel reward-guided learning paradigms in two fMRI studies to show that humans deploy separable learning mechanisms that operate in parallel. While behavior was dominated by precise contingent learning, it also revealed hallmarks of noncontingent learning strategies. These learning mechanisms were separable behaviorally and neurally. Lateral orbitofrontal cortex supported contingent learning and reflected contingencies between outcomes and their causal choices. Amygdala responses around reward times related to statistical patterns of learning. Time-based heuristic mechanisms were related to activity in sensorimotor corticostriatal circuitry. Our data point to the existence of several learning mechanisms in the human brain, of which only one relies on applying known rules about the causal structure of the task.

  13. Reward-Guided Learning with and without Causal Attribution

    PubMed Central

    Jocham, Gerhard; Brodersen, Kay H.; Constantinescu, Alexandra O.; Kahn, Martin C.; Ianni, Angela M.; Walton, Mark E.; Rushworth, Matthew F.S.; Behrens, Timothy E.J.

    2016-01-01

    Summary When an organism receives a reward, it is crucial to know which of many candidate actions caused this reward. However, recent work suggests that learning is possible even when this most fundamental assumption is not met. We used novel reward-guided learning paradigms in two fMRI studies to show that humans deploy separable learning mechanisms that operate in parallel. While behavior was dominated by precise contingent learning, it also revealed hallmarks of noncontingent learning strategies. These learning mechanisms were separable behaviorally and neurally. Lateral orbitofrontal cortex supported contingent learning and reflected contingencies between outcomes and their causal choices. Amygdala responses around reward times related to statistical patterns of learning. Time-based heuristic mechanisms were related to activity in sensorimotor corticostriatal circuitry. Our data point to the existence of several learning mechanisms in the human brain, of which only one relies on applying known rules about the causal structure of the task. PMID:26971947

  14. Probability differently modulating the effects of reward and punishment on visuomotor adaptation.

    PubMed

    Song, Yanlong; Smiley-Oyen, Ann L

    2017-09-08

    Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.

  15. Addictive drugs and brain stimulation reward.

    PubMed

    Wise, R A

    1996-01-01

    Direct electrical or chemical stimulation of specific brain regions can establish response habits similar to those established by natural rewards such as food or sexual contact. Cocaine, mu and delta opiates, nicotine, phencyclidine, and cannabis each have actions that summate with rewarding electrical stimulation of the medial forebrain bundle (MFB). The reward-potentiating effects of amphetamine and opiates are associated with central sites of action where these drugs also have their direct rewarding effects, suggesting common mechanisms for drug reward per se and for drug potentiation of brain stimulation reward. The central sites at which these and perhaps other drugs of abuse potentiate brain stimulation reward and are rewarding in their own right are consistent with the hypothesis that the laboratory reward of brain stimulation and the pharmacological rewards of addictive drugs are habit forming because they act in the brain circuits that subserve more natural and biologically significant rewards.

  16. Long-lasting changes in morphine-induced locomotor sensitization and tolerance in Long-Evans mother rats as a result of periodic postpartum separation from the litter: a novel model of increased vulnerability to drug abuse?

    PubMed

    Kalinichev, Mikhail; Easterling, Keith W; Holtzman, Stephen G

    2003-02-01

    Daily postpartum separations from the litter produce enduring changes in anxiety and sensitivity to the antinociceptive effects of morphine in Long-Evans dams. We tested whether postpartum experience alters sensitivity to the effects of morphine on locomotor activity. Dams were tested 4-6 weeks after their pups were weaned, and had one of the following backgrounds: daily separation from the litter on postpartum days 2-14 for either 3 h (prolonged separation-LS) or 15 min (brief separation-BS), or no separation (nonhandled control-NH). After 2 consecutive days (B1-2) of baseline activity measurements, subjects were tested daily after s.c. injections of either morphine (10 mg/kg) or saline for 7 days and again on day 10. Beginning 5 days later, saline and 1.0-10 mg/kg of morphine were tested in all dams. On B1, LS and BS dams habituated slower than NH controls, yielding higher horizontal counts. LS dams failed to habituate across baseline days and were more active than other dams on B2. Sensitization, a progressive increase in horizontal activity, was more rapid and robust in LS and BS dams compared to NH animals. LS was the only group that developed tolerance to morphine-induced decreases in vertical activity. In LS dams with the history of morphine treatment, injection of saline resulted in higher horizontal activity and center time compared to saline-treated counterparts, indicative of conditioning. Among animals with a history of saline treatment, LS dams were more sensitive to morphine challenges than BS and NH dams. As a result of the robust and long-lasting increases in the ability of morphine to induce behavioral sensitization in litter-separated dams, periodic postpartum separation may represent a new animal model of increased vulnerability to substance abuse.

  17. Dysfunctional Reward Processing in Depression

    PubMed Central

    Admon, Roee; Pizzagalli, Diego A.

    2015-01-01

    Anhedonia - diminished pleasure and/or decreased reactivity to pleasurable stimuli - is a core feature of depression that frequently persists after treatment. As a result, extensive effort has been directed towards characterizing the psychological and biological processes that mediate dysfunctional reward processing in depression. Reward processing can be parsed into sub-components that include motivation, reinforcement learning, and hedonic capacity, which, according to preclinical and neuroimaging evidence, involve partially dissociable brain systems. In line with this, recent findings indicate that behavioral impairments and neural abnormalities in depression vary across distinct reward-related constructs. Ultimately, improved understanding of precise reward-related dysfunctions in depression promises to improve diagnostic and therapeutic efforts in depression. PMID:26258159

  18. Rewarding the Gifted Art Teacher.

    ERIC Educational Resources Information Center

    Hurwitz, Al

    1983-01-01

    A program to reward exceptional art teachers, sponsored by the Chroma Acrylics Corporation, is described. Application procedures, conditions, award winners, and the projects they plan with the award money are covered. (IS)

  19. Developing a Comprehensive Reward System.

    ERIC Educational Resources Information Center

    Votruba, James C.

    1979-01-01

    Providing incentives for teachers of adults is an important means of attracting, retaining, and stimulating staff. Developing a variety of extrinsic and intrinsic rewards and incentives and instituting them effectively are important administrative functions. (SK)

  20. Developing a Comprehensive Reward System.

    ERIC Educational Resources Information Center

    Votruba, James C.

    1979-01-01

    Providing incentives for teachers of adults is an important means of attracting, retaining, and stimulating staff. Developing a variety of extrinsic and intrinsic rewards and incentives and instituting them effectively are important administrative functions. (SK)

  1. Nicotine restores morphine-induced memory deficit through the D1 and D2 dopamine receptor mechanisms in the nucleus accumbens.

    PubMed

    Azizbeigi, Ronak; Ahmadi, Shamseddin; Babapour, Vahab; Rezayof, Ameneh; Zarrindast, Mohammad Reza

    2011-08-01

    Involvement of the dopamine D1 and D2 receptors in the nucleus accumbens (NAc) with interaction between morphine and nicotine on inhibitory avoidance (IA) memory was investigated. A step-through type of inhibitory avoidance tasks was used to assess memory in male Wistar rats. The results showed that subcutaneous (s.c.) administration of morphine (7.5 mg/kg) after training decreased retrieval of IA memory in the animals when tested 24 h later. Pre-test administration of the same dose of morphine significantly reversed the deficiency in retrieval. The results also showed that pre-test administration of nicotine (0.2 and 0.4 mg/kg, s.c.) by itself mimicked the effect of pre-test morphine, and lower doses of nicotine (0.1 and 0.2 mg/kg) also improved the effect of a low dose of morphine (2.5 mg/kg) on retrieval of IA memory. Pre-test intra-NAc administration of the dopamine D1 receptor antagonist, SCH 23390 (0.001 and 0.01 µg/rat), and the dopamine D2 receptor antagonist, sulpiride (0.5 and 1 µg/rat) caused no significant effects on IA memory by themselves, but both prevented reinstatement of the retrieval of IA memory by the effective dose of nicotine (0.4 mg/kg). It can be concluded that the dopaminergic mechanism(s) in the NAc is a crosslink for the effect of morphine and nicotine on reinstatement of retrieval of IA memory impaired by post-training administration of morphine.

  2. The evolution of anti-social rewarding and its countermeasures in public goods games.

    PubMed

    dos Santos, Miguel

    2015-01-07

    Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. The evolution of anti-social rewarding and its countermeasures in public goods games

    PubMed Central

    dos Santos, Miguel

    2015-01-01

    Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions. PMID:25429015

  4. Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model.

    PubMed

    Rashidy-Pour, Ali; Pahlevani, Pouyan; Vaziri, Anoumid; Shaigani, Pariya; Zarepour, Leila; Vafaei, Abbas Ali; Haghparast, Abbas

    2013-06-15

    The ventral tegmental area (VTA) is a critical part of the brain reward system and has been engaged in mediating rewarding actions. CB1 receptors are one of the receptors that mediate the actions of cannabinoids and endocannabinoids in the central nervous system. Our aim was to determine the potentiating effects of CB1 receptors within the VTA in the acquisition and expression of morphine conditioned place preference (CPP). Stereotaxic surgery was performed bilaterally on each rat to administrate WIN55,212-2 (1, 2 and 4 mmol/0.3 μl DMSO) as CB1 receptor agonist and AM251 (15, 45 and 90 mmol/0.3 μl DMSO) as CB1 receptor antagonist. A three-compartment apparatus was used for the CPP test. The results showed that two doses of WIN55,212-2 (2 and 4 mmol) potentiates the rewarding effects of ineffective dose of morphine (2 mg/kg). We did not see any significant difference between any other doses of WIN55,212-2 and vehicle in the group which received the effective dose of morphine (5mg/kg). Additionally, conditioning scores decreased significantly with the highest administrated dose of AM251 (90 mmol) compared to the vehicle group. We did not observe any significant differences in the experiments for CPP expression by WIN55,212-2 or AM251. It seems that the cannabinoid and opioid systems are in interaction with each other and affect dopaminergic and/or non-dopaminergic neurons in the VTA. Blockade of CB1 receptors may increase GABA release, resulting in the reduction of dopamine output followed by a decrease in the acquisition of morphine-induced CPP in rats.

  5. Evolutionary advantages of adaptive rewarding

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2012-09-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment.

  6. Reward Selectively Modulates the Lingering Neural Representation of Recently Attended Objects in Natural Scenes.

    PubMed

    Hickey, Clayton; Peelen, Marius V

    2017-08-02

    Theories of reinforcement learning and approach behavior suggest that reward can increase the perceptual salience of environmental stimuli, ensuring that potential predictors of outcome are noticed in the future. However, outcome commonly follows visual processing of the environment, occurring even when potential reward cues have long disappeared. How can reward feedback retroactively cause now-absent stimuli to become attention-drawing in the future? One possibility is that reward and attention interact to prime lingering visual representations of attended stimuli that sustain through the interval separating stimulus and outcome. Here, we test this idea using multivariate pattern analysis of fMRI data collected from male and female humans. While in the scanner, participants searched for examples of target categories in briefly presented pictures of cityscapes and landscapes. Correct task performance was followed by reward feedback that could randomly have either high or low magnitude. Analysis showed that high-magnitude reward feedback boosted the lingering representation of target categories while reducing the representation of nontarget categories. The magnitude of this effect in each participant predicted the behavioral impact of reward on search performance in subsequent trials. Other analyses show that sensitivity to reward-as expressed in a personality questionnaire and in reactivity to reward feedback in the dopaminergic midbrain-predicted reward-elicited variance in lingering target and nontarget representations. Credit for rewarding outcome thus appears to be assigned to the target representation, causing the visual system to become sensitized for similar objects in the future.SIGNIFICANCE STATEMENT How do reward-predictive visual stimuli become salient and attention-drawing? In the real world, reward cues precede outcome and reward is commonly received long after potential predictors have disappeared. How can the representation of environmental stimuli

  7. Reward and learning in the goldfish.

    PubMed

    Lowes, G; Bitterman, M E

    1967-07-28

    An experiment with goldfish showed the effects of change in amount of reward that are predicted from reinforcement theory. The performance of animals shifted from small to large reward improved gradually to the level of unshifted large-reward controls, while the performance of animals shifted from large to small reward remained at the large-reward level. The difference between these results and those obtained in analogous experiments with the rat suggests that reward functions differently in the instrumental learning of the two animals.

  8. Introduction: Addiction and Brain Reward and Anti-Reward Pathways

    PubMed Central

    Gardner, Eliot L.

    2013-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly) and that they enhance the functioning of the reward circuitry of the brain (producing the “high” that the drug-user seeks). The core reward circuitry consists of an “in series” circuit linking the ventral tegmental area, nucleus accumbens, and ventral pallidum - via the medial forebrain bundle. Although originally believed to encode simply the set-point of hedonic tone, these circuits are now believed to be functionally far more complex - also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. “Hedonic dysregulation” within these circuits may lead to addiction. The “second-stage” dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dopaminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g., opiates), tolerance to the euphoric effects develops with chronic use. Post-use dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get “high,” but simply to get back to normal (“get straight”). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically, and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the

  9. Previous Cocaine Exposure Makes Rats Hypersensitive to Both Delay and Reward Magnitude

    PubMed Central

    Roesch, Matthew R.; Takahashi, Yuji; Gugsa, Nishan; Bissonette, Gregory B.; Schoenbaum, Geoffrey

    2008-01-01

    Animals prefer an immediate over a delayed reward, just as they prefer a large over a small reward. Exposure to psychostimulants causes long-lasting changes in structures critical for this behavior and might disrupt normal time-discounting performance. To test this hypothesis, we exposed rats to cocaine daily for 2 weeks (30 mg/kg, i.p.). Approximately 6 weeks later, we tested them on a variant of a time-discounting task, in which the rats responded to one of two locations to obtain reward while we independently manipulated the delay to reward and reward magnitude. Performance did not differ between cocaine-treated and saline-treated (control) rats when delay lengths and reward magnitudes were equal at the two locations. However, cocaine-treated rats were significantly more likely to shift their responding when we increased the delay or reward size asymmetrically. Furthermore, they were slower to respond and made more errors when forced to the side associated with the lower value. We conclude that previous exposure to cocaine makes choice behavior hypersensitive to differences in the time to and size of available rewards, consistent with a general effect of cocaine exposure on reward valuation mechanisms. PMID:17202492

  10. Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events

    PubMed Central

    Murty, Vishnu P.; Adcock, R. Alison

    2014-01-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical–hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions—a potentially unique contribution of the hippocampus to reward learning. PMID:23529005

  11. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    PubMed

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Virtual Rewards for Driving Green

    ERIC Educational Resources Information Center

    Pritchard, Josh

    2010-01-01

    Carbon dioxide from automobiles is a major contributor to global climate change. In "Virtual Rewards for Driving Green," Josh Pritchard proposes a computer application that will enable fuel-efficient drivers to earn "green" dollars with which to buy digital merchandise on the Web. Can getting items that exist only in cyberspace actually change a…

  13. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  14. Food reward, hyperphagia, and obesity

    PubMed Central

    Lenard, Natalie R.; Shin, Andrew C.

    2011-01-01

    Given the unabated obesity problem, there is increasing appreciation of expressions like “my eyes are bigger than my stomach,” and recent studies in rodents and humans suggest that dysregulated brain reward pathways may be contributing not only to drug addiction but also to increased intake of palatable foods and ultimately obesity. After describing recent progress in revealing the neural pathways and mechanisms underlying food reward and the attribution of incentive salience by internal state signals, we analyze the potentially circular relationship between palatable food intake, hyperphagia, and obesity. Are there preexisting individual differences in reward functions at an early age, and could they be responsible for development of obesity later in life? Does repeated exposure to palatable foods set off a cascade of sensitization as in drug and alcohol addiction? Are reward functions altered by secondary effects of the obese state, such as increased signaling through inflammatory, oxidative, and mitochondrial stress pathways? Answering these questions will significantly impact prevention and treatment of obesity and its ensuing comorbidities as well as eating disorders and drug and alcohol addiction. PMID:21411768

  15. The Hidden Costs of Rewards.

    ERIC Educational Resources Information Center

    Deci, Edward L.

    1976-01-01

    This paper discusses ways managers can motivate their employees to work and at the same time to increase their performance. Two theories of motivation--Vroom's theory and Atkinson's theory--focus on the use of extrinsic and intrinsic rewards respectively. A managerial strategy that combines the best of both intrinsic and extrinsic approaches to…

  16. Academic Rewards in Higher Education.

    ERIC Educational Resources Information Center

    Lewis, Darrel R., Ed.; Becker, William E., Jr., Ed.

    A colloquium series in higher education at the University of Minnesota in the fall and winter of 1977-1978 examined the influence of academic reward systems on faculty behavior and academic productivity. These essays are the collective results of their findings and recommendations. Essays include: "Perspectives from Psychology: Financial…

  17. The Hidden Costs of Rewards.

    ERIC Educational Resources Information Center

    Deci, Edward L.

    1976-01-01

    This paper discusses ways managers can motivate their employees to work and at the same time to increase their performance. Two theories of motivation--Vroom's theory and Atkinson's theory--focus on the use of extrinsic and intrinsic rewards respectively. A managerial strategy that combines the best of both intrinsic and extrinsic approaches to…

  18. Virtual Rewards for Driving Green

    ERIC Educational Resources Information Center

    Pritchard, Josh

    2010-01-01

    Carbon dioxide from automobiles is a major contributor to global climate change. In "Virtual Rewards for Driving Green," Josh Pritchard proposes a computer application that will enable fuel-efficient drivers to earn "green" dollars with which to buy digital merchandise on the Web. Can getting items that exist only in cyberspace actually change a…

  19. Attentional bias for nondrug reward is magnified in addiction.

    PubMed

    Anderson, Brian A; Faulkner, Monica L; Rilee, Jessica J; Yantis, Steven; Marvel, Cherie L

    2013-12-01

    Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcomes. Attentional biases also develop for stimuli that have been paired with nondrug rewards in adults without a history of addiction, the magnitude of which is predicted by visual working-memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for nondrug (monetary) reward relative to that of healthy controls, and that this bias is related to working-memory impairments and increased impulsiveness. Seventeen patients receiving methadone-maintenance treatment for opioid dependence and 17 healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995), visual working-memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual-search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. It is important to note, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working-memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with nondrug reward. This nonspecific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction.

  20. Opposing effects of reward and punishment on human vigor.

    PubMed

    Griffiths, Benjamin; Beierholm, Ulrik R

    2017-02-13

    The vigor with which humans and animals engage in a task is often a determinant of the likelihood of the task's success. An influential theoretical model suggests that the speed and rate at which responses are made should depend on the availability of rewards and punishments. While vigor facilitates the gathering of rewards in a bountiful environment, there is an incentive to slow down when punishments are forthcoming so as to decrease the rate of punishments, in conflict with the urge to perform fast to escape punishment. Previous experiments confirmed the former, leaving the latter unanswered. We tested the influence of punishment in an experiment involving economic incentives and contrasted this with reward related behavior on the same task. We found that behavior corresponded with the theoretical model; while instantaneous threat of punishment caused subjects to increase the vigor of their response, subjects' response times would slow as the overall rate of punishment increased. We quantitatively show that this is in direct contrast to increases in vigor in the face of increased overall reward rates. These results highlight the opposed effects of rewards and punishments and provide further evidence for their roles in the variety of types of human decisions.

  1. Opposing effects of reward and punishment on human vigor

    PubMed Central

    Griffiths, Benjamin; Beierholm, Ulrik R.

    2017-01-01

    The vigor with which humans and animals engage in a task is often a determinant of the likelihood of the task’s success. An influential theoretical model suggests that the speed and rate at which responses are made should depend on the availability of rewards and punishments. While vigor facilitates the gathering of rewards in a bountiful environment, there is an incentive to slow down when punishments are forthcoming so as to decrease the rate of punishments, in conflict with the urge to perform fast to escape punishment. Previous experiments confirmed the former, leaving the latter unanswered. We tested the influence of punishment in an experiment involving economic incentives and contrasted this with reward related behavior on the same task. We found that behavior corresponded with the theoretical model; while instantaneous threat of punishment caused subjects to increase the vigor of their response, subjects’ response times would slow as the overall rate of punishment increased. We quantitatively show that this is in direct contrast to increases in vigor in the face of increased overall reward rates. These results highlight the opposed effects of rewards and punishments and provide further evidence for their roles in the variety of types of human decisions. PMID:28205567

  2. Attention to nurses' rewarding - an interview study of registered nurses working in primary and private healthcare in Finland.

    PubMed

    Seitovirta, Jaana; Vehviläinen-Julkunen, Katri; Mitronen, Lasse; De Gieter, Sara; Kvist, Tarja

    2017-04-01

    To identify meaningful types of rewards and the consequences of rewards as expressed by Finnish registered nurses working in primary and private healthcare. Previous studies have found significant associations between nurses' rewards and both their commitment and job satisfaction. Furthermore, appropriate rewards can have beneficial effects on factors including workforce stability and occupational satisfaction that are highly important in times of nurse shortages. A cross-sectional, qualitative interview study. Data were collected via individual semi-structured interviews (n = 20) with registered nurses working in Finland's primary and private healthcare, and subjected to qualitative content analysis. Six meaningful types of rewards were identified by the registered nurses: Financial compensation and benefits, Work-Life balance, Work content, Professional development, Recognition, and Supportive leadership. Rewards encouraged respondents to perform their work correctly and reinforced occupational satisfaction, but also caused feelings of envy and stress. It is essential to pay attention to nurses' preferences for particular rewards and to reward management. When designing effective reward systems for registered nurses, it is not sufficient to provide financial rewards alone, as various kinds of non-financial rewards are both meaningful and necessary. When trying to improve registered nurses' commitment and job satisfaction through reward management, it is important to listen to nurses' opinions to create a reward system that integrates financial and non-financial rewards and is fair from their perspective. Healthcare organisations that offer registered nurses a holistic reward system are more likely to retain satisfied and committed nurses at a time of increasing nursing shortages. © 2016 John Wiley & Sons Ltd.

  3. Defining rewardable innovation in drug therapy.

    PubMed

    Aronson, Jeffrey K; Ferner, Robin E; Hughes, Dyfrig A

    2012-03-30

    Implementing mechanisms for rewarding those who introduce innovative medicinal products requires a definition of 'rewardable innovation'. Here, we propose a definition of innovation with respect to medicinal products, accompanied by a ranking of the importance of different types of innovativeness, with the aim of providing a basis for rewarding such innovation.

  4. Rewarding Good Teachers. A Research Brief.

    ERIC Educational Resources Information Center

    Educational Service District 189, Mt. Vernon, WA.

    According to research of the 1980's in the ERIC system and elsewhere, there seem to be three schools of thought about the most effective ways to reward good teachers and provide incentives for improving teacher performance. The schools of thought described include (1) intrinsic rewards only; (2) specific additional monetary rewards for specific…

  5. Pro-Dopamine Regulator - (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome (RDS).

    PubMed

    Blum, Kenneth; Febo, Marcelo; Fried, Lyle; Baron, David; Braverman, Eric R; Dushaj, Kristina; Li, Mona; Demetrovics, Zsolt; Badgaiyan, Rajendra D

    2017-01-01

    We are faced with a worldwide opiate/opioid epidemic that is devastating. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day in America due to narcotic overdose. The Food and Drug Administration (FDA) has approved Medication-Assisted Treatments (MATs) for opiate/opioids as well as alcohol and nicotine. The mechanism of action of most MATS favors either blocking of dopaminergic function or a form of Opiate Substitution Therapy (OST). These treatment options are adequate for short-term treatment of the symptoms of addiction and harm reduction but fail long-term to deal with the cause or lead to recovery. There is a need to continue to seek better treatment options. This mini-review is the history of the development of one such treatment; a glutaminergic-dopaminergic optimization complex called KB220. Growing evidence indicates that brain reward circuitry controls drug addiction, in conjunction with "anti-reward systems" as the "anti-reward systems" can be affected by both glutaminergic and dopaminergic transmission. KB220 may likely alter the function of these regions and provide for the possible eventual balancing the brain reward system and the induction of "dopamine homeostasis." Many of these concepts have been reported elsewhere and have become an integral part of the addiction science literature. However, the concise review may encourage readership to reconsider these facts and stimulate further research focused on the impact that the induction of "dopamine homeostasis" may have on recovery and relapse prevention.

  6. Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments

    PubMed Central

    Chakraborty, Subhojit; Kolling, Nils; Walton, Mark E; Mitchell, Anna S

    2016-01-01

    Adaptive decision-making uses information gained when exploring alternative options to decide whether to update the current choice strategy. Magnocellular mediodorsal thalamus (MDmc) supports adaptive decision-making, but its causal contribution is not well understood. Monkeys with excitotoxic MDmc damage were tested on probabilistic three-choice decision-making tasks. They could learn and track the changing values in object-reward associations, but they were severely impaired at updating choices after reversals in reward contingencies or when there were multiple options associated with reward. These deficits were not caused by perseveration or insensitivity to negative feedback though. Instead, monkeys with MDmc lesions exhibited an inability to use reward to promote choice repetition after switching to an alternative option due to a diminished influence of recent past choices and the last outcome to guide future behavior. Together, these data suggest MDmc allows for the rapid discovery and persistence with rewarding options, particularly in uncertain or changing environments. DOI: http://dx.doi.org/10.7554/eLife.13588.001 PMID:27136677

  7. Balancing risk and reward: a rat model of risky decision making.

    PubMed

    Simon, Nicholas W; Gilbert, Ryan J; Mayse, Jeffrey D; Bizon, Jennifer L; Setlow, Barry

    2009-09-01

    We developed a behavioral task in rats to assess the influence of risk of punishment on decision making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, 'safe' food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, 'risky' reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (ie, it made rats more risk averse). Cocaine did not cause a shift in reward choice, but instead impaired the rats' sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction.

  8. Incremental effects of reward on creativity.

    PubMed

    Eisenberger, R; Rhoades, L

    2001-10-01

    The authors examined 2 ways reward might increase creativity. First, reward contingent on creativity might increase extrinsic motivation. Studies 1 and 2 found that repeatedly giving preadolescent students reward for creative performance in 1 task increased their creativity in subsequent tasks. Study 3 reported that reward promised for creativity increased college students' creative task performance. Second, expected reward for high performance might increase creativity by enhancing perceived self-determination and, therefore, intrinsic task interest. Study 4 found that employees' intrinsic job interest mediated a positive relationship between expected reward for high performance and creative suggestions offered at work. Study 5 found that employees' perceived self-determination mediated a positive relationship between expected reward for high performance and the creativity of anonymous suggestions for helping the organization.

  9. Reward processing in autism: a thematic series

    PubMed Central

    2012-01-01

    This thematic series presents theoretical and empirical papers focused on understanding autism from the perspective of reward processing deficits. Although the core symptoms of autism have not traditionally been conceptualized with respect to altered reward-based processes, it is clear that brain reward circuitry plays a critical role in guiding social and nonsocial learning and behavior throughout development. Additionally, brain reward circuitry may respond to social sources of information in ways that are similar to responses to primary rewards, and recent clinical data consistently suggest abnormal behavioral and neurobiologic responses to rewards in autism. This thematic series presents empirical data and review papers that highlight the utility of considering autism from the perspective of reward processing deficits. Our hope is that this novel framework may further elucidate autism pathophysiology, with the ultimate goal of yielding novel insights with potential therapeutic implications. PMID:22958239

  10. Reward alters the perception of time.

    PubMed

    Failing, Michel; Theeuwes, Jan

    2016-03-01

    Recent findings indicate that monetary rewards have a powerful effect on cognitive performance. In order to maximize overall gain, the prospect of earning reward biases visual attention to specific locations or stimulus features improving perceptual sensitivity and processing. The question we addressed in this study is whether the prospect of reward also affects the subjective perception of time. Here, participants performed a prospective timing task using temporal oddballs. The results show that temporal oddballs, displayed for varying durations, presented in a sequence of standard stimuli were perceived to last longer when they signaled a relatively high reward compared to when they signaled no or low reward. When instead of the oddball the standards signaled reward, the perception of the temporal oddball remained unaffected. We argue that by signaling reward, a stimulus becomes subjectively more salient thereby modulating its attentional deployment and distorting how it is perceived in time. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Brain Circuits Encoding Reward from Pain Relief

    PubMed Central

    Navratilova, Edita; Atcherley, Christopher; Porreca, Frank

    2015-01-01

    Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex, activation of midbrain dopamine neurons and release of dopamine in the nucleus accumbens. Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute and chronic pain. PMID:26603560

  12. Learned reward association improves visual working memory.

    PubMed

    Gong, Mengyuan; Li, Sheng

    2014-04-01

    Statistical regularities in the natural environment play a central role in adaptive behavior. Among other regularities, reward association is potentially the most prominent factor that influences our daily life. Recent studies have suggested that pre-established reward association yields strong influence on the spatial allocation of attention. Here we show that reward association can also improve visual working memory (VWM) performance when the reward-associated feature is task-irrelevant. We established the reward association during a visual search training session, and investigated the representation of reward-associated features in VWM by the application of a change detection task before and after the training. The results showed that the improvement in VWM was significantly greater for items in the color associated with high reward than for those in low reward-associated or nonrewarded colors. In particular, the results from control experiments demonstrate that the observed reward effect in VWM could not be sufficiently accounted for by attentional capture toward the high reward-associated item. This was further confirmed when the effect of attentional capture was minimized by presenting the items in the sample and test displays of the change detection task with the same color. The results showed significantly larger improvement in VWM performance when the items in a display were in the high reward-associated color than those in the low reward-associated or nonrewarded colors. Our findings suggest that, apart from inducing space-based attentional capture, the learned reward association could also facilitate the perceptual representation of high reward-associated items through feature-based attentional modulation.

  13. When unconscious rewards boost cognitive task performance inefficiently: the role of consciousness in integrating value and attainability information.

    PubMed

    Zedelius, Claire M; Veling, Harm; Aarts, Henk

    2012-01-01

    Research has shown that high vs. low value rewards improve cognitive task performance independent of whether they are perceived consciously or unconsciously. However, efficient performance in response to high value rewards also depends on whether or not rewards are attainable. This raises the question of whether unconscious reward processing enables people to take into account such attainability information. Building on a theoretical framework according to which conscious reward processing is required to enable higher level cognitive processing, the present research tested the hypothesis that conscious but not unconscious reward processing enables integration of reward value with attainability information. In two behavioral experiments, participants were exposed to mask high and low value coins serving as rewards on a working memory (WM) task. The likelihood for conscious processing was manipulated by presenting the coins relatively briefly (17 ms) or long and clearly visible (300 ms). Crucially, rewards were expected to be attainable or unattainable. Requirements to integrate reward value with attainability information varied across experiments. Results showed that when integration of value and attainability was required (Experiment 1), long reward presentation led to efficient performance, i.e., selectively improved performance for high value attainable rewards. In contrast, in the short presentation condition, performance was increased for high value rewards even when these were unattainable. This difference between the effects of long and short presentation time disappeared when integration of value and attainability information was not required (Experiment 2). Together these findings suggest that unconsciously processed reward information is not integrated with attainability expectancies, causing inefficient effort investment. These findings are discussed in terms of a unique role of consciousness in efficient allocation of effort to cognitive control

  14. When unconscious rewards boost cognitive task performance inefficiently: the role of consciousness in integrating value and attainability information

    PubMed Central

    Zedelius, Claire M.; Veling, Harm; Aarts, Henk

    2012-01-01

    Research has shown that high vs. low value rewards improve cognitive task performance independent of whether they are perceived consciously or unconsciously. However, efficient performance in response to high value rewards also depends on whether or not rewards are attainable. This raises the question of whether unconscious reward processing enables people to take into account such attainability information. Building on a theoretical framework according to which conscious reward processing is required to enable higher level cognitive processing, the present research tested the hypothesis that conscious but not unconscious reward processing enables integration of reward value with attainability information. In two behavioral experiments, participants were exposed to mask high and low value coins serving as rewards on a working memory (WM) task. The likelihood for conscious processing was manipulated by presenting the coins relatively briefly (17 ms) or long and clearly visible (300 ms). Crucially, rewards were expected to be attainable or unattainable. Requirements to integrate reward value with attainability information varied across experiments. Results showed that when integration of value and attainability was required (Experiment 1), long reward presentation led to efficient performance, i.e., selectively improved performance for high value attainable rewards. In contrast, in the short presentation condition, performance was increased for high value rewards even when these were unattainable. This difference between the effects of long and short presentation time disappeared when integration of value and attainability information was not required (Experiment 2). Together these findings suggest that unconsciously processed reward information is not integrated with attainability expectancies, causing inefficient effort investment. These findings are discussed in terms of a unique role of consciousness in efficient allocation of effort to cognitive control

  15. Evaluating the neurobiology of sexual reward.

    PubMed

    Paredes, Raúl G

    2009-01-01

    There is much evidence that naturally occurring behaviors (e.g., the ingestion of food and water) and social behaviors (e.g., play, maternal behavior) can induce a reward state. This review includes definitions to distinguish between "reward" and "reinforcement," and a description of methods to assess reward and demonstrate that social interactions can indeed produce a positive affective (PA) state. Operant responses, partner preference, and sexual incentive motivation are all effective methods for evaluating approach behaviors under different conditions. The method most frequently used to evaluate a positive affective or reward state is conditioned place preference (CPP), which entails modification of an animal's initial preference after alternating exposure to a control stimulus in one chamber and a rewarding condition in the other. At the end of the training the animal shows a clear preference for the compartment associated with the rewarding stimulus. CPP demonstrates that it is possible to use different treatments and naturally occurring behaviors (e.g., water or food consumption, exercise) to induce a reward state. Sexual interactions and other social behaviors also produce a clear change of preference, indicating the induction of a reward or PA state. The reward state in males and females is mediated by opioids, and the medial preoptic area of the anterior hypothalamus is a crucial site for sexual reward.

  16. Reward system dysfunction in autism spectrum disorders.

    PubMed

    Kohls, Gregor; Schulte-Rüther, Martin; Nehrkorn, Barbara; Müller, Kristin; Fink, Gereon R; Kamp-Becker, Inge; Herpertz-Dahlmann, Beate; Schultz, Robert T; Konrad, Kerstin

    2013-06-01

    Although it has been suggested that social deficits of autism spectrum disorders (ASDs) are related to reward circuitry dysfunction, very little is known about the neural reward mechanisms in ASD. In the current functional magnetic resonance imaging study, we investigated brain activations in response to both social and monetary reward in a group of children with ASD, relative to matched controls. Participants with ASD showed the expected hypoactivation in the mesocorticolimbic circuitry in response to both reward types. In particular, diminished activation in the nucleus accumbens was observed when money, but not when social reward, was at stake, whereas the amygdala and anterior cingulate cortex were hypoactivated within the ASD group in response to both rewards. These data indicate that the reward circuitry is compromised in ASD in social as well as in non-social, i.e. monetary conditions, which likely contributes to atypical motivated behaviour. Taken together, with incentives used in this study sample, there is evidence for a general reward dysfunction in ASD. However, more ecologically valid social reward paradigms are needed to fully understand, whether there is any domain specificity to the reward deficit that appears evident in ASD, which would be most consistent with the ASD social phenotype.

  17. Reward circuitry function in autism spectrum disorders

    PubMed Central

    Felder, Jennifer N.; Green, Steven R.; Rittenberg, Alison M.; Sasson, Noah J.; Bodfish, James W.

    2012-01-01

    Social interaction deficits and restricted repetitive behaviors and interests that characterize autism spectrum disorders (ASDs) may both reflect aberrant functioning of brain reward circuits. However, no neuroimaging study to date has investigated the integrity of reward circuits using an incentive delay paradigm in individuals with ASDs. In the present study, we used functional magnetic resonance imaging to assess blood-oxygen level-dependent activation during reward anticipation and outcomes in 15 participants with an ASD and 16 matched control participants. Brain activation was assessed during anticipation of and in response to monetary incentives and object image incentives previously shown to be visually salient for individuals with ASDs (e.g. trains, electronics). Participants with ASDs showed decreased nucleus accumbens activation during monetary anticipation and outcomes, but not during object anticipation or outcomes. Group × reward-type-interaction tests revealed robust interaction effects in bilateral nucleus accumbens during reward anticipation and in ventromedial prefrontal cortex during reward outcomes, indicating differential responses contingent on reward type in these regions. Results suggest that ASDs are characterized by reward-circuitry hypoactivation in response to monetary incentives but not in response to autism-relevant object images. The clinical implications of the double dissociation of reward type and temporal phase in reward circuitry function in ASD are discussed. PMID:21148176

  18. Reward system dysfunction in autism spectrum disorders

    PubMed Central

    Schulte-Rüther, Martin; Nehrkorn, Barbara; Müller, Kristin; Fink, Gereon R.; Kamp-Becker, Inge; Herpertz-Dahlmann, Beate; Schultz, Robert T.; Konrad, Kerstin

    2013-01-01

    Although it has been suggested that social deficits of autism spectrum disorders (ASDs) are related to reward circuitry dysfunction, very little is known about the neural reward mechanisms in ASD. In the current functional magnetic resonance imaging study, we investigated brain activations in response to both social and monetary reward in a group of children with ASD, relative to matched controls. Participants with ASD showed the expected hypoactivation in the mesocorticolimbic circuitry in response to both reward types. In particular, diminished activation in the nucleus accumbens was observed when money, but not when social reward, was at stake, whereas the amygdala and anterior cingulate cortex were hypoactivated within the ASD group in response to both rewards. These data indicate that the reward circuitry is compromised in ASD in social as well as in non-social, i.e. monetary conditions, which likely contributes to atypical motivated behaviour. Taken together, with incentives used in this study sample, there is evidence for a general reward dysfunction in ASD. However, more ecologically valid social reward paradigms are needed to fully understand, whether there is any domain specificity to the reward deficit that appears evident in ASD, which would be most consistent with the ASD social phenotype. PMID:22419119

  19. Inflated Reward Value in Early Opiate Withdrawal

    PubMed Central

    Wassum, Kate M.; Greenfield, Venuz Y.; Linker, Kay E.; Maidment, Nigel T.; Ostlund, Sean B.

    2014-01-01

    Through incentive learning the emotional experience of a reward in a relevant need state (e.g., hunger for food) sets the incentive value that guides the performance actions that earn that reward when the need state is encountered again. Opiate withdrawal has been proposed as a need state in which, through experience, opiate value can be increased resulting in escalated opiate self-administration. Endogenous opioid transmission plays anatomically dissociable roles in the positive emotional experience of reward consumption and incentive learning. We, therefore, sought to determine if chronic opiate exposure and withdrawal produces a disruption in the fundamental incentive learning process such that reward seeking, even for non-opiate rewards, can become maladaptive, inconsistent with the emotional experience of reward consumption and irrespective of need. Rats trained to earn sucrose or water on a reward-seeking chain were treated with morphine (10-30 mg/k.g., s.c.) daily for 11 d prior to testing in withdrawal. Opiate withdrawn rats showed elevated reward-seeking actions, but only after they experienced the reward in withdrawal, an effect that was strongest in early (1-3 d), as opposed to late (14-16 d) withdrawal. This was sufficient to overcome a negative reward value change induced by sucrose experience in satiety and, in certain circumstances, was inconsistent with the emotional experience of reward consumption. Lastly, we found that early opiate withdrawal-induced inflation of reward value was blocked by inactivation of basolateral amygdala mu opioid receptors. These data suggest that in early opiate withdrawal the incentive learning process is disrupted resulting in maladaptive reward seeking. PMID:25081350

  20. Cueing task goals and earning money: Relatively high monetary rewards reduce failures to act on goals in a Stroop task.

    PubMed

    Veling, Harm; Aarts, Henk

    2010-06-01

    We examined the role of monetary rewards in failures to act on goals in a Stroop task. Based on recent developments in theorizing on the interplay between rewards and cognitive control, we hypothesized that relatively high monetary rewards enhance the focus and stability of a cued task goal compared to low monetary rewards, and hence cause a reduction in failures to act on current task goals under circumstances that warrant top-down goal implementation. To test this, participants received a modified version of the Stroop task, in which they were either briefly cued with the goal of naming the color or meaning of targets on a trial-by-trial basis. After goal cuing, but before presenting the target, either a low or high reward cue was presented. Results showed that higher rewards produced a general speed-up. More importantly, Stroop interference on error rates was lower in the high reward condition compared to the low reward condition, revealing that the rewards enhanced focus and stability of the cued goal. These results provide support for theorizing that reward processing modulates utility assessment of current goals by affecting attention to facilitate goal-directed behavior.

  1. Reward magnitude effects on temporal discrimination

    PubMed Central

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2014-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment 1, rats were trained to discriminate a short (2 s) vs. a long (8 s) signal followed by testing with intermediate durations. Then, the reward on short or long trials was increased from 1 to 4 pellets in separate groups. Experiment 2 measured the effect of different reward magnitudes associated with the short vs. long signals throughout training. Finally, Experiment 3 controlled for satiety effects during the reward magnitude manipulation phase. A general flattening of the psychophysical function was evident in all three experiments, suggesting that unequal reward magnitudes may disrupt attention to duration. PMID:24965705

  2. Learning Reward Uncertainty in the Basal Ganglia

    PubMed Central

    Bogacz, Rafal

    2016-01-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  3. Perinatal inhibition of aromatization enhances the reward value of sex.

    PubMed

    Domínguez-Salazar, Emilio; Camacho, Francisco J; Paredes, Raúl G

    2008-08-01

    Paced mating reduces the aversive properties and increases the positive characteristics of mating, inducing a reward state. Pacing is able to induce conditioned place preference (CPP), whereas nonpaced mating does not. The authors hypothesized that the aversive properties of mating are caused by androgens from adjacent males or from the mother during fetal life. To test whether aromatization of androgens induces the aversive properties of mating, female rats were treated perinatally with 1,4,6-androstatriene-3, 17-dione (ATD) to inhibit aromatization. When adults, these females were ovariectomized and hormonally primed to evaluate CPP after paced and nonpaced mating. During paced mating, control females showed higher return latencies after ejaculation, whereas ATD-treated females did not show a similar increase. In CPP tests, both paced and nonpaced mating induced a reward state in ATD-treated females, whereas only paced mating induced a reward state in control females. These results show that the perinatal inhibition of aromatization enhances the rewarding properties of mating, suggesting that estradiol induced the aversive properties of mating and/or modified the perinatal organization of the neuronal pathways in females.

  4. Attention-deficit-hyperactivity disorder and reward deficiency syndrome

    PubMed Central

    Blum, Kenneth; Chen, Amanda Lih-Chuan; Braverman, Eric R; Comings, David E; Chen, Thomas JH; Arcuri, Vanessa; Blum, Seth H; Downs, Bernard W; Waite, Roger L; Notaro, Alison; Lubar, Joel; Williams, Lonna; Prihoda, Thomas J; Palomo, Tomas; Oscar-Berman, Marlene

    2008-01-01

    Molecular genetic studies have identified several genes that may mediate susceptibility to attention deficit hyperactivity disorder (ADHD). A consensus of the literature suggests that when there is a dysfunction in the “brain reward cascade,” especially in the dopamine system, causing a low or hypo-dopaminergic trait, the brain may require dopamine for individuals to avoid unpleasant feelings. This high-risk genetic trait leads to multiple drug-seeking behaviors, because the drugs activate release of dopamine, which can diminish abnormal cravings. Moreover, this genetic trait is due in part to a form of a gene (DRD2 A1 allele) that prevents the expression of the normal laying down of dopamine receptors in brain reward sites. This gene, and others involved in neurophysiological processing of specific neurotransmitters, have been associated with deficient functions and predispose individuals to have a high risk for addictive, impulsive, and compulsive behavioral propensities. It has been proposed that genetic variants of dopaminergic genes and other “reward genes” are important common determinants of reward deficiency syndrome (RDS), which we hypothesize includes ADHD as a behavioral subtype. We further hypothesize that early diagnosis through genetic polymorphic identification in combination with DNA-based customized nutraceutical administration to young children may attenuate behavioral symptoms associated with ADHD. Moreover, it is concluded that dopamine and serotonin releasers might be useful therapeutic adjuncts for the treatment of other RDS behavioral subtypes, including addictions. PMID:19183781

  5. Public goods games with reward in finite populations.

    PubMed

    Forsyth, Peter A I; Hauert, Christoph

    2011-07-01

    Public goods games paraphrase the problem of cooperation in game theoretical terms. Cooperators contribute to a public good and thereby increase the welfare of others at a cost to themselves. Defectors consume the public good but do not pay its cost and therefore outperform cooperators. Hence, according to genetic or cultural evolution, defectors should be favored and the public good disappear - despite the fact that groups of cooperators are better off than groups of defectors. The maximization of short term individual profits causes the demise of the common resource to the detriment of all. This outcome can be averted by introducing incentives to cooperate. Negative incentives based on the punishment of defectors efficiently stabilize cooperation once established but cannot initiate cooperation. Here we consider the complementary case of positive incentives created by allowing individuals to reward those that contribute to the public good. The finite-population stochastic dynamics of the public goods game with reward demonstrate that reward initiates cooperation by providing an escape hatch out of states of mutual defection. However, in contrast to punishment, reward is unable to stabilize cooperation but, instead, gives rise to a persistent minority of cooperators.

  6. Stationary Anonymous Sequential Games with Undiscounted Rewards.

    PubMed

    Więcek, Piotr; Altman, Eitan

    Stationary anonymous sequential games with undiscounted rewards are a special class of games that combine features from both population games (infinitely many players) with stochastic games. We extend the theory for these games to the cases of total expected reward as well as to the expected average reward. We show that in the anonymous sequential game equilibria correspond to the limits of those of related finite population games as the number of players grows to infinity. We provide examples to illustrate our results.

  7. Reward, motivation, and reinforcement learning.

    PubMed

    Dayan, Peter; Balleine, Bernard W

    2002-10-10

    There is substantial evidence that dopamine is involved in reward learning and appetitive conditioning. However, the major reinforcement learning-based theoretical models of classical conditioning (crudely, prediction learning) are actually based on rules designed to explain instrumental conditioning (action learning). Extensive anatomical, pharmacological, and psychological data, particularly concerning the impact of motivational manipulations, show that these models are unreasonable. We review the data and consider the involvement of a rich collection of different neural systems in various aspects of these forms of conditioning. Dopamine plays a pivotal, but complicated, role.

  8. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference.

    PubMed

    Assar, Nasim; Mahmoudi, Dorna; Farhoudian, Ali; Farhadi, Mohammad Hasan; Fatahi, Zahra; Haghparast, Abbas

    2016-10-01

    The hippocampus plays a vital role in processing contextual memories and reward related learning tasks, such as conditioned place preference (CPP). Among the neurotransmitters in the hippocampus, dopamine is deeply involved in reward-related processes. This study assessed the role of D1- and D2-like dopamine receptors within the CA1 region of the hippocampus in the acquisition and reinstatement of morphine-CPP. To investigate the role of D1 and D2 receptors in morphine acquisition, the animals received different doses of D1- and/or D2-like dopamine receptor antagonists (SCH23390 and sulpiride, respectively) into the CA1, 5min before the administration of morphine (5mg/kg, subcutaneously) during a 3-days conditioning phase. To evaluate the involvement of these receptors in morphine reinstatement, the animals received different doses of SCH23390 or sulpiride (after extinction period) 5min before the administration of a low dose of morphine (1mg/kg) in order to reinstate the extinguished morphine-CPP. Conditioning scores were recorded by Ethovision software. The results of this study showed that the administration of SCH23390 or sulpiride, significantly decreased the acquisition of morphine-CPP. Besides, the injection of these antagonists before the administration of a priming dose of morphine, following the extinction period, decreased the reinstatement of morphine-CPP in sacrificed rats. However, the effect of sulpiride on the acquisition and reinstatement of morphine-CPP was more significant than that of SCH23390. These findings suggested that D1- and D2-like dopamine receptors in the CA1 are involved in the acquisition and reinstatement of morphine-CPP, and antagonism of these receptors can reduce the rewarding properties of morphine.

  9. Impact of aging on frontostriatal reward processing.

    PubMed

    Vink, Matthijs; Kleerekooper, Iris; van den Wildenberg, Wery P M; Kahn, Rene S

    2015-06-01

    Healthy aging is associated with a progressive decline across a range of cognitive functions. An important factor underlying this decline may be the age-related impairment in stimulus-reward processing. Several studies have investigated age-related effects, but compared young versus old subjects. This is the first study to investigate the effect of aging on brain activation during reward processing within a continuous segment of the adult life span. We scanned 49 healthy adults aged 40-70 years, using functional MRI. We adopted a simple reward task, which allowed separate evaluation of neural responses to reward anticipation and receipt. The effect of reward on performance accuracy and speed was not related to age, indicating that all subjects could perform the task correctly. We identified a whole-brain significant age-related decline of ventral striatum activation during reward anticipation as compared to neutral anticipation. Importantly, the specificity of this finding was underscored by the observation that there was no general decline in activation during anticipation. Activation in the ventral striatum increased with age during reward receipt as compared to receiving neutral outcome. Finally, activation in the ventromedial prefrontal cortex during outcome was not affected by age. Our data demonstrate that the typical shift in striatal activation from reward receipt to reward anticipation in young adults disappears with healthy aging. These changes are consistent the well-ocumented age-related decline of striatal dopamine availability, and may provide a stepping stone for further research of age-related neurodegenerative diseases.

  10. Distinct neural responses to conscious versus unconscious monetary reward cues.

    PubMed

    Bijleveld, Erik; Custers, Ruud; Van der Stigchel, Stefan; Aarts, Henk; Pas, Pascal; Vink, Matthijs

    2014-11-01

    Human reward pursuit is often assumed to involve conscious processing of reward information. However, recent research revealed that reward cues enhance cognitive performance even when perceived without awareness. Building on this discovery, the present functional MRI study tested two hypotheses using a rewarded mental-rotation task. First, we examined whether subliminal rewards engage the ventral striatum (VS), an area implicated in reward anticipation. Second, we examined differences in neural responses to supraliminal versus subliminal rewards. Results indicated that supraliminal, but not subliminal, high-value reward cues engaged brain areas involved in reward processing (VS) and task performance (supplementary motor area, motor cortex, and superior temporal gyrus). This pattern of findings is striking given that subliminal rewards improved performance to the same extent as supraliminal rewards. So, the neural substrates of conscious versus unconscious reward pursuit are vastly different-but despite their differences, conscious and unconscious reward pursuit may still produce the same behavioral outcomes. Copyright © 2014 Wiley Periodicals, Inc.

  11. Distinct neural responses to conscious versus unconscious monetary reward cues

    PubMed Central

    Bijleveld, Erik; Custers, Ruud; Van der Stigchel, Stefan; Aarts, Henk; Pas, Pascal; Vink, Matthijs

    2014-01-01

    Human reward pursuit is often assumed to involve conscious processing of reward information. However, recent research revealed that reward cues enhance cognitive performance even when perceived without awareness. Building on this discovery, the present functional MRI study tested two hypotheses using a rewarded mental-rotation task. First, we examined whether subliminal rewards engage the ventral striatum (VS), an area implicated in reward anticipation. Second, we examined differences in neural responses to supraliminal versus subliminal rewards. Results indicated that supraliminal, but not subliminal, high-value reward cues engaged brain areas involved in reward processing (VS) and task performance (supplementary motor area, motor cortex, and superior temporal gyrus). This pattern of findings is striking given that subliminal rewards improved performance to the same extent as supraliminal rewards. So, the neural substrates of conscious versus unconscious reward pursuit are vastly different—but despite their differences, conscious and unconscious reward pursuit may still produce the same behavioral outcomes. PMID:24984961

  12. Framing Reinforcement Learning from Human Reward: Reward Positivity, Temporal Discounting, Episodicity, and Performance

    DTIC Science & Technology

    2014-09-29

    maximize the learning objective, how is task perfor- mance affected and what implications do these effects on task performance have 3 Reward Human...will enhance the effectiveness of teaching by human reward. 4 • Our results provide evidence for the incompatibility of non-myopic learn- ing and...Section 1, this article examines the effect of various objectives for learning from human reward on task performance. In particular, we focus on reward

  13. Adolescents and androgens, receptors and rewards.

    PubMed

    Sato, Satoru M; Schulz, Kalynn M; Sisk, Cheryl L; Wood, Ruth I

    2008-05-01

    Adolescence is associated with increases in pleasure-seeking behaviors, which, in turn, are shaped by the pubertal activation of the hypothalamo-pituitary-gonadal axis. In animal models of naturally rewarding behaviors, such as sex, testicular androgens contribute to the development and expression of the behavior in males. To effect behavioral maturation, the brain undergoes significant remodeling during adolescence, and many of the changes are likewise sensitive to androgens, presumably acting through androgen receptors (AR). Given the delicate interaction of gonadal hormones and brain development, it is no surprise that disruption of hormone levels during this sensitive period significantly alters adolescent and adult behaviors. In male hamsters, exposure to testosterone during adolescence is required for normal expression of adult sexual behavior. Males deprived of androgens during puberty display sustained deficits in mating. Conversely, androgens alone are not sufficient to induce mating in prepubertal males, even though brain AR are present before puberty. In this context, wide-spread use of anabolic-androgenic steroids (AAS) during adolescence is a significant concern. AAS abuse has the potential to alter both the timing and the levels of androgens in adolescent males. In hamsters, adolescent AAS exposure increases aggression, and causes lasting changes in neurotransmitter systems. In addition, AAS are themselves reinforcing, as demonstrated by self-administration of testosterone and other AAS. However, recent evidence suggests that the reinforcing effects of androgens may not require classical AR. Therefore, further examination of interactions between androgens and rewarding behaviors in the adolescent brain is required for a better understanding of AAS abuse.

  14. Adolescents and Androgens, Receptors and Rewards

    PubMed Central

    Sato, Satoru M.; Schulz, Kalynn M.; Sisk, Cheryl L.; Wood, Ruth I.

    2008-01-01

    Adolescence is associated with increases in pleasure-seeking behaviors, which, in turn, are shaped by the pubertal activation of the hypothalamo-pituitary-gonadal axis. In animal models of naturally rewarding behaviors, such as sex, testicular androgens contribute to the development and expression of the behavior in males. To effect behavioral maturation, the brain undergoes significant remodeling during adolescence, and many of the changes are likewise sensitive to androgens, presumably acting through androgen receptors (AR). Given the delicate interaction of gonadal hormones and brain development, it is no surprise that disruption of hormone levels during this sensitive period significantly alters adolescent and adult behaviors. In male hamsters, exposure to testosterone during adolescence is required for normal expression of adult sexual behavior. Males deprived of androgens during puberty display sustained deficits in mating. Conversely, androgens alone are not sufficient to induce mating in prepubertal males, even though brain AR are present before puberty. In this context, wide-spread use of anabolic-androgenic steroids (AAS) during adolescence is a significant concern. AAS abuse has the potential to alter both the timing and the levels of androgens in adolescent males. In hamsters, adolescent AAS exposure increases aggression, and causes lasting changes in neurotransmitter systems. In addition, AAS are themselves reinforcing, as demonstrated by self-administration of testosterone and other AAS. However, recent evidence suggests that the reinforcing effects of androgens may not require classical AR. Therefore, further examination of interactions between androgens and rewarding behaviors in the adolescent brain is required for a better understanding of AAS abuse. PMID:18343381

  15. [Treatment of Cancer Pain and Medical Narcotics].

    PubMed

    Suzuki, Tsutomu

    2015-01-01

    The World Health Organization has reported that when morphine is used to control pain in cancer patients, psychological dependence is not a major concern. Our studies were undertaken to ascertain the modulation of psychological dependence on morphine under a chronic pain-like state in rats. Morphine induced a dose-dependent place preference. We found that inflammatory and neuropathic pain-like states significantly suppressed the morphine-induced rewarding effect. In an inflammatory pain-like state, the suppressive effect was significantly recovered by treatment with a κ-opioid receptor antagonist. In addition, in vivo microdialysis studies clearly showed that the morphine-induced increase in the extracellular levels of dopamine (DA) in the nucleus accumbens (N.Acc.) was significantly decreased in rats pretreated with formalin. This effect was in turn reversed by the microinjection of a specific dynorphin A antibody into the N.Acc. These findings suggest that the inflammatory pain-like state may have caused the sustained activation of the κ-opioidergic system within the N.Acc., resulting in suppression of the morphine-induced rewarding effect in rats. On the other hand, we found that attenuation of the morphine-induced place preference under neuropathic pain may result from a decrease in the morphine-induced DA release in the N.Acc with a reduction in the μ-opioid receptor-mediated G-protein activation in the ventral tegmental area (VTA). Moreover, nerve injury results in the continuous release of endogenous β-endorphin to cause the dysfunction of μ-opioid receptors in the VTA. This paper also provides a review to clarify misunderstandings of opioid analgesic use to control pain in cancer patients.

  16. Reward and non-reward learning of flower colours in the butterfly Byasa alcinous (Lepidoptera: Papilionidae)

    NASA Astrophysics Data System (ADS)

    Kandori, Ikuo; Yamaki, Takafumi

    2012-09-01

    Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.

  17. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards

    PubMed Central

    Smoski, Moria J.; Rittenberg, Alison; Dichter, Gabriel S.

    2011-01-01

    Anhedonia, the loss of interest or pleasure in normally rewarding activities, is a hallmark feature of unipolar Major Depressive Disorder (MDD). A growing body of literature has identified frontostriatal dysfunction during reward anticipation and outcomes in MDD. However, no study to date has directly compared responses to different types of rewards such as pleasant images and monetary rewards in MDD. To investigate the neural responses to monetary and pleasant image rewards in MDD, a modified Monetary Incentive Delay task was used during fMRI scanning to assess neural responses during anticipation and receipt of monetary and pleasant image rewards. Participants included nine adults with MDD and thirteen affectively healthy controls. The MDD group showed lower activation than controls when anticipating monetary rewards in right orbitofrontal cortex and subcallosal cortex, and when anticipating pleasant image rewards in paracingulate and supplementary motor cortex. The MDD group had relatively greater activation in right putamen when anticipating monetary versus pleasant image rewards, relative to the control group. Results suggest reduced reward network activation in MDD when anticipating rewards, as well as relatively greater hypoactivation to pleasant image than monetary rewards. PMID:22079658

  18. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards.

    PubMed

    Smoski, Moria J; Rittenberg, Alison; Dichter, Gabriel S

    2011-12-30

    Anhedonia, the loss of interest or pleasure in normally rewarding activities, is a hallmark feature of unipolar Major Depressive Disorder (MDD). A growing body of literature has identified frontostriatal dysfunction during reward anticipation and outcomes in MDD. However, no study to date has directly compared responses to different types of rewards such as pleasant images and monetary rewards in MDD. To investigate the neural responses to monetary and pleasant image rewards in MDD, a modified Monetary Incentive Delay task was used during functional magnetic resonance imaging to assess neural responses during anticipation and receipt of monetary and pleasant image rewards. Participants included nine adults with MDD and 13 affectively healthy controls. The MDD group showed lower activation than controls when anticipating monetary rewards in right orbitofrontal cortex and subcallosal cortex, and when anticipating pleasant image rewards in paracingulate and supplementary motor cortex. The MDD group had relatively greater activation in right putamen when anticipating monetary versus pleasant image rewards, relative to the control group. Results suggest reduced reward network activation in MDD when anticipating rewards, as well as relatively greater hypoactivation to pleasant image than monetary rewards. 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Adolescent depression: stress and reward dysfunction.

    PubMed

    Auerbach, Randy P; Admon, Roee; Pizzagalli, Diego A

    2014-01-01

    After participating in this educational activity, the physician should be better able to 1. Evaluate the relationship between reward processes, stress, and depression. 2. Assess the characteristics of the three etiological models of stress and reward processes. 3. Identify the biological basis for stress and reward processes. Adolescence is a peak period for the onset of depression, and it is also a time marked by substantial stress as well as neural development within the brain reward circuitry. In this review, we provide a selective overview of current animal and human research investigating the relationship among reward processes, stress, and depression. Three separate, but related, etiological models examine the differential roles that stress may play in relation to reward dysfunction and adolescent depression. First, the reward mediation model suggests that both acute and chronic stress contribute to reward deficits, which, in turn, potentiate depressive symptoms or increase the risk for depression. Second, in line with the stress generation perspective, it is plausible that premorbid reward-related dysfunction generates stress--in particular, interpersonal stress--which then leads to the manifestation of depressive symptoms. Third, consistent with a diathesis-stress model, the interaction between stress and premorbid reward dysfunction may contribute to the onset of depression. Given the equifinal nature of depression, these models could shed important light on different etiological pathways during adolescence, particularly as they may relate to understanding the heterogeneity of depression. To highlight the translational potential of these insights, a hypothetical case study is provided as a means of demonstrating the importance of targeting reward dysfunction in both assessment and treatment of adolescent depression.

  20. Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with ΔFosB as a Key Mediator

    PubMed Central

    Pitchers, Kyle K.; Vialou, Vincent; Nestler, Eric J.; Laviolette, Steven R.; Lehman, Michael N.

    2013-01-01

    Drugs of abuse induce neuroplasticity in the natural reward pathway, specifically the nucleus accumbens (NAc), thereby causing development and expression of addictive behavior. Recent evidence suggests that natural rewards may cause similar changes in the NAc, suggesting that drugs may activate mechanisms of plasticity shared with natural rewards, and allowing for unique interplay between natural and drug rewards. In this study, we demonstrate that sexual experience in male rats when followed by short or prolonged periods of loss of sex reward causes enhanced amphetamine reward, indicated by sensitized conditioned place preference for low-dose (0.5 mg/kg) amphetamine. Moreover, the onset, but not the longer-term expression, of enhanced amphetamine reward was correlated with a transient increase in dendritic spines in the NAc. Next, a critical role for the transcription factor ΔFosB in sex experience-induced enhanced amphetamine reward and associated increases in dendritic spines on NAc neurons was established using viral vector gene transfer of the dominant-negative binding partner ΔJunD. Moreover, it was demonstrated that sexual experience-induced enhanced drug reward, ΔFosB, and spinogenesis are dependent on mating-induced dopamine D1 receptor activation in the NAc. Pharmacological blockade of D1 receptor, but not D2 receptor, in the NAc during sexual behavior attenuated ΔFosB induction and prevented increased spinogenesis and sensitized amphetamine reward. Together, these findings demonstrate that drugs of abuse and natural reward behaviors act on common molecular and cellular mechanisms of plasticity that control vulnerability to drug addiction, and that this increased vulnerability is mediated by ΔFosB and its downstream transcriptional targets. PMID:23426671

  1. Social Reward Questionnaire (SRQ): development and validation

    PubMed Central

    Foulkes, Lucy; Viding, Essi; McCrory, Eamon; Neumann, Craig S.

    2014-01-01

    Human beings seek out social interactions as a source of reward. To date, there have been limited attempts to identify different forms of social reward, and little is known about how the value of social rewards might vary between individuals. This study aimed to address both these issues by developing the Social Reward Questionnaire (SRQ), a measure of individual differences in the value of different social rewards. Exploratory factor analysis (EFA) was run on an initial set of 75 items (N = 305). Based on this analysis, confirmatory factor analysis (CFA) was then conducted on a second sample (N = 505) with a refined 23-item scale. This analysis was used to test a six-factor structure, which resulted in good model fit (CFI = 0.96, RSMEA = 0.07). The factors represent six subscales of social reward defined as follows: Admiration; Negative Social Potency; Passivity; Prosocial Interactions; Sexual Reward; and Sociability. All subscales demonstrated good test-retest reliability and internal consistency. Each subscale also showed a distinct pattern of associations with external correlates measuring personality traits, attitudes, and goals, thus demonstrating construct validity. Taken together, the findings suggest that the SRQ is a reliable, valid measure that can be used to assess individual differences in the value experienced from different social rewards. PMID:24653711

  2. The Risks and Rewards of Sexual Debut

    ERIC Educational Resources Information Center

    Golden, Rachel Lynn; Furman, Wyndol; Collibee, Charlene

    2016-01-01

    The sex-positive framework of sexual development hypothesizes that healthy sexual experiences can be developmentally appropriate and rewarding for adolescents despite the risks involved. Research has not examined whether risky behaviors and rewarding cognitions actually change with sexual debut at a normative or late age. This study measured the…

  3. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  4. The Recognition and Reward of Employee Performance.

    ERIC Educational Resources Information Center

    Bishop, John

    A study compared different firms' methods of recognizing and rewarding employee performance and examined the impact of such recognition and reward on such factors as involuntary and voluntary labor turnover and worker productivity. Data from a survey of 3,412 employers that was sponsored by the National Institute of Education and the National…

  5. Social Reward Questionnaire (SRQ): development and validation.

    PubMed

    Foulkes, Lucy; Viding, Essi; McCrory, Eamon; Neumann, Craig S

    2014-01-01

    Human beings seek out social interactions as a source of reward. To date, there have been limited attempts to identify different forms of social reward, and little is known about how the value of social rewards might vary between individuals. This study aimed to address both these issues by developing the Social Reward Questionnaire (SRQ), a measure of individual differences in the value of different social rewards. Exploratory factor analysis (EFA) was run on an initial set of 75 items (N = 305). Based on this analysis, confirmatory factor analysis (CFA) was then conducted on a second sample (N = 505) with a refined 23-item scale. This analysis was used to test a six-factor structure, which resulted in good model fit (CFI = 0.96, RSMEA = 0.07). The factors represent six subscales of social reward defined as follows: Admiration; Negative Social Potency; Passivity; Prosocial Interactions; Sexual Reward; and Sociability. All subscales demonstrated good test-retest reliability and internal consistency. Each subscale also showed a distinct pattern of associations with external correlates measuring personality traits, attitudes, and goals, thus demonstrating construct validity. Taken together, the findings suggest that the SRQ is a reliable, valid measure that can be used to assess individual differences in the value experienced from different social rewards.

  6. Course Budgeting: Balancing Rewards and Risks.

    ERIC Educational Resources Information Center

    Matkin, Gary W.

    Continuing education programmers must be risk takers; however, they should not be gamblers. The most successful of them are able to estimate a balance between potential rewards and risks, taking chances when the odds are favorable. Although it is essential that course planners balance potential financial rewards and risks, it is important to bear…

  7. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  8. Performance-Based Rewards and Work Stress

    ERIC Educational Resources Information Center

    Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

    2011-01-01

    Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

  9. Video game training and the reward system.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training.

  10. The Risks and Rewards of Sexual Debut

    ERIC Educational Resources Information Center

    Golden, Rachel Lynn; Furman, Wyndol; Collibee, Charlene

    2016-01-01

    The sex-positive framework of sexual development hypothesizes that healthy sexual experiences can be developmentally appropriate and rewarding for adolescents despite the risks involved. Research has not examined whether risky behaviors and rewarding cognitions actually change with sexual debut at a normative or late age. This study measured the…

  11. Performance-Based Rewards and Work Stress

    ERIC Educational Resources Information Center

    Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

    2011-01-01

    Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

  12. Status Characteristics, Reward Allocation, and Equity

    ERIC Educational Resources Information Center

    Parcel, Toby L.; Cook, Karen S.

    1977-01-01

    The relationship between a group's power and prestige or status hierarchy and group members' patterns of reward allocation was investigated. The addition of evidence concerning actual task performance results in the alignment of reward and status rankings and encourages the use of distribution rules stressing equity as opposed to equality.…

  13. Adolescent Depression: Stress and Reward Dysfunction

    PubMed Central

    Auerbach, Randy P.; Admon, Roee; Pizzagalli, Diego A.

    2014-01-01

    Adolescence is a peak period for the onset of depression, and it is also a time marked by substantial stress as well as neural development within the brain reward circuitry. In the current review, we provide a selective overview of current animal and human research investigating the relationship among reward processes, stress, and depression. Three separate, but related, etiological models examine the differential roles that stress may play with regard to reward dysfunction and adolescent depression. First, the reward mediation model suggests that acute and chronic stress contribute to reward deficits, which in turn, potentiate depressive symptoms and/or increase the risk for depression. Second, in line with the stress generation perspective, it is plausible that premorbid reward-related dysfunction generates stress, in particular interpersonal stress, which then leads to the manifestation of depressive symptoms. Last, consistent with a diathesis-stress model, the interaction between stress and premorbid reward dysfunction may contribute to the onset of depression. Given the equifinal nature of depression, these models could shed important light on different etiological pathways during adolescence, particularly as they may relate to understanding the heterogeneity of depression. To highlight the translational potential of these insights, a hypothetical case study is provided as means of demonstrating the importance of targeting reward dysfunction in both assessment and treatment of adolescent depression. PMID:24704785

  14. Video game training and the reward system

    PubMed Central

    Lorenz, Robert C.; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training. PMID:25698962

  15. Effects of Extrinsic Rewards on Intrinsic Motivation in the Classroom.

    ERIC Educational Resources Information Center

    Workman, Edward A.; Williams, Robert L.

    1980-01-01

    Reviews classroom behavior management studies to see if extrinsic rewards affect intrinsic reinforcement value of appropriate classroom behaviors. Conclusion indicates extrinsic rewards are useful. Teachers need not avoid the use of rewards in fear of undermining intrinsic interest. (LAB)

  16. Effects of Extrinsic Rewards on Intrinsic Motivation in the Classroom.

    ERIC Educational Resources Information Center

    Workman, Edward A.; Williams, Robert L.

    1980-01-01

    Reviews classroom behavior management studies to see if extrinsic rewards affect intrinsic reinforcement value of appropriate classroom behaviors. Conclusion indicates extrinsic rewards are useful. Teachers need not avoid the use of rewards in fear of undermining intrinsic interest. (LAB)

  17. Statistical Mechanics of the Delayed Reward-Based Learning with Node Perturbation

    NASA Astrophysics Data System (ADS)

    Hiroshi Saito,; Kentaro Katahira,; Kazuo Okanoya,; Masato Okada,

    2010-06-01

    In reward-based learning, reward is typically given with some delay after a behavior that causes the reward. In machine learning literature, the framework of the eligibility trace has been used as one of the solutions to handle the delayed reward in reinforcement learning. In recent studies, the eligibility trace is implied to be important for difficult neuroscience problem known as the “distal reward problem”. Node perturbation is one of the stochastic gradient methods from among many kinds of reinforcement learning implementations, and it searches the approximate gradient by introducing perturbation to a network. Since the stochastic gradient method does not require a objective function differential, it is expected to be able to account for the learning mechanism of a complex system, like a brain. We study the node perturbation with the eligibility trace as a specific example of delayed reward-based learning, and analyzed it using a statistical mechanics approach. As a result, we show the optimal time constant of the eligibility trace respect to the reward delay and the existence of unlearnable parameter configurations.

  18. A Drosophila model for alcohol reward.

    PubMed

    Kaun, Karla R; Azanchi, Reza; Maung, Zaw; Hirsh, Jay; Heberlein, Ulrike

    2011-05-01

    The rewarding properties of drugs contribute to the development of abuse and addiction. We developed a new assay for investigating the motivational properties of ethanol in the genetically tractable model Drosophila melanogaster. Flies learned to associate cues with ethanol intoxication and, although transiently aversive, the experience led to a long-lasting attraction for the ethanol-paired cue, implying that intoxication is rewarding. Temporally blocking transmission in dopaminergic neurons revealed that flies require activation of these neurons to express, but not develop, conditioned preference for ethanol-associated cues. Moreover, flies acquired, consolidated and retrieved these rewarding memories using distinct sets of neurons in the mushroom body. Finally, mutations in scabrous, encoding a fibrinogen-related peptide that regulates Notch signaling, disrupted the formation of memories for ethanol reward. Our results thus establish that Drosophila can be useful for understanding the molecular, genetic and neural mechanisms underling the rewarding properties of ethanol.

  19. A Drosophila model for alcohol reward

    PubMed Central

    Kaun, K.R.; Azanchi, R.; Maung, Z.; Hirsh, J.; Heberlein, U.

    2014-01-01

    The rewarding properties of drugs contribute to the development of abuse and addiction. Here we present a new assay to investigate the motivational properties of ethanol in the genetically tractable model, Drosophila melanogaster. Flies learn to associate cues with ethanol intoxication and, although transiently aversive, the experience leads to a long-lasting attraction for the ethanol-paired cue, implying that intoxication is rewarding. Temporally blocking transmission in dopaminergic neurons revealed that flies require activation of these neurons to express, but not develop, conditioned preference for ethanol-associated cues. Moreover, flies acquire, consolidate, and retrieve these rewarding memories using distinct sets of neurons of the mushroom body. Finally, mutations in scabrous, encoding a fibrinogen-related peptide that regulates Notch signaling, disrupt the formation of memories for ethanol reward. Our results thus establish that Drosophila can be useful in understanding the molecular, genetic and neural mechanisms underling the rewarding properties of ethanol. PMID:21499254

  20. Willing to Wait: Elevated Reward-Processing EEG Activity Associated with a Greater Preference for Larger-But-Delayed Rewards

    PubMed Central

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-01-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these

  1. Reward sensitivity and food addiction in women.

    PubMed

    Loxton, Natalie J; Tipman, Renée J

    2016-10-15

    Sensitivity to the rewarding properties of appetitive substances has long been implicated in excessive consumption of palatable foods and drugs of abuse. Previous research focusing on individual differences in reward responsiveness has found heightened trait reward sensitivity to be associated with binge-eating, hazardous drinking, and illicit substance use. Food addiction has been proposed as an extreme form of compulsive-overeating and has been associated with genetic markers of heightened reward responsiveness. However, little research has explicitly examined the association between reward sensitivity and food addiction. Further, the processes by which individual differences in this trait are associated with excessive over-consumption has not been determined. A total of 374 women from the community completed an online questionnaire assessing reward sensitivity, food addiction, emotional, externally-driven, and hedonic eating. High reward sensitivity was significantly associated with greater food addiction symptoms (r = 0.31). Bootstrapped tests of indirect effects found the relationship between reward sensitivity and food addiction symptom count to be uniquely mediated by binge-eating, emotional eating, and hedonic eating (notably, food availability). These indirect effects held even when controlling for BMI, anxiety, depression, and trait impulsivity. This study further supports the argument that high levels of reward sensitivity may offer a trait marker of vulnerability to excessive over-eating, beyond negative affect and impulse-control deficits. That the hedonic properties of food (especially food availability), emotional, and binge-eating behavior act as unique mediators suggest that interventions for reward-sensitive women presenting with food addiction may benefit from targeting food availability in addition to management of negative affect.

  2. Touch massage, a rewarding experience.

    PubMed

    Lindgren, Lenita; Jacobsson, Maritha; Lämås, Kristina

    2014-12-01

    This study aims to describe and analyze healthy individuals' expressed experiences of touch massage (TM). Fifteen healthy participants received whole body touch massage during 60 minutes for two separate occasions. Interviews were analyzed by narrative analysis. Four identifiable storyline was found, Touch massage as an essential need, in this storyline the participants talked about a desire and need for human touch and TM. Another storyline was about, Touch massage as a pleasurable experience and the participants talked about the pleasure of having had TM. In the third storyline Touch massage as a dynamic experience, the informants talked about things that could modulate the experience of receiving TM. In the last storyline, Touch massage influences self-awareness, the participants described how TM affected some of their psychological and physical experiences. Experiences of touch massage was in general described as pleasant sensations and the different storylines could be seen in the light of rewarding experiences.

  3. Attention, Reward, and Information Seeking

    PubMed Central

    Hayhoe, Mary; Hikosaka, Okihide; Rangel, Antonio

    2014-01-01

    Decision making is thought to be guided by the values of alternative options and involve the accumulation of evidence to an internal bound. However, in natural behavior, evidence accumulation is an active process whereby subjects decide when and which sensory stimulus to sample. These sampling decisions are naturally served by attention and rapid eye movements (saccades), but little is known about how saccades are controlled to guide future actions. Here we review evidence that was discussed at a recent symposium, which suggests that information selection involves basal ganglia and cortical mechanisms and that, across different contexts, it is guided by two central factors: the gains in reward and gains in information (uncertainty reduction) associated with sensory cues. PMID:25392517

  4. Intense Sweetness Surpasses Cocaine Reward

    PubMed Central

    Cantin, Lauriane; Ahmed, Serge H.

    2007-01-01

    Background Refined sugars (e.g., sucrose, fructose) were absent in the diet of most people until very recently in human history. Today overconsumption of diets rich in sugars contributes together with other factors to drive the current obesity epidemic. Overconsumption of sugar-dense foods or beverages is initially motivated by the pleasure of sweet taste and is often compared to drug addiction. Though there are many biological commonalities between sweetened diets and drugs of abuse, the addictive potential of the former relative to the latter is currently unknown. Methodology/Principal findings Here we report that when rats were allowed to choose mutually-exclusively between water sweetened with saccharin–an intense calorie-free sweetener–and intravenous cocaine–a highly addictive and harmful substance–the large majority of animals (94%) preferred the sweet taste of saccharin. The preference for saccharin was not attributable to its unnatural ability to induce sweetness without calories because the same preference was also observed with sucrose, a natural sugar. Finally, the preference for saccharin was not surmountable by increasing doses of cocaine and was observed despite either cocaine intoxication, sensitization or intake escalation–the latter being a hallmark of drug addiction. Conclusions Our findings clearly demonstrate that intense sweetness can surpass cocaine reward, even in drug-sensitized and -addicted individuals. We speculate that the addictive potential of intense sweetness results from an inborn hypersensitivity to sweet tastants. In most mammals, including rats and humans, sweet receptors evolved in ancestral environments poor in sugars and are thus not adapted to high concentrations of sweet tastants. The supranormal stimulation of these receptors by sugar-rich diets, such as those now widely available in modern societies, would generate a supranormal reward signal in the brain, with the potential to override self-control mechanisms

  5. High temporal discounters overvalue immediate rewards rather than undervalue future rewards: an event-related brain potential study.

    PubMed

    Cherniawsky, Avital S; Holroyd, Clay B

    2013-03-01

    Impulsivity is characterized in part by heightened sensitivity to immediate relative to future rewards. Although previous research has suggested that "high discounters" in intertemporal choice tasks tend to prefer immediate over future rewards because they devalue the latter, it remains possible that they instead overvalue immediate rewards. To investigate this question, we recorded the reward positivity, a component of the event-related brain potential (ERP) associated with reward processing, with participants engaged in a task in which they received both immediate and future rewards and nonrewards. The participants also completed a temporal discounting task without ERP recording. We found that immediate but not future rewards elicited the reward positivity. High discounters also produced larger reward positivities to immediate rewards than did low discounters, indicating that high discounters relatively overvalued immediate rewards. These findings suggest that high discounters may be more motivated than low discounters to work for monetary rewards, irrespective of the time of arrival of the incentives.

  6. Common Dimensional Reward Deficits Across Mood and Psychotic Disorders: A Connectome-Wide Association Study.

    PubMed

    Sharma, Anup; Wolf, Daniel H; Ciric, Rastko; Kable, Joseph W; Moore, Tyler M; Vandekar, Simon N; Katchmar, Natalie; Daldal, Aylin; Ruparel, Kosha; Davatzikos, Christos; Elliott, Mark A; Calkins, Monica E; Shinohara, Russell T; Bassett, Danielle S; Satterthwaite, Theodore D

    2017-07-01

    Anhedonia is central to multiple psychiatric disorders and causes substantial disability. A dimensional conceptualization posits that anhedonia severity is related to a transdiagnostic continuum of reward deficits in specific neural networks. Previous functional connectivity studies related to anhedonia have focused on case-control comparisons in specific disorders, using region-specific seed-based analyses. Here, the authors explore the entire functional connectome in relation to reward responsivity across a population of adults with heterogeneous psychopathology. In a sample of 225 adults from five diagnostic groups (major depressive disorder, N=32; bipolar disorder, N=50; schizophrenia, N=51; psychosis risk, N=39; and healthy control subjects, N=53), the authors conducted a connectome-wide analysis examining the relationship between a dimensional measure of reward responsivity (the reward sensitivity subscale of the Behavioral Activation Scale) and resting-state functional connectivity using multivariate distance-based matrix regression. The authors identified foci of dysconnectivity associated with reward responsivity in the nucleus accumbens, the default mode network, and the cingulo-opercular network. Follow-up analyses revealed dysconnectivity among specific large-scale functional networks and their connectivity with the nucleus accumbens. Reward deficits were associated with decreased connectivity between the nucleus accumbens and the default mode network and increased connectivity between the nucleus accumbens and the cingulo-opercular network. In addition, impaired reward responsivity was associated with default mode network hyperconnectivity and diminished connectivity between the default mode network and the cingulo-opercular network. These results emphasize the centrality of the nucleus accumbens in the pathophysiology of reward deficits and suggest that dissociable patterns of connectivity among large-scale networks are critical to the neurobiology of

  7. CLEANing the Reward: Counterfactual Actions to Remove Exploratory Action Noise in Multiagent Learning

    NASA Technical Reports Server (NTRS)

    HolmesParker, Chris; Taylor, Mathew E.; Tumer, Kagan; Agogino, Adrian

    2014-01-01

    Learning in multiagent systems can be slow because agents must learn both how to behave in a complex environment and how to account for the actions of other agents. The inability of an agent to distinguish between the true environmental dynamics and those caused by the stochastic exploratory actions of other agents creates noise in each agent's reward signal. This learning noise can have unforeseen and often undesirable effects on the resultant system performance. We define such noise as exploratory action noise, demonstrate the critical impact it can have on the learning process in multiagent settings, and introduce a reward structure to effectively remove such noise from each agent's reward signal. In particular, we introduce Coordinated Learning without Exploratory Action Noise (CLEAN) rewards and empirically demonstrate their benefits

  8. Dopamine Modulates Reward-Related Vigor

    PubMed Central

    Beierholm, Ulrik; Guitart-Masip, Marc; Economides, Marcos; Chowdhury, Rumana; Düzel, Emrah; Dolan, Ray; Dayan, Peter

    2013-01-01

    Subjects routinely control the vigor with which they emit motoric responses. However, the bulk of formal treatments of decision-making ignores this dimension of choice. A recent theoretical study suggested that action vigor should be influenced by experienced average reward rate and that this rate is encoded by tonic dopamine in the brain. We previously examined how average reward rate modulates vigor as exemplified by response times and found a measure of agreement with the first suggestion. In the current study, we examined the second suggestion, namely the potential influence of dopamine signaling on vigor. Ninety healthy subjects participated in a double-blind experiment in which they received one of the following: placebo, L-DOPA (which increases dopamine levels in the brain), or citalopram (which has a selective, if complex, effect on serotonin levels). Subjects performed multiple trials of a rewarded odd-ball discrimination task in which we varied the potential reward over time in order to exercise the putative link between vigor and average reward rate. Replicating our previous findings, we found that a significant fraction of the variance in subjects' responses could be explained by our experimentally manipulated changes in average reward rate. Crucially, this relationship was significantly stronger under L-Dopa than under Placebo, suggesting that the impact of average reward levels on action vigor is indeed subject to a dopaminergic influence. PMID:23419875

  9. Learning Contextual Reward Expectations for Value Adaptation.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2017-09-26

    Substantial evidence indicates that subjective value is adapted to the statistics of reward expected within a given temporal context. However, how these contextual expectations are learnt is poorly understood. To examine such learning, we exploited a recent observation that participants performing a gambling task adjust their preferences as a function of context. We show that, in the absence of contextual cues providing reward information, an average reward expectation was learned from recent past experience. Learning dependent on contextual cues emerged when two contexts alternated at a fast rate, whereas both cue-independent and cue-dependent forms of learning were apparent when two contexts alternated at a slower rate. Motivated by these behavioral findings, we reanalyzed a previous fMRI data set to probe the neural substrates of learning contextual reward expectations. We observed a form of reward prediction error related to average reward such that, at option presentation, activity in ventral tegmental area/substantia nigra and ventral striatum correlated positively and negatively, respectively, with the actual and predicted value of options. Moreover, an inverse correlation between activity in ventral tegmental area/substantia nigra (but not striatum) and predicted option value was greater in participants showing enhanced choice adaptation to context. The findings help understanding the mechanisms underlying learning of contextual reward expectation.

  10. ENERGY REGULATORY SIGNALS AND FOOD REWARD

    PubMed Central

    Figlewicz, Dianne P.; Sipols, Alfred J.

    2010-01-01

    The hormones insulin, leptin, and ghrelin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis, acting at medial hypothalamic sites. Here, we summarize research demonstrating that, in addition to direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and is also a direct and indirect target for the action of these endocrine regulators of energy homeostasis. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, the midbrain dopamine (DA) and opioidergic pathways. Ghrelin can increase food reward behaviors, and support midbrain DA neuronal function. We summarize discussion of behavioral, systems, and cellular evidence in support of the contributions of reward circuitry to the homeostatic roles of these hormones in the CNS. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders. PMID:20230849

  11. Empathy Modulates the Rewarding Effect of Mimicry

    PubMed Central

    Neufeld, J.; Chakrabarti, B.

    2016-01-01

    We tend to like those who mimic us. In this study we formally test if mimicry changes the reward value of the mimicker, using gaze bias as a proxy for reward. Previous research has demonstrated that people show gaze bias towards more rewarding targets, suggesting that gaze bias can be considered a proxy for relative reward value. Forty adults participated in a conditioning task, where they were mimicked by one face and ‘anti-mimicked’ by another. Subsequently, they were found to show gaze-bias towards faces that mimicked them compared to those that did not, in a preferential looking task. The strength of this effect correlated positively with individual levels of trait empathy. In a separate, similar task, these participants showed a gaze bias for faces paired with high vs low monetary rewards, thus validating the use of gaze bias as a proxy for learnt reward. Together, these results demonstrate that mimicry changes the reward value of social stimuli, and empathy influences the extent of this change. This can potentially inform conditions marked by deficits in forming social bonds, such as Autism. PMID:27297317

  12. Acute stress selectively reduces reward sensitivity

    PubMed Central

    Berghorst, Lisa H.; Bogdan, Ryan; Frank, Michael J.; Pizzagalli, Diego A.

    2013-01-01

    Stress may promote the onset of psychopathology by disrupting reward processing. However, the extent to which stress impairs reward processing, rather than incentive processing more generally, is unclear. To evaluate the specificity of stress-induced reward processing disruption, 100 psychiatrically healthy females were administered a probabilistic stimulus selection task (PSST) that enabled comparison of sensitivity to reward-driven (Go) and punishment-driven (NoGo) learning under either “no stress” or “stress” (threat-of-shock) conditions. Cortisol samples and self-report measures were collected. Contrary to hypotheses, the groups did not differ significantly in task performance or cortisol reactivity. However, further analyses focusing only on individuals under “stress” who were high responders with regard to both cortisol reactivity and self-reported negative affect revealed reduced reward sensitivity relative to individuals tested in the “no stress” condition; importantly, these deficits were reward-specific. Overall, findings provide preliminary evidence that stress-reactive individuals show diminished sensitivity to reward, but not punishment, under stress. While such results highlight the possibility that stress-induced anhedonia might be an important mechanism linking stress to affective disorders, future studies are necessary to confirm this conjecture. PMID:23596406

  13. Dopamine modulates reward-related vigor.

    PubMed

    Beierholm, Ulrik; Guitart-Masip, Marc; Economides, Marcos; Chowdhury, Rumana; Düzel, Emrah; Dolan, Ray; Dayan, Peter

    2013-07-01

    Subjects routinely control the vigor with which they emit motoric responses. However, the bulk of formal treatments of decision-making ignores this dimension of choice. A recent theoretical study suggested that action vigor should be influenced by experienced average reward rate and that this rate is encoded by tonic dopamine in the brain. We previously examined how average reward rate modulates vigor as exemplified by response times and found a measure of agreement with the first suggestion. In the current study, we examined the second suggestion, namely the potential influence of dopamine signaling on vigor. Ninety healthy subjects participated in a double-blind experiment in which they received one of the following: placebo, L-DOPA (which increases dopamine levels in the brain), or citalopram (which has a selective, if complex, effect on serotonin levels). Subjects performed multiple trials of a rewarded odd-ball discrimination task in which we varied the potential reward over time in order to exercise the putative link between vigor and average reward rate. Replicating our previous findings, we found that a significant fraction of the variance in subjects' responses could be explained by our experimentally manipulated changes in average reward rate. Crucially, this relationship was significantly stronger under L-Dopa than under Placebo, suggesting that the impact of average reward levels on action vigor is indeed subject to a dopaminergic influence.

  14. Prosocial Reward Learning in Children and Adolescents

    PubMed Central

    Kwak, Youngbin; Huettel, Scott A.

    2016-01-01

    Adolescence is a period of increased sensitivity to social contexts. To evaluate how social context sensitivity changes over development—and influences reward learning—we investigated how children and adolescents perceive and integrate rewards for oneself and others during a dynamic risky decision-making task. Children and adolescents (N = 75, 8–16 years) performed the Social Gambling Task (SGT, Kwak et al., 2014) and completed a set of questionnaires measuring other-regarding behavior. In the SGT, participants choose amongst four card decks that have different payout structures for oneself and for a charity. We examined patterns of choices, overall decision strategies, and how reward outcomes led to trial-by-trial adjustments in behavior, as estimated using a reinforcement-learning model. Performance of children and adolescents was compared to data from a previously collected sample of adults (N = 102) performing the identical task. We found that that children/adolescents were not only more sensitive to rewards directed to the charity than self but also showed greater prosocial tendencies on independent measures of other-regarding behavior. Children and adolescents also showed less use of a strategy that prioritizes rewards for self at the expense of rewards for others. These results support the conclusion that, compared to adults, children and adolescents show greater sensitivity to outcomes for others when making decisions and learning about potential rewards. PMID:27761125

  15. Reward expectation influences audiovisual spatial integration.

    PubMed

    Bruns, Patrick; Maiworm, Mario; Röder, Brigitte

    2014-08-01

    In order to determine the spatial location of an object that is simultaneously seen and heard, the brain assigns higher weights to the sensory inputs that provide the most reliable information. For example, in the well-known ventriloquism effect, the perceived location of a sound is shifted toward the location of a concurrent but spatially misaligned visual stimulus. This perceptual illusion can be explained by the usually much higher spatial resolution of the visual system as compared to the auditory system. Recently, it has been demonstrated that this cross-modal binding process is not fully automatic, but can be modulated by emotional learning. Here we tested whether cross-modal binding is similarly affected by motivational factors, as exemplified by reward expectancy. Participants received a monetary reward for precise and accurate localization of brief auditory stimuli. Auditory stimuli were accompanied by task-irrelevant, spatially misaligned visual stimuli. Thus, the participants' motivational goal of maximizing their reward was put in conflict with the spatial bias of auditory localization induced by the ventriloquist situation. Crucially, the amounts of expected reward differed between the two hemifields. As compared to the hemifield associated with a low reward, the ventriloquism effect was reduced in the high-reward hemifield. This finding suggests that reward expectations modulate cross-modal binding processes, possibly mediated via cognitive control mechanisms. The motivational significance of the stimulus material, thus, constitutes an important factor that needs to be considered in the study of top-down influences on multisensory integration.

  16. Reward processing abnormalities in Parkinson's disease.

    PubMed

    Kapogiannis, Dimitrios; Mooshagian, Eric; Campion, Paul; Grafman, Jordan; Zimmermann, Trelawny J; Ladt, Kelsey C; Wassermann, Eric M

    2011-07-01

    The primary motor cortex is important for motor learning and response selection, functions that require information on the expected and actual outcomes of behavior. Therefore, it should receive signals related to reward. Pathways from reward centers to motor cortex exist in primates. Previously, we showed that gamma aminobutyric acid-A-mediated inhibition in the motor cortex, measured by paired transcranial magnetic stimulation, changes with expectation and uncertainty of money rewards generated by a slot machine simulation. We examined the role of dopamine in this phenomenon by testing 13 mildly affected patients with Parkinson's disease, off and on dopaminergic medications, and 13 healthy, age-matched controls. Consistent with a dopaminergic mechanism, reward expectation or predictability modulated the response to paired transcranial magnetic stimulation in controls, but not in unmedicated patients. A single dose of pramipexole restored this effect of reward, mainly by increasing the paired transcranial magnetic stimulation response amplitude during low expectation. Levodopa produced no such effect. Both pramipexole and levodopa increased risk-taking behavior on the Iowa Gambling Task. However, pramipexole increased risk-taking behavior more in patients showing lower paired transcranial magnetic stimulation response amplitude during low expectation. These results provide evidence that modulation of motor cortex inhibition by reward is mediated by dopamine signaling and that the physiological state of the motor cortex changes with risk-taking tendency in patients on pramipexole. The cortical response to reward expectation may represent an endophenotype for risk-taking behavior in patients on agonist treatment.

  17. MODULATION OF FOOD REWARD BY ADIPOSITY SIGNALS

    PubMed Central

    Figlewicz, Dianne P.; Naleid, Amy MacDonald; Sipols, Alfred J.

    2007-01-01

    Extensive historical evidence from the drug abuse literature has provided support for the concept that there is functional communication between central nervous system (CNS) circuitries which subserve reward/motivation, and the regulation of energy homeostasis. This concept is substantiated by recent studies that map anatomical pathways, or which demonstrate that hormones and neurotransmitters associated with energy homeostasis regulation can directly modulate reward and motivation behaviors. Studies from our laboratory have focused specifically on the candidate adiposity hormones, insulin and leptin, and show that these hormones can decrease performance in behavioral paradigms that assess the rewarding or motivating properties of food. Additionally we and others have provided evidence that the ventral tegmental area may be one direct target for these effects, and we are currently exploring other potential anatomical targets. Finally, we are beginning to explore the interaction between adiposity signals, chronic maintenance diet of rats, and different types of food rewards to more closely simulate the current food environments of Westernized societies including the U.S. We propose that future studies of food reward should include a more complex environment in the experimental design that takes into account abundance and variety of rewarding foods, psychological stressors, and choices of reward modalities. PMID:17137609

  18. Using food as a reward: An examination of parental reward practices.

    PubMed

    Roberts, Lindsey; Marx, Jenna M; Musher-Eizenman, Dara R

    2017-09-23

    Eating patterns and taste preferences are often established early in life. Many studies have examined how parental feeding practices may affect children's outcomes, including food intake and preference. The current study focused on a common food parenting practice, using food as a reward, and used Latent Profile Analysis (LPA) to examine whether mothers (n = 376) and fathers (n = 117) of children ages 2.8 to 7.5 (M = 4.7; SD = 1.1) grouped into profiles (i.e., subgroups) based on how they use of food as a reward. The 4-class model was the best-fitting LPA model, with resulting classes based on both the frequency and type of reward used. Classes were: infrequent reward (33%), tangible reward (21%), food reward (27%), and frequent reward (19%). The current study also explored whether children's eating styles (emotional overeating, rood fussiness, food responsiveness, and satiety responsiveness) and parenting style (Authoritative, Authoritarian, and Permissive) varied by reward profile. Analyses of Variance (ANOVA) revealed that the four profiles differed significantly for all outcome variables except satiety responsiveness. It appears that the use of tangible and food-based rewards have important implications in food parenting. More research is needed to better understand how the different rewarding practices affect additional child outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Abnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD

    PubMed Central

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R.; Bramati, Ivanei E.; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A.; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD. PMID:24586543

  20. Abnormal striatal BOLD responses to reward anticipation and reward delivery in ADHD.

    PubMed

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R; Bramati, Ivanei E; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD.

  1. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators.

    PubMed

    Kirk, Ulrich; Brown, Kirk Warren; Downar, Jonathan

    2015-05-01

    Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processing-both during reward anticipation and receipt of reward-responded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. MOSAIC for multiple-reward environments.

    PubMed

    Sugimoto, Norikazu; Haruno, Masahiko; Doya, Kenji; Kawato, Mitsuo

    2012-03-01

    Reinforcement learning (RL) can provide a basic framework for autonomous robots to learn to control and maximize future cumulative rewards in complex environments. To achieve high performance, RL controllers must consider the complex external dynamics for movements and task (reward function) and optimize control commands. For example, a robot playing tennis and squash needs to cope with the different dynamics of a tennis or squash racket and such dynamic environmental factors as the wind. In addition, this robot has to tailor its tactics simultaneously under the rules of either game. This double complexity of the external dynamics and reward function sometimes becomes more complex when both the multiple dynamics and multiple reward functions switch implicitly, as in the situation of a real (multi-agent) game of tennis where one player cannot observe the intention of her opponents or her partner. The robot must consider its opponent's and its partner's unobservable behavioral goals (reward function). In this article, we address how an RL agent should be designed to handle such double complexity of dynamics and reward. We have previously proposed modular selection and identification for control (MOSAIC) to cope with nonstationary dynamics where appropriate controllers are selected and learned among many candidates based on the error of its paired dynamics predictor: the forward model. Here we extend this framework for RL and propose MOSAIC-MR architecture. It resembles MOSAIC in spirit and selects and learns an appropriate RL controller based on the RL controller's TD error using the errors of the dynamics (the forward model) and the reward predictors. Furthermore, unlike other MOSAIC variants for RL, RL controllers are not a priori paired with the fixed predictors of dynamics and rewards. The simulation results demonstrate that MOSAIC-MR outperforms other counterparts because of this flexible association ability among RL controllers, forward models, and reward

  3. Endocannabinoid signaling in reward and addiction

    PubMed Central

    Parsons, Loren H.; Hurd, Yasmin L.

    2015-01-01

    Brain endocannabinoid signaling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated endocannabinoid signaling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired endocannabinoid signaling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states, and craving that propel addiction. Understanding the contributions of endocannabinoid disruptions to behavioral and physiological traits provides insight into the endocannabinoid influence on addiction vulnerability. PMID:26373473

  4. Endocannabinoid signalling in reward and addiction.

    PubMed

    Parsons, Loren H; Hurd, Yasmin L

    2015-10-01

    Brain endocannabinoid (eCB) signalling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated eCB signalling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired eCB signalling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states and cravings that propel addiction. Understanding the contributions of eCB disruptions to behavioural and physiological traits provides insight into the eCB influence on addiction vulnerability.

  5. Dopaminergic Neurons and Brain Reward Pathways

    PubMed Central

    Luo, Sarah X.; Huang, Eric J.

    2017-01-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog–Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases. PMID:26724386

  6. Extending overjustification: the effect of perceived reward-giver intention on response to rewards.

    PubMed

    Forehand, M R

    2000-12-01

    The perceived intention model incorporates a new moderator, beliefs about reward-giver intention, into the overjustification paradigm. In 2 simulated shopping studies featuring products paired with promotional rewards, consumers who believed the marketer was promotion focused (reward used to encourage purchase) reported lower purchase intentions and brand attitudes for promoted products after promotion, whereas consumers who believed the marketer was reward focused (promotion used to distribute the reward) showed no attitude change. Promotion-focus beliefs lowered attitudes by heightening the contingency between the promotion and purchase and thereby increasing the perceived causal role of the reward. This effect was contingent on initial behavior--postpromotion attitude change occurred for consumers who actively engaged in product decisions but not for consumers who passively observed the choice sets.

  7. Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events.

    PubMed

    Murayama, Kou; Kitagami, Shinji

    2014-02-01

    Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.

  8. The differential influences of positive affect, random reward, and performance-contingent reward on cognitive control.

    PubMed

    Fröber, Kerstin; Dreisbach, Gesine

    2014-06-01

    Growing evidence suggests that positive affect and reward have differential effects on cognitive control. So far, however, these effects have never been studied together. Here, the authors present one behavioral study investigating the influences of positive affect and reward (contingent and noncontingent) on proactive control. A modified version of the AX-continuous performance task, which has repeatedly been shown to be sensitive to reward and affect manipulations, was used. In a first phase, two experimental groups received either neutral or positive affective pictures before every trial. In a second phase, the two halves of a given affect group additionally received, respectively, performance-contingent or random rewards. The results replicated the typical affect effect, in terms of reduced proactive control under positive as compared to neutral affect. Also, the typical reward effects associated with increased proactive control were replicated. Most interestingly, performance-contingent reward counteracted the positive affect effect, whereas random reward mirrored that effect. In sum, this study provides first evidence that performance-contingent reward, on the one hand, and positive affect and performance-noncontingent reward, on the other hand, have oppositional effects on cognitive control: Only performance-contingent reward showed a motivational effect in terms of a strategy shift toward increased proactive control, whereas positive affect alone and performance-noncontingent reward reduced proactive control. Moreover, the integrative design of this study revealed the vulnerability of positive affect effects to motivational manipulations. The results are discussed with respect to current neuroscientific theories of the effects of dopamine on affect, reward, and cognitive control.

  9. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS).

    PubMed

    Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S

    2010-03-01

    affected by an individual's D2 density in the VTA mediated interaction of the NAc. It is therefore hypothesized that carriers of DRD2 A1 allele may respond significantly differently to carriers of the DRD2 A2 genotype. In this regard, carriers of the D2 A1 allele have a blunted response to glucose and monetary rewards. In contrast powerful D2 agonists like bromocryptine show a heightened activation of the reward circuitry only in DRD2 A1 allele carriers. If music causes a powerful activation in spite of the DRD2 A1 allele due to a strong DA neuronal release which subsequently impinges on existing D2 receptors, then it is reasonable to assume that music is a strong indirect D2 agonist (by virtue of DA neuronal release in the NAc) and may have important therapeutic applicability in Reward Deficiency Syndrome (RDS) related behaviors including Substance Use Disorder (SUD). Ross et al. [18] found that music therapy appears to be a novel motivational tool in a severely impaired inpatient sample of patients with co-occurring mental illness and addiction.

  10. Effects of anabolic-androgens on brain reward function

    PubMed Central

    Mhillaj, Emanuela; Morgese, Maria G.; Tucci, Paolo; Bove, Maria; Schiavone, Stefania; Trabace, Luigia

    2015-01-01

    Androgens are mainly prescribed to treat several diseases caused by testosterone deficiency. However, athletes try to promote muscle growth by manipulating testosterone levels or assuming androgen anabolic steroids (AAS). These substances were originally synthesized to obtain anabolic effects greater than testosterone. Although AAS are rarely prescribed compared to testosterone, their off-label utilization is very wide. Furthermore, combinations of different steroids and doses generally higher than those used in therapy are common. Symptoms of the chronic use of supra-therapeutic doses of AAS include anxiety, depression, aggression, paranoia, distractibility, confusion, amnesia. Interestingly, some studies have shown that AAS elicited electroencephalographic changes similar to those observed with amphetamine abuse. The frequency of side effects is higher among AAS abusers, with psychiatric complications such as labile mood, lack of impulse control and high violence. On the other hand, AAS addiction studies are complex because data collection is very difficult due to the subjects' reticence and can be biased by many variables, including physical exercise, that alter the reward system. Moreover, it has been reported that AAS may imbalance neurotransmitter systems involved in the reward process, leading to increased sensitivity toward opioid narcotics and central stimulants. The goal of this article is to review the literature on steroid abuse and changes to the reward system in preclinical and clinical studies. PMID:26379484

  11. Neural representations of subjective reward value.

    PubMed

    Peters, J; Büchel, C

    2010-12-01

    Decision neuroscience suggests that there exists a core network for the subjective valuation of rewards from a range of different domains, encompassing the ventral striatum and regions of the orbitofrontal cortex (OFC), in particular the ventromedial aspect of the OFC. Here we first review ways to measure subjective value experimentally in a cognitive neuroscience context, and provide a brief overview over different types of value (outcome, goal and decision value). We then compare results of functional neuroimaging studies of subjective value representations across these different types of value. Our analysis suggests that the same region of the mOFC represents the outcome values of primary reinforcers, but also more complex decision values in which multiple dimensions of the reward need to be integrated. The subjective (hedonic) experience of processing highly valued decision options (regardless of whether they refer to actually experienced rewards or merely potential future rewards) appears to be what is reflected in value-related mOFC activity.

  12. Improving Faculty Evaluation and Reward Systems.

    ERIC Educational Resources Information Center

    Needham, Douglas

    1982-01-01

    Ways for improving college level faculty evaluation are examined. Three criteria are discussed: research performance, teaching performance, and administrative performance. Desirable features of faculty rewards systems are also described. (RM)

  13. Brain Reward Circuits in Morphine Addiction.

    PubMed

    Kim, Juhwan; Ham, Suji; Hong, Heeok; Moon, Changjong; Im, Heh-In

    2016-09-01

    Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.

  14. The Brain Reward Circuitry in Mood Disorders

    PubMed Central

    Russo, Scott J.; Nestler, Eric J.

    2013-01-01

    Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioral domains. A recent literature has identified important structural and functional alterations within the brain’s reward circuitry —particularly in the ventral tegmental area to nucleus accumbens pathway — that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms. PMID:23942470

  15. Brain Reward Circuits in Morphine Addiction

    PubMed Central

    Kim, Juhwan; Ham, Suji; Hong, Heeok; Moon, Changjong; Im, Heh-In

    2016-01-01

    Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate’s innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences. PMID:27506251

  16. Gustatory Reward and the Nucleus Accumbens

    PubMed Central

    Norgren, R.; Hajnal, A.; Mungarndee, S.S.

    2011-01-01

    The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531

  17. The Controversy over Group Rewards in Cooperative Classrooms.

    ERIC Educational Resources Information Center

    Graves, Ted

    1991-01-01

    Suggests ways to minimize the negative effects of extrinsic group rewards in cooperative classrooms, explains how to use intrinsic rewards, and outlines conditions calling for extrinsic rewards. The "social rewards" of working cooperatively probably enhance intrinsic motivation and are among the great advantages of employing cooperative…

  18. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators

    PubMed Central

    Brown, Kirk Warren; Downar, Jonathan

    2015-01-01

    Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processing—both during reward anticipation and receipt of reward—responded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives. PMID:25193949

  19. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    PubMed

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment.

  20. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning

    PubMed Central

    Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-01-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. PMID:25680989

  1. Motivating interdependent teams: individual rewards, shared rewards, or something in between?

    PubMed

    Pearsall, Matthew J; Christian, Michael S; Ellis, Aleksander P J

    2010-01-01

    The primary purpose in this study was to extend theory and research regarding the motivational process in teams by examining the effects of hybrid rewards on team performance. Further, to better understand the underlying team level mechanisms, the authors examined whether the hypothesized benefits of hybrid over shared and individual rewards were due to increased information allocation and reduced social loafing. Results from 90 teams working on a command-and-control simulation supported the hypotheses. Hybrid rewards led to higher levels of team performance than did individual and shared rewards; these effects were due to improvements in information allocation and reductions in social loafing.

  2. Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission.

    PubMed

    Torres, Carmen; Glueck, Amanda C; Conrad, Shannon E; Morón, Ignacio; Papini, Mauricio R

    2016-09-22

    The dorsomedial striatum (DMS) has been implicated in the acquisition of reward representations, a proposal leading to the hypothesis that it should play a role in situations involving reward loss. We report the results of an experiment in which the effects of DMS excitotoxic lesions were tested in consummatory successive negative contrast (reward devaluation), autoshaping training with partial vs. continuous reinforcement (reward uncertainty), and appetitive extinction (reward omission). Animals with DMS lesions exhibited reduced lever pressing responding, but enhanced goal entries, during partial reinforcement training in autoshaping. However, they showed normal negative contrast, acquisition under continuous reinforcement (CR), appetitive extinction, and response facilitation in early extinction trials. Open-field testing also indicated normal motor behavior. Thus, DMS lesions selectively affected the behavioral adjustment to a situation involving reward uncertainty, producing a behavioral reorganization according to which goal tracking (goal entries) became predominant at the expense of sign tracking (lever pressing). This pattern of results shows that the function of the DMS in situations involving reward loss is not general, but restricted to reward uncertainty. We suggest that a nonassociative, drive-related process induced by reward uncertainty requires normal output from DMS neurons. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. The circadian clock, reward, and memory.

    PubMed

    Albrecht, Urs

    2011-01-01

    During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  4. Interrelated mechanisms in reward and learning.

    PubMed

    Lajtha, Abel

    2008-01-01

    This brief review is focused on recent work in our laboratory, in which we assayed nicotine-induced neurotransmitter changes, comparing it to changes induced by other compounds and examined the receptor systems and their interactions that mediate the changes. The primary aim of our studies is to examine the role of neurotransmitter changes in reward and learning processes. We find that these processes are interlinked and interact in that reward-addiction mechanisms include processes of learning and learning-memory mechanisms include processes of reward. In spite being interlinked, the two processes have different functions and distinct properties and our long-term aim is to identify factors that control these processes and the differences among the processes. Here, we discuss reward processes, which we define as changes examined after administration of nicotine, cocaine or food, each of which induces changes in neurotransmitter levels and functions in cognitive areas as well as in reward areas. The changes are regionally heterogeneous and are drug or stimulus specific. They include changes in the transmitters assayed (catecholamines, amino acids, and acetylcholine) and also in their metabolites, hence, in addition to release, uptake and metabolism are involved. Many receptors modulate the response with direct and indirect effects. The involvement of many transmitters, receptors and their interactions and the stimulus specificity of the response indicated that each function, reward and learning represents the involvement of different pattern of changes with a different stimulus, therefore, many different learning and many different reward processes are active, which allow stimulus specific responses. The complex pattern of reward-induced changes in neurotransmitters is only a part of the multiple changes observed, but one which has a crucial and controlling function.

  5. Ghrelin at the interface of obesity and reward.

    PubMed

    Schellekens, Harriët; Dinan, Timothy G; Cryan, John F

    2013-01-01

    The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat.

  6. Hunger and Satiety Gauge Reward Sensitivity

    PubMed Central

    Cassidy, Ryan Michael; Tong, Qingchun

    2017-01-01

    Many of the neurocircuits and hormones known to underlie the sensations of hunger and satiety also substantially alter the activity of the dopaminergic reward system. Much interest lies in the ways that hunger, satiety, and reward tie together, as the epidemic of obesity seems tied to the recent development and mass availability of highly palatable foods. In this review, we will first discuss the basic neurocircuitry of the midbrain and basal forebrain reward system. We will elaborate how several important mediators of hunger—the agouti-related protein neurons of the arcuate nucleus, the lateral hypothalamic nucleus, and ghrelin—enhance the sensitivity of the dopaminergic reward system. Then, we will elaborate how mediators of satiety—the nucleus tractus solitarius, pro-opiomelanocortin neurons of the arcuate nucleus, and its peripheral hormonal influences such as leptin—reduce the reward system sensitivity. We hope to provide a template by which future research may identify the ways in which highly rewarding foods bypass this balanced system to produce excessive food consumption. PMID:28572791

  7. Musical pleasure and reward: mechanisms and dysfunction.

    PubMed

    Zatorre, Robert J

    2015-03-01

    Most people derive pleasure from music. Neuroimaging studies show that the reward system of the human brain is central to this experience. Specifically, the dorsal and ventral striatum release dopamine when listening to pleasurable music, and activity in these structures also codes the reward value of musical excerpts. Moreover, the striatum interacts with cortical mechanisms involved in perception and valuation of musical stimuli. Recent studies have begun to explore individual differences in the way that this complex system functions. Development of a questionnaire for music reward experiences has allowed the identification of separable factors associated with musical pleasure, described as music-seeking, emotion-evocation, mood regulation, sensorimotor, and social factors. Applying this questionnaire to a large sample uncovered approximately 5% of the population with low sensitivity to musical reward in the absence of generalized anhedonia or depression. Further study of this group revealed that there are individuals who respond normally both behaviorally and psychophysiologically to rewards other than music (e.g., monetary value) but do not experience pleasure from music despite normal music perception ability and preserved ability to identify intended emotions in musical passages. This specific music anhedonia bears further study, as it may shed light on the function and dysfunction of the reward system.

  8. The endocannabinoid system and nondrug rewarding behaviours.

    PubMed

    Fattore, Liana; Melis, Miriam; Fadda, Paola; Pistis, Marco; Fratta, Walter

    2010-07-01

    Rewarding behaviours such as sexual activity, eating, nursing, parenting, social interactions, and play activity are conserved strongly in evolution, and they are essential for development and survival. All of these behaviours are enjoyable and represent pleasant experiences with a high reward value. Remarkably, rewarding behaviours activate the same brain circuits that mediate the positive reinforcing effects of drugs of abuse and of other forms of addiction, such as gambling and food addiction. Given the involvement of the endocannabinoid system in a variety of physiological functions of the nervous system, it is not surprising that it takes part in the complex machinery that regulates gratification and perception of pleasure. In this review, we focus first on the role of the endocannabinoid system in the modulation of neural activity and synaptic functions in brain regions that are involved in natural and nonnatural rewards (namely, the ventral tegmental area, striatum, amygdala, and prefrontal cortex). Then, we examine the role of the endocannabinoid system in modulating behaviours that directly or indirectly activate these brain reward pathways. More specifically, current knowledge of the effects of the pharmacological manipulation of the endocannabinoid system on natural (eating, sexual behaviour, parenting, and social play) and pathological (gambling) rewarding behaviours is summarised and discussed.

  9. Role of D1/D2 dopamine receptors in the CA1 region of the rat hippocampus in the rewarding effects of morphine administered into the ventral tegmental area.

    PubMed

    Esmaeili, Mohammad-Hossein; Kermani, Mojtaba; Parvishan, Asghar; Haghparast, Abbas

    2012-05-16

    Considerable evidences show that the VTA, as a major source of dopamine neurons projecting to cortical and limbic regions, has a major role in cognitive and motivating aspects of addiction. The current study assessed the ability of the selective D1 receptor antagonist SCH 23390 and D2 receptor antagonist sulpiride administrated into the CA1 region of hippocampus (dorsal hippocampus) to alter the rewarding effects of intra-VTA administration of morphine using the conditioned place preference (CPP). After bilaterally implantation of cannulae into the CA1 and/or VTA in adult male Wistar rats weighing 210-310 g, dose-response effects of different doses of intra-VTA morphine (0.03, 0.1, 0.3, 1 and 3 μg/side) on CPP paradigm were evaluated and animal displacement, conditioning score and locomotor activity were recorded by Ethovision software. In the next experiments, SCH 23390 (0.02, 0.05, 0.2 and 0.5 μg/side) or sulpiride (0.25, 0.75, 1.5 and 3 μg/side) were injected into the CA1, 5 min after intra-VTA injection of morphine during 3 days conditioning phase. Our results showed that intra-VTA morphine dose-dependently induces CPP in rats. Moreover, the blocking D1 and D2 receptors in the dorsal hippocampus decreased intra-VTA morphine-induced CPP significantly (P<0.01). Intra-CA1 administration of these antagonists alone, in all doses, could not induce CPP. We suggest that D1 and D2 receptors in the CA1 region of hippocampus have a key role in the development of CPP induced by morphine at the level of the VTA. It seems that there is an interaction between dopaminergic and opioidergic systems in these areas in reward circuit.

  10. Adolescent behavioral and neural reward sensitivity: a test of the differential susceptibility theory

    PubMed Central

    Richards, J S; Arias Vásquez, A; von Rhein, D; van der Meer, D; Franke, B; Hoekstra, P J; Heslenfeld, D J; Oosterlaan, J; Faraone, S V; Buitelaar, J K; Hartman, C A

    2016-01-01

    Little is known about the causes of individual differences in reward sensitivity. We investigated gene–environment interactions (GxE) on behavioral and neural measures of reward sensitivity, in light of the differential susceptibility theory. This theory states that individuals carrying plasticity gene variants will be more disadvantaged in negative, but more advantaged in positive environments. Reward responses were assessed during a monetary incentive delay task in 178 participants with and 265 without attention-deficit/hyperactivity disorder (ADHD), from N=261 families. We examined interactions between variants in candidate plasticity genes (DAT1, 5-HTT and DRD4) and social environments (maternal expressed emotion and peer affiliation). HTTLPR short allele carriers showed the least reward speeding when exposed to high positive peer affiliation, but the most when faced with low positive peer affiliation or low maternal warmth. DAT1 10-repeat homozygotes displayed similar GxE patterns toward maternal warmth on general task performance. At the neural level, DRD4 7-repeat carriers showed the least striatal activation during reward anticipation when exposed to high maternal warmth, but the most when exposed to low warmth. Findings were independent of ADHD severity. Our results partially confirm the differential susceptibility theory and indicate the importance of positive social environments in reward sensitivity and general task performance for persons with specific genotypes. PMID:27045841

  11. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery.

    PubMed

    Berthoud, Hans-Rudolf; Zheng, Huiyuan; Shin, Andrew C

    2012-08-01

    Increased availability of tasty, energy-dense foods has been blamed as a major factor in the alarmingly high prevalence of obesity, diabetes, and metabolic disease, even in young age. A heated debate has started as to whether some of these foods should be considered addictive, similar to drugs and alcohol. One of the main arguments for food addiction is the similarity of the neural mechanisms underlying reward generation by foods and drugs. Here, we will discuss how food intake can generate reward and how behavioral and neural reward functions are different in obese subjects. Because most studies simply compare lean and obese subjects, it is not clear whether predisposing differences in reward functions cause overeating and weight gain, or whether repeated exposure or secondary effects of the obese state alter reward functions. While studies in both rodents and humans demonstrate preexisting differences in reward functions in the obese, studies in rodent models using calorie restriction and gastric bypass surgery show that some differences are reversible by weight loss and are therefore secondary to the obese state. © 2012 New York Academy of Sciences.

  12. Incentive-Rewarding Mechanism for User-position Control in Mobile Services

    NASA Astrophysics Data System (ADS)

    Yoshino, Makoto; Sato, Kenichiro; Shinkuma, Ryoichi; Takahashi, Tatsuro

    When the number of users in a service area increases in mobile multimedia services, no individual user can obtain satisfactory radio resources such as bandwidth and signal power because the resources are limited and shared. A solution for such a problem is user-position control. In the user-position control, the operator informs users of better communication areas (or spots) and navigates them to these positions. However, because of subjective costs caused by subjects moving from their original to a new position, they do not always attempt to move. To motivate users to contribute their resources in network services that require resource contributions for users, incentive-rewarding mechanisms have been proposed. However, there are no mechanisms that distribute rewards appropriately according to various subjective factors involving users. Furthermore, since the conventional mechanisms limit how rewards are paid, they are applicable only for the network service they targeted. In this paper, we propose a novel incentive-rewarding mechanism to solve these problems, using an external evaluator and interactive learning agents. We also investigated ways of appropriately controlling rewards based on user contributions and system service quality. We applied the proposed mechanism and reward control to the user-position control, and demonstrated its validity.

  13. Adolescent behavioral and neural reward sensitivity: a test of the differential susceptibility theory.

    PubMed

    Richards, J S; Arias Vásquez, A; von Rhein, D; van der Meer, D; Franke, B; Hoekstra, P J; Heslenfeld, D J; Oosterlaan, J; Faraone, S V; Buitelaar, J K; Hartman, C A

    2016-04-05

    Little is known about the causes of individual differences in reward sensitivity. We investigated gene-environment interactions (GxE) on behavioral and neural measures of reward sensitivity, in light of the differential susceptibility theory. This theory states that individuals carrying plasticity gene variants will be more disadvantaged in negative, but more advantaged in positive environments. Reward responses were assessed during a monetary incentive delay task in 178 participants with and 265 without attention-deficit/hyperactivity disorder (ADHD), from N=261 families. We examined interactions between variants in candidate plasticity genes (DAT1, 5-HTT and DRD4) and social environments (maternal expressed emotion and peer affiliation). HTTLPR short allele carriers showed the least reward speeding when exposed to high positive peer affiliation, but the most when faced with low positive peer affiliation or low maternal warmth. DAT1 10-repeat homozygotes displayed similar GxE patterns toward maternal warmth on general task performance. At the neural level, DRD4 7-repeat carriers showed the least striatal activation during reward anticipation when exposed to high maternal warmth, but the most when exposed to low warmth. Findings were independent of ADHD severity. Our results partially confirm the differential susceptibility theory and indicate the importance of positive social environments in reward sensitivity and general task performance for persons with specific genotypes.

  14. Pro-Dopamine Regulator – (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome (RDS)

    PubMed Central

    Blum, Kenneth; Febo, Marcelo; Fried, Lyle; Baron, David; Braverman, Eric R.; Dushaj, Kristina; Li, Mona; Demetrovics, Zsolt; Badgaiyan, Rajendra D.

    2017-01-01

    We are faced with a worldwide opiate/opioid epidemic that is devastating. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day in America due to narcotic overdose. The Food and Drug Administration (FDA) has approved Medication-Assisted Treatments (MATs) for opiate/opioids as well as alcohol and nicotine. The mechanism of action of most MATS favors either blocking of dopaminergic function or a form of Opiate Substitution Therapy (OST). These treatment options are adequate for short-term treatment of the symptoms of addiction and harm reduction but fail long-term to deal with the cause or lead to recovery. There is a need to continue to seek better treatment options. This mini-review is the history of the development of one such treatment; a glutaminergic-dopaminergic optimization complex called KB220. Growing evidence indicates that brain reward circuitry controls drug addiction, in conjunction with “anti-reward systems” as the “anti-reward systems” can be affected by both glutaminergic and dopaminergic transmission. KB220 may likely alter the function of these regions and provide for the possible eventual balancing the brain reward system and the induction of “dopamine homeostasis.” Many of these concepts have been reported elsewhere and have become an integral part of the addiction science literature. However, the concise review may encourage readership to reconsider these facts and stimulate further research focused on the impact that the induction of “dopamine homeostasis” may have on recovery and relapse prevention. PMID:28804788

  15. Neurons in monkey dorsal raphe nucleus code beginning and progress of step-by-step schedule, reward expectation, and amount of reward outcome in the reward schedule task.

    PubMed

    Inaba, Kiyonori; Mizuhiki, Takashi; Setogawa, Tsuyoshi; Toda, Koji; Richmond, Barry J; Shidara, Munetaka

    2013-02-20

    The dorsal raphe nucleus is the major source of serotonin in the brain. It is connected to brain regions related to reward processing, and the neurons show activity related to predicted reward outcome. Clinical observations also suggest that it is important in maintaining alertness and its apparent role in addiction seems to be related to reward processing. Here, we examined whether the neurons in dorsal raphe carry signals about reward outcome and task progress during multitrial schedules. We recorded from 98 single neurons in dorsal raphe of two monkeys. The monkeys perform one, two, or three visual discrimination trials (schedule), obtaining one, two, or three drops of liquid. In the valid cue condition, the length and brightness of a visual cue indicated schedule progress and reward amount, respectively. In the random cue condition, the visual cue was randomly presented with respect to schedule length and reward amount. We found information encoded about (1) schedule onset, (2) reward expectation, (3) reward outcome, and (4) reward amount in the mean firing rates. Information theoretic analysis showed that the temporal variation of the neuronal responses contained additional information related to the progress of the schedule toward the reward rather than only discriminating schedule onset or reward/no reward. When considered in light of all that is known about the raphe in anatomy, physiology, and behavior, the rich encoding about both task progress and predicted reward outcome makes the raphe a strong candidate for providing signals throughout the brain to coordinate persistent goal-seeking behavior.

  16. Mechanisms of impulsive choice: III. The role of reward processes

    PubMed Central

    Marshall, Andrew T.

    2015-01-01

    Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments. PMID:26506254

  17. Paraventricular Thalamus Balances Danger and Reward.

    PubMed

    Choi, Eun A; McNally, Gavan P

    2017-03-15

    Foraging animals balance the need to seek food and energy against the accompanying dangers of injury and predation. To do so, they rely on learning systems encoding reward and danger. Whereas much is known about these separate learning systems, little is known about how they interact to shape and guide behavior. Here we show a key role for the rat paraventricular nucleus of the thalamus (PVT), a nucleus of the dorsal midline thalamus, in this interaction. First, we show behavioral competition between reward and danger: the opportunity to seek food reward negatively modulates expression of species-typical defensive behavior. Then, using a chemogenetic approach expressing the inhibitory hM4Di designer receptor exclusively activated by a designer drug in PVT neurons, we show that the PVT is central to this behavioral competition. Chemogenetic PVT silencing biases behavior toward either defense or reward depending on the experimental conditions, but does not consistently favor expression of one over the other. This bias could not be attributed to changes in fear memory retrieval, learned safety, or memory interference. Rather, our results demonstrate that the PVT is essential for balancing conflicting behavioral tendencies toward danger and reward, enabling adaptive responding under this basic selection pressure.SIGNIFICANCE STATEMENT Among the most basic survival problems faced by animals is balancing the need to seek food and energy against the accompanying dangers of injury and predation. Although much is known about the brain mechanisms that underpin learning about reward and danger, little is known about how these interact to solve basic survival problems. Here we show competition between defensive (to avoid predatory detection) and approach (to obtain food) behavior. We show that the paraventricular thalamus, a nucleus of the dorsal midline thalamus, is integral to this behavioral competition. The paraventricular thalamus balances the competing behavioral demands

  18. Reward processing in the value-driven attention network: reward signals tracking cue identity and location.

    PubMed

    Anderson, Brian A

    2017-03-01

    Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a network of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of the two. This study examines reward signals during the cued reward training phase commonly used to generate value-driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention network, in addition to regions typically implicated in reward processing. Further examination of these reward signals within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and information about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The results reveal teaching signals within the value-driven attention network during associative reward learning, and further suggest functional specialization within different regions of this network during the acquisition of an integrated representation of stimulus value. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents

    PubMed Central

    Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  20. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward

    PubMed Central

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios

    2014-01-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408

  1. Electrodermal Response to Reward and Non-Reward Among Children With Autism.

    PubMed

    Neuhaus, Emily; Bernier, Raphael A; Beauchaine, Theodore P

    2015-08-01

    Pervasive social difficulties among individuals with autism spectrum disorder (ASD) are often construed as deriving from reduced sensitivity to social stimuli. Behavioral and neurobiological evidence suggests that typical individuals show preferential processing of social (e.g., voices, faces) over nonsocial (e.g., nonvocal sounds, images of objects) information, whereas individuals with ASD may not. This reduction in sensitivity may reflect disrupted reward processing [Dawson & Bernier, ], with significant developmental consequences for affected individuals. In this study, we explore effects of social and monetary reward on behavioral and electrodermal responses (EDRs) among 8- to 12-year-old boys with (n = 18) and without (n = 18) ASD, with attention to the potential moderating effects of stimulus familiarity. During a simple matching task, participants with and without ASD had marginally slower reactions during social vs. nonsocial reward, and boys with ASD had less accurate responses than controls. Compared to baseline, reward and non-reward conditions elicited more frequent and larger EDRs for participants as a whole, and both groups showed similar patterns of EDR change within reward blocks. However, boys with and without ASD differed in their EDRs to non-reward, and response amplitude was correlated with social and emotional functioning. These findings provide some support for altered reward responding in ASD at the autonomic level, and highlight the discontinuation of reward as an important component of reward-based learning that may play a role in shaping behavior and guiding specialized brain development to subserve social behavior and cognition across the lifespan.

  2. Reproductive isolation and pollination success of rewarding Galearis diantha and non-rewarding Ponerorchis chusua (Orchidaceae).

    PubMed

    Sun, Hai-Qin; Huang, Bao-Qiang; Yu, Xiao-Hong; Kou, Yong; An, De-Jun; Luo, Yi-Bo; Ge, Song

    2011-01-01

    Increasing evidence challenges the conventional perception that orchids are the most distinct example of floral diversification due to floral or prezygotic isolation. Regarding the relationship between co-flowering plants, rewarding and non-rewarding orchids in particular, few studies have investigated whether non-rewarding plants affect the pollination success of rewarding plants. Here, floral isolation and mutual effects between the rewarding orchid Galearis diantha and the non-rewarding orchid Ponerorchis chusua were investigated. Flowering phenological traits were monitored by noting the opening and wilting dates of the chosen individual plants. The pollinator pool and pollinator behaviour were assessed from field observations. Key morphological traits of the flowers and pollinators were measured directly in the field. Pollinator limitation and interspecific compatibility were evaluated by hand-pollination experiments. Fruit set was surveyed in monospecific and heterospecific plots. The species had overlapping peak flowering periods. Pollinators of both species displayed a certain degree of constancy in visiting each species, but they also visited other flowers before landing on the focal orchids. A substantial difference in spur size between the species resulted in the deposition of pollen on different regions of the body of the shared pollinator. Hand-pollination experiments revealed that fruit set was strongly pollinator-limited in both species. No significant difference in fruit set was found between monospecific plots and heterospecific plots. A combination of mechanical isolation and incomplete ethological isolation eliminates the possibility of pollen transfer between the species. These results do not support either the facilitation or competition hypothesis regarding the effect of nearby rewarding flowers on non-rewarding plants. The absence of a significant effect of non-rewarding P. chusua on rewarding G. diantha can be ascribed to low levels of

  3. Serotonin neurons in the dorsal raphe nucleus encode reward signals

    PubMed Central

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-01

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing. PMID:26818705

  4. Single pulse TMS differentially modulates reward behavior.

    PubMed

    Stanford, Arielle D; Luber, Bruce; Unger, Layla; Cycowicz, Yael M; Malaspina, Dolores; Lisanby, Sarah H

    2013-12-01

    Greater knowledge of cortical brain regions in reward processing may set the stage for using transcranial magnetic stimulation (TMS) as a treatment in patients with avolition, apathy or other drive-related symptoms. This study examined the effects of single pulse (sp) TMS to two reward circuit targets on drive in healthy subjects. Fifteen healthy subjects performed the monetary incentive delay task (MID) while receiving fMRI-guided spTMS to either inferior parietal lobe (IPL) or supplemental motor area (SMA). The study demonstrated decreasing reaction times (RT) for increasing reward. It also showed significant differences in RT modulation for TMS pulses to the IPL versus the SMA. TMS pulses during the delay period produced significantly more RT slowing when targeting the IPL than those to the SMA. This RT slowing carried over into subsequent trials without TMS stimulation, with significantly slower RTs in sessions that had targeted the IPL compared to those targeting SMA. The results of this study suggest that both SMA and IPL are involved in reward processing, with opposite effects on RT in response to TMS stimulation. TMS to these target cortical regions may be useful in modulating reward circuit deficits in psychiatric populations. © 2013 Published by Elsevier Ltd.

  5. Suppression of Dopamine Neurons Mediates Reward

    PubMed Central

    Yamagata, Nobuhiro; Abe, Ayako; Tanimoto, Hiromu

    2016-01-01

    Massive activation of dopamine neurons is critical for natural reward and drug abuse. In contrast, the significance of their spontaneous activity remains elusive. In Drosophila melanogaster, depolarization of the protocerebral anterior medial (PAM) cluster dopamine neurons en masse signals reward to the mushroom body (MB) and drives appetitive memory. Focusing on the functional heterogeneity of PAM cluster neurons, we identified that a single class of PAM neurons, PAM-γ3, mediates sugar reward by suppressing their own activity. PAM-γ3 is selectively required for appetitive olfactory learning, while activation of these neurons in turn induces aversive memory. Ongoing activity of PAM-γ3 gets suppressed upon sugar ingestion. Strikingly, transient inactivation of basal PAM-γ3 activity can substitute for reward and induces appetitive memory. Furthermore, we identified the satiety-signaling neuropeptide Allatostatin A (AstA) as a key mediator that conveys inhibitory input onto PAM-γ3. Our results suggest the significance of basal dopamine release in reward signaling and reveal a circuit mechanism for negative regulation. PMID:27997541

  6. Reward Contexts Extend Dopamine Signals to Unrewarded Stimuli

    PubMed Central

    Kobayashi, Shunsuke; Schultz, Wolfram

    2014-01-01

    Summary Basic tenets of sensory processing emphasize the importance of accurate identification and discrimination of environmental objects [1]. Although this principle holds also for reward, the crucial acquisition of reward for survival would be aided by the capacity to detect objects whose rewarding properties may not be immediately apparent. Animal learning theory conceptualizes how unrewarded stimuli induce behavioral reactions in rewarded contexts due to pseudoconditioning and higher-order context conditioning [2–6]. We hypothesized that the underlying mechanisms may involve context-sensitive reward neurons. We studied short-latency activations of dopamine neurons to unrewarded, physically salient stimuli while systematically changing reward context. Dopamine neurons showed substantial activations to unrewarded stimuli and their conditioned stimuli in highly rewarded contexts. The activations decreased and often disappeared entirely with stepwise separation from rewarded contexts. The influence of reward context suggests that dopamine neurons respond to real and potential reward. The influence of reward context is compatible with the reward nature of phasic dopamine responses. The responses may facilitate rapid, default initiation of behavioral reactions in environments usually containing reward. Agents would encounter more and miss less reward, resulting in survival advantage and enhanced evolutionary fitness. PMID:24332545

  7. Distinct Reward Properties are Encoded via Corticostriatal Interactions

    PubMed Central

    Smith, David V.; Rigney, Anastasia E.; Delgado, Mauricio R.

    2016-01-01

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior. PMID:26831208

  8. Amphetamine reward in the monogamous prairie vole.

    PubMed

    Aragona, Brandon J; Detwiler, Jacqueline M; Wang, Zuoxin

    2007-05-17

    Recent studies have shown that the neural regulation of pair bonding in the monogamous prairie vole (Microtus ochrogaster) is similar to that of drug seeking in more traditional laboratory rodents. Therefore, strong interactions between social behavior and drug reward can be expected. Here, we established the prairie vole as a model for drug studies by demonstrating robust amphetamine-induced conditioned place preferences in this species. For both males and females, the effects of amphetamine were dose-dependent, with females being more sensitive to drug treatment. This study represents the first evidence of drug reward in this species. Future studies will examine the effects of social behavior on drug reward and the underlying neurobiology of such interactions.

  9. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  10. Hypocretin / orexin involvement in reward and reinforcement

    PubMed Central

    España, Rodrigo A.

    2015-01-01

    Since the discovery of the hypocretins/orexins, a series of observations have indicated that these peptides influence a variety of physiological processes including feeding, sleep/wake function, memory, and stress. More recently, the hypocretins have been implicated in reinforcement and reward-related processes via actions on the mesolimbic dopamine system. Although investigation into the relationship between the hypocretins and reinforcement/reward remains in relatively early stages, accumulating evidence suggests that continued research into this area may offer new insights into the addiction process and provide the foundation to generate novel pharmacotherapies for drug abuse. The current chapter will focus on contemporary perspectives of hypocretin regulation of cocaine reward and reinforcement via actions on the mesolimbic dopamine system. PMID:22640614

  11. Food after deprivation rewards the earlier eating.

    PubMed

    Booth, David A; Jarvandi, Soghra; Thibault, Louise

    2012-12-01

    Food intake can be increased by learning to anticipate the omission of subsequent meals. We present here a new theory that such anticipatory eating depends on an associative process of instrumental reinforcement by the nutritional repletion that occurs when access to food is restored. Our evidence over the last decade from a smooth-brained omnivore has been that food after deprivation rewards intake even when those reinforced ingestive responses occur long before the physiological signals from renewed assimilation. Effects of food consumed after self-deprivation might therefore reward extra eating in human beings, through brain mechanisms that could operate outside awareness. That would have implications for efforts to reduce body weight. This food reward mechanism could be contributing to the failure of the dietary component of interventions on obesity within controlled trials of the management or prevention of disorders such as hypertension, atherosclerosis and type 2 diabetes.

  12. Humor modulates the mesolimbic reward centers.

    PubMed

    Mobbs, Dean; Greicius, Michael D; Abdel-Azim, Eiman; Menon, Vinod; Reiss, Allan L

    2003-12-04

    Humor plays an essential role in many facets of human life including psychological, social, and somatic functioning. Recently, neuroimaging has been applied to this critical human attribute, shedding light on the affective, cognitive, and motor networks involved in humor processing. To date, however, researchers have failed to demonstrate the subcortical correlates of the most fundamental feature of humor-reward. In an effort to elucidate the neurobiological substrate that subserves the reward components of humor, we undertook a high-field (3 Tesla) event-related functional MRI study. Here we demonstrate that humor modulates activity in several cortical regions, and we present new evidence that humor engages a network of subcortical regions including the nucleus accumbens, a key component of the mesolimbic dopaminergic reward system. Further, the degree of humor intensity was positively correlated with BOLD signal intensity in these regions. Together, these findings offer new insight into the neural basis of salutary aspects of humor.

  13. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards.

    PubMed

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-10-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward

  14. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function

    PubMed Central

    Scaplen, Kristin M.; Kaun, Karla R.

    2016-01-01

    Abstract In a complex environment, animals learn from their responses to stimuli and events. Appropriate response to reward and punishment can promote survival, reproduction and increase evolutionary fitness. Interestingly, the neural processes underlying these responses are remarkably similar across phyla. In all species, dopamine is central to encoding reward and directing motivated behaviors, however, a comprehensive understanding of how circuits encode reward and direct motivated behaviors is still lacking. In part, this is a result of the sheer diversity of neurons, the heterogeneity of their responses and the complexity of neural circuits within which they are found. We argue that general features of reward circuitry are common across model organisms, and thus principles learned from invertebrate model organisms can inform research across species. In particular, we discuss circuit motifs that appear to be functionally equivalent from flies to primates. We argue that a comparative approach to studying and understanding reward circuit function provides a more comprehensive understanding of reward circuitry, and informs disorders that affect the brain’s reward circuitry. PMID:27328845

  15. The Role of the Anterior Cingulate Cortex in Choices based on Reward Value and Reward Contingency

    PubMed Central

    Chudasama, Yogita; Daniels, Teresa E.; Gorrin, Daniel P.; Rhodes, Sarah E.V.; Rudebeck, Peter H.; Murray, Elisabeth A.

    2013-01-01

    Although several studies have emphasized the role of the anterior cingulate cortex (ACC) in associating actions with reward value, its role in guiding choices on the basis of changes in reward value has not been assessed. Accordingly, we compared rhesus monkeys with ACC lesions and controls on object- and action-based reinforcer devaluation tasks. Monkeys were required to associate an object or an action with one of two reward outcomes, and we assessed the monkey's shift in choices of objects or actions after changes in the value of 1 outcome. No group differences emerged on either task. For comparison, we tested the same monkeys on their ability to make choices guided by reward contingency in object- and action-based reversal learning tasks. Monkeys with ACC lesions were impaired in using rewarded trials to sustain the selection of the correct object during object reversal learning. They were also impaired in using errors to guide choices in action reversal learning. These data indicate that the role of the ACC is not restricted to linking specific actions with reward outcomes, as previously reported. Instead, the data suggest a more general role for the ACC in using information about reward and nonreward to sustain effective choice behavior. PMID:22944530

  16. MEASURING BELIEFS AND REWARDS: A NEUROECONOMIC APPROACH*

    PubMed Central

    Caplin, Andrew; Dean, Mark; Glimcher, Paul W.; Rutledge, Robb B.

    2014-01-01

    The neurotransmitter dopamine is central to the emerging discipline of neuroeconomics; it is hypothesized to encode the difference between expected and realized rewards and thereby to mediate belief formation and choice. We develop the first formal test of this theory of dopaminergic function, based on a recent axiomatization by Caplin and Dean [2008A]. These tests are satisfied by neural activity in the nucleus accumbens, an area rich in dopamine receptors. We find evidence for separate positive and negative reward prediction error signals, suggesting that behavioral asymmetries in response to losses and gains may parallel asymmetries in nucleus accumbens activity. PMID:25018564

  17. Long term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway

    PubMed Central

    Greenwood, Benjamin N.; Foley, Teresa E.; Le, Tony V.; Strong, Paul V.; Loughridge, Alice B.; Day, Heidi E.W.; Fleshner, Monika

    2011-01-01

    The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. PMID:21070820

  18. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway.

    PubMed

    Greenwood, Benjamin N; Foley, Teresa E; Le, Tony V; Strong, Paul V; Loughridge, Alice B; Day, Heidi E W; Fleshner, Monika

    2011-03-01

    The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress.

  19. Incentive sensitization by previous amphetamine exposure: increased cue-triggered "wanting" for sucrose reward.

    PubMed

    Wyvell, C L; Berridge, K C

    2001-10-01

    We reported previously that an amphetamine microinjection into the nucleus accumbens enables Pavlovian reward cues in a conditioned incentive paradigm to trigger excessive instrumental pursuit. Here we show that sensitization caused by previous amphetamine administration also causes reward cues to trigger excessive pursuit of their associated reward, even when sensitized rats are tested in a drug-free state. Rats learned to lever press for sucrose pellets, and they separately learned to associate sucrose pellets with Pavlovian cues (30 sec auditory cues). Amphetamine sensitization was induced by six daily injections of amphetamine (3 mg/kg, i.p.; controls received saline). Rats were tested for lever pressing under extinction conditions 10 d later, after a bilateral microinjection of intra-accumbens vehicle or amphetamine (5 microg/0.5 microl per side). Cue-triggered pursuit of sucrose reward was assessed by increases in pressing on the sucrose-associated lever during intermittent presentations of a free conditioned stimulus (CS+) sucrose cue. Sensitized rats pressed at normal levels during baseline and during the CS-, but the CS+ triggered 100% greater increases in pressing from sensitized rats than from control rats after vehicle microinjection. Sensitization therefore enhanced the incentive salience attributed to the CS+ even when rats were tested while drug-free. For control rats, a microinjection of intra-accumbens amphetamine was needed to produce the same enhancement of cue-triggered reward "wanting." The amphetamine microinjection also interacted synergistically in sensitized rats to produce intrusive cue-triggered pursuit behaviors (e.g., investigatory sniffing) that interfered with goal-directed lever pressing. These results support the incentive-sensitization theory postulate that sensitization causes excessive cue-triggered "wanting" for an associated reward.

  20. Endocannabinoid signaling system and brain reward: emphasis on dopamine.

    PubMed

    Gardner, Eliot L

    2005-06-01

    The brain's reward circuitry consists of an "in series" circuit of dopaminergic (DA) neurons in the ventral tegmental area (VTA), nucleus accumbens (Acb), and that portion of the medial forebrain bundle (MFB) which links the VTA and Acb. Drugs which enhance brain reward (and have derivative addictive potential) have common actions on this core DA reward system and on animal behaviors relating to its function. Such drugs enhance electrical brain-stimulation reward in this reward system; enhance neural firing and DA tone within it; produce conditioned place preference (CPP), a behavioral model of incentive motivation; are self-administered; and trigger reinstatement of drug-seeking behavior in animals extinguished from drug self-administration. Cannabinoids were long considered different from other reward-enhancing drugs in reward efficacy and in underlying neurobiological substrates activated. However, it is now clear that cannabinoids activate these brain reward processes and reward-related behaviors in similar fashion to other reward-enhancing drugs. This brief review discusses the roles that endogenous cannabinoids (especially activation of the CB1 receptor) may play within the core reward system, and concludes that while cannabinoids activate the reward pathways in a manner consistent with other reward-enhancing drugs, the neural mechanisms by which this occurs may differ.

  1. Long-lasting sensitization of reward-directed behavior by amphetamine.

    PubMed

    Mendez, Ian A; Williams, Matthew T; Bhavsar, Atasi; Lu, Annie P; Bizon, Jennifer L; Setlow, Barry

    2009-07-19

    Exposure to psychostimulant drugs of abuse such as amphetamine can result in long-lasting "sensitization" of reward-directed behavior, such that subjects display enhancements in behavior directed by and toward rewards and reward-predictive cues (i.e. "incentive sensitization"). The purpose of these experiments was to determine the degree to which such sensitization resulting from chronic amphetamine exposure influences both appetitive and consummatory food-motivated behavior. Adult male Long-Evans rats received daily i.p. injections of D-amphetamine (2.0 mg/kg) or saline vehicle for five consecutive days. This amphetamine exposure regimen produced lasting sensitization to the acute locomotor stimulant effect of the drug. One month after drug exposure rats were tested for instrumental responding (lever pressing) for food reward under various response schedules. Two months after drug exposure, rats were tested for food consumption in a discriminative Pavlovian context-potentiated eating task, involving pairings of one context with food and another context with no food. Amphetamine exposed rats showed significantly greater instrumental responding for food reward than saline controls, particularly under conditions of high response ratios. In the potentiated eating task, testing under conditions of food satiation revealed that amphetamine exposed rats ate significantly more than saline controls in the food-paired context. These experiments demonstrate that amphetamine exposure can cause enduring increases in both appetitive and consummatory aspects of natural reward-directed behavior. Such long-lasting incentive sensitization could account in part for the propensity for relapse in drug addiction, as well as for reported enhancements in non-drug reward-related behavior.

  2. Effects of striatal lesions on components of choice: Reward discrimination, preference, and relative valuation.

    PubMed

    Ricker, Joshua M; Kopchock, Richard J; Drown, Rachel M; Cromwell, Howard C

    2016-12-15

    The striatum is a key structure involved in reward processing and choice. Recently, we have developed a paradigm to explore how components of reward processing work together or independently during choice behavior. These components include reward discrimination, preference and relative valuation, and the goal of the present study was to determine how the striatum is involved in these dissociable components during this novel free choice paradigm. We tested choice utilizing two different outcome series with one being a more straightforward single-option discrimination anchored by a 0 reward outcome, and the other as a multi-option outcome discrimination of greater difficulty. We compared the free choice reward task to a sequential reward task and an extinction task. Striatal lesions impaired responding only in the free choice version with alterations in both appetitive and consummatory measures. Ventral striatal lesions had greater impact altering discrimination, preference and relative valuation in both the single and multi-option week studies. A major factor involved in these deficits was a significant aversion to the multi-option that contained a larger outcome option but with a longer delay to reward. Dorsal striatal lesions caused less impairment even leading to enhanced choice behavior compared to control animals during the more difficult multi-option free choice series. Overall, the results suggest that the context of action is crucial when linking striatal function to choice behavior and its diverse components. The implications include the idea that striatal involvement in decision-making is increased when responses are self-paced and diverse in a more naturalistic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 36 CFR 262.1 - Rewards in connection with fire or property prosecutions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Rewards in connection with fire or property prosecutions. 262.1 Section 262.1 Parks, Forests, and Public Property FOREST SERVICE... kindled or caused to be kindled a fire on lands of the United States within the National Forest System or...

  4. Shift of circadian feeding pattern by high-fat diets is coincident with reward deficits in obese mice.

    PubMed

    Morales, Lidia; Del Olmo, Nuria; Valladolid-Acebes, Ismael; Fole, Alberto; Cano, Victoria; Merino, Beatriz; Stucchi, Paula; Ruggieri, Daniela; López, Laura; Alguacil, Luis Fernando; Ruiz-Gayo, Mariano

    2012-01-01

    Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow ("forced synchronization"). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity.

  5. Rewarded outcomes enhance reactivation of experience in the hippocampus.

    PubMed

    Singer, Annabelle C; Frank, Loren M

    2009-12-24

    Remembering experiences that lead to reward is essential for survival. The hippocampus is required for forming and storing memories of events and places, but the mechanisms that associate specific experiences with rewarding outcomes are not understood. Event memory storage is thought to depend on the reactivation of previous experiences during hippocampal sharp wave ripples (SWRs). We used a sequence switching task that allowed us to examine the interaction between SWRs and reward. We compared SWR activity after animals traversed spatial trajectories and either received or did not receive a reward. Here, we show that rat hippocampal CA3 principal cells are significantly more active during SWRs following receipt of reward. This SWR activity was further enhanced during learning and reactivated coherent elements of the paths associated with the reward location. This enhanced reactivation in response to reward could be a mechanism to bind rewarding outcomes to the experiences that precede them.

  6. Reward: From Basic Reinforcers to Anticipation of Social Cues.

    PubMed

    Rademacher, Lena; Schulte-Rüther, Martin; Hanewald, Bernd; Lammertz, Sarah

    2017-01-01

    Reward processing plays a major role in goal-directed behavior and motivation. On the neural level, it is mediated by a complex network of brain structures called the dopaminergic reward system. In the last decade, neuroscientific researchers have become increasingly interested in aspects of social interaction that are experienced as rewarding. Recent neuroimaging studies have provided evidence that the reward system mediates the processing of social stimuli in a manner analogous to nonsocial rewards and thus motivates social behavior. In this context, the neuropeptide oxytocin is assumed to play a key role by activating dopaminergic reward pathways in response to social cues, inducing the rewarding quality of social interactions. Alterations in the dopaminergic reward system have been found in several psychiatric disorders that are accompanied by social interaction and motivation problems, for example autism, attention deficit/hyperactivity disorder, addiction disorders, and schizophrenia.

  7. Rewarded Outcomes Enhance Reactivation of Experience in the Hippocampus

    PubMed Central

    Singer, Annabelle C.; Frank, Loren M.

    2009-01-01

    Remembering experiences that lead to reward is essential for survival. The hippocampus is required for forming and storing memories of events and places, but the mechanisms that associate specific experiences with rewarding outcomes are not understood. Event memory storage is thought to depend on the reactivation of previous experiences during hippocampal sharp wave-ripples (SWRs). We used a novel sequence switching task that allowed us to examine the interaction between SWRs and reward. We compared SWR activity after animals traversed spatial trajectories and either received or did not receive a reward. Here we show that rat hippocampal CA3 principal cells are significantly more active during SWRs following receipt of reward. This SWR activity was further enhanced during learning and reactivated coherent elements of the paths associated with the reward location. This enhanced reactivation in response to reward could be a mechanism to bind rewarding outcomes to the experiences that precede them. PMID:20064396

  8. Identifying nurses' rewards: a qualitative categorization study in Belgium

    PubMed Central

    De Gieter, Sara; De Cooman, Rein; Pepermans, Roland; Caers, Ralf; Du Bois, Cindy; Jegers, Marc

    2006-01-01

    Background Rewards are important in attracting, motivating and retaining the most qualified employees, and nurses are no exception to this rule. This makes the establishment of an efficient reward system for nurses a true challenge for every hospital manager. A reward does not necessarily have a financial connotation: non-financial rewards may matter too, or may even be more important. Therefore, the present study examines nurses' reward perceptions, in order to identify potential reward options. Methods To answer the research question "What do nurses consider a reward and how can these rewards be categorized?", 20 in-depth semi-structured interviews with nurses were conducted and analysed using discourse and content analyses. In addition, the respondents received a list of 34 rewards (derived from the literature) and were asked to indicate the extent to which they perceived each of them to be rewarding. Results Discourse analysis revealed three major reward categories: financial, non-financial and psychological, each containing different subcategories. In general, nurses more often mentioned financial rewards spontaneously in the interview, compared to non-financial and psychological rewards. The questionnaire results did not, however, indicate a significant difference in the rewarding potential of these three categories. Both the qualitative and quantitative data revealed that a number of psychological and non-financial rewards were important for nurses in addition to their monthly pay and other remunerations. In particular, appreciation for their work by others, compliments from others, presents from others and contact with patients were highly valued. Moreover, some demographical variables influenced the reward perceptions. Younger and less experienced nurses considered promotion possibilities as more rewarding than the older and more senior ones. The latter valued job security and working for a hospital with a good reputation higher than their younger and more

  9. [Chronic pain : Perception, reward and neural processing].

    PubMed

    Becker, S; Diers, M

    2016-10-01

    Many chronic pain syndromes are characterized by enhanced perception of painful stimuli as well as alterations in cortical processing in sensory and motor regions. In this review article the alterations in muscle pain and neuropathic pain are described. Alterations in patients with fibromyalgia and chronic back pain are described as examples for musculoskeletal pain and also in patients with phantom limb pain after amputation and complex regional pain syndrome as examples for neuropathic pain. In addition to altered pain perception, cumulative evidence on alterations in the processing of reward and the underlying mechanisms in chronic pain has been described. A description is given of what is known on how pain and reward interact and affect each other. The relevance of such interactions for chronic pain is discussed. The implications of these findings for therapeutic approaches are delineated with respect to sensorimotor training and behavioral therapy, focusing on the effectiveness of these approaches, mechanisms and future developments. In particular, we discuss operant behavioral therapy in patients with chronic back pain and fibromyalgia as well as prosthesis training in patients with phantom limb pain and discrimination, mirror and imaginary training in patients with phantom limb pain and complex regional pain syndrome. With respect to the processing of reward, the focus of the discussion is on the role of reward and associated learning in pain therapy.

  10. Anticipated Reward Enhances Offline Learning during Sleep

    ERIC Educational Resources Information Center

    Fischer, Stefan; Born, Jan

    2009-01-01

    Sleep is known to promote the consolidation of motor memories. In everyday life, typically more than 1 isolated motor skill is acquired at a time, and this possibly gives rise to interference during consolidation. Here, it is shown that reward expectancy determines the amount of sleep-dependent memory consolidation. Subjects were trained on 2…

  11. Value Orientation, Organizational Rewards, and Job Satisfaction.

    ERIC Educational Resources Information Center

    Cascio, Wayne F.

    The nationwide sales force (N=540) of a large food and beverage firm responded to a mail survey designed to investigate the role of value orientation as a moderator of the relationship between organizational rewards and job satisfaction. Of the two main elements in the investigation, the first was concerned with the predictive efficiency of two…

  12. Associations between sleep parameters and food reward.

    PubMed

    McNeil, Jessica; Cadieux, Sébastien; Finlayson, Graham; Blundell, John E; Doucet, Éric

    2015-06-01

    This study examined the effects of acute, isocaloric aerobic and resistance exercise on different sleep parameters, and whether changes in these sleep parameters between sessions were related to next morning food reward. Fourteen men and women (age: 21.9 ± 2.7 years; body mass index: 22.7 ± 1.9 kg m(-) ²) participated in three randomized crossover sessions: aerobic exercise; resistance exercise; and sedentary control. Target exercise energy expenditure was matched at 4 kcal kg(-1) of body weight, and performed at 70% of VO2peak or 70% of 1 repetition-maximal. Sleep was measured (accelerometry) for 22 h following each session. The 'wanting' for visual food cues (validated computer task) was assessed the next morning. There were no differences in sleep parameters and food 'wanting' between conditions. Decreases in sleep duration and earlier wake-times were significantly associated with increased food 'wanting' between sessions (P = 0.001). However, these associations were no longer significant after controlling for elapsed time between wake-time and the food reward task. These findings suggest that shorter sleep durations and earlier wake-times are associated with increased food reward, but these associations are driven by elapsed time between awakening and completion of the food reward task.

  13. Encouraging Classroom Participation with Empty Extrinsic Rewards

    ERIC Educational Resources Information Center

    Guinee, William

    2012-01-01

    In this article, the author talks about how to encourage classroom participation with empty extrinsic rewards. He uses "bonus points" in awarding students for particularly interesting or well thought-out contributions to the class discussion. These bonus points have absolutely no effect on the student's course grade. But the students respond…

  14. Model of Educational Rewards for Innovative Teaching.

    ERIC Educational Resources Information Center

    Monroe County Intermediate School District, MI.

    The purpose of this project is to encourage innovative teaching through support and reward systems; specifically, its objectives are the generation, implementation, and sharing of innovative curricular ideas and classroom procedures. Participants are teachers, students, parents, other school staff and the community. The following elements are…

  15. Motivating Intrapreneurs: The Relevance of Rewards

    ERIC Educational Resources Information Center

    de Villiers-Scheepers, M. J.

    2011-01-01

    A challenge faced by management graduates in promoting intrapreneurship to achieve competitive advantage is the use of motivational techniques that build commitment to entrepreneurial behaviour. Despite the acknowledged importance of rewards to encourage innovation, there is surprisingly little empirical evidence to provide guidance on which…

  16. Rewards of Fostering Children with Disabilities

    ERIC Educational Resources Information Center

    Brown, Jason D.

    2008-01-01

    A random sample of parents fostering children with disabilities in a major Canadian city was asked "what are the rewards you receive from fostering a child with a disability?" A total of 57 unique responses were obtained and grouped together by the foster parents. Two statistical analyses were applied to the grouping data:…

  17. [Psychologist-nurse, a rewarding collaboration].

    PubMed

    Léger, Isabelle; Cludy, Laurence

    2011-10-01

    Psychologist-nurse, a rewarding collaboration. The collaboration between nurses and psychologists is relatively recent within healthcare institutes. Gaining maximum value from such a collaboration requires solid knowledge of the roles and the limits of each profession as well as a real desire to work together, for the benefit of the greater well-being of the patient and, indirectly, of the teams.

  18. Parsing Reward and Aversion in the Amygdala.

    PubMed

    Maren, Stephen

    2016-04-20

    The basolateral amygdala (BLA) is critical for encoding the value of stimuli. Beyeler et al. (2016) now show that distinct populations of BLA neurons, which are defined by their efferent targets, code reward and aversion. This arrangement promotes parallel processing of biologically relevant events.

  19. Anticipated Reward Enhances Offline Learning during Sleep

    ERIC Educational Resources Information Center

    Fischer, Stefan; Born, Jan

    2009-01-01

    Sleep is known to promote the consolidation of motor memories. In everyday life, typically more than 1 isolated motor skill is acquired at a time, and this possibly gives rise to interference during consolidation. Here, it is shown that reward expectancy determines the amount of sleep-dependent memory consolidation. Subjects were trained on 2…

  20. Digital Badges--Rewards for Learning?

    ERIC Educational Resources Information Center

    Shields, Rebecca; Chugh, Ritesh

    2017-01-01

    Digital badges are quickly becoming an appropriate, easy and efficient way for educators, community groups and other professional organisations, to exhibit and reward participants for skills obtained in professional development or formal and informal learning. This paper offers an account of digital badges, how they work and the underlying…

  1. Lowered Expectations: How Schools Reward Incompetence.

    ERIC Educational Resources Information Center

    Jackson, Bruce

    1985-01-01

    Playing "dumb" can earn students easier classes, lower expectations, reduced pressure, and individual attention. Schools can stop rewarding failure by making remedial classes difficult, backing up homework policies with unappealing alternatives, providing penalties for attendance violations, and deglamorizing alternatives to regular programs. (PGD)

  2. Motivating Intrapreneurs: The Relevance of Rewards

    ERIC Educational Resources Information Center

    de Villiers-Scheepers, M. J.

    2011-01-01

    A challenge faced by management graduates in promoting intrapreneurship to achieve competitive advantage is the use of motivational techniques that build commitment to entrepreneurial behaviour. Despite the acknowledged importance of rewards to encourage innovation, there is surprisingly little empirical evidence to provide guidance on which…

  3. Community College Faculty Rewards: Expectations and Incentives.

    ERIC Educational Resources Information Center

    Payne, Tracy; Herndon, Susan; McWaine, Lamar; Major, Claire

    2002-01-01

    This article discusses a survey of administrators at an Alabama community college regarding faculty responsibilities and rewards. Respondents indicated that academic advising constituted the most important responsibility for faculty members. Professional organization conference planning and journal publications were among the least significant.…

  4. Utilizing reward systems to mobilize change.

    PubMed

    Wilson, T B

    1995-01-01

    The pressures for change in health care organizations mean that people need to do things differently. Reward systems offer an opportunity to share in the success of the enterprise if they are designed and managed effectively. This article shows how and why they work. Case studies illustrate the key principles in action.

  5. EFFECT OF EXTRINSIC REWARDS ON MOTIVATION.

    ERIC Educational Resources Information Center

    GLADSTONE, ROY

    THE SPECIFIC PROBLEM WAS WHETHER HUMANS, AFTER HAVING BEEN TRAINED ON A GIVEN REWARD SCHEDULE TO ACT IN A GIVEN WAY IN GIVEN CIRCUMSTANCES, WILL EXHIBIT FIXED EXTINCTION BEHAVIOR REGARDLESS OF THE DIFFERENCES BETWEEN THE TRAINING AND THE EXTINCTION PERIODS. SUBJECTS WERE 360 COLLEGE STUDENTS WHO HAD VOLUNTEERED FOR THE EXPERIMENT. AN APPARATUS WAS…

  6. Alterations of reward mechanisms in bulbectomised rats.

    PubMed

    Grecksch, Gisela; Becker, Axel

    2015-06-01

    The positive association between alcoholism and depression is a common clinical observation. We investigated the relationship between depression and reward mechanisms using a validated animal model for depressive-like behaviour, the olfactory bulbectomy in rats. The effects of bilateral olfactory bulbectomy on reward mechanisms were studied in two different experimental paradigms - the voluntary self-administration of ethanol and the conditioned place preference to alcohol injection and compared to the effects of ethanol on locomotor activity and body core temperature. The voluntary ethanol intake was increased significantly in bulbectomised rats in a drinking experiment and also after a period of abstinence. Conditioned place preference (CPP) was induced in all animals. However, bulbectomised rats needed a higher dose of alcohol to produce CPP. The sedative effect of ethanol on locomotor activity was reduced in bulbectomised animals. Measurement of body temperature revealed a dose-dependent hypothermic effect of ethanol in both groups. These results suggest that the reward mechanisms may be altered in this animal model as a common phenomenon associated with depression. Furthermore, they support the hypothesis that the addictive and/or rewarding properties of some drugs of abuse may be modified in depression.

  7. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  8. Reward Motivation Accelerates the Onset of Neural Novelty Signals in Humans to 85 Milliseconds

    PubMed Central

    Bunzeck, Nico; Doeller, Christian F.; Fuentemilla, Lluis; Dolan, Raymond J.; Duzel, Emrah

    2009-01-01

    Summary The neural responses that distinguish novel from familiar items in recognition memory tasks are remarkably fast in both humans and nonhuman primates. In humans, the earliest onsets of neural novelty effects emerge at about ∼150–200 ms after stimulus onset [1–5]. However, in recognition memory studies with nonhuman primates, novelty effects can arise at as early as 70–80 ms [6, 7]. Here, we address the possibility that this large species difference in onset latencies is caused experimentally by the necessity of using reward reinforcement to motivate the detection of novel or familiar items in nonhuman primates but not in humans. Via magnetoencephalography in humans, we show in two experiments that the onset of neural novelty signals is accelerated from ∼200 ms to ∼85 ms if correct recognition memory for either novel or familiar items is rewarded. Importantly, this acceleration is independent of whether the detection of the novel or the familiar scenes is rewarded. Furthermore, this early novelty effect contributed to memory retrieval because neural reward responses, which were contingent upon novelty detection, followed ∼100 ms later. Thus, under the contextual influence of reward motivation, behaviorally relevant novelty signals emerge much faster than previously held possible in humans. PMID:19576774

  9. Consequences of Adolescent Ethanol Consumption on Risk Preference and Orbitofrontal Cortex Encoding of Reward.

    PubMed

    McMurray, Matthew Stephen; Amodeo, Leslie Renee; Roitman, Jamie Donahey

    2016-04-01

    Critical development of the prefrontal cortex occurs during adolescence, a period of increased independence marked by decision making that often includes engagement in risky behaviors, such as substance use. Consumption of alcohol during adolescence has been associated with increased impulsivity that persists across the lifespan, an effect which may be caused by long-term disruptions in cortical processing of rewards. To determine if alcohol consumption alters cortical encoding of rewards of different sizes and probabilities, we gave rats limited access to alcohol in gelatin during adolescence only. In adulthood, we recorded the electrophysiological activity of individual neurons of the orbitofrontal cortex while rats performed a risk task that varied the level of risk from day-to-day. Rats that had consumed higher levels of alcohol showed increased risk preference in the task compared with control and low alcohol-consuming rats. Patterns of neuronal responses were identified using principal component analysis. Of the multiple patterns observed, only one was modulated by adolescent alcohol consumption and showed strongest modulation after reward receipt. This subpopulation of neurons showed blunted firing rates following rewards in alcohol-consuming rats, suggesting a mechanism through which adolescent alcohol exposure may have lasting effects on reward processing in the context of decision making. The differences in OFC responses between high alcohol consumers and control animals not given access to alcohol support the idea that, regardless of potential variability in innate alcohol preferences, voluntary consumption of alcohol during adolescence biases choice patterns longitudinally through alterations in cortical function.

  10. Attentional Bias for Non-drug Reward is Magnified in Addiction

    PubMed Central

    Anderson, Brian A.; Faulkner, Monica L.; Rilee, Jessica J.; Yantis, Steven; Marvel, Cherie L.

    2014-01-01

    Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcome. Attentional biases also develop for stimuli that have been paired with non-drug reward in adults without a history of addiction, the magnitude of which is predicted by visual working memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for non-drug (monetary) reward relative to that of healthy controls, and that this bias is related to working memory impairments and increased impulsiveness. Seventeen patients receiving methadone maintenance treatment for opioid dependence and seventeen healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11), visual working memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. Importantly, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with non-drug reward. This non-specific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction. PMID:24128148

  11. Obesity and the neurocognitive basis of food reward and the control of intake.

    PubMed

    Ziauddeen, Hisham; Alonso-Alonso, Miguel; Hill, James O; Kelley, Michael; Khan, Naiman A

    2015-07-01

    With the rising prevalence of obesity, hedonic eating has become an important theme in obesity research. Hedonic eating is thought to be that driven by the reward of food consumption and not metabolic need, and this has focused attention on the brain reward system and how its dysregulation may cause overeating and obesity. Here, we begin by examining the brain reward system and the evidence for its dysregulation in human obesity. We then consider the issue of how individuals are able to control their hedonic eating in the present obesogenic environment and compare 2 contrasting perspectives on the control of hedonic eating, specifically, enhanced control of intake via higher cognitive control and loss of control over intake as captured by the food addiction model. We conclude by considering what these perspectives offer in terms of directions for future research and for potential interventions to improve control over food intake at the population and the individual levels.

  12. Reward Prediction Errors in Drug Addiction and Parkinson's Disease: from Neurophysiology to Neuroimaging.

    PubMed

    García-García, Isabel; Zeighami, Yashar; Dagher, Alain

    2017-06-01

    Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.

  13. Obesity and the Neurocognitive Basis of Food Reward and the Control of Intake12

    PubMed Central

    Ziauddeen, Hisham; Alonso-Alonso, Miguel; Hill, James O; Kelley, Michael; Khan, Naiman A

    2015-01-01

    With the rising prevalence of obesity, hedonic eating has become an important theme in obesity research. Hedonic eating is thought to be that driven by the reward of food consumption and not metabolic need, and this has focused attention on the brain reward system and how its dysregulation may cause overeating and obesity. Here, we begin by examining the brain reward system and the evidence for its dysregulation in human obesity. We then consider the issue of how individuals are able to control their hedonic eating in the present obesogenic environment and compare 2 contrasting perspectives on the control of hedonic eating, specifically, enhanced control of intake via higher cognitive control and loss of control over intake as captured by the food addiction model. We conclude by considering what these perspectives offer in terms of directions for future research and for potential interventions to improve control over food intake at the population and the individual levels. PMID:26178031

  14. Dissecting components of reward: 'liking', 'wanting', and learning.

    PubMed

    Berridge, Kent C; Robinson, Terry E; Aldridge, J Wayne

    2009-02-01

    In recent years significant progress has been made delineating the psychological components of reward and their underlying neural mechanisms. Here we briefly highlight findings on three dissociable psychological components of reward: 'liking' (hedonic impact), 'wanting' (incentive salience), and learning (predictive associations and cognitions). A better understanding of the components of reward, and their neurobiological substrates, may help in devising improved treatments for disorders of mood and motivation, ranging from depression to eating disorders, drug addiction, and related compulsive pursuits of rewards.

  15. Brain mechanisms of drug reward and euphoria.

    PubMed

    Wise, R A; Bozarth, M A

    1985-01-01

    Drugs of abuse have in common the fact that they serve as biological rewards. They presumably do so because of their ability to activate endogenous brain circuitry. By determining the brain circuitry activated by rewarding drug injections, much can be learned about the degree to which there is a common basis for the abuse liability of seemingly different drugs. The brain circuitry activated by two classes of abused drugs, psychomotor stimulants and opiates, is now partially understood; the current evidence suggests a shared mechanism of stimulant reward and opiate reward. The identified portion of the circuitry involves dopamine-containing cells of the ventral tegmental area and their fiber projections to the cells of the nucleus accumbens. Morphine activates these cells in the region of the cell bodies; it may have direct actions on receptors imbedded in the dopaminergic cell membrane, or it may act on afferent terminals that synapse on the dopaminergic cell bodies or dendrites. Cocaine and amphetamine act at the terminals of the dopaminergic fibers to nucleus accumbens and perhaps other structures. The shared activation of the dopaminergic input to nucleus accumbens accounts for the behaviorally activating and the rewarding effects of both stimulants and opiates (the opiate stimulant action is not widely known because it is usually masked by depressant actions of opiates in other, antagonistic, brain circuits). The activation of dopaminergic systems also accounts for amphetamine euphoria; it almost certainly accounts for cocaine euphoria and it probably accounts for opiate euphoria as well. Opiates and psychomotor stimulants clearly have many other actions which are not shared; nonshared actions must account for the well-known differences in the subjective effects of opiates and stimulants. One of the major nonshared actions is physical dependence. Opiates gain access to a major component of the circuitry mediating opiate physical dependence through opiate

  16. Delayed Reward Discounting and Alcohol Misuse: The Roles of Response Consistency and Reward Magnitude

    PubMed Central

    Amlung, Michael; MacKillop, James

    2014-01-01

    Delayed reward discounting (DRD) is a common index of impulsivity that refers to an individual’s devaluation of rewards based on delay of receipt and has been linked to alcohol misuse and other maladaptive behaviors. The current study investigated response consistency and reward magnitude effects in two measures of DRD in a sample of 111 undergraduates who consumed an average of 10.7 drinks/week. These variables were also examined in relation to alcohol use and misuse. Results indicated highly consistent performance on both measures of DRD, although significant differences were evident based on task parameters. There was also clear evidence of a magnitude effect on DRD. Finally, a number of significant associations between DRD and both alcohol use and misuse were found. These findings suggest that individuals possess a relatively consistent cognitive template for DRD choice preferences, but that the template systematically varies by both reward magnitude and delay length. PMID:25191534

  17. Addiction and brain reward and antireward pathways.

    PubMed

    Gardner, Eliot L

    2011-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly), and that they enhance the functioning of the reward circuitry of the brain (producing the 'high' that the drug user seeks). The core reward circuitry consists of an 'in-series' circuit linking the ventral tegmental area, nucleus accumbens and ventral pallidum via the medial forebrain bundle. Although originally believed to simply encode the set point of hedonic tone, these circuits are now believed to be functionally far more complex, also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. 'Hedonic dysregulation' within these circuits may lead to addiction. The 'second-stage' dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dop-aminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g. opiates), tolerance to the euphoric effects develops with chronic use. Postuse dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get high, but simply to get back to normal ('get straight'). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model of

  18. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  19. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  20. Neurophysiological differences in reward processing in anhedonics.

    PubMed

    Padrão, Gonçalo; Mallorquí, Aida; Cucurell, David; Marco-Pallares, Josep; Rodriguez-Fornells, Antoni

    2013-03-01

    Anhedonia is characterized by a reduced capacity to experience pleasure in response to rewarding stimuli and has been considered a possible candidate endophenotype in depression and schizophrenia. However, it is still not well understood whether these reward deficits are confined to anticipatory and/or to consummatory experiences of pleasure. In the present study, we recorded electrophysiological responses (event-related brain potentials [ERPs] and oscillatory activity) to monetary gains and losses in extreme groups of anhedonic and nonanhedonic participants. The anhedonic participants showed reduced motivation to incur risky decisions, especially after monetary rewards. These sequential behavioral effects were correlated with an increased sensitivity to punishment, which psychometrically characterized the anhedonic group. In contrast, both electrophysiological measures associated with the impacts of monetary losses and gains--the feedback-related negativity (FRN) and the beta-gamma oscillatory component--clearly revealed preserved consummatory responses in anhedonic participants. However, anhedonics showed a drastic increase in frontal medial theta power after receiving the maximum monetary gain. This increase in theta oscillatory activity could be associated with an increase in conflict and cognitive control for unexpected large positive rewards, thus indexing the violation of default negative expectations built up across the task in anhedonic participants. Thus, the present results showed that participants with elevated scores on Chapman's Physical Anhedonia Scale were more sensitive to possible punishments, showed deficits in the correct integration of response outcomes in their actions, and evidenced deficits in sustaining positive expectations of future rewards. This overall pattern suggests an effect of anhedonia in the motivational aspects of approach behavior rather than in consummatory processes.

  1. Cerebellar granule cells encode the expectation of reward

    PubMed Central

    Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun

    2017-01-01

    The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129

  2. 28 CFR 13.6 - Criteria for reward.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...

  3. 28 CFR 13.6 - Criteria for reward.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...

  4. 28 CFR 13.6 - Criteria for reward.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...

  5. 28 CFR 13.6 - Criteria for reward.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...

  6. 28 CFR 13.6 - Criteria for reward.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...

  7. Reward Allocation and Academic versus Social Orientation toward School.

    ERIC Educational Resources Information Center

    Peterson, Candida C.; Peterson, James L.

    1978-01-01

    Correlates 138 elementary school children's views about the purposes of school to their styles of reward allocation: academically motivated students allocated rewards equally to two hypothetical performers who had unequally helped a teacher perform a manual chore, while socially motivated children allocated rewards in an equity (performance-based)…

  8. Rewards versus Learning: A Response to Paul Chance.

    ERIC Educational Resources Information Center

    Kohn, Alfie

    1993-01-01

    Responding to Paul Chance's November 1992 "Kappan" article on motivational value of rewards, this article argues that manipulating student behavior with either punishments or rewards is unnecessary and counterproductive. Extrinsic rewards can never buy more than short-term compliance because they are inherently controlling and…

  9. Modeling the Effect of Reward Amount on Probability Discounting

    ERIC Educational Resources Information Center

    Myerson, Joel; Green, Leonard; Morris, Joshua

    2011-01-01

    The present study with college students examined the effect of amount on the discounting of probabilistic monetary rewards. A hyperboloid function accurately described the discounting of hypothetical rewards ranging in amount from $20 to $10,000,000. The degree of discounting increased continuously with amount of probabilistic reward. This effect…

  10. Delay Discounting of Reward in ADHD: Application in Young Children

    ERIC Educational Resources Information Center

    Wilson, Vanessa B.; Mitchell, Suzanne H.; Musser, Erica D.; Schmitt, Colleen F.; Nigg, Joel T.

    2011-01-01

    Background: A key underlying process that may contribute to attention-deficit/hyperactivity disorder (ADHD) involves alterations in reward evaluation, including assessing the relative value of immediate over delayed rewards. This study examines whether children with ADHD discount the value of delayed rewards to a greater degree than typically…

  11. Reward Circuitry Function in Autism during Face Anticipation and Outcomes

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Richey, J. Anthony; Rittenberg, Alison M.; Sabatino, Antoinette; Bodfish, James W.

    2012-01-01

    The aim of this study was to investigate reward circuitry responses in autism during reward anticipation and outcomes for monetary and social rewards. During monetary anticipation, participants with autism spectrum disorders (ASDs) showed hypoactivation in right nucleus accumbens and hyperactivation in right hippocampus, whereas during monetary…

  12. Basolateral amygdala lesions abolish mutual reward preferences in rats.

    PubMed

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias

    2016-01-01

    In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected.

  13. How performance (non-)contingent reward modulates cognitive control.

    PubMed

    Fröber, Kerstin; Dreisbach, Gesine

    2016-07-01

    Reward has repeatedly been shown to influence cognitive control. More precisely, performance contingent reward is known to increase preparatory, proactive control. In comparison, performance non-contingent reward, that is, reward that is not dependent on a pre-specified performance criterion but is given unconditional for any response, even errors, is a rather understudied topic. Recently, Fröber and Dreisbach (2014) compared performance contingent and non-contingent reward in a single experiment. They found that non-contingent reward seems to modulate cognitive control in an oppositional way than contingent reward, namely by reducing proactive control. In the present paper, the authors further investigate this dissociation in two experiments with a reward manipulation that facilitated adaptations to changes in reward availability: reward - with performance contingency varying between subjects - was manipulated not trial-by-trial but in mini-blocks of 20 consecutive trials in an AX-Continuous Performance Task. Performance contingent reward significantly increased proactive control. The repeated experience of non-contingent reward even for errors did not result in increased error rates, but instead was indicative of stable compliance with task rules over time and with less reliance on proactive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Implicit and explicit reward learning in chronic nicotine use.

    PubMed

    Paelecke-Habermann, Yvonne; Paelecke, Marko; Giegerich, Katharina; Reschke, Katja; Kübler, Andrea

    2013-04-01

    Chronic tobacco use is related to specific neurobiological alterations in the dopaminergic brain reward system that can be termed "reward deficiency syndrome" in dependent nicotine consumers. The close linkage of dopaminergic activity and reward learning led us to expect implicit and explicit reward learning deficits in dependent compared to non-smokers. Smokers who maintain a less regular, occasional use may also, to a lesser extent, show implicit reward learning deficits. The purpose of our study was to examine the behavioral effects of the neurobiological alterations on reward related learning. We also tested whether any deficits observed in an abstinent state are also present in a satiated state. In two studies, we examined implicit and explicit reward learning in smokers. Participants were administered a probabilistic implicit reward learning task, and an explicit reward- and punishment-based trial-and-error learning task. In Study 1, we compared dependent, occasional, and non-smokers, and in Study 2 satiated and abstinent smokers. In Study 1, chronic and occasional smokers showed impairments in both, implicit and explicit reward learning tasks. In Study 2, satiated smokers did not perform better than abstinent smokers. The results support the hypothesis of reward learning deficits. These deficits are not limited to explicit but extend to implicit reward learning and cannot be explained by tobacco withdrawal. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Managing Simultaneous Renewal: Reward Structures for School and University Faculty.

    ERIC Educational Resources Information Center

    Carnes, Nate; Schwager, Susan

    2000-01-01

    Examined the impact of rewards and reward structures for mentor teachers and university faculty engaged in preparing teachers and the ongoing professional development of veteran teachers within Professional Development Schools. School faculty cited extrinsic reward structures as inadequate, emphasizing their importance as incentives for…

  16. Extrinsic Rewards Undermine Altruistic Tendencies in 20-Month-Olds

    ERIC Educational Resources Information Center

    Warneken, Felix; Tomasello, Michael

    2008-01-01

    The current study investigated the influence of rewards on very young children's helping behavior. After 20-month-old infants received a material reward during a treatment phase, they subsequently were less likely to engage in further helping during a test phase as compared with infants who had previously received social praise or no reward at…

  17. Using Rewards To Teach Students with Disabilities: Implications for Motivation.

    ERIC Educational Resources Information Center

    Witzel, Bradley S.; Mercer, Cecil D.

    2003-01-01

    This article presents and compares current research practices surrounding the use of rewards in classroom management. A motivational model emerges of the use of extrinsic rewards with special needs learners to build intrinsic motivation. Teachers' use of praise as the focal point to multiple rewards and students' need for equity are also…

  18. Reward Allocation and Academic versus Social Orientation toward School.

    ERIC Educational Resources Information Center

    Peterson, Candida C.; Peterson, James L.

    1978-01-01

    Correlates 138 elementary school children's views about the purposes of school to their styles of reward allocation: academically motivated students allocated rewards equally to two hypothetical performers who had unequally helped a teacher perform a manual chore, while socially motivated children allocated rewards in an equity (performance-based)…

  19. Should Rewards Have a Place in Early Childhood Programs?

    ERIC Educational Resources Information Center

    Shiller, Virginia M.; O'Flynn, Janet C.; Reineke, June; Sonsteng, Kathleen; Gartrell, Dan

    2008-01-01

    Does the use of rewards to motivate children to learn or to follow classroom rules run counter to fostering a true desire for mastery? This column, which consists of two separate articles, provides the opposing opinions of the authors regarding the appropriateness of giving rewards in an early childhood classroom. In "Using Rewards in the Early…