Wu, Hsiang-en; Hong, Jau-Shyong; Tseng, Leon F
2007-10-01
We have previously demonstrated that (+)-morphine and (-)-morphine given spinally stereoselectively attenuate the spinally-administered (-)-morphine-produced tail-flick inhibition in the mouse. The phenomenon has been defined as antianalgesia. Present studies were then undertaken to determine if the systemic administration of (+)-morphine and (-)-morphine also stereoselectively attenuates the systemic (-)-morphine-produced tail-flick inhibition and the effects of (+)-morphine and (-)-morphine are mediated by the naloxone-sensitive sigma receptor activation in male CD-1 mice. Pretreatment with (+)-morphine at a dose of 0.01-10 ng/kg given subcutaneously dose-dependently attenuated the tail-flick inhibition produced by subcutaneously-administered (-)-morphine (5 mg/kg). Pretreatment with (-)-morphine (0.01-1.0 mg/kg) given subcutaneously also attenuates the (-)-morphine-produced tail-flick inhibition. The ED50 values for (+)-morphine and (-)-morphine for inhibiting the (-)-morphine-produced tail-flick inhibition were estimated to be 30.6 pg/kg and 97.5 microg/kg, respectively. The attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine pretreatment was reversed by the pretreatment with (+)-naloxone or by the sigma receptor antagonist BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide) given subcutaneously. Pretreatment with (+)-pentazocine, a selective sigma receptor agonist, (1-10 mg/kg) given subcutaneously also attenuates (-)-morphine-produced tail-flick inhibition, which was restored by (+)-naloxone (4 mg/kg) or BD1047 (10 mg/kg) pretreated subcutaneously. It is concluded that (+)-morphine exhibits extremely high stereoselective action over (-)-morphine given systemically in attenuating the systemic (-)-morphine-produced antinociception and the antianalgesic effect of (+)-morphine and (-)-morphine is mediated by activation of the naloxone-sensitive sigma receptor.
2015-12-22
study, which did not survive until the 24 h post-exposure endpoint, experienced severe signs of cholin- ergic intoxication , resulting in mortality...following vapor inhalation exposure, to aid in the development of potential treatment strategies. Gross clinical signs of soman intoxication were...consistent with typical cholinergic-induced intoxication . The observed CWNA-induced cholinergic crises and clinical signs of toxicity such as straub tail
Analgesia induced by morphine microinjected into the nucleus raphe magnus: effects on tonic pain.
Dualé, Christian; Sierralta, Fernando; Dallel, Radhouane
2007-07-01
One of the possible sites of action of the analgesic effect of morphine is the Nucleus Raphe Magnus, as morphine injected into this structure induces analgesia in transient pain models. In order to test if morphine in the Nucleus Raphe Magnus is also analgesic in a tonic pain model, 5 microg of morphine or saline (control) were microinjected into the Nucleus Raphe Magnus of the rat. Analgesic effects were assessed following nociceptive stimulation using transient heating of the tail (phasic pain) and subcutaneous orofacial injection of 1.5 % formalin (tonic pain). While morphine was strongly analgesic for the tail-flick response (p <0.0001 compared to control), analgesia on the response to formalin was also observed for both early (p = 0.007) and late responses (p = 0.02). However, the response to formalin was not completely blunted. These results suggest that the Nucleus Raphe Magnus is not the exclusive site of action of morphine-induced analgesia in clinical conditions.
Kambur, Oleg; Männistö, Pekka T; Viljakka, Kaarin; Reenilä, Ilkka; Lemberg, Kim; Kontinen, Vesa K; Karayiorgou, Maria; Gogos, Joseph A; Kalso, Eija
2008-10-01
Catechol-O-methyltransferase (COMT) polymorphisms modulate pain and opioid analgesia in human beings. It is not clear how the effects of COMT are mediated and only few relevant animal studies have been performed. Here, we used old male Comt gene knock-out mice as an animal model to study the effects of COMT deficiency on nociception that was assessed by the hot plate and tail flick tests. Stress-induced analgesia was achieved by forced swim. Morphine antinociception was measured after 10 mg/kg of morphine subcutaneously. Morphine tolerance was produced with subcutaneous morphine pellets and withdrawal provoked with subcutaneous naloxone. In the hot plate test, morphine-induced antinociception was significantly greater in the COMT knock-out mice, compared to the wild-type mice. This may be due to increased availability of opioid receptors as suggested by previous human studies. In the tail flick test, opioid-mediated stress-induced analgesia was absent and morphine-induced analgesia was decreased in COMT knock-out mice. In the hot plate test, stress-induced analgesia developed to all mice regardless of the COMT genotype. There were no differences between the genotypes in the baseline nociceptive thresholds, morphine tolerance and withdrawal. Our findings show, for the first time, the importance of COMT activity in stress- and morphine-induced analgesia in mice. COMT activity seems to take part in the modulation of nociception not only in the brain, as suggested earlier, but also at the spinal/peripheral level.
Pavlovian conditioning of multiple opioid-like responses in mice.
Bryant, Camron D; Roberts, Kristofer W; Culbertson, Christopher S; Le, Alan; Evans, Christopher J; Fanselow, Michael S
2009-07-01
Conditional responses in rodents such as locomotion have been reported for drugs of abuse and similar to the placebo response in humans, may be associated with the expectation of reward. We examined several conditional opioid-like responses and the influence of drug expectation on conditioned place preference and concomitant conditional locomotion. Male C57BL/6J mice were conditioned with the selective mu opioid receptor agonist fentanyl (0.2mg/kg, i.p.) in a novel context and subsequently given a vehicle injection. In separate experiments, locomotor activity, Straub tail, hot plate sensitivity, and conditioned place preference (CPP) were measured. Mice exhibited multiple conditional opioid-like responses including conditional hyperlocomotion, a conditional pattern of opioid-like locomotion, Straub tail, analgesia, and place preference. Modulating drug expectation via administration of fentanyl to "demonstrator" mice in the home cage did not affect the expression of conditioned place preference or the concomitant locomotor activity in "observer" mice. In summary, Pavlovian conditioning of an opioid in a novel context induced multiple conditional opioid-like behaviors and provides a model for studying the neurobiological mechanisms of the placebo response in mice.
Analgesic efficacy of butorphanol and morphine in bearded dragons and corn snakes.
Sladky, Kurt K; Kinney, Matthew E; Johnson, Stephen M
2008-07-15
To test the hypothesis that administration of butorphanol or morphine induces antinociception in bearded dragons and corn snakes. Prospective crossover study. 12 juvenile and adult bearded dragons and 13 corn snakes. Infrared heat stimuli were applied to the plantar surface of bearded dragon hind limbs or the ventral surface of corn snake tails. Thermal withdrawal latencies (TWDLs) were measured before (baseline) and after SC administration of physiologic saline (0.9% NaCl) solution (equivalent volume to opioid volumes), butorphanol tartrate (2 or 20 mg/kg [0.91 or 9.1 mg/lb]), or morphine sulfate (1, 5, 10, 20, or 40 mg/kg [0.45, 2.27, 4.5, 9.1, or 18.2 mg/lb]). For bearded dragons, butorphanol (2 or 20 mg/kg) did not alter hind limb TWDLs at 2 to 24 hours after administration. However, at 8 hours after administration, morphine (10 and 20 mg/kg) significantly increased hind limb TWDLs from baseline values (mean +/- SEM maximum increase, 2.7+/-0.4 seconds and 2.8+/-0.9 seconds, respectively). For corn snakes, butorphanol (20 mg/kg) significantly increased tail TWDLs at 8 hours after administration (maximum increase from baseline value, 3.0+/-0.8 seconds); the low dose had no effect. Morphine injections did not increase tail TWDLs at 2 to 24 hours after administration. Compared with doses used in most mammalian species, high doses of morphine (but not butorphanol) induced analgesia in bearded dragons, whereas high doses of butorphanol (but not morphine) induced analgesia in corn snakes.
Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V
2015-01-01
Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798
Haghparast, Abbas; Ordikhani-Seyedlar, Mehdi; Ziaei, Maryam
2008-06-27
Several lines of investigation show that the rostral ventromedial medulla is a critical relay for midbrain regions, including the nucleus cuneiformis (CnF), which control nociception at the spinal cord. There is some evidence that local stimulation or morphine administration into the CnF produces the effective analgesia through the nucleus raphe magnus (NRM). The present study tries to determine the effect of morphine-induced analgesia following microinjection into the CnF in the absence of NRM. Seven days after the cannulae implantation, morphine was microinjected bilaterally into the CnF at the doses of 0.25, 1, 2.5, 5, 7.5 and 10 microg/0.3 microl saline per side. The morphine-induced antinociceptive effect measured by tail-flick test at 30, 60, 90 and 120 min after microinjection. The results showed that bilateral microinjection of morphine into the CnF dose-dependently causes increase in tail-flick latency (TFL). The 50% effective dose of morphine was determined and microinjected into the CnF (2.5 microg/0.3 microl saline per side) in rats after NRM electrolytic lesion (1 mA, 30 s). Lesion of the NRM significantly decreased TFLs, 30 (P<0.01) and 60 (P<0.05) but not 90-120 min after morphine microinjection into the CnF, compared with sham-lesion group. We concluded that morphine induces the analgesic effects through the opioid receptors in the CnF. It is also appeared that morphine-induced antinociception decreases following the NRM lesion but it seems that there are some other descending pain modulatory pathways that activate in the absence of NRM.
Haghparast, Abbas; Soltani-Hekmat, Ava; Khani, Abbas; Komaki, Alireza
2007-10-29
Neurons in the nucleus cuneiformis (CnF), located just ventrolateral to the periaqueductal gray, project to medullary nucleus raphe magnus (NRM), which is a key medullary relay for descending pain modulation and is critically involved in opioid-induced analgesia. Previous studies have shown that antinociceptive response of CnF-microinjected morphine can be modulated by the specific subtypes of glutamatergic receptors within the CnF. In this study, we evaluated the role of NMDA and kainate/AMPA receptors that are widely distributed within the NRM on morphine-induced antinociception elicited from the CnF. Hundred and five male Wistar rats weighing 250-300 g were used. Morphine (10, 20 and 40 microg) and NMDA receptor antagonist, MK-801 (10 microg) or kainate/AMPA receptor antagonist, DNQX (0.5 microg) in 0.5 microl saline were stereotaxically microinjected into the CnF and NRM, respectively. The latency of tail-flick response was measured at set intervals (2, 7, 12, 17, 22, 27 min after microinjection) by using an automated tail-flick analgesiometer. The results showed that morphine microinjection into the CnF dose-dependently causes increase in tail-flick latency (TFL). MK-801 microinjected into the NRM, just 1 min before morphine injection into the CnF, significantly attenuated antinociceptive effects of morphine. On the other hand, DNQX microinjected into the NRM, significantly increased TFL after local application of morphine into the CnF. We suggest that morphine related antinociceptive effect elicited from the CnF is mediated, in part, by NMDA receptor at the level of the NRM whereas kainite/AMPA receptor has a net inhibitory influence at the same pathway.
Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.
Rehni, Ashish K; Singh, Nirmal; Jindal, Seema
2007-12-01
The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.
Nabeshima, T; Yamada, S; Sugimoto, A; Matsuno, K; Kameyama, T
1986-10-01
The antinociceptive, tolerance-developing and anti-withdrawal activities of tizanidine [5-chloro-4-(2-imidazolin-2-yl-amino)-2,1,3-benzo-thiadiazole] were investigated by comparing its effects with those of morphine and clonidine in tail-flick-, hot plate-, acetic acid-induced writhing-, and naloxone-precipitated withdrawal jumping-tests. The antinociceptive action of tizanidine was not altered by naloxone, while that of morphine was antagonized. Tolerance to the tizanidine-induced antinociceptive action and to motor incoordination was developed by successive administration of tizanidine. In the tizanidine-tolerant mice, the antinociceptive action of morphine was significantly decreased, but not sleeping time induced by pentobarbital. The action of tizanidine was not modified in the morphine-tolerant mice. Tizanidine failed to induce morphine-withdrawal jumping and to inhibit naloxone-precipitated withdrawal jumping in the morphine-dependent mice. Cross tolerance to the antinociceptive action induced by tizanidine and clonidine was developed. These results suggest that alpha 2-adrenoreceptors may be involved in the action mechanism of tizanidine, but not opioid receptors. Functional tolerance to tizanidine action may be developed by successive administration of tizanidine.
Fairbanks, C A; Wilcox, G L
1997-09-01
The mechanistic similarity between acutely and chronically induced morphine tolerance has been previously proposed but remains largely unexplored. Our experiments examined the modulation of acutely induced tolerance to spinally administered morphine by agonists that affect the N-methyl-D-aspartate receptor and nitric oxide synthase systems. Antinociception was detected via the hot water (52.5 degrees C) tail flick test in mice. Intrathecal pretreatment with morphine (40 nmol) produced a 9.6-fold rightward shift in the morphine dose-response curve. This shift confirmed the induction of acute spinal morphine tolerance. Intrathecal copretreatment with the receptor antagonists (competitive and noncompetitive, respectively) dizolcipine (MK801, 3 nmol) or LY235959 (4 pmol) and morphine [40 nmol, intrathecally (i.t.)] attenuated acute tolerance to morphine measured 8 hr later. A 60-min pretreatment of 7-nitroindazole (6 nmol, i.t.), a selective neuronal NOS inhibitor, followed by administration of morphine (40 nmol, i.t.) blocked the induction of morphine tolerance. Intrathecal copretreatment with morphine (40 nmol, i.t.) and agmatine (4 nmol, i.t.), an imidazoline, receptor agonist and putative nitric oxide synthase inhibitor, almost completely abolished acute spinal morphine tolerance. The results of these experiments agree with previous reports using models of chronically induced morphine tolerance. This evidence supports the proposal that the mechanisms responsible for acute morphine tolerance parallel those underlying chronic morphine tolerance. This study attests to the powerful predictive value of acute induction as a model for morphine tolerance.
Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression.
Lin, Sheng-Hsiung; Huang, Ya-Ni; Kao, Jen-Hsin; Tien, Lu-Tai; Tsai, Ru-Yin; Wong, Chih-Shung
2016-05-01
Melatonin has been reported to attenuate opioid tolerance. In this study, we explored the possible mechanism of melatonin in diminishing morphine tolerance. Two intrathecal (i.t.) catheters were implanted in male Wistar rats for drug delivery. One was linked to a mini-osmotic pump for morphine or saline infusion. On the seventh day, 50μg of melatonin or vehicle was injected through the other catheter instantly after discontinuation of morphine or saline infusion; 3h later, 15μg of morphine or saline was injected. The antinociceptive response was then measured using the tail-flick test every 30min for 120min. The results showed that chronic morphine infusion elicited antinociceptive tolerance and upregulated heat shock protein 27 (HSP27) expression in the dorsal horn of the rat spinal cord. Melatonin pretreatment partially restored morphine's antinociceptive effect in morphine-tolerant rats and reversed morphine-induced HSP27 upregulation. In addition, chronic morphine infusion induced microglial cell activation and was reversed by melatonin treatment. The present study provides evidence that melatonin, acting via inhibiting morphine-induced neuroinflammation, can be useful as a therapeutic adjuvant for patients under long-term opioid treatment for pain relief. Copyright © 2016 Elsevier Inc. All rights reserved.
Abe, Kenji; Ishida, Kota; Kato, Masatoshi; Shigenaga, Toshiro; Taguchi, Kyoji; Miyatake, Tadashi
2002-11-01
To examine the role of cholinergic neurons in the nucleus raphe magnus (NRM) in noxious heat stimulation and in the effects of morphine-induced antinociception by rats. After the cholinergic neuron selective toxin, AF64A, was microinjected into the NRM, we examined changes in the antinociceptive threshold and effects of morphine (5 mg/kg, ip) using the hot-plate (HP) and tail-flick (TF) tests. Systemic administration of morphine inhibited HP and TF responses in control rats. Microinjection of AF64A (2 nmol/site) into the NRM significantly decreased the threshold of HP response after 14 d, whereas the TF response was not affected. Morphine-induced antinociception was significantly attenuated in rats administered AF64A. Extracellular acetylcholine was attenuated after 14 d to below detectable levels in rats given AF64A. Naloxone (1 microg/site) microinjected into control rat NRM also antagonized the antinociceptive effect of systemic morphine. These findings suggest that cholinergic neuron activation in the NRM modulates the antinociceptive effect of morphine simultaneously with the opiate system.
Esmaeili-Mahani, Saeed; Rezaeezadeh-Roukerd, Maryam; Esmaeilpour, Khadije; Abbasnejad, Mehdi; Rasoulian, Bahram; Sheibani, Vahid; Kaeidi, Ayat; Hajializadeh, Zahra
2010-10-28
Olive (Olea europaea) leaves are used as anti-rheumatic, anti-inflammatory, antinociceptive, antipyretic, vasodilatory, hypotensive, antidiuretic and hypoglycemic agents in traditional medicine. Recently, it has been shown that olive leaf extract (OLE) has calcium channel blocker property; however, its influences on nociceptive threshold and morphine effects have not yet been clarified. All experiments were carried out on male Wistar rats. The tail-flick, hot-plate and formalin tests were used to assess the effect of OLE on nociceptive threshold. To determine the effect of OLE on analgesic and hyperalgesic effects of morphine, OLE (6, 12 and 25 mg/kg i.p.) that had no significant nociceptive effect, was injected concomitant with morphine (5 mg/kg and 1 μg/kg i.p., respectively). The tail-flick test was used to assess the effect of OLE on anti- and pro-nociceptive effects of morphine. The data showed that OLE (50-200 mg/kg i.p.) could produce dose-dependent analgesic effect on tail-flick and hot-plate tests. Administration of 200 mg/kg OLE (i.p.) caused significant decrease in pain responses in the first and the second phases of formalin test. In addition, OLE could potentiate the antinociceptive effect of 5 mg/kg morphine and block low-dose morphine-induced hyperalgesia. Our results indicate that olive leaf extract has analgesic property in several models of pain and useful influence on morphine analgesia in rats. Therefore, it can be used for the treatment and/or management of painful conditions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Entanglement between thermoregulation and nociception in the rat: the case of morphine
El Bitar, Nabil; Pollin, Bernard; Karroum, Elias; Pincedé, Ivanne
2016-01-01
In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED50 in the 0.5–1 mg/kg range. Given the pivotal functional role of the rostral ventromedial medulla (RVM) in nociception and the rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, the RVM/rMR was blocked by muscimol: it suppressed the effects of morphine. “On-” and “off-” neurons recorded in the RVM/rMR are activated and inhibited by thermal nociceptive stimuli, respectively. They are also implicated in regulating the cyclic variations of the vasomotion of the tail and paws seen in thermoneutral conditions. Morphine elicited abrupt inhibition and activation of the firing of on- and off-cells recorded in the RVM/rMR. By using a model that takes into account the power of the radiant heat source, initial skin temperature, core body temperature, and peripheral nerve conduction distance, one can argue that the morphine-induced increase of reaction time is mainly related to the morphine-induced vasoconstriction. This statement was confirmed by analyzing in psychophysical terms the tail-flick response to random variations of noxious radiant heat. Although the increase of a reaction time to radiant heat is generally interpreted in terms of analgesia, the present data question the validity of using such an approach to build a pain index. PMID:27605533
Vetulani, J; Pavone, F; Przewłocka, B; Borghi, V; Nalepa, I
2003-11-01
To extend our earlier data on synergistic action of tetrahydroisoquinolines and morphine, we have investigated the analgesic effects of 1,2,3,4-tetrahydroisoquinoline (TIQ) and its 1-methyl-(1-MeTIQ) and N-methyl (N-MeTIQ) analogs on analgesia induced by morphine and oxotremorine. 1-MeTIQ and N-MeTIQ induced a moderate, delayed and prolonged analgesic action measured in the tail-flick test in CD-1 mice; 1-MeTIQ and TIQ prolonged the opiate (morphine, 2.5 mg/kg i.p.) analgesia while TIQ and N-TIQ potentiated cholinergic (oxotremorine, 0.02 mg/kg i.p.) analgesia. The involvement of the opioid and noradrenergic systems in this effect is discussed.
Bates, M L S; Emery, M A; Wellman, P J; Eitan, S
2016-07-01
Chronic opioid treatment is complicated by the development of tolerance and hyperalgesia. Social environment alters both opioid-induced behaviours and nociceptive mechanisms. Our previous studies demonstrated that, in adolescent rodents, the susceptibility to acquire opioid dependence and reward is dependent on the nature of social housing conditions. Specifically, our previous studies demonstrate that housing morphine-treated mice with drug-naïve animals mitigates the abuse liability of opioids. Thus, this study tested the effect of social housing conditions on the development of adaptive processes to morphine antinociception. Adolescent males were group-housed in different conditions. In the mixed treatment condition, mice treated with 20 mg/kg morphine (i.e. 'morphine cage-mates') and saline (i.e. 'saline cage-mates') were housed together. In the separated treatment conditions, all mice in the cage received morphine (i.e. 'morphine only') or saline (i.e. 'saline only'). All animals were tested for baseline pain sensitivity and for the response to morphine in the tail withdrawal, hot plate, acetone and von Frey filament tests, during and after discontinuation of opioid treatment. Both morphine cage-mate and morphine only animals developed antinociceptive tolerance. However, this effect was more robust and persistent in the morphine only group. Notably, morphine only animals, but not morphine cage-mates, developed opioid-induced hyperalgesia. This study demonstrates that housing morphine-treated mice with drug-naïve animals mitigates the development of opioid-induced hyperalgesia and antinociceptive tolerance. Thus, this study indicates that social environment influences the effectiveness of opioid pain management. © 2016 European Pain Federation - EFIC®
Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase.
Marcus, David J; Zee, Michael; Hughes, Alex; Yuill, Matthew B; Hohmann, Andrea G; Mackie, Ken; Guindon, Josée; Morgan, Daniel J
2015-06-12
Morphine and fentanyl are opioid analgesics in wide clinical use that act through the μ-opioid receptor (MOR). However, one limitation of their long-term effectiveness is the development of tolerance. Receptor desensitization has been proposed as a putative mechanism driving tolerance to G protein-coupled receptor (GPCR) agonists. Recent studies have found that tolerance to morphine is mediated by the c-Jun N-terminal Kinase (JNK) signaling pathway. The goal of the present study was to test the hypotheses that: 1) JNK inhibition will be antinociceptive on its own; 2) JNK inhibition will augment morphine antinociception and; 3) JNK mediates chronic tolerance for the antinociceptive effects of morphine using acute (hotplate and tail-flick), inflammatory (10 μl of formalin 2.5%) and chemotherapy (cisplatin 5 mg/kg ip once weekly)-induced neuropathic pain assays. We found that JNK inhibition by SP600125 (3 mg/kg) produces a greater antinociceptive effect than morphine (6 mg/kg) alone in the formalin test. Moreover, co-administration of morphine (6 mg/kg) with SP600125 (3 mg/kg) produced a sub-additive antinociceptive effect in the formalin test. We also show that pre-treatment with SP600125 (3 or 10 mg/kg), attenuates tolerance to the antinociceptive effects of morphine (10 mg/kg), but not fentanyl (0.3 mg/kg), in the tail-flick and hotplate tests. Pre-treatment with SP600125 also attenuates tolerance to the hypothermic effects of both morphine and fentanyl. We also examined the role of JNK in morphine tolerance in a cisplatin-induced model of neuropathic pain. Interestingly, treatment with SP600125 (3 mg/kg) alone attenuated mechanical and cold allodynia in a chemotherapy-induced pain model using cisplatin. Strikingly, SP600125 (3 mg/kg) pre-treatment prolonged the anti-allodynic effect of morphine by several days (5 and 7 days for mechanical and cold, respectively). These results demonstrate that JNK signaling plays a crucial role in mediating antinociception as well as chronic tolerance to the antinociceptive effects of morphine in acute, inflammatory, and neuropathic pain states. Thus, inhibition of JNK signaling pathway, via SP600125, represents an efficacious pharmacological approach to delay tolerance to the antinociceptive effects of chronic morphine in diverse pain models.
Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M
2012-12-01
Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p < 0.05), while exposure to the non resonant random EMFs exerted no effects. Additionally, naloxone administration inhibited the analgesic effects of the NMR spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.
Zafar, S; Ahmad, M A; Siddiqui, T A
2001-11-01
Chronic treatment with Delphinium denudatum (Dd) (Jadwar) (family: Ranunculaceae, 200-1600 mg/kg) suppressed morphine withdrawal jumps in a dose-dependent manner, a sign of the development of dependence to opiate as assessed by naloxone (2 mg/kg) precipitation withdrawal on day 10 of testing in mice. Repeated administration of Dd (200-1600 mg/kg) for 9 days attenuated the development of tolerance to the analgesic effect of morphine (10 mg/kg), also produces significant change in tail-flick latency from the saline pretreated group in a dose-dependent manner.
Lu, Gang; Su, Rui-Bin; Li, Jin; Qin, Bo-Yi
2003-10-08
The effects of alpha-difluoromethyl-ornithine (DFMO) and aminoguanidine, which might influence the metabolism of endogenous agmatine, on pain threshold, morphine analgesia and tolerance were investigated in mice. In the mouse acetic acid writhing test, intracerebroventricular (i.c.v.) injection of DFMO or aminoguanidine significantly elevated the pain threshold as indicated by a decrease in the number of writhings. DFMO or aminoguanidine obviously increased the analgesic effect of morphine in the mouse acetic acid writhing test and the mouse heat radiation tail-flick assay. These effects of DFMO and aminoguanidine were antagonized by idazoxan (3 mg/kg, i.p.), which is a selective antagonist of the imidazoline receptor. In the mouse heat radiation tail-flick assay, aminoguanidine significantly prolonged the tail-flick latency of animals, suggesting that the pain threshold was elevated. Furthermore, both DFMO and aminoguanidine enhanced morphine analgesia and inhibited acute morphine tolerance in the mouse heat radiation tail-flick assay. Neither DFMO nor aminoguanidine inhibited the activity of nitric oxide synthase in different brain areas in mice in vivo. These results indicate that the substances involved in the metabolism of endogenous agmatine could modulate the pain threshold, morphine analgesia and tolerance, indicating the possible role of endogenous agmatine in the pharmacological effects of morphine.
Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.
Pan, Yinbing; Sun, Xiaodi; Jiang, Lai; Hu, Liang; Kong, Hong; Han, Yuan; Qian, Cheng; Song, Chao; Qian, Yanning; Liu, Wentao
2016-11-17
Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice. Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphine-induced microglial activation through increasing AMPK phosphorylation.
Pahlavan, Yasaman; Sepehri, Gholamreza; Sheibani, Vahid; Afarinesh khaki, Mohammadreza; Gojazadeh, Morteza; Pahlavan, Bahare; Pahlavan, Fereshteh
2013-01-01
Objective(s): The aim of study was to investigate the antinociceptive effect of intracerebroventricular (ICV) microinjection of Origanum vulgare (ORG) extract and possible involvement of opioid receptors. Materials and Methods: Cannula was inserted into left ventricle of male rats. Five days after surgery Tail Flick Latency (TFL) was measured after ICV microinjection of, ORG (1, 3 and 6 µg / rat). Effective dose of ORG was injected ICV in concomitant with morphine (2 mg/kg, IP), naloxone (2 mg / kg, IP) and saline (0.5 µl/rat) and TFL was recorded. Results: The co- administration of ORG extract with morphine showed a significant increase in TFL and naloxone, pretreatment significantly inhibited the antinociceptive activity of ORG and morphine. Conclusion: The aqueous extract of ORG possesses antinociceptive activities in the tail-flick test in a dose dependent manner. ORG - induced antinociception may have been mediated by opioid systems. PMID:24379969
Pregabalin role in inhibition of morphine analgesic tolerance and physical dependency in rats.
Hasanein, Parisa; Shakeri, Saeed
2014-11-05
Pregabalin is recently proposed as analgesic or adjuvant in pain management. While previous preclinical investigations have evaluated pregabalin-opioid interactions, the effect of pregabalin on opioid tolerance and dependency has not yet been studied. Here we evaluated the effects of different doses of pregabalin (50, 100 and 200mg/kg, s.c.) on morphine-induced tolerance and dependency in rats. Adult male Wistar rats were rendered tolerant to analgesic effect of morphine by injection of morphine (10mg/kg, s.c.) twice daily for 7 days. To develop morphine dependence, rats were given escalating doses of morphine. To determine the effect of pregabalin on the development of morphine tolerance and dependence, different doses of pregabalin were administrated before morphine. The tail-flick and naloxone precipitation withdrawal tests were used to evaluate the degree of tolerance and dependence, respectively. Chronic morphine-injected rats showed significant decrements in the percentage maximum possible effect (%MPE) of morphine on the days 5 and 7 (32.5%±3.5, 21.5%±4, respectively) compared to the first day (100%) which showed morphine tolerance. Pregabalin 200mg/kg completely prevented the development of morphine tolerance. In addition, concomitant treatment of morphine with pregabalin attenuated almost all of the naloxone-induced withdrawal signs which include weight loss, jumping, penis licking, teeth chattering, wet dog shakes, rearing, standing, sniffing, face grooming and paw tremor. These data show that pregabaline has a potential anti-tolerant/anti-dependence property against chronic usage of morphine. Therefore, pregabalin appears to be a promising candidate for the treatment of opioid addiction after confirming by future clinical studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghavimi, Hamed; Darvishi, Sara; Ghanbarzadeh, Saeed
2018-01-01
Dependence and tolerance to morphine are major problems which limit its chronic clinical application. This study was aimed to investigate the attenuation effect of Cerebrolysin, a mixture of potent growth factors (BDNF, GDNF, NGF, CNTF etc,), on the development of Morphine-induced dependence and tolerance. Male Wistar rats were selected randomly and divided into different groups (n=8) including: a control group, groups received additive doses of morphine (5-25 mg/kg, ip, at an interval of 12 h until tolerance completion), and groups pretreated with Cerebrolysin (40, 80 and 160 mg/kg, ip, before morphine administration). Development of tolerance was assessed by tail-flick test and the attenuation effect of Cerebrolysin on morphine-induced dependence was evaluated after injection of naloxone (4 mg/kg, ip, 12 h after the morning dose of morphine). Seven distinct withdrawal signs including: jumping, rearing, genital grooming, abdominal writhing, wet dog shake and teeth grinding were recorded for 45 min and total withdrawal score (TWS) was calculated. Results showed that administration of Cerebrolysin could prolonged development (10 and 14 days in administration of 80 mg/kg and 160 mg/kg Cerebrolysin) and completion (4, 10 and 14 days in administration of 40, 80 and 160 mg/kg Cerebrolysin, respectively) of tolerance. Results also indicated that administration of Cerebrolysin (40, 80 and 160 mg/kg) could significantly decreased the TWS value (62±2, 77±4 and 85±6%, respectively). In conclusion, it was found that pretreatment with Cerebrolysin could attenuated morphine-induced tolerance and dependence. © Georg Thieme Verlag KG Stuttgart · New York.
Boronat, M A; Olmos, G; García-Sevilla, J A
1998-09-01
1. Agmatine, the proposed endogenous ligand for imidazoline receptors, has been shown to attenuate tolerance to morphine-induced antinociception (Kolesnikov el al., 1996). The main aim of this study was to assess if idazoxan, an alpha2-adrenoceptor antagonist that also interacts with imidazoline receptors, could also modulate opioid tolerance in rats and to establish which type of imidazoline receptors (or other receptors) are involved. 2. Antinociceptive responses to opioid drugs were determined by the tail-flick test. The acute administration of morphine (10 mg kg(-1), i.p., 30 min) or pentazocine (10 mg kg(-1), i.p., 30 min) resulted in marked increases in tail-flick latencies (TFLs). As expected, the initial antinociceptive response to the opiates was lost after chronic (13 days) treatment (tolerance). When idazoxan (10 mg kg(-1), i.p.) was given chronically 30 min before the opiates it completely prevented morphine tolerance and markedly attenuated tolerance to pentazocine (TFLs increased by 71-143% at day 13). Idazoxan alone did not modify TFLs. 3. The concurrent chronic administration (10 mg kg(-1), i.p., 13 days) of 2-BFI, LSL 60101, and LSL 61122 (valldemossine), selective and potent I2-imidazoline receptor ligands, and morphine (10 mg kg(-1), i.p.), also prevented or attenuated morphine tolerance (TFLs increased by 64 172% at day 13). This attenuation of morphine tolerance was still apparent six days after discontinuation of the chronic treatment with LSL 60101-morphine. The acute treatment with these drugs did not potentiate morphine-induced antinociception. These drugs alone did not modify TFLs. Together, these results indicated the specific involvement of I2-imidazoline receptors in the modulation of opioid tolerance. 4. The concurrent chronic (13 days) administration of RX821002 (10 mg kg(-1), i.p.) and RS-15385-197 (1 mg kg(-1), i.p.), selective alpha2-adrenoceptor antagonists, and morphine (10 mg kg(-1), i.p.), did not attenuate morphine tolerance. Similarly, the concurrent chronic treatment of moxonidine (1 mg kg(-1), i.p.), a mixed I(1)-imidazoline receptor and alpha2-adrenoceptor agonist, and morphine (10 mg kg(-1), i.p.), did not alter the development of tolerance to the opiate. These results discounted the involvement of alpha2-adrenoceptors and I(1)-imidazoline receptors in the modulatory effect of idazoxan on opioid tolerance. 5. Idazoxan and other imidazol(ine) drugs fully inhibited [3H]-(+)-MK-801 binding to N-methyl-D-aspartate (NMDA) receptors in the rat cerebral cortex with low potencies (Ki: 37-190 microM). The potencies of the imidazolines idazoxan, RX821002 and moxonidine were similar, indicating a lack of relationship between potency on NMDA receptors and ability to attenuate opioid tolerance. These results suggested that modulation of opioid tolerance by idazoxan is not related to NMDA receptors blockade. 6. Chronic treatment (13 days) with morphine (10 mg kg(-1), i.p.) was associated with a marked decrease (49%) in immunolabelled neurofilament proteins (NF-L) in the frontal cortex of morphine-tolerant rats, suggesting the induction of neuronal damage. Chronic treatment (13 days) with idazoxan (10 mg kg(-1)) and LSL 60101 (10 mg kg(-1)) did not modify the levels of NF-L proteins in brain. Interestingly, the concurrent chronic treatment (13 days) of idazoxan or LSL 60101 and morphine, completely reversed the morphine-induced decrease in NF-L immunoreactivity, suggesting a neuroprotective role for these drugs. 7. Together, the results indicate that chronic treatment with I2-imidazoline ligands attenuates the development of tolerance to opiate drugs and may induce neuroprotective effects on chronic opiate treatment. Moreover, these findings offer the I2-imidazoline ligands as promising therapeutic coadjuvants in the management of chronic pain with opiate drugs.
Characterisation of tramadol, morphine and tapentadol in an acute pain model in Beagle dogs.
Kögel, Babette; Terlinden, Rolf; Schneider, Johannes
2014-05-01
To evaluate the analgesic potential of the centrally acting analgesics tramadol, morphine and the novel analgesic tapentadol in a pre-clinical research model of acute nociceptive pain, the tail-flick model in dogs. Prospective part-randomized pre-clinical research trial. Fifteen male Beagle dogs (HsdCpb:DOBE), aged 12-15 months. On different occasions separated by at least 1 week, dogs received intravenous (IV) administrations of tramadol (6.81, 10.0 mg kg(-1) ), tapentadol (2.15, 4.64, 6.81 mg kg(-1) ) or morphine (0.464, 0.681, 1.0 mg kg(-1) ) with subsequent measurement of tail withdrawal latencies from a thermal stimulus (for each treatment n = 5). Blood samples were collected immediately after the pharmacodynamic measurements of tramadol to determine pharmacokinetics and the active metabolite O-demethyltramadol (M1). Tapentadol and morphine induced dose-dependent antinociception with ED50-values of 4.3 mg kg(-1) and 0.71 mg kg(-1) , respectively. In contrast, tramadol did not induce antinociception at any dose tested. Measurements of the serum levels of tramadol and the M1 metabolite revealed only marginal amounts of the M1 metabolite, which explains the absence of the antinociceptive effect of tramadol in this experimental pain model in dogs. Different breeds of dogs might not or only poorly respond to treatment with tramadol due to low metabolism of the drug. Tapentadol and morphine which act directly on μ-opioid receptors without the need for metabolic activation are demonstrated to induce potent antinociception in the experimental model used and should also provide a reliable pain management in the clinical situation. The non-opioid mechanisms of tramadol do not provide antinociception in this experimental setting. This contrasts to many clinical situations described in the literature, where tramadol appears to provide useful analgesia in dogs for post-operative pain relief and in more chronically pain states. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Severe pruritus and myoclonus following intrathecal morphine administration in a dog
Iff, Isabelle; Valeskini, Karin; Mosing, Martina
2012-01-01
During epidural needle placement in a 32-kg dog the subarachnoid space was punctured and half the intended dose of lidocaine, bupivacaine, and morphine was injected. After recovery from anesthesia the dog showed signs of severe pruritus of the tail base and limbs and myoclonus of the tail and hind limbs. Methadone, acepromazine, ketamine, buprenorphine, and butorphanol were administered to control myoclonus and pruritus, but were unsuccessful. Diazepam was used to control myoclonus until the effects of morphine abated. PMID:23450863
Zhang, Yan; Tao, Gao-Jian; Hu, Liang; Qu, Jie; Han, Yuan; Zhang, Guangqin; Qian, Yanning; Jiang, Chun-Yi; Liu, Wen-Tao
2017-11-02
Morphine tolerance is a clinical challenge, and its pathogenesis is closely related to the neuroinflammation mediated by Toll-like receptor 4 (TLR4). In Chinese pain clinic, lidocaine is combined with morphine to treat chronic pain. We found that lidocaine sufficiently inhibited neuroinflammation induced by morphine and improved analgesic tolerance on the basis of non-affecting pain threshold. CD-1 mice were utilized for tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 was utilized to investigate the mechanism of lidocaine. Neuroinflammation-related cytokines were measured by western blotting and real-time PCR. The level of suppressor of cytokine signaling 3 (SOCS3) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-related signaling pathway was evaluated by western blotting, real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. Lidocaine potentiated an anti-nociceptive effect of morphine and attenuated the chronic analgesic tolerance. Lidocaine suppressed morphine-induced activation of microglia and downregulated inflammatory cytokines, interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) via upregulating SOCS3 by activating AMPK. Lidocaine enhanced AMPK phosphorylation in a calcium-dependent protein kinase kinase β (CaMKKβ)-dependent manner. Furthermore, lidocaine decreased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear factor-κB (NF-κB) in accordance with the inhibitory effects to TLR4. Lidocaine as a prevalent local anesthetic suppresses morphine tolerance efficiently. AMPK-dependent upregulation of SOCS3 by lidocaine plays a crucial role in the improvement of analgesic tolerance.
Sounvoravong, Sourisak; Nakashima, Mihoko N; Wada, Mitsuhiro; Nakashima, Kenichiro
2004-01-26
The alleviation of neuropathic pain cannot be satisfactorily achieved by treatment with opioids. There is much evidence to indicate that the active site of morphine for inducing effective analgesia is in the raphe magnus nucleus, where serotonin (5-HT, 5-hydroxytryptamine) acts as a primary transmitter. Therefore, we developed the hypothesis that 5-HT released in the raphe magnus nucleus could be related to the effectiveness of morphine in two mice models of neuropathic pain, diabetic (DM)-induced neuropathy and sciatic nerve ligation (SL). Two weeks after a single administration of streptozotocin, or 10 days after sciatic nerve ligation, mice were subcutaneously (s.c.) injected with morphine at 3, 5 and 10 mg/kg. The antinociceptive effect of morphine was estimated in the tail-pinch test; 5-HT content was measured after induction of neuropathic pain by microdialysis followed by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Morphine produced as insufficient antinociceptive effect in SL mice at all doses compared with that in sham-operated mice, while in DM mice, morphine given s.c. at 5 and 10 mg/kg produced antinociceptive effects compared with those in non-diabetic mice, but not at 3 mg/kg. The 5-HT content of dialysates, expressed as AUC for 75 min, in SL and DM mice was less than that in control mice. However, morphine given s.c. at 5 mg/kg did not significantly affect 5-HT levels in both mice models compared to their controls. These results suggest that the decrease in 5-HT levels in the raphe magnus nucleus may be related to attenuation of the analgesic effect of morphine caused by the abnormal pain state found in diabetes and partial peripheral nerve injury.
Charmchi, Elham; Zendehdel, Morteza; Haghparast, Abbas
2016-10-03
Nucleus accumbens (NAc) plays an essential role in morphine sensitization and suppression of pain. Repeated exposure to stress and morphine increases dopamine release in the NAc and may lead to morphine sensitization. This study was carried out in order to investigate the effect of forced swim stress (FSS), as a predominantly physical stressor and morphine on the development of morphine sensitization; focusing on the function of D1/D2-like dopamine receptors in the NAc in morphine sensitization. Eighty-five adult male Wistar rats were bilaterally implanted with cannulae in the NAc and various doses of SCH-23390 (0.125, 0.25, 1 and 4μg/0.5μl/NAc) as a D1 receptor antagonist and sulpiride (0.25, 1 and 4μg/0.5μl/NAc) as a D2 receptor antagonist were microinjected into the NAc, during a sensitization period of 3days, 5min before the induction of FSS. After 10min, animals received subcutaneous morphine injection (1mg/kg). The procedure was followed by 5days free of antagonist, morphine and stress; thereafter on the 9th day, the nociceptive response was evaluated by tail-flick test. The results revealed that the microinjection of sulpiride (at 1 and 4μg/0.5μl/NAc) or SCH-23390 (at 0.25, 1 and 4μg/0.5μl/NAc) prior to FSS and morphine disrupts the antinociceptive effects of morphine and morphine sensitization. Our findings suggest that FSS can potentiate the effect of morphine and causes morphine sensitization which induces antinociception. Copyright © 2016 Elsevier Inc. All rights reserved.
Differential analgesic effects of a mu-opioid peptide, [Dmt(1)]DALDA, and morphine.
Shimoyama, Megumi; Szeto, Hazel H; Schiller, Peter W; Tagaito, Yugo; Tokairin, Hideyuki; Eun, Chong moon; Shimoyama, Naohito
2009-01-01
H-Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA), a highly selective micro-opioid peptide, is potently analgesic after systemic and intrathecal administration but is less potent given intracerebroventricularly. This study was performed to further characterize the analgesic effects of [Dmt(1)]DALDA. We compared the effects of [Dmt(1)]DALDA and morphine after systemic administration in two different acute pain tests, the tail flick test and the paw withdrawal test, and examined how antagonizing the spinal opioid actions would affect their analgesic effects. [Dmt(1)]DALDA was markedly more potent in the tail flick test than in the hot plate test, while the potencies of morphine were similar in the two tests. Intrathecal naloxone completely blocked the effect of systemic [Dmt(1)]DALDA in the tail flick test, while it only partially blocked the effect of morphine. At higher doses that produced analgesia in the hot plate test, the effect of [Dmt(1)]DALDA in this test was only partially blocked by naloxone. Systemic [Dmt(1)]DALDA has a unique analgesic property clearly different from that of morphine and it has a propensity to produce spinal analgesia.
Hogan, Dale; Baker, Alyssa L.; Morón, Jose A.; Carlton, Susan M.
2013-01-01
Patients receiving opioids for pain may experience decreased effectiveness of the drug and even abnormal pain sensitivity – either hyperalgesia and/or allodynia. We hypothesize that peripheral nociceptor hyperexcitability contributes to opioid-induced hyperalgesia and test this using an in vitro mouse glabrous skin-nerve preparation. Mice were injected i.p. with escalating doses of morphine (5, 8, 10, 15 mg/kg) or saline every 12 h for 48 h and sacrificed ~12 h following the last injection. Receptive fields of nociceptors were tested for mechanical, heat, and cold sensitivity. Activity was also measured during an initial 2 min period and during 5 min periods between stimuli. Aberrant activity was common in fibers from morphine-treated mice but rare in salinetreated mice. Resting background activity was elevated in C-fibers from morphinetreated mice. Both C- and Aδ -fibers had afterdischarge in response to mechanical, heat and/or cold stimulation of the skin as well as spontaneous, unevoked activity. Compared to saline, morphine treatment increased the proportion of fibers displaying polymodal rather than mechanical-only responses. A significant increase in Aδ-mechanoreceptive fibers responding to cold accounted for most of this change. In agreement with this, morphine-treated mice showed increased sensitivity in the cold tail flick test. In morphine-treated mice, aberrant activity and hyperexcitability of nociceptors could contribute to increased pain sensitivity. Importantly, this activity is likely driving central sensitization, a phenomenon contributing to abnormal sensory processing and chronic pain. If similar changes occur in human patients, aberrant nociceptor activity is likely to be interpreted as pain, and could contribute to opioid-induced hyperalgesia. PMID:23711478
Systemic synergism between codeine and morphine in three pain models in mice.
Miranda, Hugo F; Noriega, Viviana; Zepeda, Ramiro J; Sierralta, Fernando; Prieto, Juan C
2013-01-01
The combination of two analgesic agents offers advantages in pain treatment. Codeine and morphine analgesia is due to activation of opioid receptor subtypes. This study, performed in mice using isobolographic analysis, evaluated the type of interaction in intraperitoneal (ip) or intrathecal (it) coadministration of codeine and morphine, in three nociceptive behavioral models. Intrathecal morphine resulted to be 7.5 times more potent than ip morphine in the writhing test, 55.6 times in the tail flick test and 1.7 times in phase II of the orofacial formalin test; however, in phase I of the same test ip was 1.2 times more potent than it morphine. Intrathecal codeine resulted being 3.4 times more potent than ip codeine in the writhing test, 1.6 times in the tail flick test, 2.5 times in phase I and 6.7 times in phase II of the orofacial formalin test. Opioid coadministration had a synergistic effect in the acute tonic pain (acetic acid writhing test), acute phasic pain (tail flick test) and inflammatory pain (orofacial formalin test). The interaction index ranged between 0.284 (writhing ip) and 0.440 (orofacial formalin phase II ip). This synergy may relate to the different pathways of pain transmission and to the different intracellular signal transduction. The present findings also raise the possibility of potential clinical advantages in combining opioids in pain management.
Chen, Yukun; Evola, Marianne
2013-01-01
Rationale Memantine is a N-methyl-d-aspartic acid receptor (NMDAR) channel blocker that binds to dizocilpine sites and appears well tolerated during chronic use. Published studies suggest NMDAR antagonists prevent development of tolerance to effects of morphine by blocking NMDAR hyperactivation. Objectives We sought to compare effects of memantine to those of the more frequently studied dizocilpine and to evaluate memantine as a potential adjunct to modify tolerance to mu-opioid receptor agonists. Methods Sprague–Dawley rats were trained to discriminate morphine (3.2 mg/kg) and saline under fixed ratio 15 schedules of food delivery. Potency and maximal stimulus or rate-altering effects of cumulative doses of morphine were examined 30 min after pretreatment with dizocilpine (0.032–0.1 mg/kg) or memantine (5–10 mg/kg) and after chronic treatment with combinations of dizocilpine or memantine and morphine, 10 mg/kg twice daily, for 6 to 14 days. Effects of dizocilpine or memantine on morphine antinociception were examined in a 55 °C water tail-withdrawal assay with drug treatments parallel to those in discrimination studies. Results Acutely, memantine attenuated while dizocilpine potentiated the stimulus and antinociceptive effects of morphine. Neither chronic dizocilpine nor memantine blocked tolerance to the stimulus effects of morphine. In contrast, combined-treatment with dizocilpine (0.1 mg/kg) blocked tolerance to antinociceptive effects of lower (0.1∼3.2 mg/kg) but not higher doses of morphine, whereas memantine did not block tolerance. Conclusions Memantine and dizocilpine interacted differently with morphine, possibly due to different NMDAR binding profiles. The lack of memantine-induced changes in morphine tolerance suggests memantine may not be a useful adjunct in chronic pain management. PMID:22864944
Boros, Melinda; Benkó, Rita; Bölcskei, Kata; Szolcsányi, János; Barthó, Loránd; Pethő, Gábor
2013-12-01
The study aimed at validating an increasing-temperature water bath suitable for determining the noxious heat threshold for use in mice. The noxious heat threshold was determined by immersing the tail of the gently held awake mouse into a water container whose temperature was near-linearly increased at a rate of 24°C/min. until the animal withdrew its tail, that is, heating attained the noxious threshold. The effects of standard analgesic, neuroleptic and anxiolytic drugs were investigated in a parallel way on both the noxious heat threshold and the psychomotor activity assessed by the open field test. Morphine, diclofenac and metamizol (dipyrone) elevated the heat threshold of mice with minimum effective doses of 6, 30 and 1000 mg/kg i.p., respectively. These doses of morphine and diclofenac failed to induce any remarkable effect on psychomotor activity in the open field test while that of metamizol exerted a profound inhibition. The anxiolytic diazepam and the neuroleptic droperidol at doses evoking a mild and moderate, respectively, psychomotor inhibition failed to alter the heat threshold. Combination of a subliminal dose of morphine (regarding both antinociceptive and psychomotor inhibitory action) with diclofenac, metamizol, diazepam or droperidol at doses also subliminal regarding the thermal antinociceptive effect elevated the noxious heat threshold without major additional effects in the open field test. It is concluded that the increasing-temperature water bath is suitable for studying the thermal antinociceptive effects of morphine and diclofenac as well as the morphine-sparing action of diclofenac, metamizol, droperidol and diazepam. Behavioural testing is recommended when testing analgesics. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
McMillan, Douglas M; Tyndale, Rachel F
2017-12-01
Repeated opioid administration produces analgesic tolerance, which may lead to dose escalation. Brain CYP2D metabolizes codeine to morphine, a bioactivation step required for codeine analgesia. Higher brain, but not liver, CYP2D is found in smokers and nicotine induces rat brain, but not liver, CYP2D expression and activity. Nicotine induction of rat brain CYP2D increases acute codeine conversion to morphine, and analgesia, however the role of brain CYP2D on the effects of repeated codeine exposure and tolerance is unknown. Rats were pretreated with nicotine (brain CYP2D inducer; 1mg/kg subcutaneously) or vehicle (saline; 1ml/kg subcutaneously). Codeine (40-60mg/kg oral-gavage) or morphine (20-30mg/kg oral-gavage) was administered daily and analgesia was assessed daily using the tail-flick reflex assay. Nicotine (versus saline) pretreatment increased acute codeine analgesia (1.32-fold change in AUC 0-60 min ; p<0.05) and the rate of loss of peak analgesia (11.42%/day versus 4.20%; p<0.006) across the first four days of codeine administration (time to negligible analgesia). Inducing brain CYP2D with nicotine did not alter acute morphine analgesia (1.03-fold; p>0.8), or the rate of morphine tolerance (8.1%/day versus 7.6%; p>0.9). The rate of both codeine and morphine tolerance (loss in peak analgesia from day 1 to day 4) correlated with initial analgesic response on day 1 (R=0.97, p<001). Increasing brain CYP2D altered initial analgesia and subsequent rate of tolerance. Variation in an individual's initial response to analgesic (e.g. high initial dose, smoking) may affect the rate of tolerance, and thereby the risk for dose escalation and/or opioid dependence. Copyright © 2017 Elsevier Inc. All rights reserved.
Ali, Noraisah Akbar
2014-01-01
The present study aims to investigate the analgesic activity of the methanol extract of the galls of Quercus infectoria in rats using hot plate and tail-flick methods. The extract was administered intraperitoneally at a dose of 20 mg/kg while morphine sulfate and sodium salicylate (10 mg/kg) served as standards. The methanol extract exhibited significant analgesic activity in the tail-flick model (P < 0.05) by increasing the reaction time of the rats to 8.0 sec at 30 min after treatment in comparison to control (4.4 sec). Morphine sulfate produced a reaction time of 11.9 sec in the same test. At the peak of activity (30 min), the extract produced maximum possible analgesia (MPA) of 34.2%, whilst morphine sulfate achieved a peak MPA of 70.9%. No analgesic effects have been observed using sodium salicylate in the tail-flick model. In the same model, the extract and sodium salicylate demonstrated comparable reaction times. Tail-flick is a better method to evaluate analgesic activity as no significant results were observed for all treatments using hot plate with the exception of morphine sulfate, which showed significant results only at 45 and 60 min after treatment. In conclusion, the methanol extract of the galls of Quercus infectoria displayed analgesic activity. PMID:25254062
Weed, Michael R; Hienz, Robert D
2006-07-01
Previous studies of the effects of opiates on motor activity and body temperature in nonhuman primates have been limited in scope and typically only conducted with restrained animals. The present study used radio-telemetry devices to continuously measure activity and temperature in unrestrained pig-tailed macaques for 24 h following morphine administration. Two dose-response functions (0.56 to 5.6 mg/kg, i.m.) were determined, one with morphine administered at 9 a.m. and one with morphine administrated at 3 p.m. Under both the 9 a.m. or 3 p.m. administration schedules, body temperature and activity were increased acutely. Activity was also reduced the following morning after morphine administered at either time. In other regards, morphine's effects on both temperature and activity differed between 9 a.m. and 3 p.m. injection, including periods of decreased activity immediately after the acute increases after 9 a.m. but not 3 p.m. administration. Surprisingly, motor activity also increased 9-12 h post-injection following morphine administered at 9 a.m., but not at 3 p.m. These results clearly show an interaction between timing of morphine administration and effects on temperature and activity. These results also underscore the fact that single injections of drugs may have multiple and delayed effects on circadian rhythms in macaques.
An Experimental Itch Model in Monkeys
Ko, M. C. Holden; Naughton, Norah N.
2007-01-01
Background The most common side effect of spinal opioid administration is pruritus, which has been treated with a variety of agents with variable success. Currently, there are few animal models developed to study this side effect. The aim of this study was to establish a nonhuman primate model to pharmacologically characterize the effects of intrathecal administration of morphine. Methods Eight adult rhesus monkeys were used. Scratching responses were videotaped and counted by observers who were blinded to experimental conditions. Antinociception was measured by a warm-water (50°C) tail-withdrawal assay. The dose-response of intrathecal morphine (1-320 μg) for both scratching and antinociception in all subjects was established. An opioid antagonist, nalmefene, was administered either intravenously or subcutaneously to assess its efficacy against intrathecal morphine. Results Intrathecal morphine (1-32 μg) increased scratching in a dose-dependent manner. Higher doses of intrathecal morphine (10-100 μg) produced thermal antinociception in a dose-dependent manner. On the other hand, nalmefene (10-32 μg/kg intravenously) attenuated maximum scratching responses among subjects. Pretreatment with nalmefene (32μg/kg subcutaneously) produced approximately 10-fold rightward shifts of intrathecal morphine dose-response curves for both behavioral effects. Conclusions These data indicate that intrathecal morphine-induced scratching and antinociception are mediated by opioid receptors. The magnitude of nalmefene antagonism of intrathecal morphine is consistent with μ opioid receptor mediation. This experimental itch model is useful for evaluating different agents that may suppress scratching without interfering with antinociception. It may also facilitate the clarification of mechanisms underlying these phenomena. PMID:10719958
Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.
Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F
2016-01-01
Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Jokinen, Viljami; Lilius, Tuomas; Laitila, Jouko; Niemi, Mikko; Kambur, Oleg; Kalso, Eija; Rauhala, Pekka
2017-01-01
Spironolactone, eplerenone, chlorothiazide and furosemide are diuretics that have been suggested to have antinociceptive properties, for example via mineralocorticoid receptor antagonism. In co-administration, diuretics might enhance the antinociceptive effect of opioids via pharmacodynamic and pharmacokinetic mechanisms. Effects of spironolactone (100 mg/kg, i.p.), eplerenone (100 mg/kg, i.p.), chlorothiazide (50 mg/kg, i.p.) and furosemide (100 mg/kg, i.p.) were studied on acute oxycodone (0.75 mg/kg, s.c.)- and morphine (3 mg/kg, s.c.)-induced antinociception using tail-flick and hot plate tests in male Sprague Dawley rats. The diuretics were administered 30 min. before the opioids, and behavioural tests were performed 30 and 90 min. after the opioids. Concentrations of oxycodone, morphine and their major metabolites in plasma and brain were quantified by mass spectrometry. In the hot plate test at 30 and 90 min., spironolactone significantly enhanced the antinociceptive effect (% of maximum possible effect) of oxycodone from 10% to 78% and from 0% to 50%, respectively, and that of morphine from 12% to 73% and from 4% to 83%, respectively. The brain oxycodone and morphine concentrations were significantly increased at 30 min. (oxycodone, 46%) and at 90 min. (morphine, 190%). We did not detect any independent antinociceptive effects with the diuretics. Eplerenone and chlorothiazide did not enhance the antinociceptive effect of either opioid. The results suggest that spironolactone enhances the antinociceptive effect of both oxycodone and morphine by increasing their concentrations in the central nervous system. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.
2008-01-01
Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994
Fernández, B; Alberti, I; Kitchen, I; Paz Viveros, M
1999-01-29
To address the existence of possible functional interactions between delta- and mu- receptors in relation to the affective component of pain, we have studied the effects of functional blockade of delta-receptors by a chronic treatment with naltrindole (1 mg/kg, 8 consecutive days) on antinociceptive responses to morphine (2 and 5 mg/kg) in the tail electric stimulation test, in adult male rats. The thresholds for the motor response (tail withdrawal), vocalization during stimulus and vocalization afterdischarge were assessed. These responses are considered to be integrated at spinal, medulla oblongata and diencephalon-rhinencephalon levels, respectively. The results show that the vocalization during stimulus and the vocalization afterdischarge were significantly affected by morphine in a dose dependent manner, the latter response being the most sensitive to the effects of the mu-opioid agonist. However, no significant effect was observed on motor responses at the doses used in this study. Chronic naltrindole treatment did not modify the inhibitory effect of morphine on the vocalization responses. Since the vocalization afterdischarge is related to the affective component of pain, the data suggest that the delta-opioid receptor is not involved in the supraspinal mechanisms at which these responses are organized and that there is not a mu-delta interaction in the modulation of the affective responses to noxious electrical stimulation.
The benzomorphan-based LP1 ligand is a suitable MOR/DOR agonist for chronic pain treatment.
Pasquinucci, Lorella; Parenti, Carmela; Turnaturi, Rita; Aricò, Giuseppina; Marrazzo, Agostino; Prezzavento, Orazio; Ronsisvalle, Simone; Georgoussi, Zafiroula; Fourla, Danai-Dionysia; Scoto, Giovanna M; Ronsisvalle, Giuseppe
2012-01-02
Powerful analgesics relieve pain primarily through activating mu opioid receptor (MOR), but the long-term use of MOR agonists, such as morphine, is limited by the rapid development of tolerance. Recently, it has been observed that simultaneous stimulation of the delta opioid receptor (DOR) and MOR limits the incidence of tolerance induced by MOR agonists. 3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2H)-yl]-N-phenylpropanamide (LP1) is a centrally acting agent with antinociceptive activity comparable to morphine and is able to bind and activate MOR and DOR. The aim of this work was to evaluate and compare the induction of tolerance to antinociceptive effects from treatment with LP1 and morphine. Here, we evaluated the pharmacological effects of LP1 administered at a dose of 4 mg/kg subcutaneously (s.c.) twice per day for 9 days to male Sprague-Dawley rats. In addition, the LP1 mechanism of action was assessed by measurement of LP1-induced [(35)S]GTPγS binding to the MOR and DOR. Data obtained from the radiant heat tail flick test showed that LP1 maintained its antinociceptive profile until the ninth day, while tolerance to morphine (10mg/kg s.c. twice per day) was observed on day 3. Moreover, LP1 significantly enhanced [(35)S]GTPγS binding in the membranes of HEK293 cells expressing either the MOR or the DOR. LP1 is a novel analgesic agent for chronic pain treatment, and its low tolerance-inducing capability may be correlated with its ability to bind both the MOR and DOR. Copyright © 2011 Elsevier Inc. All rights reserved.
Jacobs, W J; Zellner, D A; LoLordo, V M; Riley, A L
1981-06-01
In the following experiment, multiple injections of morphine sulfate following the acquisition of a morphine-induced taste aversion had no effect on the retention of the previously acquired aversion. Post-conditioning injections of morphine resulted in the development of physical dependence to morphine and led to a decrement in the ability of morphine to induce a subsequent aversion to a second novel taste. This failure of post-conditioning exposures to morphine to affect a previously acquired morphine-induced taste aversion even though tolerance to morphine had occurred was discussed in the context of Rescorla's event-memory model of conditioning.
Non-Straub type actin from molluscan catch muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelud'ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.
We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for themore » extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.« less
Behavioural changes induced by N,N-dimethyl-tryptamine in rodents.
Jenner, P.; Marsden, C. D.; Thanki, C. M.
1980-01-01
1 N,N-Dimethyltryptamine (DMT) in pargyline pretreated rodents induced a dose-dependent behavioural syndrome consisting of hyperactivity, prostration and hindlimb abduction, mild tremor, Straub tail, retropulsion and jerking. 2 In rats pretreated with pargyline, the behavioural syndrome induced by DMT differed from that induced by L-tryptophan or quipazine, in the lack of forepaw treading and head-weaving and in the presence of only mild tremor. 3 The hyperactivity component of the DMT-induced behavioural syndrome in pargyline-pretreated mice was potentiated by cyproheptadine, methergoline, and mianserin, inhibited by cinanserin, haloperidol, pimozide, methiothepin and propranolol, and not affected by 501C67-sulphate and methysergide. 4 The maximal behavioural changes induced by DMT in rats, other than hyperactivity, were unaffected by pretreatment with cyproheptadine, methysergide, and cinanserin. However, propranolol reduced the intensity of all behavioural effects apart from body jerking, and methergoline decreased the duration of prostration. Phenoxybenzamine and haloperidol, in contrast, enhanced prostration. 5 DMT plus pargyline did not induce circling behaviour in mice with a unilateral 6-hydroxy-dopamine lesion of the nigro-striatal pathway. 6 The DMT-induced behavioural syndrome appears to consist of two components, (a) hyperactivity and (b) other behavioural changes. They differ in their response to drugs affecting brain monoamines. The hyperactivity component may be expressed via dopamine mechanisms, but the other behavioural changes are not. The two behaviours do not respond consistently to drugs believed to alter brain 5-hydroxytryptamine function. PMID:6769527
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal
Kaufling, Jennifer
2015-01-01
Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA–VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA–VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. SIGNIFICANCE STATEMENT Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal. PMID:26180204
Katyal, Jatinder; Kumar, Hemant; Joshi, Dinesh; Gupta, Yogendra Kumar
2017-04-03
Development of tolerance to analgesic effect, on chronic administration of morphine, limits its clinical usefulness in pain management. S-adenosyl methionine (SAM) used for arthritis and approved as a supplement in many countries including United States was evaluated for reducing morphine tolerance. Male 'Wistar' rats were used. The analgesic activity was determined using tail flick analgesiometer (Columbus Instruments, USA). Rats given morphine (7mg/kg), intraperitoneally (i.p.), once daily for 5days developed tolerance to analgesic effect. To evaluate the effect of SAM on morphine tolerance, SAM 800mg/kg was administered orally (p.o.), 45min prior to each dose of morphine. The analgesic activity of SAM and opioidergic component in its activity was also evaluated. Co-administration of morphine and SAM reversed morphine tolerance. SAM exhibited analgesic effect after repeated administration which was reversed by naloxone administration. Since safety of SAM on chronic use is documented it can be a good option in morphine tolerance. Role in drug addiction and withdrawal should also be evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effects of Management Support on the Successful Implementation of Group Decision Support Systems
1990-05-23
also provides for decisions which must be made by more than one person [Straub and Beauclair , 1987, pp 1]. 38 With a broad definition of GDSS any tool...Figure 5 represents the definition of GDSS categories used by this study [Straub and Beauclair , 1987]. Alias and DeSanctis & GDSS Name Gallupe type...DeSanctis and Gallupe, 1987]. Straub and Beauclair combined types 2 and 4 into one category. 39 Type 1 is a Decision Room, consisting of a face-to
1989-09-01
Project WP 88-03 GDSS Technology in Practice: A Study D. Straub R. Beauclair WP 88-04 Interaction Analysis in GDSS Research: I. Zigurs Description of an...03 GDSS Technology in Practice: A Study (D. Straub and R. Beauclair ) 4. WP 88-04 Interaction Analysis in GDSS Research: Description of an Experience...Implementing an Information Architecture," Data Base, forthcoming. 25 Straub, D. W. and R. A. Beauclair . "A New Dimension to Decision Support
Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan
2014-01-01
A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.
Li, Xiang; Huang, Mengbing; Yang, Lihua; Guo, Ningning; Yang, Xiaoyan; Zhang, Zhimin; Bai, Ming; Ge, Lu; Zhou, Xiaoshuang; Li, Ye; Bai, Jie
2018-01-01
Morphine is one kind of opioid, which is currently the most effective widely utilized pain relieving pharmaceutical. Long-term administration of morphine leads to dependence and addiction. Thioredoxin-1 (Trx-1) is an important redox regulating protein and works as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, whether overexpression of Trx-1 can block morphine-induced conditioned place preference (CPP) in mice is still unknown. In this study, we first examined whether overexpression of Trx-1 affects the CPP after morphine training and further examined the dopamine (DA) and γ-aminobutyric acid (GABA) systems involved in rewarding effects. Our results showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic (TG) mice. Trx-1 expression was induced by morphine in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in wild-type (WT) mice, which was not induced in Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH) and D1 were induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA level and expression of GABA B R were decreased by morphine, which were restored in Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine through regulating the expressions of D1, TH, and GABA B R in the VTA and NAc.
Effects of scopolamine on morphine-induced conditioned place preference in mice.
Tan, Hua; Liu, Ning; Wilson, Fraser A W; Ma, Yuanye
2007-09-01
It is well known that the cholinergic system plays a crucial role in learning and memory. Psychopharmacological studies in humans and animals have shown that a systemic cholinergic blockade may induce deficits in learning and memory. Accumulated studies have indicated that learning and memory play an important role in drug addition. In the present study, in order to get a further understanding about the functions of the cholinergic system in drug-related learning and memory, we examined the effects of scopolamine (0.5, 1.0 and 2.0 mg/kg) on morphine-induced conditioned place preference (CPP). Two kinds of morphine exposure durations (4 days and 12 days) were used. The main finding was that all doses of scopolamine enhanced the extinction of morphine-induced CPP in mice treated with morphine for 12 days. However, in mice treated with morphine for 4 days, all doses of scopolamine did not inhibit morphine-induced CPP. The highest dose (2.0 mg/kg) of scopolamine even significantly delayed the extinction of morphine-induced CPP. Our results suggest that the effects of a systemic cholinergic blockade on morphine-induced CPP depend on the morphine exposure time.
2004-09-01
depression or the risk of overdose is particularly appealing. Further research needs to be completed in order to quantify the effects of the... fentanyl and other morphine-like analgesics on the warm water-induced tail- withdrawal reflex in rats. Jannsen, P.A.J.; Niemegeers, C.J.E.; Dorg, J.G.H...the delta opioid agonist BW373U86 and the mu opioid agonist fentanyl in mice. O’Neill, S.J.; Collins, M.A.; Pettit, H.O.; McNutt, R.W.; Chang, K.J. J
Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi
2017-03-06
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi
2017-01-01
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029
Ebrahimi, Loghman; Saboory, Ehsan; Roshan-Milani, Shiva; Hashemi, Paria
2014-09-01
Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. Many reports have shown an interaction between morphine- and stress-induced behavioral changes in adult rats. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazole (PTZ)-induced epileptic behaviors was investigated in rat offspring to address effect of the interaction between morphine and stress. Pregnant rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, the rats were placed in 25 °C water on 17-19 days of pregnancy. In the morphine/saline group, the rats received morphine/saline on the same days. In the morphine/saline-stressed group, they were exposed to stress and received morphine/saline simultaneously. On postnatal day 15 (P15), blood samples were collected to determine corticosterone (COS) level. On P15 and P25, PTZ was injected to the rest of pups to induce seizure. Then, epileptic behaviors of each rat were individually observed. Latency of tonic-colonic seizures decreased in control-morphine and stressed-saline groups while increasing in stressed-morphine rats compared to control-saline group on P15. Duration of tonic-colonic seizures significantly increased in control-morphine and stressed-saline rats compared to stressed-morphine and control-saline rats on P15, but not P25. COS levels increased in stressed-saline group but decreased in control-morphine group compared to control-saline rats. Body weight was significantly higher in morphine groups than saline treated rats. Prenatal exposure to forced-swim stress potentiated PTZ-induced seizure in the offspring rats. Co-administration of morphine attenuated effect of stress on body weight, COS levels, and epileptic behaviors. © 2014 Wiley Periodicals, Inc.
Alijanpour, S; Tirgar, F; Zarrindast, M-R
2016-01-15
The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats.
Farahmandfar, Maryam; Naghdi, Nasser; Karimian, Seyed Morteza; Kadivar, Mehdi; Zarrindast, Mohammad-Reza
2012-05-15
The present study investigated the effect of morphine sensitization on the impairment of spatial memory retrieval induced by acute morphine in adult male rats. Spatial memory was assessed by 2-day Morris water maze task which included training and test day. On the training day, rats were trained by a single training session of 8 trials. On the test day, a probe trial consisting of 60s free swim period without a platform and the visible test were administered. Morphine sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days without drug treatment before training. The results indicated that acute administration of morphine (7.5mg/kg, s.c.) before testing impaired spatial memory on the test day. Pre-test morphine-induced amnesia decreased in morphine-sensitized (15 and 20mg/kg, s.c.) rats. Improvement in spatial memory retrieval in morphine-sensitized rats was inhibited by once daily administration of naloxone (1 and 2mg/kg, s.c.) 30 min prior to the injection of morphine for three days. The results suggest that morphine sensitization reverses the impairment of spatial memory retrieval induced by acute morphine and it is implied that mu-opioid receptors may play an important role in this effect. Copyright © 2012 Elsevier B.V. All rights reserved.
Foote, F; Gale, K
1983-11-25
In a naloxone-reversible, dose-dependent manner, morphine (10-50 mg/kg i.p.) protected against seizures induced by maximal electroshock and increased the incidence and severity of seizures induced by bicuculline, in rats. Morphine also potentiated seizures induced by isoniazid and by picrotoxin. Thus, opiate activity influences the expression of seizures in contrasting ways depending upon the mode of seizure induction. Since morphine consistently potentiated seizures induced by interference with GABA transmission, it appears that GABAergic systems may be of particular significance for the elucidation of the varied effects of morphine on seizure susceptibility.
Schwarz, Jaclyn M; Hutchinson, Mark R; Bilbo, Staci D
2011-12-07
A critical component of drug addiction research involves identifying novel biological mechanisms and environmental predictors of risk or resilience to drug addiction and associated relapse. Increasing evidence suggests microglia and astrocytes can profoundly affect the physiological and addictive properties of drugs of abuse, including morphine. We report that glia within the rat nucleus accumbens (NAcc) respond to morphine with an increase in cytokine/chemokine expression, which predicts future reinstatement of morphine conditioned place preference (CPP) following a priming dose of morphine. This glial response to morphine is influenced by early-life experience. A neonatal handling paradigm that increases the quantity and quality of maternal care significantly increases baseline expression of the anti-inflammatory cytokine IL-10 within the NAcc, attenuates morphine-induced glial activation, and prevents the subsequent reinstatement of morphine CPP in adulthood. IL-10 expression within the NAcc and reinstatement of CPP are negatively correlated, suggesting a protective role for this specific cytokine against morphine-induced glial reactivity and drug-induced reinstatement of morphine CPP. Neonatal handling programs the expression of IL-10 within the NAcc early in development, and this is maintained into adulthood via decreased methylation of the IL-10 gene specifically within microglia. The effect of neonatal handling is mimicked by pharmacological modulation of glia in adulthood with ibudilast, which increases IL-10 expression, inhibits morphine-induced glial activation within the NAcc, and prevents reinstatement of morphine CPP. Taken together, we have identified a novel gene × early-life environment interaction on morphine-induced glial activation and a specific role for glial activation in drug-induced reinstatement of drug-seeking behavior.
Schwarz, Jaclyn M.; Hutchinson, Mark R.; Bilbo, Staci D.
2012-01-01
A critical component of drug addiction research involves identifying novel biological mechanisms and environmental predictors of risk or resilience to drug addiction and associated relapse. Increasing evidence suggests microglia and astrocytes can profoundly affect the physiological and addictive properties of drugs of abuse, including morphine. We report that glia within the rat Nucleus Accumbens (NAcc) respond to morphine with an increase in cytokine/chemokine expression, which predicts future reinstatement of morphine conditioned place preference (CPP) following a priming dose of morphine. This glial response to morphine is influenced by early-life experience. A neonatal handling paradigm that increases the quantity and quality of maternal care significantly increases baseline expression of the anti-inflammatory cytokine IL-10 within the NAcc, attenuates morphine-induced glial activation, and prevents the subsequent reinstatement of morphine CPP in adulthood. IL-10 expression within the NAcc and reinstatement of CPP are negatively correlated, suggesting a protective role for this specific cytokine against morphine-induced glial reactivity and drug-induced reinstatement of morphine CPP. Neonatal handling programs the expression of IL-10 within the NAcc early in development, and this is maintained into adulthood via decreased methylation of the IL-10 gene specifically within microglia. The effect of neonatal handling is mimicked by pharmacological modulation of glia in adulthood with Ibudilast, which increases IL-10 expression, inhibits morphine-induced glial activation within the NAcc, and prevents reinstatement of morphine CPP. Taken together, we have identified a novel gene X early-life environment interaction on morphine-induced glial activation, and a specific role for glial activation in drug-induced reinstatement of drug-seeking behavior. PMID:22159099
Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang
2017-04-01
Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis.
Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang
2017-01-01
Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis. PMID:28413513
Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein
2018-03-06
This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal.
Kaufling, Jennifer; Aston-Jones, Gary
2015-07-15
Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA-VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA-VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal. Copyright © 2015 the authors 0270-6474/15/3510290-14$15.00/0.
Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan
2012-07-10
Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.
Ajoene restored behavioral patterns and liver glutathione level in morphine treated C57BL6 mice.
Yun, Jaesuk; Oliynyk, Sergiy; Lee, Yeonju; Kim, Jieun; Yun, Kyunghwa; Jeon, Raok; Ryu, Jae-Ha; Oh, Seikwan
2017-01-01
Oxidative stress exacerbates drug dependence induced by administration of opiate analgesics such as morphine-induced tolerance and physical dependence associated with the reduction in hepatic glutathione (GSH) level. Ajoene obtained from garlic (Allium sativum L.) has been reported for anti-tumorigenic, anti-oxidative and neuroprotective properties, however, little is known about its effect on morphine-induced dependence. Therefore, this study aimed at the effect of ajoene on physical and/or psychological dependence and liver GSH content in morphine-treated mice. Conditioned place preference (CPP) test and measurement of morphine withdrawal syndrome were performed in C57BL6 mice for behavioral experiments. Thereafter, mice were sacrificed for measurement of serum and liver GSH levels. Ajoene restored CPP and naloxone-precipitated jumping behavior in mice exposed to morphine. Moreover, the reduced level of liver GSH content in morphine treated mice was back to normal after ajoene administration. Taken together, ajoene improved behavioral patterns in mice exposed to morphine suggesting its potential therapeutic benefit against morphine-induced dependence.
Gawel, Kinga; Labuz, Krzysztof; Jenda, Malgorzata; Silberring, Jerzy; Kotlinska, Jolanta H
2014-07-15
The influence of systemic administration of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference (CPP) was examined in rats. Additionally, this study aimed to compare the effects of donepezil, which selectively inhibits acetylcholinesterase, and rivastigmine, which inhibits both acetylcholinesterase and butyrylcholinesterase on morphine reward. Morphine-induced CPP (unbiased method) was induced by four injections of morphine (5 mg/kg, i.p.). Donepezil (0.5, 1, and 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5, and 1 mg/kg, i.p.) were given 20 min before morphine during conditioning phase and 20 min before the expression or reinstatement of morphine-induced CPP. Our results indicated that both inhibitors of cholinesterase attenuated the acquisition and expression of morphine CPP. The results were more significant after rivastigmine due to a broader inhibitory spectrum of this drug. Moreover, donepezil (1 mg/kg) and rivastigmine (0.5 mg/kg) attenuated the morphine CPP reinstated by priming injection of 5mg/kg morphine. These properties of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist but not scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. All effects of cholinesterase inhibitors were observed at the doses that had no effects on locomotor activity of animals. Our results suggest beneficial role of cholinesterase inhibitors in reduction of morphine reward and morphine-induced seeking behavior. Finally, we found that the efficacy of cholinesterase inhibitors in attenuating reinstatement of morphine CPP provoked by priming injection may be due to stimulation of nicotinic acetylcholine receptors. Copyright © 2014 Elsevier B.V. All rights reserved.
Hammami-Abrand Abadi, Arezoo; Miladi-Gorji, Hossein
2017-02-01
This study was designed to examine the effect of environmental enrichment during morphine dependence and withdrawal on morphine-induced behavioral and spatial cognitive disorders in morphine-withdrawn rats. Adult male Wistar rats (190 ± 20 g) were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days. Rats were reared in SE or EE during the development of dependence on morphine and withdrawal. Then, rats were tested for spatial learning and memory (the water maze), spontaneous withdrawal signs, and grooming behavior. We found that the EE blocked chronic morphine-induced partial impairments of spatial memory retention. Moreover, the EE diminished the occurrence of spontaneous morphine withdrawal signs as mild and the self-grooming behavior. Our findings showed that EE ameliorates chronic morphine-induced partial deficits of spatial cognition, obsessive-like behavior, and the overall severity of the morphine withdrawal. Thus, environmental enrichment may be a potential therapeutic strategy for spatial memory and behavioral deficits in morphine-dependent individuals.
Withey, Sarah L.; Hill, Rob; Lyndon, Abigail; Dewey, William L.; Kelly, Eamonn
2017-01-01
Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine. PMID:28130265
Sadeghzadeh, Fatemeh; Babapour, Vahab; Haghparast, Abbas
2017-04-01
The high rate of relapse to drug use is one of the main problems in the treatment of addiction. Stress plays the essential role in drug abuse and relapse; nevertheless, little is known about the mechanisms underlying stress and relapse. Accordingly, the effects of intra-accumbal administration of Sulpiride, as a dopamine D2-like receptor antagonist, on an ineffective morphine dose + food deprivation(FD)- and morphine priming-induced reinstatement of conditioned place preference (CPP). About 104 adult male albino Wistar rats weighing 200-280 g were bilaterally implanted by cannula into the nucleus accumbens (NAc). Subcutaneous (sc) injection of morphine (5 mg kg -1 ) was used daily during a 3-day conditioning phase. After a 24-hr "off" period following achievement of extinction criterion, rats were tested for FD- and priming-induced reinstatement of morphine CPP by an ineffective (0.5 mg kg -1 , sc) and priming (1 mg kg -1 , sc) dose of morphine, respectively. In the next experiments, animals received different doses of intra-accumbal Sulpiride (0.25, 1, and 4 µg/0.5 µL saline) bilaterally and were subsequently tested for morphine reinstatement. Our findings indicated that the 24-hr FD facilitated reinstatement of morphine CPP. Furthermore, the D2-like receptor antagonist attenuated the ineffective morphine dose+ FD- and priming-induced reinstatement of morphine CPP dose-dependently. Also, contribution of D2-like receptors in mediation of the ineffective morphine dose+ FD-induced reinstatement of CPP was greater than morphine priming-induced reinstatement of CPP. The role of dopaminergic system in morphine reinstatement through a neural pathway in the NAc provides the evidence that D2-like receptor antagonist can be useful therapeutic targets for reinstatement of morphine CPP. © 2016 Wiley Periodicals, Inc.
Role of the NO-cGMP pathway in the systemic antinociceptive effect of clonidine in rats and mice.
de Moura, Roberto Soares; Rios, Anna Amélia S; Santos, Edmar J A; Nascimento, Ana Beatriz Amorim; de Castro Resende, Angela; Neto, Miguel Lemos; de Oliveira, Luiz Fernando; Mendes Ribeiro, Antonio Cláudio; Tano, Tania
2004-06-01
The mechanism underlying the analgesic effect of clonidine, an alpha(2)-adrenoceptor agonist, remains uncertain. Activation of alpha(2)-adrenoceptor induces the release of nitric oxide (NO) from endothelial cells, which has led us to test the hypothesis that the observed antinociceptive effect induced by the systemic administration of clonidine depends on the NO-cGMP pathway. The possible involvement of an opioid link in the antinociceptive effect of clonidine was also evaluated. The antinociceptive effect induced by systemic administration (intravenous or intraperitoneal) of clonidine was evaluated using the rat paw formalin, mice tail-flick and writhing tests. Clonidine (3-120 microg/kg) induces a dose-dependent antinociceptive effect in the formalin, tail-flick and writhing tests. The antinociceptive effect of clonidine in a dose that had no sedative effect assessed by rota rod test, was significantly reduced by NO-synthase and guanylyl cyclase inhibition. The antinociceptive effect of morphine, but not clonidine, was inhibited by naloxone. Our current results suggest that the antinociceptive effect of systemic clonidine does not involve the opioid receptor and is modulated by the NO-cGMP pathway.
Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S
2013-09-01
Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Anand, Rashmi; Gulati, Kavita; Ray, Arunabha
2012-02-15
The present study evaluated the effects of the opioid agonist, morphine on stress induced anxiogenesis and the possible involvement of nitric oxide (NO) in such effects in rats. Acute restraint stress consistently induced an anxiety-like response in the elevated plus maze test, i.e. reduced number of open arm entries and time spent in the open arms as compared to controls. Pretreatment with morphine (1 and 5mg/kg), attenuated the restraint stress induced anxiogenic response in a dose related manner. Restraint stress induced neurobehavioral suppression was associated with reductions in brain NO oxidation products (NOx) levels, which were also reversed with morphine. Interaction studies showed that sub-effective doses of morphine and l-arginine (a NO precursor) had synergistic effects on stress induced elevated plus maze activity and brain NOx, whereas, l-NAME (a NO synthase inhibitor) neutralized these effects of morphine. Repeated restraint stress (×5) induced adaptative changes as evidenced by normalization of behavioral suppression and elevations in brain NOx, as compared to acute stress. Pretreatment with morphine in combination with repeated stress (×5) showed potentiating effects in the induction of behavioral adaptation in the elevated plus maze and elevations in brain NOx, as compared to repeated stress alone. Further, l-NAME, when administered prior to morphine, blocked this effect of morphine on stress adaptation. These results suggest differential morphine-NO interactions during acute and repeated restraint stress. Copyright © 2011 Elsevier B.V. All rights reserved.
2012-01-01
Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse. PMID:22559224
Yu, Ling; Xue, Fu-Shan; Li, Cheng-Wen; Xu, Ya-Chao; Zhang, Guo-Hua; Liu, Kun-Peng; Liu, Yi; Sun, Hai-Tao
2006-12-25
The effect of systemic administration of nonspecific nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine methyl ester, L-NAME) on morphine analgesia tolerance was observed by using the thermal tail-flick method, and the roles of NO and NMDA receptors in morphine analgesia tolerance were evaluated on the basis of the expressions of nNOS mRNA, NR1A mRNA and NR2A mRNA in spinal cord and midbrain. Thirty-six healthy adult Sprague-Dawley rats were randomly divided into six groups (6 rats per group). Group 1, control group, received a subcutaneous (s.c.) injection of normal saline (1 ml); Groups 2, 3, 4, 5 and 6, the treatment groups received s.c. injection of L-NAME 10 mg/kg, L-NAME 20 mg/kg, morphine 10 mg/kg, L-NAME 10 mg/kg + morphine 10 mg/kg, and L-NAME 20 mg/kg + morphine 10 mg/kg, respectively. All rats received s.c. injections twice per day (8:00 and 17:00). The tail-flick latency (TFL) was measured in each rat before the injection as a baseline value, and then TFL at 50 min after the 1st injection every day as the measuring values. The animals (except for groups 2 and 5) were decapitated at 80 min after the last injection on the 8th day. The spinal segments and midbrain were removed for analysis of nNOS mRNA, NR1A mRNA and NR2A mRNA expressions by the RT-PCR method. The results showed that TFL remained unchangeable in group 2 compared with baseline value during the 7-day observation, while increased significantly on the 7th day in group 3. In group 4, TFL was longest on the 1st day, then decreased gradually from the 2nd day to the 6th day, and restored to the baseline value on the 6th day. In group 5, TFL showed a decreasing tendency during the 7-day observation, but was still significantly longer than the baseline value on the 7th day. The changes of TFL obtained in group 6 were similar to those in group 5. The results of RT-PCR showed that as compared with group 1, nNOS mRNA expressions in spinal cord and midbrain were significantly down-regulated in group 3, but the expressions of the NR1A mRNA and NR2A mRNA in both groups were similar, while the nNOS mRNA, NR(1A) mRNA and NR(2A) mRNA expressions were all significantly up-regulated in group 4. As compared with group 4, the expressions of nNOS mRNA, NR(1A) mRNA and NR(2A) mRNA were significantly inhibited in group 6. These results suggest that the expressions of nNOS and NMDA receptors in spinal cord and midbrain were significantly up-regulated in the rats with morphine analgesia tolerance. Chronic co-administration of L-NAME could effectively inhibit the morphine-induced overexpressions of nNOS and NMDA receptors, and postpone the development of morphine analgesia tolerance. Based on the results of this study, it is concluded that NO/NMDA receptor in spinal cord and midbrain is closely related to the development of morphine analgesia tolerance.
Feng, Bin; Xing, Jiang-hao; Jia, Dong; Liu, Shui-bing; Guo, Hong-ju; Li, Xiao-qiang; He, Xiao-sheng; Zhao, Ming-gao
2011-06-20
Investigating the interaction between nicotinic and opioid receptors is of great interest for both basic mechanistic and clinical reasons. Morphine and nicotine, two common drugs of abuse, share several behavioral and rewarding properties. However, little is known about the subtypes of nicotinic acetylcholine receptors (nAChR) in the reinstatement of morphine-induced conditioned place preference (CPP). In this study, we found that a non-specific nAChR agonist, nicotine (0.5mg/kg), had no effects on the reinstatement of morphine-induced CPP. However, we found that pretreatment with specific α(4)β(2) and α(7) nAChR subtype antagonists, dihydroxy-β-erithroidine (DHβE, 5mg/kg) and methyllycaconitine (MLA, 4 mg/kg), 20 min prior to administration of morphine, inhibited the reinstatement of morphine-induced CPP by drug priming in mice. Furthermore, depression of the reinstatement of morphine-induced CPP by a single DHβE or MLA treatment lasted at least three days later when the reinstatement was induced by morphine priming. The data suggest that specific nAChR subtypes, i.e., α(4)β(2) and α(7), may contribute to the reinstatement of morphine-induced CPP by drug priming in mice. Copyright © 2011 Elsevier B.V. All rights reserved.
Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.
Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi
2015-04-01
An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.
Withey, Sarah L; Hill, Rob; Lyndon, Abigail; Dewey, William L; Kelly, Eamonn; Henderson, Graeme
2017-04-01
Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Shimizu, Norifumi; Kishioka, Shiroh; Maeda, Takehiko; Fukazawa, Yohji; Dake, Yoshihiro; Yamamoto, Chizuko; Ozaki, Masanobu; Yamamoto, Hiroyuki
2004-08-01
Morphine's analgesic actions are thought to be mediated through both the central and peripheral nervous systems. L-type calcium channel blockers have been reported to potentiate the analgesic effects of morphine, but the locus of this interaction is not known. In this experiment, we examined the site of verapamil-induced potentiation of morphine analgesia in mice using the quaternary opioid receptor antagonist naloxone-methiodide (NLX-M). Subcutaneous injections of morphine increased locomotor activity and serum corticosterone level, which are mediated by the central nervous system. These central effects were not antagonized by 0.1 mg/kg of NLX-M, whereas this dose of NLX-M partially antagonized the analgesic effect of morphine. Treatment with verapamil potentiated morphine analgesia in a dose-dependent manner. The verapamil-induced potentiation of morphine analgesia was abolished by pretreatment with NLX-M (0.1 and 1 mg/kg). These findings suggest that peripheral mechanisms partially contribute to morphine analgesia and mediate the potentiation of morphine analgesia by verapamil.
Bailey, C P; Llorente, J; Gabra, B H; Smith, F L; Dewey, W L; Kelly, E; Henderson, G
2009-01-01
In morphine tolerance a key question that remains to be answered is whether μ-opioid receptor (MOPr) desensitization contributes to morphine tolerance, and if so by what cellular mechanisms. Here we demonstrate that MOPr desensitization can be observed in single rat brainstem locus coeruleus (LC) neurons following either prolonged (> 4 h) exposure to morphine in vitro or following treatment of animals with morphine in vivo for 3 days. Analysis of receptor function by an operational model indicated that with either treatment morphine could induce a profound degree (70–80%) of loss of receptor function. Ongoing PKC activity in the MOPr-expressing neurons themselves, primarily by PKCα, was required to maintain morphine-induced MOPr desensitization, because exposure to PKC inhibitors for only the last 30–50 min of exposure to morphine reduced the MOPr desensitization that was induced both in vitro and in vivo. The presence of morphine was also required for maintenance of desensitization, as washout of morphine for > 2 h reversed MOPr desensitization. MOPr desensitization was homologous, as there was no change in α2-adrenoceptor or ORL1 receptor function. These results demonstrate that prolonged morphine treatment induces extensive homologous desensitization of MOPrs in mature neurons, that this desensitization has a significant PKC-dependent component and that this desensitization underlies the maintenance of morphine tolerance. PMID:19200236
Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza
2016-06-01
Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.
Mansouri, Mohammad Taghi; Khodayar, Mohammad Javad; Tabatabaee, Amirhossein; Ghorbanzadeh, Behnam; Naghizadeh, Bahareh
2015-10-01
Statins, 3-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA) reductase inhibitors, are widely used in the management of different diseases beyond their primary indication for lowering cholesterol. Previous studies have demonstrated the neuroprotective effects of simvastatin in different animal models. In the present study, we examined the effects of simvastatin (30, 60, 100 and 300mg/kg, p.o.) on the development and expression of morphine-induced tolerance and dependence in mice. For the induction of morphine tolerance and dependence, mice were twice daily treated with morphine (10mg/kg, s.c.) for 5 consecutive days. Tolerance was evaluated by the hot-plate test and physical dependence by naloxone challenge, on the sixth day. The results showed that oral administration of simvastatin produced antinociceptive activity in a dose-dependent way. Co-administration of simvastatin with morphine did not affect the acute morphine-induced analgesia (10mg/kg, s.c.). However, repeated co-administration of simvastatin with morphine significantly attenuated the development of tolerance to the analgesic effect of morphine and inhibited the naloxone (5mg/kg, s.c.)-precipitated withdrawal signs (jumping and body weight loss). Also, simvastatin at doses of 100 and 300mg/kg attenuated the expression of morphine-induced tolerance and dependence. These data indicated that, while simvastatin can alleviate both development and expression of morphine-induced tolerance, it cannot enhance morphine-induced antinociception. Taken together, simvastatin may be used as an adjutant therapeutic agent in combination with morphine and or other opioids in patients with severe chronic pain. Copyright © 2015 Elsevier Inc. All rights reserved.
Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats
Sumathi, T.; Nathiya, V. C.; Sakthikumar, M.
2011-01-01
In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na+/K+ATPase. Ca2+ and Mg2+ ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine. PMID:22707825
Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats.
Sumathi, T; Nathiya, V C; Sakthikumar, M
2011-07-01
In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na(+)/K(+)ATPase. Ca(2+) and Mg(2+) ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.
Arezoomandan, Reza; Haghparast, Abbas
2016-03-01
Relapse to drug use is one of the most difficult clinical problems in treating addiction. Glial activation has been linked with the drug abuse, and the glia modulators such as minocycline can modulate the drug abuse effects. The aim of the present study was to determine whether minocycline could attenuate the maintenance and reinstatement of morphine. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) for 3 days. Following the acquisition of the CPP, the rats were given daily bilateral intra-NAc injections of either minocycline (1, 5, and 10 μg/0.5 μL) or saline (0.5 μL). The animals were tested for conditioning score 60 min after each injection. To induce the reinstatement, a priming dose of morphine (1 mg/kg) was injected 1 day after the final extinction day. The morphine-induced CPP lasted for 7 days after cessation of morphine treatment. Our data revealed that a priming dose of morphine could reinstate the extinguished morphine-induced CPP. Daily intra-accumbal injection of minocycline during the extinction period blocked the maintenance of morphine CPP and also attenuated the priming-induced reinstatement. Our findings indicated that minocycline could facilitate the extinction and attenuate the reinstatement of morphine. These results provided new evidence that minocycline might be considered as a promising therapeutic agent for the treatment of several symptoms associated with morphine abuse.
Castro, Douglas S; Silva, Marta F A; Shih, Andre C; Motta, Pedro P A; Pires, Marcos V M; Scherer, Paulo O
2009-12-01
This study compared the analgesic effects of epidural tramadol versus morphine in six healthy cats. Under general anesthesia, each cat received an epidural injection of saline 0.22 ml/kg (control treatment, CT), tramadol 1mg/kg (tramadol treatment, TT), or morphine 0.1mg/kg (morphine treatment, MT). After cats had recovered from anesthesia a simple descriptive scale (SDS), visual analog scale (VAS) and physiological parameters (respiratory and heart rate) were used to assess analgesia level to a noxious stimulus (base of the tail skin fold clamping) at 1, 2, 3, 4, 6, 8, 10, and 12h post-epidural. Group TT had a higher SDS and VAS score when compared to MT at 8, 10 and 12h post-epidural. CT had higher SDS and VAS score at all time points when compared to TT and MT. In conclusion both morphine and tramadol provided analgesia in this model for the first 6h; with epidural morphine resulting in longer lasting analgesia when compared to tramadol.
Taliyan, Rajeev; Sharma, Pyare Lal
2012-04-01
Diabetes-induced neuropathic pain is recognized as one of the most difficult type of pain to treat and conventional analgesics are well known to be partially effective or associated with potential toxicity. Recently, it has been demonstrated that thalidomide, besides its teratogenic potential, reduced chronic pain in an SNL experimental pain model. The present study was designed to investigate the effect of thalidomide on streptozotocin (STZ)-induced neuropathic pain in rats. Streptozotocin (20 mg/kg, i.p, daily × 4 days) was administered to induce diabetes in the rats. Nociceptive latency was measured using tail-flick and paw-withdrawal test. Thermal hyperalgesia and mechanical allodynia were measured using planter test and dynamic aesthesiometer (Ugo-Basile, Italy), respectively. Urinary and serum nitrite concentration was estimated using Greiss reagent method. Spleen homogenate supernatant was prepared from spleen of 28th day diabetic rats and administered to normal rats (400 ul, i.v) daily for 28 days. Pain threshold progressively decreased in STZ-treated rats, as compared with control rats. 3 weeks after induction of diabetes, the rat exhibited thermal hyperalgesia and mechanical allodynia. The analgesic effect of morphine (8 mg/kg, s.c.) was significantly decreased in both diabetic and in SHS-treated non-diabetic rats. Administration of thalidomide (25 and 50 mg/kg, i.p), a TNF-α inhibitor, significantly prevented hyperglycemia-induced thermal hyperalgesia and mechanical allodynia and also attenuated the increase in serum and urinary nitrite concentration, as compared with untreated diabetic rats. Also, thalidomide (25 and 50 mg/kg, i.p) 1 h before or concurrently with morphine significantly restored the analgesic effect of morphine in diabetic rats. It may be concluded that thalidomide has a beneficial effect in neuropathic pain by decreasing cytokines (TNF-α) and nitric oxide level and may provide a novel promising therapeutic approach for managing painful diabetic neuropathy.
Effects of Shilajit on the development of tolerance to morphine in mice.
Tiwari, P; Ramarao, P; Ghosal, S
2001-03-01
Effects of concomitant administration of Processed Shilajit (PS, 0.1 and 1 mg/kg, i.p.), in Swiss mice were evaluated on the development of tolerance to morphine induced analgesia in the hot plate test. Chronic administration of morphine (10 mg/kg, i.p., b.i.d.) to mice over a duration of 10 days resulted in the development of tolerance to the analgesic effect of morphine. Concomitant administration of PS with morphine, from day 6 to day 10, resulted in a significant inhibition of the development of tolerance to morphine (10 mg/kg, i.p.) induced analgesia. Processed Shilajit per se, in the doses used, did not elicit any significant analgesia in mice; nor did the chronic concomitant administration of Processed Shilajit alter the morphine-induced analgesia. These findings with Processed Shilajit indicate its potential as a prospective modifier of analgesic tolerance to morphine. Copyright 2001 John Wiley & Sons, Ltd.
Ultra-low dose (+)-naloxone restores the thermal threshold of morphine tolerant rats.
Chou, Kuang-Yi; Tsai, Ru-Yin; Tsai, Wei-Yuan; Wu, Ching-Tang; Yeh, Chun-Chang; Cherng, Chen-Hwan; Wong, Chih-Shung
2013-12-01
As known, long-term morphine infusion leads to tolerance. We previously demonstrated that both co-infusion and post-administration of ultra-low dose (±)-naloxone restores the antinociceptive effect of morphine in morphine-tolerant rats. However, whether the mechanism of the action of ultra-low dose (±)-naloxone is through opioid receptors or not. Therefore, in the present study, we further investigated the effect of ultra-low dose (+)-naloxone, it does not bind to opioid receptors, on the antinociceptive effect of morphine. Male Wistar rats were implanted with one or two intrathecal (i.t.) catheters; one catheter was connected to a mini-osmotic pump, used for morphine (15 μg/h), ultra-low dose (+)-naloxone (15 pg/h), morphine plus ultra-low dose (+)-naloxone (15 pg/h) or saline (1 μl/h) infusion for 5 days. On day 5, either ultra-low dose (+)-naloxone (15 pg) or saline (5 μl) was injected via the other catheter immediately after discontinued morphine or saline infusion. Three hours later, morphine (15 μg in 5 μl saline) or saline were given intrathecally. All rats received nociceptive tail-flick test every 30 minutes for 120 minutes after morphine challenge at different temperature (45-52°C, respective). Our results showed that, both co-infusion and post-treatment of ultra-low dose (+)-naloxone with morphine preserves the antinociceptive effect of morphine. Moreover, in the post administration rats, ultra-low dose (+)-naloxone further enhances the antinociceptive effect of morphine. This study provides an evidence for ultra-low dose (+)-naloxone as a therapeutic adjuvant for patients who need long-term opioid administration for pain management. Copyright © 2013. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro-Zaragoza, J.; Martínez-Laorden, E.; Mora, L.
Opioid addiction is associated with cardiovascular disease. However, mechanisms linking opioid addiction and cardiovascular disease remain unclear. This study investigated the role of corticotropin-releasing factor (CRF) 1 receptor in mediating somatic signs and the behavioural states produced during withdrawal from morphine dependence. Furthermore, it studied the efficacy of CRF1 receptor antagonist, CP-154,526 to prevent the cardiac sympathetic activity induced by morphine withdrawal. In addition, tyrosine hydroxylase (TH) phosphorylation pathways were evaluated. Like stress, morphine withdrawal induced an increase in the hypothalamic–pituitary–adrenal (HPA) axis activity and an enhancement of noradrenaline (NA) turnover. Pre-treatment with CRF1 receptor antagonist significantly reduced morphine withdrawal-inducedmore » increases in plasma adrenocorticotropic hormone (ACTH) levels, NA turnover and TH phosphorylation at Ser31 in the right ventricle. In addition, CP-154,526 reduced the phosphorylation of extracellular signal-regulated kinase (ERK) after naloxone-precipitated morphine withdrawal. In addition, CP-154,526 attenuated the increases in body weight loss during morphine treatment and suppressed some of morphine withdrawal signs. Altogether, these results support the idea that cardiac sympathetic pathways are activated in response to naloxone-precipitated morphine withdrawal suggesting that treatment with a CRF1 receptor antagonist before morphine withdrawal would prevent the development of stress-induced behavioural and autonomic dysfunction in opioid addicts. - Highlights: • Morphine withdrawal caused an increase in myocardial sympathetic activity. • ERK regulates TH phosphorylation after naloxone-induced morphine withdrawal. • CRF1R is involved in cardiac adaptive changes during morphine dependence.« less
Acupuncture suppresses reinstatement of morphine-seeking behavior induced by a complex cue in rats.
Lee, Bong Hyo; Lim, Sung Chul; Jeon, Hyeon Jeong; Kim, Jae Su; Lee, Yun Kyu; Lee, Hyun Jong; In, Sunghyun; Kim, Hee Young; Yoon, Seong Shoon; Yang, Chae Ha
2013-08-26
Morphine causes physical and psychological dependence for individuals after repeated-use. Above all, our previous study showed that acupuncture attenuated reinstatement of morphine-seeking behavior induced by pharmacological cue. In this study, we investigated whether acupuncture could suppress the reinstatement of morphine-seeking behavior induced by the combination of environmental and pharmacological cues and the possible neuronal involvement. Male Sprague-Dawley rats were trained to self-administer morphine (1.0 mg/kg) for 3 weeks. Following the withdrawal phase (7 days), the effects of acupuncture on reinstatement of morphine-seeking behavior were investigated. For the investigation of neuronal involvement, the GABAA receptor antagonist bicuculline and the GABAB receptor antagonist SCH 50911 were pre-treated. Morphine-seeking behavior induced by combination of re-exposure to the operant chamber and morphine injection was suppressed perfectly by acupuncture at SI5, but not at the control acupoint LI5 and this effect was blocked by pre-treatment with the GABA receptor antagonists. This study suggests that acupuncture at SI5 can be considered as a predominant therapy for the reinstatement of morphine-seeking behavior in humans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Alfinito, Peter D; Chen, Xiaohong; Atherton, James; Cosmi, Scott; Deecher, Darlene C
2008-10-01
Previous reports suggest the antiestrogen ICI 182,780 (ICI) does not cross the blood-brain barrier (BBB). However, this hypothesis has never been directly tested. In the present study, we tested whether ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and affects known neuroendocrine functions in ovariectomized rats. Using HPLC with mass spectrometry, ICI (1.0 mg/kg.d, 3 d) was detected in plasma and brain and hypothalamic tissues for up to 24 h with maximum concentrations of 43.1 ng/ml, and 31.6 and 38.8 ng/g, respectively. To evaluate antiestrogenic effects of ICI in the brain after systemic dosing, we tested its ability to block the effect of 17 alpha-ethinyl estradiol (EE) (0.3 mg/kg, 8 d) on tail-skin temperature abatement in the morphine-dependent model of hot flush and on body weight change. In the morphine-dependent model, EE abated 64% of the naloxone-induced tail-skin temperature increase. ICI pretreatment (1.0, 3.0 mg/kg.d) dose dependently inhibited this effect. ICI (3.0 mg/kg.d) alone showed estrogenic-like actions, abating 30% the naloxone-induced flush. In body weight studies, EE-treated rats weighed 58.5 g less than vehicle-treated rats after 8 d dosing. This effect was partially blocked by ICI (3.0 mg/kg.d) pretreatment. Similar to EE treatment, rats receiving 1.0 or 3.0 mg/kg.d ICI alone showed little weight gain compared with vehicle-treated controls. Thus, ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and has both antiestrogenic and estrogenic-like actions on neuroendocrine-related functions.
Woode, Eric; Ameyaw, Elvis O; Boakye-Gyasi, Eric; Abotsi, Wonder K M
2012-10-01
Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE) and xylopic acid (XA), in murine models. XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (Tail-flick and Hargreaves thermal hyperalgesia tests), and mechanical (Randall-Selitto paw pressure test) pain models. XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg(-1), p.o.) and XA (10-100 mg kg(-1), p.o.) inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory), thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg(-1), i.p.) and diclofenac (1-10 mg kg(-1), i.p.), used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid.
Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine
Hill, Rob; Lyndon, Abi; Withey, Sarah; Roberts, Joanne; Kershaw, Yvonne; MacLachlan, John; Lingford-Hughes, Anne; Kelly, Eamonn; Bailey, Chris; Hickman, Matthew; Henderson, Graeme
2016-01-01
Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths. PMID:26171718
Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis.
Lim, Grewo; Wang, Shuxing; Lim, Jeong-Ae; Mao, Jianren
2005-12-02
Our previous study has shown that chronic morphine exposure induces neuronal apoptosis within the spinal cord dorsal horn; however, the mechanisms of morphine-induced apoptosis remain unclear. Here we examined whether adenylyl cyclase (AC) and protein kinase A (PKA) would play a role in this process. Intrathecal morphine regimen (10 microg, twice daily x 7 days) that resulted in antinociceptive tolerance induced spinal apoptosis as revealed by in situ terminal deoxynucleotidyl transferase (TdT)-UTP-biotin nick end labeling (TUNEL). The TUNEL-positive cells were detected primarily in the superficial laminae of the spinal cord dorsal horn, which was associated with an increase in the expression of activated caspase-3 and mitogen-activated protein kinase (MAPK) within the same spinal region. Co-administration of morphine with a broad AC inhibitor (ddA), a PKA inhibitor (H89), or a MAPK inhibitor (PD98059) substantially reduced the number of TUNEL-positive cells, as compared with the morphine alone group. The results indicate that the spinal AC and PKA pathway through intracellular MAPK may be contributory to the cellular mechanisms of morphine-induced apoptosis.
Wu, XuJun; Zhao, Ning; Bai, Fan; Li, ChuanYu; Liu, CiRong; Wei, JingKuan; Zong, Wei; Yang, LiXin; Ryabinin, Andrey E; Ma, YuanYe; Wang, JianHong
2016-05-01
Drug addicts experience strong craving episodes in response to drug-associated cues. Attenuating these responses using pharmacological or behavioral approaches could aid recovery from addiction. Cue-induced drug seeking can be modeled using the conditioned place preference procedure (CPP). Our previous work showed that conditioned place preference (CPP) can be induced by administration of increasing doses of morphine in rhesus monkeys. Here, we investigated whether expression of morphine-induced CPP can be attenuated by inhibiting activity of insular cortex or by repeated unreinforced exposures to the CPP test. The insula has been demonstrated to be involved in addiction to several drugs of abuse. To test its role in morphine CPP, bilateral cannulae were implanted into the insula in seven adult monkeys. The CPP was established using a biased apparatus by intramuscular injections of morphine at increasing doses (1.5, 3.0 and 4.5mg/kg) for each monkey. After the monkeys established morphine CPP, their insulae were reversibly inactivated by bilateral microinjection with 5% lidocaine (40μl) prior to the post-conditioning test (expression) of CPP using a within-subject design. The microinjections of lidocaine failed to affect CPP expression when compared to saline injections. We subsequently investigated morphine-associated memory during six episodes of CPP tests performed in these monkeys over the following 75.0±0.2months. While the preference score showed a declining trend with repeated testing, morphine-induced CPP was maintained even on the last test performed at 75months post-conditioning. This observation indicated strong resistance of morphine-induced memories to extinction in rhesus monkeys. Although these data do not confirm involvement of insula in morphine-induced CPP, our observation that drug-associated memories can be maintained over six drug-free years following initial experience with morphine has important implications for treatment of drug addiction using extinction therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Haiyan; Department of Pharmacology, Tianjin Medical University, Tianjin 300070; Huh, Jin
Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphinemore » reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced mitochondrial ROS generation by inhibiting complex I via Src.« less
Wang, Bing; Su, Cun-Jin; Liu, Teng-Teng; Zhou, Yan; Feng, Yu; Huang, Ya; Liu, Xu; Wang, Zhi-Hong; Chen, Li-Hua; Luo, Wei-Feng; Liu, Tong
2018-01-01
Parkinson’s disease (PD) is a common neurodegenerative disease characterized the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Brain endogenous morphine biosynthesis was reported to be impaired in PD patients and exogenous morphine attenuated 6-hydroxydopamine (6-OHDA)-induced cell death in vitro. However, the mechanisms underlying neuroprotection of morphine in PD are still unclear. In the present study, we investigated the neuroprotective effects of low-dose morphine in cellular and animal models of PD and the possible underlying mechanisms. Herein, we found 6-OHDA and rotenone decreased the mRNA expression of key enzymes involved in endogenous morphine biosynthesis in SH-SY5Y cells. Incubation of morphine prevented 6-OHDA-induced apoptosis, restored mitochondrial membrane potential, and inhibited the accumulation of intracellular reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, morphine attenuated the 6-OHDA-induced endoplasmic reticulum (ER) stress possible by activating autophagy in SH-SY5Y cells. Finally, oral application of low-dose morphine significantly improved midbrain tyrosine hydroxylase (TH) expression, decreased apomorphine-evoked rotation and attenuated pain hypersensitivity in a 6-OHDA-induced PD rat model, without the risks associated with morphine addiction. Feeding of low-dose morphine prolonged the lifespan and improved the motor function in several transgenic Drosophila PD models in gender, genotype, and dose-dependent manners. Overall, our results suggest that neuroprotection of low-dose morphine may be mediated by attenuating ER stress and oxidative stress, activating autophagy, and ameliorating mitochondrial function. PMID:29731707
Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord.
Dai, Wen-Ling; Xiong, Feng; Yan, Bing; Cao, Zheng-Yu; Liu, Wen-Tao; Liu, Ji-Hua; Yu, Bo-Yang
2016-12-22
Tolerance induced by morphine remains a major unresolved problem and significantly limits its clinical use. Recent evidences have indicated that dopamine D2 receptor (D2DR) is likely to be involved in morphine-induced antinociceptive tolerance. However, its exact effect and molecular mechanism remain unknown. In this study we examined the effect of D2DR on morphine antinociceptive tolerance in mice spinal cord. Chronic morphine treatment significantly increased levels of D2DR in mice spinal dorsal horn. And the immunoreactivity of D2DR was newly expressed in neurons rather than astrocytes or microglia both in vivo and in vitro. Blockade of D2DR with its antagonist (sulpiride and L-741,626, i.t.) attenuated morphine antinociceptive tolerance without affecting basal pain perception. Sulpiride (i.t.) also down-regulated the expression of phosphorylation of NR1, PKC, MAPKs and suppressed the activation of astrocytes and microglia induced by chronic morphine administration. Particularly, D2DR was found to interact with μ opioid receptor (MOR) in neurons, and chronic morphine treatment enhanced the MOR/D2DR interactions. Sulpiride (i.t.) could disrupt the MOR/D2DR interactions and attenuate morphine tolerance, indicating that neuronal D2DR in the spinal cord may be involved in morphine tolerance possibly by interacting with MOR. These results may present new opportunities for the treatment and management of morphine-induced antinociceptive tolerance which often observed in clinic.
Wu, Guiyun; Huang, Wenqi; Zhang, Hui; Li, Qiaobo; Zhou, Jun; Shu, Haihua
2011-06-14
Our previous studies indicated that processed Aconiti tuber (PAT), a traditional Chinese herbal medicine, had antinociceptive effects and inhibitory effects on morphine tolerance by activation of kappa-opioid receptor (KOR). Preclinical studies also demonstrated that KOR agonists functionally attenuate addictive behaviors of morphine, such as conditioned place preference (CPP). Therefore, we hypothesize that PAT may inhibit morphine-induced CPP in rats. (1) Five groups of rats (n=8 for each group) were alternately subcutaneous (s.c.) injected with morphine 10mg/kg (one group receive normal saline as a control) and normal saline for 8 days and oral co-administrated with distilled water or PAT 0.3, 1.0, or 3.0 g/kg daily on days 2-9 during CPP training, respectively. (2) Other four groups of rats were randomly s.c. injected with nor-binaltorphimine (nor-BNI; 5mg/kg) or normal saline (as a control) 120 min before alternately s.c. with morphine and normal saline and oral co-administrated with distilled water or PAT 3.0 g/kg daily. Each rat was acquired pre-conditioning and post-conditioning CPP data and assayed dynorphin concentrations by radioimmunoassay in rat's nucleus accumbens (NAc) after CPP training. (1) PAT 1.0 or 3.0 g/kg dose-dependently decreased the morphine-induced increase of CPP scores. (2) Nor-BNI completely antagonized the inhibition of PAT on morphine-induced CPP. (3) PAT dose-dependently increased dynorphin content in rats' NAc after CPP training. (1) PAT dose-dependently inhibited morphine-induced CPP. (2) The inhibition of PAT on morphine-induced CPP was probably due to activation of KOR by increasing dynorphin release in rats' NAc. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Zane, Lawrence F. H.
Bakery Europa and the Straub Clinic in Hawaii participated in Project BELIEVE, a 3-year (1995-98) workplace literacy project conducted in partnership with the University of Hawaii's College of Education. Instruction focused on the literacy, communication, interpersonal, and problem-solving skills needed to succeed in the baking and health care…
Nelson, C J; How, T; Lysle, D T
1999-11-01
The present study investigated the effects of morphine on the irritant contact sensitivity (ICS) and contact hypersensitivity (CHS) reaction. ICS was induced by croton oil application on the pinnae of naïve rats. Morphine injected prior to croton oil application did not affect the ICS response when assessed by measurements of pinnae thickness. CHS was induced by applying the antigen 2,4-dinitro-1-fluorobenzene (DNFB) to the pinnae of rats sensitized to DNFB. Rats received an injection of morphine prior to either initial antigen exposure (sensitization) or antigen reexposure (challenge). Morphine prior to challenge, but not sensitization, resulted in a pronounced enhancement of the CHS response as measured by pinna thickness. Quantitative PCR also showed increased IFN-gamma mRNA levels in the inflamed tissue of morphine-treated rats. Naltrexone blocked the morphine-induced enhancement of the CHS response. The differential effects of morphine suggest that opioids have a more pronounced effect on in vivo immune responses that involve immunological memory. Copyright 1999 Academic Press.
Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam; Alboghobeish, Soheila; Amirgholami, Neda; Houshmand, Gholamreza; Cauli, Omar
2018-05-01
Opioid-induced neuroinflammation and the nitric oxide (NO) signal-transduction pathway are involved in the development of opioid analgesic tolerance. The antidepressant venlafaxine (VLF) modulates NO in nervous tissues, and so we investigated its effect on induced tolerance to morphine, neuroinflammation, and oxidative stress in mice. Tolerance to the analgesic effects of morphine were induced by injecting mice with morphine (50 mg/kg) once a day for three consecutive days; the effect of co-administration of VLF (5 or 40 mg/kg) with morphine was similarly tested in a separate group. To determine if the NO precursor l-arginine hydrochloride (l-arg) or NO are involved in the effects rendered by VLF, animals were pre-treated with l-arg (200 mg/kg), or the NO synthesis inhibitors N(ω)-nitro-l-arginine methyl ester (L-NAME; 30 mg/kg) or aminoguanidine hydrochloride (AG; 100 mg/kg), along with VLF (40 mg/kg) for three days before receiving morphine for another three days. Nociception was assessed with a hot-plate test on the fourth day, and the concentration of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-10, brain-derived neurotrophic factor, NO, and oxidative stress factors such as total thiol, malondialdehyde content, and glutathione peroxidase (GPx) activity in the brain was also determined. Co-administration of VLF with morphine attenuated morphine-induced analgesic tolerance and prevented the upregulation of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), NO, and malondialdehyde in brains of mice with induced morphine tolerance; chronic VLF administration inhibited this decrease in brain-derived neurotrophic factor, total thiol, and GPx levels. Moreover, repeated administration of l-arg before receipt of VLF antagonized the effects induced by VLF, while L-NAME and AG potentiated these effects. VLF attenuates morphine-induced analgesic tolerance, at least partly because of its anti-inflammatory and antioxidative properties. VLF also appears to suppress the development of morphine-induced analgesic tolerance through an l-arg-NO-mediated mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.
Urca, G; Frenk, H
1982-08-19
Intracerebroventricular (i.c.v.) injections of the endorphins and of morphine in rats produce highly characteristic, naloxone sensitive, electrographic seizures. In contrast, systemic injections of morphine have been shown to exert a marked anticonvulsant effect. The present study demonstrates that systemic morphine pretreatment can prevent the occurrence of electrographic seizures injected by i.c.v. morphine, Leu-enkephalin and beta-endorphin and that the anti-epileptic effect of morphine can be reversed by naloxone. Male albino rats, previously prepared for chronic i.c.v. injections and EEG recordings, were pretreated with 0--100 mg/kg of intraperitoneal (i.p.) morphine. Thirty five minutes later morphine (520 nmol), Leu-enkephalin (80 nmol) or beta-endorphin (5 nmol) were injected i.c.v. Pretreatment with i.p. morphine blocked the occurrence of seizures induced by morphine and both endogenous opioids. Lower doses of systemic morphine (50 mg/kg) were necessary to block i.c.v. morphine seizures than the dose (100 mg/kg) necessary to block seizures induced by i.c.v. Leu-enkephalin and beta-endorphin. Naloxone (1 mg/kg) administered 25 min following 50 mg/kg of i.p. morphine and preceding the injections of i.c.v. morphine reversed the antiepileptic effect of systemic morphine. These results demonstrate the possible existence of two opiate sensitive systems, one with excitatory-epileptogenic effects and the other possessing inhibitory-antiepileptic properties. The possible relationship between these findings and the known heterogeneity of opiate receptors and opiate actions is discussed.
Davis, Catherine M; de Brugada, Isabel; Riley, Anthony L
2010-05-01
The attenuation of an LiCl-induced conditioned taste aversion (CTA) by LiCl preexposure is mediated primarily by associative blocking via injection-related cues. Given that preexposure to morphine attenuates morphine-induced CTAs, it was of interest to determine whether injection cues also mediate this effect. Certain morphine-induced behaviors such as analgesic tolerance are controlled associatively, via injection-related cues. Accordingly, animals in the present experiments were preexposed to morphine (or vehicle) every other day for five total exposures, followed by an extinction phase, in which the subjects were given saline injections (or no treatment) for 8 (Experiment 1) or 16 (Experiment 2) consecutive days. All of the animals then received five CTA trials with morphine (or vehicle). The morphine-preexposed animals in Experiment 1 displayed an attenuation of the morphine CTA that was unaffected by extinction saline injections, suggesting that blocking by injection cues during morphine preexposure does not mediate this effect. All of the morphine-preexposed subjects in Experiment 2 displayed a weakened preexposure effect, an effect inconsistent with a selective extinction of drug-associated stimuli. The attenuating effects of morphine preexposure in aversion learning are most likely controlled by nonassociative mechanisms, like drug tolerance.
Narita, Minoru; Shibasaki, Masahiro; Nagumo, Yasuyuki; Narita, Michiko; Yajima, Yoshinori; Suzuki, Tsutomu
2005-06-01
In the present study, we investigated the role of cyclin-dependent kinase 5 (cdk5) in the brain dynamics changed by repeated in vivo treatment with morphine. The level of phosphorylated-cdk5 was significantly increased in the cingulate cortex of mice showing the morphine-induced rewarding effect. Under these conditions, roscovitine, a cdk5 inhibitor, given intracerebroventricularly (i.c.v.) caused a dose-dependent and significant inhibition of the morphine-induced rewarding effect. In addition, the dose-response effect of the morphine-induced rewarding effect was dramatically attenuated in cdk5 heterozygous (+/-) knockout mice. Furthermore, the development of behavioral sensitization by intermittent administration of morphine was virtually abolished in cdk5 (+/-) mice. These findings suggest that the induction and/or activation of cdk5 are implicated in the development of psychological dependence on morphine.
Almela, Pilar; Cerezo, Manuela; González-Cuello, A; Milanés, M Victoria; Laorden, M Luisa
2007-01-01
We previously demonstrated that morphine withdrawal induced hyperactivity of the heart by the activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline (NA) turnover and Fos expression. We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibitor of PKA on Fos protein expression, tyrosine hydroxylase (TH) immunoreactivity levels and NA turnover in the left and right ventricle. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity and phospho-CREB (cyclic AMP response element protein) levels were observed in the heart. Moreover, morphine withdrawal induces Fos expression, an enhancement of NA turnover and an increase in the total TH levels. When the selective PKA inhibitor HA-1004 was infused, concomitantly with morphine pellets, it diminished the increase in NA turnover and the total TH levels observed in morphine-withdrawn rats. However, this inhibitor neither modifies the morphine withdrawal induced Fos expression nor the increase of nonphosphorylated TH levels. The present findings indicate that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the cardiac catecholaminergic neurons in response to morphine withdrawal and suggest that Fos is not a target of PKA at heart levels.
Opioid modulation of reflex versus operant responses following stress in the rat.
King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P
2007-06-15
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
Chen, Li-Kuei; Chen, Shiou-Sheng; Huang, Chi-Hsiang; Yang, Hong-Jyh; Lin, Chen-Jung; Chien, Kuo-Liong; Fan, Shou-Zen
2013-01-01
A cohort, double blind, and randomized study was conducted to investigate the effect of a single nucleotide polymorphism of the μ-opioid receptor at nucleotide position 118 (OPRM1:c.118A>G) on the association with the most common side effects (nausea or vomiting) induced by intravenous patient control analgesia (IVPCA) with morphine, including incidence and severity analysis. A total of 129 Taiwanese women undergoing gynecology surgery received IVPCA with pure morphine for postoperative pain relief. Blood samples were collected and sequenced with high resolution melting analysis to detect three different genotypes of OPRM1 (AA, AG, and GG). All candidates 24 h postoperatively will be interviewed to record the clinical phenotype with subjective complaints and objective observations. The genotyping after laboratory analysis showed that 56 women (43.4%) were AA, 57 (44.2%) were AG, and 16 (12.4%) were GG. The distribution of genotype did not violate Hardy-Weinberg equilibrium test. There was no significant difference neither between the severity and incidence of IVPCA morphine-induced side effects and genotype nor between the association between morphine consumption versus genotype. However, there was significant difference of the relation between morphine consumption and the severity and incidence of IVPCA morphine-induced nausea and vomiting. The genetic analysis for the severity and incidence of IVPCA morphine-induced nausea or vomiting showed no association between phenotype and genotype. It might imply that OPRM1:c.118A>G does not protect against IVPCA morphine-induced nausea or vomiting. PMID:23431434
Zhao, Xin; Yao, Li; Wang, Fang; Zhang, Han; Wu, Li
2017-07-05
The cannabinoid 1 receptors (CB1Rs) signaling is strongly linked to conditioned rewarding effects of opiates. Learned associations between environmental contexts and discrete cues and drug use play an important role in the maintenance and/or relapse of morphine addiction. Although previous studies suggest that context-dependent morphine treatment alters endocannabinoid signaling and synaptic plasticity in the hippocampus, the role of endocannabinoid in morphine conditioned place preference (CPP) and reinstatement remains unknown. In the present study, we found daily escalating doses of morphine induce significant CPP in rats. After the extinction of CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with the elevated CB1R levels compared with saline control groups, suggesting upregulation of CB1R pathway in the hippocampus contribute to the reinstatement of morphine CPP. By using a pharmacological inhibitor of CB1R administered into the dorsal hippocampus, we showed that blockade of CB1R signaling did not alter the morphine CPP acquisition but inhibited the reinstatement of morphine CPP. In addition, no effects were induced upon CB1R blockade in the prefrontal cortex on reinstatement of morphine CPP. These studies reveal region-specific effects of hippocampal blockade of CB1R signaling pathway on the reinstatement of morphine CPP.
Stress antagonizes morphine-induced analgesia in rats
NASA Technical Reports Server (NTRS)
Vernikos, J.; Shannon, L.; Heybach, J. P.
1981-01-01
Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.
Song, Li; Wang, Shuxing; Zuo, Yunxia; Chen, Lucy; Martyn, Jeevendra A.; Mao, Jianren
2014-01-01
Midazolam and morphine are often used in pediatric intensive care unit (ICU) for analgesia and sedation. However, how these two drugs interact behaviorally remains unclear. Here, we examined whether 1) co-administration of midazolam with morphine would exacerbate morphine tolerance and morphine-induced hyperactive behaviors, and 2) protein kinase C (PKC) would contribute to these behavioral changes. Male rats of 3 to 4 weeks old were exposed to a hindpaw burn injury. In Experiment 1, burn-injured young rats received once daily saline or morphine (10 mg/kg, subcutaneous, s.c.), followed 30 min later by either saline or midazolam (2 mg/kg, intraperitoneal, i.p.), for 14 days beginning 3 days after burn injury. In Experiment 2, young rats with burn injury were administered with morphine (10 mg/kg, s.c.), midazolam (2 mg/kg, i.p.), and chelerythrine chloride (a non-specific PKC inhibitor 10 nmol, intrathecal) for 14 days. For both experiments, cumulative morphine anti-nociceptive dose-response (ED50) was tested and hyperactive behaviors such as jumping and scratching were recorded. Following 2 weeks of each treatment, ED50 dose was significantly increased in rats receiving morphine alone as compared with rats receiving saline or midazolam alone. The ED50 dose was further increased in rats receiving both morphine and midazolam. Co-administration of morphine and midazolam also exacerbated morphine-induced hyperactive behaviors. Expression of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor and PKCγ in the spinal cord dorsal horn (immunohistochemistry; Western blot) was upregulated in burn-injured young rats receiving morphine alone or in combination with midazolam, and chelerythrine prevented the development of morphine tolerance. These results indicate that midazolam exacerbated morphine tolerance through a spinal NMDA/PKC-mediated mechanism. PMID:24713351
Ghasemzadeh, Zahra; Rezayof, Ameneh
2017-01-05
Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng
2018-01-01
Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325
Elyasi, Leila; Eftekhar-Vaghefi, Seyed Hassan; Asadi-Shekaaria, Majid; Esmaeili-Mahani, Saeed
2018-06-27
Parkinson's disease is a progressive neurodegenerative disease characterized by progressive and selective death of dopaminergic neurons. It has been reported that nicotine and morphine have protective roles during neuronal damage in Parkinson's disease. In addition, the induction of cross-tolerance between their biological effects has been shown in numerous reports. Here, we investigated the effects of nicotine and morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species, calcium level and mitochondrial membrane potential were determined by fluorescence spectrophotometer method. Biochemical markers of apoptosis were also evaluated by immunoblotting. The data showed that morphine and nicotine prevent 6-OHDA- induced cell damage and apoptosis. However, the protective effects of nicotine were not observed in chronic morphine-pretreated cells. Morphine had no protective effects in chronic nicotine-incubated cells. A cross-tolerance between protective effects of morphine and nicotine was occurred in 6-OHDA-induced SH-SY5Y cell toxicity.
Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents.
Kim, Hyoung-Chun; Shin, Eun-Joo; Jang, Choon-Gon; Lee, Myung-Koo; Eun, Jae-Soon; Hong, Jin-Tae; Oh, Ki-Wan
2005-09-01
Morphine-induced analgesia has been shown to be antagonized by ginseng total saponins (GTS), which also inhibit the development of analgesic tolerance to and physical dependence on morphine. GTS is involved in both of these processes by inhibiting morphine-6-dehydrogenase, which catalyzes the synthesis of morphinone from morphine, and by increasing the level of hepatic glutathione, which participates in the toxicity response. Thus, the dual actions of ginseng are associated with the detoxification of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contractions in guinea pig ileum (mu-receptors) and mouse vas deferens (delta-receptors) are not mediated through opioid receptors, suggesting the involvement of non-opioid mechanisms. GTS also attenuates hyperactivity, reverse tolerance (behavioral sensitization), and conditioned place preference induced by psychotropic agents, such as methamphetamine, cocaine, and morphine. These effects of GTS may be attributed to complex pharmacological actions between dopamine receptors and a serotonergic/adenosine A2A/ delta-opioid receptor complex. Ginsenosides also attenuate the morphine-induced cAMP signaling pathway. Together, the results suggest that GTS may be useful in the prevention and therapy of the behavioral side effects induced by psychotropic agents.
[Effects of odor cue on morphine-induced dependence and craving in mice].
Liu, Xiao-Fen; Yang, Guang; Yang, Rui; Jia, Qiang; Guan, Su-Dong
2012-04-01
The olfactory system may play a pivotal role in drug addiction. To clarify the issues, we investigated the morphine dependence and psychological craving in morphine addicted mice using the conditioned place preference (CPP) paradigm by taking an only odor cue as the conditioned stimulus (CS). The results showed that by pairing morphine with odor, the CPP could be induced in mice. When the morphine addicted mice were exposed to a novel environment during morphine withdrawal, they spent significantly longer time in the chamber with morphine-paired odor than in the control chamber. The effects of odor cue on the morphine CPP were blocked by the administration of dopamine D1 or D2 antagonists. The studies indicated that olfactory system plays an important role in drug addiction.
[Behavioural studies during the gestational-lactation period in morphine treated rats].
Sobor, Melinda; Timár, Júlia; Riba, Pál; Király, Kornél P; Al-Khrasani, Mahmoud; Gyarmati, Zsuzsanna; Fürst, Zsuzsanna
2013-12-01
Opioids impair the maternal behaviour of experimental animals. The effect of morphine on maternal behaviour in rat dams treated chronically with morphine during the whole pregnancy and lactation has not been yet analysed systematically. The aim of our work was to investigate the behavioural effects of moderate dose morphine administered constantly in the whole perinatal period in rats. Nulliparous female rats were treated with 10 mg/kg morphine s.c. once daily, from the day of mating. Maternal behaviour was observed, the effects of acute morphine treatment on the maternal behaviour and whether this effect could be antagonised by naloxone were also investigated. Physical and other behavioural (anxiety-like signals in elevated plus maze, changes in locomotor activity) withdrawal signs precipitated by naloxone were registered. After weaning sensitivity to the rewarding effect of morphine was measured by conditioned place preference and to the aversive effect of naloxone by conditioned place aversion tests. Antinociceptive test on tail-flick apparatus was performed to investigate the changes in morphine antinociceptive effects due to chronic morphine treatment. Maternal behaviour was significantly impaired in morphine-treated dams. This effect of morphine lasted c.a. 2-3 hours a day, it showed dose-dependency and was enhanced in MO-treated group (sensitisation). Only weak physical and no other behavioural (anxiety-like behaviour or hypolocomotion) withdrawal signs were precipitated by naloxone. The positive reinforcing effect of morphine and aversive effect of naloxone were markedly increased on conditioned place paradigm. Significant antinociceptive tolerance was not seen. Although human drug abuse can be hardly modelling under experimental circumstances, our constant, relatively moderate dose morphine treatment administered once daily during the whole pregnancy and lactation resulted in several subtle behavioural changes in dams. In perinatally opioid-exposed offspring short- and long-term behavioural disturbances can be detected which is well-known from literature. Besides direct pharmacological effects of morphine impaired maternal responsiveness and pup care could play a role in these disturbances.
Gramage, Esther; Vicente-Rodríguez, Marta; Herradón, Gonzalo
2015-09-14
Pleiotrophin (PTN) is a neurotrophic factor with important functions in addiction and neurodegenerative disorders. Morphine administration induces an increase in the expression of PTN and Midkine (MK), the only other member of this family of cytokines, in brain areas related with the addictive effects of drug of abuse, like the Ventral Tegmental Area or the hippocampus. In spite of previous studies showing that PTN modulates amphetamine and ethanol rewarding effects, and that PTN is involved in morphine-induced analgesia, it was still unknown if the rewarding effects of morphine may be regulated by endogenous PTN. Thus, we aim to study the role of PTN in the reward and physical dependence induced by morphine. We used the Conditioned Place Preference (CPP) paradigm in PTN genetically deficient (PTN-/-) and wild type (WT) mice to assess the rewarding effects of morphine in absence of endogenous PTN. Second, to study if PTN may be involved in morphine physical dependence, naloxone-precipitated withdrawal syndrome was induced in PTN-/- and WT morphine dependent mice. Although the increase in the time spent in the morphine-paired compartment after conditioning tended to be more pronounced in PTN-/- mice, statistical significance was not achieved. The data suggest that PTN does not exert an important role in morphine reward. However, our results clearly indicate that PTN-/- mice develop a more severe withdrawal syndrome than WT mice, characterized as a significant increase in the time standing and in the total incidences of forepaw licking, forepaw tremors, wet dog shake and writhing. The data presented here suggest that PTN is a novel genetic factor that plays a role in morphine withdrawal syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo
2018-05-01
Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.
García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria
2015-01-01
Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction. © 2013 Society for the Study of Addiction.
Alavi, Mohaddeseh Sadat; Hosseinzadeh, Hossein; Shamsizadeh, Ali; Roohbakhsh, Ali
2016-06-01
Previous studies show that some non-CB1/non-CB2 effects of cannabinoids are mediated through G protein coupled receptor 55 (GPR55). As this receptor is activated by some of cannabinoid receptor ligands and is involved in the modulation of pain, it was hypothesized that this receptor may also interact with opioids. This study examined the effect of atypical cannabinoid O-1602 as a GPR55 agonist on morphine-induced conditioned place preference (CPP) and physical dependence. We used a biased CPP model to evaluate the effect of O-1602 (0.2, 1 and 5mg/kg, intraperitoneal; ip) on the acquisition and expression of morphine-induced CPP in male mice. The locomotor activities of mice were also recorded. Moreover, repeated administration of morphine (50, 50 and 75mg/kg/day) for three days, induced physical dependence. The withdrawal signs such as jumps and diarrhea were precipitated by administration of naloxone (5mg/kg, ip). The effect of O-1602 on the development of morphine physical dependence was assessed by injection of O-1602 (0.2, 1 and 5mg/kg) before morphine administrations. Morphine (40mg/kg, subcutaneous; sc), but not O-1602 (5mg/kg) elicited significant preference in the post-conditioning phase. O-1602 at the doses of 0.2 and 1mg/kg, but not 5mg/kg reduced acquisition of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 at the doses of 0.2, 1 and 5mg/kg also reduced expression of morphine CPP with an increase in locomotor activity at the dose of 5mg/kg. O-1602 had a significant inhibitory effect on development of morphine-induced physical dependence at the dose of 5mg/kg by decreasing jumps and diarrhea during withdrawal syndrome. The present results indicate that O-1602 decreased acquisition and expression of morphine CPP and inhibited development of morphine-induced physical dependence. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Seizures induced by carbachol, morphine, and leucine-enkephalin: a comparison.
Snead, O C
1983-04-01
The electrical, behavioral, and pharmacological properties of seizures induced by morphine, leucine-enkephalin, and the muscarinic cholinergic agonist carbachol were examined and compared. Low-dose carbachol given intracerebroventricularly (ICV) produced seizures similar electrically to those produced by ICV morphine and leucine-enkephalin, although there was some difference in site of subcortical origin of onset. Carbachol and morphine were similar in that they had the same anticonvulsant profile, produced similar behavioral changes, caused generalized absence seizures in low doses and generalized convulsive seizures in high doses, and were capable of chemical kindling. However, opiate-induced seizures were not overcome by cholinergic antagonists, nor were carbachol seizures blocked by opiate antagonists. These data suggest that there may be a common noncholinergic, nonopiatergic system involved in mediating carbachol- and morphine-induced seizures but not enkephalin seizures.
The effect of propofol on intrathecal morphine-induced pruritus and its mechanism.
Liu, Xiulan; Zhang, Jing; Zhao, Hongyan; Mei, Hongxia; Lian, Qingquan; Shangguan, Wangning
2014-02-01
Previous studies have shown that a low dose of propofol IV bolus had a beneficial effect on intrathecal morphine-induced pruritus in humans. However, its exact mechanism has not been fully understood. In this study, we hypothesized that propofol relieved intrathecal morphine-induced pruritus in rats by upregulating the expression of cannabinoid-1 (CB[1]) receptors in anterior cingulate cortex (ACC). Twenty-four Sprague-Dawley rats were divided into a control group and 20, 40, 80 μg/kg morphine groups to create an intrathecal morphine-induced scratching model. The effects of propofol on intrathecal 40 μg/kg morphine-induced scratching responses were then evaluated. Sixty rats were randomly assigned to control, normal saline, intralipid, and propofol groups, with pruritus behavior observation or killed 8 minutes after venous injection of normal saline, intralipid, or propofol, and brain tissues were then collected for assay. Immunohistochemistry was then performed to identify the expression of CB (1) receptor in ACC, and the concentration of CB(1) receptor in ACC was determined by Western blot analysis. Compared with the control group, rats in the 20, 40, 80 μg/kg morphine groups had higher mean scratching response rates after intrathecal morphine injection (P =0.020, 0.005, and 0.002, respectively). There was a statistical difference between 20 and 40 μg/kg morphine groups at 10 to 15 and 15 to 20 timepoints after intrathecal morphine injection (P = 0.049 and 0.017, respectively). Propofol almost abolished the scratching response that was induced by 40 μg/kg intrathecal morphine injection (F[2, 15] = 46.87, P < 0.001; F[22, 165] = 2.37, P = 0.001). Compared with the intralipid and normal saline groups, the scratching behavior was significantly attenuated in the propofol group (P < 0.001). Compared with control, normal saline, and intralipid groups, the protein expression of CB(1) receptor in ACC (Western blot) in the propofol group increased (0.86 ± 0.21, 0.94 ± 0.18, 0.86 ± 0.13, and 1.34 ± 0.32, respectively, P < 0.001). There was no significant difference among control, normal saline, and intralipid groups. Compared with the control, normal saline, and intralipid groups, the average number of neurons of CB(1) receptor in the ACC area were higher in the propofol group (21.0 ± 1.4, 19.3 ± 1.8, 24.8 ± 7.7, and 37.2 ± 3.3, respectively, P < 0.001). Morphine elicits dose-independent scratching responses after intrathecal injection in rats. Morphine 40 μg/kg intrathecal injection-induced scratching responses can be prevented by propofol. Increased protein expression of CB(1) receptors in ACC may contribute to the reversal of intrathecal morphine-induced scratching.
Dave, Rajnish S.
2011-01-01
Opiate-abusing individuals are in the top three risk-factor groups for HIV infection. In fact, almost 30% of HIV-infected individuals in the USA are reported to abuse opiates, highlighting the intersection of drugs of abuse with HIV/AIDS. Opiate-abusers are cognitively impaired and suffer from neurological dysfunctions that may lead to high-risk sexual behavior, poor adherence to antiretroviral regimens, and hepatitis-C virus infection. Collectively, these factors may contribute to accelerated HIV CNS disease progression. To understand the role of morphine in disease progression, we sought to determine whether morphine influences HIV-induced inflammation or viral replication in human monocyte-derived macrophages (h-mdms) and MAGI cells infected with HIV and exposed to morphine. Chronic morphine exposure of HIV-infected h-mdms led to significant alterations in secretion of IL-6 and MCP-2. Morphine enhanced IL-6 secretion and blunted MCP-2 secretion from HIV-infected h-mdms. However, exposure of HIV-infected h-mdms to morphine had no effect on TNF-α secretion. Morphine had no effect on later-stages of viral replication in HIV-infected h-mdms. Morphine had a potentially additive effect on the HIV-induced production of IL-6 and delayed HIV-induced MCP-2 production. These results suggest that in HIV-infected opiate abusers enhanced CNS inflammation might result even when HIV disease is controlled. PMID:22066570
Involvement of substance P and central opioid receptors in morphine modulation of the CHS response.
Nelson, C J; Lysle, D T
2001-04-02
Morphine administration prior to challenge with the antigen 2,4-dinitro-fluorobenzene increases the contact hypersensitivity (CHS) response in rats. The present study extended these findings by showing that central, but not systemic, administration of N-methylnaltrexone antagonized the morphine-induced enhancement of the CHS response. The importance of the neuroimmune mediator substance P was shown via the attenuation of the morphine-induced enhancement following both systemic and topical administration of the NK-1 antagonist WIN51,708. Taken together, the findings of the present study provide new data showing that central opioid receptors and peripheral substance P are involved in the morphine-induced enhancement of the CHS response.
Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping
2017-11-01
Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity. © 2016 Society for the Study of Addiction.
Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena
2017-11-01
An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhai, Mei-Li; Chen, Yi; Liu, Chong; Wang, Jian-Bo; Yu, Yong-Hao
2018-05-23
Opioid use has been limited in the treatment of chronic pain due to their side effects, including analgesic tolerance. Previous studies demonstrated that glucocorticoid receptors (GRs) may be involved in the development of chronic morphine tolerance; however, the mechanism remains unknown. It was hypothesized that the expression of spinal phosphorylated mitogen‑activated protein kinase [MAPK; phosphorylated extracellular signal‑regulated kinase (ERK)] is regulated through the spinal GRs, following chronic treatment with morphine. In the first experiment, the experimental rats were randomly divided into four groups: Control, morphine, morphine+GR antagonist mifepristone (RU38486) and morphine+GR agonist dexamethasone (Dex). Each group was treated with continuous intrathecal (IT) injection of the drugs for 6 days. The expression of GRs and MAPK 3/1 (p‑ERK 1/2) in the spinal dorsal horn was detected by western blot analysis and immunofluorescence staining. In the second experiment, the MAPK inhibitor PD98059 was added and the rats were randomly divided into four groups: Control, morphine, PD98059+morphine and PD98059+morphine+Dex. The continuous IT injection lasted for 7 days in each group. For all experiments, the tail flick test was conducted 30 min following administration every day to assess the thermal hyperalgesia of the rats. The experimental results demonstrated that there was a co‑existence of GRs and p‑ERK 1/2 in the spinal cord dorsal horn by double immunofluorescence staining. The GR antagonist RU38486 attenuated the morphine analgesia tolerance by inhibiting the expression of GR and increasing the expression of p‑ERK. The MAPK inhibitor PD98059 increased the effect of morphine tolerance and prolonged the duration of morphine tolerance. The present results suggest that spinal GRs may serve an important role in the development of morphine tolerance through the ERK signaling pathway.
Akbarabadi, Ardeshir; Niknamfar, Saba; Vousooghi, Nasim; Sadat-Shirazi, Mitra-Sadat; Toolee, Heidar; Zarrindast, Mohammad-Reza
2018-02-01
Drug addiction is a chronic disorder resulted from complex interaction of genetic, environmental, and developmental factors. Epigenetic mechanisms play an important role in the development and maintenance of addiction and also memory formation in the brain. We have examined passive avoidance memory and morphine conditioned place preference (CPP) in the offspring of male and/or female rats with a history of adulthood morphine consumption. Adult male and female animals received chronic oral morphine for 21days and then were maintained drug free for 10days. After that, they were let to mate with either an abstinent or control rat. Male offspring's memory was evaluated by step through test. Besides, rewarding effects of morphine were checked with CCP paradigm. Offspring of abstinent animals showed significant memory impairment compared to the control group which was more prominent in the offspring of abstinent females. Conditioning results showed that administration of a high dose of morphine (10mg/kg) that could significantly induce CPP in control rats, was not able to induce similar results in the offspring of morphine abstinent parents; and CPP was much more prominent when it was induced in the offspring of morphine exposed females compared to the progeny of morphine exposed males. It is concluded that parental morphine consumption in adulthood even before mating has destructive effects on memory state of the male offspring and also leads to tolerance to the rewarding effects of morphine. These effects are greater when the morphine consumer parent is the female one. Copyright © 2017 Elsevier Inc. All rights reserved.
Inhibitory effect of bacopasides on spontaneous morphine withdrawal induced depression in mice.
Rauf, Khalid; Subhan, Fazal; Abbas, Muzaffar; Ali, Syed Mobasher; Ali, Gowhar; Ashfaq, Muhammad; Abbas, Ghulam
2014-06-01
Bacopa monnieri is a perennial herb with a world known image as a nootropic. We investigated the effect of Bacopa monnieri methanolic extract (Mt Ext BM) 10, 20, and 30 mg/kg body weight (b.w) on acquisition and expression of morphine withdrawal induced depression in mice. Locally available Bacopa monnieri (BM) was screened for contents of Bacoside A3, Bacopasaponin C, and Bacopaside II using HPLC with UV. Morphine dependence was induced in mice using twice daily escalating chronic morphine treatments (20-65 mg/kg b.w) for eight consecutive days. Morphine withdrawal induced depression was assayed in animals using forced swimming test (FST), three days after last morphine injection. The HPLC analysis revealed that Mt-ext BM contained Bacoside A3 as major component, i.e. 4 µg in each mg of extract. The chronic treatment with Met Ext BM 10, 20, and 30 mg/kg b.w. dosing significantly inhibited opioid withdrawal induced depression in mice. These findings imply a newer potential role of Bacopa monnieri in the clinical management of opioid withdrawal induced depression which can be attributed to Bacoside A3. Copyright © 2013 John Wiley & Sons, Ltd.
Woode, Eric; Ameyaw, Elvis O.; Boakye-Gyasi, Eric; Abotsi, Wonder K. M.
2012-01-01
Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE) and xylopic acid (XA), in murine models. Materials and Methods: XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (Tail-flick and Hargreaves thermal hyperalgesia tests), and mechanical (Randall-Selitto paw pressure test) pain models. Results: XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg-1, p.o.) and XA (10-100 mg kg-1, p.o.) inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory), thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg-1, i.p.) and diclofenac (1-10 mg kg-1, i.p.), used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. Conclusions: These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid. PMID:23248562
Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza
2016-02-01
Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production.
Li, Chen; Staub, Daniel R; Kirby, Lynn G
2013-12-01
The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our data indicate that stress inhibits the dorsal raphe nucleus (DRN)-5-HT system via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor and, more recently, that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. We tested the hypothesis that DRN GABAA receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). First, we tested if activation of GABAA receptors in the DRN would reinstate morphine CPP. Second, we tested if blockade of GABAA receptors in the DRN would attenuate swim stress-induced reinstatement of morphine CPP. CPP was induced by morphine (5 mg/kg) in a 4-day conditioning phase followed by a conditioning test. Upon acquiring conditioning criteria, subjects underwent 4 days of extinction training followed by an extinction test. Upon acquiring extinction criteria, animals underwent a reinstatement test. For the first experiment, the GABAA receptor agonist muscimol (50 ng) or vehicle was injected into the DRN prior to the reinstatement test. For the second experiment, the GABAA receptor antagonist bicuculline (75 ng) or vehicle was injected into the DRN prior to a forced swim stress, and then, animals were tested for reinstatement of CPP. Intraraphe injection of muscimol reinstated morphine CPP, while intraraphe injection of bicuculline attenuated swim stress-induced reinstatement. These data provide evidence that GABAA receptor-mediated inhibition of the serotonergic DRN contributes to stress-induced reinstatement of morphine CPP.
Vatankhah, Mahsaneh; Karimi-Haghighi, Saeideh; Sarihi, Abdolrahman; Haghparast, Abbas
2018-05-22
The nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate are mediated by the activation of ionotropic and metabotropic glutamate receptors (mGluRs). Previous documents have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as the NAc. In this study, seventy male Wistar rats were used to investigate the role of mGluR7 receptors in the NAc on the acquisition and expression of morphine-induced conditioned place preference (CPP). In Experiment 1, to determine the effect of AMN082, a selective mGluR7 allosteric agonist, on the acquisition of morphine-induced conditioned place preference (CPP), the rats bilaterally received AMN082 (1, 3 and 5 μg/0.5 μL DMSO) during three-day conditioning by morphine (5 mg/kg). In Experiment 2, the rats bilaterally received AMN082 (5 μg/0.5 μL DMSO) 5 min prior to the post-conditioning test to investigate the effect of AMN082 on the expression of morphine-induced CPP. The results showed that the intra-accumbal injection of AMN082 prevents the acquisition of morphine-induced CPP in a dose-dependent manner. However, intra-accumbal injection of AMN082 had no effect on the expression of morphine-induced CPP. The findings propose that the mGluR7 in the NAc inhibits the acquisition of morphine-induced CPP that could be mediated by inhibition of NMDA receptors in the NAc. Copyright © 2018 Elsevier B.V. All rights reserved.
Patierno, Simona; Anselmi, Laura; Jaramillo, Ingrid; Scott, David; Garcia, Rachel; Sternini, Catia
2010-01-01
Background & Aims The μ opioid receptor (μOR) undergoes rapid endocytosis following acute stimulation with opioids and most opiates, but not with morphine. We investigated whether prolonged activation of μOR affects morphine’s ability to induce receptor endocytosis in enteric neurons. Methods We compared the effects of morphine, a poor μOR-internalizing opiate, and [D-Ala2, MePhe4,Gly-ol5] enkephalin (DAMGO), a potent μOR-internalizing agonist, on μOR trafficking in enteric neurons and on the expression of dynamin and β-arrestin immunoreactivity in the ileum of guinea pigs rendered tolerant by chronic administration of morphine. Results Morphine (100 µM) strongly induced endocytosis of μOR in tolerant but not naïve neurons (55.7%±9.3% vs. 24.2%±7.3%, P<0.001) whereas DAMGO (10 µM) strongly induced internalization of μOR in neurons from tolerant and naïve animals (63.6%±8.4% and 66.5%±3.6%). Morphine- or DAMGO-induced μOR endocytosis resulted from direct interactions between the ligand and the μOR, because endocytosis was not affected by tetrodotoxin, a blocker of endogenous neurotransmitter release. Ligand-induced μOR internalization was inhibited by pretreatment with the dynamin inhibitor, dynasore. Chronic morphine administration resulted in a significant increase in dynamin and translocation of dynamin immunoreactivity from the intracellular pool to the plasma membrane, but did not affect β arrestin immunoreactivity. Conclusion Chronic activation of μORs increases the ability of morphine to induce μOR endocytosis in enteric neurons, which depends on the level and cellular localization of dynamin, a regulatory protein that has an important role in receptor-mediated signal transduction in cells. PMID:21070774
Interaction of prenatal stress and morphine alters prolactin and seizure in rat pups.
Saboory, Ehsan; Ebrahimi, Loghman; Roshan-Milani, Shiva; Hashemi, Paria
2015-10-01
Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylenetetrazol (PTZ) induced epileptic behaviors and prolactin blood level (PBL) was investigated in rat offspring. Pregnant Wistar rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, pregnant rats were placed in 25°C water on gestation days 17, 18 and 19 (GD17, GD18 and GD19) for 30 min. In the morphine/saline group, pregnant rats received morphine (10, 12 and 15 mg/kg, IP, on GD17, GD18 and GD19, respectively) or saline (1 ml, IP). In the morphine/saline-stressed group, the rats received morphine or saline and then exposed to stress. On postnatal days 6 and 15 (P6 and P15), blood samples were obtained and PBL was determined. At P15 and P25, the rest of the pups was injected with PTZ to induce seizure. Then, epileptic behaviors of each rat were observed individually. Latency of first convulsion decreased in control-morphine and stressed-saline groups while increased in stressed-morphine rats compared to control-saline group on P15 (P=0.04). Number of tonic-clonic seizures significantly increased in control-morphine and stressed-saline rats compared to control-saline group at P15 (P=0.02). PBL increased in stressed-saline, control-morphine and stress-morphine groups compared to control-saline rats. It can be concluded that prenatal exposure of rats to forced-swim stress and morphine changed their susceptibility to PTZ-induced seizure and PBL during infancy and prepubertal period. Co-administration of morphine attenuated effect of stress on epileptic behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Wen, D; Zang, G; Sun, D; Yang, S; Yu, F; Li, S; Ma, C; Cong, B
2013-05-15
Cholecystokinin octapeptide (CCK-8), a neuropeptide, plays an important role in morphine dependence and several addictive behaviors. We have previously reported that CCK-8 attenuates the acquisition of morphine-induced conditioned place preference (CPP), but the possible functions of CCK-8 on drug relapse remain unclear. Here we evaluated the effects of CCK-8 on the reinstatement of extinguished morphine-induced CPP and behavioral sensitization. A single injection of 0.1 and 1μg CCK-8 (i.c.v.) significantly attenuated both drug- (morphine) and stress- (foot shock) primed reinstatement of CPP and reduced the escalated locomotor activity in reinstatement tests. Additionally, CCK-8 blocked the expression of morphine-induced behavioral sensitization. However, administration of CCK-8 (0.01, 0.1 and 1μg) alone to morphine-pretreated rats could not trigger reinstatement of CPP and had no significant effect on threshold sensitivity to foot shock. In conclusion, our study identifies a distinct inhibitory effect of CCK-8 on the reinstatement of drug-seeking behavior and provides a potential application to the medication of drug relapse. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan
2008-02-01
We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.
Ghasemzadeh, Zahra; Rezayof, Ameneh
2016-02-01
Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Ying; Lu, Guan-Yi; Chen, Wen-Qiang; Li, Yun-Feng; Wu, Ning; Li, Jin
2018-01-05
Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine. Copyright © 2017. Published by Elsevier B.V.
Fan, Yaodong; Niu, Haichen; Rizak, Joshua D; Li, Ling; Wang, Guimei; Xu, Liqi; Ren, He; Lei, Hao; Yu, Hualin
2012-10-01
It is well established that glutamate and its receptors, particularly the N-methyl-D-aspartate receptor (NMDAR), play a significant role in addiction and that the inhibition of glutamatergic hyperfunction reduces addictive behaviors in experimental animals. Specifically, NMDAR antagonists such as MK-801, and an inducer of the expression of glutamate transporter subtype-1 (GLT-1) (ceftriaxone) are known to inhibit addictive behavior. The purpose of this study was to determine whether the combined action of a low dose of MK-801 and a low dose of ceftriaxone provides better inhibition of the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP) than either compound alone. A morphine-paired CPP experiment was used to study the effects of low doses of MK-801, ceftriaxone and a combination of both on reward-related memory (acquisition, extinction, and reinstatement of morphine preference) in rats. A low dose of neither MK-801 (0.05 mg/kg, i.p.) nor ceftriaxone (25 mg/kg, i.p.) alone effectively impaired CPP behaviors. However, when applied in combination, they reduced the acquisition of morphine-induced CPP and completely prevented morphine reinstatement. Their combination also notably impaired the extinction of morphine-induced CPP. The combined action of a low dose of an NMDAR antagonist (MK-801) and GLT-1 activation by ceftriaxone effectively changed different phases of CPP behavior.
Nathaniel, Thomas I.; Panksepp, Jules; Huber, Robert
2009-01-01
Several lines of evidence suggest that exploring the neurochemical basis of reward in invertebrate species may provide clues for the fundamental behavioral and neurobiology underpinnings of drug addiction. How the presence of drug-sensitive reward relates to a decrease in drug-seeking behavior and reinstatement of drug seeking behavior in invertebrate systems is not known. The present study of a conditioned place preference (CPP) paradigm in crayfish (Orconectes rusticus) explores morphine-induced reward, extinction and reinstatement. Repeated intra-circulatory infusions of 2.5μg/g, 5.0μg/g and 10.0μg/g doses of morphine over 5 days serve as a reward when paired with a distinct visual or tactile environment. Morphine-induced CPP was extinguished after repeated saline injections for 5 days in the previously morphine-paired compartment. After the previously established CPP had been eliminated during the extinction phase, morphine-experienced crayfish were challenged with 2.5 μg/g, 5.0 μg/g and 10.0 μg/g respectively. The priming injections of morphine reinstated CPP in all training doses, suggesting that morphine-induced CPP is unrelenting, and that with time, it can be reinstated by morphine following extinction in an invertebrate model just like in mammals. Together with other recent studies, this work demonstrates the advantage of using crayfish as an invertebrate animal model to investigate the basic biological processes that underline exposure to mammalian drugs of abuse. PMID:18822319
Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping
2015-07-24
One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.
Padmini, R; Sabitha, K E; Devi, C S Shyamala
2004-10-01
Efficacy of vilva, a polyherbal formulation was evaluated in morphine induced constipated rats. Vilva juice, at a dose of 1.5 ml/100 g body wt was given orally for a period of 7 days. Morphine sulfate was injected to induce constipation on 8th day, 45 min before the experiments. Protein bound glycoconjungates were estimated in intestinal tissue. Altered levels of glycoconjugates were maintained at near normalcy when pretreated with vilva juice in morphine induced rats. Histological changes were observed in the colon tissue. The damage to crypts of Liberkunn in constipated rats were found to be reduced in vilva pretreated rats. Vilva, thus, offered significant protection against morphine induced constipation by way of augmenting mucus secretion.
Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.
2013-01-01
Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224
Ding, H; Hayashida, K; Suto, T; Sukhtankar, D D; Kimura, M; Mendenhall, V; Ko, M C
2015-01-01
Background and Purpose Nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor agonists display a promising analgesic profile in preclinical studies. However, supraspinal N/OFQ produced hyperalgesia in rodents and such effects have not been addressed in primates. Thus, the aim of this study was to investigate the effects of centrally administered ligands on regulating pain and itch in non-human primates. In particular, nociceptive thresholds affected by intracisternal N/OFQ were compared with those of morphine and substance P, known to provide analgesia and mediate hyperalgesia, respectively, in humans. Experimental Approach Intrathecal catheters were installed to allow intracisternal and lumbar intrathecal administration in awake and unanaesthetized rhesus monkeys. Nociceptive responses were measured using the warm water tail-withdrawal assay. Itch scratching responses were scored from videotapes recording behavioural activities of monkeys in their home cages. Antagonist studies were conducted to validate the receptor mechanisms underlying intracisternally elicited behavioural responses. Key Results Intracisternal morphine (100 nmol) elicited more head scratches than those after intrathecal morphine. Distinct dermatomal scratching locations between the two routes suggest a corresponding activation of supraspinal and spinal μ receptors. Unlike intracisternal substance P, which induced hyperalgesia, intracisternal N/OFQ (100 nmol) produced antinociceptive effects mediated by NOP receptors. Neither peptide increased scratching responses. Conclusions and Implications Taken together, these results demonstrated differential actions of ligands in the primate supraspinal region in regulating pain and itch. This study not only improves scientific understanding of the N/OFQ-NOP receptor system in pain processing but also supports the therapeutic potential of NOP-related ligands as analgesics. PMID:25752320
Motaghinejad, Majid; Karimian, Seyed Morteza; Motaghinejad, Ozra; Shabab, Behnaz; Asadighaleni, Majid; Fatima, Sulail
2015-06-01
Chronic consumption of morphine induces physical dependency, anxiety, and neurodegeneration. In this study, morphine on its own has been used for the management of morphine-induced dependency, oxidative stress, and apoptosis. Forty-eight male rats were randomly divided into six groups. Rats in groups 1-5 were made morphine dependent by an increasing manner of morphine for 7 days (15-45 mg/kg). For the next 14 days, morphine was administered using the following regimen: (i) once daily 45 mg/kg (positive controls), (ii) the same dose at additional intervals (6 h longer than the previous intervals each time), (iii) 45 mg/kg of morphine at irregular intervals like of 12, 24, 36 h, (iv) decreasing dose once daily (every time 2.5 mg/kg less than the former dosage). Group 5 received 45 mg/kg of morphine and 10 mg/kg of SOD mimetic agent (M40401) injection per day. Group 6 (negative control) received saline solution only. On day 22, all animals received naloxone (3 mg/kg) and their Total Withdrawal Index (TWI) and blood cortisol levels were measured. After drug treatment, hippocampus cells were isolated, and oxidative, antioxidative, and apoptotic factors were evaluated. Various regimens of morphine reduced TWI, cortisol levels, Bax activity, caspase-3, caspase-9, TNF-α, and IL-1β and lipid peroxidation. In all treatment groups, GSH level, superoxide dismutase, glutathione peroxidase, and Bcl-2 activity were significantly increased. Furthermore, SOD mimetic agent c diminished morphine effect on SOD activity. Thus, varying the dosage regimen of morphine can reduce the severity of morphine-induced dependency and neurodegeneration. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Tsai, Shih-Ying; Chen, Kuen-Bao; Hsu, Sheng-Feng; Chen, Julia Yi-Ru
2014-01-01
Electroacupuncture (EA) is a complementary therapy to improve morphine analgesia for postoperative pain, but underlying mechanism is not well-known. Herein, we investigated EA-induced analgesic effect in a plantar incision (PI) model in male Sprague-Dawley rats. PI was performed at the left hind paw. EA of 4 Hz and high intensity or sham needling was conducted at right ST36 prior to PI and repeated for another 2 days. Behavioral responses to mechanical and thermal stimuli, spinal phospho-ERK, and Fos expression were all analyzed. In additional groups, naloxone and morphine were administered to elucidate involvement of opioid receptors and for comparison with EA. EA pretreatment significantly reduced post-PI tactile allodynia for over 1 day; repeated treatments maintained analgesic effect. Intraperitoneal naloxone could reverse EA analgesia. Low-dose subcutaneous morphine (1 mg/kg) had stronger inhibitory effect on PI-induced allodynia than EA for 1 h. However, analgesic tolerance appeared after repeated morphine injections. Both EA and morphine could equally inhibit PI-induced p-ERK and Fos inductions. We conclude that though EA and morphine attenuate postincision pain through opioid receptor activations, daily EA treatments result in analgesic accumulation whereas daily morphine injections develop analgesic tolerance. Discrepant pathways and mechanisms underlying two analgesic means may account for the results. PMID:25530786
Assadi, Assad; Zarrindast, Mohammad Reza; Jouyban, Abolghasem; Samini, Morteza
2011-01-01
The effect of hypericin on the expression of morphine-induced conditioned place preference (CPP) was investigated and compared with the effect of the synthetic antidepressants. The CPP paradigms took place over six days using an unbiased procedure. The results demonstrate that intra-peritoneal (IP) injection of morphine sulfate (2.5, 5 and 10 mg/Kg) significantly induce the CPP in rat. Intra-peritoneal and intracerebroventricular (ICV) injection of hypericin and/or synthetic antidepressants augmented morphine-induced CPP. It has been suggested that the adrenergic, serotonergic and dopaminergic neurotransmissions play an important role in mediating the antidepressant effect of hypericin and this effect may be due to its inhibitory effect on the reuptake of neurotransmitters. Morphine produces a reinforcement (reward) effect by activating. The μ-receptors that facilitate dopaminergic transmission. Serotonin is also a potent stimulator of dopamine release in such a way that an increase in brain serotonin could possibly stimulate the dopaminergic system. In conclusion, it may suggest that the augmentation of morphine-induced CPP by hypericin and synthetic antidepressants may be related to the increasing dopamine and serotonin concentrations in synaptic clefts. PMID:24250400
Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference.
Mu, Ying; Ren, Zhaoxiang; Jia, Jia; Gao, Bo; Zheng, Longtai; Wang, Guanghui; Friedman, Eitan; Zhen, Xuechu
2014-09-25
Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP). The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10 did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB (pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC. The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of opioid addiction.
Evaluation of the antinociceptive activity of extracts of Sonchus oleraceus L. in mice.
Vilela, Fabiana Cardoso; de Mesquita Padilha, Marina; Dos Santos-E-Silva, Lucas; Alves-da-Silva, Geraldo; Giusti-Paiva, Alexandre
2009-07-15
Sonchus oleraceus L. has been used to relieve pain in Brazilian folk medicine. Sonchus oleraceus L. has been used to relieve pain in Brazilian folk medicine. This study was conducted to establish the antinociceptive properties of hydroethanolic and dichloromethane extracts from aerial parts of Sonchus oleraceus in mice using chemical and thermal models of nociception. The formalin, hot plate, and tail immersion tests as well as acetic acid-induced writhing were used to investigate the antinociceptive activity in mice. Given orally, the extracts at test doses of 30-300 mg/kg, produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin since decreased the number of writhing episodes and the time licking. Treatment with the extracts in the same doses produced a significant increase of the reaction time in tail immersion and in the hot plate test. The extracts administered at 300 mg/kg, p.o. had a stronger antinociceptive effect than indomethacin (5mg/kg, p.o.) and morphine (10mg/kg, p.o.). The extracts of Sonchus oleraceus markedly demonstrated antinociceptive action in mice, which supports previous claims of its traditional use.
Meng, Fanjun; Li, Yan; Chi, Wenying; Li, Junfa
2016-07-01
Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.
Banerjee, Santanu; Meng, Jingjing; Das, Subhas; Krishnan, Anitha; Haworth, Justin; Charboneau, Richard; Zeng, Yan; Ramakrishnan, Sundaram; Roy, Sabita
2013-01-01
Development of tolerance to endotoxin prevents sustained hyper inflammation during systemic infections. Here we report for the first time that chronic morphine treatment tempers endotoxin tolerance resulting in persistent inflammation, septicemia and septic shock. Morphine was found to down-regulate endotoxin/LPS induced miR-146a and 155 in macrophages. However, only miR-146a over expression, but not miR-155 abrogates morphine mediated hyper-inflammation. Conversely, antagonizing miR-146a (but not miR-155) heightened the severity of morphine-mediated hyper-inflammation. These results suggest that miR-146a acts as a molecular switch controlling hyper-inflammation in clinical and/or recreational use of morphine. PMID:23756365
Picrotoxin-induced seizures modified by morphine and opiate antagonists.
Thomas, J; Nores, W L; Kenigs, V; Olson, G A; Olson, R D
1993-07-01
The effects of naloxone, Tyr-MIF-1, and MIF-1 on morphine-mediated changes in susceptibility to picrotoxin-induced seizures were studied. Rats were pretreated with naloxone, MIF-1, Tyr-MIF-1, or saline. At 15-min intervals, they received a second pretreatment of morphine or saline and then were tested for seizures following a convulsant dose of picrotoxin. Several parameters of specific categories of seizures were scored. Morphine increased the number of focal seizure episodes, duration of postseizure akinesis, and incidence of generalized clonic seizures. Naloxone tended to block the morphine-mediated changes in susceptibility. Tyr-MIF-1 had effects similar to naloxone on duration of postseizure immobility but tended to potentiate the effects of morphine on focal seizure episodes. The effects of morphine and the opiate antagonists on focal seizure episodes and postseizure duration suggest the general involvement of several types of opiate receptors in these picrotoxin-induced behaviors. However, the observation of antagonistic effects for Tyr-MIF-1 on immobility but agonistic effects for focal seizures suggests that the type of effect exerted by opiate agents may depend upon other neuronal variables.
Khaloo, Pegah; Sadeghi, Banafshe; Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Haj-Mirzaian, Arya; Zolfagharie, Samira; Dehpour, Ahmad-Reza
2016-10-01
Major depressive disorder is disease with high rate of morbidity and mortality. Stressful events lead to depression and they can be used as a model of depression in rodents. In this study we aimed to investigate whether lithium modifies the stressed-induced depression through blockade of opioid receptors in mice. We used foot shock stress as stressor and forced swimming test (FST), tail suspension test (TST) and open field test (OFT) to evaluation the behavioral responses in mice. We also used naltrexone hydrochloride (as opioid receptor antagonist), and morphine (as opioid receptor agonist). Our results displayed that foot-shock stress significantly increased the immobility time in TST and FST but it could not change the locomotor behavior in OFT. When we combined the low concentrations of lithium and naltrexone a significant reduction in immobility time was seen in the FST and TST in comparison with control foot-shock stressed group administered saline only. Despite the fact that our data showed low concentrations of lithium, when administered independently did not significantly affect the immobility time. Also our data indicated that concurrent administration of lithium and naltrexone had no effect on open field test. Further we demonstrated that simultaneous administration of morphine and lithium reverses the antidepressant like effect of active doses of lithium. Our data acclaimed that we lithium can augment stressed-induced depression and opioid pathways are involved in this action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Dextromethorphan differentially affects opioid antinociception in rats
Chen, Shiou-Lan; Huang, Eagle Yi-Kung; Chow, Lok-Hi; Tao, Pao-Luh
2005-01-01
Opioid drugs such as morphine and meperidine are widely used in clinical pain management, although they can cause some adverse effects. A number of studies indicate that N-methyl-D-aspartate (NMDA) receptors may play a role in the mechanism of morphine analgesia, tolerance and dependence. Being an antitussive with NMDA antagonist properties, dextromethorphan (DM) may have some therapeutic benefits when coadministered with morphine. In the present study, we investigated the effects of DM on the antinociceptive effects of different opioids. We also investigated the possible pharmacokinetic mechanisms involved. The antinociceptive effects of the μ-opioid receptor agonists morphine (5 mg kg−1, s.c.), meperidine (25 mg kg−1, s.c.) and codeine (25 mg kg−1, s.c.), and the κ-opioid agonists nalbuphine (8 mg kg−1, s.c.) and U-50,488H (20 mg kg−1, s.c.) were studied using the tail-flick test in male Sprague–Dawley rats. Coadministration of DM (20 mg kg−1, i.p.) with these opioids was also performed and investigated. The pharmacokinetic effects of DM on morphine and codeine were examined, and the free concentration of morphine or codeine in serum was determined by HPLC. It was found that DM potentiated the antinociceptive effects of some μ-opioid agonists but not codeine or κ-opioid agonists in rats. DM potentiated morphine's antinociceptive effect, and acutely increased the serum concentration of morphine. In contrast, DM attenuated the antinociceptive effect of codeine and decreased the serum concentration of its active metabolite (morphine). The pharmacokinetic interactions between DM and opioids may partially explain the differential effects of DM on the antinociception caused by opioids. PMID:15655510
14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.
Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud
2017-11-05
14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.
Khalilzadeh, Emad; Vafaei Saiah, Gholamreza; Hasannejad, Hamideh; Ghaderi, Adel; Ghaderi, Shahla; Hamidian, Gholamreza; Mahmoudi, Razzagh; Eshgi, Davoud; Zangisheh, Mahsa
2015-01-01
Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Chemical composition of EOVAC was analyzed using gas chromatography - mass spectrometry (GC-MS) and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. EOVAC (s.c.) and morphine (i.p.) significantly (p<0.05) reduced pain responses in both formalin and tail immersion tests. In the study of evolved mechanisms, pretreatment with naloxone or atropine significantly (p <0.05) reversed the essential oil-induced analgesia in both formalin and tail immersion tests. Moreover, EOVAC and Piroxicam produced significant (p<0.05) inhibition in the acetic acid-induced writhing response. EOVAC did not show any mortality even at high dose (5 g/kg, p.o.) of administration in toxicity test. Moreover, according to GC-MS results, major components of the EOVAC were α-pinene (14.83%), limonene (10.29%), β-caryophyllene (6.9%), sabinene (5.27%), and β-farnesene (5.9%). These results suggest that endogenous opioidergic system as well as muscarinergic receptors of cholinergic system may be involve in the antinociceptive activity of Vitex agnus-castus essential oil in these models of pain in rats.
Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil
Khalilzadeh, Emad; Vafaei Saiah, Gholamreza; Hasannejad, Hamideh; Ghaderi, Adel; Ghaderi, Shahla; Hamidian, Gholamreza; Mahmoudi, Razzagh; Eshgi, Davoud; Zangisheh, Mahsa
2015-01-01
Objective: Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Materials and methods: Chemical composition of EOVAC was analyzed using gas chromatography – mass spectrometry (GC-MS) and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. Results: EOVAC (s.c.) and morphine (i.p.) significantly (p<0.05) reduced pain responses in both formalin and tail immersion tests. In the study of evolved mechanisms, pretreatment with naloxone or atropine significantly (p <0.05) reversed the essential oil-induced analgesia in both formalin and tail immersion tests. Moreover, EOVAC and Piroxicam produced significant (p<0.05) inhibition in the acetic acid-induced writhing response. EOVAC did not show any mortality even at high dose (5 g/kg, p.o.) of administration in toxicity test. Moreover, according to GC-MS results, major components of the EOVAC were α-pinene (14.83%), limonene (10.29%), β-caryophyllene (6.9%), sabinene (5.27%), and β-farnesene (5.9%). Conclusions: These results suggest that endogenous opioidergic system as well as muscarinergic receptors of cholinergic system may be involve in the antinociceptive activity of Vitex agnus-castus essential oil in these models of pain in rats. PMID:26101755
Brase, D A; Ward, C R; Bey, P S; Dewey, W L
1991-01-01
The mouse locomotor activation test of opiate action in a 2+2 dose parallel line assay was used in a repeated testing paradigm to determine the test, opiate and hexose specificities of a previously reported antagonism of morphine-induced antinocociception by hyperglycemia. In opiate specificity studies, fructose (5 g/kg, i.p.) significantly reduced the potency ratio for morphine and methadone, but not for levorphanol, meperidine or phenazocine when intragroup comparisons were made. In intergroup comparisons, fructose significantly reduced the potencies of levorphanol and phenazocine, but not methadone or meperidine. In hexose/polyol specificity studies, tagatose and fructose significantly reduced the potency ratio for morphine, whereas glucose, galactose, mannose and the polyols, sorbitol and xylitol, caused no significant decrease in potency. Fructose, tagatose, glucose and mannose (5 g/kg, i.p.) were tested for effects on brain morphine levels 30 min after morphine (60 min after sugar), and all four sugars significantly increased brain morphine relative to saline-pretreated controls. It is concluded that the antagonism of morphine by acute sugar administration shows specificity for certain sugars and occurs despite sugar-induced increases in the distribution of morphine to the brain. Furthermore, the effects of fructose show an opiate specificity similar to that of glucose on antinociception observed previously in our laboratory, except that methadone was also significantly inhibited in the present study, when a repeated-testing experimental design was used.
Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang
2014-06-18
This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.
Vargas-Perez, Hector; Ting-A-Kee, Ryan A; Heinmiller, Andrew; Sturgess, Jessica E; van der Kooy, Derek
2007-06-01
The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.
Role of opioid system in verapamil-induced antinociception in a rat model of orofacial pain
Tamaddonfard, Esmaeal; Erfanparast, Amir; Taati, Mina; Dabbaghi, Milad
2014-01-01
Calcium, through its various channels involves in local, spinal and supra-spinal transmission of pain. In the present study, we investigated the separate and combined treatment effects of verapamil (a calcium channel blocker), morphine (an opioid agonist) and naloxone (an opioid antagonist) on pain in the orofacial region of rats. Orofacial pain was induced by subcutaneous (SC) injection of formalin (50 µL, 1.5%) into the left upper lip side, and the time durations spent face rubbing with epsilateral forepaw were recorded in three min blocks for a period of 45 min. Formalin induced a biphasic pattern (first phase: 0-3 min; second phase: 15-33 min) of pain. Intraperitoneal (IP) injections of verapamil (2 and 8 mg kg-1) and morphine (2 and 4 mg kg-1) suppressed orofacial pain. Co-administration of sub-analgesic doses of verapamil (0.5 mg kg-1) and morphine (1 mg kg-1) produced second phase analgesia. Both phases of formalin-induced pain were suppressed when an analgesic dose (2 mg kg-1) of verapamil co-administered with a sub-analgesic dose (1 mg kg-1) of morphine. The SC injection of naloxone (2 mg kg-1) alone with no effect on pain intensity, prevented the antinociceptive effects induced by morphine (2 mg kg-1), but not verapamil (2 mg kg-1). The obtained results showed antinociceptive effects for verapamli and morphine on orofacial pain. Co-administrations of verapamil and morphine produced antinociceptive effects. It seems that opioid analgesic system may not have a role in the verapamil-induced antinociception. PMID:25568692
Sadeghzadeh, Fatemeh; Babapour, Vahab; Haghparast, Abbas
2015-01-01
Dopamine is a predominant neurotransmitter in the nervous system, which plays an important role in both drug priming- and cue-induced reinstatement of cocaine and heroin seeking. Therefore, in the present study, the conditioned place preference (CPP) paradigm was used to evaluate the effects of intra-accumbal administration of SCH23390 as a dopamine D1-like receptor antagonist on food deprivation (FD) and drug priming-induced reinstatement. Sixty-eight adult male albino Wistar rats weighing 200-280 g were bilaterally implanted by cannulae into the nucleus accumbens (NAc). For induction of the CPP, subcutaneous (sc) administration of morphine (5mg/kg) was used daily during a three-day conditioning phase. The conditioning score and locomotor activity were recorded by using the Ethovision software. Under extinction conditions, rats were given an 'off' period and were tested for FD-induced reinstatement following the 24-h or 48-h FD condition, and for drug priming-induced reinstatement under the sated condition following an injection of 0.5 and 1mg/kg (sc) morphine. In the next experiments, animals received different doses of intra-accumbal SCH23390 (0.25, 1 and 4 μg/0.5 μl saline) bilaterally and were subsequently tested for FD- and morphine priming-induced reinstatement. Our findings indicated that only a dose of 1mg/kg and not 0.5mg/kg of morphine induced the reinstatement of morphine. 24-h FD similar to 48-h FD induced the reinstatement of seeking behaviors facilitated by an ineffective dose of morphine (0.5mg/kg). Furthermore, the D1-like receptor antagonist attenuated FD- and drug priming-induced reinstatement dose-dependently. It is concluded that FD- and drug priming-induced reinstatement may be mediated, at least in some way, by activation of dopamine D1-like receptors in the NAc. Copyright © 2015 Elsevier B.V. All rights reserved.
Lu, Guan-Yi; Wu, Ning; Zhang, Zhao-Long; Ai, Jing; Li, Jin
2011-10-10
d-Cycloserine (DCS), a partial agonist at the strychnine-insensitive glycine recognition site on the N-methyl-d-aspartate (NMDA) receptor complex, has been shown to facilitate the extinction and prevent the relapse of cocaine-induced conditioned place preference (CPP) when administered before or after each extinction trail. However, some studies have suggested that DCS does not influence or even enhance relapse of seeking behavior on cocaine self-administration (SA) in rats or cocaine-dependent individuals undergoing clinical exposure treatment. Furthermore, there are no reports on the effects of DCS and the extinction of morphine-conditioned behaviors in mice. The present study investigated the effects of DCS on extinction by exposing mice to drug-paired cues and the subsequent reinstatement of morphine-primed CPP. Our results showed that DCS at doses of 7.5, 15, and 30mg/kg did not induce conditioned appetitive or aversive effects and DCS combined with morphine conditioning failed to affect the acquisition of morphine-induced CPP. Moreover, pretreatment with DCS (7.5, 15, and 30mg/kg, i.p.) prior to extinction training had no significant effects on the extinction and subsequent morphine-primed reinstatement of morphine-induced CPP. These results suggested that DCS may not be a powerful adjunct for cue exposure therapy of opioid addiction. In view of differing outcomes in both preclinical and clinical studies, the potential of DCS in exposure treatment of drug-seeking behaviors should be carefully evaluated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Morphine induces albuminuria by compromising podocyte integrity.
Lan, Xiqian; Rai, Partab; Chandel, Nirupama; Cheng, Kang; Lederman, Rivka; Saleem, Moin A; Mathieson, Peter W; Husain, Mohammad; Crosson, John T; Gupta, Kalpna; Malhotra, Ashwani; Singhal, Pravin C
2013-01-01
Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.
Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein
2017-10-17
This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
Komatsu, Takaaki; Sasaki, Mika; Sanai, Kengo; Kuwahata, Hikari; Sakurada, Chikai; Tsuzuki, Minoru; Iwata, Yohko; Sakurada, Shinobu; Sakurada, Tsukasa
2009-09-01
The present study sought to examine the mechanism of substance P to modulate the antinociceptive action of intrathecal (i.t.) morphine in paw-licking/biting response evoked by subcutaneous injection of capsaicin into the plantar surface of the hindpaw in mice. The i.t. injection of morphine inhibited capsaicin-induced licking/biting response in a dose-dependent manner. Substance P (25 and 50 pmol) injected i.t. alone did not alter capsaicin-induced nociception, whereas substance P at a higher dose of 100 pmol significantly reduced the capsaicin response. Western blots showed the constitutive expression of endopeptidase-24.11 in the dorsal and ventral parts of lumbar spinal cord of mice. The N-terminal fragment of substance P (1-7), which is known as a major product of substance P by endopeptidase-24.11, was more effective than substance P on capsaicin-induced nociception. Combination treatment with substance P (50 pmol) and morphine at a subthreshold dose enhanced the antinociceptive effect of morphine. The enhanced effect of the combination of substance P with morphine was reduced significantly by co-administration of phosphoramidon, an inhibitor of endopeptidase-24.11. Administration of D-isomer of substance P (1-7), [D-Pro(2), D-Phe(7)]substance P (1-7), an inhibitor of [(3)H] substance P (1-7) binding, or antisera against substance P (1-7) reversed the enhanced antinociceptive effect by co-administration of substance P and morphine. Taken together these data suggest that morphine-induced antinociception may be enhanced through substance P (1-7) formed by the enzymatic degradation of i.t. injected substance P in the spinal cord.
Staub, D R; Lunden, J W; Cathel, A M; Dolben, E L; Kirby, L G
2012-06-01
The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Previous work has shown that the dorsal raphe nucleus (DR)-5-HT system is inhibited by swim stress via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor (CRF). Additionally, the DR 5-HT system is regulated by opioids. The present study tests the hypothesis that the DR 5-HT system regulates stress-induced opioid relapse. In the first experiment, electrophysiological recordings of GABA synaptic activity in 5-HT DR neurons were conducted in brain slices from Sprague-Dawley rats that were exposed to swim stress-induced reinstatement of previously extinguished morphine conditioned place preference (CPP). Behavioral data indicate that swim stress triggers reinstatement of morphine CPP. Electrophysiology data indicate that 5-HT neurons in the morphine-conditioned group exposed to stress had increased amplitude of inhibitory postsynaptic currents (IPSCs), which would indicate greater postsynaptic GABA receptor density and/or sensitivity, compared to saline controls exposed to stress. In the second experiment, rats were exposed to either morphine or saline CPP and extinction, and then 5-HT DR neurons from both groups were examined for sensitivity to CRF in vitro. CRF induced a greater inward current in 5-HT neurons from morphine-conditioned subjects compared to saline-conditioned subjects. These data indicate that morphine history sensitizes 5-HT DR neurons to the GABAergic inhibitory effects of stress as well as to some of the effects of CRF. These mechanisms may sensitize subjects with a morphine history to the dysphoric effects of stressors and ultimately confer an enhanced vulnerability to stress-induced opioid relapse. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Lin; Shi, Wanliang; Li, Hui; Sun, Xiuli; Fan, Xionglin; Lesage, Gene; Li, Hui; Li, Yi; Zhang, Yi; Zhang, Xiumei; Zhang, Ying; Yin, Deling
2010-02-19
Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-alpha, IL-1beta, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3beta in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3beta in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.
Kamuhabwa, A; Ezekiel, D
2009-10-01
Morphine and other opioids is the mainstay of cancer pain management. However, considerable fears surrounding their use present barriers to pain control. The aim of this study was to assess the rational use and effectiveness of morphine for management of pain in the palliative care of cancer patients at Ocean Road Cancer Institute (ORCI) in Tanzania. A total of 100 cancer patients who were receiving morphine therapy at the ORCI were interviewed to get information on morphine use. In addition, information on the prescribed doses of morphine was obtained from medical records of 200 patients who have used morphine from September 2005 to April 2006. Both outpatients and inpatients with advanced cancer who were receiving morphine for palliative care were involved. Seven (7) palliative caregivers, including two doctors, two nurses, a pharmacist, a pharmaceutical technician and a social worker were also interviewed. Of the 100 interviewees, 37% were aware of morphine. The level of education and duration of therapy had an impact on the awareness. The results also showed that oral morphine solution was the most common route (96%) of administration. Fifty-seven percent of the patients described the doses of morphine given to be effective in relieving their pain. Although most patients (79%) experienced morphine-induced side effects, the majority (93%) were continuing with the therapy. There were no indication of irrational use of morphine and morphine-induced side effects were well managed. The majority of patients and caregivers had positive attitude towards the use of morphine. In conclusion, the study revealed that the use of morphine is acceptable among a large proportion of patients receiving palliative care and that the majority of them find the doses given effective to relieve their pain.
Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil
2013-10-01
Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present study was carried out to study the role of α₂-adrenoceptors, imidazoline, and ET(A) receptors in morphine and oxycodone hypothermia in mice. Body temperature was determined over 6 h in male Swiss Webster mice treated with morphine, oxycodone, agmatine, and combination of agmatine with morphine or oxycodone. Yohimbine, idazoxan, and BMS182874 were used to determine involvement of α₂-adrenoceptors, imidazoline, and ET(A) receptors, respectively. Morphine and oxycodone produced significant hypothermia that was not affected by α₂-adrenoceptor antagonist yohimbine, imidazoline receptor/α₂ adrenoceptor antagonist idazoxan, or ET(A) receptor antagonist, BMS182874. Agmatine did not produce hypothermia; however, it blocked oxycodone but not morphine-induced hypothermia. Agmatine-induced blockade of oxycodone hypothermia was inhibited by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared with yohimbine. Combined administration of BMS182874 and agmatine did not produce changes in body temperature in mice. However, when BMS182874 was administered along with agmatine and oxycodone, it blocked agmatine-induced reversal of oxycodone hypothermia. This is the first report demonstrating that agmatine does not affect morphine hypothermia in mice, but reverses oxycodone hypothermia. Imidazoline receptors and α₂-adrenoceptors are involved in agmatine-induced reversal of oxycodone hypothermia. Our findings also suggest that ET(A) receptors may be involved in blockade of oxycodone hypothermia by agmatine. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.
Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W.
2015-01-01
Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and social problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT2C receptor (5-HT2CR) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT2CR agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT2CR activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT2CR agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT2CR antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT2CR protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT2CR can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT2CR may represent a new avenue for the treatment of opioid addiction. PMID:26432939
Boghosian, James D; Luethy, Anita; Cotten, Joseph F
2018-07-01
Thyrotropin releasing hormone (TRH) is a tripeptide hormone and a neurotransmitter widely expressed in the central nervous system that regulates thyroid function and maintains physiologic homeostasis. Following injection in rodents, TRH has multiple effects including increased blood pressure and breathing. We tested the hypothesis that TRH and its long-acting analog, taltirelin, will reverse morphine-induced respiratory depression in anesthetized rats following intravenous or intratracheal (IT) administration. TRH (1 mg/kg plus 5 mg/kg/h, i.v.) and talitrelin (1 mg/kg, i.v.), when administered to rats pretreated with morphine (5 mg/kg, i.v.), increased ventilation from 50% ± 6% to 131% ± 7% and 45% ± 6% to 168% ± 13%, respectively (percent baseline; n = 4 ± S.E.M.), primarily through increased breathing rates (from 76% ± 9% to 260% ± 14% and 66% ± 8% to 318% ± 37%, respectively). By arterial blood gas analysis, morphine caused a hypoxemic respiratory acidosis with decreased oxygen and increased carbon dioxide pressures. TRH decreased morphine effects on arterial carbon dioxide pressure, but failed to impact oxygenation; taltirelin reversed morphine effects on both arterial carbon dioxide and oxygen. Both TRH and talirelin increased mean arterial blood pressure in morphine-treated rats (from 68% ± 5% to 126% ± 12% and 64% ± 7% to 116% ± 8%, respectively; n = 3 to 4). TRH, when initiated prior to morphine (15 mg/kg, i.v.), prevented morphine-induced changes in ventilation; and TRH (2 mg/kg, i.v.) rescued all four rats treated with a lethal dose of morphine (5 mg/kg/min, until apnea). Similar to intravenous administration, both TRH (5 mg/kg, IT) and taltirelin (2 mg/kg, IT) reversed morphine effects on ventilation. TRH or taltirelin may have clinical utility as an intravenous or inhaled agent to antagonize opioid-induced cardiorespiratory depression. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Meng, Min; Zhao, Xinhan; Dang, Yonghui; Ma, Jingyuan; Li, Lixu; Gu, Shanzhi
2013-06-26
It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking
Ong, E W; Xue, L; Olmstead, M C; Cahill, C M
2015-01-01
BACKGROUND AND PURPOSE The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. EXPERIMENTAL APPROACH Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. KEY RESULTS A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. CONCLUSIONS AND IMPLICATIONS The results support the hypothesis that prolonged morphine treatment induces the formation of MOP–DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24819092
Anselmi, Laura; Jaramillo, Ingrid; Palacios, Michelle; Huynh, Jennifer; Sternini, Catia
2013-06-01
Morphine differs from most opiates its poor ability to internalize μ opioid receptors (μORs). However, chronic treatment with morphine produces adaptational changes at the dynamin level, which enhance the efficiency of acute morphine stimulation to promote μOR internalization in enteric neurons. This study tested the effect of chronic treatment with fentanyl, a μOR-internalizing agonist, on ligand-induced endocytosis and the expression of the intracellular trafficking proteins, dynamin and β-arrestin, in enteric neurons using organotypic cultures of the guinea pig ileum. In enteric neurons from guinea pigs chronically treated with fentanyl, μOR immunoreactivity was predominantly at the cell surface after acute exposure to morphine with a low level of μOR translocation, slightly higher than in neurons from naïve animals. This internalization was not due to morphine's direct effect, because it was also observed in neurons exposed to medium alone. By contrast, D-Ala2-N-Me-Phe4-Gly-ol5-enkephalin (DAMGO), a potent μOR-internalizing agonist, induced pronounced and rapid μOR endocytosis in enteric neurons from animals chronically treated with fentanyl or from naïve animals. Chronic fentanyl treatment did not alter dynamin or β-arrestin expression. These findings indicate that prolonged activation of μORs with an internalizing agonist such as fentanyl does not enhance the ability of acute morphine to trigger μOR endocytosis or induce changes in intracellular trafficking proteins, as observed with prolonged activation of μORs with a poorly internalizing agonist such as morphine. Cellular adaptations induced by chronic opiate treatment might be ligand dependent and vary with the agonist efficiency to induce receptor internalization. Copyright © 2013 Wiley Periodicals, Inc.
Karimi, Sara; Attarzadeh-Yazdi, Ghassem; Yazdi-Ravandi, Saeid; Hesam, Soghra; Azizi, Pegah; Razavi, Yasaman; Haghparast, Abbas
2014-05-01
Addiction is a common psychiatric disease and stress has an important role in the drug seeking and relapse behaviors. The involvement of basolateral amygdala (BLA) in the effects of stress on reward pathway is discussed in several studies. In this study, we tried to find out the involvement of glucocorticoid receptors (GRs) in the BLA in stress-induced reinstatement of extinguished morphine-induced conditioned place preference (CPP) in rats. The CPP paradigm was done in adult male Wistar rats weighing 220-320 g, and conditioning score and locomotor activity were recorded by Ethovision software. Animals received effective dose of morphine (5mg/kg) daily, during the 3-day conditioning phase. In extinction phase, rats were put in the CPP box for 30 min a day for 8 days. After extinction, animals were injected by corticosterone (10 m/kg) or exposed to forced swim stress (FSS) 10 min before subcutaneous administration of ineffective dose of morphine (0.5mg/kg) in order to reinstate the extinguished morphine-CPP. To block the glucocorticoid receptors in the BLA, after stereotaxic surgery and placing two cannulae in this area bilaterally, animals received GR antagonist mifepristone (RU38486; 0.3, 3 and 30 ng/0.3 μl DMSO per side) prior to exposure to FSS then each animal received ineffective dose of morphine (0.5mg/kg) as drug-induced reinstatement. The results revealed that physical stress (FSS) but not exogenous corticosterone can significantly induce reinstatement of extinguished morphine-CPP, and intra-BLA mifepristone prevents the stress-induced reinstatement. It can be proposed that stress partially exerts its effect on the reward pathway via glucocorticoid receptors in the BLA. Copyright © 2014 Elsevier B.V. All rights reserved.
Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O.; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia
2014-01-01
The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine. PMID:24451133
Lee, Pin-Tse; Chao, Po-Kuan; Ou, Li-Chin; Chuang, Jian-Ying; Lin, Yen-Chang; Chen, Shu-Chun; Chang, Hsiao-Fu; Law, Ping-Yee; Loh, Horace H.; Chao, Yu-Sheng; Su, Tsung-Ping; Yeh, Shiu-Hwa
2014-01-01
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5′ untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR. PMID:25361975
Effects of morphine on stress induced anxiety in rats: role of nitric oxide and Hsp70.
Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita
2015-02-01
The present study evaluated the effects of morphine on acute and chronic restraint stress (RS) induced anxiety modulation and the possible involvement of nitric oxide (NO) and heat shock proteins (Hsp70) during such effects. Acute RS (×1) induced anxiogenesis in the elevated plus maze (EPM) test which was associated with lowered brain NO metabolites (NOx) and elevated Hsp70 levels. Pretreatment with morphine (1 and 5 mg/kg) and L-arginine (500 mg/kg) attenuated the RS effects on EPM activity and brain NOx, whereas, Hsp70 levels were further augmented. Co-administration of both agents showed synergistic effects. By contrast, repeated RS (×15) did not induce any significant changes in EPM activity or brain NOx, but brain Hsp70 levels stayed elevated. Administration of morphine or L-arginine prior to chronic RS did not influence such chronic stress induced changes in behavioral and biochemical markers, but appreciably attenuated chronic RS induced elevation in Hsp70 levels. These results suggest that acute and chronic RS induced anxiety modulations were differentially influenced by morphine and L-arginine and that complex interactions involving brain NO and unregulated Hsp70 could regulate such effects. Copyright © 2014. Published by Elsevier Inc.
Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita
2014-04-15
The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Rodríguez-Muñoz, María; de la Torre-Madrid, Elena; Sánchez-Blázquez, Pilar; Garzón, Javier
2007-01-01
Background In general, opioids that induce the recycling of μ-opioid receptors (MORs) promote little desensitization, although morphine is one exception to this rule. While morphine fails to provoke significant internalization of MORs in cultured cells, it does stimulate profound desensitization. In contrast, morphine does promote some internalization of MORs in neurons although this does not prevent this opioid from inducing strong antinociceptive tolerance. Results In neurons, morphine stimulates the long-lasting transfer of MOR-activated Gα subunits to proteins of the RGS-R7 and RGS-Rz subfamilies. We investigated the influence of this regulatory process on the capacity of morphine to promote desensitization and its association with MOR recycling in the mature nervous system. In parallel, we also studied the effects of [D-Ala2, N-MePhe4, Gly-ol5] encephalin (DAMGO), a potent inducer of MOR internalization that promotes little tolerance. We observed that the initial exposure to icv morphine caused no significant internalization of MORs but rather, a fraction of the Gα subunits was stably transferred to RGS proteins in a time-dependent manner. As a result, the antinociception produced by a second dose of morphine administered 6 h after the first was weaker. However, this opioid now stimulated the phosphorylation, internalization and recycling of MORs, and further exposure to morphine promoted little tolerance to this moderate antinociception. In contrast, the initial dose of DAMGO stimulated intense phosphorylation and internalization of the MORs associated with a transient transfer of Gα subunits to the RGS proteins, recovering MOR control shortly after the effects of the opioid had ceased. Accordingly, the recycled MORs re-established their association with G proteins and the neurons were rapidly resensitized to DAMGO. Conclusion In the nervous system, morphine induces a strong desensitization before promoting the phosphorylation and recycling of MORs. The long-term sequestering of morphine-activated Gα subunits by certain RGS proteins reduces the responses to this opioid in neurons. This phenomenon probably increases free Gβγ dimers in the receptor environment and leads to GRK phosphorylation and internalization of the MORs. Although, the internalization of the MORs permits the transfer of opioid-activated Gα subunits to the RGSZ2 proteins, it interferes with the stabilization of this regulatory process and recycled MORs recover the control on these Gα subunits and opioid tolerance develops slowly. PMID:17634133
Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band
2012-06-01
Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.
Hollais, André W; Patti, Camilla L; Zanin, Karina A; Fukushiro, Daniela F; Berro, Laís F; Carvalho, Rita C; Kameda, Sonia R; Frussa-Filho, Roberto
2014-03-01
1. It has been suggested that the high prevalence of drug abuse in schizophrenics is related to chronic treatment with typical neuroleptics and dopaminergic supersensitivity that develops as a consequence. Within this context, atypical neuroleptics do not seem to induce this phenomenon. In the present study, we investigated the effects of acute administration or withdrawal from long-term administration of haloperidol and/or ziprasidone on morphine-induced open-field behaviour in mice. 2. In the first experiment, mice were given a single injection of haloperidol (1 mg/kg, i.p.) or several doses of ziprasidone (2, 4 or 6 mg/kg, i.p.) and motor activity was quantified by the open-field test. The aim of the second experiment was to verify the effects of an acute injection of haloperidol (1 mg/kg) or ziprasidone (6 mg/kg) on 20 mg/kg morphine-induced behaviours in the open-field test. In the third experiment, mice were treated with 1 mg/kg haloperidol and/or 2, 4 or 6 mg/kg ziprasidone for 20 days. Seventy-two hours after the last injection, mice were injected with 20 mg/kg, i.p., morphine and then subjected to the open-field test. Acute haloperidol or ziprasidone decreased spontaneous general activity and abolished morphine-induced locomotor stimulation. 3. Withdrawal from haloperidol or ziprasidone did not modify morphine-elicited behaviours in the open-field test. The results suggest that withdrawal from neuroleptic treatments does not contribute to the acute effect of morphine in schizophrenic patients. © 2014 Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavaliers, M.; Ossenkopp, K.P.
1990-02-26
One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKCmore » activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.« less
Lin, XiaoJing; Wang, QingSong; Cheng, Yong; Ji, JianGuo; Yu, Long-Chuan
2011-08-01
Repeated exposures to addictive drugs result in persistent or even permanent expression changes of proteins in addiction-related brain regions, such as nucleus accumbens, hippocampus and prefrontal cortex while the changes of protein content in amygdala were seldom studied. Here we aimed to find the proteins involved in the process of morphine-induced conditioned place preference (CPP). The model of morphine-induced CPP was established in rats and the rat amygdala tissues were obtained in different stages of morphine-induced CPP: establishment group, extinction group, reinstatement group and saline group as a control. Two-dimensional electrophoresis (2-DE) was performed to analyze and compare the changes of protein expression profiles in the amygdala of rats during the process of morphine-induced CPP. There were eighty proteins with 1.3-fold changes in amygdala relative to saline group, most of which were down-regulated. These differentially expressed proteins were mainly involved in metabolism, structure, cell signaling pathway and ubiquitin-proteasome pathway. And we further used methods of reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting to confirm the results of proteomics. Mitosis activated protein kinase1 (MAPK1) was increased in the stages of extinction and reinstatement of morphine-induced CPP, while glial fibrillary acidic protein (GFAP) was decreased in the stage of extinction. Our results provide some proteins and cellular signaling pathways involved in the molecular mechanisms of opioid addiction in amygdala. Copyright © 2011 Elsevier B.V. All rights reserved.
Analgesic tolerance to morphine is regulated by PPARγ
de Guglielmo, Giordano; Kallupi, Marsida; Scuppa, Giulia; Stopponi, Serena; Demopulos, Gregory; Gaitanaris, George; Ciccocioppo, Roberto
2014-01-01
Background and Purpose Opioid drugs are potent analgesics. However, their chronic use leads to the rapid development of tolerance to their analgesic effects and subsequent increase of significant side effects, including drug dependence and addiction. Here, we investigated the role of PPARγ in the development of analgesic tolerance to morphine in mice. Experimental Approach We monitored analgesia on alternate days using the tail immersion test. Key Results Daily administration of morphine (30 mg·kg−1, bid) resulted in the rapid development of tolerance to thermal analgesia. Co-administration of pioglitazone (10 and 30 mg·kg−1, bid) significantly attenuated the development and expression of tolerance. However, pretreatment with GW-9662 (5 mg·kg−1, bid), a selective PPARγ antagonist, completely abolished this effect. Injection of GW-9662 and a lower dose of morphine (15 mg·kg−1, bid) accelerated the development of tolerance to its antinociceptive effect. Subsequently, we found that conditional neuronal PPARγ knockout (KO) mice develop a more rapid and pronounced tolerance to morphine antinociception compared with wild-type (WT) controls. Moreover, in PPARγ KO mice, pioglitazone was no longer able to prevent the development of morphine tolerance. Conclusions and Implications Overall, our results demonstrate that PPARγ plays a tonic role in the modulation of morphine tolerance, and its pharmacological activation may help to reduce its development. These findings provide new information about the role of neuronal PPARγ and suggest that combining PPARγ agonists with opioid analgesics may reduce the development of tolerance and possibly attenuate the potential for opioid abuse. PMID:25048682
Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.
Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M
2010-04-16
The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone. This research provides further validation for using ultra-low dose opioid receptor antagonists in the treatment of various pain syndromes.
Quillinan, Nidia; Lau, Elaine; Virk, Michael; von Zastrow, Mark; Williams, John T
2011-01-01
Chronic treatment with morphine results in a decrease in mu-opioid receptor sensitivity, an increase in acute desensitization and a reduction in the recovery from acute desensitization in locus coeruleus neurons. With acute administration, morphine is unlike many other opioid agonists in that it does not mediate robust acute desensitization or induce receptor trafficking. This study compares mu-opioid receptor desensitization and trafficking in brain slices taken from rats treated for 6–7 days with a range of doses of morphine (60, 30, 15 mg/kg/day) and methadone (60, 30, 5 mg/kg/day) applied by subcutaneous implantation of osmotic mini pumps. Mice were treated with 45 mg/kg/day. In morphine treated animals, recovery from acute [Met]5enkephalin-induced desensitization and receptor recycling was diminished. In contrast, recovery and recycling were unchanged in slices from methadone treated animals. Remarkably the reduced recovery from desensitization and receptor recycling found in slices from morphine treated animals were not observed in animals lacking β-arrestin2. Further, pharmacological inhibition of GRK2, while not affecting the ability of [Met]5enkephalin to induce desensitization, acutely reversed the delay in recovery from desensitization produced by chronic morphine treatment. These results characterize a previously unidentified function of the GRK/arrestin system in mediating opioid regulation in response to chronic morphine administration. They also suggest that the GRK/arrestin system, rather then serving as a primary mediator of acute desensitization, controls recovery from desensitization by regulating receptor reinsertion to the plasma membrane after chronic treatment with morphine. The sustained GRK/arrestin dependent desensitization is another way in which morphine and methadone are distinguished. PMID:21430144
Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice.
Liang, De-Yong; Li, XiangQi; Clark, J David
2013-01-01
Repeated administration of opioids such as morphine induces persistent behavioral changes including opioid-induced hyperalgesia (OIH), tolerance, and physical dependence. In the current work we explored how the balance of histone acetyltransferase (HAT) versus histone deacetylase (HDAC) might regulate these morphine-induced changes. Nociceptive thresholds, analgesia, and physical dependence were assessed during and for a period of several weeks after morphine exposure. To probe the roles of histone acetylation, the HAT inhibitor curcumin or a selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was administered daily to groups of animals. Histone acetylation in spinal cord was assessed by Western blot and immunohistochemistry. Concurrent administration of curcumin with morphine for 4 days significantly reduced development of opioid-induced mechanical allodynia, thermal hyperalgesia, tolerance, and physical dependence. Conversely, the HDAC inhibitor SAHA enhanced these responses. Interestingly, SAHA treatment after the termination of opioid administration sustained these behavioral changes for at least 4 weeks. Histone H3 acetylation in the dorsal horn of the spinal cord was increased after chronic morphine treatment, but H4 acetylation was unchanged. Moreover, we observed a decrease in HDAC activity in the spinal cords of morphine-treated mice while overall HAT activity was unchanged, suggesting a shift toward a state of enhanced histone acetylation. The current study indicates that epigenetic mechanisms play a crucial role in opioid-induced long-lasting neuroplasticity. These results provide new sight into understanding the mechanisms of opioid-induced neuroplasticity and suggest new strategies to limit opioid abuse potential and increase the value of these drugs as analgesics. Copyright © 2013 American Pain Society. All rights reserved.
Zheng, Hui; Zhang, Yue; Li, Wen; Loh, Horace H; Law, Ping-Yee
2013-04-01
Addictive drugs, including opioids, modulate adult neurogenesis. In order to delineate the probable implications of neurogenesis on contextual memory associated with addiction, we investigated opioid agonist-selective regulation of neurogenic differentiation 1 (NeuroD) activities under the conditioned place preference (CPP) paradigm. Training mice with equivalent doses of morphine and fentanyl produced different CPP extinction rates without measurable differences in the CPP acquisition rate or magnitude. Fentanyl-induced CPP required much longer time for extinction than morphine-induced CPP. We observed a parallel decrease in NeuroD activities and neurogenesis after morphine-induced CPP, but not after fentanyl-induced CPP. Increasing NeuroD activities with NeuroD-lentivirus (nd-vir) injection at the dentate gyrus before CPP training reversed morphine-induced decreases in NeuroD activities and neurogenesis, and prolonged the time required for extinction of morphine-induced CPP. On the other hand, decreasing NeuroD activities via injection of miRNA-190-virus (190-vir) reversed the fentanyl effect on NeuroD and neurogenesis and shortened the time required for extinction of fentanyl-induced CPP. Another contextual memory task, the Morris Water Maze (MWM), was affected similarly by alteration of NeuroD activities. The reduction in NeuroD activities either by morphine treatment or 190-vir injection decreased MWM task retention, while the increase in NeuroD activities by nd-vir prolonged MWM task retention. Thus, by controlling NeuroD activities, opioid agonists differentially regulate adult neurogenesis and subsequent contextual memory retention. Such drug-related memory regulation could have implications in eventual context-associated relapse.
Pravetoni, M.; Harris, A.C.; Birnbaum, A.K.; Pentel, P.R.
2013-01-01
Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines. PMID:23220743
Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.
Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin
2016-12-01
Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.
The extinction of morphine-induced conditioned place preference by histone deacetylase inhibition.
Wang, Ru; Zhang, Yan; Qing, Hua; Liu, Mei; Yang, Peng
2010-10-11
Recent evidence suggests that epigenetic mechanisms have an important role in the development of addictive behavior. However, little is known about the role of epigenetic mechanisms in the extinction of morphine-induced behavioral changes. In this study, we will examine the effect of histone deacetylase (HDAC) inhibitors on extinction of morphine-induced conditioned place preference (CPP). To facilitate extinction, rats will be administered an HDAC inhibitor (HDACi) following nonreinforced exposure to the conditioned context. To measure persistence, rats were subject to a reinstatement test using 3 mg/kg dose of morphine. To exclude the effect of repeated NaBut injections themselves on morphine-CPP in the absence of extinction session, rats received injection of either NaBut or vehicle for 8 days. We found that HDAC inhibition during nonconfined extinction or confined extinction consolidation can facilitate extinction of morphine-induced CPP. We also showed that the extinction of drug seeking via HDAC inhibition modulates extinction learning such that reinstatement behavior is significantly attenuated. There is no effect of repeated NaBut injections themselves on morphine-CPP in the absence of extinction session. In conclusion, our results extend earlier reports on the ability of HDACi to modify the behavioral effects of drugs of abuse. Our increasing understanding of these epigenetic mechanisms will provide key answers to basic processes in drug addiction and hopefully provide insight into designing improved treatments for drug addiction. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine.
Payandemehr, Borna; Rahimian, Reza; Bahremand, Arash; Ebrahimi, Ali; Saadat, Seyedehpariya; Moghaddas, Peiman; Fadakar, Kaveh; Derakhshanian, Hoda; Dehpour, Ahmad Reza
2013-06-13
The anticonvulsant effects of agmatine, an endogenous polyamine and a metabolite of l-arginine, have been shown in various experimental seizure models. Agmatine also potentiates the anti-seizure activity of morphine. The present study aimed to investigate a possible involvement of nitric oxide (NO) pathway in the protection by agmatine and morphine co-administration against pentylenetetrazole (PTZ) -induced seizure in male mice. To this end, the thresholds for the clonic seizures induced by the intravenous administration of PTZ, a GABA antagonist, were assessed. Intraperitoneal administration of morphine at lower dose (1mg/kg) increased the seizure threshold. Also intraperitoneal administration of agmatine (5 and 10mg/kg) increased the seizure threshold significantly. Combination of subeffective doses of morphine and agmatine led to potent anticonvulsant effects. Non-effective doses of morphine (0.1 and 0.5mg/kg) were able to induce anticonvulsant effects in mice pretreated with agmatine (3mg/kg). Concomitant administration of either the non-selective nitric oxide synthase (NOS) inhibitor L-NAME (1, 5mg/kg, i.p.) or the selective NOS inhibitor 7-NI (15, 30mg/kg, i.p.), with an ineffective combination of morphine (0.1mg/kg) plus agmatine (1mg/kg) produced significant anticonvulsant impacts. Moreover, the NO precursor, l-arginine (30, 60mg/kg, i.p.), inhibited the anticonvulsant action of agmatine (3mg/kg) plus morphine (0.5mg/kg) co-administration. Our results indicate that pretreatment of animals with agmatine enhances the anticonvulsant effects of morphine via a mechanism which may involve the NO pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
Meng, Ge; Wu, Ning; Zhang, Cheng; Su, Rui-Bin; Lu, Xin-Qiang; Liu, Yin; Yun, Liu-Hong; Zheng, Jian-Quan; Li, Jin
2008-05-31
ZC88 is a novel non-peptide N-type voltage-sensitive calcium channel blocker synthesized by our institute. In the present study, the oral analgesic activity of ZC88 in animal models of acute and neuropathic pain, and functional interactions between ZC88 and morphine in terms of analgesia, tolerance and dependence were investigated. In mice acetic acid writhing tests, ZC88 (10-80 mg/kg) administered by oral route showed significant antinociceptive effects in a dose-dependent manner. The ED50 values of ZC88 were 14.5 and 14.3 mg/kg in male and female mice, respectively. In sciatic nerve chronic constriction injury rats, mechanical allodynia was ameliorated by oral administration of ZC88 at doses of 14, 28 and 56 mg/kg, suggesting ZC88 relieved allodynic response of neuropathic pain. When concurrently administered with morphine, ZC88 (20-80 mg/kg) dose-dependently potentiated morphine analgesia and attenuated morphine analgesic tolerance in hot-plate tests. ZC88 also prevented chronic exposure to morphine-induced physical dependence and withdrawal, but not morphine-induced psychological dependence in conditioned place preference model. These results suggested that ZC88, a new non-peptide N-type calcium channel blocker, had notable oral analgesia and anti-allodynia for acute and neuropathic pain. ZC88 might be used in pain relief by either application alone or in combination with opioids because it enhanced morphine analgesia while prevented morphine-induced tolerance and physical dependence.
El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla
2017-01-01
Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome. PMID:28280516
Hijazi, Mohamad Ali; El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla
2017-01-01
Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.
Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A
2010-03-01
Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.
The effect of IVPCA morphine on post-hysterectomy bowel function.
Chan, Kuang-Cheng; Cheng, Ya-Jung; Huang, Guang-Ta; Wen, Yuan-Jui; Lin, Chen-Jung; Chen, Li-Kuei; Sun, Wei-Zen
2002-06-01
Although morphine has been shown to induce bowel dysfunction in a dose-dependent fashion, in most relevant studies it was investigated in single bolus injection. Recently, intravenous morphine via patient-controlled analgesia (IVPCA) has been widely used to provide analgesia by divided bolus doses on patients' demand with satisfactory effects. This approach, by reducing the peak serum surge, largely resembles the pharmacokinetic and pharmacodynamic advantage of continuous infusion. There is yet no report on the investigation of its effect on post-operative bowel dysfunction. Fifty-one women who underwent abdominal total hysterectomy (ATH) due to uterine myoma were enrolled to investigate the association between the doses of morphine consumption by PCA and the time of first passage of flatus. In all patients morphine was administered intravenously via a PCA pump immediately after recovery from general anesthesia. We found that 49 out of 51 patients (96%) exhibited mild pain with IVPCA morphine. They had consumed an average dose of 16.9 mg morphine (range, 0-46 mg) upon the first passage of flatus which occurred 2036.4 min (average) post-operatively. There was no correlation between the dose of morphine and the time of first passage of flatus (r = 0.053, P > 0.05). The absence of suppression of bowel movement by IVPCA morphine for post-operative pain control suggests that favorable pharmacokinetic profile of IVPCA can help reduce the morphine-induced bowel dysfunction at its therapeutic level.
Taraschenko, Olga D.; Rubbinaccio, Heather Y.; Shulan, Joseph M.; Glick, Stanley D.; Maisonneuve, Isabelle M.
2007-01-01
Owing to multiple anatomical connections and functional interactions between the habenulo-interpeduncular and the mesolimbic pathways, it has been proposed that these systems could together mediate the reinforcing properties of addictive drugs. 18-Methoxycoronaridine, an agent that reduces morphine self-administration and attenuates dopamine sensitization in the nucleus accumbens in response to repeated morphine, has been shown to produce these effects by acting in the medial habenula and interpeduncular nucleus. Acetylcholine, one of the predominant neurotransmitters in the interpeduncular nucleus, may be a major determinant of these interactions. To determine if and how morphine acts in the interpeduncular nucleus, the effects of acute and repeated administration of morphine on extracellular acetylcholine levels in this brain area were assessed. In addition, the motor behavior of rats receiving repeated morphine administration was monitored during microdialysis sessions. Acutely, morphine produced a biphasic effect on extracellular acetylcholine levels in the interpeduncular nucleus such that low and high doses of morphine (i.e., 5 and 20 mg/kg i.p.) significantly increased and decreased acetylcholine levels, respectively. Repeated administration of the same doses of morphine resulted in tolerance to the inhibitory but not to the stimulatory effects; tolerance was accompanied by sensitization to morphine-induced changes in locomotor activity and stereotypic behavior. The latter results suggest that tolerance to morphine's effect on the cholinergic habenulo-interpeduncular pathway is related to its sensitizing effects on the mesostriatal dopaminergic pathways. PMID:17544456
Dias, C; Wang, Y T; Phillips, A G
2012-08-01
Neuroplasticity including long-term depression (LTD) has been implicated in both learning processes and addiction. LTD can be blocked by intravenous administration of the interference peptide Tat-GluA2(3Y) that prevents regulated endocytosis of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor. In this study, Tat-GluA2(3Y) was used to assess the role of LTD in the induction, expression, extinction and reinstatement of morphine-induced conditioned place preference (CPP). CPP was established in rats by pairing morphine (5 mg/kg, i.p.) or saline with a specific environmental context using a balanced protocol. Tat-GluA2(3Y) (0; 1.5; 2.25 nmol/g; i.v.), scrambled peptide (Tat-GluA2(Sc)), or vehicle was administered during the acquisition phase or prior to the test for CPP. Tat-GluA2(3Y) had no effect on the induction or initial expression of morphine-induced CPP. Rats that received Tat-GluA2(3Y) or Tat-GluA2(Sc) during acquisition were subsequently tested for 11 consecutive days in order to extinguish morphine CPP. CPP was then reinstated by an injection of morphine (5 mg/kg, i.p.). Co-administration of morphine and Tat-GluA2(3Y) during acquisition greatly facilitated extinction of CPP without affecting morphine-induced reinstatement of CPP. Using an intermittent retest schedule with bi-weekly tests to measure the maintenance of CPP, Tat-GluA2(3Y) during the acquisition phase had no effect on the maintenance of CPP. We propose that co-administration of Tat-GluA2(3Y) with morphine during acquisition of CPP weakens the association between morphine and contextual cues leading to rapid extinction of morphine CPP with repeated daily testing. Copyright © 2012 Elsevier B.V. All rights reserved.
Reinstatement of Morphine-Induced Conditioned Place Preference in Mice by Priming Injections
Do Couto, B. Ribeiro; Aguilar, M. A.; Manzanedo, C.; Rodríguez-Arias, M.; Miñarro, J.
2003-01-01
To construct a model of relapse of drug abuse in mice, the induction, we evaluated the extinction and reinstatement of morphine-induced place preference. In Experiment 1, we examined the effects of morphine (0, 2, 3, 5, 10, 20 and 40 mg/kg) in the conditioned place preference (CPP) paradigm. Mice showed CPP with 5, 10, 20 and 40 mg/kg. In Experiment 2, we evaluated the effects of two different extinction procedures. After conditioning with 40 mg/kg of morphine, the mice underwent daily extinction sessions of 60 or 15 min of duration. CPP was extinguished after seven and nine sessions, respectively. In Experiment 3, we tested the reinstating effects of several priming doses of morphine. Mice were conditioned with 40 mg/kg of morphine and underwent the daily 15 min extinction sessions until CPP was no longer evident. Then, the effects of morphine (0, 2, 3, 5, 10, 20, 40 mg/kg, i.p.) were evaluated. CPP was reinstated by doses from 5 mg/kg upward. The results show that morphine priming injections are effective in reactivating opiateseeking behavior in mice, and thus, the CPP paradigm might be useful to investigate the mechanisms underlying relapse of drug abuse. PMID:15152982
Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Trzcinska, Roza; Silberring, Jerzy; Kotlinska, Jolanta H
2017-11-01
Kissorphin (KSO) is a new peptide derived from kisspeptin-10. This peptide possesses neuropeptide FF (NPFF)-like biological activity in vitro; NPFF, in many cases, inhibits opioid and ethanol effects in rodents. Therefore, the current study explored the influence of KSO on acute ethanol- and morphine-induced hyperactivity, and on the development and expression of locomotor sensitization induced by these drugs. In the present study, sensitization to locomotor effects was induced by repeated exposure to ethanol (2.4 g/kg, intraperitoneally [i.p.], 1 × 4 days) or morphine (10 mg/kg, subcutaneously [s.c.], 1 × 7 days). We found that KSO (1-10 nmol/300 μL, intravenously [i.v.]) did not have an impact on locomotor activity of naïve mice. However, it reduced both acute ethanol- (10 nmol/300 μL) and morphine-induced hyperactivity (3 and 10 nmol/300 μL). Pretreatment of animals with KSO (10 nmol/300 μL), before every ethanol or morphine injection during development of sensitization or before the ethanol or morphine challenge, attenuated the development, as well as the expression of locomotor sensitization to both substances. Moreover, prior administration of the NPFF receptor antagonist RF9 (10 nmol/300 μL, i.v.) inhibited the ability of KSO (10 nmol/300 μL) to reduce the expression of ethanol and morphine sensitization. KSO given alone, at all used doses, did not influence the motor coordination measured via the rotarod test. The results from this study show that KSO effectively attenuated acute and repeated effects of ethanol and morphine. Thus, KSO possesses NPFF-like anti-opioid activity in these behavioral studies. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria
There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated bymore » naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone-precipitated morphine withdrawal increases PKA expression in the heart. • CRF1 receptor is implicated in the sympathetic activity induced by morphine withdrawal.« less
Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system
Aricioglu, Feyza; Means, Andrea; Regunathan, Soundar
2010-01-01
Agmatine is an endogenous amine derived from arginine that potentiates morphine analgesia and blocks symptoms of naloxone-precipitated morphine withdrawal in rats. In this study, we sought to determine whether treatment with agmatine during the development of morphine dependence inhibits the withdrawal symptoms and that the effect is mediated by cAMP system. Exposure of rats to morphine for 7 days resulted in marked naloxone-induced withdrawal symptoms and agmatine treatment along with morphine significantly decreasing the withdrawal symptoms. The levels of cAMP were markedly increased in morphine-treated rat brain slices when incubated with naloxone and this increase was significantly reduced in rats treated with morphine and agmatine. The induction of tyrosine hydroxylase after morphine exposure was also reduced in locus coeruleus when agmatine was administered along with morphine. We conclude that agmatine reduces the development of dependence to morphine and that this effect is probably mediated by the inhibition of cAMP signaling pathway during chronic morphine exposure. PMID:15541421
Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat
2009-01-01
Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060
Ahmadalipour, A; Sadeghzadeh, J; Vafaei, A A; Bandegi, A R; Mohammadkhani, R; Rashidy-Pour, A
2015-10-01
Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11-18, female Wistar rats were randomly injected twice daily with saline or morphine. Offspring were weaned on postnatal day (PND) 21. They were subjected to a standard rearing environment or an enriched environment on PNDs 22-50. On PNDs 51-57, the behavioral responses including anxiety and depression-like behaviors, and passive avoidance memory as well as hippocampal BDNF levels were investigated. The light/dark (L/D) box and elevated plus maze (EPM) were used for the study of anxiety, forced swimming test (FST) was used to assess depression-like behavior and passive avoidance task was used to evaluate learning and memory. Prenatal morphine exposure caused a reduction in time spent in the EPM open arms and a reduction in time spent in the lit side of the L/D box. It also decreased step-through latency and increased time spent in the dark side of passive avoidance task. Prenatal morphine exposure also reduced immobility time and increased swimming time in FST. Postnatal rearing in an enriched environment counteracted with behavioral deficits in the EPM and passive avoidance task, but not in the L/D box. This suggests that exposure to an enriched environment during adolescence period alters anxiety profile in a task-specific manner. Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphine-exposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF. BDNF may contribute to the beneficial effects of an enriched environment on prenatal morphine-exposed to rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Importance of GluA1 Subunit-Containing AMPA Glutamate Receptors for Morphine State-Dependency
Aitta-aho, Teemu; Möykkynen, Tommi P.; Panhelainen, Anne E.; Vekovischeva, Olga Yu.; Bäckström, Pia; Korpi, Esa R.
2012-01-01
In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days) using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test); in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards), in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity. PMID:22675452
Navarro-Zaragoza, Javier; Núñez, Cristina; Laorden, M Luisa; Milanés, M Victoria
2010-05-01
The role of stress in drug addiction is well established. The negative affective states of withdrawal most probably involve recruitment of brain stress neurocircuitry [e.g., induction of hypothalamo-pituitary-adrenocortical (HPA) axis, noradrenergic activity, and corticotropin-releasing factor (CRF) activity]. The present study investigated t$he role of CRF receptor-1 subtype (CRF1R) on the response of brain stress system to morphine withdrawal. The effects of naloxone-precipitated morphine withdrawal on noradrenaline (NA) turnover in the paraventricular nucleus (PVN), HPA axis activity, signs of withdrawal, and c-Fos expression were measured in rats pretreated with vehicle, CP-154526 [N-butyl-N-ethyl-2,5-dimethyl-7-(2,4,6-trimethylphenyl)pyrrolo[3,2-e]pyrimidin-4-amine], or antalarmin (selective CRF1R antagonists). Tyrosine hydroxylase-positive neurons expressing CRF1R were seen at the level of the nucleus tractus solitarius-A(2) cell group in both control and morphine-withdrawn rats. CP-154526 and antalarmin attenuated the increases in body weight loss and irritability that were seen during naloxone-induced morphine withdrawal. Pretreatment with CRF1R antagonists resulted in no significant modification of the increased NA turnover at PVN, plasma corticosterone levels, or c-Fos expression that was seen during naloxone-induced morphine withdrawal. However, blockade of CRF1R significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin levels. These results suggest that the CRF1R subtype may be involved in the behavioral and somatic signs and in adrenocorticotropin release (partially) during morphine withdrawal. However, CRF1R activation may not contribute to the functional interaction between NA and CRF systems in mediating morphine withdrawal-activation of brain stress neurocircuitry.
Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M
2015-01-01
Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985
Sharifzadeh, Mohammad; Hadjiakhoondi, Abbas; Khanavi, Mahnaz; Susanabadi, Maryam
2006-06-01
In the present study, the effects of rhizomes and aerial parts extracts of Valeriana officinalis L. on morphine dependence in mice have been investigated. Animals were treated subcutaneously with morphine (50, 50 and 75 mg/kg) three times daily (10 am, 1 pm and 4 pm) for 3 days, and a last dose of morphine (50 mg/kg) was administered on the fourth day. Withdrawal syndrome (jumping) was precipitated by naloxone (5 mg/kg) which was administered intraperitoneally 2 hours after the last dose of morphine. To study the effects of the aqueous, methanolic and chloroform extracts of both aerial parts and rhizome of the V. officinalis L. on naloxone-induced jumping in morphine-dependent animals, 10 injections of morphine (three administrations each day) for dependence and a dose of 5 mg/kg of naloxone for withdrawal induction were employed. Intraperitoneal injection of different doses (1, 5, 25 and 50 mg/kg) of aqueous, methanolic and chloroform extracts of the rhizome of V. officinalis L. 60 minutes before naloxone injection decreased the jumping response dose-dependently. Pre-treatment of animals with different doses (1, 5, 25, 50 and 100 mg/kg) of aqueous and methanolic extracts of aerial parts of V. officinalis L. 60 minutes before naloxone injection caused a significant decrease on naloxone-induced jumping. The chloroform extract of the aerial parts of V. officinalis L. did not show any significant changes on jumping response in morphine-dependent animals. It is concluded that the extracts of V. officinalis L. could affect morphine withdrawal syndrome via possible interactions with inhibitory neurotransmitters in nervous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohorecky, L.A.; Shah, P.
1987-09-07
The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to producemore » non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.« less
Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar
2016-01-01
Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated hearts STAT3 inhibitor Stattic completely abolished morphine-induced preconditioning. Administration of Stattic and mPTP inhibitor cyclosporine A reduced infarct size to 31±6% (Stat+CsA, P<0.05 vs. Con). Cyclosporine A alone reduced infarct size to 26±7% (CsA P<0.05 vs. Con). In cardiomyocytes, PKA activity was increased by morphine. Conclusion Our data suggest that morphine-induced cardioprotection is mediated by STAT3-activation and inhibition of mPTP, with STA3 located upstream of mPTP. There is some evidence that protein kinase A is involved within the signalling pathway. PMID:26968004
Singal, Priya; Singh, Prati Pal
2005-02-01
The neuroimmunomodulatory effects of opiates during microbial infections are now well known; however, not much is known during leishmaniasis. Here, we report the effects of morphine on purified approximately 12-kDa component of Leishmania donovani amastigote antigen (LDAA-12)-induced colony-stimulating factor (CSF) production by mouse peritoneal macrophages (PMs) in vitro. Low concentrations (1 x 10(-9) and 1 x 10(-11) M) of morphine significantly (P < 0.05) augmented the production of CSFs, whereas high concentrations (1 x 10(-3) and 1 x 10(-5) M) inhibited CSF production. Morphine exerted a similar concentration-dependent biphasic effect on the LDAA-12-induced elaboration of granulocyte (G)-macrophage (M)-CSF (GM-CSF) and M-CSF by PMs in their conditioned medium, as quantified by using enzyme-linked immunosorbent assay. Furthermore, selective agonists of mu-(DAGO) and delta-(DPDPE) opioid receptors also, respectively, augmented and inhibited the production of CSFs. Pretreatment of PMs with naloxone (1 x 10(-5) M) significantly (P < 0.05) blocked the augmenting effect of morphine. In contrast, at 1 x 10(-5) M, naloxone lacked any effect on the inhibitory effect of morphine; however, its 100-fold higher concentration partially blocked it. This study, apparently for the first time, demonstrates that morphine, via surface opioid receptors, biphasically modulates the LDAA-12-induced CSF production by PMs, in vitro. These results thus show the implications of opiate abuse on the outcome of therapeutic interventions in areas where both visceral leishmaniasis and drug abuse are rampant.
Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L
2015-01-01
We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2 A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.
Song, Kyu Young; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.
2016-01-01
Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5′-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). PMID:27292014
Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking.
Ong, E W; Xue, L; Olmstead, M C; Cahill, C M
2015-01-01
The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Leite-Morris, Kimberly A; Kobrin, Kendra L; Guy, Marsha D; Young, Angela J; Heinrichs, Stephen C; Kaplan, Gary B
2014-04-15
Recurrent opiate use combined with environmental cues, in which the drug was administered, provokes cue-induced drug craving and conditioned drug reward. Drug abuse craving is frequently linked with stimuli from a prior drug-taking environment via classical conditioning and associative learning. We modeled the conditioned morphine reward process by using acquisition and extinction of conditioned place preference (CPP) in C57BL/6 mice. Mice were trained to associate a morphine injection with a drug context using a classical conditioning paradigm. In morphine conditioning (0, 0.25, 0.5, 1, 5, or 10 mg/kg) experimental mice acquired a morphine CPP dose response with 10mg/kg as most effective. During morphine CPP extinction experiments, mice were divided into three test groups: morphine CPP followed by extinction training, morphine CPP followed by sham extinction, and saline controls. Extinction of morphine CPP developed within one extinction experiment (4 days) that lasted over two more trials (another 8 days). However, the morphine CPP/sham extinction group retained a place preference that endured through all three extinction trials. Brains were harvested following CPP extinction and processed using Golgi-Cox impregnation. Changes in dendritic morphology and spine quantity were examined in the nucleus accumbens (NAc) Core and Shell neurons. In the NAcCore only, morphine CPP/extinguished mice produced less dendritic arborization, and a decrease in neuronal activity marker c-Fos compared to the morphine CPP/sham extinction group. Extinction of morphine CPP is associated with decreased structural complexity of dendrites in the NAcCore and may represent a substrate for learning induced structural plasticity relevant to addiction. Published by Elsevier B.V.
Gastric pentadecapeptide BPC 157 counteracts morphine-induced analgesia in mice.
Boban Blagaic, A; Turcic, P; Blagaic, V; Dubovecak, M; Jelovac, N; Zemba, M; Radic, B; Becejac, T; Stancic Rokotov, D; Sikiric, P
2009-12-01
Previously, the gastric pentadecapeptide BPC 157, (PL 14736, Pliva) has been shown to have several beneficial effects, it exert gastroprotective, anti-inflammatory actions, stimulates would healing and has therapeutic value in inflammatory bowel disease. The present study aimed to study the effect of naloxone and BPC 157 on morphine-induced antinociceptive action in hot plate test in the mouse. It was found that naloxone and BPC 157 counteracted the morphine (16 mg/kg s.c.) - analgesia. Naloxone (10 mg/kg s.c.) immediately antagonised the analgesic action and the reaction time returned to the basic values, the development of BPC 157-induced action (10 pg/kg, 10 ng/kg, 10 microg/kg i.p.) required 30 minutes. When haloperidol, a central dopamine-antagonist (1 mg/kg i.p.), enhanced morphine-analgesia, BPC 157 counteracted this enhancement and naloxone reestablished the basic values of pain reaction. BPC 157, naloxone, and haloperidol per se failed to exert analgesic action. In summary, interaction between dopamine-opioid systems was demonstrated in analgesia, BPC 157 counteracted the haloperidol-induced enhancement of the antinociceptive action of morphine, indicating that BPC acts mainly through the central dopaminergic system.
Kimura, Satoko; Ohi, Yoshiaki; Haji, Akira
2015-04-15
Ventilatory disturbance is a fatal side-effect of opioid analgesics. Separation of analgesia from ventilatory depression is important for therapeutic use of opioids. It has been suggested that opioid-induced ventilatory depression results from a decrease in adenosine 3',5'-cyclic monophosphate content in the respiratory-related neurons. Therefore, we examined the effects of caffeine, a methylxanthine non-selective phosphodiesterase (PDE) inhibitor with adenosine antagonistic activity, and rolipram, a racetam selective PDE4 inhibitor, on ventilatory depression induced by morphine. Spontaneous ventilation and paw withdrawal responses to nociceptive thermal stimulation were measured in anesthetized rats simultaneously. The efferent discharge of the phrenic nerve was recorded in anesthetized, vagotomized, paralyzed and artificially ventilated rats. Rolipram (0.1 and 0.3 mg/kg, i.v.) and caffeine (3.0 and 10.0 mg/kg, i.v.) relieved morphine (1.0 mg/kg, i.v.)-induced ventilatory depression but had no discernible effect on its analgesic action. Rolipram (0.3 and 1.0 mg/kg, i.v.) and caffeine (10.0 and 20.0 mg/kg, i.v.) recovered morphine (3.0 mg/kg, i.v.)-induced prolongation and flattening of inspiratory discharge in the phrenic nerve. Inhibition of PDE4 may be a possible approach for overcoming morphine-induced ventilatory depression without loss of analgesia. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishio, Y.; Sinatra, R.S.; Kitahata, L.M.
1989-09-01
The distribution of intrathecally administered {sup 3}H-morphine was examined by light microscopic autoradiography in rat spinal cord and temporal changes in silver grain localization were compared with results obtained from simultaneous measurements of analgesia. After tissue processing, radio-activity was found to have penetrated in superficial as well as in deeper layers (Rexed lamina V, VII, and X) of rat spinal cord within minutes after application. Silver grain density reached maximal values at 30 min in every region of cord studied. Radioactivity decreased rapidly between 30 min and 2 hr and then more slowly over the next 24 hr. In ratsmore » tested for responses to a thermal stimulus (tail flick test), intrathecal administration of morphine (5 and 15 micrograms) resulted in significant dose dependent analgesia that peaked at 30 min and lasted up to 5 hr (P less than 0.5). There was a close relationship between analgesia and spinal cord silver grain density during the first 4 hr of the study. It is postulated that the onset of spinal morphine analgesia depends on appearance of molecules at sites of action followed by the activation of anti-nociceptive mechanisms.« less
Shvarev, Yuri; Berner, Jonas; Bilkei-Gorzo, Andras; Lagercrantz, Hugo; Wickström, Ronny
2010-01-01
Search for physiological mechanisms which could antagonize the opioid-induced respiratory depression is of important clinical value. In this study, we investigated the acute effects of morphine on respiratory activity in genetically modified newborn (P2) mice with target deletion of the (Tac1 -/-) gene lacking substance P (SP) and neurokinin A (NKA). In vivo, as shown with whole-body flow barometric plethysmography technique, morphine induced significantly attenuated minute ventilation during intermittent hypoxia in control animals. In contrast, knockout mice revealed significant increase in minute ventilation. In vitro, in brainstem preparation, knockout mice demonstrated greater changes in burst frequency during intermittent anoxia challenge. The data suggest that hereditary deficiency in tachykinins, SP and NKA results in more robust hypoxic response in newborn Tac1-/- mice during respiratory depression induced by morphine.
Hutchinson, Mark R.; Lewis, Susannah S.; Coats, Benjamen D.; Skyba, David A.; Crysdale, Nicole Y.; Berkelhammer, Debra L.; Brzeski, Anita; Northcutt, Alexis; Vietz, Christine M.; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.; Johnson, Kirk W.
2009-01-01
Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused 3-to-5-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, whilst improving analgesia. PMID:18938237
Chen, Shiou-Lan; Hsu, Kuei-Ying; Huang, Eagle Yi-Kung; Lu, Ru-Band; Tao, Pao-Luh
2011-09-01
Chronic use of morphine causes rewarding and behavioral sensitization, which may lead to the development of psychological craving. In our previous study, we found that a widely used antitussive dextromethorphan (known as a low affinity NMDA receptor antagonist), at doses of 10-20 mg/kg (i.p.), effectively decreased morphine rewarding in rats. In this study, we further investigated the effects and mechanisms of low doses of DM (μg/kg range) on morphine rewarding and behavioral sensitization. A conditioned place preference test was used to determine the rewarding and a locomotor activity test was used to determine the behavioral sensitization induced by the drug(s) in rats. When a low dose of DM (3 or 10 μg/kg, i.p.) was co-administered with morphine (5 mg/kg, s.c.), the rewarding effect, but not behavioral sensitization, induced by morphine was inhibited. The inhibiting effect of DM could be blocked by systemically administering a sigma-1 receptor antagonist, BD1047 (3 mg/kg, i.p.). When BD1047 (5 nmole/site) was locally given at the VTA, it also blocked the effects of a low dose of DM in inhibiting morphine rewarding. Our findings suggest that the activation of the sigma-1 receptor at the VTA may be involved in the mechanism of low doses of DM in inhibiting the morphine rewarding effect and the possibility of using extremely low doses of DM in treatment of opioid addiction in clinics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Rozeske, Robert R; Greenwood, Benjamin N; Fleshner, Monika; Watkins, Linda R; Maier, Steven F
2011-06-01
In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP. Published by Elsevier B.V.
Siahposht-Khachaki, Ali; Fatahi, Zahra; Yans, Asal; Khodagholi, Fariba; Haghparast, Abbas
2017-03-01
Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.
Study of basic physical processes in liquid rocket engines
NASA Technical Reports Server (NTRS)
Wu, S. T.; Chen, C. P.
1992-01-01
Inconsistencies between analytical results and measurements for liquid rocket thrust chamber performance, which escape suitable explanations, have motivated the examination of the basic phys ical modeling formulations as to their unlimited application. The publication of Prof. D. Straub's book, 'Thermofluid-dynamics of Optimized Rocket Propulsions,' further stimulated the interest of understanding the gas dynamic relationships in chemically reacting mixtures. A review of other concepts proposed by Falk-Ruppel (Gibbsian Thermodynamics), Straub (Alternative Theory, AT), Prigogine (Non-Equilibrium Thermodynamics), Boltzmann (Kinetic Theory), and Truesdell (Rational Mechanism) has been made to obtain a better understanding of the Navier-Stokes equation, which is now used extensively for chemically reacting flow treatment in combustion chambers. In addition to the study of the different concepts, two workshops were conducted to clarify some of the issues. The first workshop centered on Falk-Ruppel's new 'dynamics' concept, while the second one concentrated on Straub's AT. In this report brief summaries of the reviewed philosophies are presented and compared with the classical Navier-Stokes formulation in a tabular arrangement. Also the highlights of both workshops are addressed.
Elyasi, Leila; Eftekhar-Vaghefi, Seyed Hassan; Esmaeili-Mahani, Saeed
2014-06-01
Parkinson's disease is a neurodegenerative disorder characterized by progressive and selective death of dopaminergic neurons. Understanding the neuroprotective effects of chemical reagents has attracted increasing attention. The μ opioid agonist morphine exerts both toxic and protective effects. However, until recently, the neuroprotective role of morphine against 6-hydroxydopamine (6-OHDA)-induced cell death has not been studied. Here, we investigated the effects of morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150 μM 6-OHDA, and the cells' viability was examined by MTT assay. Intracellular calcium, reactive oxygen species (ROS), and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. Fragmented DNA and biochemical markers of apoptosis were also determined by gel electrophoresis and immunoblotting, respectively. The data showed that 6-OHDA caused a loss of cell viability and mitochondrial membrane potential. In addition, intracellular ROS and calcium levels, activated caspase-3, Bax:Bcl-2 ratio, cytochrome c release, as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with morphine (100 μM) elicited a protective effect and reduced biochemical markers of cell damage and death. These results suggest that morphine has neuroprotective effects against 6-OHDA-induced neurotoxicity, and such effects are accompanied by its anti-oxidant, calcium blocking, and anti-apoptotic properties.
Mattioli, Laura; Titomanlio, Federica; Perfumi, Marina
2012-05-01
Opioid addiction is a chronic, recurrent brain disease that is characterised by compulsive drug seeking and a high rate of relapse even after long periods of abstinence. Prevention of relapse is the primary goal of addiction treatment and is still the major limitation in drug therapy. The present study investigated the effects of a Rhodiola rosea L. hydroalcoholic extract (RHO), a well-known traditional oriental medicine, on establishment and reinstatement of morphine-induced conditioned place preference (CPP) in mice. CPP was induced by intraperitoneal injection of morphine (10 mg/kg) as an 8-day conditioning schedule. The effects of RHO on the rewarding properties of morphine were tested in mice receiving oral administration of RHO (10, 15, and 20 mg/kg) 60 min prior to each morphine injection (acquisition) or prior to the CPP test on day 9 (expression). Once established, CPP was extinguished by repeated testing, during which conditioned mice were injected daily with different doses of RHO. Finally, the efficacy of RHO in blocking reinstatement of CPP provoked by priming injections and physical stress was also evaluated. RHO administration showed dose dependency for prevention of establishment of CPP and was effective in facilitating extinction of morphine-induced CPP. RHO suppressed both priming- and stress-induced reinstatement of CPP in a dose-dependent manner. In conclusion, as RHO was effective for reducing craving and vulnerability to relapse, it might be a very effective natural remedy for the treatment of opioid addiction.
Karimi, Sara; Karami, Manizheh; Sahraei, Hedayat; Rahimpour, Mahnaz
2011-01-01
Role of nitric oxide (NO) on expression of morphine conditioning using a solely classic task has been proposed previously. In this work, the involvement of NO on the expression of opioid-induced conditioning in the task paired with an injection of naloxone was investigated. Conditioning was established in adult male Wistar rats (weighing 200-250 g) using an unbiased procedure. Naloxone (0.05-0.4 mg/kg, i.p.), a selective antagonist of mu-opioid receptor, was administered once prior to morphine response testing. NO agents were administered directly into the central amygdala (CeA) prior to naloxone injection pre-testing. Morphine (2.5-10 mg/kg, s.c.) produced a significant dose-dependent place preference in experimental animals. When naloxone (0.05-0.4 mg/kg, i.p.) was injected before testing of morphine (5 mg/kg, s.c.) response, the antagonist induced a significant aversion. This response was reversed due to injection of L-arginine (0.3-3 microg/rat), intra-CeA prior to naloxone administration. However, pre-injection of L-NAME (intra-CeA), an inhibitor of NO production, blocked this effect. The finding may reflect that NO in the nucleus participates in morphine plus naloxone interaction.
Kitto, Kelley F; Fairbanks, Carolyn A
2006-04-24
We have determined the effect of intracerebroventricularly (i.c.v.) administered decarboxylated arginine (agmatine) on supraspinally induced chronic morphine analgesic tolerance. Mice pre-treated with a schedule of chronic i.c.v administration of morphine (10 nmol, b.i.d. 3 days) show a 12-fold reduction in the potency of acutely administered i.c.v morphine compared to saline injected controls. Co-administration of agmatine (10 nmol) with one of the two daily morphine injections completely prevents the reduction in i.c.v morphine analgesia. Mice injected with agmatine once daily (but no morphine) do not show a increase in morphine analgesic potency relative to saline controls, indicating that a mere potentiation of acute morphine analgesia cannot account for the agmatine-mediated anti-tolerance effect in those mice subjected to the morphine tolerance induction schedule. These observations agree with previous reports that systemically and intrathecally administered agmatine prevent opioid tolerance, and extend these results to include a supraspinal site of action.
Kotlinska, Jolanta H; Gibula-Bruzda, Ewa; Suder, Piotr; Wasielak, Magdalena; Bray, Lauriane; Raoof, Hana; Bodzon-Kulakowska, Anna; Silberring, Jerzy
2012-07-01
NPFF precursor, pro-NPFF(A) contains three known bioactive sequences: NPFF (FLFQPQRF-NH(2)), neuropeptide AF (NPAF; AGEGLSSPFWSLAAPQRF-NH(2)) and neuropeptide SF (NPSF; SLAAPQRF-NH(2)). The key-feature of these fragments is their common PQRF-amidated sequence at their C termini. Here, we evaluated the biological activity of two other sequences derived from the mouse NPFF(A) precursor, that does not have PQRF-amidated C-terminus. One peptide was residing between positions 85 and 99 in the mice pro-NPFF(A). This peptide was referred to as neuropeptide SA (NPSA; SAWGSWSKEQLNPQA), assigned due to its flanking amino acids. Another sequence used in the experiments was N-terminal fragment of NPSA, here referred to as neuropeptide SS (NPSS; SAWGSWS). These two peptides, classified as crypteins, were synthesized and tested in the hot-plate and tail immersion tests in mice for their pharmacological activity in morphine-induced antinociception. The effects of both crypteins were compared to NPFF. Our experiments indicated that both crypteins inhibited morphine antinociception and their effects were reversed by RF9, an antagonist of NPFF receptors. These data show that NPSA and NPSS possess NPFF-like anti-opioid activity in these behavioral tests. Copyright © 2012 Elsevier Inc. All rights reserved.
Convulsions may alter the specificity of kappa-opiate receptors.
Mansour, A; Valenstein, E S
1986-06-01
Morphine, a mu-opiate agonist, and ethylketazocine, a kappa-opiate agonist, produce distinct behavioral, pharmacologic, and biochemical effects. In the mouse, large doses of morphine produce convulsions that are usually lethal and that cannot be blocked by naltrexone, whereas ethylketazocine produces nonlethal clonic convulsions that can be blocked by naltrexone. Moreover, mice made tolerant to morphine failed to show cross-tolerance to ethylketazocine, suggesting that the convulsions induced by these drugs are not mediated via a common opioid mechanism. Following a series of electroconvulsive shocks, both morphine and ethylketazocine produced clonic convulsions that were not lethal and that could be blocked by naltrexone. Furthermore, electroconvulsive shock-treated animals made tolerant to morphine-induced convulsions showed cross-tolerance to ethylketazocine. These data suggest that electroconvulsive shock may alter kappa-opioid systems in such a way as to allow mu-agonists to be functional at these sites.
Sadeghi, Bahman; Ezzatpanah, Somayeh; Haghparast, Abbas
2016-06-01
Orexinergic system is involved in reward processing and drug addiction. Here, we investigated the effect of intrahippocampal CA1 administration of orexin-2 receptor (OX2r) antagonist on the acquisition, expression, and extinction of morphine-induced place preference in rats. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) during a 3-day conditioning phase. Three experimental plots were designed; TCS OX2 29 as a selective antagonist of orexin-2 receptors (OX2rs) was dissolved in DMSO, prepared in solutions with different concentrations (1, 3, 10, and 30 nM), and was bilaterally microinjected into the CA1 and some neighboring regions (0.5 μl/side). Conditioning scores and locomotor activities were recorded during the test. Results demonstrate that intra-CA1 administration of the OX2r antagonist attenuates the induction of morphine CPP during the acquisition and expression phases. Effect of TCS OX2 29 on reduction of morphine CPP was dose-dependent and was more pronounced during the acquisition than the expression. Furthermore, higher concentrations of TCS OX2 29 facilitated the extinction of morphine-induced CPP and reduced extinction latency period. Nevertheless, administration of TCS OX2 29 solutions did not have any influence on locomotor activity of all phases. Our findings suggest that OX2rs in the CA1 region of hippocampus are involved in the development of the acquisition and expression of morphine CPP. Moreover, blockade of OX2rs could facilitate extinction and may abrogate or extinguish the ability of drug-related cues, implying that the antagonist might be considered as a propitious therapeutic agent in suppressing drug-seeking behavior.
Nishiyama, T; Ho, R J; Shen, D D; Yaksh, T L
2000-08-01
Liposomes can serve as a sustained-release carrier system, permitting the spinal delivery of large opioid doses restricting the dose for acute systemic uptake. We evaluated the antinociceptive effects of morphine encapsulated in liposomes of two isomeric phospholipids, L-dipalmitoylphosphatidyl choline (L-DPPC) and D-dipalmitoylphosphatidyl choline (D-DPPC), in comparison with morphine in saline. Sprague-Dawley rats with chronic lumbar intrathecal catheters were tested for their acute nociceptive response using a hindpaw thermal escape test. Their general behavior, motor function, pinna reflex, and corneal reflex were also examined. The duration of antinociception was longer in both liposomal morphine groups than in the free morphine group. The peak antinociceptive effects were observed within 30 min after intrathecal morphine, L-DPPC or D-DPPC morphine injection. The rank order of the area under the effect-time curve for antinociception was L-DPPC morphine > D-DPPC morphine > morphine. The 50% effective dose was: 2.7 microg (morphine), 4.6 microg (L-DPPC morphine), and 6.4 microg (D-DPPC morphine). D-DPPC morphine had less side effects for a given antinociceptive AUC than morphine. In conclusion, L-DPPC and D-DPPC liposome encapsulation of morphine prolonged the antinociceptive effect on acute thermal stimulation and could decrease side effects, compared with morphine alone. Two isomers of liposome (L-dipalmitoylphosphatidyl choline and D-dipalmitoylphosphatidyl choline) encapsulation of morphine prolonged the analgesic effect on acute thermal-induced pain when administered intrathecally and could decrease side effects, compared with morphine alone.
Guzman, D Calderon; Garcia, E Hernandez; Mejia, G Barragan; Olguin, H Juarez; Gonzalez, J A Saldivar; Labra Ruiz, N A
2014-01-15
The study aimed to determine the effect of morphine and lacosamide on levels of dopamine and 5-HIAA in a hypoglycemic model. Female Wistar rats (n = 30), mean weight of 180 g were treated as follow: Group 1 (control) received 0.9% NaCl, Group II; morphine (10 mg kg(-1)), Group III; lacosamide (10 mg kg(-1)), Group IV; insulin (10 U.I. per rat), Group V; morphine (10 mg kg(-1))+insulin, Group VI; lacosamide (10 mg kg(-1))+ insulin. All administrations were made intraperitoneally every 24 h, for 5 days. Animals were sacrificed after the last dose to measure the levels of glucose in blood; dopamine and 5-HIAA in cortex, hemispheres and cerebellum/medulla oblongata regions. Levels of glucose decreased significantly in animals treated with morphine, lacosamide and all groups that received insulin alone or combined with respect to control group. Levels of Dopamine diminished significantly in cortex and increased significantly in hemispheres of animals that received morphine. In cortex, 5-HIAA increase significantly in the groups treated with morphine, morphine+insulin and lacosamide+insulin, however a significant decrease of the same substance was witnessed in cerebellum and medulla oblongata of animals that received morphine or lacosamide plus insulin. GSH increased significantly in cortex and cerebellum/medulla oblongata of animals treated with morphine and lacosamide alone or combined with insulin. Lipid peroxidation decreased significantly in cortex and cerebellum/medulla oblongata of groups that received lacosamide alone or combined with insulin. These results indicate that hypoglycemia induced changes in cellular regulation while morphine and lacosamide are accompanied by biochemical responses.
Hassanzadeh, Marjan; Ghaemy, Mousa; Ahmadi, Shamseddin
2016-10-01
Chitosan-based molecular imprinted polymer (CS-MIP) nanogel is prepared in the presence of morphine template, fully characterized and used as a new vehicle to extend duration of morphine analgesic effect in Naval Medical Research Institute mice. The CS-MIP nanogel with ≈25 nm size range exhibits 98% loading efficiency, and in vitro release studies show an initial burst followed by an extended slow release of morphine. In order to study the feasibility of CS-MIP nanogel as morphine carrier, 20 mice are divided into two groups randomly and received subcutaneous injection of morphine-loaded CS-MIP and morphine (10 mg kg -1 ) dissolved in physiologic saline. Those received injection of morphine-loaded CS-MIP show slower and long lasting release of morphine with 193 min effective time of 50% (ET50) analgesia compared to 120 min ET50 in mice received morphine dissolved in physiologic saline. These results suggest that CS-MIP nanogel can be a possible strategy as morphine carrier for controlled release and extension of its analgesic efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Opiate-induced seizures: a study of mu and delta specific mechanisms.
Snead, O C
1986-08-01
Two groups of experiments were conducted to determine if morphine- and enkephalin-induced seizures are specifically mediated by the mu and delta receptor, respectively. In the first experiments, designed to assess the ontogeny of mu- or delta-seizures, rats from 6 h to 85 days of age received implanted cortical and depth electrodes as well as an indwelling cannula in the lateral ventricle. Various amounts of the mu-receptor agonists, morphine and morphiceptin, and the delta agonists, D-Ala2-D-Leu5-enkephalin (DADL) and Tyr-D-Ser-Gly-Phe-Leu-Thr (DSLET), were then administered intracerebroventricularly (icv) with continuous EEG monitoring. The second experiments entailed use of the nonspecific opiate antagonist, naloxone, as well as the specific delta antagonist, ICI 154,129, against seizures induced by icv-administered morphine, morphiceptin, DADL, or DSLET. Both morphine and morphiceptin produced electrical seizure activity in rats as young as 5 days after birth. The drugs produced similar seizure activity in terms of electrical morphology, observed behavior, ontogeny, threshold dose, and reversibility with small doses of naloxone. In the pharmacologic experiments, icv naloxone blocked all opiate-induced seizures. ICI 154,129 blocked DSLET seizure, had little effect on enkephalin or DADL seizures, and no effect on morphine or morphiceptin seizures. These data indicate that DSLET seizures are delta-specific but that all other opiate-induced seizures studied may involve multiple opiate receptor-mediated mechanisms.
Sharma, Hari S; Ali, Syed F; Patnaik, Ranjana; Zimmermann-Meinzingen, Sibilla; Sharma, Aruna; Muresanu, Dafin F
2011-01-01
The possibility that pain perception and processing in the CNS results in cellular stress and may influence heat shock protein (HSP) expression was examined in a rat model of morphine dependence and withdrawal. Since activation of pain pathways result in exhaustion of growth factors, we examined the influence of cerebrolysin, a mixture of potent growth factors (BDNF, GDNF, NGF, CNTF etc,) on morphine induced HSP expression. Rats were administered morphine (10 mg/kg, s.c. /day) for 12 days and the spontaneous withdrawal symptoms were developed by cessation of the drug administration on day 13th that were prominent on day 14th and continued up to day 15th (24 to 72 h periods). In a separate group of rats, cerebrolysin was infused intravenously (5 ml/kg) once daily from day one until day 15th. In these animals, morphine dependence and withdrawal along with HSP immunoreactivity was examined using standard protocol. In untreated group mild HSP immunoreaction was observed during morphine tolerance, whereas massive upregulation of HSP was seen in CNS during withdrawal phase that correlated well with the withdrawal symptoms and neuronal damage. Pretreatment with cerebrolysin did not affect morphine tolerance but reduced the HSP expression during this phase. Furthermore, cerebrolysin reduced the withdrawal symptoms on day 14th to 15th. Taken together these observations suggest that cellular stress plays an important role in morphine induced pain pathology and exogenous supplement of growth factors, i.e. cerebrolysin attenuates HSP expression in the CNS and induce neuroprotection. This indicates a new therapeutic role of cerebrolysin in the pathophysiology of drugs of abuse, not reported earlier. PMID:21886595
A Subanalgesic Dose of Morphine Eliminates Nalbuphine Anti-analgesia in Postoperative Pain
Gear, Robert W.; Gordon, Newton C.; Hossaini-Zadeh, Mehran; Lee, Janice S.; Miaskowski, Christine; Paul, Steven M.; Levine, Jon D.
2008-01-01
The agonist-antagonist kappa-opioid nalbuphine administered for postoperative pain produces greater analgesia in females than in males. In fact, males administered nalbuphine (5 mg) experience pain greater than those receiving placebo, suggesting the existence of an anti-analgesic effect. These sexually dimorphic effects on postoperative pain can be eliminated by co-administration of a fixed ratio of the prototypical opioid receptor antagonist naloxone with nalbuphine, implying a role for opioid receptors in the anti-analgesic as well as analgesic effects of nalbuphine. In the present study, we further evaluated the role of opioid receptors in the sex-specific effects on pain produced by nalbuphine by co-administering a dose of morphine low enough that it does not produce analgesia. Following extraction of bony impacted third molar teeth, nalbuphine (5 mg) was administered alone or in combination with either of two low doses of morphine (2 mg or 4 mg). Both doses of morphine reversed nalbuphine-induced anti-analgesia in males, but only the lower dose (2 mg) reached statistical significance. Neither dose affected nalbuphine-induced analgesia in females, and when administered alone in either males or females, morphine (2 mg) had no analgesic effect. Though not observed in females, the effect of morphine in males argues that, like naloxone, low dose morphine may act as an anti-analgesia opioid receptor antagonist. Perspective Previously we reported that the nalbuphine produces both analgesic and anti-analgesic effects, and that the opioid antagonist naloxone can enhance nalbuphine analgesia by selectively antagonizing the anti-analgesic effect. Here we show that morphine, given in a subanalgesic dose, reverses nalbuphine-induced anti-analgesia in males, perhaps by a similar mechanism. PMID:18201935
Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice.
Pateliya, Bharat Bhai; Singh, Nirmal; Jaggi, Amteshwar Singh
2008-09-01
The present study was designed to investigate the possible role of opioids and K(ATP) channels in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion (I/R) induced neuronal injury. Mice were subjected to global ischemia by bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h, to produce neuronal injury. Ischemic postconditioning was induced by three episodes of carotid artery occlusion and reperfusion of 10 s each, immediately after global ischemia. Morphine postconditioning was induced by administration of morphine (5 mg/kg i.v.), 5 min prior to reperfusion. Naloxone (5 mg/kg i.v.), opioid receptor antagonist, and glibenclamide (5 mg/kg i.v.), K(ATP) channel blocker were administered 10 min before global ischemia. Extent of cerebral injury was assessed by measuring cerebral infarct size using triphenyl tetrazolium chloride (TTC) staining. Short-term memory was evaluated using the elevated plus maze test, while degree of motor incoordination was evaluated using inclined beam-walking, rota-rod and lateral push tests. Bilateral carotid artery occlusion followed by reperfusion resulted in significant increase in infarct size, impairment in short-term memory and motor co-ordination. Ischemic/morphine postconditioning significantly attenuated I/R induced neuronal injury and behavioural alterations. Pretreatments with naloxone and glibenclamide attenuated the neuroprotective effects of ischemic/morphine postconditioning. It may be concluded that ischemic/morphine postconditioning protects I/R induced cerebral injury via activating opioid receptor and K(ATP) channel opening.
Chen, Hai-Jing; Xie, Wei-Yan; Hu, Fang; Zhang, Ying; Wang, Jun; Wang, Yun
2012-04-01
Our previous study identified Threonine 161 (Thr-161), located in the second intracellular loop of the δ-opioid receptor (DOR), as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5). The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund's adjuvant (CFA)-induced inflammatory pain and morphine tolerance. Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR), and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide, using a radiant heat stimulator in rats with CFA-induced inflammatory pain. Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection. Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity, and inhibited DOR- but not µ-opioid receptor-mediated spinal analgesia in CFA-treated rats. However, intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain. Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain, while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.
Narp regulates long-term aversive effects of morphine withdrawal
Reti, Irving M.; Crombag, Hans S.; Takamiya, Kogo; Sutton, Jeffrey M.; Guo, Ning; Dinenna, Megan L.; Huganir, Richard L.; Holland, Peter C.; Baraban, Jay M.
2008-01-01
Although long-lasting effects of drug withdrawal are thought to play a key role in motivating continued drug use, the mechanisms mediating this type of drug-induced plasticity are unclear. As Narp is an immediate early gene product that is secreted at synaptic sites and binds to AMPA receptors, it has been implicated in mediating enduring forms of synaptic plasticity. In previous studies, we found that Narp is selectively induced by morphine withdrawal in the extended amygdala, a group of limbic nuclei that mediate aversive behavioral responses. Accordingly, in this study, we evaluated whether long-term aversive effects of morphine withdrawal are altered in Narp KO mice. We found that acute physical signs of morphine withdrawal are unaffected by Narp deletion. However, Narp KO mice acquire and sustain more aversive responses to the environment conditioned with morphine withdrawal than WT controls. Paradoxically, Narp KO mice undergo accelerated extinction of this heightened aversive response. Taken together, these studies suggest that Narp modulates both acquisition and extinction of aversive responses to morphine withdrawal and, therefore, may regulate plasticity processes underlying drug addiction. PMID:18729628
Huber, Robert; Panksepp, Jules B; Nathaniel, Thomas; Alcaro, Antonio; Panksepp, Jaak
2011-10-01
In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5 days. This work demonstrates that crayfish offer a comparative and complementary approach in addiction research. Serving as an invertebrate animal model for the exposure to mammalian drugs of abuse, modularly organized and experimentally accessible nervous systems render crayfish uniquely suited for studying (1) the basic biological mechanisms of drug effects, (2) to explore how the appetitive/seeking disposition is implemented in a simple neural system, and (3) how such a disposition is related to the rewarding action of drugs of abuse. This work aimed to contribute an evolutionary, comparative context to our understanding of a key component in learning, and of natural reward as an important life-sustaining process. Copyright © 2010 Elsevier Ltd. All rights reserved.
The effects of compound 48/80, morphine, and mast cell depletion on electroshock seizure in mice.
Yillar, D O; Küçükhüseyin, C
2008-01-01
The effects of compound 48/80 (C48/80), morphine, and mast cell depletion on maximal electroshock seizure (MES) were studied in Swiss albino mice. An electrical current (60Hz, 0.2 msec) inducing convulsions in 50% of the animals (CC50) was assessed as 46 mA. Compound 48/80 (5 mg/kg) and morphine (100mg/kg) were administered subcutaneously. CC50 was applied separately to electroshock-unexposed animal groups at 15, 30, 60, 120, and 240 min after the onset of the experiment. In untreated controls, the percent of seizure induced by CC50 and percent of death among mice having convulsions were 50 and 20, respectively. After C48/80, a significant increase in rates of seizure at 60th and 120th min and death beyond 60th min (p < .0001) indicates a pro-convulsive action of the drug, probably caused by a reduction in MES threshold. In contrast, rate of seizure tended to decrease following mast-cell depletion, which was readily reversed by C48/80 at the 60th min (p < .0001). Mast-cell depletion, alone or plus morphine, significantly increased the death percentage of convulsions. Morphine alone reduced the percentage of seizure induced by the application of CC50 in the mast-cell depleted animals (anticonvulsive action) but increased the percent of dying animals by as much as 100% at the 30th and 60th min (p < .0001). Combined morphine + C48/80 not only augmented the anticonvulsive effect of morphine at the 30th min but also nullified the rate of death among mice having convulsions. We concluded that compound 48/80 (1) penetrates into the central nervous system to produce a central effect; (2) acts as pro-convulsive, and (3) paradoxically augments the anticonvulsive action of morphine, likely caused by the ability of the compound to increase the permeability of blood-brain barrier for morphine or by the release of histamine from mast cells in the brain, acting as anticonvulsant through the stimulation of H1 receptors or both. The precise mechanism of the increased death rate by C48/80 or morphine in intact and in mast-cell-depleted mice appears to involve pro-convulsive effects, cardiovascular impairment, and respiratory depression. The nullification of morphine-induced lethal toxicity by C48/80 could be due to the antagonistic interaction of the drug with opiate receptors in the brain.
Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas
2015-07-05
Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.
Maleki, Morteza; Hassanpour-Ezatti, Majid; Navaeian, Majid
2017-01-01
Introduction: The current study aimed at investigating the existence of the cross state-dependent learning between morphine and scopolamine (SCO) in mice by passive avoidance method, pointing to the role of CA1 area. Methods: The effects of pre-training SCO (0.75, 1.5, and 3 μg, Intra-CA1), or morphine (1, 3, and 6 mg/kg, intraperitoneal (i.p.) was evaluated on the retrieval of passive avoidance learning using step-down task in mice (n=10). Then, the effect of pretest administration of morphine (1.5, 3, and 6 mg/kg, i.p.) was examined on passive avoidance retrieval impairment induced by pre-training SCO (3 μg/mice, Intra-CA1). Next, the effect of pretest Intra-CA1 injection of scopolamine (0.75, 1.5, and 3 μg/mice) was evaluated on morphine (6 mg/kg, i.p.) pre-training deficits in this task in mice. Results: The pre-training Intra-CA1 injection of scopolamine (1.5 and 3 μg/mouse), or morphine (3 and 6 mg/kg, i.p.) impaired the avoidance memory retrieval when it was tested 24 hours later. Pretest injection of both drugs improved its pre-training impairing effects on mice memory. Moreover, the amnesia induced by the pre-training injections of scopolamine (3 μg/mice) was restored significantly (P<0.01) by pretest injections of morphine (3 and 6 mg/kg, i.p.). Similarly, pretest injection of scopolamine (3 μg/mice) restored amnesia induced by the pre-training injections of morphine (6 mg/kg, i.p.), significantly (P<0.01). Conclusion: The current study findings indicated a cross state-dependent learning between SCO and morphine at CA1 level. Therefore, it seems that muscarinic and opioid receptors may act reciprocally on modulation of passive avoidance memory retrieval, at the level of dorsal hippocampus, in mice. PMID:28781727
Redondo, Alejandro; Chamorro, Pablo Aníbal Ferreira; Riego, Gabriela; Leánez, Sergi; Pol, Olga
2017-12-01
The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts potent antioxidative and anti-inflammatory effects; however, its participation in the modulation of chronic inflammatory pain and on the antinociceptive effects of μ -opioid receptor (MOR) agonists has not been evaluated. We investigated whether the induction of Nrf2 could alleviate chronic inflammatory pain and augment the analgesic effects of morphine and mechanisms implicated. In male C57BL/6 mice with inflammatory pain induced by complete Freund's adjuvant (CFA) subplantarly administered, we assessed: 1) antinociceptive actions of the administration of 5 and 10 mg/kg of a Nrf2 activator, sulforaphane (SFN); and 2) effects of SFN on the antinociceptive actions of morphine and on protein levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) enzymes, microglial activation and inducible nitric oxide synthase (NOS2) overexpression, as well as on mitogen-activated protein kinase (MAPK) and MOR expression in the spinal cord and paw of animals with inflammatory pain. Results showed that treatment with SFN inhibited allodynia and hyperalgesia induced by CFA and increased the local antinociceptive actions of morphine. This treatment also augmented the expression of Nrf2, HO-1, NQO1, and MOR, and inhibited NOS2 and CD11b/c overexpression and MAPK phosphorylation induced by inflammation. Thus, this study shows that the induction of Nrf2 might inhibit inflammatory pain and enhance the analgesic effects of morphine by inhibiting oxidative stress and inflammatory responses induced by peripheral inflammation. This study suggests the administration of SFN alone and in combination with morphine are potential new ways of treating chronic inflammatory pain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Flores, Juan A; El Banoua, Fadwa; Galán-Rodríguez, Beatriz; Fernandez-Espejo, Emilio
2004-07-01
The periaqueductal grey (PAG) area is involved in pain modulation as well as in opiate-induced anti-nociceptive effects. The PAG possess dopamine neurons, and it is likely that this dopaminergic network participates in anti-nociception. The objective was to further study the morphology of the PAG dopaminergic network, along with its role in nociception and opiate-induced analgesia in rats, following either dopamine depletion with the toxin 6-hydroxydopamine or local injection of dopaminergic antagonists. Nociceptive responses were studied through the tail-immersion (spinal reflex) and the hot-plate tests (integrated supraspinal response), establishing a cut-off time to further minimize animal suffering. Heroin and morphine were employed as opiates. Histological data indicated that the dopaminergic network of the PAG is composed of two types of neurons: small rounded cells, and large multipolar neurons. Following dopamine depletion of the PAG, large neurons (not small ones) were selectively affected by the toxin (61.9% dopamine cell loss, 80.7% reduction of in vitro dopaminergic peak), and opiate-induced analgesia in the hot-plate test (not the tail-immersion test) was reliably attenuated in lesioned rats (P < 0.01). After infusions of dopaminergic ligands into the PAG, D(1) (not D(2)) receptor antagonism attenuated opiate-induced analgesia in a dose-dependent manner in the hot-plate test. The present study provides evidence that large neurons of the dopaminergic network of the PAG participate in supraspinal (not spinal) nociceptive responses after opiates through the involvement of D(1) dopamine receptors. This dopaminergic system should be included as another network within the PAG involved in opiate-induced anti-nociception.
Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.
2010-01-01
Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246
Lv, Xiu-Fang; Xu, Ya; Han, Ji-Sheng; Cui, Cai-Lian
2011-09-30
Activity-regulated cytoskeleton-associated protein (Arc), also known as activity-regulated gene 3.1 (Arg3.1), is an immediate early gene whose mRNA is selectively targeted to recently activated synaptic sites, where it is translated and enriched. This unique feature suggests a role for Arc/Arg3.1 in coupling synaptic activity to protein synthesis, leading to synaptic plasticity. Although the Arc/Arg3.1 gene has been shown to be induced by a variety of abused drugs and its protein has been implicated in diverse forms of long-term memory, relatively little is known about its role in drug-induced reward memory. In this study, we investigated the potential role of Arc/Arg3.1 protein expression in reward-related associative learning and memory using morphine-induced conditioned place preference (CPP) in rats. We found that (1) intraperitoneal (i.p.) injection of morphine (10mg/kg) increased Arc/Arg3.1 protein levels after 2h in the NAc core but not in the NAc shell. (2) In CPP experiments, Arc/Arg3.1 protein was increased in the NAc shell of rats following both morphine conditioning and the CPP expression test compared to rats that received the conditioning without the test or those that did not receive morphine conditioning. (3) Microinjection of Arc/Arg3.1 antisense oligodeoxynucleotide (AS) into the NAc core inhibited the acquisition, expression and reinstatement of morphine CPP; however, intra-NAc shell infusions of the AS only blocked the expression of CPP. These findings suggest that expression of the Arc/Arg3.1 protein in the NAc core is required for the acquisition, context-induced retrieval and reinstatement of morphine-associated reward memory, whereas Arc/Arg3.1 protein expression in the NAc shell is only critical for the context-induced retrieval of memory. As a result, Arc/Arg3.1 may be a potential therapeutic target for the prevention of drug abuse or the relapse of drug use. Copyright © 2011 Elsevier B.V. All rights reserved.
Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein
2018-05-30
This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.
Davis, Catherine M; Rice, Kenner C; Riley, Anthony L
2009-10-01
The Fischer 344 (F344) and Lewis (LEW) inbred rat strains react differently to morphine in a number of behavioral and physiological preparations, including the acquisition of aversions induced by this compound. The present experiment tested the ability of various compounds with relative selectivity at kappa, delta and mu receptor subtypes to assess the relative roles of these subtypes in mediating the differential aversive effects of morphine in the two strains. In the assessment of the role of the kappa receptor in morphine-induced aversions, animals in both strains were given access to saccharin followed by varying doses of the kappa agonist (-)-U50,488H (0.0, 0.28, 0.90 and 1.60 mg/kg). Although (-)-U50,488H induced aversions in both strains, no strain differences emerged. A separate subset of subjects was trained with the selective delta opioid agonist, SNC80 (0.0, 5.6, 10.0 and 18.0 mg/kg), and again although SNC80 induced aversions, there were no strain differences. Finally, a third subset of subjects was trained with heroin (0.0, 3.2, 5.6 and 10.0 mg/kg), a compound with activity at all three opiate receptor subtypes. Although heroin induced aversions in both strains, the aversions were significantly greater in the F344 strain, suggesting that differential activation of the mu opioid receptor likely mediates the reported strain differences in morphine-induced aversion learning. These data were discussed in terms of strain differences in opioid system functioning and the implications of such differences for other morphine-induced behavioral effects reported in F344 and LEW rats.
Abdyazdani, Nima; Nourazarian, Alireza; Nozad Charoudeh, Hojjatollah; Kazemi, Masoumeh; Feizy, Navid; Akbarzade, Maryam; Mehdizadeh, Amir; Rezaie, Jafar; Rahbarghazi, Reza
2017-01-01
A lack of comprehensive data exists on the effect of morphine on neural stem cell neuro-steroidogenesis and neuro-angiogenesis properties. We, herein, investigated the effects of morphine (100μM), naloxone (100μM) and their combination on rat neural stem cells viability, clonogenicity and Ki-67 expression over a period of 72h. Any alterations in the total fatty acids profile under treatment protocols were elucidated by direct transesterification method. We also monitored the expression of p53, aromatase and 5-alpha reductase by real-time PCR assay. To examine angiogenic capacity, in vitro tubulogenesis and the level of VE-cadherin transcript were investigated during neural to endothelial differentiation under the experimental procedure. Cells supplemented with morphine displayed reduced survival (p<0.01) and clonogenicity (p<0.001). Flow cytometric analysis showed a decrease in Ki-67 during 72h. Naloxone potentially blunted morphine-induced all effects. The normal levels of fatty acids, including saturated and unsaturated were altered by naloxone and morphine supplements. Following 48h, the up-regulation of p53, aromatase and 5-alpha reductase genes occurred in morphine-primed cells. Using three-dimensional culture models of angiogenesis and real time PCR assay, we showed morphine impaired the tubulogenesis properties of neural stem cells (p<0.001) by the inhibition of trans-differentiation into vascular cells and led to decrease of in VE-cadherin expression. Collectively, morphine strongly impaired the healthy status of neural stem cells by inducing p53 and concurrent elevation of aromatase and 5-alpha reductase activities especially during early 48h. Also, neural stem cells-being exposed to morphine lost their potency to elicit angiogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine.
Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas
2015-10-01
The limbic dopaminergic reward system is the main target of morphine-like drugs which begins from the ventral tegmental area (VTA) and sends its dopaminergic projections to the nucleus accumbens (NAc), amygdala, hippocampus and prefrontal cortex. Cannabinoid receptors exist in afferent neurons from these areas to the NAc and can modulate glutamate synaptic transmission in the NAc. Cannabinoids can interact with the opiate system in reward-related behaviors; nevertheless these systems' interaction in extinction duration and reinstatement has not been shown. In the present study, the effects of bilateral intra-accumbal administration of AM251, a CB1 receptor antagonist, on the duration of the extinction phase and reinstatement to morphine were investigated by conditioned place preference (CPP) paradigm. Forty eight adult male albino Wistar rats were used. Bilateral intra-accumbal administration of AM251 (15, 45 and 90μM/0.5μl DMSO per side) was performed. Subcutaneous administration of morphine (5mg/kg) in three consecutive days was used to induce CPP. The results showed that administration of the maximal dose of AM251 during the extinction period significantly reduces duration of extinction and reinstatement to morphine. Administration of the middle dose during the extinction period significantly attenuated reinstatement to morphine. A single microinjection of the middle dose just before the reinstatement phase significantly attenuated reinstatement to morphine only, while bilateral intra-accumbal administration of neither the lowest dose nor the vehicle (DMSO) had any effects. These results for the first time indicated that CB1 receptors within the NAc are involved in the maintenance of morphine rewarding properties, and morphine seeking behaviors in extinguished morphine-induced CPP rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali
2014-09-01
Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Kandasamy, Ram; Lee, Andrea T.; Morgan, Michael M.
2017-01-01
Opioid withdrawal in humans is often subtle and almost always spontaneous. In contrast, most preclinical studies precipitate withdrawal by administration of an opioid receptor antagonist such as naloxone. These animal studies rely on measurement of physiological symptoms (e.g., wet dog shakes) in the period immediately following naloxone administration. To more closely model the human condition, we tested the hypothesis that depression of home cage wheel running will provide an objective method to measure the magnitude and duration of spontaneous morphine withdrawal. Rats were allowed access to a running wheel in their home cage for 8 days prior to implantation of two 75 mg morphine or placebo pellets. The pellets were removed 3 or 5 days later to induce spontaneous withdrawal. In normal pain-free rats, removal of the morphine pellets depressed wheel running for 48 hours compared to rats that had placebo pellets removed. Morphine withdrawal-induced depression of wheel running was greatly enhanced in rats with persistent inflammatory pain induced by injection of Complete Freund’s Adjuvant (CFA) into the hindpaw. Removal of the morphine pellets following 3 days of treatment depressed wheel running in these rats for over 6 days. These data demonstrate that home cage wheel running provides an objective and more clinically relevant method to assess spontaneous morphine withdrawal compared to precipitated withdrawal in laboratory rats. Moreover, the enhanced withdrawal in rats with persistent inflammatory pain suggests that pain patients may be especially susceptible to opioid withdrawal. PMID:28366799
Evidence that opioids may have toll-like receptor 4 and MD-2 effects.
Hutchinson, Mark R; Zhang, Yingning; Shridhar, Mitesh; Evans, John H; Buchanan, Madison M; Zhao, Tina X; Slivka, Peter F; Coats, Benjamen D; Rezvani, Niloofar; Wieseler, Julie; Hughes, Travis S; Landgraf, Kyle E; Chan, Stefanie; Fong, Stephanie; Phipps, Simon; Falke, Joseph J; Leinwand, Leslie A; Maier, Steven F; Yin, Hang; Rice, Kenner C; Watkins, Linda R
2010-01-01
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.
Evidence that opioids may have toll like receptor 4 and MD-2 effects
Hutchinson, Mark R.; Zhang, Yingning; Shridhar, Mitesh; Evans, John H.; Buchanan, Madison M.; Zhao, Tina X.; Slivka, Peter F.; Coats, Benjamen D.; Rezvani, Niloofar; Wieseler, Julie; Hughes, Travis S.; Landgraf, Kyle E.; Chan, Stefanie; Fong, Stephanie; Phipps, Simon; Falke, Joseph J.; Leinwand, Leslie A.; Maier, Steven F.; Yin, Hang; Rice, Kenner C.; Watkins, Linda R.
2009-01-01
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling. PMID:19679181
Opiate and non-opiate aspects of morphine induced seizures.
Frenk, H; Liban, A; Balamuth, R; Urca, G
1982-12-16
The intraperitoneal administration of morphine hydrochloride at doses of 300 mg/kg produced analgesia, catalepsy, and electrographic spiking in rats that developed into electrographic seizure patterns after approximately 2.5 h. Whereas naltrexone (12 mg/kg) reversed analgesia and catalepsy, and diminished electrographic spiking, it precipitated electrographic seizure activity similar to that observed following intraperitoneal morphine alone. These seizures were accompanied by behavioral convulsions. No tolerance to these seizures developed with repeated paired administration of morphine and naltrexone or in morphine tolerant rats, but rather potentiation was observed. The epileptogenic effects were found to be potentiated in amygdaloid kindled rats, as well. It was concluded that morphine at these doses activates two different epileptogenic mechanisms, one mediated by opiate receptors, the other not. The possibility of the simultaneous activation of a morphine sensitive anticonvulsant mechanism is discussed.
Changes in adaptability following perinatal morphine exposure in juvenile and adult rats.
Klausz, Barbara; Pintér, Ottó; Sobor, Melinda; Gyarmati, Zsuzsa; Fürst, Zsuzsanna; Tímár, Júlia; Zelena, Dóra
2011-03-05
The problem of drug abuse among pregnant women causes a major concern. The aim of the present study was to examine the adaptive consequences of long term maternal morphine exposure in offspring at different postnatal ages, and to see the possibility of compensation, as well. Pregnant rats were treated daily with morphine from the day of mating (on the first two days 5mg/kgs.c. than 10mg/kg) until weaning. Male offspring of dams treated with physiological saline served as control. Behavior in the elevated plus maze (EPM; anxiety) and forced swimming test (FST; depression) as well as adrenocorticotropin and corticosterone hormone levels were measured at postpartum days 23-25 and at adult age. There was only a tendency of spending less time in the open arms of the EPM in morphine treated rats at both ages, thus, the supposed anxiogenic impact of perinatal exposure with morphine needs more focused examination. In response to 5min FST morphine exposed animals spent considerable longer time with floating and shorter time with climbing at both ages which is an expressing sign of depression-like behavior. Perinatal morphine exposure induced a hypoactivity of the stress axis (adrenocorticotropin and corticosterone elevations) to strong stimulus (FST). Our results show that perinatal morphine exposure induces long term depression-like changes. At the same time the reactivity to the stress is failed. These findings on rodents presume that the progenies of morphine users could have lifelong problems in adaptive capability and might be prone to develop psychiatric disorders. Copyright © 2010 Elsevier B.V. All rights reserved.
Cao, Jun-Li; Vialou, Vincent F; Lobo, Mary Kay; Robison, Alfred J; Neve, Rachael L; Cooper, Donald C; Nestler, Eric J; Han, Ming-Hu
2010-09-28
Excessive inhibition of brain neurons in primary or slice cultures can induce homeostatic intrinsic plasticity, but the functional role and underlying molecular mechanisms of such plasticity are poorly understood. Here, we developed an ex vivo locus coeruleus (LC) slice culture system and successfully recapitulated the opiate-induced homeostatic adaptation in electrical activity of LC neurons seen in vivo. We investigated the mechanisms underlying this adaptation in LC slice cultures by use of viral-mediated gene transfer and genetic mutant mice. We found that short-term morphine treatment of slice cultures almost completely abolished the firing of LC neurons, whereas chronic morphine treatment increased LC neuronal excitability as revealed during withdrawal. This increased excitability was mediated by direct activation of opioid receptors and up-regulation of the cAMP pathway and accompanied by increased cAMP response-element binding protein (CREB) activity. Overexpression of a dominant negative CREB mutant blocked the increase in LC excitability induced by morphine- or cAMP-pathway activation. Knockdown of CREB in slice cultures from floxed CREB mice similarly decreased LC excitability. Furthermore, the ability of morphine or CREB overexpression to up-regulate LC firing was blocked by knockout of the CREB target adenylyl cyclase 8. Together, these findings provide direct evidence that prolonged exposure to morphine induces homeostatic plasticity intrinsic to LC neurons, involving up-regulation of the cAMP-CREB signaling pathway, which then enhances LC neuronal excitability.
Esmaeili-Mahani, Saeed; Fathi, Yadollah; Motamedi, Fereshteh; Hosseinpanah, Farhad; Ahmadiani, Abolhassan
2008-02-01
Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.
Pooriamehr, Alireza; Sabahi, Parviz; Miladi-Gorji, Hossein
2017-08-24
Chronic morphine exposure during puberty increased morphine-induced rewarding effects and sensitization in the next generation. Given the well-known beneficial effects of environmental enrichment on the severity of physical and psychological dependence on morphine, we examined effects of enriched environment during morphine abstinence in morphine dependent parental rats before mating on the anxiety and depressive-like behaviors, and voluntary morphine consumption in their offspring. Paternal and/or maternal rats were injected with bi-daily doses (10mg/kg, 12h intervals) of morphine for 14days followed by rearing in a standard environment (SE) or enriched environment (EE) during 30days of morphine abstinence before mating. The pubertal male and female rat offspring were tested for anxiety (the elevated plus maze- EPM) and depression (sucrose preference test-SPT), and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that EE experience in morphine-dependent both parents result in an increase in the percentage of time spent into open arms/time spent on both arms using EPM in male offspring, higher levels of sucrose preference in female offspring and lower levels of voluntary morphine consumption in male and female offspring. Thus, EE experience in morphine-dependent both parents reduced anxiety, depressive-like behavior and also the voluntary morphine consumption in their offspring during puberty which may prevent the vulnerability of the next generation to drug abuse. Copyright © 2017 Elsevier B.V. All rights reserved.
Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.
2012-01-01
Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784
The effects of exogenous CCK-8 on the acquisition and expression of morphine-induced CPP.
Wen, Di; Cong, Bin; Ma, Chunling; Yang, Shengchang; Yu, Hailei; Ni, Zhiyu; Li, Shujin
2012-02-21
Cholecystokinin octapeptide (CCK-8) is the most potent endogenous anti-opioid peptide and regulates a variety of physiological processes. In our previous study, we found that exogenous CCK-8 attenuated naloxone-induced withdrawal symptoms, but the possible regulative effects of CCK-8 on the rewarding effects of morphine were not examined. In the present study, we aimed to determine the exact effects of exogenous CCK-8 at various doses on the rewarding action of morphine by utilizing the unbiased conditioned place preference (CPP) paradigm. We therefore examined the effects of CCK-8 on the acquisition, expression and extinction of morphine-induced CPP and on locomotor activity. The results showed that CCK-8 (0.01-1μg, i.c.v.), administered alone, induced neither CPP nor place aversion, but blocked the acquisition of CPP when administered with 10mg/kg morphine. The highest dose of CCK-8 (1μg) administered before CPP testing increased CPP and, along with lower doses (0.1μg), reduced its extinction. In addition, the highest dose (1μg) of CCK-8 suppressed locomotor activity. Our study provides the first behavioral evidence for the inhibitory effects of exogenous CCK-8 on rewarding activity and reveals significant effects of exogenous CCK-8 on various stages of place preference and the development of opioid dependence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Shibasaki, Masahiro; Masukawa, Daiki; Ishii, Kazunori; Yamagishi, Yui; Mori, Tomohisa; Suzuki, Tsutomu
2013-06-01
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti-anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K(+) -Cl(-) co-transporter 2 (KCC2) in the sensitization to morphine-induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ-aminobutyric acid A-type receptor (GABAA R) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine-induced hyperlocomotion, which is accompanied by the up-regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down-regulation of protein phosphatase-1 (PP-1) as well as the up-regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP-1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre-treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine-induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ-PP-1-KCC2 pathway by chronic treatment with zolpidem. © 2013 International Society for Neurochemistry.
Bie, Bihua; Pan, Zhizhong Z
2005-02-09
Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains mu-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in mu receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to the reduced opioid analgesia during opioid tolerance.
Razavi, Yasaman; Alamdary, Shabnam Zeighamy; Katebi, Seyedeh-Najmeh; Khodagholi, Fariba; Haghparast, Abbas
2014-03-01
Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have protective effects against cell death. In this study, we suggested that there is a parallel role of morphine in reward circuitry and apoptosis processing. Therefore, we investigated the effect of morphine on modifications of apoptotic factors in the ventral tegmental area (VTA) and hippocampus (HPC) which are involved in the reward circuitry after the acquisition and extinction periods of conditioned place preference (CPP). In behavioral experiments, different doses of morphine (0.5, 5, and 10 mg/kg) and saline were examined in the CPP paradigm. Conditioning score and locomotor activity were recorded by Ethovision software after acquisition on the post-conditioning day, and days 4 and 8 of extinction periods. In order to investigate the molecular mechanisms in each group, we then dissected the brains and measured the expression of apoptotic factors in the VTA and HPC by western blotting analysis. All of the morphine-treated groups showed an increase of apoptotic factors in these regions during acquisition but not in extinction period. In the HPC, morphine significantly increased the ratio of Bax/Bcl-2, caspases-3, and PARP by the lowest dose (0.5 mg/kg), but, in the VTA, a considerable increase was seen in the dose of 5 mg/kg; promotion of apoptotic factors in the HPC and VTA insinuates that morphine can affect the molecular mechanisms that interfere with apoptosis through different receptors. Our findings suggest that a specific opioid receptor involves in modification of apoptotic factors expression in these areas. It seems that the reduction of cell death in response to high dose of morphine in the VTA and HPC may be due to activation of low affinity opioid receptors which are involved in neuroprotective features of morphine.
Narp regulates long-term aversive effects of morphine withdrawal.
Reti, Irving M; Crombag, Hans S; Takamiya, Kogo; Sutton, Jeffrey M; Guo, Ning; Dinenna, Megan L; Huganir, Richard L; Holland, Peter C; Baraban, Jay M
2008-08-01
Although long-lasting effects of drug withdrawal are thought to play a key role in motivating continued drug use, the mechanisms mediating this type of drug-induced plasticity are unclear. Because Narp is an immediate early gene product that is secreted at synaptic sites and binds to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, it has been implicated in mediating enduring forms of synaptic plasticity. In previous studies, the authors found that Narp is selectively induced by morphine withdrawal in the extended amygdala, a group of limbic nuclei that mediate aversive behavioral responses. Accordingly, in this study, the authors evaluate whether long-term aversive effects of morphine withdrawal are altered in Narp knockout (KO) mice. The authors found that acute physical signs of morphine withdrawal are unaffected by Narp deletion. However, Narp KO mice acquire and sustain more aversive responses to the environment conditioned with morphine withdrawal than do wild type (WT) controls. Paradoxically, Narp KO mice undergo accelerated extinction of this heightened aversive response. Taken together, these studies suggest that Narp modulates both acquisition and extinction of aversive responses to morphine withdrawal and, therefore, may regulate plasticity processes underlying drug addiction.
Yang, Liling; Wang, Shuxing; Lim, Grewo; Sung, Backil; Zeng, Qing; Mao, Jianren
2008-12-01
Glutamate transporters play a crucial role in physiological glutamate homeostasis and neurotoxicity. Recently, we have shown that downregulation of glutamate transporters after chronic morphine exposure contributed to the development of morphine tolerance. In the present study, we examined whether regulation of the glutamate transporter expression with the proposed proteasome inhibitor MG-132 would contribute to the development of tolerance to repeated intrathecal (twice daily x 7 days) morphine administration in rats. The results showed that MG-132 (5 nmol) given intrathecally blocked morphine-induced glutamate transporter downregulation and the decrease in glutamate uptake activity within the spinal cord dorsal horn. Co-administration of morphine (15 nmol) with MG-132 (vehicle=1<2.5<5=10 nmol) also dose-dependently prevented the development of morphine tolerance in rats. These findings suggest that prevention of spinal glutamate transporter downregulation may regulate the glutamatergic function that has been implicated in the development of morphine tolerance. The possible relationship between MG-132-mediated regulation of glutamate transporters, ubiquitin-proteasome system, and the cellular mechanisms of morphine tolerance is discussed in light of these findings.
Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine; Wu, Chin-Chen; Ho, Shung-Tai; Wang, Jhi-Joung; Tao, Yuan-Xiang; Shui, Hao-Ai
2014-01-01
Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance. PMID:24392096
Jay, M A; Thomas, B M; Nandi, R; Howard, R F
2017-02-01
Children with neurodevelopmental disabilities may be at risk of opioid-induced respiratory depression. We aimed to quantify the risks and effectiveness of morphine nurse-controlled analgesia (morphine-NCA) for postoperative pain in children with neurodevelopmental disabilities. We carried out a retrospective cohort study of 12 904 children who received postoperative i.v. morphine-NCA. Subjects were divided into a neurodevelopmental disability group and a control group. Rates of clinical satisfaction, respiratory depression, and serious adverse events were obtained, and statistical analysis, including multilevel logistic regression using Bayesian inference, was performed. Of 12 904 patients, 2390 (19%) had neurodevelopmental disabilities. There were 88 instances of respiratory depression and 52 serious adverse events; there were no opioid-related deaths. The cumulative incidence of respiratory depression in the neurodevelopmental disability group was 1.09% vs 0.59% in the control group [odds ratio 1.8 (98% chance that the true odds ratio was >1)]. A significant interaction between postoperative morphine dose and neurodevelopmental disabilities was observed, with higher risk of respiratory depression with increasing dose. Satisfaction with morphine-NCA was very high overall, although children with neurodevelopmental disabilities were 1% more likely to have infusions rated as fair or poor (3.3 vs 2.1%, χ 2 P<0.001). Children with neurodevelopmental disabilities were 1.8 times more likely to suffer respiratory depression, absolute risk difference 0.5%; opioid-induced respiratory depression in this group may relate to increased sensitivity to dose-relate respiratory effects of morphine. Morphine-NCA as described was an acceptable technique for children with and without neurodevelopmental disabilities. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gong, Kerui; Bhargava, Aditi; Jasmin, Luc
2016-01-01
The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions. Patch clamp recordings from intact dorsal root ganglions (ex vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (>30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing N-methyl-D-aspartate (NMDA) receptors, and to a lesser degree by the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1. Coadministration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and excitatory amino acid transporter 3/excitatory amino acid carrier 1, but not of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2. These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDA receptors in the periphery may be a target for therapy.
Bali, Anjana; Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh
2015-04-01
Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.
Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period ofmore » 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).« less
Brain site- and transmitter-dependent actions of methamphetamine, morphine and antipsychotics.
Mori, Tomohisa; Iwase, Yoshiyuki; Murata, Asami; Iwata, Noriyuki; Suzuki, Tsutomu
2016-06-01
While several methamphetamine- and morphine-induced psychotic states are ordinarily treated by antipsychotics, the therapeutic mechanisms of antipsychotic drugs have yet been elucidated. The present study was designed to investigate the mechanisms how antipsychotic drugs suppress the behavioral changes induced by psychoactive drugs in mice. Low to medium doses of methamphetamine produced hyperlocomotion, whereas high dose of methamphetamine induced hypolocomotion. Hyperlocomotion induced by methamphetamine was potently suppressed by clozapine and 5-HT2 receptor antagonists, but not by the intra-accumbens injection of haloperidol. On the other hand, microinjection of haloperidol into the ventrolateral striatum increased locomotor activity with high dose of methamphetamine. In contrast, morphine-induced hyperlocomotion was suppressed by systemic as well as intra-accumbens injection of haloperidol, whereas relatively resistant to clozapine, compared to its effects in the case of methamphetamine. It has been widely believed that methamphetamine-induced psychosis is an animal model of schizophrenia, which is mediated by activation of accumbal dopamine receptors. Our findings suggest that methamphetamine differentially regulate monoaminergic systems (e.g., dopaminergic vs. 5-HTnergic), and accumbal dopamine receptors are not involved in methamphetamine-induced hyperlocomotion in mice. Thus, our findings may lead to a better understanding of the therapeutic mechanisms that underlie the effects of antipsychotic drugs and behavioral effects of methamphetamine and morphine. Copyright © 2016 Elsevier B.V. All rights reserved.
Rozeske, Robert R; Der-Avakian, Andre; Watkins, Linda R; Maier, Steven F
2012-01-01
Stress can be a predisposing factor in the development of psychiatric disorders. However, not all individuals develop psychiatric disorders following a traumatic event. An attempt to understand these individual differences has led to a focus on factors that produce resistance. Interestingly, in rats, an experience with escapable tailshock (ES) before inescapable tailshock (IS) prevents the typical anxiety-like behavioral outcomes of IS. This type of resistance has been termed 'behavioral immunization', and it depends on activation of the medial prefrontal cortex (mPFC) during ES. However, one outcome of IS that is not anxiety-related is potentiation of morphine conditioned place preference (CPP). The present experiments investigated whether prior ES would block IS-induced potentiation of morphine CPP. Rats received either ES, IS or homecage control treatment on day 1 and then either IS or homecage control treatment on day 2. Twenty-four hours following day 2, rats underwent morphine conditioning, and CPP was subsequently assessed. In a second experiment, rats received ES 3, 14 or 56 days prior to IS to determine the duration of behavioral immunization. In a final experiment, rats were microinjected with the GABA(A) agonist muscimol (50 ng/0.5 μL) or saline in the mPFC before day 1 of stress. Prior ES blocked IS-induced potentiation of morphine CPP. This immunizing effect of ES lasted for at least 56 days. Additionally, intra-mPFC muscimol during ES prevented behavioral immunization. These results suggest that prior experience with ES activates the mPFC and produces long-lasting neural alterations that block subsequent IS-induced potentiation of morphine CPP. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Attarzadeh-Yazdi, Ghassem; Karimi, Sara; Azizi, Pegah; Yazdi-Ravandi, Saeid; Hesam, Soghra; Haghparast, Abbas
2013-09-01
Addiction is a common chronic psychiatric disease which represents a global problem and stress has an important role to increase drug addiction and relapse. In the present study, we investigated the effects of physical stress and exogenous corticosterone on the acquisition and expression of morphine-induced conditioned place preference (CPP). Also, we tried to find out the role of glucocorticoid receptors (GRs) of basolateral amygdala (BLA) in this regard. In the CPP paradigm, conditioning score and locomotion activity were recorded by Ethovision software. Male adult rats received forced swim stress (FSS) as a physical stress or corticosterone (10 mg/kg; ip) as a dominant stress hormone in rodents, 10min before morphine injection (5 mg/kg; sc) during three conditioning days (acquisition) or just prior to CPP test in the post-conditioning day (expression). In FSS procedure, animals were forced to swim for 6 min in cylinder filled with water (24-27 °C). To evaluate the role of glucocorticoid receptors in the BLA, different doses of mifepristone (RU38486) as a GR antagonist were injected into the BLA (0.3, 3 and 30 ng/side) during 3-day conditioning phase before FSS or injection of corticosterone in morphine-CPP paradigm. The results showed that FSS and corticosterone reduce the acquisition but not expression of morphine-induced CPP. Moreover, blockade of GRs in the BLA could diminish the inhibitory effects of FSS or corticosterone on the acquisition of morphine-induced CPP. It seems that stress exerts its effect on reward pathway via glucocorticoid receptors in the BLA. Copyright © 2013 Elsevier B.V. All rights reserved.
Tonello, Raquel; Rigo, Flávia; Gewehr, Camila; Trevisan, Gabriela; Pereira, Elizete Maria Rita; Gomez, Marcus Vinicius; Ferreira, Juliano
2014-06-01
Opioids are standard therapy for the treatment of pain; however, adverse effects limit their use. Voltage-gated calcium channel blockers may be used to increase opioid analgesia, but their effect on opioid-induced side effects is little known. Thus, the goal of this study was to evaluate the action of the peptide Phα1β, a voltage-gated calcium channel blocker, on the antinociceptive and adverse effects produced by morphine in mice. A single administration of morphine (3-10 mg/kg) was able to reduce heat nociception as well as decrease gastrointestinal transit. The antinociception caused by a single injection of morphine was slightly increased by an intrathecal injection of Phα1β (30 pmol/site). Repeated treatment with morphine caused tolerance, hyperalgesia, withdrawal syndrome, and constipation, and the Phα1β (.1-30 pmol/site, intrathecal) was able to reverse these effects. Finally, the effects produced by the native form of Phα1β were fully mimicked by a recombinant version of this peptide. Taken together, these data show that Phα1β was effective in potentiating the analgesia caused by a single dose of morphine as well as in reducing tolerance and the adverse effects induced by repeated administration of morphine, indicating its potential use as an adjuvant drug in combination with opioids. This article presents preclinical evidence for a useful adjuvant drug in opioid treatment. Phα1β, a peptide calcium channel blocker, could be used not only to potentiate morphine analgesia but also to reduce the adverse effects caused by repeated administration of morphine. Copyright © 2014. Published by Elsevier Inc.
Evaluation of antinociceptive activity of hydromethanol extract of Cyperus rotundus in mice
2014-01-01
Background Cyperus rotundus Linn. (Cyperaceae) is used to treat inflammation, pain, fever, wounds, boils and blisters in folk medicine. This study evaluated the antinociceptive effect of the hydromethanol extract of whole plant of C. rotundus (HMCR). Methods The antinociceptive activity of HMCR was investigated in thermal-induced (hot plate and tail immersion) and chemical-induced (formalin) nociception models in mice at three different doses (50, 100 and 200 mg/kg; p.o.). Morphine sulphate (5 mg/kg, i.p.) and diclofenac sodium (10 mg/kg, i.p.) were used as reference analgesic agents. Results In the hot-plate and tail-immersion tests HMCR significantly increased the latency period to the thermal stimuli at all the tested doses (50, 100 and 200 mg/kg) (p < 0.05). The significant increase in latency is clear from the observations at 60 and 90 min. In formalin-induced paw licking test oral administration of HMCR at 100 and 200 mg/kg doses decreased the licking of paw in early phase. All the tested doses (50, 100 and 200 mg/kg) significantly decreased the licking of paw in late phase of the test (p < 0.001). The dose 200 mg/kg was most effective showing maximum percentage of inhibition of licking in both early (61.60%) and late phase (87.41%). Conclusion These results indicate the antinociceptive effect of C. rotundus and suggest that this effect is mediated by both peripheral and central mechanisms. These results support the traditional use of this plant in different painful conditions. PMID:24589067
Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L.; Bohn, Laura M.
2010-01-01
Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC50 of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium. PMID:20406855
Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L; Bohn, Laura M; Wood, Jackie D
2010-07-01
Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC(50) of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium.
Bai, Yu; Bai, Jia-Ming; Li, Jing; Li, Min; Yu, Ran; Pan, Qun-Wan
2014-12-25
The purpose of the present study is to analyze the relationship between the telemetry electroencephalogram (EEG) changes of the prelimbic (PL) cortex and the drug-seeking behavior of morphine-induced conditioned place preference (CPP) rats by using the wavelet packet extraction and entropy measurement. The recording electrode was stereotactically implanted into the PL cortex of rats. The animals were then divided randomly into operation-only control and morphine-induced CPP groups, respectively. A CPP video system in combination with an EEG wireless telemetry device was used for recording EEG of PL cortex when the rats shuttled between black-white or white-black chambers. The telemetry recorded EEGs were analyzed by wavelet packet extraction, Welch power spectrum estimate, normalized amplitude and Shannon entropy algorithm. The results showed that, compared with operation-only control group, the left PL cortex's EEG of morphine-induced CPP group during black-white chamber shuttling exhibited the following changes: (1) the amplitude of average EEG for each frequency bands extracted by wavelet packet was reduced; (2) the Welch power intensity was increased significantly in 10-50 Hz EEG band (P < 0.01 or P < 0.05); (3) Shannon entropy was increased in β, γ₁, and γ₂waves of the EEG (P < 0.01 or P < 0.05); and (4) the average information entropy was reduced (P < 0.01). The results suggest that above mentioned EEG changes in morphine-induced CPP group rat may be related to animals' drug-seeking motivation and behavior launching.
Elhabazi, K; Trigo, JM; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, JJ; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F
2012-01-01
BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence. PMID:21718302
Elhabazi, K; Trigo, J M; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, J J; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F
2012-01-01
BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Miller, Laurence L.; Altarifi, Ahmad A.; Negus, S. Stevens
2015-01-01
Research on opioid analgesics such as morphine suggests that expression of abuse-related effects increases with repeated exposure. Repeated exposure to opioids often occurs clinically in the context of pain management, and a major concern for clinicians is the risk of iatrogenic addiction and dependence in patients receiving opioids for treatment of pain. This study compared abuse-related morphine effects in male rats in an intracranial self-stimulation (ICSS) procedure after repeated treatment either with morphine alone or with morphine in combination with a repeated noxious stimulus (intraperitoneal administration of dilute acid). The study also permitted comparison of morphine potency and effectiveness to block acid-induced depression of ICSS (antinociception) and to produce enhanced facilitation of ICSS (abuse-related effect). There were three main findings. First, initial morphine exposure to drug naïve rats did not produce abuse-related ICSS facilitation. Second, repeated daily treatment with 3.2 mg/kg/day morphine for six days increased expression of ICSS facilitation. This occurred whether morphine was administered in the absence or presence of the noxious stimulus. Finally, a lower dose of 1.0 mg/kg/day morphine was sufficient to produce antinociception during repeated acid treatment, but this lower dose did not reliably increase abuse-related morphine effects. Taken together, these results suggest that prior morphine exposure can increase abuse liability of subsequent morphine treatments even when that morphine exposure occurs in the context of a pain state. However, it may be possible to relieve pain with relatively low morphine doses that do not produce increases in abuse-related morphine effects. PMID:26375515
Miller, Laurence L; Altarifi, Ahmad A; Negus, S Stevens
2015-10-01
Research on opioid analgesics such as morphine suggests that expression of abuse-related effects increases with repeated exposure. Repeated exposure to opioids often occurs clinically in the context of pain management, and a major concern for clinicians is the risk of iatrogenic addiction and dependence in patients receiving opioids for treatment of pain. This study compared abuse-related morphine effects in male rats in an intracranial self-stimulation (ICSS) procedure after repeated treatment either with morphine alone or with morphine in combination with a repeated noxious stimulus (intraperitoneal administration of dilute acid). The study also permitted comparison of morphine potency and effectiveness to block acid-induced depression of ICSS (antinociception) and to produce enhanced facilitation of ICSS (abuse-related effect). There were 3 main findings. First, initial morphine exposure to drug naïve rats did not produce abuse-related ICSS facilitation. Second, repeated daily treatment with 3.2 mg/kg/day morphine for 6 days increased expression of ICSS facilitation. This occurred whether morphine was administered in the absence or presence of the noxious stimulus. Finally, a lower dose of 1.0 mg/kg/day morphine was sufficient to produce antinociception during repeated acid treatment, but this lower dose did not reliably increase abuse-related morphine effects. Taken together, these results suggest that prior morphine exposure can increase abuse liability of subsequent morphine treatments even when that morphine exposure occurs in the context of a pain state. However, it may be possible to relieve pain with relatively low morphine doses that do not produce increases in abuse-related morphine effects. (c) 2015 APA, all rights reserved).
Social influences on morphine conditioned place preference in adolescent mice.
Cole, Shannon L; Hofford, Rebecca S; Evert, Daniel J; Wellman, Paul J; Eitan, Shoshana
2013-03-01
Social/peer influences are among the strongest predictors of adolescent drug use. However, this important subject does not get much attention in pre-clinical studies. We recently observed that exposure to different social partners modulates morphine locomotor sensitization. Sensitivity to the hyper-locomotor response of drugs of abuse is a predictor of sensitivity to other drug-induced behaviors. Thus, this study examined how exposure to different social partners affected the rewarding properties of morphine. All animals were group-housed four per cage in one of two conditions referred to as 'only' and 'cage-mates'. In the mixed treatment condition, morphine- and saline-treated mice were housed together. These groups are referred to as 'morphine cage-mates' and 'saline cage-mates', respectively. In the separated treatment conditions, all mice in the cage received morphine (i.e. 'morphine only') or saline (i.e. 'saline only'), and cages were visually separated from each other. All animals were subsequently individually tested for the acquisition of morphine conditioned place preference (CPP) following one conditioning session with 10, 20 or 40 mg/kg morphine or saline. As expected, one conditioning session established morphine CPP in the morphine only animals, but not in the saline only animals. Notably, morphine CPP was not acquired by the morphine cage-mate animals. Additionally, 40 mg/kg morphine was sufficient to establish morphine CPP in the saline cage-mate animals. These results indicate that social environment has an effect on the rewarding properties of morphine. It suggests that exposure to different peers can alter the abuse potential of opioids and potentially other illicit drugs. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E
2001-04-01
Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.
Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F
2014-09-17
Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuroAIDS. Copyright © 2014 the authors 0270-6474/14/3412850-15$15.00/0.
Effect of Thymoquinone on Reproductive Parameter in Morphine-treated Male Mice
Salahshoor, Mohammad Reza; Haghjoo, Mojdeh; Roshankhah, Shiva; Makalani, Fatemeh; Jalili, Cyrus
2018-01-01
Background: Thymoquinone as the main active component of Nigella sativa might have a various pharmacological effects such as antiapoptotic and antioxidant. Morphine is commonly used for the treatment of severe pain that can increase the generation of free radicals and affects the spermatogenesis. This study was designed to evaluate protective effects of thymoquinone against morphine-induced damages, sperm viability, count, motility, morphology and testis histology, and nitric oxide and testosterone hormone of the mice. Materials and Methods: In this experimental study, we divided 48 mice into eight groups (n = 6); various doses of thymoquinone (2, 10, and 20 mg/kg) and morphine (20 mg/kg) plus thymoquinone (2, 10, and 20 mg/kg) were administered intraperitoneally to 48 male mice for 30 consequent days. Male reproductive parameters including testis weight, testosterone hormone, serum nitric oxide, germinal thickness, sperm morphology, count, viability, and motility were analyzed and compared. Results: The results indicated that morphine administration significantly decreased germinal thickness, testis weight, testosterone level, viability, morphology, count, and motility of sperm and increased nitric oxide as compared to saline group (P < 0.05). However, increasing the dose of thymoquinone in the thymoquinone and thymoquinone plus morphine groups significantly decreases nitric oxide level (P < 0.05) while significantly boosted motility, morphology, count, viability of sperm cells, germinal thickness, and testosterone hormone in all groups as compared to morphine group (P < 0.05). Conclusion: It seems that thymoquinone administration could increase the quality some of spermatozoa and improves morphine-induced adverse effects on reproductive parameters in male mice PMID:29456989
Influence of oxcarbazepine on the antinociceptive action of morphine and metamizole in mice.
Pakulska, Wanda; Czarnecka, Elzbieta
2009-01-01
Numerous methods of management applied in order to obtain higher therapeutic efficacy of drugs with minimum adverse effects include taking advantage of interactions taking place between individual agents. Analgesics are combined with drugs belonging to other therapeutic groups, including, more and more frequently, antiepileptic agents. The influence of oxcarbazepine (10 mg/kg) on the antinociceptive effect of morphine (10 mg/kg) and metamizole (500 mg/kg) was investigated in mice using the hot-plate and tail-flick tests. All drugs were injected intraperitoneally (i.p.). Oxcarbazepine was administered 30 min prior to the injection of analgesic drugs. The reactions to noxious stimuli were measured 30, 60 and 90 min after the administration of an analgesic. The study was further conducted for 10 days with repeated drug doses. Single administration of oxcarbazepine enhanced the antinociceptive effect of a single dose of morphine, and 10-day administration led to a decrease of morphine tolerance in the hot-plate test. Oxcarbazepine administered in a single dose did not affect significantly the antinociceptive effect of metamizole in either of the tests. Multiple administration of oxcarbazepine enhanced the antinociceptive effect of metamizole in the hot-plate test. Oxcarbazepine alone, administered in a single and repeated doses, demonstrated an antinociceptive effect, but only for the hot-plate test, which indicates involvement of supraspinal structures in antinociception.
Mantione, K; Zhu, W; Rialas, C; Casares, F; Cadet, P; Franklin, A L; Tonnesen, J; Stefano, G B
2002-03-01
We have previously demonstrated that Mytilus edulis pedal ganglia contain opiate alkaloids, i.e., morphine and morphine 6 glucuronide (M6G), as well as mu opiate receptor subtype fragments exhibiting high sequence similarity to those found in mammals. Now we demonstrate that M6G stimulates pedal ganglia constitutive nitric oxide (NO) synthase (cNOS)-derived NO release at identical concentrations and to similar peak levels as morphine. However, the classic opiate antagonist, naloxone, only blocked the ability of morphine to stimulate cNOS-derived NO release and not that of M6G. CTOP, a mu-specific antagonist, blocked the ability of M6G to induce cNOS-derived NO release as well as that of morphine, suggesting that a novel mu opiate receptor was present and selective toward M6G. In examining a receptor displacement analysis, both opiate alkaloids displaced [3H]-dihydromorphine binding to the mu opiate receptor subtype. However, morphine exhibited a twofold higher affinity, again suggesting that a novel mu opiate receptor may be present.
Su, Ling-Yan; Luo, Rongcan; Liu, Qianjin; Su, Jing-Ran; Yang, Lu-Xiu; Ding, Yu-Qiang; Xu, Lin; Yao, Yong-Gang
2017-09-02
The molecular basis of chronic morphine exposure remains unknown. In this study, we hypothesized that macroautophagy/autophagy of dopaminergic neurons would mediate the alterations of neuronal dendritic morphology and behavioral responses induced by morphine. Chronic morphine exposure caused Atg5 (autophagy-related 5)- and Atg7 (autophagy-related 7)-dependent and dopaminergic neuron-specific autophagy resulting in decreased neuron dendritic spines and the onset of addictive behaviors. In cultured primary midbrain neurons, morphine treatment significantly reduced total dendritic length and complexity, and this effect could be reversed by knockdown of Atg5 or Atg7. Mice deficient for Atg5 or Atg7 specifically in the dopaminergic neurons were less sensitive to developing a morphine reward response, behavioral sensitization, analgesic tolerance and physical dependence compared to wild-type mice. Taken together, our findings suggested that the Atg5- and Atg7-dependent autophagy of dopaminergic neurons contributed to cellular and behavioral responses to morphine and may have implications for the future treatment of drug addiction.
Examinations of the reward comparison hypothesis: The modulation of gender and footshock.
Huang, Andrew Chih Wei; Wang, Cheng Chung; Wang, Shiun
2015-11-01
The reward comparison hypothesis suggests that drugs of abuse-induced conditioned saccharin suppression intake is due to the reward value of drugs of abuse that outweighs that of a saccharin solution dissociating from the aversive LiCl-induced conditioned taste aversion (CTA). Huang and Hsiao (2008) provided some conflict data to challenge the reward comparison hypothesis. Whether the rewarding drugs of abuse-induced conditioned suppression and the aversive LiCl-induced CTA resulted from aversion or reward should be addressed. The present study investigated how gender and footshock affect aversive LiCl- and rewarding morphine- and methamphetamine (MAMPH)-induced conditioned suppression to re-examine the reward comparison hypothesis. The results indicated that gender and footshock did not directly influence the aversive LiCl-induced CTA or rewarding morphine- and MAMPH-induced conditioned suppression. The gender effect interacted with the drug effect in the aversive LiCl- and rewarding MAMPH-induced conditioned suppression but did not interact with the drug effect in the rewarding morphine-induced conditioned suppression. Footshock interacted with the drug effect in rewarding morphine- and MAMPH-induced conditioned suppression, but footshock did not interact with the drug effect in the aversive LiCl-induced CTA. Therefore, the gender and footshock effects might play a modulatory (but not a mediating) role with the drug effect. The present data indicated that footshock modulates drugs of abuse-induced conditioned suppression, which is consistent with the reward comparison hypothesis, but our findings with regard to the modulatory role of the gender effect and the drug effect do not support this hypothesis. The reward comparison hypothesis should be discussed and possibly reconsidered. Copyright © 2015. Published by Elsevier Inc.
Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury
Ellis, Amanda; Grace, Peter M.; Wieseler, Julie; Favret, Jacob; Springer, Kendra; Skarda, Bryce; Hutchinson, Mark R.; Falci, Scott; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.
2016-01-01
Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10 mg/kg/day morphine beginning 24 hr after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury. PMID:27519154
Mori, Tomohisa; Sawaguchi, Toshiko
2018-01-01
Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.
Immunomodulatory effect of morphine: therapeutic implications.
Dinda, Amit; Gitman, Michael; Singhal, Pravin C
2005-07-01
The immunosuppressive as well as modulatory effects of morphine have been known in clinical medicine for > 100 years. Recent developments in molecular immunology, including experiments in mu (mu) opioid receptor knockout mice has led to a better understanding of central and peripheral mechanisms involved in this process. Though there is a large volume of literature documenting adverse effects of immunosupression following the use of morphine, several reports confirm its potential usefulness as an immunomodulator. In vitro and in vivo animal experiments have demonstrated wide-spectrum effects of morphine, including anti-inflammatory, antifibrotic, antitumour, cardioprotective and renoprotective. Immunomodulation is an important field in modern medicine with rapid advancement in recent years. Though a final statement regarding the clinical relevance of morphine-induced immunomodulation cannot be made at this juncture, nevertheless, it is worthwhile to review current developments. It may encourage further clinical studies to elucidate the influence of morphine treatment on immune regulation in different specialties of medicine.
Le Guen, Stéphanie; Mas Nieto, Magdalena; Canestrelli, Corinne; Chen, Huixiong; Fournié-Zaluski, Marie-Claude; Cupo, Annie; Maldonado, Rafaël; Roques, Bernard P; Noble, Florence
2003-07-01
The discovery that the endogenous morphine-like peptides named enkephalins are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of the side effects of morphine. A new series of dual aminophosphinic inhibitors of the two enkephalin-catabolizing enzymes has been recently designed. In this study, one of these inhibitors, RB3007, was tested in various assays commonly used to select analgesics (mouse hot-plate test, rat tail-flick test, writhing and formalin tests in mice, and paw pressure test in rats), and the extracellular levels of the endogenous enkephalins in the ventrolateral periaqueductal grey have been measured by microdialysis after systemic administration of RB3007. In the mouse hot-plate test, the dual inhibitor induced long-lasting (2 h) antinociceptive effects with a maximum of 35% analgesia 60 min after i.v. or i.p. administration. These antinociceptive responses were antagonized by prior injection of naloxone (0.1 mg/kg, s.c.). Similar long lasting effects were observed in the other animal models used. Very interestingly, injection of RB3007 (50 mg/kg, i.p.) significantly increased (82%) the extracellular levels of Met-enkephalin with a peak 60 min after i.p. injection. This increase parallels the antinociceptive responses observed. In addition, strong facilitatory effects of subanalgesic doses of the CCK(2) receptor antagonist, PD-134,308 or the synthetic opioid agonist, methadone on RB3007-induced antinociceptive responses were observed. These findings may constitute promising data for future development of a new class of analgesics that could be of major interest in a number of severe and persistent pain syndromes.
Andersen, Jannike Mørch; Boix, Fernando; Bergh, Marianne Skov-Skov; Vindenes, Vigdis; Rice, Kenner C.; Huestis, Marilyn A.; Mørland, Jørg
2016-01-01
Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (−)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (−)-naloxone in the blood and brain. We found that (−)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (−)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers’ ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling. PMID:27278234
Navarro-Zaragoza, Javier; Hidalgo, Juana M; Laorden, M Luisa; Milanés, M Victoria
2012-08-01
Recent evidence suggests that glucocorticoid receptor (GR) is a major molecular substrate of addictive properties of drugs of abuse. Hence, we performed a series of experiments to further characterize the role of GR signalling in opiate withdrawal-induced physical signs of dependence, enhanced noradrenaline (NA) turnover in the hypothalamic paraventricular nucleus (PVN) and tyrosine hydroxylase (TH) phosphorylation (activation) as well as GR expression in the nucleus of the solitary tract noradrenergic cell group (NTS-A₂). The role of GR signalling was assessed by i.p. pretreatment of the selective GR antagonist, mifepristone. Rats were implanted with two morphine (or placebo) pellets. Six days later, rats were pretreated with mifepristone or vehicle 30 min before naloxone and physical signs of abstinence, NA turnover, TH activation, GR expression and the hypothalamus-pituitary-adrenocortical axis activity were measured using HPLC, immunoblotting and RIA. Mifepristone alleviated the somatic signs of naloxone-induced opiate withdrawal. Mifepristone attenuated the increase in the NA metabolite, 3-methoxy-4-hydroxyphenylethylen glycol (MHPG), in the PVN, and the enhanced NA turnover observed in morphine-withdrawn rats. Mifepristone antagonized the TH phosphorylation at Ser³¹ and the expression of c-Fos expression induced by morphine withdrawal. Finally, naloxone-precipitated morphine withdrawal induced up-regulation of GR in the NTS. These results suggest that the physical signs of opiate withdrawal, TH activation and stimulation of noradrenergic pathways innervating the PVN are modulated by GR signalling. Overall, the present data suggest that drugs targeting the GR may ameliorate stress and aversive effects associated with opiate withdrawal. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun
2016-07-01
Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.
Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less
Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics
Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.; ...
2016-09-26
Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less
A morphine/heroin vaccine with new hapten design attenuates behavioral effects in rats.
Li, Qian-Qian; Luo, Yi-Xiao; Sun, Cheng-Yu; Xue, Yan-Xue; Zhu, Wei-Li; Shi, Hai-Shui; Zhai, Hai-Feng; Shi, Jie; Lu, Lin
2011-12-01
Heroin use has seriously threatened public heath in many countries, but the existing therapies continue to have many limitations. Recently, immunotherapy has shown efficacy in some clinical studies, including vaccines against nicotine and cocaine, but no opioid vaccines have been introduced in clinical studies. The development of a novel opioid antigen designed specifically for the prevention of heroin addiction is necessary. A morphine-keyhole limpet hemocyanin conjugate was prepared and administered subcutaneously in rats. Antibody titers in plasma were measured using an enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was used to assess the selectivity of the antibodies. Dopamine concentrations in the nucleus accumbens in rats after vaccine administration were determined by high-performance liquid chromatography with electrochemical detection. The effects of the vaccine on the heroin-primed restatement of self-administration and locomotor sensitization were evaluated. A novel hapten, 6-glutarylmorphine, was produced, and the vaccine generated a high antibody titer response. This vaccine displayed specificity for both morphine and heroin, but the anti-morphine antibodies could not recognize dissimilar therapeutic opioid compounds, such as buprenorphine, methadone, naloxone, naltrexone, codeine, and nalorphine. The morphine antibody significantly decreased morphine-induced locomotor activity in rats after immunization. Importantly, rats immunized with this vaccine did not exhibit heroin-primed reinstatement of heroin seeking when antibody levels were sufficiently high. The vaccine reduced dopamine levels in the nucleus accumbens after morphine administration, which is consistent with its behavioral effects. These results suggest that immunization with a novel vaccine is an effective means of inducing a morphine-specific antibody response that is able to attenuate the behavioral and psychoactive effects of heroin. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Vatankhah, Mahsaneh; Sarihi, Abdolrahman; Komaki, Alireza; Shahidi, Siamak; Haghparast, Abbas
2018-03-29
Nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate (which is the most extensive excitatory neurotransmitter in the mammalian central nervous system) are mediated through the activation of the ionotropic and metabotropic glutamate receptors (mGluRs). Previous studies have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as NAc. In this study, CPP was used to investigate the effect of mGluR7 on the extinction period, and the reinstatement of morphine. The animals received bilaterally microinjections of AMN082, a selective mGluR 7 allosteric agonist, into the NAc. In Experiment 1, the rats received AMN082 (1 and 5 μg/0.5 μl) during the extinction period. In Experiment 2, the CPP morphine-extinguished rats received AMN082 (1, 3 and 5 μg/0.5 μl) five minutes prior to the administration of an ineffective dosage of morphine (1 mg/kg) in order to reinstate the extinguished morphine. The results of the recorded conditioning scores in this study showed that the intra-accumbal administration of AMN08 reduced the extinction period of morphine. Moreover, the administration of AMN082 into the NAc dose-dependently inhibited the reinstatement of morphine. The findings suggested that the mGluR7 in the NAc facilitates the extinction and inhibits the reinstatement of the morphine-induced CPP that could have been mediated by an increase in the release of extracellular glutamate. Copyright © 2018 Elsevier Inc. All rights reserved.
Vassoler, Fair M; Wright, Siobhan J; Byrnes, Elizabeth M
2016-04-01
Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Li; Shen, Minjie; Jiang, Changyou
2016-01-01
Background: The central nucleus of the amygdala (CeA) is a crucial component of the neuronal circuitry mediating aversive emotion. Its role in the negative affective states during drug withdrawal includes changes in opioidergic, GABAergic, and corticotropin-releasing factor neurotransmission. However, the modulation of the neurobiological interconnectivity in the CeA and its effects in the negative reinforcement of drug dependents are poorly understood. Method: We performed electrophysiological recordings to assess the membrane excitability of parvalbumin (PV)+ interneurons in the CeA during chronic morphine withdrawal. We tested the morphine withdrawal–induced negative affective states, such as the aversive (assessed by conditioned place aversion), anxiety (assessed by elevated plus maze), and anhedonic-like (assessed by saccharin preference test) behaviors, as well as the mRNA level of corticotropin-releasing hormone (CRH) via optogenetic inhibition or activation of PV+ interneurons in the CeA. Result: Chronic morphine withdrawal increased the firing rate of CeA PV+ interneurons. Optogenetic inhibition of the activity of CeA PV+ interneurons attenuated the morphine withdrawal–induced negative affective states, such as the aversive, anxiety, and anhedonic-like behaviors, while direct activation of CeA PV+ interneurons could trigger those negative affective-like behaviors. Optogenetic inhibition of the CeA PV+ interneurons during the morphine withdrawal significantly attenuated the elevated CRH mRNA level in the CeA. Conclusion: The activity of PV+ interneurons in the CeA was up-regulated during chronic morphine withdrawal. The activation of PV+ interneurons during morphine withdrawal was crucial for the induction of the negative emotion and the up-regulation of CRH mRNA levels in the CeA. PMID:27385383
Vassoler, Fair M.; Wright, Siobhan J.; Byrnes, Elizabeth M.
2016-01-01
Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30–39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. PMID:26700246
Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam
2017-05-15
Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.
Anderson, Ethan M.; Del Valle-Pinero, Arseima Y.; Suckow, Shelby K.; Nolan, Todd A.; Neubert, John K.; Caudle, Robert M.
2012-01-01
The NMDA receptor plays a large role in opioid-induced plastic changes in the nervous system. The expression levels of its NR1 subunit are altered dramatically by morphine but no changes in its alternative splicing have been reported. Changes in the splicing of the N1, C1, C2, and C2’ cassettes can alter the pharmacology and regulation of this receptor. Western blots run on brain tissue from rats made tolerant to morphine revealed altered splicing of the N1 cassettes in the accumbens and amygdala, and the C1 cassette in the amygdala and the dorsal hippocampus. After three days of withdrawal C2’-containing NR1 subunits were down-regulated in each of these areas. These were not due to acute doses of morphine and may represent long term alterations in drug-induced neuroplasticity. We also examined the effects of morphine tolerance on an operant orofacial nociception assay which forces an animal to endure an aversive heat stimulus in order to receive a sweet milk reward. Morphine decreased pain sensitivity as expected but also increased motivational reward seeking in this task. NMDAR antagonism potentiated this reward seeking behavior suggesting that instead of attenuating tolerance, MK-801 may actually alter the rewarding and/or motivational properties of morphine. When combined, MK-801 and morphine had an additive effect which led to altered splicing in the accumbens, amygdala, and the dorsal hippocampus. In conclusion, NR1 splicing may play a major role in the cognitive behavioral aspects especially in motivational reward seeking behaviors. PMID:22531378
Abdollahi, Hakime; Ghaemi-Jandabi, Masoumeh; Azizi, Hossein; Semnanian, Saeed
2016-09-01
Long-term exposure to opioid agonists results in tolerance to their analgesic effects, so the effectiveness of opioid agonists in the management of pain becomes limited. The locus coeruleus (LC) nucleus has been involved in the development of tolerance to opiates. Orexin type-1 receptors (OX1Rs) are highly expressed in LC nucleus. Orexin plays a noteworthy role in the occurrence of morphine tolerance. The purpose of the present study is to investigate the role of orexin type-1 receptors in the development of morphine tolerance in LC neurons. In this study, adult male Wistar rats weighing 250-300g were utilized. Induction of morphine tolerance was obtained by single injection of morphine per day for 6 successive days. An orexin type-1 receptor antagonist (SB-334867) was injected into the lateral ventricle instantly prior to morphine injection. On day 7, the effect of morphine on the electrical activity of LC neurons was studied using in vivo extracellular single unit recording. The results demonstrate that morphine injection for 6 consecutive days led to the development of morphine-induced tolerance in LC neurons. In other words, there was a significant decrease in LC neuronal responsiveness to morphine injection. Inhibitory responses of LC neurons to intraperitoneally applied morphine can be observed with the treatment of the SB-334867 prior to morphine injection. This study showed that OX1R blockade by SB-334867 prevents the development of morphine tolerance in LC neurons. We hope that further studies will lead to considerable progress in understanding the molecular adaptations that contribute to morphine tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.
Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David
2016-01-01
Background Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Results Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Conclusions Spinal epigenetic changes involving Bdnf and Pdyn may contribute to the enhanced postoperative nociceptive sensitization and analgesic tolerance observed after continuous opioid exposure. Treatments blocking the epigenetically mediated up-regulation of these genes or administration of TrkB or κ-opioid receptor antagonists may improve the clinical utility of opioids, particularly after surgery. PMID:27094549
Sahbaie, Peyman; Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David
2016-01-01
Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Spinal epigenetic changes involving Bdnf and Pdyn may contribute to the enhanced postoperative nociceptive sensitization and analgesic tolerance observed after continuous opioid exposure. Treatments blocking the epigenetically mediated up-regulation of these genes or administration of TrkB or κ-opioid receptor antagonists may improve the clinical utility of opioids, particularly after surgery. © The Author(s) 2016.
Effect of morphine-induced postconditioning in corrections of tetralogy of fallot
2013-01-01
Background Results of previous reports on ischemic postconditioning in animals and humans were very encouraging. Although ischemic postconditioning possessed a wide prospect of clinical application, debates on the precise ischemic postconditioning algorithm to use in clinical settings were ongoing. In this regard, pharmacological strategies were possible alternative methods. Accumulating data demonstrated that pharmacological postconditioning with morphine conferred cardioprotection in animals. This trial aimed to evaluate the effect of morphine-induced postconditioning on protection against myocardial ischemia/reperfusion injury in patients undergoing corrections of Tetralogy of Fallot (TOF). Methods Eight-nine consecutive children scheduled for corrections of TOF were enrolled and randomly assigned to either a postconditioning group (patients received a dose of morphine (0.1 mg/kg) injected via a cardioplegia needle into the aortic root for direct and focused delivery to the heart within 1 minute starting at 3 min before aorta cross-clamp removal, n=44) or a control group (the same protocol was performed as in the postconditioning group except that patients received the same volume of saline instead, n=45). The peri-operative relevant data were investigated and analyzed, and the cardiac troponin I (cTnI) was assayed preoperatively, and then 4 h, 8 h, 12 h, 24 h and 48 h after reperfusion. Results Morphine-induced postconditioning reduced postoperative peak cTnI release as compared to the control group (0.57 ± 0.15 versus 0.75 ± 0.20 ng/mL, p<0.0001). Morphine-induced postconditioned patients had lower peak inotropic score (5.7 ± 2.4 versus 8.4 ± 3.6, p<0.0001) and shorter duration of mechanical ventilation as well as ICU stay (20.6 ± 6.8 versus 28.5 ± 8.3 hours, p<0.0001 and 40.4 ± 10.3 versus 57.8 ± 15.2 hours, p<0.0001, respectively), while higher left ventricular ejection fraction as well as cardiac output (0.57±0.15 versus 0.51±0.13, p=0.0467 and 1.39 ± 0.25 versus 1.24 ± 0.21 L/min, p=0.0029, respectively) as compared to the control group during the first postoperative 24 hours. Conclusions Morphine-induced postconditioning may provide enhanced cardioprotection against ischemia/reperfusion injury in children undergoing corrections of TOF. PMID:23577699
Nguyen, Alexander T; Marquez, Paul; Hamid, Abdul; Kieffer, Brigitte; Friedman, Theodore C; Lutfy, Kabirullah
2012-07-05
We have previously shown that β-endorphin plays a functional role in the rewarding effect of acute cocaine. Considering that β-endorphin has high affinity for the μ opioid receptor, we determined the role of this receptor in the rewarding action of acute cocaine. For comparison, we assessed the role of the μ opioid receptor in the rewarding effect of acute morphine. We also examined the effect of intracerebroventricular (i.c.v.) administration of β-funaltrexamine (β-FNA), an irreversible μ opioid receptor antagonist, on the rewarding action of acute cocaine as well as that of morphine. Using the conditioned place preference (CPP) paradigm as an animal model of reward, we first assessed the rewarding action of cocaine in mice lacking β-endorphin or the μ opioid receptor and their respective wild-type littermates/controls. Mice were tested for preconditioning place preference on day 1, conditioned once daily with saline/cocaine (30mg/kg, i.p.) or cocaine/saline on days 2 and 3, and then tested for postconditioning place preference on day 4. We next studied the rewarding action of acute morphine in μ knockout mice and their wild-type controls. The CPP was induced by single alternate-day saline/morphine (10mg/kg, s.c.) or morphine/saline conditioning. We finally determined the effect of β-FNA on CPP induced by cocaine or morphine in wild-type mice, in which mice were treated with saline or β-FNA (9ug/3μl; i.c.v.) a day prior to the preconditioning test day. Our results revealed that morphine induced a robust CPP in wild-type mice but not in mice lacking the μ opioid receptor or in wild-type mice treated with β-FNA. In contrast, cocaine induced CPP in μ knockout mice as well as in wild-type mice treated with β-FNA. On the other hand, cocaine failed to induce CPP in mice lacking β-endorphin. These results illustrate that β-endorphin is essential for the rewarding action of acute cocaine, but the μ opioid receptor may not mediate the regulatory action of endogenous β-endorphin. Copyright © 2012 Elsevier B.V. All rights reserved.
Shibasaki, Masahiro; Ishii, Kazunori; Masukawa, Daiki; Ando, Koji; Ikekubo, Yuiko; Ishikawa, Yutori; Shibasaki, Yumiko; Mori, Tomohisa; Suzuki, Tsutomu
2014-09-05
Long-term exposure to zolpidem induces drug dependence, and it is well known that the balance between the GABAergic and glutamatergic systems plays a critical role in maintaining the neuronal network. In the present study, we investigated the interaction between GABAA receptor α1 subunit and mGlu5 receptor in the limbic forebrain including the N.Acc. after treatment with zolpidem for 7 days. mGlu5 receptor protein levels were significantly increased after treatment with zolpidem for 7 days, and this change was accompanied by the up-regulation of phospholipase Cβ1 and calcium/calmodulin-dependent protein kinase IIα, which are downstream of mGlu5 receptor in the limbic forebrain. To confirm that mGlu5 receptor is directly involved in dopamine-related behavior in mice following chronic treatment with zolpidem, we measured morphine-induced hyperlocomotion after chronic treatment with zolpidem in the presence or absence of an mGlu5 receptor antagonist. Although chronic treatment with zolpidem significantly enhanced morphine-induced hyperlocomotion, this enhancement of morphine-induced hyperlocomotion was suppressed by treating it with the mGlu5 receptor antagonist MPEP. These results suggest that chronic treatment with zolpidem caused neural plasticity in response to activation of the mesolimbic dopaminergic system accompanied by an increase in mGlu5 receptor. Copyright © 2014 Elsevier B.V. All rights reserved.
Chiavaccini, Ludovica; Claude, Andrew K; Meyer, Robert E
We aimed to compare antinociceptive effects of IV infusions of morphine (M), morphine-lidocaine (ML), or morphine-lidocaine-ketamine (MLK) combined, in a mild-to-moderate pain model in dogs. Eighteen adult hounds were heavily sedated with IV morphine (0.2 mg/kg) and dexmedetomidine to undergo thoracic skin incisions. After reversal, dogs were randomly assigned to receive loading doses of lidocaine and ketamine (MLK), lidocaine and saline (ML), or equivalent volume of saline (M), followed by 18 hr constant infusions of morphine (0.12 mg/kg/hr), lidocaine (3 mg/kg/hr) and ketamine (0.6 mg/kg/hr); morphine (0.12 mg/kg/hr) and lidocaine (3 mg/kg/hr); or morphine (0.12 mg/kg/hr), respectively. Pain was assessed with Short Form Glasgow Composite Measure Pain Scale and mechanical nociception with von Frey filaments (VFFS). Data were analyzed with linear mixed model on ranks. Independently of treatment, Short Form Glasgow Composite Measure Pain Scale was significantly higher than baseline for 24 hr (p < .0001), while VFFS was significantly lower than baseline for 48 hr post-recovery (p < .0001), with no difference between MLK and M groups. The ML group recorded significantly lower VFFS (p = .02) than the M group for the entire study. In conclusion, there was no significant analgesic difference between MLK and M alone.
Delay discounting of oral morphine and sweetened juice rewards in dependent and non-dependent rats.
Harvey-Lewis, Colin; Perdrizet, Johnna; Franklin, Keith B J
2014-07-01
Opioid-dependent humans are reported to show accelerated delay discounting of opioid rewards when compared to monetary rewards. It has been suggested that this may reflect a difference in discounting of consumable and non-consumable goods not specific to dependent individuals. Here, we evaluate the discounting of similar morphine and non-morphine oral rewards in dependent and non-dependent rats We first tested the analgesic and rewarding effects of our morphine solution. In a second experiment, we assigned rats randomly to either dependent or non-dependent groups that, 30 min after daily testing, received 30 mg/kg subcutaneous dose of morphine, or saline, respectively. Delay discounting of drug-free reward was examined prior to initiation of the dosing regimen. We tested discounting of the morphine reward in half the rats and retested the discounting of the drug-free reward in the other half. All tests were run 22.5 h after the daily maintenance dose. Rats preferred the morphine cocktail to the drug-free solution and consumed enough to induce significant analgesia. The control quinine solution did not produce these effects. Dependent rats discounted morphine rewards more rapidly than before dependence and when compared to discounting drug-free rewards. In non-dependent rats both reward types were discounted similarly. These results show that morphine dependence increases impulsiveness specifically towards a drug reward while morphine experience without dependence does not.
Leitl, Michael D.; Negus, Stevens
2015-01-01
Neuropathic pain is often associated with behavioral depression. Intraplantar formalin produces sustained, neuropathy-associated depression of intracranial self-stimulation (ICSS) in rats. This study evaluated pharmacological modulation of formalin-induced ICSS depression. Rats with intracranial electrodes targeting the medial forebrain bundle responded for electrical brain stimulation in an ICSS procedure. Bilateral intraplantar formalin administration depressed ICSS for 14 days. Morphine (0.32–3.2 mg/kg), ketoprofen (0.1–10 mg/kg), bupropion (3.2–32 mg/kg), and Δ9-tetrahydrocannabinol (THC; 0.32–3.2 mg/kg) were evaluated for their effectiveness to reverse formalin-induced depression of ICSS. Drug effects on formalin-induced mechanical allodynia were evaluated for comparison. Morphine and bupropion reversed both formalin-induced ICSS depression and mechanical allodynia, and effects on ICSS were sustained during repeated treatment. Ketoprofen failed to reverse either formalin effect. THC blocked mechanical allodynia, but decreased ICSS in control rats and exacerbated formalin-induced depression of ICSS. The failure of ketoprofen to alter formalin effects suggests that formalin effects result from neuropathy rather than inflammation. The effectiveness of morphine and bupropion to reverse formalin effects agrees with other evidence that these drugs block pain-depressed behavior in rats and relieve neuropathic pain in humans. The effects of THC suggest general behavioral suppression and do not support the use of THC to treat neuropathic pain. PMID:26588213
Tolerance to the anticonvulsant effect of morphine in mice: blockage by ultra-low dose naltrexone.
Roshanpour, Maryam; Ghasemi, Mehdi; Riazi, Kiarash; Rafiei-Tabatabaei, Neda; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza
2009-02-01
The present study evaluated the development of tolerance to the anticonvulsant effect of morphine in a mouse model of clonic seizures induced by pentylenetetrazole, and whether ultra-low doses of the opioid receptor antagonist naltrexone which selectively block G(s) opioid receptors were capable of preventing the observed tolerance. The results showed that the morphine anticonvulsant effect could be subject to tolerance after repeated administration. Both the development and expression of tolerance were inhibited by ultra-low doses of naltrexone, suggesting the possible involvement of G(s)-coupled opioid receptors in the development of tolerance to the anticonvulsant effect of morphine.
AMPA receptor positive allosteric modulators attenuate morphine tolerance and dependence.
Hu, Xiaoyu; Tian, Xuebi; Guo, Xiao; He, Ying; Chen, Haijun; Zhou, Jia; Wang, Zaijie Jim
2018-04-25
Development of opioid tolerance and dependence hinders the use of opioids for the treatment of chronic pain. In searching for the mechanism and potential intervention for opioid tolerance and dependence, we studied the action of two positive allosteric modulators of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR PAMs). In mice treated with morphine (100 mg/kg, s.c.), acute morphine tolerance and dependence developed in 4-6 h. Treatment with aniracetam, a well-established AMPAR PAM, was able to completely prevent and reverse the development of acute antinociceptive tolerance to morphine. Partial, but significant, effects of aniracetam on acute morphine induced-physical dependence were also observed. Moreover, aniracetam significantly reversed the established morphine tolerance and dependence in a chronic model of morphine tolerance and dependence produced by intermittent morphine (10 mg/kg, s.c. for 5d). In addition, HJC0122, a new AMPAR PAM was found to have similar effects as aniracetam but with a higher potency. These previously undisclosed actions of AMPAR PAMs are intriguing and may shed lights on understanding the APMA signaling pathway in opioid addiction. Moreover, these data suggest that AMPAR PAMs may have utility in preventing and treating morphine tolerance and dependence. Copyright © 2018. Published by Elsevier Ltd.
He, Xiao-Tao; Zhou, Kai-Xiang; Zhao, Wen-Jun; Zhang, Chen; Deng, Jian-Ping; Chen, Fa-Ming; Gu, Ze-Xu; Li, Yun-Qing; Dong, Yu-Lin
2018-01-01
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Liu, Zhuo; Zhang, Jian-Jun; Liu, Xiao-Dong; Yu, Long-Chuan
2012-06-19
The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) may be a core component in the common molecular pathways for drug addiction. Moreover, studies using animal models of drug addiction have demonstrated that changing CaMKII activity or expression influences animals' responses to the drugs of abuse. Here, we explored the roles of CaMKII in the nucleus accumbens (NAc) shell in the extinction and reinstatement of morphine-seeking behavior. Rats were trained to obtain intravenous morphine infusions through poking hole on a fixed-ratio one schedule. Selective CaMKII inhibitor myristoylated autocamtide-2-inhibitory peptide (myr-AIP) was injected into the NAc shell of rats after the acquisition of morphine self-administration (SA) or before the reinstatement test. The results demonstrated that injection of myr-AIP after acquisition of morphine SA did not influence morphine-seeking in the following extinction days and the number of days spent for reaching extinction criterion. However, pretreatment with myr-AIP before the reinstatement test blocked the reinstatement of morphine-seeking behavior induced by morphine-priming. Our results strongly indicate that CaMKII activity in the NAc shell is essential to the relapse to morphine-seeking. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Effects of paclitaxel on mechanical sensitivity and morphine reward in male and female C57Bl6 mice
Neelakantan, Harshini; Ward, Sara Jane; Walker, Ellen Ann
2016-01-01
This study evaluated the hypothesis that a paclitaxel treatment regimen sufficient to produce mechanical allodynia would alter sensitivities of male and female mice to the conditioned rewarding and reinforcing effects of morphine. Saline or paclitaxel were administered on days 1, 3, 5, and 7 in male and female C57Bl/6 mice to induce morphine-reversible mechanical allodynia as measured by the Von Frey filament test. Paclitaxel treatment did not change sensitivity to morphine conditioned place preference (CPP) relative to saline treatment in either male or female mice. Morphine produced peak self-administration under a fixed ratio-1 schedule of reinforcement for 0.03 mg/kg morphine per infusion in female mice and 0.1 mg/kg morphine per infusion in male mice. During the progressive ratio experiments, saline treatment in male mice decreased the number of morphine infusions for 12 days whereas the paclitaxel-treated male mice maintained responding for morphine similar to baseline levels during the same time period. However, paclitaxel did not have an overall effect on the reinforcing efficacy of morphine assessed over a limited dose range during the course of the repeated self-administration. These results suggest that the reward-related behavioral effects of morphine are overall not robustly altered by the presence of paclitaxel treatment under the current dosing regimen, with the exception of maintaining a small yet significant higher baseline than saline treatment during the development of allodynia in male mice. PMID:27929349
Haydari, Sakineh; Miladi-Gorji, Hossein; Mokhtari, Amin; Safari, Manouchehr
2014-08-22
Exposure to morphine during pregnancy produced long-term effects in offspring behaviors. Recent studies have shown that voluntary exercise decreases the severity of anxiety behaviors in both morphine-dependent and withdrawn rats. Thus, the aims of the present study were to examine whether maternal exercise decreases prenatal dependence-induced anxiety and also, voluntary consumption of morphine in animal models of craving in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with access to a running wheel that lasted at least 21 days. Then, anxiety-like behaviors using the elevated plus-maze (EPM) and voluntary consumption of morphine using a two-bottle choice paradigm (TBC) were tested in male rat pups. The results showed that the rat pups borne from exercising morphine-dependent mothers exhibited an increase in EPM open arm time (P<0.0001) and entries (P<0.05) as compared with the sedentary groups. In animal models of craving showed that voluntary consumption of morphine in the rat pups borne from exercising morphine-dependent mothers was less in the second (P<0.032) and third (P<0.014) periods of intake as compared with the sedentary group. This study showed that maternal exercise decreases the severity of the anxiogenic-like behaviors and voluntary consumption of morphine in rat pups. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Haghparast, Abbas; Fatahi, Zahra; Alamdary, Shabnam Zeighamy; Reisi, Zahra; Khodagholi, Fariba
2014-03-01
ERK pathway plays a critical role in the cellular adaptive responses to environmental changes. Stressful conditions can induce the activation of activate ERK, and its downstream targets, CREB and c-fos, in neural cells. Exposure to opioids has the same effect. In this study, we investigated the effects of morphine-induced conditioned place preference (CPP) on p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the mesocorticolimbic dopaminergic system including the nucleus accumbens (NAc), amygdala (AMY), striatum (Str), and prefrontal cortex (PFC).Our aim was to determine if acute and subchronic stress would affect these alterations. Male Wistar rats were divided into two saline- and morphine-treated groups. Each group contained of control, acute stress, and subchronic stress subgroups. The CPP procedure was performed for all of the rats. We dissected out the NAc, AMY, Str, and PFC regions and measured the mentioned ratios and c-fos level by Western blot analysis. The results revealed that in saline-treated animals, all factors enhanced significantly after performing acute and subchronic stress while there was an exception in p-ERK/ERK ratio in the Str and PFC; the changes were not significant during acute stress. Conditioning score decreased after applying the subchronic but not acute stress. In morphine-treated animals, all factors were increased after application of acute and subchronic stress, and conditioning scores also decreased after stress. Our findings suggest that in saline- or morphine-treated animals, acute and subchronic stress increases p-ERK, p-CREB, and c-fos levels in the mesocorticolimbic system. It has been shown that morphine induces the enhancement of the mentioned factors; on the other hand, our result demonstrates that stress can amplify these changes.
Liu, Shui-Bing; Ma, Lan; Guo, Hong-Ju; Feng, Bin; Guo, Yan-Yan; Li, Xiao-Qiang; Sun, Wen-Ji; Zheng, Lian-He; Zhao, Ming-Gao
2012-08-01
Gentiopicroside (Gent) is one of the secoiridoid compound isolated from Gentiana lutea. This compound exhibits analgesic activities and inhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the anterior cingulate cortex in mice. Nucleus accumbens (NAc) is a forebrain structure known for its role in drug addiction. However, little is known about the role of Gent on morphine dependence and synaptic transmission changes in the NAc. Conditioned place preference (CPP) test and behavioral sensitization of locomotor activity were used to investigate drug-seeking related behaviors. Brain slices containing NAc were prepared, and whole-cell patch-clamp recordings were performed to record the excitatory postsynaptic currents (EPSCs). Expression of proteins was detected by Western blot analysis. Systemic administration of Gent attenuated the CPP effect induced by morphine, but had no effect on morphine-induced behavioral sensitization. Gent significantly reversed overexpression of GluN2B-containing NMDA receptors and dopamine D2 receptors in NAc during the first week of morphine withdrawal. However, the compound did not affect the overexpression of GluN2A-containing NMDA receptors, GluA1, and dopamine D1 receptors. Lastly, Gent significantly reduced NMDA receptors-mediated EPSCs in the NAc. Our study provides strong evidence that Gent inhibits morphine dependence through downregulation of GluN2B-containing NMDA receptors in the NAc. © 2012 Blackwell Publishing Ltd.
Rauf, Khalid; Subhan, Fazal; Sewell, Robert D E
2012-05-01
Bacopa monnieri (BM) has been used in Ayurvedic medicine as a nootropic, anxiolytic, antiepileptic and antidepressant. An n-butanol extract of the plant (nBt-ext BM) was analysed and found to contain Bacoside A (Bacoside A3, Bacopaside II and Bacopasaponin C). The effects of the BM extract were then studied on morphine-induced hyperactivity as well as dopamine and serotonin turnover in the striatum since these parameters have a role in opioid sensitivity and dependence. Mice were pretreated with saline or nBt-ext BM (5, 10 and 15 mg/kg, orally), 60 min before morphine administration and locomotor activity was subsequently recorded. Immediately after testing, striatal tissues were analysed for dopamine (DA), serotonin (5HT) and their metabolites using HPLC coupled with electrochemical detection. The results indicated that nBt-ext BM significantly (p < 0.001) decreased locomotor activity in both the saline and morphine treated groups. Additionally, nBt-ext BM significantly lowered morphine-induced dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-H1AA) upsurges in the striatum but failed to affect DA, 5-HT and their metabolites in the saline treated group. These findings suggest that nBt-ext BM has an antidopaminergic/serotonergic effect and may have potential beneficial effects in the treatment of morphine dependence. Copyright © 2011 John Wiley & Sons, Ltd.
Savić Vujović, Katarina R; Vučković, Sonja; Srebro, Dragana; Ivanović, Milovan; Došen-Mićović, Ljiljana; Vučetić, Čedomir; Džoljić, Eleonora; Prostran, Milica
2013-04-01
In addition to producing antinociception, opioids exert profound effects on body temperature. This study aimed at comparing antinociceptive and hyperthermic responses between two groups of μ-opioid receptor agonists: fentanyl (4-anilinopiperidine-type) and morphine (phenanthrene-type) derivatives in rats. Analgesic activity was assessed by tail immersion test and the body temperature by insertion of a thermometer probe into the colon. Fentanyl (F), (±)-cis-3-methyl fentanyl (CM), (±)-cis-3-carbomethoxy fentanyl (C), (±)trans-3-carbomethoxy fentanyl (T) and (±)-cis-3 butyl fentanyl (B) produced dose-dependent increase in antinociception and hyperthermia. The relative order of analgesic potency was: CM(11.27)>F(1)>C(0.35)≥T(0.11)≥B(0.056). Similar to this, the relative order of hyperthermic potency was: CM(8.43)>F(1)>C(0.46)≥T(0.11)≥B(0.076). Morphine (M), oxycodone (O), thebacon (T) and 6,14-ethenomorphinan-7-methanol, 4,5-epoxy-6-fluoro-3-hydroxy-α,α,17-trimethyl-, (5α,7α) (E) also produced dose-dependent increase in antinociception and hyperthermia. Among morphine derivatives the relative order of analgesic potency was: E(56)>O(5)≥T(2.6)>M(1), and similar to this, the relative order of hyperthermic potency was: E(37)>O(3)≥T(2.3)>M(1). Morphine (phenanthrene-type) and fentanyl (4-anilinopiperidine-type) derivatives produced hyperthermia in rats at doses about 2 times lower, and 6-11 times higher, than their median antinociceptive doses, respectively. This study is first to identify difference between these two classes of opioid drugs in their potencies in producing hyperthermia. Further studies are needed to clarify the significance of these findings.
Morphine, but not Trauma, Sensitizes to Systemic Acinetobacter baumannii Infection
Breslow, Jessica M.; Monroy, M. Alexandra; Daly, John M.; Meissler, Joseph J.; Gaughan, John; Adler, Martin W.; Eisenstein, Toby K.
2014-01-01
Acinetobacter baumannii is an important nosocomial pathogen in civilian intensive care units. Recently the incidence has increased in wounded military personnel. Morphine is documented in numerous animal studies to be immunosuppressive and to sensitize to infection. The hypotheses were tested that morphine, administered for analgesia in the battlefield, predisposes to Acinetobacter infection, and that the opioid may have an additive or synergistic effect with trauma. To test these hypotheses, an intraperitoneal infection model was established in mice using several Acinetobacter strains. Morphine administered for 48 hr by implantation of a slow-release morphine pellet increased mortality compared to animals receiving a placebo pellet, an effect that was blocked by the mu-opioid receptor antagonist, naltrexone. Acinetobacter burdens in the blood, spleens, livers, and lungs of morphine-treated mice, were significantly higher than those in placebo-treated animals, confirming that mortality was due to potentiated growth of the bacteria. There were also elevated levels of pro-inflammatory cytokines in morphine-treated versus placebo-treated mice. Morphine caused a reduction in the total number of cells in the peritoneal cavity, a decrease in the percentage and total numbers of neutrophils, and a decrease in the total number of macrophages. Morphine treatment also suppressed levels of the neutrophil-inducing molecules, IL-17A and KC/CXCL1. However, IL-17A−/− mice given morphine were not sensitized to Acintobacter infection to a greater degree than similarly treated wild-type mice. Trauma alone did not sensitize to Acinetobacter infection, and there was no additive effect between morphine and trauma. These results support the hypothesis that morphine potentiates Acinetobacter infection. PMID:21826405
Morphine, but not trauma, sensitizes to systemic Acinetobacter baumannii infection.
Breslow, Jessica M; Monroy, M Alexandra; Daly, John M; Meissler, Joseph J; Gaughan, John; Adler, Martin W; Eisenstein, Toby K
2011-12-01
Acinetobacter baumannii is an important nosocomial pathogen in civilian intensive care units. Recently the incidence has increased in wounded military personnel. Morphine is documented in numerous animal studies to be immunosuppressive and to sensitize to infection. The hypotheses were tested that morphine, administered for analgesia in the battlefield, predisposes to Acinetobacter infection, and that the opioid may have an additive or synergistic effect with trauma. To test these hypotheses, an intraperitoneal infection model was established in mice using several Acinetobacter strains. Morphine administered for 48 h by implantation of a slow-release morphine pellet increased mortality compared to animals receiving a placebo pellet, an effect that was blocked by the mu-opioid receptor antagonist, naltrexone. Acinetobacter burdens in the blood, spleens, livers, and lungs of morphine-treated mice, were significantly higher than those in placebo-treated animals, confirming that mortality was due to potentiated growth of the bacteria. There were also elevated levels of pro-inflammatory cytokines in morphine-treated versus placebo-treated mice. Morphine caused a reduction in the total number of cells in the peritoneal cavity, a decrease in the percentage and total numbers of neutrophils, and a decrease in the total number of macrophages. Morphine treatment also suppressed levels of the neutrophil-inducing molecules, IL-17A and KC/CXCL1. However, IL-17A(-/-) mice given morphine were not sensitized to Acintobacter infection to a greater degree than similarly treated wild-type mice. Trauma alone did not sensitize to Acinetobacter infection, and there was no additive effect between morphine and trauma. These results support the hypothesis that morphine potentiates Acinetobacter infection.
Maddocks, I; Somogyi, A; Abbott, F; Hayball, P; Parker, D
1996-09-01
We have observed among patients of the Southern Community Hospice Programme that up to 25% experience acute delirium when treated with morphine and improve when the opioid is changed to oxycodone or fentanyl. This study aimed to confirm by a prospective trial that oxycodone produces less delirium than morphine in such patients. Oxycodone was administered by a continuous subcutaneous infusion, as this allowed more flexible and reliable dosing, and patients were monitored for any adverse reactions to the drug. Thirteen patients completed the study. Statistically significant improvements in mental state and nausea and vomiting occurred following a change from morphine to oxycodone. Pain scores improved but did not reach a level of statistical significance. The phenotype status of the patients was tested to establish their capacity to metabolize oxycodone. One patient who did not achieve adequate pain control proved to be a poor metabolizer. These results show that oxycodone administered by the subcutaneous route can provide effective analgesia without significant side effects in patients with morphine-induced delirium. This treatment allows patients to remain more comfortable and lucid in their final days. A small proportion of patients who do not metabolize oxycodone effectively may not receive this benefit.
Mao, Yu; Yang, Shang-Chuan; Liu, Chang; Ma, Yuan-Ye; Hu, Xin-Tian
2011-12-01
To interfere with the drug-cue memory processes of addicts such as reconsolidation by the administration of the β-adrenergic receptor (β-AR) of norepinephrine (NE) antagonist propranolol (PRO) has become a potential therapy in the future to decrease or inhibit relapse. However, the relationship between PRO and the acquisition or retrieval of morphine-cue memory is not clear. This study examined the effects of PRO on the acquisition and retrieval of memories in morphine-induced conditioned place preference (CPP) mice model. We found that during memory acquisition period, PRO had no effects on the expression and extinction of morphine-CPP, which suggests that the β-AR was irrelevant to the CPP memory acquisition. However, during memory retrieval period, although PRO did not affect the expression of CPP, but it delayed the occurrence of CPP extinction, which indicates that PRO has an inhibit effect on CPP memory extinction, and β-AR plays an important role in modulating the extinction of morphine-CPP. Our study further improved the relationship between drug addiction and β-AR, and proposed a new theory to help developing potential therapy to cure addiction and other neuropsychiatric disorders.
Mechanisms of morphine enhancement of spontaneous seizure activity.
Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam
2007-12-01
High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.
Essential role for RGS9 in opiate action.
Zachariou, Venetia; Georgescu, Dan; Sanchez, Nick; Rahman, Zia; DiLeone, Ralph; Berton, Olivier; Neve, Rachael L; Sim-Selley, Laura J; Selley, Dana E; Gold, Stephen J; Nestler, Eric J
2003-11-11
Regulators of G protein signaling (RGS) are a family of proteins known to accelerate termination of effector stimulation after G protein receptor activation. RGS9-2, a brain-specific splice variant of the RGS9 gene, is highly enriched in striatum and also expressed at much lower levels in periaqueductal gray and spinal cord, structures known to mediate various actions of morphine and other opiates. Morphine exerts its acute rewarding and analgesic effects by activation of inhibitory guanine nucleotide-binding regulatory protein-coupled opioid receptors, whereas chronic morphine causes addiction, tolerance to its acute analgesic effects, and profound physical dependence by sustained activation of these receptors. We show here that acute morphine administration increases expression of RGS9-2 in NAc and the other CNS regions, whereas chronic exposure decreases RGS9-2 levels. Mice lacking RGS9 show enhanced behavioral responses to acute and chronic morphine, including a dramatic increase in morphine reward, increased morphine analgesia with delayed tolerance, and exacerbated morphine physical dependence and withdrawal. These findings establish RGS9 as a potent negative modulator of opiate action in vivo, and suggest that opiate-induced changes in RGS9 levels contribute to the behavioral and neural plasticity associated with chronic opiate administration.
Alvandi, Mina Sadighi; Bourmpoula, Maria; Homberg, Judith R; Fathollahi, Yaghoub
2017-11-01
Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse. © 2017 Society for the Study of Addiction.
Corrigan, Frances; Wu, Yue; Tuke, Jonathan; Coller, Janet K.; Rice, Kenner C.; Diener, Kerrilyn R.; Hayball, John D.; Watkins, Linda R.; Somogyi, Andrew A.; Hutchinson, Mark R.
2015-01-01
Increasing evidence demonstrates induction of proinflammatory Toll-like receptor (TLR) 2 and TLR4 signaling by morphine and, TLR4 signaling by alcohol; thus indicating a common site of drug action and a potential novel innate immune-dependent hypothesis for opioid and alcohol drug interactions. Hence, the current study aimed to assess the role of TLR2, TLR4, MyD88 (as a critical TLR-signalling participant), NF-κB, Interleukin-1β (IL-1β; as a downstream proinflammatory effector molecule) and the µ opioid receptor (MOR; as a classical site for morphine action) in acute alcohol-induced sedation (4.5 g/kg) and alcohol (2.5 g/kg) interaction with morphine (5 mg/kg) by assessing the loss of righting reflex (LORR) as a measure of sedation. Wild-type male Balb/c mice and matched genetically-deficient TLR2, TLR4, and MyD88 strains were utilized, together with pharmacological manipulation of MOR, NF-κB, TLR4 and Interleukin-1β. Alcohol induced significant LORR in wild-type mice; this was halved by MyD88 and TLR4 deficiency, and surprisingly nearly completely eliminated by TLR2 deficiency. In contrast, the interaction between morphine and alcohol was found to be MOR-, NF-κB-, TLR2- and MyD88-dependent, but did not involve TLR4 or Interleukin-1β. Morphine-alcohol interactions caused acute elevations in microglial cell counts and NF-κB-p65 positive cells in the motor cortex in concordance with wild-type and TLR2 deficient mouse behavioral data, implicating neuroimmunopharmacological signaling as a pivotal mechanism in this clinically problematic drug-drug interaction. PMID:25542736
Hydromorphone efficacy and treatment protocol impact on tolerance and mu-opioid receptor regulation.
Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Dighe, Shveta V; Walker, Ellen A; Yoburn, Byron C
2008-11-12
This study examined the antinociceptive (analgesic) efficacy of hydromorphone and hydromorphone-induced tolerance and regulation of mu-opioid receptor density. Initially s.c. hydromorphone's time of peak analgesic (tail-flick) effect (45 min) and ED50 using standard and cumulative dosing protocols (0.22 mg/kg, 0.37 mg/kg, respectively) were determined. The apparent analgesic efficacy (tau) of hydromorphone was then estimated using the operational model of agonism and the irreversible mu-opioid receptor antagonist clocinnamox. Mice were injected with clocinnamox (0.32-25.6 mg/kg, i.p.) and 24 h later, the analgesic potency of hydromorphone was determined. The tau value for hydromorphone was 35, which suggested that hydromorphone is a lower analgesic efficacy opioid agonist. To examine hydromorphone-induced tolerance, mice were continuously infused s.c. with hydromorphone (2.1-31.5 mg/kg/day) for 7 days and then morphine cumulative dose response studies were performed. Other groups of mice were injected with hydromorphone (2.2-22 mg/kg/day) once, or intermittently every 24 h for 7 days. Twenty-four hours after the last injection, mice were tested using morphine cumulative dosing studies. There was more tolerance with infusion treatments compared to intermittent treatment. When compared to higher analgesic efficacy opioids, hydromorphone infusions induced substantially more tolerance. Finally, the effect of chronic infusion (31.5 mg/kg/day) and 7 day intermittent (22 mg/kg/day) hydromorphone treatment on spinal cord mu-opioid receptor density was determined. Hydromorphone did not produce any change in mu-opioid receptor density following either treatment. These results support suggestions that analgesic efficacy is correlated with tolerance magnitude and regulation of mu-opioid receptors when opioid agonists are continuously administered. Taken together, these studies indicate that analgesic efficacy and treatment protocol are important in determining tolerance and regulation of mu-opioid receptors.
Ono, Hiroko; Nakamura, Atsushi; Kanemasa, Toshiyuki; Sakaguchi, Gaku; Shinohara, Shunji
2016-02-15
Although estrous cycle has been reported to influence antiociceptive effect of morphine in several pain conditions, its effect on cancer pain is not well established. We investigated the effect of estrogen on morphine antinociception using a bone cancer pain model and compared its potency with that of oxycodone. Female mice were ovariectomized (OVX) for preparation of a femur bone cancer pain (FBC) model. β-estradiol was subcutaneously (s.c.) administered and antinociceptive effects of opioids was assessed using the von Frey monofilament test. Although morphine (5-20mg/kg, s.c.) did have significant antinociceptive effects in the FBC-OVX group, its effects in the FBC-OVX+β-estradiol (OVX+E) group was limited. Oxycodone (1-5mg/kg, s.c.) exhibited significant effects in both groups. Expression changes in opioid-related genes (μ-, κ-, δ-opioid receptors, prodynorphin, proenkephalin, proopiomelanocortin) in the spinal and supraspinal sites were examined among the sham-OVX, sham-OVX+E, FBC-OVX, and FBC-OVX+E groups by in situ hybridization. These studies detected a significant increase in prodynorphin in the spinal dorsal horn of the FBC-OVX+E group. Spinal injection of a dynorphin-A antibody to FBC-OVX+E mice restored antinociception of morphine. In conclusion, we detected a differential effect of estrogen on morphine- and oxycodone-induced antinociception in a female FBC model. The effect of morphine was limited with estrogen exposure, which may be due to estrogen- and pain-mediated spinal expression of dynorphin-A. Copyright © 2016 Elsevier B.V. All rights reserved.
Boakye-Gyasi, Eric; Henneh, Isaac Tabiri; Abotsi, Wonder Kofi Mensah; Ameyaw, Elvis Ofori; Woode, Eric
2017-04-26
Despite substantial advances in pain research and treatment, millions of people continue to suffer from pain and this has been attributed mainly to the unavailability of effective and safer analgesics. The use of plants as medicines is still widespread and plants constitute a large source of novel phytocompounds that might become leads for the discovery of newer, effective and safer alternatives. Various parts of Ziziphus abyssinica have been used in folk medicine in several African countries as painkillers. However, there is no report on the possible anti-nociceptive effects of this plant especially the leaves, hence the need for this current study. The possible anti-nociceptive activity of hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) was assessed in rodents using chemical (acetic acid, formalin and glutamate), thermal (tail-immersion test) and mechanical/inflammatory (carrageenan) models of nociception. EthE (30-300 mg/kg, p.o.) dose-dependently and significantly inhibited chemical-induced nociception with a maximum inhibition of 86.29 ± 2.27%, 76.34 ± 5.67%, 84.97 ± 5.35%, and 82.81 ± 5.97% respectively for acetic acid, formalin (phase 1), formalin (phase 2) and glutamate tests at its highest dose. EthE also dose-dependently and significantly increased reaction times in both tail-immersion and carrageenan-induced hypernociceptive tests. The activities of the extract in the various models were comparable with the effect of morphine hydrochloride and diclofenac sodium used as standard analgesic drugs. Oral administration of hydro-ethanolic leaf extract of Ziziphus abyssinica ameliorates nocifensive behaviours associated with chemical-, thermal- and mechanical/inflammatory - induced nociceptive pain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shu-Fang; Jin, Shi-Yun; Wu, Hao
Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct sizemore » and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.« less
Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M; Mollace, Vincenzo; Muscoli, Carolina
2016-01-01
Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5-50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy.
Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M.; Mollace, Vincenzo; Muscoli, Carolina
2016-01-01
Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5–50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy. PMID:27227548
Shi, Jianguo; Wu, Bin; Dang, Wei; Du, Ying; Zhou, Qiong; Wang, Jianhua; Zhang, Rui
2013-01-01
Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression. PMID:23823128
Lin, Xiao-Jing; Zhang, Jian-Jun; Yu, Long-Chuan
2016-04-01
Accumulating evidence indicates that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) are involved in the relapse to abused drugs. However, the role of AMPARs containing the GluR2 subunit in opiate addiction is still unclear. GluR2-3Y, an interfering peptide, prevents the endocytosis of AMPARs containing the GluR2 subunit. In this study, we explored the effect of intravenous injection of GluR2-3Y on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference (mCPP) in rats. We found that infusion of GluR2-3Y (1.5 nmol/g) one hour before morphine during the conditioning phase inhibited the acquisition of mCPP, while an identical injection one hour before the post-conditioning test had no influence on the expression of mCPP. Injection of GluR2-3Y (1.5 nmol/g) after mCPP extinction blocked the morphine-induced reinstatement of mCPP. Our results strongly support the hypothesis that inhibition of AMPAR endocytosis provides a new target for the treatment of opiate addiction.
Metoclopramide: an analgesic adjunct to patient-controlled analgesia.
Rosenblatt, W H; Cioffi, A M; Sinatra, R; Saberski, L R; Silverman, D G
1991-11-01
This randomized, double-blind trial evaluated the effect of metoclopramide on the pain and analgesic requirements associated with prostaglandin-induced labor for second-trimester termination of pregnancy. After receiving intrauterine prostaglandin, seven women were given intravenous metoclopramide (10 mg), and eight received saline, concurrent with initiation of patient controlled analgesia (PCA). Group differences were assessed with serial visual analogue scale for pain, interval PCA-morphine consumption, and time to fetal delivery. The metoclopramide group used 54% less PCA morphine (24.1 vs 52.0 mg), had lower visual analogue scale scores, and interval morphine consumption at 2, 4, and 6 h after PCA had been initiated, as well as earlier delivery of the fetus when compared with the control group (P less than 0.05). We conclude that a single dose of metoclopramide reduces the pain and PCA-morphine requirements of patients undergoing prostaglandin-induced labor and may facilitate passage of the fetus. Metoclopramide may have a similar application in treating other types of gynecologic pain.
Brown, Robyn M; Stagnitti, Monique R; Duncan, Jhodie R; Lawrence, Andrew J
2012-06-01
The mGlu5 receptor (mGluR5) has been implicated in the rewarding effect of various drugs of abuse and drug-seeking behaviour. In the present study we investigated the impact of antagonism of mGluR5 with the selective negative allosteric, modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) on operant self-administration of morphine as well as cue-induced drug-seeking in adult CD1 mice. Administration of MTEP (20 mg/kg, i.p.) attenuated operant responding for morphine (0.1 mg/kg/infusion) and cue-induced morphine-seeking after a period of forced abstinence. Collectively, these data implicate mGluR5 in the reinforcing effects of opiates and support the proposition that mGluR5 is a potential therapeutic target for treatment of drug addiction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cordery, Sarah F; Taverner, Alistair; Ridzwan, Irna E; Guy, Richard H; Delgado-Charro, M Begoña; Husbands, Stephen M; Bailey, Christopher P
2014-07-01
Concurrent use of cocaine and heroin is a major public health issue with no effective relapse prevention treatment currently available. To this purpose, a combination of buprenorphine and naltrexone, a mixed very-low efficacy mu-opioid receptor agonist/kappa-opioid receptor antagonist/nociceptin receptor agonist, was investigated. The tail-withdrawal and the conditioned place preference (CPP) assays in adult Sprague Dawley rats were used to show that naltrexone dose-dependently blocked the mu-opioid receptor agonism of buprenorphine. Furthermore, in the CPP assay, a combination of 0.3 mg/kg buprenorphine and 3.0 mg/kg naltrexone was aversive. A combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone was neither rewarding nor aversive, but still possessed mu-opioid receptor antagonist properties. In the CPP extinction and reinstatement method, a combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone completely blocked drug-primed reinstatement in cocaine-conditioned rats (conditioned with 3 mg/kg cocaine, drug prime was 3 mg/kg cocaine) and attenuated drug-primed reinstatement in morphine-conditioned rats (conditioned with 5 mg/kg morphine, drug prime was 1.25 mg/kg morphine). These data add to the growing evidence that a buprenorphine/naltrexone combination may be protective against relapse in a polydrug abuse situation. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Cain, D P; Corcoran, M E
1984-06-18
The effects of repeated infusion of small, initially subconvulsive amounts of beta-endorphin, met-enkephalin or morphine sulfate into the amygdala and hippocampus were investigated. beta-endorphin and met-enkephalin evoked epileptiform spiking when infused into the posterior amygdala or ventral hippocampus. Morphine evoked epileptiform spiking when infused into the anterior amygdala. Naloxone blocked or terminated the spiking. Repetition of the infusions led to the gradual development of bilateral generalized convulsions by beta-endorphin and met-enkephalin and to the development of tolerance to morphine. An unexpected observation was that handling, immobilization or conspecific threat potentiated the epileptiform effects of beta-endorphin and morphine in many cases. These results suggest that endogenous opiate mechanisms might play a role in convulsive seizures and that stressful stimuli can exacerbate opiate seizures.
Gago, Belén; Fuxe, Kjell; Brené, Stefan; Díaz-Cabiale, Zaida; Reina-Sánchez, María Dolores; Suárez-Boomgaard, Diana; Roales-Buján, Ruth; Valderrama-Carvajal, Alejandra; de la Calle, Adelaida; Rivera, Alicia
2013-12-01
The peptides dynorphin and enkephalin modulate many physiological processes, such as motor activity and the control of mood and motivation. Their expression in the caudate putamen (CPu) is regulated by dopamine and opioid receptors. The current work was designed to explore the early effects of the acute activation of D4 and/or μ opioid receptors by the agonists PD168,077 and morphine, respectively, on the regulation of the expression of these opioid peptides in the rat CPu, on transcription factors linked to them, and on the expression of μ opioid receptors. In situ hybridization experiments showed that acute treatment with morphine (10 mg/kg) decreased both enkephalin and dynorphin mRNA levels in the CPu after 30 min, but PD168,077 (1 mg/kg) did not modify their expression. Coadministration of the two agonists demonstrated that PD168,077 counteracted the morphine-induced changes and even increased enkephalin mRNA levels. The immunohistochemistry studies showed that morphine administration also increased striatal μ opioid receptor immunoreactivity but reduced P-CREB expression, effects that were blocked by the PD168,077-induced activation of D4 receptors. The current results present evidence of functional D4 -μ opioid receptor interactions, with consequences for the opioid peptide mRNA levels in the rat CPu, contributing to the integration of DA and opioid peptide signaling. Copyright © 2013 Wiley Periodicals, Inc.
Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas
2017-11-01
The brain reward system consists of the ventral tegmental area that sends its dopaminergic projections to the forebrain, cortical areas, amygdala and largely to the nucleus accumbens (NAc). The present study aims were to investigate the effects of bilateral intra-accumbal microinjection of WIN55,212-2, a CB1 receptor agonist, on the duration of extinction period and reinstatement to morphine by the conditioned place preference (CPP) paradigm in the rat. Forty-six adult male albino Wistar rats received intra-accumbal WIN55,212-2 [p0.5, 1 and 2 mM/0.5 μl dimethyl sulfoxide (DMSO)] injections bilaterally. To induce CPP, morphine (5 mg/kg) was injected subcutaneously over three consecutive days. The results showed that intra-NAc administration of WIN55,212-2 during the extinction period had no effect on its duration but single administration of the1 mM/0.5 μl DMSO dose just before the reinstatement phase significantly attenuated its conditioning score. This is the first time that interactions of opioid and cannabinoid systems by local activation of CB1 receptors in the NAc during extinction and morphine-induced reinstatement were investigated. The CB1 agonist can inhibit and eliminate the reward-associated memory of morphine and the conditioning score in reinstatement but not in the extinction period. Our findings suggest that the extinction period and reinstatement could occur through different mechanisms.
Rice, Onarae V.; Heidbreder, Christian A.; Gardner, Eliot L.; Schonhar, Charles D.; Ashby, Charles R.
2014-01-01
We examined the effect of acute administration of the selective D3 receptor antagonist SB277011A on morphine-triggered reactivation of cocaine-induced conditioned place preference (CPP) in adult male Sprague-Dawley rats. Repeated pairing of animals with 15 mg/kg i.p. of cocaine HCl or vehicle to cue-specific CPP chambers produced a significant CPP response compared to animals paired only with vehicle in both chambers. Expression of the CPP response to cocaine was then extinguished by repeatedly giving the animals vehicle injections in the cocaine-paired chambers. The magnitude of the CPP response after extinction was not significantly different from that of animals paired only with vehicle. Expression of the extinguished CPP response was reactivated by acute administration of 5 mg/kg i.p. of morphine but not by vehicle. Acute administration of 6 or 12 mg/kg i.p. (but not 3 mg/kg) of SB277011A significantly attenuated morphine-triggered reactivation of the cocaine-induced CPP. SB277011A itself (12 mg/kg i.p.) did not reactivate the extinguished CPP response. Overall, SB277011 decreases the incentive motivational actions of morphine. The present findings suggest that central D3 dopamine receptors are involved in relapse to cocaine-seeking behavior that a final common neural mechanism exists to mediate the incentive motivational effects of psychostimulants and opiates, and that selective dopamine D3 receptor antagonists constitute promising compounds for treating addiction. PMID:23404528
Tolerance to Non-Opioid Analgesics is Opioid Sensitive in the Nucleus Raphe Magnus.
Tsagareli, Merab G; Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz
2011-01-01
Repeated injection of opioid analgesics can lead to a progressive loss of effect. This phenomenon is known as tolerance. Several lines of investigations have shown that systemic, intraperitoneal administration or the microinjection of non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs) into the midbrain periaqueductal gray matter induces antinociception with some effects of tolerance. Our recent study has revealed that microinjection of three drugs analgin, ketorolac, and xefocam into the central nucleus of amygdala produce tolerance to them and cross-tolerance to morphine. Here we report that repeated administrations of these NSAIDs into the nucleus raphe magnus (NRM) in the following 4 days result in progressively less antinociception compare to the saline control, i.e., tolerance develops to these drugs in male rats. Special control experiments showed that post-treatment with the μ-opioid antagonist naloxone into the NRM significantly decreased antinociceptive effects of NSAIDs on the first day of testing in the tail-flick (TF) reflex and hot plate (HP) latency tests. On the second day, naloxone generally had trend effects in both TF and HP tests and impeded the development of tolerance to the antinociceptive effect of non-opioid analgesics. These findings strongly support the suggestion of endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain-control system. Moreover, repeated injections of NSAIDs progressively lead to tolerance to them, cross-tolerance to morphine, and the risk of a withdrawal syndrome. Therefore, these results are important for human medicine too.
Endogenous opioids: role in prostaglandin-dependent and -independent fever.
Fraga, Daniel; Machado, Renes R; Fernandes, Luíz C; Souza, Glória E P; Zampronio, Aleksander R
2008-02-01
This study evaluated the participation of mu-opioid-receptor activation in body temperature (T(b)) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic d-Phe-Cys-Try-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP; 0.1-1.0 microg) reduced fever induced by LPS (5.0 microg/kg) but did not change T(b) at ambient temperatures of either 20 degrees C or 28 degrees C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0-10.0 mg/kg, 3.0-30.0 microg, and 1-100 ng, respectively) produced a dose-dependent increase in T(b). Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 microg icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 microg), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2alpha) (500.0 ng) but not the fever induced by IL-1beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE(2) levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.
Ethanol Reversal of Cellular Tolerance to Morphine in Rat Locus Coeruleus Neurons
Llorente, Javier; Withey, Sarah; Rivero, Guadalupe; Cunningham, Margaret; Cooke, Alex; Saxena, Kunal; McPherson, Jamie; Oldfield, Sue; Dewey, William L.; Bailey, Chris P.; Kelly, Eamonn; Henderson, Graeme
2013-01-01
Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala2,N-MePhe4,Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5′-O-(3-[35S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance. PMID:23716621
García-Pérez, Daniel; Laorden, M Luisa; Milanés, M Victoria
2017-01-01
Pleiotrophin (PTN) and midkine (MK) are secreted growth factors and cytokines, proposed to be significant neuromodulators with multiple neuronal functions. PTN and MK are generally related with cell proliferation, growth, and differentiation by acting through different receptors. PTN or MK, signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), lead to the activation of extracellular signal-regulated kinases (ERKs) and thymoma viral proto-oncogene (Akt), which induce morphological changes and modulate addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. In the present work, we studied the effect of acute morphine, chronic morphine, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the ventral tegmental area (VTA). Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were upregulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminergic neurons expressed RPTPβ/ζ. Interestingly, p-ERK 1/2 levels during chronic morphine and morphine withdrawal correlated RPTPβ/ζ expression. All these observations suggest that the neuroprotective and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by these cytokines.
Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment
Posa, Luca; Accarie, Alison; Marie, Nicolas
2016-01-01
Background: Opiates such as morphine are the most powerful analgesics, but their protracted use is restrained by the development of tolerance to analgesic effects. Recent works suggest that tolerance to morphine might be due to its inability to promote mu opioid receptor endocytosis, and the co-injection of morphine with a mu opioid receptor internalizing agonist like [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin reduces tolerance to morphine. So far, no studies have been conducted to evaluate the ability of methadone to reduce morphine tolerance in morphine-pretreated animals, a treatment sequence that could be encountered in opiate rotation protocol. We investigated the ability of methadone (a mu opioid receptor internalizing agonist used in therapy) to reverse morphine tolerance and the associated cellular mechanisms in the periaqueductal gray matter, a region involved in pain control. Methods: We measured analgesic response following a challenge dose of morphine in the hot plate test and investigated regulation of mu opioid receptor (coupling and endocytosis) and some cellular mechanisms involved in tolerance such as adenylate cyclase superactivation and changes in N-methyl-d-aspartate receptor subunits expression and phosphorylation state. Results: A chronic treatment with morphine promoted tolerance to its analgesic effects and was associated with a lack of mu opioid receptor endocytosis, adenylate cyclase overshoot, NR2A and NR2B downregulation, and phosphorylation of NR1. We reported that a methadone treatment in morphine-treated mice reversed morphine tolerance to analgesia by promoting mu opioid receptor endocytosis and blocking cellular mechanisms of tolerance. Conclusions: Our data might lead to rational strategies to tackle opiate tolerance in the frame of opiate rotation. PMID:26390873
Zarrinkalam, Ebrahim; Heidarianpour, Ali; Salehi, Iraj; Ranjbar, Kamal; Komaki, Alireza
2016-07-15
Continuous morphine consumption contributes to the development of cognitive disorders. This work investigates the impacts of different types of exercise on learning and memory in morphine-dependent rats. Forty morphine-dependent rats were randomly divided into five groups: sedentary-dependent (Sed-D), endurance exercise-dependent (En-D), strength exercise-dependent (St-D), and combined (concurrent) exercise-dependent (Co-D). Healthy rats were used as controls (Con). After 10weeks of regular exercise (endurance, strength, and concurrent; each five days per week), spatial and aversive learning and memory were assessed using the Morris water maze and shuttle box tests. The results showed that morphine addiction contributes to deficits in spatial learning and memory. Furthermore, each form of exercise training restored spatial learning and memory performance in morphine-dependent rats to levels similar to those of healthy controls. Aversive learning and memory during the acquisition phase were not affected by morphine addiction or exercise, but were significantly decreased by morphine dependence. Only concurrent training returned the time spent in the dark compartment in the shuttle box test to control levels. These findings show that different types of exercise exert similar effects on spatial learning and memory, but show distinct effects on aversive learning and memory. Further, morphine dependence-induced deficits in cognitive function were blocked by exercise. Therefore, different exercise regimens may represent practical treatment methods for cognitive and behavioral impairments associated with morphine-related disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank
2018-05-01
The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.
Pirat, Arash; Tuncay, Senay F; Torgay, Adnan; Candan, Selim; Arslan, Gulnaz
2005-11-01
In this study we compared the efficacy of orally disintegrating tablets (ODT) and IV ondansetron for preventing spinal morphine-induced pruritus and postoperative nausea and vomiting (PONV) in healthy young male patients. Patients who received bupivacaine with 0.20 mg morphine for spinal anesthesia were randomly assigned to the ODT group (ODT ondansetron 8 mg, n = 50), the IV group (4 mg ondansetron IV, n = 50), or the placebo group (n = 50). Each individual was assessed for pruritus, postoperative nausea and vomiting, and pain at 0, 2, 6, 12, 18, and 24 h after surgery using three distinct visual analog scales. The frequencies of postoperative nausea and vomiting and frequencies of requirement for rescue antiemetic and antipruritic were recorded. There were no significant differences among the three groups with respect to incidence or severity of PONV or postoperative pain visual analog scale scores. The incidences of pruritus in the ODT (56%) and IV (66%) groups were significantly different from that in the placebo group (86%) (P < 0.02 for both). Only the ODT group had significantly lower mean pruritus visual analog scale scores at 0, 2, 6, and 12 h postsurgery than the placebo group (P < 0.023 for all). The frequency of requirement for rescue antipruritic was significantly less in the ODT group than the placebo group (P = 0.013). Both ODT ondansetron 8 mg and IV ondansetron 4 mg are more effective than placebo for preventing spinal morphine-induced pruritus, but neither form of this agent reduces spinal morphine-induced postoperative nausea and vomiting in this patient group.
Glick, S D; Maisonneuve, I M; Szumlinski, K K
2000-09-01
18-MC, a novel iboga alkaloid congener, is being developed as a potential treatment for multiple forms of drug abuse. Like ibogaine (40 mg/kg), 18-MC (40 mg/kg) decreases the intravenous self-administration of morphine and cocaine and the oral self-administration of ethanol and nicotine in rats; unlike ibogaine, 18-MC does not affect responding for a nondrug reinforcer (water). Both ibogaine and 18-MC ameliorate opioid withdrawal signs. Both ibogaine and 18-MC decrease extracellular levels of dopamine in the nucleus accumbens, but only ibogaine increases extracellular levels of serotonin in the nucleus accumbens. Both ibogaine and 18-MC block morphine-induced and nicotine-induced dopamine release in the nucleus accumbens; only ibogaine enhances cocaine-induced increases in accumbal dopamine. Both ibogaine and 18-MC enhance the locomotor and/or stereotypic effects of stimulants. Ibogaine attenuates, but 18-MC potentiates, the acute locomotor effects of morphine; both compounds attenuate morphine-induced locomotion in morphine-experienced rats. Ibogaine produces whole body tremors and, at high doses (> or = 100 mg/kg), cerebellar damage; 18-MC does not produce these effects. Ibogaine, but not 18-MC, decreases heart rate at high doses. While 18-MC and ibogaine have similar affinities for kappa opioid and possibly nicotinic receptors, 18-MC has much lower affinities than ibogaine for NMDA and sigma-2 receptors, sodium channels, and the 5-HT transporter. Both 18-MC and ibogaine are sequestered in fat and, like ibogaine, 18-MC probably has an active metabolite. The data suggest that 18-MC has a narrower spectrum of actions and will have a substantially greater therapeutic index than ibogaine.
Naganobu, Kiyokazu; Maeda, Noriaki; Miyamoto, Toru; Hagio, Mitsuyoshi; Nakamura, Tadashi; Takasaki, Mayumi
2004-01-01
To determine the cardiorespiratory effects of epidural administration of morphine alone and in combination with fentanyl in dogs anesthetized with sevoflurane. Prospective study. 6 dogs. Dogs were anesthetized with sevoflurane and allowed to breathe spontaneously. After a stable plane of anesthesia was achieved, morphine (0.1 mg/kg [0.045 mg/lb]) or a combination of morphine and fentanyl (10 microg/kg [4.5 microg/lb]) was administered through an epidural catheter, the tip of which was positioned at the level of L6 or L7. Cardiorespiratory variables were measured for 90 minutes. Epidural administration of morphine alone did not cause any significant changes in cardiorespiratory measurements. However, epidural administration of morphine and fentanyl induced significant decreases in diastolic and mean arterial blood pressures and total peripheral resistance. Stroke volume was unchanged, PaCO2 was significantly increased, and arterial pH and base excess were significantly decreased. Heart rate was significantly lower after epidural administration of morphine and fentanyl than after administration of morphine alone. None of the dogs had any evidence of urine retention, vomiting, or pruritus after recovery from anesthesia. Results suggest that epidural administration of morphine at a dose of 0.1 mg/kg in combination with fentanyl at a dose of 10 microg/kg can cause cardiorespiratory depression in dogs anesthetized with sevoflurane.
Zhang, Mingyue; Wang, Kun; Ma, Min; Tian, Songyu; Wei, Na; Wang, Guonian
2016-04-01
Morphine is widely used in patients with moderate and severe cancer pain, whereas the development of drug tolerance remains a major problem associated with opioid use. Previous studies have shown that cannabinoid type 2 (CB2) receptor agonists induce morphine analgesia, attenuate morphine tolerance in normal and neuropathic pain animals, induce transcription of the μ-opioid receptor (MOR) gene in Jurkat T cells, and increase morphine analgesia in cancer pain animals. However, no studies of the effects of CB2 receptor agonists on morphine tolerance in cancer pain have been performed. Therefore, we investigated the effect of repeated intrathecal (IT) injection of the low-dose CB2 receptor agonist AM1241 on the development of morphine tolerance in walker 256 tumor-bearing rats. We also tested the influence of the CB2 receptor agonist AM1241 on MOR protein and messenger ribonucleic acid (mRNA) expression in the rat spinal cord and dorsal root ganglia (DRG). Walker 256 cells were implanted into the plantar region of each rat's right hindpaw. Tumor-bearing rats received IT injection of the CB2 receptor agonist AM1241 or antagonist AM630 with or without morphine subcutaneously twice daily for 8 days. Rats receiving drug vehicle only served as the control group. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were assessed by a von Frey test and hot plate test 30 minutes after drug administration every day. MOR protein and mRNA expression in the spinal cord and DRG were detected after the last day (day 8) of drug administration via Western blot and real-time reverse transcription polymerase chain reaction. The data were analyzed via analysis of variance followed by Student t test with Bonferroni correction for multiple comparisons. Repeated morphine treatments reduced the mechanical withdrawal threshold and thermal latency. Coadministration of a nonanalgetic dose of the CB2 receptor agonist AM1241 with morphine significantly inhibited the development of morphine tolerance and increased the MOR protein expression in the spinal cord and DRG and mRNA expression in the spinal cord in tumor-bearing rats. Our findings indicate that IT injection of a nonanalgetic dose of a CB2 receptor agonist increased the analgesia effect and alleviated tolerance to morphine in tumor-bearing rats, potentially by regulating MOR expression in the spinal cord and DRG. This receptor may be a new target for prevention of the development of opioid tolerance in cancer pain.
Morphine and galectin-1 modulate HIV-1 infection of human monocytes-derived macrophages
Reynolds, Jessica L.; Law, Wing Cheung; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Mammen, Manoj J.; Yong, Ken-Tye; Hui, Rui; Prasad, Paras N.; Schwartz, Stanley A.
2012-01-01
Morphine is a widely abused, addictive drug that modulates immune function. Macrophages are a primary reservoir of HIV-1; therefore, they not only play a role in the development of this disease but also impact the overall course of disease progression. Galectin-1 is a member of a family of β-galactoside-binding lectins that are soluble adhesion molecules and that mediate direct cell-pathogen interactions during HIV-1 viral adhesion. Since the drug abuse epidemic and the HIV-1 epidemic are closely interrelated we propose that increased expression of galectin-1 induced by morphine may modulate HIV-1 infection of human monocytes-derived macrophages (MDM). Here, we show that galectin-1 gene and protein expression are potentiated by incubation with morphine. Confirming previous studies, morphine alone or galectin-1 alone enhance HIV-1 infection of MDM. Concomitant incubation with exogenous galectin-1 and morphine potentiated HIV-1 infection of MDM. We utilized a nanotechnology approach that uses gold nanorod-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. We found that nanoplexes silenced gene expression for galectin-1 and the nanoplexes reversed the effects of morphine on galectin-1 expression. Furthermore, the effects of morphine on HIV-1 infection were reduced in the presence of the nanoplex. PMID:22430735
The development of analgesic, pro- and anti-convulsant opiate effects in the rat.
Van Praag, H; Falcon, M; Guendelman, D; Frenk, H
1993-01-01
Evidence indicates that the neonate is capable, if not perceiving nociception, then at least reacting to nociceptive stimuli. These responses can be inhibited by opiates such as morphine. The analgesic potency of morphine in rat pups increases with maturation, due to (a) the proliferation of opiate receptors and (b), the maturation of supraspinal descending inhibition which becomes functional at 3 weeks post-natally. Tolerance to repeated injections of morphine in pups is less pronounced than in adults since it is masked by several processes, it has been demonstrated to occur within the first two weeks of life. Toxic effects of morphine in the neonate, as can be demonstrated both in behavior and EEG, differ from those in adults. Thus, convulsions induced by morphine which have been reported to occur in adults, were absent in pups. Excitatory effects of morphine in behavior develop in 3 different stages. During the first week morphine caused behavioral activation which is not mediated by specific opiate receptors. In the second week morphine produces EEG spikes in a dose-dependent fashion, but at this age these spikes were not reversible by opiate antagonists. Opiate specific EEG spikes and other opiate specific excitatory effects start to predominate during the third week of life.
Beneficial effects of Bacopa monnieri extract on opioid induced toxicity.
Shahid, Muhammad; Subhan, Fazal; Ullah, Ihsan; Ali, Gowhar; Alam, Javaid; Shah, Rehmat
2016-02-01
The present study examined the hepatotoxicity and nephrotoxicity of morphine and illicit street heroin and their amelioration by a standardized methanolic extract of Bacopa monnieri (L.) (mBME) in rats. Morphine or street heroin was administered at a dose of 20 mg/kg for 14 and 21 days. mBME (40 mg/kg) or ascorbic acid (50 mg/kg) was administered two hours before morphine or street heroin. High performance liquid chromatography (HPLC) was used for the standardization of bacoside-A major components in mBME. The antioxidant potential of mBME was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Administration of morphine and street heroin resulted in marked elevation of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine. Histopathological changes induced by morphine and street heroin after 14 days were of reversible nature while treatment for 21 days was associated with irreversible changes. Pretreatment with mBME or ascorbic acid restored the elevation of serum ALT, AST and creatinine and protected liver and kidneys from the toxicological influence of morphine and street heroin. HPLC analysis showed that mBME contained bacoside-A major components i.e. bacoside-A3 (37.5 μg/mg), bacopaside-II (4.62 μg/mg) and bacopasaponin-C (1.91 μg/mg). The EC50 for the DPPH free radical scavenging assay revealed that mBME possessed strong antioxidant potential. These results concluded that as compared to morphine, street heroin was associated with severe biochemical and histopathological changes in the liver and kidneys. Bacopa monnieri having strong antioxidant potential may provide a beneficial herbal remedy for the efficient management of opioid related hepatotoxicity and nephrotoxicity.
Mohammadian, Zahra; Sahraei, Hedayat; Meftahi, Gholam Hossein; Ali-Beik, Hengameh
2017-03-01
The rostral ventral tegmental area (VTAR) and central nucleus of amygdala (CeA) are considered the main regions for induction of psychological dependence on abused drugs, such as morphine. The main aim of this study was to investigate the transient inhibition of each right and left side as well as both sides of the VTAR and the CeA by lidocaine (2%) on morphine reward properties using the conditioned place preference (CPP) method. Male Wistar rats (250±20 g) 7 days after recovery from surgery and cannulation were conditioned to morphine (7.5 mg/kg) in CPP apparatus. Five minutes before morphine injection in conditioning phase, lidocaine was administered either uni- or bilaterally into the VTAR (0.25 μL/site) or CeA (0.5 μL/site). The results revealed that lidocaine administration into the left side, but not the right side of the VTAR and the CeA reduced morphine CPP significantly. The reduction was potentiated when lidocaine was injected into both sides of the VTAR and the CeA. The number of compartment crossings was reduced when lidocaine was injected into both sides of the VTAR and the CeA as well as the left side. Rearing was reduced when lidocaine was injected into the right, but not the left side of the VTAR. Sniffing and rearing increased when animals received lidocaine in the right side and reduced in the group that received lidocaine in the left side of the CeA. It was concluded that the right and the left side of VTAR and the CeA play different roles in morphine-induced activity and reward. © 2016 John Wiley & Sons Australia, Ltd.
Zelis, Robert; Mansour, Edward J.; Capone, Robert J.; Mason, Dean T.
1974-01-01
To evaluate the effects of morphine on the peripheral venous and arterial beds, 69 normal subjects were evaluated before and after the intravenous administration of 15 mg morphine. Venous tone was determined by three independent techniques in 22 subjects. The venous pressure measured in a hand vein during temporary circulatory arrest (isolated hand vein technique) fell from 20.2±1.4 to 13.4±0.9 mm Hg (P < 0.01) 10 min after morphine, indicating that a significant venodilation had occurred. With the acute occlusion technique, morphine induced a reduction in forearm venous tone from 12.8±1.1 to 7.9±2.3 mm Hg/ml/100 ml (P < 0.01). Although forearm venous volume at a pressure of 30 mm Hg (VV[30]) was increased from 2.26±0.17 to 2.55±0.26 ml/100 ml, measured by the equilibration technique, the change was not significant (P > 0.1). Of note is that the initial reaction to morphine was a pronounced venoconstriction, demonstrated during the first 1-2 min after the drug. (Isolated hand vein pressure increased to 37.2±5.4 mm Hg, P < 0.01). This rapidly subsided, and by 5 min a venodilation was evident. Morphine did not attenuate the venoconstrictor response to a single deep breath, mental arithmetic, or the application of ice to the forehead when measured by either the isolated hand vein technique or the equilibration technique. To evaluate the effects of morphine on the peripheral resistance vessels in 47 normal subjects, forearm blood flow was measured plethysmographically before and 10-15 min after the intravenous administration of 15 mg of morphine. Although mean systemic arterial pressure was unchanged, forearm blood flow increased from 2.92±0.28 to 3.96±0.46 ml/min/100 ml (P < 0.01), and calculated vascular resistance fell from 42.4±5.2 to 31.6±3.2 mm Hg/ml/min/100 ml (P < 0.01). When subjects were tilted to the 45° head-up position, morphine did not block the increase in total peripheral vascular resistance that occurs; however, it did significantly attenuate the forearm arteriolar constrictor response (before morphine, + 25.7±5.4; after morphine, + 13.7±5.3 mm Hg/ml/min/100 ml, P < 0.05). However, morphine did not block the post-Valsalva overshoot of blood pressure, nor did it block the increase in forearm vascular resistance produced by the application of ice to the forehead. Similarly, morphine did not block the arteriolar or venoconstrictor effects of intra-arterially administered norepinephrine. Morphine infused into the brachial artery in doses up to 200 μg/min produced no changes in ipsilateral forearm VV[30], forearm blood flow, or calculated forearm resistance. Intra-arterial promethazine, atropine, and propranolol did not block the forearm arteriolar dilator response to intravenous morphine; however, intra-arterial phentolamine abolished the response. These data suggest that in human subjects, morphine induces a peripheral venous and arteriolar dilation by a reflex reduction in sympathetic alpha adrenergic tone. Morphine does not appear to act as a peripheral alpha adrenergic blocking agent but seems to attenuate the sympathetic efferent discharge at a central nervous system level. Images PMID:4612057
1984-04-01
the three radiations tested (RBE defined as the ratio of the absorbed dose from one radiation to that of a reference radiation required to produce...increase in the latency of tail-withdrawal from warm (56 C) - water, compared with animals receiving morphine alone. Radiation alone had no effect on ...between one -half and three-quarters of the infantry personnel targeted with a
Dahan, Albert; Romberg, Raymonda; Teppema, Luc; Sarton, Elise; Bijl, Hans; Olofsen, Erik
2004-11-01
To study the influence of morphine on chemical control of breathing relative to the analgesic properties of morphine, the authors quantified morphine-induced analgesia and respiratory depression in a single group of healthy volunteers. Both respiratory and pain measurements were performed over single 24-h time spans. Eight subjects (four men, four women) received a 90-s intravenous morphine infusion; eight others (four men, four women) received a 90-s placebo infusion. At regular time intervals, respiratory variables (breathing at a fixed end-tidal partial pressure of carbon dioxide of 50 mmHg and the isocapnic acute hypoxic response), pain tolerance (derived from a transcutaneous electrical acute pain model), and arterial blood samples were obtained. Data acquisition continued for 24 h. Population pharmacokinetic (sigmoid Emax)-pharmacodynamic models were applied to the respiratory and pain data. The models are characterized by potency parameters, shape parameters (gamma), and blood-effect site equilibration half-lives. All collected data were analyzed simultaneously using the statistical program NONMEM. Placebo had no systematic effect on analgesic or respiratory variables. Morphine potency parameter and blood-effect site equilibration half-life did not differ significantly among the three measured effect parameters (P > 0.01). The integrated NONMEM analysis yielded a potency parameter of 32 +/- 1.4 nm (typical value +/- SE) and a blood-effect site equilibration half-life of 4.4 +/- 0.3 h. Parameter gamma was 1 for hypercapnic and hypoxic breathing but 2.4 +/- 0.7 for analgesia (P < 0.01). Our data indicate that systems involved in morphine-induced analgesia and respiratory depression share important pharmacodynamic characteristics. This suggests similarities in central mu-opioid analgesic and respiratory pathways (e.g., similarities in mu-opioid receptors and G proteins). The clinical implication of this study is that after morphine administration, despite lack of good pain relief, moderate to severe respiratory depression remains possible.
Kim, Yoon-Jung; Kang, Young; Park, Hye-Yeon; Lee, Jae-Ran; Yu, Dae-Yeul; Murata, Takuya; Gondo, Yoichi; Hwang, Jung Hwan; Kim, Yong-Hoon; Lee, Chul-Ho; Rhee, Myungchull; Han, Pyung-Lim; Chung, Bong-Hyun; Lee, Hyun-Jun; Kim, Kyoung-Shim
2016-01-01
Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEPC230X−/− mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEPC230X−/− mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine. PMID:26915673
Russell, Shayla E.; Puttick, Daniel J.; Sawyer, Allison M.; Potter, David N.; Mague, Stephen; Carlezon, William A.
2016-01-01
Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the maintenance of addiction. However, the underlying neurobiological mechanisms are not fully understood. We use a rat model of morphine dependence to show that GluA1 subunits of AMPA glutamate receptors in the nucleus accumbens (NAc), a brain region critical for modulating affective states, are necessary for aversive effects of morphine withdrawal. Using biochemical methods in NAc tissue, we show that morphine dependence increases cell surface expression of GluA1, suggesting that neurons in this area are primed for increased AMPA receptor activation upon withdrawal. This work is important because it suggests that targeting AMPA receptor trafficking and activation could provide novel targets for addiction treatment. PMID:27225765
Stefano, G B; Digenis, A; Spector, S; Leung, M K; Bilfinger, T V; Makman, M H; Scharrer, B; Abumrad, N N
1993-01-01
The presence of morphine-like and codeine-like substances was demonstrated in the pedal ganglia, hemolymph, and mantle tissues of the mollusc Mytilus edulis. The pharmacological activities of the endogenous morphine-like material resemble those of authentic morphine. Both substances were found to counteract, in a dose-dependent manner, the stimulatory effect of tumor necrosis factor alpha or interleukin 1 alpha on human monocytes and Mytilus immunocytes, when added simultaneously to the incubation medium. The immunosuppressive effect of this opiate material expresses itself in a lowering of chemotactic activity, cellular velocity, and adherence. Codeine mimics the activity of authentic morphine, but only at much higher concentrations. Specific high-affinity receptor sites (mu 3) for morphine have been identified on human monocytes and Mytilus immunocytes. In Mytilus recovering from experimentally induced stress, the return of "altered" immunocytes to a more inactive state appears to be due to a significant rise in the content of morphine-like material in the pedal ganglia and hemolymph at this time. Thus, morphine may have a role in calming or terminating the state of immune alertness. PMID:8248214
Chronic morphine treatment reduces recovery from opioid desensitization.
Dang, Vu C; Williams, John T
2004-09-01
Tolerance and dependence result from long-term exposure to opioids, and there is growing evidence linking acute receptor desensitization to these more long-term processes. Receptor desensitization encompasses a series of events leading to the loss of receptor function and internalization. This study examines the onset and recovery from desensitization in locus ceruleus neurons recorded in brain slices taken from animals that have been chronically treated with morphine. After chronic morphine treatment, desensitization was altered as follows. First, the rate of desensitization was increased. Second, recovery from desensitization was always incomplete, even after a brief (1-2 min) exposure to agonist. This contrasts with experiments in controls in which recovery from desensitization, after a brief exposure to agonist, was complete within 25 min. Finally, morphine-6-beta-D-glucuronide, a metabolite of morphine that was ineffective at causing desensitization in controls, induced significant desensitization in slices from morphine-treated animals. When brain slices from controls were treated with inhibitors of PKC or monensin, agents known to compromise G-protein-coupled receptor resensitization, desensitization was increased, and recovery was significantly reduced. These results indicate that receptor resensitization maintains signaling during periods of intense and sustained stimulation. After chronic morphine treatment, desensitization is potentiated, and receptor resensitization is compromised.
Ontogenesis of morphine-induced behavior in the cat.
Burgess, J Wesley; Villablanca, Jaime R
2007-02-23
We analyzed the behavioral responses to a single dose of morphine in kittens at postnatal (P) ages 7, 15, 30, 60, 90, and 120 days. Each kitten received 0.5 or 3.0 mg/kg i.p. of morphine sulphate or saline vehicle. An average of 6.5 kittens were studied at each dose and age. An ethogram was constructed, based on morphine effects in adult cats, to score appropriate behaviors from direct observation and video sampling. After injection behaviors were sampled for periods of 2 min every 15-30 min for a total of 4 h. The frequency of each selected behavior was scored at 2 s intervals during each of the 2 min periods and it was expressed as a percent of all time samples scored for the 4 h period. Statistical comparisons were made with control (saline) littermates. At P7-15 the drug's main effect was behavioral depression; i.e., kittens, away from the litter, laid sprawled as if with no muscle tonus; Nursing was suppressed and Vocalization was distressed. Mainly with the higher dose, at P30, morphine-specific behaviors appeared for the first time. With the kitten in a Sitting position, these included stereotypical Head and Paw Movements and body Torsion. At P60 other drug-elicited behaviors emerged, including Spinning, Retching, and Vomiting. By P90-120 the frequency of Head (16.0%) and Paw (16.9%) Movements doubled relative to P30-60. Morphine significantly changed frequencies of newly matured behaviors (in control kittens) including Sniffing and Licking (increased), and Grooming (decreased/blocked). Retching and Vomiting increased to adult levels. Morphine-induced hyperthermia was first detected at P60 and peaked by P90-P120. The early behavioral depression shifted to a pattern of increasing activity starting at P30 and peaking at P90-120, at which time Sleep was absent and Laying was reduced, while Walking and Sitting were increased. We concluded that the maturation of the stereotypical behavioral responses to morphine in cats begins at about P30 and is completed between P90 and 120. Results are discussed in terms of developmental parameters and putative brain sites of morphine's actions.
Assar, Nasim; Mahmoudi, Dorna; Farhoudian, Ali; Farhadi, Mohammad Hasan; Fatahi, Zahra; Haghparast, Abbas
2016-10-01
The hippocampus plays a vital role in processing contextual memories and reward related learning tasks, such as conditioned place preference (CPP). Among the neurotransmitters in the hippocampus, dopamine is deeply involved in reward-related processes. This study assessed the role of D1- and D2-like dopamine receptors within the CA1 region of the hippocampus in the acquisition and reinstatement of morphine-CPP. To investigate the role of D1 and D2 receptors in morphine acquisition, the animals received different doses of D1- and/or D2-like dopamine receptor antagonists (SCH23390 and sulpiride, respectively) into the CA1, 5min before the administration of morphine (5mg/kg, subcutaneously) during a 3-days conditioning phase. To evaluate the involvement of these receptors in morphine reinstatement, the animals received different doses of SCH23390 or sulpiride (after extinction period) 5min before the administration of a low dose of morphine (1mg/kg) in order to reinstate the extinguished morphine-CPP. Conditioning scores were recorded by Ethovision software. The results of this study showed that the administration of SCH23390 or sulpiride, significantly decreased the acquisition of morphine-CPP. Besides, the injection of these antagonists before the administration of a priming dose of morphine, following the extinction period, decreased the reinstatement of morphine-CPP in sacrificed rats. However, the effect of sulpiride on the acquisition and reinstatement of morphine-CPP was more significant than that of SCH23390. These findings suggested that D1- and D2-like dopamine receptors in the CA1 are involved in the acquisition and reinstatement of morphine-CPP, and antagonism of these receptors can reduce the rewarding properties of morphine. Copyright © 2016 Elsevier B.V. All rights reserved.
de Graaf, Joke; van Lingen, Richard A; Simons, Sinno H P; Anand, Kanwaljeet J S; Duivenvoorden, Hugo J; Weisglas-Kuperus, Nynke; Roofthooft, Daniella W E; Groot Jebbink, Liesbeth J M; Veenstra, Ravian R; Tibboel, Dick; van Dijk, Monique
2011-06-01
Newborns on ventilatory support often receive morphine to induce analgesia. Animal experiments suggest that this may impair subsequent cognitive and behavioral development. There are sparse human data on long-term effects of neonatal morphine. We aimed to investigate the effects of continuous morphine administered in the neonatal period on the child's functioning. We conducted a follow-up study among 5-year-olds who, as mechanically ventilated neonates, had participated in a placebo-controlled trial on effects of morphine administration on pain and neurologic outcome. They were now tested on intelligence, visual motor integration, behavior, chronic pain, and health-related quality of life. Univariate analyses showed significantly lower overall intelligence quotient (IQ) scores for children who earlier had received morphine, that is, mean 94 (SD 14.5) versus 100 (SD 12.9) for those who received placebo (P = 0.049). Other between-group differences in outcomes were not found. The statistical difference disappeared after correction for treatment condition, open-label morphine consumption over the first 28 days, and a propensity score for clinically relevant co-variables in multiple regression analyses. However, scores on one IQ subtest, "visual analysis," were significantly negatively related to having received morphine and to open-label morphine consumption the first 28 days. The finding of a significant effect of morphine on the "visual analysis" IQ subtest calls for follow-up at a later age focusing on the higher-order neurocognitive functions. Morphine received in the neonatal period has negative effects on the child's cognitive functioning at the age of 5 years which warrants follow-up at a later age. Copyright © 2011 International Association for the Study of Pain. All rights reserved.
Sánchez-Blázquez, Pilar; Rodríguez-Muñoz, Maria; Berrocoso, Esther; Garzón, Javier
2013-09-15
Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced following the activation of GluN receptors, similar to what is observed in neuropathic pain. © 2013 Elsevier B.V. All rights reserved.
Proinflammatory cytokines oppose opioid induced acute and chronic analgesia
Hutchinson, Mark R.; Coats, Benjamen D.; Lewis, Susannah S.; Zhang, Yingning; Sprunger, David B.; Rezvani, Niloofar; Baker, Eric M.; Jekich, Brian M.; Wieseler, Julie L.; Somogyi, Andrew A.; Martin, David; Poole, Stephen; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.
2008-01-01
Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring ≤5 minutes after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia. PMID:18599265
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1983-01-01
The effects of several peptide and non-peptide opiods and naloxone on induced hyperthermia is studied in rabbits. The effect of tyical mu, kappa, and sigma receptor antagonists (morphine, ketocyclazcine and SKF 10,0 10, 047) and some opioid peptides (Beta-endorphin /BE/, methionine-enkaphalin /ME/, and D-Ala2-methionine-enkaphalin-amide /DAME/ are determined. The role of prostaglandins (PG), cAMP, and norepinephrine (NE) in morphine, BE, and DAME induced hyperthermia is investigated. In addition, the effect of naloxone on pyrogen, arachidonic acid, PGE2, prostacyclin, dibutyryl cAMP, and NE induced hyperthermia is determined. Among other results, it is found that the three receptor antagonists induced hyperthermia in rabbits. BE, ME, and DAME were also found to cause hyperthermia, and it is suggested that they act on the same type of receptor. It is also determined that neither NE nor cAMP is involved in the hyperthermia due to morphine, BE, and DAME. It is suggested that an action of endogenous peptides on naloxone sensitive receptors plays little role in normal thermoregulation or in hyperthermia.
Intrathecal Morphine Attenuates Recovery of Function after a Spinal Cord Injury
Moreno, Georgina; Woller, Sarah; Puga, Denise; Hoy, Kevin; Balden, Robyn; Grau, James W.
2009-01-01
Abstract Prior work has shown that a high dose (20 mg/kg) of systemic morphine, required to produce significant analgesia in the acute phase of a contusion injury, undermines the long-term health of treated subjects and increases lesion size. Moreover, a single dose of systemic morphine in the early stage of injury (24 h post-injury) led to symptoms of neuropathic pain 3 weeks later, in the chronic phase. The present study examines the locus of the effects using intrathecal morphine administration. Subjects were treated with one of three doses (0, 30, or 90 μg) of intrathecal morphine 24 h after a moderate contusion injury. The 90-μg dose produced significant analgesia when subjects were exposed to noxious stimuli (thermal and incremented shock) below the level of injury. Yet, despite analgesic efficacy, intrathecal morphine significantly attenuated the recovery of locomotor function and increased lesion size rostral to the injury site. A single dose of 30 or 90 μg of intrathecal morphine also decreased weight gain, and more than doubled the incidence of mortality and autophagia when compared to vehicle-treated controls. Morphine is one of the most effective pharmacological agents for the treatment of neuropathic pain and, therefore, is indispensable for the spinally injured. Treatment can, however, adversely affect the recovery process. A morphine-induced attenuation of recovery may result from increases in immune cell activation and, subsequently, pro-inflammatory cytokine concentrations in the contused spinal cord. PMID:19388818
Wang, Yu-Jun; Tao, Yi-Min; Li, Fu-Ying; Wang, Yu-Hua; Xu, Xue-Jun; Chen, Jie; Cao, Ying-Lin; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen
2009-04-01
ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide). It was further found that the antinociceptive effects of ATPM were mediated by kappa- and mu-, but not delta-opioid, receptors. In addition to its agonist profile on the mu-receptor, ATPM also acted as a mu-antagonist, as measured by its inhibition of morphine-induced antinociception. It is more important that ATPM had a greater ratio of the ED(50) value of sedation to that of antinociception than (-)U50,488 (11.8 versus 3.7), indicative of a less sedative effect than (-)U50,488H. In addition, ATPM showed less potential to develop antinociceptive tolerance relative to (-)U50,488H and morphine. Moreover, it dose-dependently inhibited morphine-induced antinociceptive tolerance. Furthermore, it was found that chronic treatment of rats for 8 consecutive days with ATPM (0.5 mg/kg s.c.) produced sustained decreases in heroin self-administration. (-)U50,488H (2 mg/kg s.c.) also produced similar inhibitory effect. Taken together, our findings demonstrated that ATPM, a novel mixed kappa-agonist and mu-agonist/-antagonist, could inhibit morphine-induced antinociceptive tolerance, with less potential to develop tolerance and reduce heroin self-administration with less sedative effect. kappa-Agonists with some mu-activity appear to offer some advantages over selective kappa-agonists for the treatment of heroin abuse.
Pacifici, R; Patrini, G; Venier, I; Parolaro, D; Zuccaro, P; Gori, E
1994-06-01
This report describes the 24-hr time course of the immunomodulatory effects of an acute s.c. injection of morphine in C57BL6 mice, and correlates these effects with the drug's analgesic properties and serum levels. Acute morphine treatment had a biphasic effect on various immune parameters: there was an increase in in vitro phagocytosis and the killing of Candida Albican cells by peritoneal polymorphonuclear leukocytes 20 and 40 min after the injection of morphine, 20 mg/kg, when analgesia and serum morphine concentrations were at their peak. Interestingly, 24 hr after morphine administration (when antinociception and morphine blood levels were no longer detectable) these parameters underwent a marked reduction. Similarly, macrophage-mediated inhibition of tumor cells proliferation was first stimulated (at 20 and 40 min) and then depressed (at 24 hr). Splenic natural killer cell cytotoxicity, determined by standard 51Cr release from YAC-1 target cells, also was evaluated. No differences in natural killer activity was observed at any of the monitored time points. In addition, we evaluated the immunomodulatory effects of an acute injection of methadone (a synthetic narcotic compound) at a dose inducing the same degree of analgesia as morphine. None of the tested immunoparameters were affected by the administration of methadone, which indicates the different drug-sensitivity of immunological correlates in vivo.
Reisi, Zahra; Haghparast, Amir; Pahlevani, Pouyan; Shamsizadeh, Ali; Haghparast, Abbas
2014-09-01
The hippocampus is a region of the brain that serves several functions. The dopaminergic system acts through D1- and D2-like receptors to interfere in pain modulation and the opioid receptors play major roles in analgesic processes and there are obvious overlaps between these two systems. The present study investigated the interaction between the opioidergic and dopaminergic systems in the dorsal hippocampus (CA1) region for formalin-induced orofacial pain. Two guide cannulae were stereotaxically implanted in the CA1 region and morphine (0.5, 1, 2 and 4 μg/0.5 μl saline) and naloxone (0.3, 1 and 3 μg/0.5 μl saline) were used as the opioid receptor agonist and antagonist, respectively. SKF-38393 (1 μg/0.5 μl saline) was used as a D1-like receptor agonist, quinpirole (2 μg/0.5 μl saline) as a D2-like receptor agonist, SCH-23390 (0.5 μg/0.5 μl saline) as a D1-like receptor antagonist and sulpiride (3 μg/0.5 μl DMSO) as a D2-like receptor antagonist. To induce orofacial pain, 50 μl of 1% formalin was subcutaneously injected into the left side of the upper lip. Our results showed that different doses of morphine significantly reduced orofacial pain in both phases induced by formalin. Naloxone (1 and 3 μg) reversed morphine induced analgesia in CA1. SKF-38393 and quinpirole with naloxone (1 μg) significantly decreased formalin-induced orofacial pain in both phases. SCH-23390 had no effect on the antinociceptive response of morphine in both phases of orofacial pain. Sulpiride reversed the antinociceptive effects of morphine only in the first phase, but this result was not significant. Our findings suggest that there is cross-talk between the opioidergic and dopaminergic systems. Opioidergic neurons also exerted antinociceptive effects by modulation of the dopaminergic system in the CA1 region of the brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Transversus abdominis plane block in renal allotransplant recipients: A retrospective chart review.
Gopwani, S R; Rosenblatt, M A
2016-01-01
The efficacy of the transversus abdominis plane (TAP) block appears to vary considerably, depending on the surgical procedure and block technique. This study aims to add to the existing literature and provide a more clear understanding of the TAP blocks role as a postoperative analgesic technique, specifically in renal allotransplant recipients. A retrospective chart review was conducted by querying the intraoperative electronic medical record system of a 1200-bed tertiary academic hospital over a 5 months period, and reviewing anesthetic techniques, as well as postoperative morphine equivalent consumption. Fifty renal allotransplant recipients were identified, 13 of whom received TAP blocks while 37 received no regional analgesic technique. All blocks were performed under ultrasound guidance, with 20 mL of 0.25% bupivacaine injected in the transversus abdominis fascial plane under direct visualization. The primary outcome was postoperative morphine equivalent consumption. Morphine consumption was compared with the two-tailed Mann-Whitney U -test. Continuous variables of patient baseline characteristics were analyzed with unpaired t -test and categorical variables with Fischer Exact Test. A P < 0.05 was considered statistically significant. A statistically significant decrease in cumulative morphine consumption was found in the group that received the TAP block at 6 h (2.46 mg vs. 7.27 mg, P = 0.0010), 12 h (3.88 mg vs. 10.20 mg, P = 0.0005), 24 h (6.96 mg vs. 14.75 mg, P = 0.0013), and 48 h (11 mg vs. 20.13 mg, P = 0.0092). The TAP block is a beneficial postoperative analgesic, opiate-sparing technique in renal allotransplant recipients.
A Novel Strategy for Attenuating Opioid Withdrawal in Neonates
Santoro, Giovanni C; Shukla, Samarth; Patel, Krishna; Kaczmarzyk, Jakub; Agorastos, Stergiani; Scherrer, Sandra; Choi, Yoon Young; Veith, Christina; Carrion, Joseph; Silverman, Rebecca; Mullin, Danielle; Ahmed, Mohamed; Schiffer, Wynne K; Brodie, Jonathan D; Dewey, Stephen L
2016-01-01
The rate of Neonatal Abstinence Syndrome (NAS) has drastically increased over the past decade. The average hospital expense per NAS patient has tripled, while the number of babies born to opioid-dependent mothers has increased to 5 in 1000 births. Current treatment options are limited to opioid replacement and tapering. Consequently, we examined the efficacy of prenatal, low-dose and short-term vigabatrin (γ-vinyl GABA, GVG) exposure for attenuating these symptoms as well as the metabolic changes observed in the brains of these animals upon reaching adolescence. Pregnant Sprague-Dawley rats were treated in one of four ways: 1) saline; 2) morphine alone; 3) morphine+GVG at 25 mg/kg; 4) morphine+GVG at 50 mg/kg. Morphine was administered throughout gestation, while GVG administration occurred only during the last 5 days of gestation. On post-natal day 1, naloxone-induced withdrawal behaviours were recorded in order to obtain a gross behaviour score. Approximately 28 days following birth, 18FDG microPET scans were obtained on these same animals (Groups 1, 2, and 4). Morphine-treated neonates demonstrated significantly higher withdrawal scores than saline controls. However, GVG at 50 but not 25 mg/kg/day significantly attenuated them. Upon reaching adolescence, morphine treated animals showed regionally specific changes in 18FDG uptake. Again, prenatal GVG exposure blocked them. These data demonstrate that low-dose, short-term prenatal GVG administration blocks naloxone-induced withdrawal in neonates. Taken together, these preliminary findings suggest that GVG may provide an alternative and long-lasting pharmacologic approach for the management of neonatal and adolescent symptoms associated with NAS. PMID:28078167
de Guglielmo, Giordano; Kallupi, Marsida; Scuppa, Giulia; Demopulos, Gregory; Gaitanaris, George; Ciccocioppo, Roberto
2017-01-01
Relapse to opioids is often driven by the avoidance of the aversive states of opioid withdrawal. We recently demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. However, the role of PPARγ in withdrawal and other forms of relapse to heroin is unknown. To further address this issue, we investigated the role of PPARγ on the development and expression of morphine withdrawal in mice and the effect of pioglitazone on several forms of heroin relapse in rats. We induced physical dependence to morphine in mice by injecting morphine twice daily for 6 days. Withdrawal syndrome was precipitated on day 6 with an injection of naloxone. In addition, different groups of rats were trained to self-administer heroin and, after the extinction, the relapse was elicited by cues, priming, or stress. The effect of different doses of pioglitazone was tested on these different paradigms. Data show that chronic and acute administration of pioglitazone attenuates morphine withdrawal symptoms, and these effects are mediated by activation of PPARγ receptors. Activation of PPARγ by pioglitazone also abolishes yohimbine-induced reinstatement of heroin seeking and reduces heroin-induced reinstatement, while it does not affect cue-induced relapse. These findings provide new insights on the role of PPARγ on opioid dependence and suggest that pioglitazone may be useful for the treatment of opioid withdrawal in opioid-addicted individuals.
Modulation of opioid actions by nitric oxide signaling.
Toda, Noboru; Kishioka, Shiroh; Hatano, Yoshio; Toda, Hiroshi
2009-01-01
Nitric oxide (NO) plays pivotal roles in controlling physiological functions, participates in pathophysiological intervention, and is involved in mechanisms underlying beneficial or untoward actions of therapeutic agents. Endogenous nitric oxide is formed by three isoforms of nitric oxide synthase: endothelial, neurogenic and inducible. The former two are constitutively present mainly in the endothelium and nervous system, respectively, and the latter one is induced by lipopolysaccharides or cytokines mainly in mitochondria and glial cells. Constitutively formed nitric oxide modulates the actions of morphine and related analgesics by either enhancing or reducing antinociception. Tolerance to and dependence on morphine or its withdrawal syndrome are likely prevented by nitric oxide synthase inhibition. Information concerning modulation of morphine actions by nitric oxide is undoubtedly useful in establishing new strategies for efficient antinociceptive treatment and for minimizing noxious and unintended reactions.
Hoekman, John D.; Ho, Rodney J.Y.
2011-01-01
Background Centrally acting opioid analgesics such as morphine and fentanyl are effective, but their efficacy is often limited by a delayed response or side effects resulting from systemic first-pass before reaching the brain and the central nervous system (CNS). It is generally accepted that drugs applied to the nasal cavity can directly access the brain and the CNS, which could provide therapeutic advantages such as rapid onset and lower systemic exposure. The olfactory region of the nasal cavity has been implicated in facilitating this direct nose-to-CNS transfer. If the fraction of opioid administered to the olfactory region could be improved, there could be a larger fraction of drug directly delivered to the CNS, mediating greater therapeutic benefit. Methods We have developed a pressurized olfactory delivery (POD) device to consistently and non-invasively deposit a majority of drug on the olfactory region of the nasal cavity in Sprague-Dawley rats. Using the tail-flick latency test and analysis of plasma and CNS tissue drug exposure, we compared distribution and efficacy of the opioids morphine and fentanyl administered to the nasal olfactory region with the POD device or the nasal respiratory region with nose drops or systemically via intraperitoneal (IP) injection. Results Compared to nose drop, POD administration of morphine resulted in significantly higher overall therapeutic effect (AUCeffect) without a significant increase in plasma drug exposure (AUCplasma). POD delivery of morphine resulted in a nose-to-CNS direct transport percentage of 38–55%. POD delivery of fentanyl led to a faster (5 min vs. 10 min) and more intense analgesic effect compared to nasal respiratory administration. Unlike IP injection or nose drop administration, both morphine and fentanyl given by the POD device to olfactory nasal epithelium exhibited clockwise [plasma] versus effect hysteresis after nasal POD administration, consistent with direct nose-to-CNS drug transport mechanism. Conclusions Deposition of opioids to the olfactory region within the nasal cavity could have a significant impact on drug distribution and pharmacodynamic effect, and thus should be considered into account in future nasally administered opioid studies. PMID:21709146
Genetics Home Reference: centronuclear myopathy
... W, Beggs AH, Li JZ, Burmeister M, Dowling JJ. Dominant mutation of CCDC78 in a unique congenital ... E, Boennemann C, Straub V, Quinlivan R, Dowling JJ, Al-Sarraj S, Treves S, Abbs S, Manzur AY, Sewry CA, ...
Stress-opioid interactions: a comparison of morphine and methadone.
Taracha, Ewa; Mierzejewski, Paweł; Lehner, Małgorzata; Chrapusta, Stanisław J; Kała, Maria; Lechowicz, Wojciech; Hamed, Adam; Skórzewska, Anna; Kostowski, Wojciech; Płaźnik, Adam
2009-01-01
The utility of methadone and morphine for analgesia and of methadone for substitution therapy for heroin addiction is a consequence of these drugs acting as opioid receptor agonists.We compared the cataleptogenic and antinociceptive effects of single subcutaneous doses of methadone hydrochloride (1-4 mg/kg) and morphine sulfate (2.5-10 mg/kg) using catalepsy and hot-plate tests, and examined the effects of the highest doses of the drugs on Fos protein expression in selected brain regions in male Sprague-Dawley rats. Methadone had greater cataleptogenic and analgesic potency than morphine. Fos immunohistochemistry revealed substantial effects on the Fos response of both the stress induced by the experimental procedures and of the drug exposure itself. There were three response patterns identified: 1) drug exposure, but not stress, significantly elevated Fos-positive cell counts in the caudate-putamen; 2) stress alone and stress combined with drug exposure similarly elevated Fos-positive cell counts in the nucleus accumbens and cingulate cortex; and 3) methadone and morphine (to a lesser extent) counteracted the stimulatory effect of nonpharmacological stressors on Fos protein expression in the somatosensory cortex barrel field, and Fos-positive cell counts in this region correlated negatively with both the duration of catalepsy and the latency time in the hot-plate test. The overlap between brain regions reacting to nonpharmacological stressors and those responding to exogenous opioids suggests that stress contributes to opioid-induced neuronal activation.
Aoki, Yuta; Mizoguchi, Hirokazu; Watanabe, Chizuko; Takeda, Kumiko; Sakurada, Tsukasa; Sakurada, Shinobu
2014-01-01
The antinociceptive effect of morphine in the inflammatory pain state was described in the von Frey filament test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After an i.pl. injection of CFA, mechanical allodynia was observed in the ipsilateral paw. The antinociceptive effect of morphine injected s.c. and i.t. against mechanical allodynia was reduced bilaterally at 1 day and 4 days after the CFA pretreatment. The expression level of mRNA for μ-opioid receptors at 1 day after the CFA pretreatment was reduced bilaterally in the lumbar spinal cord and dorsal root ganglion (DRG). In contrast, the protein level of μ-opioid receptors at 1 day after CFA pretreatment was decreased in the ipsilateral side in the DRG but not the lumbar spinal cord. Single or repeated i.t. pretreatment with the protein kinase Cα (PKCα) inhibitor Ro-32-0432 completely restored the reduced morphine antinociception in the contralateral paw but only partially restored it in the ipsilateral paw in the inflammatory pain state. In conclusion, reduced morphine antinociception against mechanical allodynia in the inflammatory pain state is mainly mediated via a decrease in μ-opioid receptors in the ipsilateral side and via the desensitization of μ-opioid receptors in the contralateral side by PKCα-induced phosphorylation.
Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.
Lotfipour, Shahrdad; Smith, Maree T
2018-01-01
Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.
Pavlovian conditioning analysis of morphine tolerance.
Siegel, S
1978-01-01
It has been demonstrated that many conditional responses to a variety of drugs are opposite in direction to the unconditional effects of the drug, and the conditioning analysis of morphine tolerance emphasizes the fact that subjects with a history of morphine administration display morphine-compensatory conditional responses when confronted with the usual administration procedure but without the drug. Thus, when the drug is presented in the context of the usual administration cues, these conditional morphine-compensatory responses would be expected to attenuate the drug-induced unconditional responses, thereby decreasing the observed response to the drug. Research has been summarized which supports this compensatory conditioning model of tolerance by demonstrating that the display of tolerance is specific to the environment in which the drug has been previously administered. Further evidence supporting this theory of tolerance has been provided by studies establishing that extinction, partial reinforcement, and latent inhibition--non-pharmacological manipulations known to be effective in generally affecting the display of conditional responses--similarly affect the display of morphine tolerance. Additional research has suggested many parallels between learning and morphine tolerance: Both processes exhibit great retention, both are disrupted by electroconvulsive shock and frontal cortical stimulation, both are retarded by inhibitors of protein synthesis, and both are facilitated by antagonists of these metabolic inhibitors.
Navidhamidi, M; Semnanian, S; Javan, M; Goudarzvand, M; Rohampour, K; Azizi, H
2012-01-15
Drug addiction is an occurrence with physiological, psychological, and social outcomes. Repeated drug exposure causes neuronal adaptations and dependency. It has been shown that CaMKIIα enzyme contributes to morphine dependency. The locus coeruleus nucleus has been implied in the morphine withdrawal syndrome. This research focuses on the behavioral and molecular adaptations that occur in the locus coeruleus neurons in response to the chronic morphine exposure. Adult male Wistar rats were injected by morphine sulfate (10 mg/kg/s.c.) at an interval of 12 h for a period of nine subsequent days. On the tenth day, naloxone (1 mg/kg/i.p.) was injected 2 h after the morphine administration. Somatic withdrawal signs were investigated for 30 min. We concluded that the inhibition of CaMKIIα by administration of KN-93, the specific inhibitor of this enzyme, significantly attenuated some of the withdrawal signs. In molecular method, the expression of CaMKIIα protein has been enhanced in locus coeruleus of the morphine dependent rats. These findings indicate that CaMKIIα may be involved in the modulation of the naloxone-induced withdrawal syndrome, and treatment with KN-93 may have some effects on this system. Copyright © 2011 Elsevier B.V. All rights reserved.
Luna, Stelio Pacca Loureiro; Martino, Irene Di; Lorena, Silvia Elaine Rodolfo de Sá; Capua, Maria Luisa Buffo de; Lima, Alfredo Feio da Maia; Santos, Bianca Paiva Costa Rodrigues dos; Brondani, Juliana Tabarelli; Vesce, Giancarlo
2015-12-01
To investigate the analgesic effect of acupuncture (AP) or micro-dose pharmacopuncture (PA), using carprofen or morphine, in bitches undergoing ovariohysterectomy (OHE). Thirty five dogs were randomly assigned to five groups after sedation with acepromazine IM: AP, 0.5 mg.kg(-1) of morphine subcutaneously (SC), 4 mg.kg(-1) of carprofen SC, and PA with 0.05 mg.kg(-1) of morphine or 0.4 mg.kg(-1) of carprofen. Anaesthesia was induced with propofol and maintained with isoflurane. Pain was assessed after OHE by a blind observer for 24h, by dynamic visual analogue scale (DIVAS), Glasgow (CMPS-SF), Melbourne (UMPS) and Colorado University pain scale (CSU). Animals reaching 33% of the UMPS score received rescue analgesia with morphine IM. Non parametric data were analysed by Kruskal-Wallis or Friedman tests where applicable, followed by Dunn's test. Parametric data were analysed by two way ANOVA, followed by Tukey test. There were no differences among groups in number of rescue analgesia. Except for the DIVAS score where animals treated with morphine had the lowest score compared with AP and carprofen, at 1h after surgery, there were no other differences among groups. Acupuncture or pharmacopuncture were equally effective as morphine or carprofen to control postoperative pain in bitches undergoing ovariohysterectomy.
Chronic Morphine Treatment Reduces Recovery from Opioid Desensitization
Dang, Vu C.; Williams, John T.
2013-01-01
Tolerance and dependence result from long-term exposure to opioids, and there is growing evidence linking acute receptor desensitization to these more long-term processes. Receptor desensitization encompasses a series of events leading to the loss of receptor function and internalization. This study examines the onset and recovery from desensitization in locus ceruleus neurons recorded in brain slices taken from animals that have been chronically treated with morphine. After chronic morphine treatment, desensitization was altered as follows. First, the rate of desensitization was increased. Second, recovery from desensitization was always incomplete, even after a brief (1–2 min) exposure to agonist. This contrasts with experiments in controls in which recovery from desensitization, after a brief exposure to agonist, was complete within 25 min. Finally, morphine-6-β-D-glucuronide, a metabolite of morphine that was ineffective at causing desensitization in controls, induced significant desensitization in slices from morphine-treated animals. When brain slices from controls were treated with inhibitors of PKC or monensin, agents known to compromise G-protein-coupled receptor resensitization, desensitization was increased, and recovery was significantly reduced. These results indicate that receptor resensitization maintains signaling during periods of intense and sustained stimulation. After chronic morphine treatment, desensitization is potentiated, and receptor resensitization is compromised. PMID:15342737
The Impact of Morphine After a Spinal Cord Injury
Hook, Michelle A.; Liu, Grace T.; Washburn, Stephanie N.; Ferguson, Adam R.; Bopp, Anne C.; Huie, John R.; Grau, James W.
2007-01-01
Nociceptive stimulation, at an intensity that elicits pain-related behavior, attenuates recovery of locomotor and bladder functions, and increases tissue loss after a contusion injury. These data imply that nociceptive input (e.g., from tissue damage) can enhance the loss of function after injury, and that potential clinical treatments, such pretreatment with an analgesic, may protect the damaged system from further secondary injury. The current study examined this hypothesis and showed that a potential treatment (morphine) did not have a protective effect. In fact, morphine appeared to exacerbate the effects of nociceptive stimulation. Experiment 1 showed that after spinal cord injury 20 mg/kg of systemic morphine was necessary to induce strong antinociception and block behavioral reactivity to shock treatment, a dose that was much higher than that needed for sham controls. In Experiment 2, contused rats were given one of three doses of morphine (Vehicle, 10, 20 mg/kg) prior to exposure to uncontrollable electrical stimulation or restraint alone. Despite decreasing nociceptive reactivity, morphine did not attenuate the long-term consequences of shock. Rats treated with morphine and shock had higher mortality rates, and displayed allodynic responses to innocuous sensory stimuli three weeks later. Independent of shock, morphine per se undermined recovery of sensory function. Rats treated with morphine alone also had significantly larger lesions than those treated with saline. These results suggest that nociceptive stimulation affects recovery despite a blockade of pain-elicited behavior. The results are clinically important because they suggest that opiate treatment may adversely affect the recovery of function after injury. PMID:17383022
Neurobiological Effects of Morphine after Spinal Cord Injury
Woller, Sarah A.; Bancroft, Eric; Aceves, Miriam; Funk, Mary Katherine; Hartman, John; Garraway, Sandra M.
2017-01-01
Abstract Opioids and non-steroidal anti-inflammatory drugs are used commonly to manage pain in the early phase of spinal cord injury (SCI). Despite its analgesic efficacy, however, our studies suggest that intrathecal morphine undermines locomotor recovery and increases lesion size in a rodent model of SCI. Similarly, intravenous (IV) morphine attenuates locomotor recovery. The current study explores whether IV morphine also increases lesion size after a spinal contusion (T12) injury and quantifies the cell types that are affected by early opioid administration. Using an experimenter-administered escalating dose of IV morphine across the first seven days post-injury, we quantified the expression of neuron, astrocyte, and microglial markers at the injury site. SCI decreased NeuN expression relative to shams. In subjects with SCI treated with IV morphine, virtually no NeuN+ cells remained across the rostral-caudal extent of the lesion. Further, whereas SCI per se increased the expression of astrocyte and microglial markers (glial fibrillary acidic protein and OX-42, respectively), morphine treatment decreased the expression of these markers. These cellular changes were accompanied by attenuation of locomotor recovery (Basso, Beattie, Bresnahan scores), decreased weight gain, and the development of opioid-induced hyperalgesia (increased tactile reactivity) in morphine-treated subjects. These data suggest that morphine use is contraindicated in the acute phase of a spinal injury. Faced with a lifetime of intractable pain, however, simply removing any effective analgesic for the management of SCI pain is not an ideal option. Instead, these data underscore the critical need for further understanding of the molecular pathways engaged by conventional medications within the pathophysiological context of an injury. PMID:27762659
Identification of a µ opiate receptor signaling mechanism in human placenta.
Mantione, Kirk J; Angert, Robert M; Cadet, Patrick; Kream, Richard M; Stefano, George B
2010-11-01
Previous studies report that genes in the morphine biosynthetic pathway have been found in placental tissue. Prior researchers have shown that kappa opioid receptors are present in human placenta. We determined if a µ opiate receptor was present and which subtype was expressed in human placenta. We also sought to demonstrate a functional µ opiate receptor in human placenta. Polymerase chain reactions as well as DNA sequencing were performed to identify the µ opiate receptor subtypes present in human placenta. The functionality of the receptor was demonstrated by real time amperometric measurements of morphine induced NO release. The µ4 opiate receptor sequence was present as well as the µ1 opioid receptor transcript. The addition of morphine to placental tissue resulted in immediate nitric oxide release and this effect was blocked by naloxone. In the present study, an intact morphine signaling system has been demonstrated in human placenta. Morphine signaling in human placenta probably functions to regulate the immune, vascular, and endocrine functions of this organ via NO.
Morphine-induced kinetic alterations of choline acetyltransferase of the rat caudate nucleus
Datta, K.; Wajda, I. J.
1972-01-01
1. In order to explain the decrease of choline acetyltransferase (2.3.1.6.) activity observed in the caudate nucleus of morphine-treated rats, partially purified preparations of the enzyme were used in kinetic studies, with choline as substrate. 2. The apparent Michaelis constant for the enzyme obtained from normal rats was found to be 0·9 mM choline; this value doubled when the animals were killed one hour after a single injection of morphine (30 mg/kg). When the rats were injected daily for 4 or 15 days, and killed one hour after the last injection, the apparent Km value was 2·1 mM in each case. Prolonged daily treatment with morphine, followed by 48 h withdrawal, or by administration of 4 mg/kg of naloxone (given half an hour after the last injection of morphine) resulted in apparent Km values of 1·3-1·5 mM of choline, suggesting a gradual return to the lower, normal substrate requirement. Vmax changes were insignificant. 3. The effect of morphine added in vitro to different enzyme preparations was also studied. The Km values of 0·9 mM, in the enzyme isolated from normal rats, increased to 2·0 after incubation in vitro with 12·5 mM morphine. Similar increases were found in enzymes obtained from rats 48 h after the withdrawal of morphine or from rats injected with naloxone after prolonged morphine treatment. The high apparent Km values, found in enzyme obtained from animals killed one hour after the last dose of morphine, did not change upon incubation with 12·5 mM morphine. A similar pattern of Km changes was noticed after incubation with 25 mM acetylcholine. 4. An increase of 32% in acetylcholine (ACh) level was found in the caudate nucleus one hour after subcutaneous injection of 30 mg/kg of morphine. Return to normal values was observed when morphine was administered daily. After two to three weeks of daily treatment and subsequent withdrawal from morphine for 48 h, the levels of ACh were normal. If the daily treated rats were given naloxone within half an hour of the last injection of morphine, and killed 30 min later, the levels of ACh remained normal. 5. Fifty per cent inhibition of enzyme activity was observed upon in vitro incubation with 75 mM acetylcholine, or with 25 mM morphine. The same degree of inhibition was noticed when the enzyme was obtained from normal or from morphine-treated rats. PMID:5041452
Bai, Yunjing; Belin, David; Zheng, Xigeng; Liu, Zhengkui; Zhang, Yue
2017-06-01
Negative affective states, e.g., anhedonia, are suggested to be involved in the long-lasting motivational processes associated with relapse. Here, we investigated whether anhedonic behaviors could be elicited by an acute stress after protracted abstinence from morphine. The behavioral responses to natural stimuli following exposure to an acute stress were examined after 14 days of withdrawal from morphine. Male rats were pretreated with either a binge-like morphine regimen or daily saline injections for 5 days. The motivation for two natural stimuli, i.e., a social stimulus (male rat) and a sexual stimulus (estrous female rat), was measured, following exposure to an acute stress (intermittent foot shock, 0.5 mA * 0.5 s * 10 min; mean inter-shock interval 40 s), under three conditions: free approach and effort- and conflict-based approaches. Foot-shock-induced stress did not influence free-approach behavior (sniffing time) towards the social or sexual stimulus. However, in the effort-based approach task, the stressed morphine-withdrawn rats demonstrated an attenuated motivation to climb over a partition to approach the social stimulus while the stressed saline-pretreated rats showed an increased motivation to approach the social stimulus. When an aversive stimulus (pins) was introduced in order to induce an approach-avoidance conflict, both drug-withdrawn and drug-naïve groups exhibited a bimodal distribution of approach behavior towards the sexual stimulus after the stress was introduced, i.e., the majority of rats had low risky appetitive behaviors but a minority of them showed rather highly "risky" approach behavior. The acute stress induces differential motivational deficits for social and sexual rewards in protracted drug-abstinent rats.
The Effect of DA-9701 in Opioid-induced Bowel Dysfunction of Guinea Pig.
Hussain, Zahid; Rhee, Kwang Won; Lee, Young Ju; Park, Hyojin
2016-07-30
Opioid induced bowel dysfunction (OIBD) is associated with decreased gastrointestinal (GI) propulsive activity due to intake of opioid analgesics. DA-9701, a novel prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber has promising effects on GI motor function. Therefore, we aim to evaluate the prokinetic effects of DA-9701 in an OIBD model of guinea pig. The ileal and distal colon muscle contraction in presence of different doses of DA-9701, morphine, and combination (morphine + DA-9701) was measured by tissue bath study. The prokinetic effect of DA-9701 was assessed by charcoal transit and fecal pellet output assay in an OIBD model of guinea pig. DA-9701 significantly increased the amplitude and area under the curve of ileal muscle contraction, while there was insignificant effect on the distal colon compared to the control. The maximal amplitude of ileal muscle contraction was acquired at a concentration of 10 μg/mL of DA-9701. In contrast, morphine significantly decreased the amplitude of ileal and distal colon muscle contraction compared to the control. Morphine delayed both upper (P < 0.01) and lower (P < 0.05) GI transit, and delayed GI transit was restored by the administration of DA-9701. Morphine induced reduction of contractility was significantly ameliorated by addition of DA-9701 in both ileal and distal colon muscles. DA-9701 significantly increased the amplitude of contraction of the ileal muscle, however the distal colon muscle contraction was insignificant. Additionally, it restored delayed upper and lower GI transit in an OIBD model of guinea pig, and it might prove to be a useful candidate drug in a clinical trial for OIBD.
Huang, Eagle Yi-Kung; Chen, Yuan-Hao; Huang, Tzu-Ying; Chen, Ying-Jie; Chow, Lok-Hi
2016-10-01
LVV-hemorphin 7 (LVVYPWTQRF; LVV-H7), an N-terminal fragment of the β-chain of hemoglobin cleaved by cathepsin D/pepsin, is an atypical endogenous opioid peptide that is found in high concentration in blood. LVV-H7 acts as a μ-opioid agonist and an inhibitor of insulin-regulated aminopeptidase. Subchronic administration of anabolic androgenic steroids (AAS) has been clinically proven to induce the synthesis of erythrocytes and increase hemoglobin concentrations. Patients with a history of AAS abuse are more susceptible to opioid abuse. We hypothesized that this association could be at least partially attributed to the sensitization of the mesocorticolimbic dopaminergic pathway by LVV-H7. Using the conditioned place preference test and neurochemical analysis, we investigated the possible mechanism underlying the effect of chronic nandrolone administration on morphine-induced reward and its correlation with LVV-H7 in rats. Either LVV-H7 may not sensitize the rewarding neural circuits or its inhibition on locomotor activity could mask reward-related behaviors. Chronic nandrolone pretreatment indeed caused a significant reward by low dose morphine, which did not cause any reward in control rats. However, coadministration of anti-LVV-H7 antiserum with nandrolone did not block this effect. This may rule out the possibility of the involvement of LVV-H7 in the action of nandrolone to intensify morphine-induced reward. Moreover, the serum level of LVV-H7 was mildly increased in response to chronic nandrolone administration in our animal model. According to the current clinical observations, we may conclude that the chronic administration of nandrolone can increase susceptibility to morphine dependence, but that this effect is not related to elevated LVV-H7. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matton, A.; Engelborghs, S.; Bollengier, F.; Finné, E.; Vanhaeist, L.
1996-01-01
1. The effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin (PRL) secretion was investigated in vivo in male rats, by use of a stress-free blood sampling and drug administration method by means of a permanent indwelling catheter in the right jugular vein. 2. Four doses of piracetam were tested (20, 100, 200 and 400 mg kg-1), being given intraperitoneally 1 h before blood sampling; control rats received saline instead. After a first blood sample, rats were subjected to immobilization stress and received morphine, 6 mg kg-1, 90 min later. 3. Piracetam had no effect on basal plasma PRL concentration. 4. While in the non-piracetam-treated rats, stress produced a significant rise in plasma PRL concentration, in the piracetam-pretreated rats PRL peaks were attenuated, especially in the group given 100 mg kg-1 piracetam, where plasma PRL concentration was not significantly different from basal values. The dose-response relationship showed a U-shaped curve; the smallest dose had a minor inhibitory effect and the highest dose had no further effect on the PRL rise. 5. In unrestrained rats, morphine led to a significant elevation of plasma PRL concentration. After the application of immobilization stress it lost its ability to raise plasma PRL concentration in the control rats, but not in the piracetam-treated rats. This tolerance was overcome by piracetam in a significant manner but with a reversed dose-response curve; i.e. the smaller the dose of piracetam, the higher the subsequent morphine-induced PRL peak. 6. There is no simple explanation for the mechanism by which piracetam induces these contradictory effects. Interference with the excitatory amino acid system, which is also involved in opiate action, is proposed speculatively as a possible mediator of the effects of piracetam. PMID:8821540
Niu, Haichen; Zheng, Yingwei; Huma, Tanzeel; Rizak, Joshua D; Li, Ling; Wang, Guimei; Ren, He; Xu, Liqi; Yang, Jianzhen; Ma, Yuanye; Lei, Hao
2013-01-01
Previous studies have shown that olfactory impairment by disrupting the olfactory epithelium prior to morphine administration attenuated the development addiction-related behaviors. However, it is unclear whether olfactory impairment will affect the expression of already established addiction-related behaviors. To address this issue, mice were conditioned with morphine to induce behavioral sensitization and condition placed preference (CPP). After an abstinence period, the animals were subjected to either an intranasal ZnSO(4) effusion (ZnE) or sham treatment with saline. Behavioral sensitization and CPP reinstatement were evaluated 24h later, as well as the expression of c-Fos protein, a marker of activated neural sites, in brain regions of interest. It was found that ZnE treatment attenuated morphine-induced behavioral sensitization and reinstatement of CPP. Compared to the saline-treated ones, the ZnE-treated animals showed reduced c-Fos expression in the nucleus accumbens (NAc) associated with behavioral sensitization, and in the NAc, cingulate cortex, dentate gyrus, amygdala, lateral hypothalamus and ventral tegmental area associated with CPP reinstatement. Together, these results demonstrated that acute olfactory impairment could attenuate already established addiction-related behaviors and expression of c-Fos in drug addiction related brain regions, perhaps by affecting the coordination between reward and motivational systems in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.
Athanasos, Peter; Ling, Walter; Bochner, Felix; White, Jason M; Somogyi, Andrew A
2018-03-05
Acute pain management in opioid-dependent persons is complicated because of tolerance and opioid-induced hyperalgesia. Very high doses of morphine are ineffective in overcoming opioid-induced hyperalgesia and providing antinociception to methadone-maintained patients in an experimental setting. Whether the same occurs in buprenorphine-maintained subjects is unknown. Randomized double-blind placebo-controlled. Subjects were tested on two occasions, at least five days apart, once with intravenous morphine and once with intravenous saline. Subjects were tested at about the time of putative trough plasma buprenorphine concentrations. Ambulatory. Twelve buprenorphine-maintained subjects: once daily sublingual dose (range = 2-22 mg); no dose change for 1.5-12 months. Ten healthy controls. Intravenous morphine bolus and infusions administered over two hours to achieve two separate pseudo-steady-state plasma concentrations one hour apart. Pain tolerance was assessed by application of nociceptive stimuli (cold pressor [seconds] and electrical stimulation [volts]). Ten blood samples were collected for assay of plasma morphine, buprenorphine, and norbuprenorphine concentrations until three hours after the end of the last infusion; pain tolerance and respiration rate were measured to coincide with blood sampling times. Cold pressor responses (seconds): baseline: control 34 ± 6 vs buprenorphine 17 ± 2 (P = 0.009); morphine infusion-end: control 52 ± 11(P = 0.04), buprenorphine 17 ± 2 (P > 0.5); electrical stimulation responses (volts): baseline: control 65 ± 6 vs buprenorphine 53 ± 5 (P = 0.13); infusion-end: control 74 ± 5 (P = 0.007), buprenorphine 53 ± 5 (P > 0.98). Respiratory rate (breaths per minute): baseline: control 17 vs buprenorphine 14 (P = 0.03); infusion-end: control 15 (P = 0.09), buprenorphine 12 (P < 0.01). Infusion-end plasma morphine concentrations (ng/mL): control 23 ± 1, buprenorphine 136 ± 10. Buprenorphine subjects, compared with controls, were hyperalgesic (cold pressor test), did not experience antinociception, despite high plasma morphine concentrations, and experienced respiratory depression. Clinical implications are discussed.
Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor
Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E
2015-01-01
BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24697554
Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor.
Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E
2015-01-01
Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.
Effect of Bacopasides on acquisition and expression of morphine tolerance.
Rauf, Khalid; Subhan, Fazal; Abbas, Muzaffar; Badshah, Amir; Ullah, Ihsan; Ullah, Sami
2011-07-15
Opioids are extensively used for the management of both chronic malignant and non malignant pains. One major serious limitation associated with chronic use of opioids is the development of tolerance to its analgesic effect. The effect of Bacopa monnieri, a renowned ayurvedic medicine for acquisition and expression of morphine tolerance in mice, was investigated. Bacopa monnieri, n-Butanol fraction was analyzed on High performance liquid chromatography (HPLC), for Bacopaside A major components i.e. Bacoside A(3), Bacopaside ll and Bacosaponin C. Antinociceptive effect of n-Butanol extract of Bacopa monnieri (n Bt-ext BM) (5, 10 and 15 mg/kg) was assessed on hot plate. Effect of different doses of n Bt-ext BM on morphine antinociception was also assessed. n Bt-ext BM was also screened for development of tolerance to antinociceptive effect of Bacopa monnieri by administering 15 mg/kg n Bt-ext BM for seven days. Tolerance to morphine analgesia was induced in mice by administering intraperitoneally (I.P.) 20 mg/kg morphine twice daily for five days. Acute and Chronic administration of 5, 10 and 15 mg/kg n Bt-ext BM significantly reduced both expression and development of tolerance to morphine analgesia in mice. Additionally, Bacopa monnieri was found to enhance antinociceptive effect of morphine in intolerant animals. However, no tolerance to Bacopa monnieri antinociceptive effect was observed in seven days treatment schedule. These findings indicate effectiveness of Bacopa monnieri for management of morphine tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.
Altier, N; Stewart, J
1998-04-01
In the present study, we examined the effects of dopamine (DA) receptor antagonists infused into the nucleus accumbens septi (NAS) on analgesia induced by intra-ventral tegmental area (VTA) infusions of the substance P (SP) analog, DiMe-C7 or morphine and intra-NAS infusions of amphetamine. Rats received intra-NAS infusions of either the mixed DA receptor antagonist flupenthixol (1.5 or 3.0 microg/0.5 microl/side; DiMe-C7 only), the DA D1/D5 receptor antagonist SCH 23390 (0.1 microg/0.5 microl/side; DiMe-C7 only) or the DA D2-type receptor antagonist raclopride (1.0, 3.0 or 5.0 microg/0.5 microl/side). Ten minutes later, rats received intra-VTA infusions of DiMe-C7 (3.0 microg/0.5 microl/side) or morphine (3.0 microg/0.5 microl/side) or intra-NAS infusions of amphetamine (2.5 microg/0.5 microl/side). Animals were then administered the formalin test for tonic pain. Intra-NAS raclopride prevented analgesia induced by intra-VTA DiMe-C7, intra-VTA morphine and intra-NAS amphetamine. Similarly, intra-NAS flupenthixol or SCH 23390 attenuated the analgesia induced by intra-VTA DiMe-C7. These findings suggest that tonic pain is inhibited, at least in part, by enhanced DA released from terminals of mesolimbic neurons. Furthermore, the evidence that SP and opioids in the VTA mediate stress-induced analgesia suggests that the pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, pain or both.
Rangel, Marisa; Martins, Joyce C G; Garcia, Angélica Nunes; Conserva, Geanne A A; Costa-Neves, Adriana; Sant'Anna, Célia Leite; de Carvalho, Luciana Retz
2014-01-22
Cyanobacteria are common members of the freshwater microbiota in lakes and drinking water reservoirs, and are responsible for several cases of human intoxications in Brazil. Pseudanabaena galeata and Geitlerinema splendidum are examples of the toxic species that are very frequently found in reservoirs in Sao Paulo, which is the most densely populated area in Brazil. In the search for toxic strains collected from water reservoirs and maintained in the Cyanobacterial Culture Collection (CCIBt) of the Institute of Botany of Brazil, the acetic acid extracts (AE) of P. galeata CCIBt 3082 and G. splendidum CCIBt 3223 were analyzed by planar chromatography, which indicated the absence of cyanotoxins. Animal tests were then carried out, and both extracts were found to induce toxic effects in mice when administered intraperitoneally. The present study aimed to investigate whether the oral ingestion of the above mentioned cyanobacteria extracts would also induce toxic effects in mice. Necropsy and histopathological studies were conducted using tissue samples from the animals, which were euthanized one week after the administration of the extracts. The AE of P. galeata did not cause death but did induce transient symptoms, including eyebrow ptosis, straub tail, and pain. The euthanized animals presented hemorrhage in the liver, whereas the histological analysis showed disorganization of the hepatic parenchyma, necrosis, hyperemia, and proximity of the centrilobular vein in the liver. In addition, alterations in the convoluted tubules of the kidneys were observed, and the lungs were unaffected. The AE of G. splendidum caused only one death, and induced transient symptoms, such as dyspnea, paralysis, and pain, in the other mice. The necropsy of the euthanized mice showed hemorrhage in the lungs and liver. The lungs presented hemorrhagic focuses, alveolar collapse, and granulomatous foci. The liver presented hemorrhagic and enlarged sinusoids, hyperemia, proximity of the centrilobular vein, and disorganization of the hepatic parenchyma. Some areas also exhibited an inflammatory infiltrate and calcified tissue inside blood vessels. Necrosis and rupture of the convoluted tubule cells were observed in the kidneys. Further analysis of the both extracts indicated the lack of hemolytic activity, and the presence of two unknown anti-AChE substances in the AE of G. splendidum. Thus, P. galeata and G. splendidum are producers of novel toxins that affect mammals when administered orally.
Rangel, Marisa; Martins, Joyce C. G.; Garcia, Angélica Nunes; Conserva, Geanne A. A.; Costa-Neves, Adriana; Sant’Anna, Célia Leite; de Carvalho, Luciana Retz
2014-01-01
Cyanobacteria are common members of the freshwater microbiota in lakes and drinking water reservoirs, and are responsible for several cases of human intoxications in Brazil. Pseudanabaena galeata and Geitlerinema splendidum are examples of the toxic species that are very frequently found in reservoirs in Sao Paulo, which is the most densely populated area in Brazil. In the search for toxic strains collected from water reservoirs and maintained in the Cyanobacterial Culture Collection (CCIBt) of the Institute of Botany of Brazil, the acetic acid extracts (AE) of P. galeata CCIBt 3082 and G. splendidum CCIBt 3223 were analyzed by planar chromatography, which indicated the absence of cyanotoxins. Animal tests were then carried out, and both extracts were found to induce toxic effects in mice when administered intraperitoneally. The present study aimed to investigate whether the oral ingestion of the above mentioned cyanobacteria extracts would also induce toxic effects in mice. Necropsy and histopathological studies were conducted using tissue samples from the animals, which were euthanized one week after the administration of the extracts. The AE of P. galeata did not cause death but did induce transient symptoms, including eyebrow ptosis, straub tail, and pain. The euthanized animals presented hemorrhage in the liver, whereas the histological analysis showed disorganization of the hepatic parenchyma, necrosis, hyperemia, and proximity of the centrilobular vein in the liver. In addition, alterations in the convoluted tubules of the kidneys were observed, and the lungs were unaffected. The AE of G. splendidum caused only one death, and induced transient symptoms, such as dyspnea, paralysis, and pain, in the other mice. The necropsy of the euthanized mice showed hemorrhage in the lungs and liver. The lungs presented hemorrhagic focuses, alveolar collapse, and granulomatous foci. The liver presented hemorrhagic and enlarged sinusoids, hyperemia, proximity of the centrilobular vein, and disorganization of the hepatic parenchyma. Some areas also exhibited an inflammatory infiltrate and calcified tissue inside blood vessels. Necrosis and rupture of the convoluted tubule cells were observed in the kidneys. Further analysis of the both extracts indicated the lack of hemolytic activity, and the presence of two unknown anti-AChE substances in the AE of G. splendidum. Thus, P. galeata and G. splendidum are producers of novel toxins that affect mammals when administered orally. PMID:24451192
Gall, O; Bouhassira, D; Chitour, D; Le Bars, D
1999-04-01
Stimulus intensity is a major determinant of the antinociceptive activity of opiates. This study focused on the influence of the spatial characteristics of nociceptive stimuli, on opiate-induced depressions of nociceptive transmission at the level of the spinal cord. Anesthetized rats were prepared to allow extracellular recordings to be made from convergent neurons in the lumbar dorsal horn. The effects of systemic morphine (1 and 10 mg/kg) were compared with those of saline for thermal stimuli of constant intensity, applied to the area of skin surrounding the excitatory receptive field (1.9 cm2) or to a much larger adjacent area (18 cm2). The responses (mean +/- SD) elicited by the 1.9-cm2 stimulus were not modified by 1 mg/kg intravenous morphine, although they were decreased by the 10-mg/kg dose (to 11+/-4% of control values compared with saline; P < 0.05). In contrast, when the 18-cm2 stimulus was applied, 1 mg/kg intravenous morphine produced a paradoxical facilitation of the neuronal responses (159+/-36% of control values; P < 0.05) and 10 mg/kg intravenous morphine resulted in a weaker depression of the responses (to 42+/-24% of control values; P < 0.05) than was observed with the smaller stimulus. Doses of systemic morphine in the analgesic range for rats had dual effects on nociceptive transmission at the level of the spinal cord, depending on the surface area that was stimulated. Such effects are difficult to explain in terms of accepted pharmacodynamic concepts and may reflect an opioid-induced depression of descending inhibitory influences triggered by spatial summation.
Influence of fentanyl and morphine on intestinal circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tverskoy, M.; Gelman, S.; Fowler, K.C.
The influence of fentanyl and morphine on the intestinal circulation was evaluated in an isolated loop preparation in 37 dogs anesthetized with pentobarbital intravenously. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mm Hg. A mixture of /sup 86/Rb and 9-micron spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A strong correlation was found between the clearances of rubidium and microspheres (r = 0.97, P less than 0.0001), suggesting that the shunting of 9-micron spheres through the intestinesmore » reflects the shunting of blood through nonnutritive vessels. Intravenous fentanyl decreased oxygen uptake (O/sub 2/up), and vascular resistance (VR), and increased blood flow (BF), rubidium and microsphere clearances (Cl-Rb, Cl-Sph, respectively), and permeability--surface area product (PS) in a dose-related fashion. Intravenous morphine in a dose of 1 mg X kg-1 increased Cl-Rb (nutritive BF) without changes in total (nutritive and nonnutritive) BF. This increase in nutritive BF is probably related to morphine-induced histamine release. Morphine in a dose of 5 mg X kg-1 was accompanied by vasoconstriction that was completely abolished by alpha-adrenoceptor blockade. The data suggest that morphine-induced intestinal vasoconstriction is mediated via a release of epinephrine, apparently from the adrenal medulla. It is concluded that changes in the intestinal circulation during anesthesia with narcotics might play a certain role in the cardiovascular homeostasis during anesthesia and surgery. An increase in oxygen content in portal venous blood, resulting from a decrease in intestinal oxygen uptake, should facilitate hepatic oxygenation.« less
Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata S R; Ding, Hong; Arias, Adriana Y; Jayant, Rahul D; Kaushik, Ajeet; Nair, Madhavan
2015-10-01
Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients.
Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata S. R.; Ding, Hong; Arias, Adriana Y.; Jayant, Rahul D.; Kaushik, Ajeet; Nair, Madhavan
2015-01-01
Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients. PMID:26502636
Wang, Shuxing; Lim, Grewo; Yang, Liling; Zeng, Qing; Sung, Backil; Jeevendra Martyn, J A; Mao, Jianren
2005-07-01
Management of pain after burn injury is an unresolved clinical issue. In a rat model of hindpaw burn injury, we examined the effects of systemic morphine on nociceptive behaviors following injury. Injury was induced by immersing the dorsal part of one hindpaw into a hot water bath (85 degrees C) for 4, 7, or 12 s under pentobarbital anesthesia. Mechanical allodynia to von Frey filament stimulation and thermal hyperalgesia to radiant heat were assessed. Burn injury induced by the 12-s (but not 4-, or 7-s) hot water immersion resulted in reliable and lasting mechanical allodynia and thermal hyperalgesia evident by day 1. In addition, there was an upregulation of protein kinase Cgamma and a progressive downregulation of mu-opioid receptors within the spinal cord dorsal horn ipsilateral to injury as revealed by immunohistochemistry and Western blot. In both injured and sham rats, the anti-nociceptive effects of subcutaneous morphine were examined on post-injury days 7 and 14. While the morphine AD50 dose was comparable on day 7 between burn (1.61 mg/kg) and control (1.7 mg/kg) rats, the morphine dose-response curve was shifted to the right in burn-injured rats (4.6 mg/kg) on post-injury day 14 as compared with both the injured rats on post-injury day 7 and sham rats on day 14 (1.72 mg/kg). These data indicate that hindpaw burn injury reliably produces persistent mechanical allodynia and thermal hyperalgesia and that the reduced efficacy of morphine anti-nociception in chronic burn injury may be in part due to a downregulation of spinal mu-opioid receptors.
Sakurada, Tsukasa; Mizoguchi, Hirokazu; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu
2011-01-01
This study investigated the effect of bergamot essential oil (BEO) containing linalool and linalyl acetate as major volatile components in the capsaicin test. The intraplantar injection of capsaicin (1.6 μg) produced a short-lived licking/biting response toward the injected paw. The nociceptive behavioral response evoked by capsaicin was inhibited dose-dependently by intraplantar injection of BEO. Both linalool and linalyl acetate, injected into the hindpaw, showed a significant reduction of nociceptive response, which was much more potent than BEO. Intraperitoneal (i.p.) and intraplantar pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly reversed BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting μ-opioid receptor preferring antagonist, resulted in a significant antagonizing effect on antinociception induced by BEO and linalool. Antinociception induced by i.p. or intrathecal morphine was enhanced by the combined injection of BEO or linalool. The enhanced effect of combination of BEO or linalool with morphine was antagonized by pretreatment with naloxone hydrochloride. Our results provide evidence for the involvement of peripheral opioids, in the antinociception induced by BEO and linalool. Combined administration of BEO or linalool acting at the peripheral site, and morphine may be a promising approach in the treatment of clinical pain. Copyright © 2010 Elsevier Inc. All rights reserved.
PHARMACOLOGIC TREATMENT OF HYPERALGESIA EXPERIMENTALLY INDUCED BY NUCLEUS PULPOSUS
de Souza Grava, André Luiz; Ferrari, Luiz Fernando; Parada, Carlos Amílcar; Defino, Helton Luiz Aparecido
2015-01-01
Objective: To evaluate the effect of anti-inflammatory drugs (dexamethasone, indomethacin, atenolol and indomethacin plus atenolol) and analgesic drugs (morphine) on hyperalgesia experimentally induced by the nucleus pulposus (NP) in contact with the L5 dorsal root ganglion (DRG). Methods: Thirty male Wistar rats of weights ranging from 220 to 250 g were used in the study. Hyperalgesia was induced by means of a fragment of NP removed from the sacrococcygeal region that was placed in contact with the L5 dorsal root ganglion. The 30 animals were divided into experimental groups according to the drug used. The drugs were administered for two weeks after the surgical procedure to induce hyperalgesia. Mechanical and thermal hyperalgesia was evaluated using the paw pressure test, von Frey electronic test and Hargreaves test, over a seven-week period. Results: The greatest reduction of hyperalgesia was observed in the group of animals treated with morphine, followed by dexamethasone, indomethacin and atenolol. Reductions in hyperalgesia were observed after drug administration ceased, except for the group of animals treated with morphine, in which there was an increase in hyperalgesia after discontinuation of the treatment. Conclusion: Hyperalgesia induced by NP contact with the DRG can be reduced through administration of anti-inflammatory and analgesic drugs, but a greater reduction was observed with the administration of dexamethasone. PMID:27026966
Dalton, George D; Smith, Forrest L; Smith, Paul A; Dewey, William L
2005-04-01
Two peptide fragments of native Protein Kinase A inhibitor (PKI), PKI-(6-22)-amide and PKI-(Myr-14-22)-amide, significantly reversed low-level morphine antinociceptive tolerance in mice. The inhibition of Protein Kinase A (PKA) activity by both peptide fragments was then measured in specific brain regions (thalamus, periaqueductal gray (PAG), and medulla) and in lumbar spinal cord (LSC), which in previous studies have been shown to play a role in morphine-induced analgesia. In drug naive animals, cytosolic PKA activity was greater than particulate PKA activity in each region, while cytosolic and particulate PKA activities were greater in thalamus and PAG compared to medulla and LSC. The addition of both peptides to homogenates from each region completely abolished cytosolic and particulate PKA activities in vitro. Following injection into the lateral ventricle of the brain of drug naive mice and morphine-tolerant mice, both peptides inhibited PKA activity in the cytosolic, but not the particulate fraction of LSC. In addition, cytosolic and particulate PKA activities were inhibited by both peptides in thalamus. These results demonstrate that the inhibition of PKA reverses morphine tolerance. Moreover, the inhibition of PKA activity in specific brain regions and LSC from morphine-tolerant mice by PKI analogs administered i.c.v. is evidence that PKA plays a role in morphine tolerance.
Kesavan, Kalpashri; Ezell, Tarrah; Bierman, Alexis; Nunes, Ana Rita; Northington, Frances J; Tankersley, Clarke G; Gauda, Estelle B
2014-09-15
Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 min after intraperitoneal (IP) administration of morphine (2, 10 or 20 mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia. Copyright © 2014 Elsevier B.V. All rights reserved.
BREATHING AND TEMPERATURE CONTROL DISRUPTED BY MORPHINE AND STABILIZED BY CLONIDINE IN NEONATAL RATS
Kesavan, Kalpashri; Ezell, Tarrah; Bierman, Alexis; Nunes, Ana Rita; Northington, Frances J.; Tankersley, Clarke G.; Gauda, Estelle B.
2014-01-01
Background Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. Methods Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 minutes after intraperitoneal (IP) administration of morphine (2, 10 or 20mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. Results Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). Conclusion In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia. PMID:25008573
RICE, ONARAE V.; GARDNER, ELIOT L.; HEIDBREDER, CHRISTIAN A.; ASHBY, CHARLES R.
2014-01-01
We examined the effect of SB-277011A, a selective D3 receptor antagonist, on the conditioned place aversion (CPA) response associated with naloxone-induced withdrawal from acute morphine administration in male Sprague-Dawley rats. Morphine (5.6 mg/kg i.p.) was given, followed 4 hrs later by naloxone (0.3 mg/kg i.p.) and prior to placing the animals in one specific chamber of the test apparatus. All animals were subjected to 2 of these trials. A significant CPA occurred in animals that received an i.p. injection of vehicle 30 minutes prior to the measurement of chamber preference. The pretreatment of animals (30 minutes prior to testing) with 3 mg/kg i.p. of SB-277011A did not significantly alter the CPA compared to animals treated with vehicle (1 ml/kg i.p. of deionized distilled water). In contrast, the acute pretreatment of animals with 6, 12 or 24 mg/kg i.p. of SB-277011A significantly decreased the CPA compared to vehicle-treated animals. In fact, the 12 and 24 mg/kg doses of SB-277011A significantly increased the time spent in the chamber where animals were paired with morphine and naloxone. These results suggest that the selective antagonism of D3 receptors attenuates the CPA produced by a model of naloxone-induced withdrawal from acute morphine dependence. PMID:21905128
Hypoxic ventilatory response in Tac1-/- neonatal mice following exposure to opioids.
Berner, J; Shvarev, Y; Zimmer, A; Wickstrom, R
2012-12-01
Morphine is the dominating analgetic drug used in neonates, but opioid-induced respiratory depression limits its therapeutic use. In this study, we examined acute morphine effects on respiration during intermittent hypoxia in newborn Tac1 gene knockout mice (Tac1-/-) lacking substance P and neurokinin A. In vivo, plethysmography revealed a blunted hypoxic ventilatory response (HVR) in Tac1-/- mice. Morphine (10 mg/kg) depressed the HVR in wild-type animals through an effect on respiratory frequency, whereas it increased tidal volumes in Tac1-/- during hypoxia, resulting in increased minute ventilation. Apneas were reduced during the first hypoxic episode in both morphine-exposed groups, but were restored subsequently in Tac1-/- mice. Morphine did not affect ventilation or apnea prevalence during baseline conditions. In vitro, morphine (50 nM) had no impact on anoxic response of brain stem preparations of either strain. In contrast, it suppressed the inspiratory rhythm during normoxia and potentiated development of posthypoxic neuronal arrest, especially in Tac1-/-. Thus this phenotype has a higher sensitivity to the depressive effects of morphine on inspiratory rhythm generation, but morphine does not modify the reactivity to oxygen deprivation. In conclusion, although Tac1-/- mice are similar to wild-type animals during normoxia, they differed by displaying a reversed pattern with an improved HVR during intermittent hypoxia both in vivo and in vitro. These data suggest that opioids and the substance P-ergic system interact in the HVR, and that reducing the activity in the tachykinin system may alter the respiratory effects of opioid treatment in newborns.
Chittal, S. M.; Dadkar, N. K.; Gaitondé, B. B.
1968-01-01
1. The effects of 5-hydroxytryptamine (5-HT) and morphine on the responses to acetylcholine and nicotine of isolated rabbit atria were studied. 2. 5-Hydroxytryptamine (10 μg/ml.) and morphine (20 μg/ml.) blocked the negative chronotropic and inotropic actions of acetylcholine. 3. Nicotine (20 μg/ml.) produced stimulation of the atria, which was blocked by dichlorisoprenaline, morphine, 5-HT, bretylium and hemicholinium. Hemicholinium block was reversed by choline. 4. In reserpinized preparations, nicotine produced inhibition of atria and this action was also blocked by atropine, 5-HT and morphine. Inhibition induced by nicotine was potentiated by physostigmine. 5. 5-Hydroxytryptamine (20 μg/ml.) produced stimulation of atria. This was blocked by bretylium and reduced by hemicholinium. Hemicholinium block was reversed by choline. 6. It is concluded that 5-HT in low concentrations acts as a weak agonist at the cholinoceptive receptors and therefore blocks the action of acetylcholine. Furthermore, nicotine and larger doses of 5-HT have actions on ganglionic structures and liberate acetylcholine, which in turn releases catecholamines. PMID:4386371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinova, M.M.; Graevskii, E.J.
1960-07-21
The protective mechanism of adrenalin heroin, and - morphine on white mice 12 to 18 weeks old, and weighing 18 to 23 g was analyzed in order to determine the protection action of neurotropical substances in relation to their ability to reduce oxygen in tissues. Parallel studies were made of the time factor influence. The results indicate that the investigated substances are capable of reducing the level of oxygen in tissue, and particularly in the spleen. The reduction and restoration of the oxygen content correspond in general to the reduction and increase of mortality. Data confirm that the protective effectsmore » of adrenalin, heroin, and morphine are the result of their ability to produce hypoxia in radiosensitive organs. The hypoxia is induced by the adrenalin pressure effect and by morphine and heroin depression of respiratory centers. (R.V.J.)« less
Gadeyne, C; Van der Heyden, S; Gasthuys, F; Croubels, S; Schauvliege, S; Polis, I
2011-10-01
The influence of pretreatment with ketoconazole [cytochrome P450 3A (CYP3A) + P-glycoprotein (P-gp) inhibitor], elacridar (selective P-gp inhibitor) and rifampicin (CYP3A + P-gp inducer) on oral morphine pharmacokinetics and pharmacodynamics was investigated in experimental dogs. Seven beagles were used in a four-way crossover design. Morphine hydrochloride was administered orally (2.5 mg/kg) alone (control group CON) or after pretreatment with ketoconazole (group KETO), elacridar (group ELA) or rifampicin (group RIF). Morphine plasma concentrations were analysed by liquid chromatography-tandem mass spectrometry. Sedation scores (none, mild, moderate or severe) were evaluated subjectively. Dogs were significantly (P < 0.05) more sedated after ketoconazole pretreatment. There were no significant differences between group CON and the other pretreatment groups in pharmacokinetic parameters taking both sexes into account. Sex differences were apparent in some pharmacokinetic parameters of morphine. The area under the plasma concentration time curve (AUC(0-∞) ) was significantly higher, and the total body clearance was significantly lower in male compared to female dogs in all treatment groups. Ketoconazole, rifampicin and elacridar pretreatment had no significant effects on morphine pharmacokinetics, although dogs in the ketoconazole group showed higher sedation scores. © 2011 Blackwell Publishing Ltd.
Yadlapalli, Jai Shankar K; Dogra, Navdeep; Walbaum, Anqi W; Wessinger, William D; Prather, Paul L; Crooks, Peter A; Dobretsov, Maxim
2017-09-01
Morphine-6-O-sulfate (M6S) is a mixed μ/δ-opioid receptor (OR) agonist and potential alternative to morphine for treatment of chronic multimodal pain. To provide more support for this hypothesis, the antinociceptive effects of M6S and morphine were compared in tests that access a range of pain modalities, including hot plate threshold (HPT), pinprick sensitivity threshold (PST) and paw pressure threshold tests. Acutely, M6S was 2- to 3-fold more potent than morphine in HPT and PST tests, specifically, derived from best-fit analysis of dose-response relationships of morphine/M6S half-effective dose (ED50) ratios (lower, upper 95% confidence interval [CI]) were 2.8 (2.0-5.8) in HPT and 2.2 (2.1, 2.4) in PST tests. No differences in analgesic drug potencies were detected in the PPT test (morphine/M6S ED50 ratio 1.2 (95% CI, 0.8-1.4). After 7 to 9 days of chronic treatment, tolerance developed to the antinociceptive effects of morphine, but not to M6S, in all 3 pain tests. Morphine-tolerant rats were not crosstolerant to M6S. The antinociceptive effects of M6S were not sensitive to κ-OR antagonists. However, the δ-OR antagonist, naltrindole, blocked M6S-induced antinociception by 55% ± 4% (95% CI, 39-75) in the HPT test, 94% ± 4% (95% CI, 84-105) in the PST test, and 5% ± 17% (95% CI, -47 to 59) or 51% ± 14% (95% CI, 14-84; 6 rats per each group) in the paw pressure threshold test when examined acutely or after 7 days of chronic treatment, respectively. Activity via δ-ORs thus appears to be an important determinant of M6S action. M6S also exhibited favorable antinociceptive and tolerance profiles compared with morphine in 3 different antinociceptive assays, indicating that M6S may serve as a useful alternative for rotation in morphine-tolerant subjects.
Madaan, Reecha; Kumar, S.
2012-01-01
Conium maculatum Linn. (Umbelliferae) has been traditionally used in the treatment of spasmodic disorders, and to relieve nervous excitation, rheumatic pains in the old and feeble, pain in stomach, pain of gastric ulcer, nervousness and restlessness. Alkaloids have long been considered as bioactive group of constituents present in C. maculatum. Despite a long tradition of use, C. maculatum has not been evaluated pharmacologically to validate its traditional claims for analgesic and antiinflammatory activities. Thus, the present investigations were undertaken with an objective to evaluate alkaloidal fraction of C. maculatum aerial parts for analgesic and antiinflammatory activities. Test doses (100 or 200 mg/kg, p.o.) of alkaloidal fraction were evaluated for analgesic activity using tail flick test and antiinflammatory activity using carrageenan-induced paw oedema test in rats. Morphine (5 mg/kg, p.o.) and indomethacin (5 mg/kg, p.o.) were used as standard analgesic and antiinflammatory drugs, respectively. Alkaloidal fraction of the plant exhibited significant analgesic activity at a dose of 200 mg/kg as it showed significant increase in tail flicking reaction time with respect to the control during 2 h intervals of observation. It also exhibited significant antiinflammatory activity at a dose of 200 mg/kg as it inhibited paw oedema in rats to 71% and reduced the paw volume one-fourth to the control during 1st h of the study. The present investigations suggest that alkaloids are responsible for analgesic and antiinflammatory activities of C. maculatum. PMID:23716876
Madaan, Reecha; Kumar, S
2012-09-01
Conium maculatum Linn. (Umbelliferae) has been traditionally used in the treatment of spasmodic disorders, and to relieve nervous excitation, rheumatic pains in the old and feeble, pain in stomach, pain of gastric ulcer, nervousness and restlessness. Alkaloids have long been considered as bioactive group of constituents present in C. maculatum. Despite a long tradition of use, C. maculatum has not been evaluated pharmacologically to validate its traditional claims for analgesic and antiinflammatory activities. Thus, the present investigations were undertaken with an objective to evaluate alkaloidal fraction of C. maculatum aerial parts for analgesic and antiinflammatory activities. Test doses (100 or 200 mg/kg, p.o.) of alkaloidal fraction were evaluated for analgesic activity using tail flick test and antiinflammatory activity using carrageenan-induced paw oedema test in rats. Morphine (5 mg/kg, p.o.) and indomethacin (5 mg/kg, p.o.) were used as standard analgesic and antiinflammatory drugs, respectively. Alkaloidal fraction of the plant exhibited significant analgesic activity at a dose of 200 mg/kg as it showed significant increase in tail flicking reaction time with respect to the control during 2 h intervals of observation. It also exhibited significant antiinflammatory activity at a dose of 200 mg/kg as it inhibited paw oedema in rats to 71% and reduced the paw volume one-fourth to the control during 1(st) h of the study. The present investigations suggest that alkaloids are responsible for analgesic and antiinflammatory activities of C. maculatum.
Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors
2016-07-01
treat, and current opioids (i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered...treat, and current opioids that act on mu opioid receptors such as morphine generate significant side effects including addiction . War-related...slides. Slides were then processed for fluorescent in situ hybridization with RNAscope technology (ACD Biosystems) to detect Oprd1 mRNA, as described
An essential role for DeltaFosB in the nucleus accumbens in morphine action.
Zachariou, Venetia; Bolanos, Carlos A; Selley, Dana E; Theobald, David; Cassidy, Michael P; Kelz, Max B; Shaw-Lutchman, Tamara; Berton, Olivier; Sim-Selley, Laura J; Dileone, Ralph J; Kumar, Arvind; Nestler, Eric J
2006-02-01
The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) and dorsal striatum by the repeated administration of drugs of abuse. Here, we investigated the role of DeltaFosB in the NAc in behavioral responses to opiates. We achieved overexpression of DeltaFosB by using a bitransgenic mouse line that inducibly expresses the protein in the NAc and dorsal striatum and by using viral-mediated gene transfer to specifically express the protein in the NAc. DeltaFosB overexpression in the NAc increased the sensitivity of the mice to the rewarding effects of morphine and led to exacerbated physical dependence, but also reduced their sensitivity to the analgesic effects of morphine and led to faster development of analgesic tolerance. The opioid peptide dynorphin seemed to be one target through which DeltaFosB produced this behavioral phenotype. Together, these experiments demonstrated that DeltaFosB in the NAc, partly through the repression of dynorphin expression, mediates several major features of opiate addiction.
Sustained ligand-activated preconditioning via δ-opioid receptors.
Peart, Jason N; Hoe, Louise E See; Gross, Garrett J; Headrick, John P
2011-01-01
We have previously described novel cardioprotection in response to sustained morphine exposure, efficacious in young to aged myocardium and mechanistically distinct from conventional opioid or preconditioning (PC) responses. We further investigate opioid-dependent sustained ligand-activated preconditioning (SLP), assessing duration of protection, opioid receptor involvement, additivity with conventional responses, and signaling underlying preischemic induction of the phenotype. Male C57BL/6 mice were treated with morphine (75-mg subcutaneous pellet) for 5 days followed by morphine-free periods (0, 3, 5, or 7 days) before ex vivo assessment of myocardial tolerance to 25-min ischemia/45-min reperfusion. SLP substantially reduced infarction (by ∼50%) and postischemic contractile dysfunction (eliminating contracture, doubling force development). Cardioprotection persisted for 5 to 7 days after treatment. SLP was induced specifically by δ-receptor and not κ- or μ-opioid receptor agonism, was eliminated by δ-receptor and nonselective antagonism, and was additive with adenosinergic but not acute morphine- or PC-triggered protection. Cotreatment during preischemic morphine exposure with the phosphoinositide-3 kinase (PI3K) inhibitor wortmannin, but not the protein kinase A (PKA) inhibitor myristoylated PKI-(14-22)-amide, prevented induction of SLP. This was consistent with shifts in total and phospho-Akt during the induction period. In summary, data reveal that SLP triggers sustained protection from ischemia for up to 7 days after stimulus, is δ-opioid receptor mediated, is induced in a PI3K-dependent/PKA-independent manner, and augments adenosinergic protection. Mechanisms underlying SLP may be useful targets for manipulation of ischemic tolerance in young or aged myocardium.
Leal, Mirna Bainy; Michelin, Kátia; Souza, Diogo Onofre; Elisabetsky, Elaine
2003-08-01
Ibogaine (IBO) is an alkaloid with putative antiaddictive properties, alleviating opiates dependence and withdrawal. The glutamate N-methyl-D-aspartate (NMDA) receptors have been implicated in the physiological basis of drug addiction; accordingly, IBO acts as a noncompetitive NMDA antagonist. The purpose of this study was to evaluate the effects of IBO on naloxone-induced withdrawal syndrome in morphine-dependent mice, focusing on the role of NMDA receptors. Jumping, a major behavioral expression of such withdrawal, was significantly (P<.01) inhibited by IBO (40 and 80 mg/kg, 64.2% and 96.9% inhibition, respectively) and MK-801 (0.15 and 0.30 mg/kg, 67.3% and 97.7%, respectively) given prior to naloxone. Coadministration of the lower doses of IBO (40 mg/kg) and MK-801 (0.15 mg/kg) results in 94.7% inhibition of jumping, comparable to the effects of higher doses of either IBO or MK-801. IBO and MK-801 also significantly inhibited NMDA-induced (99.0% and 71.0%, respectively) jumping when given 30 min (but not 24 h) prior to NMDA in nonaddictive mice. There were no significant differences in [3H]MK-801 binding to cortical membranes from naive animals, morphine-dependent animals, or morphine-dependent animals treated with IBO or MK-801. This study provides further evidence that IBO does have an inhibitory effect on opiate withdrawal symptoms and suggests that the complex process resulting in morphine withdrawal includes an IBO-sensitive functional and transitory alteration of NMDA receptor.
Ethanol Reversal of Tolerance to the Antinociceptive Effects of Oxycodone and Hydrocodone.
Jacob, Joanna C; Poklis, Justin L; Akbarali, Hamid I; Henderson, Graeme; Dewey, William L
2017-07-01
This study compared the development of tolerance to two orally bioavailable prescription opioids, oxycodone and hydrocodone, to that of morphine, and the reversal of this tolerance by ethanol. Oxycodone (s.c.) was significantly more potent in the mouse tail-withdrawal assay than either morphine or hydrocodone. Oxycodone was also significantly more potent in this assay than hydrocodone when administered orally. Tolerance was seen following chronic subcutaneous administration of each of the three drugs and by the chronic administration of oral oxycodone, but not following the chronic oral administration of hydrocodone. Ethanol (1 g/kg i.p.) significantly reversed the tolerance to the subcutaneous administration of each of the three opioids that developed when given 30 minutes prior to challenge doses. It took twice as much ethanol, when given orally, to reverse the tolerance to oxycodone. We investigated whether the observed tolerance to oxycodone and its reversal by ethanol were due to biodispositional changes or reflected a true neuronal tolerance. As expected, a relationship between brain oxycodone concentrations and activity in the tail-immersion test existed following administration of acute oral oxycodone. Following chronic treatment, brain oxycodone concentrations were significantly lower than acute concentrations. Oral ethanol (2 g/kg) reversed the tolerance to chronic oxycodone, but did not alter brain concentrations of either acute or chronic oxycodone. These studies show that there is a metabolic component of tolerance to oxycodone; however, the reversal of that tolerance by ethanol is not due to an alteration of the biodisposition of oxycodone, but rather is neuronal in nature. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.
Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A
2013-02-01
Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Johnson, Franklin; Setnik, Beatrice
2011-01-01
Morphine sulfate and naltrexone hydrochloride extended-release capsules (EMBEDA, King Pharmaceuticals, Inc., Bristol, TN), indicated for management of chronic, moderate-to-severe pain, contain pellets of extended-release morphine sulfate with a sequestered naltrexone core (MS-sNT). Taken as directed, morphine provides analgesia while naltrexone remains sequestered; if tampered with by crushing, naltrexone is released to mitigate morphine-induced euphoric effects. While it is necessary to establish that formulations intended to reduce attractiveness for abuse are successful in doing so, it is also necessary to demonstrate that product therapeutic integrity is maintained for patients. Data were reviewed from 3 studies to determine: 1) the quantity of naltrexone released when MS-sNT pellets are crushed (MS-sNTC) for at least 2 minutes with mortar and pestle); 2) the extent to which the naltrexone released upon crushing mitigated morphine-induced subjective effects; and 3) whether sequestered naltrexone precipitates opioid withdrawal when MS-sNT is taken as directed. The naltrexone bioavailability study compared naltrexone release from MS-sNTC with that from whole intact MS-sNT capsules (MS-sNTW) and an equal naltrexone solution (NS) dose. Equivalent bioavailability was established if 90% confidence intervals (CIs) for geometric mean ratios (maximum plasma naltrexone concentration [Cmax] and area under the concentration-time curve extrapolated to infinity [AUC∞]) fell between 80% and 125%. The oral pharmacodynamic study assessed drug liking and euphoria and pharmacokinetic properties of MS-sNTC and MS-sNTW compared with morphine sulfate solution (MSS) and placebo. The 12-month, open-label (OL) safety study evaluated safety of MS-sNT administered orally as directed in patients with chronic, moderate-to-severe pain. Safety assessments included withdrawal symptoms based on the Clinical Opiate Withdrawal Scale (COWS). Naltrexone from MS-sNTC met criteria for equivalent bioavailability to NS. Although morphine relative bioavailability was similar for MS-sNTC and MSS, mean peak (Emax) visual analog scale (VAS) scores for drug liking and Cole/Addiction Research Center Inventory Stimulation-Euphoria were significantly reduced for MS-sNTC vs MSS (p < 0.001). In these 2 studies, a total of 6 participants had one measurement of plasma naltrexone after MS-sNTW that was above the lower limit of quantification. In the OL safety study, 72/93 participants (77%) had no quantifiable naltrexone concentrations. There was neither evidence of naltrexone accumulation for any participant nor any significant correlation with MS-sNT dose, age, or sex. Of 4 participants with the highest naltrexone concentrations, none had COWS scores consistent with moderate opioid withdrawal symptoms. Only 5 participants had COWS scores consistent with moderate opioid withdrawal; all 5 had not taken MS-sNT as directed. Study populations may not be fully representative of patients receiving opioid therapy for the management of chronic, moderate-to-severe pain and of opioid abusers. When MS-sNT capsules are crushed, all of the sequestered naltrexone (relative to oral NS) is released and immediately available to mitigate morphine-induced effects. When MS-sNT was crushed, the naltrexone released abated drug liking and euphoria relative to that from an equal dose of immediate-release morphine from MSS administration in a majority of participants. Naltrexone concentrations were low over a period of 12 months without evidence of accumulation, and there were no observable opioid withdrawal symptoms when MS-sNT was taken as directed.
Effects of opiate-like peptides, morphine, and naloxone in the photosensitive baboon, Papio papio.
Meldrum, B S; Menini, C; Stutzmann, J M; Naquet, R
1979-07-13
The effects of intracerebroventricular (i.c.v.) or systemic injections of Met- or Leu-enkephalin, beta-endorphin, FK 33.824 (D-Ala2, MePhe4, Met(O5)-ol-enkephalin) and of morphine and naloxone have been studied in baboons, Papio papio, which spontaneously show photically induced epileptic responses. Animals were chronically implanted with epidural or deep recording electrodes and a cannula in one lateral ventricle, and tested whilst seated in a primate chair. In some animals the natural syndrome was enhanced by the prior administration of DL-allylglycine, 100--200 mg/kg, i.v. Met- or Leu-enkephalin, 1--10 mg, i.c.v., did not lead to any manifest focal or generalized seizure discharges. Nor did it lead to any consistent enhancement or reduction of photically induced myoclonic responses (as tested 5--10 min after injection). beta-Endorphin, 0.1--0.5 mg, i.c.v., did not enhance or impair photically induced myoclonic responses. FK 33.824, 0.1--0.5 mg, i.c.v., depressed respiration and slowed EEG background rhythms for 9--15 h. This was associated with a loss of myoclonic responses to photic stimulation. These effects were reversed for 20--40 min following the injection of naloxone, 1 mg/kg i.m. A depression of respiration and a slowing of EEG rhythms was seen beginning 5--20 min after FK 33.824, 2 or 4 mg/kg, i.v. The higher dose also abolished photically induced myoclonic responses. Naloxone, 1 mg/kg, definitively reversed these effects. Morphine, 5--10 mg i.c.v., tended to increase the latency to onset of generalized myoclonus during photic stimulation. Myoclonic responses were delayed or diminished after morphine, 5 mg/kg, i.m. Naloxone, 1--2 mg/kg i.m., reversed this effect. Naloxone, 0.2--5.0 mg/kg i.m., alone, did not significantly modify photically induced myoclonus, either in animals of low or high initial responsiveness, or in those pretreated with allylglycine.
Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H; Law, Ping-Yee
2016-01-01
The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine's inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3-28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.
Mendoza, James; Passafaro, Rachael; Baby, Santhosh; Young, Alex P; Bates, James N; Gaston, Benjamin; Lewis, Stephen J
2013-10-01
This study determined whether the membrane-permeable ventilatory stimulant, L-cysteine ethylester (L-CYSee), reversed the deleterious actions of morphine on arterial blood-gas chemistry in isoflurane-anesthetized rats. Morphine (2 mg/kg, i.v.) elicited sustained decreases in arterial blood pH, pO₂ and sO₂, and increases in pCO₂ (all responses indicative of hypoventilation) and alveolar-arterial gradient (indicative of ventilation-perfusion mismatch). Injections of L-CYSee (100 μmol/kg, i.v.) reversed the effects of morphine in tracheotomized rats but were minimally active in non-tracheotomized rats. L-cysteine or L-serine ethylester (100 μmol/kg, i.v.) were without effect. It is evident that L-CYSee can reverse the negative effects of morphine on arterial blood-gas chemistry and alveolar-arterial gradient but that this positive activity is negated by increases in upper-airway resistance. Since L-cysteine and L-serine ethylester were ineffective, it is evident that cell penetrability and the sulfur moiety of L-CYSee are essential for activity. Due to its ready penetrability into the lungs, chest wall muscle and brain, the effects of L-CYSee on morphine-induced changes in arterial blood-gas chemistry are likely to involve both central and peripheral sites of action. Copyright © 2013 Elsevier B.V. All rights reserved.
Le Merrer, Julie; Plaza-Zabala, Ainhoa; Del Boca, Carolina; Matifas, Audrey; Maldonado, Rafael; Kieffer, Brigitte L
2011-04-01
Converging experimental data indicate that δ opioid receptors contribute to mediate drug reinforcement processes. Whether their contribution reflects a role in the modulation of drug reward or an implication in conditioned learning, however, has not been explored. In the present study, we investigated the impact of δ receptor gene knockout on reinforced conditioned learning under several experimental paradigms. We assessed the ability of δ receptor knockout mice to form drug-context associations with either morphine (appetitive)- or lithium (aversive)-induced Pavlovian place conditioning. We also examined the efficiency of morphine to serve as a positive reinforcer in these mice and their motivation to gain drug injections, with operant intravenous self-administration under fixed and progressive ratio schedules and at two different doses. Mutant mice showed impaired place conditioning in both appetitive and aversive conditions, indicating disrupted context-drug association. In contrast, mutant animals displayed intact acquisition of morphine self-administration and reached breaking-points comparable to control subjects. Thus, reinforcing effects of morphine and motivation to obtain the drug were maintained. Collectively, the data suggest that δ receptor activity is not involved in morphine reinforcement but facilitates place conditioning. This study reveals a novel aspect of δ opioid receptor function in addiction-related behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Mahoney, Megan K; Silveira, Mason M; Olmstead, Mary C
2013-12-01
Impulsive action is mediated through several neurochemical systems, although it is not clear which role each of these plays in the inability to withhold inappropriate responses. Manipulations of the opioid system alter impulsive action in rodents, although the effects are not consistent across tasks. Previously, we speculated that these discrepancies reflect differences in the cognitive mechanisms that control responding in each task. We investigated whether the effect of morphine, a mu opioid receptor (MOR) agonist, on impulsive action depends on the ability of the subjects to time the interval during which they must inhibit a response. Male Long-Evans rats were trained in a response inhibition (RI) task to withhold responding for sucrose during a 4- or 60-s delay; impulsive action was assessed as increased responding during the delay. The rats were tested following an injection of morphine (0, 1, 3, 6 mg/kg). In a subsequent experiment, the effects of morphine (6 mg/kg) plus the MOR antagonist naloxone (0, 0.3, 1, 3 mg/kg) were investigated. Morphine increased impulsive action, but had different effects in the two conditions: the drug increased the proportion of premature responses as the 4-s interval progressed and produced a general increase in responding across the 60-s interval. Naloxone blocked all morphine-induced effects. The finding that morphine increases impulsive action in a fixed-delay RI task contrasts with our previous evidence which shows no effect in the same task with a variable delay. Thus, MORs disrupt impulsive action only when rats can predict the delay to respond.
Lorenzutti, Augusto M.; Martín-Flores, Manuel; Litterio, Nicolás J.; Himelfarb, Martín A.; Invaldi, Sergio H.; Zarazaga, María P.
2017-01-01
Morphine is widely used as a preanesthetic agent in dogs, but it often produces signs of nausea and vomiting. Maropitant (MRP) and metoclopramide (MCP) prevent emesis attributable to the opioid agent apomorphine in dogs. We evaluated the antiemetic efficacy and the discomfort in response to SQ injection of MRP [1 mg/kg body weight (BW)], MCP (0.5 mg/kg BW), and normal saline (SAL; 0.1 mL/kg BW) administered to 63 dogs, 45 minutes prior to morphine (0.5 mg/kg BW) and acepromazine (0.05 mg/kg BW). Dogs were observed for signs of nausea (ptyalism, lip licking, and increased swallowing) and vomiting for 30 minutes after morphine/acepromazine. The incidence of emesis was 0% for MRP, 38% for MCP, and 71% for SAL (P < 0.001). The incidence of signs of nausea was not different between groups. Discomfort due to injection was higher after MRP (48%), than after MCP (9.8%) and SAL (4.8%) (P < 0.001). PMID:28042152
Lorenzutti, Augusto M; Martín-Flores, Manuel; Litterio, Nicolás J; Himelfarb, Martín A; Invaldi, Sergio H; Zarazaga, María P
2017-01-01
Morphine is widely used as a preanesthetic agent in dogs, but it often produces signs of nausea and vomiting. Maropitant (MRP) and metoclopramide (MCP) prevent emesis attributable to the opioid agent apomorphine in dogs. We evaluated the antiemetic efficacy and the discomfort in response to SQ injection of MRP [1 mg/kg body weight (BW)], MCP (0.5 mg/kg BW), and normal saline (SAL; 0.1 mL/kg BW) administered to 63 dogs, 45 minutes prior to morphine (0.5 mg/kg BW) and acepromazine (0.05 mg/kg BW). Dogs were observed for signs of nausea (ptyalism, lip licking, and increased swallowing) and vomiting for 30 minutes after morphine/acepromazine. The incidence of emesis was 0% for MRP, 38% for MCP, and 71% for SAL ( P < 0.001). The incidence of signs of nausea was not different between groups. Discomfort due to injection was higher after MRP (48%), than after MCP (9.8%) and SAL (4.8%) ( P < 0.001).
Additive effect of combined application of magnesium and MK-801 on analgesic action of morphine.
Bujalska-Zadrożny, Magdalena; Duda, Kamila
2014-01-01
As previously reported, magnesium ions (Mg(2+)) administered in relatively low doses markedly potentiated opioid analgesia in neuropathic pain, in which the effectiveness of opioids is limited. Considering that Mg(2+) behaves like an N-methyl-D-aspartate receptor antagonist, the effect of this ion on the analgesic action of morphine was compared with that of MK-801. Acute pain was evoked by mechanical or thermal stimuli, whereas neuropathic hyperalgesia was induced by streptozotocin (STZ) administration. Magnesium sulphate (40 mg/kg i.p.) or MK-801 (0.05 mg/kg s.c.) administered alone did not modify the nociceptive threshold to acute stimuli or the streptozotocin hyperalgesia but significantly augmented the analgesic action of morphine (5 mg/kg i.p.). Furthermore, if these drugs (i.e. magnesium sulphate and MK-801) were applied concomitantly, a clear additive effect on the analgesic action of morphine occurred in both models of pain. Possible explanations of these observations are discussed. © 2014 S. Karger AG, Basel.
PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα
Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim
2016-01-01
Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin’s mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842
Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior
Harte, Steven E.; Meyers, Jessica B.; Donahue, Renee R.; Taylor, Bradley K.; Morrow, Thomas J.
2016-01-01
A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents. PMID:26915030
Miolo, Giorgia; Tucci, Marianna; Mazzoli, Alessandra; Ferrara, Santo Davide; Favretto, Donata
2016-07-15
The UVA and UVB light-induced behaviour of 6-monoacetylmorphine (6-MAM) and morphine, the main metabolites of heroin, was studied in methanol, aqueous solution and in the dry state. UVA and UVB irradiations were performed for different times (radiant energies of 20-300J/cm(2)). UV spectra of irradiated samples were compared with samples kept in the dark. To estimate the extent of photolysis, positive ion electrospray ionization experiments were performed on the irradiated samples by LC-HRMS. Tentative identification of photoproducts was performed on the basis of their elemental formula as calculated by HRMS results. Morphine and 6-MAM demonstrated to be quite stable under UVA light but very sensitive to UVB irradiation. In methanol solutions they undergo a similar pattern, both reaching 90% photodegradation after 100J/cm(2) of UVB, with a slightly faster kinetic for morphine at lower doses. In water, the yields of photodegradation are nearly one third lower than in methanol. In the solid state, the yield of photodegradation is lower than in solution. The structures of some UVB-induced degradation products are proposed. Photoaddition of the solvent and photooxidation seem the main pathways of phototransformation of these molecules. Moreover, both compounds revealed to generate singlet oxygen under UVB exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Haloperidol Disrupts Opioid-Antinociceptive Tolerance and Physical Dependence
Yang, Cheng; Chen, Yan; Tang, Lei
2011-01-01
Previous studies from our laboratory and others have implicated a critical role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2–1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06–0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence. PMID:21436292
Montilla-García, Ángeles; Perazzoli, Gloria; Tejada, Miguel Á; González-Cano, Rafael; Sánchez-Fernández, Cristina; Cobos, Enrique J; Baeyens, José M
2018-06-01
Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morphine and other clinically relevant μ-opioid agonists. Mechanical nociception was assessed in mice with the paw pressure test (450 g), and heat nociception with the unilateral hot plate (55 °C) test. Local peripheral (intraplantar) administration of morphine, buprenorphine or oxycodone did not induce antinociception to mechanical stimulation but had dose-dependent antinociceptive effects on heat stimuli. Local sigma-1 antagonism unmasked peripheral antinociception by μ-opioid agonists to mechanical stimuli, but did not modify their effects on heat stimulation. TRPV1+ and IB4+ cells are segregated populations of small neurons in the dorsal root ganglia (DRG) and the density of sigma-1 receptors was higher in IB4+ cells than in the rest of small nociceptive neurons. The in vivo ablation of TRPV1-expressing neurons with resiniferatoxin did not alter IB4+ neurons in the DRG, mechanical nociception, or the effects of sigma-1 antagonism on local morphine antinociception in this type of stimulus. However, it impaired the responses to heat stimuli and the effect of local morphine on heat nociception. In conclusion, peripheral opioid antinociception to mechanical stimuli is limited by sigma-1 tonic inhibitory actions, whereas peripheral opioid antinociception to heat stimuli (produced in TRPV1-expressing neurons) is not. Therefore, sigma-1 receptors contribute to the modality-specific peripheral effects of opioid analgesics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Li, Jun-Xu; Zhang, Yanan; Winter, Jerrold C
2011-11-01
Pain remains a significant clinical challenge and currently available analgesics are not adequate to meet clinical needs. Emerging evidence suggests the role of imidazoline I(2) receptors in pain modulation primarily from studies of the non-selective imidazoline receptor ligand, agmatine. However, little is known of the generality of the effect to selective I(2) receptor ligands. This study examined the antinociceptive effects of two selective I(2) receptor ligands 2-BFI and BU224 (>2000-fold selectivity for I(2) receptors over α(2) adrenoceptors) in a hypertonic (5%) saline-induced writhing test and analyzed their interaction with morphine using a dose-addition analysis. Morphine, 2-BFI and BU224 but not agmatine produced a dose-dependent antinociceptive effect. Both composite additive curve analyses and isobolographical plots revealed a supra-additive interaction between morphine and 2-BFI or BU224, whereas the interaction between 2-BFI and BU224 was additive. The antinociceptive effect of 2-BFI and BU224 was attenuated by the I(2) receptor antagonist/α(2) adrenoceptor antagonist idazoxan but not by the selective α(2) adrenoceptor antagonist yohimbine, suggesting an I(2) receptor-mediated mechanism. Agmatine enhanced the antinociceptive effect of morphine, 2-BFI and BU224 and the enhancement was prevented by yohimbine, suggesting that the effect was mediated by α(2) adrenoceptors. Taken together, these data represent the first report that selective I(2) receptor ligands have substantial antinociceptive activity and produce antinociceptive synergy with opioids in a rat model of acute pain. These data suggest that drugs acting on imidazoline I(2) receptors may be useful either alone or in combination with opioids for the treatment of pain. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhao, Xiaojie; Yun, Keming; Seese, Ronald R.; Wang, Zhenyuan
2013-01-01
Learning and memory systems are intimately involved in drug addiction. Previous studies suggest that galanin, a neuropeptide that binds G-protein coupled receptors, plays essential roles in the encoding of memory. In the present study, we tested the function of galnon, a galanin receptor 1 and 2 agonist, in reward-associated memory, using conditioned place preference (CPP), a widely used paradigm in drug-associated memory. Either before or following CPP-inducing morphine administration, galnon was injected at four different time points to test the effects of galanin activation on different reward-associated memory processes: 15 min before CPP training (acquisition), immediately after CPP training (consolidation), 15 min before the post-conditioning test (retrieval), and multiple injection after post-tests (reconsolidation and extinction). Galnon enhanced consolidation and extinction processes of morphine-induced CPP memory, but the compound had no effect on acquisition, retrieval, or reconsolidation processes. Our findings demonstrate that a galanin receptor 1 and 2 agonist, galnon, may be used as a viable compound to treat drug addiction by facilitating memory extinction process. PMID:24146862
Zhao, Xiaojie; Yun, Keming; Seese, Ronald R; Wang, Zhenyuan
2013-01-01
Learning and memory systems are intimately involved in drug addiction. Previous studies suggest that galanin, a neuropeptide that binds G-protein coupled receptors, plays essential roles in the encoding of memory. In the present study, we tested the function of galnon, a galanin receptor 1 and 2 agonist, in reward-associated memory, using conditioned place preference (CPP), a widely used paradigm in drug-associated memory. Either before or following CPP-inducing morphine administration, galnon was injected at four different time points to test the effects of galanin activation on different reward-associated memory processes: 15 min before CPP training (acquisition), immediately after CPP training (consolidation), 15 min before the post-conditioning test (retrieval), and multiple injection after post-tests (reconsolidation and extinction). Galnon enhanced consolidation and extinction processes of morphine-induced CPP memory, but the compound had no effect on acquisition, retrieval, or reconsolidation processes. Our findings demonstrate that a galanin receptor 1 and 2 agonist, galnon, may be used as a viable compound to treat drug addiction by facilitating memory extinction process.
Identification of spinal circuits involved in touch-evoked dynamic mechanical pain
Cheng, Longzhen; Duan, Bo; Huang, Tianwen; Zhang, Yan; Chen, Yangyang; Britz, Olivier; Garcia-Campmany, Lidia; Ren, Xiangyu; Vong, Linh; Lowell, Bradford B.; Goulding, Martyn; Wang, Yun; Ma, Qiufu
2017-01-01
Mechanical hypersensitivity is a debilitating symptom associated with millions of chronic pain patients. It exists in distinct forms, including brush-evoked dynamic and filament-evoked punctate. Here we report that dynamic mechanical hypersensitivity induced by nerve injury or inflammation was compromised in mice with ablation of spinal VT3Lbx1 neurons defined by coexpression of VGLUT3Cre and Lbx1Flpo, as indicated by the loss of brush-evoked nocifensive responses and conditional place aversion. Electrophysiological recordings show that VT3Lbx1 neurons form morphine-resistant polysynaptic pathways relaying inputs from low-threshold Aβ mechanoreceptors to lamina I output neurons. Meanwhile, the subset of somatostatin (SOM) lineage neurons preserved in VT3Lbx1 neuron-ablated mice is largely sufficient to mediate von Frey filament-evoked punctate mechanical hypersensitivity, including both morphine-sensitive and morphine-resistant forms. Furthermore, acute silencing of VT3Lbx1 neurons attenuated pre-established dynamic mechanical hypersensitivity induced by nerve injury, suggesting these neurons as a potential cellular target for treating this form of neuropathic pain. PMID:28436981
Zanos, Panos; Georgiou, Polymnia; Wright, Sherie R; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaëlle; Bailey, Alexis
2014-03-01
The main challenge in treating opioid addicts is to maintain abstinence due to the affective consequences associated with withdrawal which may trigger relapse. Emerging evidence suggests a role of the neurohypophysial peptide oxytocin (OT) in the modulation of mood disorders as well as drug addiction. However, its involvement in the emotional consequences of drug abstinence remains unclear. We investigated the effect of 7-day opioid abstinence on the oxytocinergic system and assessed the effect of the OT analogue carbetocin (CBT) on the emotional consequences of opioid abstinence, as well as relapse. Male C57BL/6J mice were treated with a chronic escalating-dose morphine regimen (20-100 mg/kg/day, i.p.). Seven days withdrawal from this administration paradigm induced a decrease of hypothalamic OT levels and a concomitant increase of oxytocin receptor (OTR) binding in the lateral septum and amygdala. Although no physical withdrawal symptoms or alterations in the plasma corticosterone levels were observed after 7 days of abstinence, mice exhibited increased anxiety-like and depressive-like behaviors and impaired sociability. CBT (6.4 mg/kg, i.p.) attenuated the observed negative emotional consequences of opioid withdrawal. Furthermore, in the conditioned place preference paradigm with 10 mg/kg morphine conditioning, CBT (6.4 mg/kg, i.p.) was able to prevent the stress-induced reinstatement to morphine-seeking following extinction. Overall, our results suggest that alterations of the oxytocinergic system contribute to the mechanisms underlying anxiety, depression, and social deficits observed during opioid abstinence. This study also highlights the oxytocinergic system as a target for developing pharmacotherapy for the treatment of emotional impairment associated with abstinence and thereby prevention of relapse.
Comparison of the cardio-respiratory effects of methadone and morphine in conscious dogs.
Maiante, A A; Teixeira Neto, F J; Beier, S L; Corrente, J E; Pedroso, C E B P
2009-08-01
The effects of methadone and morphine were compared in conscious dogs. Six animals received morphine sulfate (1 mg/kg) or methadone hydrochloride (0.5 mg/kg [MET0.5] or 1.0 mg/kg [MET1.0]) intravenously (i.v.) in a randomized complete block design. Cardiopulmonary variables were recorded before (baseline), and for 120 min after drug administration. One outlier was not included in the statistical analysis for hemodynamic data. Morphine decreased heart rate (HR) compared to baseline from 30 to 120 min (-15% to -26%), while cardiac index (CI) was reduced only at 120 min (-19%). Greater and more prolonged reductions in HR (-32% to -46%) and in CI (-24% to -52%) were observed after MET1.0, while intermediate reductions were recorded after MET0.5 (-19 to -28% for HR and -17% to -27% for CI). The systemic vascular resistance index (SVRI) was increased after methadone; MET1.0 produced higher SVRI values than MET0.5 (maximum increases: 57% and 165% for MET0.5 and MET1.0, respectively). Compared to morphine, oxygen partial pressure (PaO(2)) was lower (-12% to -13%) at 5 min of methadone (0.5 and 1.0 mg/kg), while carbon dioxide partial pressure (PaCO(2)) did not change significantly. It was concluded that methadone induces cardiovascular changes that are dose-related and is a more potent cardiovascular depressant agent than morphine in conscious dogs.
Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-Kang; Chen, Shao-Tsu
2015-01-01
Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3-20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light-dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light-dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders.
Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-kang; Chen, Shao-Tsu
2015-01-01
Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3–20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light–dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light–dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders. PMID:25834439
A Leptin-Mediated Central Mechanism in Analgesia-Enhanced Opioid Reward in Rats
Lim, Grewo; Kim, Hyangin; McCabe, Michael F.; Chou, Chiu-Wen; Wang, Shuxing; Chen, Lucy L.; Marota, John J.A.; Blood, Anne; Breiter, Hans C.
2014-01-01
Opioid analgesics are commonly used in chronic pain management despite a potential risk of rewarding. However, it remains unclear whether opioid analgesia would enhance the opioid rewarding effect thereby contributing to opioid rewarding. Utilizing a rat paradigm of conditioned place preference (CPP) combined with ankle monoarthritis as a condition of persistent nociception, we showed that analgesia induced by either morphine or the nonsteroid anti-inflammatory drug ibuprofen increased CPP scores in arthritic rats, suggesting that analgesia itself had a rewarding effect. However, arthritic rats exhibited a significantly higher CPP score in response to morphine than ibuprofen. Thus, the rewarding effect of morphine was enhanced in the presence of persistent nociception, producing a phenomenon of analgesia-enhanced opioid reward. At the cellular level, administration of morphine activated a cascade of leptin expression, glial activation, and dopamine receptor upregulation in the nucleus accumbens (NAc), while administration of ibuprofen decreased glial activation with no effect on leptin expression in the NAc. Furthermore, the morphine rewarding effect was blocked in leptin deficient ob/ob mice or by neutralizing leptin or interleukin-1β in the NAc without diminishing morphine analgesia. The data indicate that systemic opioid can activate a leptin-mediated central mechanism in the NAc that led to the enhanced opioid rewarding effect. These findings provide evidence for an interaction between opioid analgesia and opioid rewarding, which may have implications in clinical opioid dose escalation in chronic pain management. PMID:25031415
Laorden, María Luisa; Milanés, María Victoria
2016-01-01
Background: Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. Methods: In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. Results: Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. Conclusions: All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines. PMID:26164717
García-Pérez, Daniel; Laorden, María Luisa; Milanés, María Victoria
2015-07-11
Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Huang, Hui-Fang; Chang, Pi-Ying; Chen, Yu-Chun; Tseng, Kuang-Yi; Hsu, Hung-Te; Cheng, Kuang-I; Lu, I-Cheng
2014-11-01
Laryngeal microsurgery is performed to assess disorders of the larynx. Parecoxib is the only parenterally administered selective cyclooxygenase (COX)-2 inhibitor widely used in acute pain control. The purpose of this study is to assess the analgesic effects of parecoxib compared with morphine for postoperative sore throat in patients undergoing laryngeal microsurgery. Fifty patients were randomly allocated to receive either parecoxib 0.5 mg/kg or morphine 50 μg/kg prior to anesthesia induction. General anesthesia was maintained with sevoflurane 2-4%. Postoperative sore throat and other outcomes were measured at a postanesthesia care unit (PACU) 4 hours and 24 hours postoperatively. The severity of postoperative sore throat was assessed by sore throat score as follows: none (0) = no pharyngeal or laryngeal discomfort; mild (1) = no pain at rest, but swallowing induced mild pain or discomfort; moderate (2) = constant pain without swallowing exacerbation; and severe (3) = constant pain with swallowing or respiratory exacerbation. The incidences of postoperative side effects (nausea, vomiting, itching, dizziness, and somnolence) were also recorded. Demographic data from the parecoxib (n = 25) and morphine (n = 25) groups did not differ significantly. The parecoxib group depicted similar sore throat scores as the morphine group at three measured postoperative time points. Patients requiring postoperative analgesics were comparable between the parecoxib group and morphine group (2/25, 8% vs. 3/25, 12%, p = 0.64). Overall postoperative adverse events were fewer in the parecoxib group than the morphine group (3/25, 12% vs. 9/25, 36%, p = 0.047). Both parecoxib and morphine are effective to attenuate postoperative sore throat after laryngeal microsurgery. Parecoxib may be an effective and well-tolerated injectable analgesic to manage postoperative sore throat after laryngeal microsurgery. Copyright © 2014. Published by Elsevier Taiwan.
Li, Jing; Pan, Qunwan; Zhu, Zaiman; Li, Min; Bai, Yu; Yu, Ran
2015-05-01
To investigate the changes of telemetry electrical activity in the infralimbic cortex (IL) of morphine-dependent rats with extinguished drug-seeking behavior. SD rats were randomly divided into model group and control group and received operations of brain stereotaxic electrode embedding in the IL. The rats in the model group were induced to acquire morphine dependence and then received subsequent extinction training, and the changes of electrical activity in the IL were recorded with a physical wireless telemetry system. In rats with morphine dependence, the time staying in the white box was significantly longer on days 1 and 2 after withdrawal than that before morphine injection and that of the control rats, but was obviously reduced on days 1 and 2 after extinction training to the control level. Compared with the control group, the morphine-dependent rats on day 2 following withdrawal showed significantly increased β wave and decreased δ wave when they stayed in the white box but significantly increased δ wave and decreased α wave and β wave when they shuttled from the black to the white box. On day 2 of extinction, the model rats, when staying in the white box, showed significantly decreased θ wave compared with that of the control rats group but decreased β wave and θ wave and increased δ wave compared with those in the withdrawal period. When they shuttled from black to white box, the model rats showed decreased δ wave and increased α wave and β wave compared with those in the withdrawal period. Morphine-dependent rats have abnormal changes of electrical activity in the IL in drug-seeking extinction to affect their drug-seeking motive and inhibit the expression and maintenance of drug-seeking behaviors.
Dzikiti, T B; Joubert, K E; Venter, L J; Dzikiti, L N
2006-09-01
In this study the analgesic efficacy of the pure agonistic opioid morphine and the cyclo-oxygenase type-2-selective carprofen were compared since there is no previous specific comparative study for these two common analgesics. Forty-five bitches undergoing elective ovariohysterectomy were randomly assigned to one of three groups; receiving morphine 0.4 mg/kg bodyweight pre-operatively and 0.2 mg/kg every 4-6 hours thereafter (Morphine group), receiving a once-off carprofen 4 mg/kg injection (Carprofen group) or receiving both morphine and carprofen (MorphCarp group). The dogs were premedicated with acepromazine 0.01 mg/kg and induced with either thiopentone 5-10 mg/kg or propofol 4-6 mg/kg. General anaesthesia was maintained with halothane in oxygen. The degree of pain was assessed over a 24-hour period under blinded conditions using a pain scale modified from the University of Melbourne pain scale and the Glasgow composite pain tool. Physiological parameters such as respiratory rate, pulse rate and body temperature were also assessed over the same time period. There was no significant difference in pain-scores and thus analgesia offered by the three analgesia protocols at any assessment point across the three groups, but there were differences within groups across time points. Baseline total pain-scores were lower than scores at all post-operative points within all three groups. Both morphine and carprofen provided good analgesia without any obvious adverse effects. This study indicates that at the dosages indicated above, carprofen administered on its own produces analgesia equal to that produced by morphine and that the two drugs administered together do not produce better analgesia than either drug administered on its own.
Effects of Obesity and Leptin Deficiency on Morphine Pharmacokinetics in a Mouse Model.
Dalesio, Nicholas M; Hendrix, Craig W; McMichael, Douglas Hale; Thompson, Carol B; Lee, Carlton K K; Pho, Huy; Arias, Rafael S; Lynn, Rachael Rzasa; Galinkin, Jeffrey; Yaster, Myron; Brown, Robert H; Schwartz, Alan R
2016-12-01
Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18.3; 95% CI: 2.8-33.7). When leptin was replaced in ob/ob mice, PK parameters began to approach DIO and WT levels. LR compared with ob/ob mice had significant decreases in AUC150 (MD: -779.9; 95% CI: -1229.8 to -330), CMAX (MD: -6.1; 95% CI: -11.4 to -0.9), and T1/2 (MD: -19; 95% CI: -35.1 to -2.8). Metabolism increased with LR, with LR mice having a greater M3G-to-morphine ratio compared with DIO (MD: 5.3; 95% CI: 0.3-10.4). Systemic effects associated with obesity decrease morphine metabolism and excretion. A previous study from our laboratory demonstrated that obesity and leptin deficiency decrease the sensitivity of central respiratory control centers to carbon dioxide. Obesity and leptin deficiency substantially decreased morphine metabolism and clearance, and replacing leptin attenuated the PK changes associated with leptin deficiency, suggesting leptin has a direct role in morphine metabolism.
Tadiwos, Yohannes; Nedi, Teshome; Engidawork, Ephrem
2017-04-18
Pain and inflammation are associated with the pathophysiology of various clinical conditions. Most analgesic and anti-inflammatory drugs available in the market present a wide range of problems. The current study was aimed at investigating the analgesic and anti-inflammatory activity of 80% methanol extract of J. abyssinicum root. The analgesic activity was determined using tail-flick test and acetic acid induced writhing, whereas anti-inflammatory activity was determined by carrageenan induced paw edema and formalin induced pedal edema, carried out in vivo. The test group received three different doses of the extract (50mg/kg, 100mg/kg and 200mg/kg) orally. The positive control group received diclofenac (10mg/kg), aspirin (100mg/kg or 150mg/kg) or morphine (20mg/kg) orally. The negative control group received vehicle (2% Tween 80, 10ml/kg) orally. Furthermore, preliminary phytochemical screening was carried out. Oral administration of J. abbysinicum 80% methanol extract (at all doses) significantly (p<0.001) inhibit pain sensation in the pain models. Similarly, the extract demonstrated anti-inflammatory effect in the inflammation models in mice. Preliminary phytochemical screening showed the presence of saponins, flavonoids, terpenoids, triterpenens and glycosides. The data obtained from the present study indicates that the extract possessed a significant analgesic and anti-inflammatory activity, upholding the folkloric use of the plant. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
ZHANG, H. N.; KO, M. C.
2009-01-01
Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF mRNA expression. PMID:19303919
Yang, Zizhao; Wang, Lu; Xu, Mingcheng; Gu, Jingkai; Yu, Lushan; Zeng, Su
2016-06-01
A rapid and sensitive bioassay was established and validated to simultaneously determine gemfibrozil, morphine, morphine-3β-glucuronide, and morphine-6β-glucuronide in mouse cerebrum, epencephalon, and hippocampus based on ultra-high performance liquid chromatography and tandem mass spectrometry. The deuterated internal standard, M6G-d3, was mixed with the prepared samples at 10 ng/mL as the final concentration. The samples were transferred into the C18 solid-phase extraction columns with gradient elution for solid-phase extraction. The mobile phase consisted of methanol and 0.05% formic acid (pH 3.2). Multiple reaction monitoring has been applied to analyze gemfibrozil (m/z 249.0 → 121.0) in anion mode, and M6G-d3 (m/z 465.1 → 289.1), morphine (m/z 286.0 → 200.9), and M3G and M6G (m/z 462.1 → 286.1) in the positive ion mode. The method has a linear calibration range from 0.05 to 10 ng for gemfibrozil, morphine, and M3G and M6G with correlation coefficients >0.993. The lower limit of quantitation for all four analytes was 0.05 ng/mL, relative standard deviation of intra- and interday precision was less than 10.5%, and the relative error of accuracy was from -8.2 to 8.3% at low, medium, and high concentrations for all the analytes. In conclusion, gemfibrozil can influence the morphine antinociception after coronary heart disease induced chronic angina by the change in one of morphine metabolites', M3G, distribution in mouse brain. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ondansetron or droperidol for prophylaxis of nausea and vomiting after intrathecal morphine.
Peixoto, A J; Celich, M F; Zardo, L; Peixoto Filho, A J
2006-08-01
There is a controversy regarding the best drug for prevention of nausea and vomiting in patients receiving intrathecal morphine. The aim of this study was to examine efficacy and tolerability of droperidol compared with ondansetron for the prevention of morphine-induced nausea and vomiting. In a randomized, placebo-controlled trial, 120 women undergoing Caesarean section under spinal anaesthesia with intrathecal morphine 0.1 mg received intravenous ondansetron 4 mg (n = 40), droperidol 1.25 mg (n = 40) or saline (n = 40) immediately after umbilical-cord clamping. Nausea and vomiting were graded according to intensity at 1, 2, 4, 6, 12 and 24 h. Nausea or vomiting occurred in 14 patients (35%) in the placebo group, 4 (10%) in the ondansetron group and 10 (25%) in the droperidol group; the difference between ondansetron and placebo was statistically significant (P = 0.007). Eleven of the 14 placebo patients (27.5%) vomited, compared with none of the 4 ondansetron patients (vs. placebo, P = 0.0004) and 5 of the droperidol patients (vs. placebo, P = 0.18). Three of the 14 placebo patients (7.5%) were nauseous, compared with 4 (10%) receiving ondansetron and 5 (12.5%) receiving droperidol. Ondansetron was effective in reducing the incidence of nausea and vomiting in patients receiving intrathecal morphine for Caesarean section.
Pharmacological analysis of paregoric elixir and its constituents: in vitro and in vivo studies.
Andrade, Edinéia Lemos; Ferreira, Juliano; Santos, Adair R S; Calixto, João B
2007-11-01
Paregoric elixir is a phytomedicinal product which is used widely as an analgesic, antispasmodic and antidiarrheal agent. Here, we investigated the pharmacological actions and some of the mechanisms of action of paregoric elixir and compared its action with some of its components, the alkaloids morphine and papaverine. The paregoric elixir given orally to mice did not present relevant toxic effects, even when administered in doses up to 2000-fold higher than those used clinically. However, it showed an antinociceptive action that was more potent, but less efficacious, than morphine. In contrast to morphine, its effect was not dose-dependent and not reversed by the non-selective opioid antagonist naloxone. Moreover, paregoric elixir produced tolerance, but did not cause cross-tolerance, with the antinociceptive actions of morphine. When assessed in the gastrointestinal motility in vivo, paregoric elixir elicited graduated reduction of gastrointestinal transit. Finally, like morphine and papaverine, paregoric elixir concentration-dependently inhibited electrically-induced contraction of the guinea pig isolated ileum. In vivo and in vitro gastrointestinal actions of paregoric elixir were not reversed by naloxone. Collectively, the present findings lead us to suggest that the pharmacological actions produced by paregoric elixir are probably due to a synergic action of its constituents.
Lv, Xiu-Fang; Sun, Lin-Lin; Han, Ji-Sheng
2015-01-01
Background: Relapse into drug abuse evoked by reexposure to the drug-associated context has been a primary problem in the treatment of drug addiction. Disrupting the reconsolidation of drug-related context memory would therefore limit the relapse susceptibility. Methods: Morphine conditioned place preference (CPP) was used to assess activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and correlative molecule expression in the Nucleus accumbens (NAc) shell during the reconsolidation of morphine CPP. U0126 and Arc/Arg3.1 antisense oligodeoxynucleotide were adapted to evaluate the role and the underlying mechanism of Arc/Arg3.1 during the reconsolidation. Results: The retrieval of morphine CPP in rats specifically increased the Arc/Arg3.1 protein level in the NAc shell, accompanied simultaneously by increases in the phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2), the phosphorylation of Cyclic Adenosine monophosphate (cAMP) response element-binding (pCREB), and the up-regulation of the membrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors GluR1 subunit level. Intra-NAc shell infusion U0126, an inhibitor of the Mitogen-activated protein kinase kinase (MEK), prevented the retrieval-induced up-regulation of pERK1/2, pCREB, Arc/Arg3.1, and membrane GluR1 immediately after retrieval of morphine CPP. The effect of disrupting the reconsolidation of morphine CPP by U0126 could last for at least 14 days, and could not be evoked by a priming injection of morphine. Furthermore, the specific knockdown of Arc/Arg3.1 in the NAc shell decreased the membrane GluR1 level, and impaired both the reconsolidation and the reinstatement of morphine CPP. Conclusions: Arc/Arg3.1 in the NAc shell mediates the reconsolidation of morphine-associated context memory via up-regulating the level of membrane of GluR1, for which the local activation of the ERK-CREB signal pathway, as an upstream mechanism of Arc/Arg3.1, is required. PMID:25746394
Fukuda, Hiroyuki; Chen, Cindy; Mantyh, Christopher; Ludwig, Kirk; Pappas, Theodore N; Takahashi, Toku
2006-04-01
Post-operative ileus (POI) is a transient bowel dysmotility after operation. We have previously shown that laparotomy alone significantly delayed gastrointestinal (GI) transit, compared to anesthesia alone. The GI transit was further delayed after laparotomy plus intestinal manipulation. Dai-Kenchu-to (DKT), an herbal medicine, has been used for treating adhesive bowel obstruction in Japan. We studied whether DKT improves delayed GI transit after the operation, with or without morphine administration in rats. Under isoflurane anesthesia, POI was induced by laparotomy with intestinal manipulation. Immediately after the operation, the rats received 51Cr by gavage. Three hours after the operation, the rats were sacrificed and GI transit was estimated by calculating the geometric center (GC). DKT (120, 360, and 1,200 mg/kg) were administered by gavage after the operation, with or without morphine administration (1 mg/kg s.c.). A muscarinic receptor antagonist (atropine; 50 mug/kg), a 5HT3 receptor antagonist (ondansetron; 1 mg/kg) and a 5HT4 receptor antagonist (GR113,808; 3 mg/kg) were administered before the operation. Truncal vagotomy was performed preceding the operation. Laparotomy with intestinal manipulation produced a significant delay in GI transit (GC = 2.93 +/- 0.16), compared to that of anesthesia alone (9.51 +/- 0.45). DKT at the dose of 360 mg/kg (GC = 3.77 +/- 0.10, P < 0.01) and 1,200 mg/kg (GC = 3.77 +/- 0.20, P < 0.01) significantly accelerated delayed GI transit induced by operation. Ondansetron, GR113,808, atropine, and truncal vagotomy abolished the stimulatory effect of DKT (360 mg/kg). When morphine was administered, GI transit was further reduced (GC = 1.97 +/- 0.10). DKT at the dose of 360 mg/kg (GC = 2.81 +/- 0.22, P < 0.05) and 1,200 mg/kg (GC = 2.87 +/- 0.23, P < 0.05) significantly improved delayed GI transit in morphine treated rats. DKT accelerates delayed GI transit induced by intestinal manipulation with and without concomitant morphine administration. DKT treatment may be useful for the patients with POI.
11. Photographic copy of construction drawing, dated September 17, 1982, ...
11. Photographic copy of construction drawing, dated September 17, 1982, Straub Associates, Troy, Michigan, in possession of Selfride Base Museum, Mt. Clemens, Michigan. ENERGY CONSERVATION, EXISTING AND PROPOSED PLANS, SHEET 5 OF 5, MCP-93. - Selfridge Field, Building No. 121, Wilbur Wright Avenue west of Ash Street, Mount Clemens, Macomb County, MI
Combat Traction II, Phase II. Volume I, Narrative
1974-10-01
by S. M. Warren, M. K. Wahi, R. L. Amberg, H. H. Straub, and N. S. Attri of the Boeing Commercial Airplanc Company under combined NASA, USAF, and F,.A...inverted; they can be squared, or their square roots can be taken. Such manipulations are proper and are usually performed to create a more convenient
PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,
A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)
Antinociceptive activity of fruits extracts and "arrope" of Geoffroea decorticans (chañar).
Reynoso, M A; Vera, N; Aristimuño, M E; Daud, A; Sánchez Riera, A
2013-01-09
Geoffroea decorticans (chañar) fruits and their derivate product (arrope) have been traditionally used as food and a folk medicine for the treatment of a wide variety of diseases including bronchopulmonary disorders and to relieve dolorous process. In order to evaluate the pharmacology action of this plant, studies were performed of antinociceptive and antioxidant activities. The aqueous and ethanolic extracts and arrope of chañar were evaluated in various established pain models, including chemical nociception induced by subplantar formalin and intraperitoneal acetic acid and thermal nociception method, such as tail immersion test in rats. To examine the possible connection of the opioid receptor to the antinociceptive activity of extracts and arrope it was performed a combination test with naloxone, a non-selective opioid receptor antagonist. The aqueous extract and arrope (1000 mg/kg) caused an inhibition of the pain in formalin test in the first phase, similar to morphine and decrease in the second phase. In a combination test using naloxone, diminished analgesic activity of aqueous extract and arrope were observed, indicating that antinociceptive activity is connected with the opioid receptor. The aqueous extract and arrope, caused an inhibition of the writhing response induced by acetic acid. Central involvement in analgesic profile was confirmed by the tail immersion test, in which the aqueous extract and arrope showed a significant analgesic activity by increasing latency time. The aqueous extract showed higher antioxidant activity than the arrope, it may be due to the cooking process. This study has shown that the aqueous extract and arrope of Geoffroea decorticans (chañar) fruits, does possess significant antinociceptive effects. It is further concluded that aqueous extract with maximum inhibition of free radical is the most potent extract amount tested extracts. At the oral doses tested the aqueous extract and arrope were non-toxic. The present results justifies their popular use and constitutes the first validation study of the antinociceptive action. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Janas, Aleksandra; Folwarczna, Joanna
2017-02-01
The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.
Leite-Morris, Kimberly A; Fukudome, Eugene Y; Kaplan, Gary B
2002-01-14
Recent studies suggest that gamma-aminobutyric acid type B (GABA(B)) receptors located on dopaminergic cells in the ventral tegmental area (VTA) regulate mesolimbic dopaminergic (A10) activity. In the current study, we identified GABA(B) receptor subtypes in the area of the VTA and examined their role in modulating acute opiate actions. We studied the effects of intra-VTA infusions of the selective GABA(B) agonist baclofen on morphine-induced locomotor stimulation and A10 neuronal activation. Drug treatments were followed by ambulatory activity monitoring for 180 min. Intra-VTA baclofen treatment produced a 70% inhibition of morphine-stimulated locomotor activity. Furthermore, functional activation of A10 neurons was assessed by immunohistochemical staining of c-Fos in the nucleus accumbens (NAc), where A10 neurons terminate. We found that morphine treatment increased the levels of Fos-positive nuclei in the NAc, while intra-VTA baclofen treatment reversed morphine's effects. Finally, GABA(B) receptor subtypes and isoforms were identified in the ventromedial mesencephalon using immunoblotting. We demonstrated the presence of GABA(B)R1a (130 kDa), GABA(B)R1b (100 kDa), and GABA(B)R2 (120 kDa) receptor subtypes in this region. These results suggest that GABA(B) receptor isoforms are found in the VTA and their activation results in the blockade of behavioral effects of opiates via inhibition of dopaminergic neurotransmission.
Valero, E; Gómez-Milanés, I; Almela, P; Ribeiro Do Couto, B; Laorden, M L; Milanés, M V; Núñez, C
2018-06-08
Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse to drug-seeking/taking behavior triggered by opiate withdrawal-associated aversive memories. Copyright © 2018 Elsevier Inc. All rights reserved.
Paciorek, P. M.; Todd, M. H.; Waterfall, J. F.
1985-01-01
The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission. PMID:3978318
Paciorek, P M; Todd, M H; Waterfall, J F
1985-02-01
The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission.
Antagonism of stress-induced analgesia by D-phenylalanine, an anti-enkephalinase.
Bodnar, R J; Lattner, M; Wallace, M M
1980-12-01
Methionine- and leucine-enkephalin produce mild and transient analgesic effects, presumably because of enzymatic degradation. Administration of high (250 mg/kg) doses of D-phenylalanine retards the degradation process and elicits analgesia which is reversed by naloxone and which summates with electroacupuncture analgesia. The present study evaluated D-phenylalanine's dose-dependent effects upon a non-opioid analgesic treatment, cold-water swims (CWS), and compared this with morphine. following determination of flinch-jump baselines, three groups of rats received respectively either 25, 50 or 100 mg/kg of D-phenylalanine intraperitoneally in three conditions: alone, with CWS (2 degrees C for 3.5 min), and with morphine (5 mg/kg, SC). Parallel controls with saline were also tested. Simultaneous exposure with each minimally analgesic dose of D-phenylalanine reduced significantly the analgesic, but not hypothermic effects of CWS. By contrast, morphine analgesia was unaffected by D-phenylalanine. These data provide further support that different pain-inhibitory systems mediate CWS and morphine analgesia and suggest that activation of one system is capable of exerting collateral inhibition upon the other.
Peptide and non-peptide opioid-induced hyperthermia in rabbits
NASA Technical Reports Server (NTRS)
Kandasamy, S. B.; Williams, B. A.
1983-01-01
The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.
Szentirmay, A K; Király, K P; Lenkey, N; Lackó, E; Al-Khrasani, M; Friedmann, T; Timár, J; Gyarmati, S; Tóth, G; Fürst, S; Riba, P
2013-01-01
Since the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like DPDPE may facilitate the dimer formation hence inhibit the antinociceptive effect of DAMGO by causing virtual μ receptor down-regulation. Ligands that do not affect the dimer formation do not influence antinociception either but ligands with the presumed capability of disconnecting the dimers may decrease the spinal tolerance to DAMGO. Copyright © 2012 Elsevier Inc. All rights reserved.
Biological profile and bioavailability of imidazoline compounds on morphine tolerance modulation.
Caprioli, Giovanni; Mammoli, Valerio; Ricciutelli, Massimo; Sagratini, Gianni; Ubaldi, Massimo; Domi, Esi; Mennuni, Laura; Sabatini, Chiara; Galimberti, Chiara; Ferrari, Flora; Milia, Chiara; Comi, Eleonora; Lanza, Marco; Giannella, Mario; Pigini, Maria; Del Bello, Fabio
2015-12-15
Tolerance to opioid administration represents a serious medical alert in different chronic conditions. This study compares the effects of the imidazoline compounds 1, 2, and 3 on morphine tolerance in an animal model of inflammatory pain in the rat. 1, 2, and 3 have been selected in that, although bearing a common scaffold, preferentially bind to α2-adrenoceptors, imidazoline I2 receptors, or both systems, respectively. Such compounds have been tested in vivo by measuring the paw withdrawal threshold to mechanical pressure after complete Freund's adjuvant injection. To determine the ligand levels in rat plasma, an HPLC-mass spectrometry method has been developed. All the compounds significantly reduced the induction of morphine tolerance, showing different potency and duration of action. Indeed, the selective imidazoline I2 receptor interaction (2) restored the analgesic response by maintaining the same time-dependent profile observed after a single morphine administration. Differently, the selective α2C-adrenoceptor activation (1) or the combination between α2C-adrenoceptor activation and imidazoline I2 receptor engagement (3) promoted a change in the temporal profile of morphine analgesia by maintaining a mild but long lasting analgesic effect. Interestingly, the kinetics of compounds in rat plasma supported the pharmacodynamic data. Therefore, this study highlights that both peculiar biological profile and bioavailability of such ligands complement each other to modulate the reduction of morphine tolerance. Based on these observations, 1-3 can be considered useful leads in the design of new drugs able to turn off the undesired tolerance induced by opioids. Copyright © 2015 Elsevier B.V. All rights reserved.
Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe
2016-08-01
The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.
Guillemyn, Karel; Kleczkowska, Patrycia; Lesniak, Anna; Dyniewicz, Jolanta; Van der Poorten, Olivier; Van den Eynde, Isabelle; Keresztes, Attila; Varga, Eva; Lai, Josephine; Porreca, Frank; Chung, Nga N.; Lemieux, Carole; Mika, Joanna; Rojewska, Ewelina; Makuch, Wioletta; Van Duppen, Joost; Przewlocka, Barbara; Broeck, Jozef Vanden; Lipkowski, Andrzej W.; Schiller, Peter W.; Tourwé, Dirk; Ballet, Steven
2014-01-01
A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3’,5’-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-β-Ala-NMe-Bn) were selected for in vivo behavioral assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat. PMID:25544687
Nestler, Eric J
2016-08-15
In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP-dependent protein kinase, and certain phosphoproteins in the rat locus coeruleus, but not in several other brain regions studied, and that chronic morphine decreases levels of Giα and increases levels of adenylate cyclase in dorsal root ganglion/spinal cord (DRG-SC) co-cultures. These findings led us to survey the effects of chronic morphine on the G-protein/cyclic AMP system in a large number of brain regions to determine how widespread such regulation might be. We found that while most regions showed no regulation in response to chronic morphine, nucleus accumbens (NAc) and amygdala did show increases in adenylate cyclase and cyclic AMP-dependent protein kinase activity, and thalamus showed an increase in cyclic AMP-dependent protein kinase activity only. An increase in cyclic AMP-dependent protein kinase activity was also observed in DRG-SC co-cultures. Morphine regulation of G-proteins was variable, with decreased levels of Giα seen in the NAc, increased levels of Giα and Goα amygdala, and no change in thalamus or the other brain regions studied. Interestingly, chronic treatment of rats with cocaine, but not with several non-abused drugs, produced similar changes compared to morphine in G-proteins, adenylate cyclase, and cyclic AMP-dependent protein kinase in the NAc, but not in the other brain regions studied. These results indicate that regulation of the G-protein/cyclic AMP system represents a mechanism by which a number of opiate-sensitive neurons adapt to chronic morphine and thereby develop aspects of opiate tolerance and/or dependence. The findings that chronic morphine and cocaine produce similar adaptations in the NAc, a brain region important for the reinforcing actions of many types of abused substances, suggest further that common mechanisms may underlie psychological aspects of drug addiction mediated by this brain region. © 1991. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2015 Elsevier B.V. All rights reserved.
Watanabe, Shigeru
2015-10-01
The aim of this study was to determine whether previous exposure to a drug affects the social facilitation of conditioned place preference (CPP) for a drug-injected cage mate. Twenty-two male C57/BL6J mice received drug injections (methamphetamine or morphine) and 22 male C57/BL6J mice received saline injections. All 44 mice then received CPP training, during which one compartment of a conventional CPP apparatus was associated with a drug-injected cage mate (stimulus mouse) and the other compartment was associated with a saline-injected cage mate (stimulus mouse). The subject mice did not receive any drug injection during this CPP training. Time spent in the compartment associated with the drug-injected cage mate was measured before and after training. Subject mice that had previously received methamphetamine injections showed an increase in the time spent in the compartment associated with the methamphetamine-injected cage mate after CPP training. This effect was not observed in subject mice that had previously received saline injections. Subject mice did not show an increase in the time spent in the compartment associated with the morphine-injected cage mate irrespective of whether they had previously received morphine or saline injections. Therefore, in agreement with previous reports, common experience with methamphetamine induced reinforcing properties, but that with morphine did not.